]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/nommu.c
Merge tag 'csky-for-linus-5.2-fixup-gcc-unwind' of git://github.com/c-sky/csky-linux
[mirror_ubuntu-jammy-kernel.git] / mm / nommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/nommu.c
4 *
5 * Replacement code for mm functions to support CPU's that don't
6 * have any form of memory management unit (thus no virtual memory).
7 *
8 * See Documentation/nommu-mmap.txt
9 *
10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
39
40 #include <linux/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
45
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
54
55 atomic_long_t mmap_pages_allocated;
56
57 EXPORT_SYMBOL(mem_map);
58
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
63
64 const struct vm_operations_struct generic_file_vm_ops = {
65 };
66
67 /*
68 * Return the total memory allocated for this pointer, not
69 * just what the caller asked for.
70 *
71 * Doesn't have to be accurate, i.e. may have races.
72 */
73 unsigned int kobjsize(const void *objp)
74 {
75 struct page *page;
76
77 /*
78 * If the object we have should not have ksize performed on it,
79 * return size of 0
80 */
81 if (!objp || !virt_addr_valid(objp))
82 return 0;
83
84 page = virt_to_head_page(objp);
85
86 /*
87 * If the allocator sets PageSlab, we know the pointer came from
88 * kmalloc().
89 */
90 if (PageSlab(page))
91 return ksize(objp);
92
93 /*
94 * If it's not a compound page, see if we have a matching VMA
95 * region. This test is intentionally done in reverse order,
96 * so if there's no VMA, we still fall through and hand back
97 * PAGE_SIZE for 0-order pages.
98 */
99 if (!PageCompound(page)) {
100 struct vm_area_struct *vma;
101
102 vma = find_vma(current->mm, (unsigned long)objp);
103 if (vma)
104 return vma->vm_end - vma->vm_start;
105 }
106
107 /*
108 * The ksize() function is only guaranteed to work for pointers
109 * returned by kmalloc(). So handle arbitrary pointers here.
110 */
111 return PAGE_SIZE << compound_order(page);
112 }
113
114 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
115 unsigned long start, unsigned long nr_pages,
116 unsigned int foll_flags, struct page **pages,
117 struct vm_area_struct **vmas, int *nonblocking)
118 {
119 struct vm_area_struct *vma;
120 unsigned long vm_flags;
121 int i;
122
123 /* calculate required read or write permissions.
124 * If FOLL_FORCE is set, we only require the "MAY" flags.
125 */
126 vm_flags = (foll_flags & FOLL_WRITE) ?
127 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
128 vm_flags &= (foll_flags & FOLL_FORCE) ?
129 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
130
131 for (i = 0; i < nr_pages; i++) {
132 vma = find_vma(mm, start);
133 if (!vma)
134 goto finish_or_fault;
135
136 /* protect what we can, including chardevs */
137 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
138 !(vm_flags & vma->vm_flags))
139 goto finish_or_fault;
140
141 if (pages) {
142 pages[i] = virt_to_page(start);
143 if (pages[i])
144 get_page(pages[i]);
145 }
146 if (vmas)
147 vmas[i] = vma;
148 start = (start + PAGE_SIZE) & PAGE_MASK;
149 }
150
151 return i;
152
153 finish_or_fault:
154 return i ? : -EFAULT;
155 }
156
157 /*
158 * get a list of pages in an address range belonging to the specified process
159 * and indicate the VMA that covers each page
160 * - this is potentially dodgy as we may end incrementing the page count of a
161 * slab page or a secondary page from a compound page
162 * - don't permit access to VMAs that don't support it, such as I/O mappings
163 */
164 long get_user_pages(unsigned long start, unsigned long nr_pages,
165 unsigned int gup_flags, struct page **pages,
166 struct vm_area_struct **vmas)
167 {
168 return __get_user_pages(current, current->mm, start, nr_pages,
169 gup_flags, pages, vmas, NULL);
170 }
171 EXPORT_SYMBOL(get_user_pages);
172
173 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
174 unsigned int gup_flags, struct page **pages,
175 int *locked)
176 {
177 return get_user_pages(start, nr_pages, gup_flags, pages, NULL);
178 }
179 EXPORT_SYMBOL(get_user_pages_locked);
180
181 static long __get_user_pages_unlocked(struct task_struct *tsk,
182 struct mm_struct *mm, unsigned long start,
183 unsigned long nr_pages, struct page **pages,
184 unsigned int gup_flags)
185 {
186 long ret;
187 down_read(&mm->mmap_sem);
188 ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
189 NULL, NULL);
190 up_read(&mm->mmap_sem);
191 return ret;
192 }
193
194 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
195 struct page **pages, unsigned int gup_flags)
196 {
197 return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
198 pages, gup_flags);
199 }
200 EXPORT_SYMBOL(get_user_pages_unlocked);
201
202 /**
203 * follow_pfn - look up PFN at a user virtual address
204 * @vma: memory mapping
205 * @address: user virtual address
206 * @pfn: location to store found PFN
207 *
208 * Only IO mappings and raw PFN mappings are allowed.
209 *
210 * Returns zero and the pfn at @pfn on success, -ve otherwise.
211 */
212 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
213 unsigned long *pfn)
214 {
215 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
216 return -EINVAL;
217
218 *pfn = address >> PAGE_SHIFT;
219 return 0;
220 }
221 EXPORT_SYMBOL(follow_pfn);
222
223 LIST_HEAD(vmap_area_list);
224
225 void vfree(const void *addr)
226 {
227 kfree(addr);
228 }
229 EXPORT_SYMBOL(vfree);
230
231 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
232 {
233 /*
234 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
235 * returns only a logical address.
236 */
237 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
238 }
239 EXPORT_SYMBOL(__vmalloc);
240
241 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
242 {
243 return __vmalloc(size, flags, PAGE_KERNEL);
244 }
245
246 void *vmalloc_user(unsigned long size)
247 {
248 void *ret;
249
250 ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
251 if (ret) {
252 struct vm_area_struct *vma;
253
254 down_write(&current->mm->mmap_sem);
255 vma = find_vma(current->mm, (unsigned long)ret);
256 if (vma)
257 vma->vm_flags |= VM_USERMAP;
258 up_write(&current->mm->mmap_sem);
259 }
260
261 return ret;
262 }
263 EXPORT_SYMBOL(vmalloc_user);
264
265 struct page *vmalloc_to_page(const void *addr)
266 {
267 return virt_to_page(addr);
268 }
269 EXPORT_SYMBOL(vmalloc_to_page);
270
271 unsigned long vmalloc_to_pfn(const void *addr)
272 {
273 return page_to_pfn(virt_to_page(addr));
274 }
275 EXPORT_SYMBOL(vmalloc_to_pfn);
276
277 long vread(char *buf, char *addr, unsigned long count)
278 {
279 /* Don't allow overflow */
280 if ((unsigned long) buf + count < count)
281 count = -(unsigned long) buf;
282
283 memcpy(buf, addr, count);
284 return count;
285 }
286
287 long vwrite(char *buf, char *addr, unsigned long count)
288 {
289 /* Don't allow overflow */
290 if ((unsigned long) addr + count < count)
291 count = -(unsigned long) addr;
292
293 memcpy(addr, buf, count);
294 return count;
295 }
296
297 /*
298 * vmalloc - allocate virtually contiguous memory
299 *
300 * @size: allocation size
301 *
302 * Allocate enough pages to cover @size from the page level
303 * allocator and map them into contiguous kernel virtual space.
304 *
305 * For tight control over page level allocator and protection flags
306 * use __vmalloc() instead.
307 */
308 void *vmalloc(unsigned long size)
309 {
310 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
311 }
312 EXPORT_SYMBOL(vmalloc);
313
314 /*
315 * vzalloc - allocate virtually contiguous memory with zero fill
316 *
317 * @size: allocation size
318 *
319 * Allocate enough pages to cover @size from the page level
320 * allocator and map them into contiguous kernel virtual space.
321 * The memory allocated is set to zero.
322 *
323 * For tight control over page level allocator and protection flags
324 * use __vmalloc() instead.
325 */
326 void *vzalloc(unsigned long size)
327 {
328 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
329 PAGE_KERNEL);
330 }
331 EXPORT_SYMBOL(vzalloc);
332
333 /**
334 * vmalloc_node - allocate memory on a specific node
335 * @size: allocation size
336 * @node: numa node
337 *
338 * Allocate enough pages to cover @size from the page level
339 * allocator and map them into contiguous kernel virtual space.
340 *
341 * For tight control over page level allocator and protection flags
342 * use __vmalloc() instead.
343 */
344 void *vmalloc_node(unsigned long size, int node)
345 {
346 return vmalloc(size);
347 }
348 EXPORT_SYMBOL(vmalloc_node);
349
350 /**
351 * vzalloc_node - allocate memory on a specific node with zero fill
352 * @size: allocation size
353 * @node: numa node
354 *
355 * Allocate enough pages to cover @size from the page level
356 * allocator and map them into contiguous kernel virtual space.
357 * The memory allocated is set to zero.
358 *
359 * For tight control over page level allocator and protection flags
360 * use __vmalloc() instead.
361 */
362 void *vzalloc_node(unsigned long size, int node)
363 {
364 return vzalloc(size);
365 }
366 EXPORT_SYMBOL(vzalloc_node);
367
368 /**
369 * vmalloc_exec - allocate virtually contiguous, executable memory
370 * @size: allocation size
371 *
372 * Kernel-internal function to allocate enough pages to cover @size
373 * the page level allocator and map them into contiguous and
374 * executable kernel virtual space.
375 *
376 * For tight control over page level allocator and protection flags
377 * use __vmalloc() instead.
378 */
379
380 void *vmalloc_exec(unsigned long size)
381 {
382 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
383 }
384
385 /**
386 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
387 * @size: allocation size
388 *
389 * Allocate enough 32bit PA addressable pages to cover @size from the
390 * page level allocator and map them into contiguous kernel virtual space.
391 */
392 void *vmalloc_32(unsigned long size)
393 {
394 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
395 }
396 EXPORT_SYMBOL(vmalloc_32);
397
398 /**
399 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
400 * @size: allocation size
401 *
402 * The resulting memory area is 32bit addressable and zeroed so it can be
403 * mapped to userspace without leaking data.
404 *
405 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
406 * remap_vmalloc_range() are permissible.
407 */
408 void *vmalloc_32_user(unsigned long size)
409 {
410 /*
411 * We'll have to sort out the ZONE_DMA bits for 64-bit,
412 * but for now this can simply use vmalloc_user() directly.
413 */
414 return vmalloc_user(size);
415 }
416 EXPORT_SYMBOL(vmalloc_32_user);
417
418 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
419 {
420 BUG();
421 return NULL;
422 }
423 EXPORT_SYMBOL(vmap);
424
425 void vunmap(const void *addr)
426 {
427 BUG();
428 }
429 EXPORT_SYMBOL(vunmap);
430
431 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
432 {
433 BUG();
434 return NULL;
435 }
436 EXPORT_SYMBOL(vm_map_ram);
437
438 void vm_unmap_ram(const void *mem, unsigned int count)
439 {
440 BUG();
441 }
442 EXPORT_SYMBOL(vm_unmap_ram);
443
444 void vm_unmap_aliases(void)
445 {
446 }
447 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
448
449 /*
450 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
451 * have one.
452 */
453 void __weak vmalloc_sync_all(void)
454 {
455 }
456
457 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
458 {
459 BUG();
460 return NULL;
461 }
462 EXPORT_SYMBOL_GPL(alloc_vm_area);
463
464 void free_vm_area(struct vm_struct *area)
465 {
466 BUG();
467 }
468 EXPORT_SYMBOL_GPL(free_vm_area);
469
470 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
471 struct page *page)
472 {
473 return -EINVAL;
474 }
475 EXPORT_SYMBOL(vm_insert_page);
476
477 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
478 unsigned long num)
479 {
480 return -EINVAL;
481 }
482 EXPORT_SYMBOL(vm_map_pages);
483
484 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
485 unsigned long num)
486 {
487 return -EINVAL;
488 }
489 EXPORT_SYMBOL(vm_map_pages_zero);
490
491 /*
492 * sys_brk() for the most part doesn't need the global kernel
493 * lock, except when an application is doing something nasty
494 * like trying to un-brk an area that has already been mapped
495 * to a regular file. in this case, the unmapping will need
496 * to invoke file system routines that need the global lock.
497 */
498 SYSCALL_DEFINE1(brk, unsigned long, brk)
499 {
500 struct mm_struct *mm = current->mm;
501
502 if (brk < mm->start_brk || brk > mm->context.end_brk)
503 return mm->brk;
504
505 if (mm->brk == brk)
506 return mm->brk;
507
508 /*
509 * Always allow shrinking brk
510 */
511 if (brk <= mm->brk) {
512 mm->brk = brk;
513 return brk;
514 }
515
516 /*
517 * Ok, looks good - let it rip.
518 */
519 flush_icache_range(mm->brk, brk);
520 return mm->brk = brk;
521 }
522
523 /*
524 * initialise the percpu counter for VM and region record slabs
525 */
526 void __init mmap_init(void)
527 {
528 int ret;
529
530 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
531 VM_BUG_ON(ret);
532 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
533 }
534
535 /*
536 * validate the region tree
537 * - the caller must hold the region lock
538 */
539 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
540 static noinline void validate_nommu_regions(void)
541 {
542 struct vm_region *region, *last;
543 struct rb_node *p, *lastp;
544
545 lastp = rb_first(&nommu_region_tree);
546 if (!lastp)
547 return;
548
549 last = rb_entry(lastp, struct vm_region, vm_rb);
550 BUG_ON(last->vm_end <= last->vm_start);
551 BUG_ON(last->vm_top < last->vm_end);
552
553 while ((p = rb_next(lastp))) {
554 region = rb_entry(p, struct vm_region, vm_rb);
555 last = rb_entry(lastp, struct vm_region, vm_rb);
556
557 BUG_ON(region->vm_end <= region->vm_start);
558 BUG_ON(region->vm_top < region->vm_end);
559 BUG_ON(region->vm_start < last->vm_top);
560
561 lastp = p;
562 }
563 }
564 #else
565 static void validate_nommu_regions(void)
566 {
567 }
568 #endif
569
570 /*
571 * add a region into the global tree
572 */
573 static void add_nommu_region(struct vm_region *region)
574 {
575 struct vm_region *pregion;
576 struct rb_node **p, *parent;
577
578 validate_nommu_regions();
579
580 parent = NULL;
581 p = &nommu_region_tree.rb_node;
582 while (*p) {
583 parent = *p;
584 pregion = rb_entry(parent, struct vm_region, vm_rb);
585 if (region->vm_start < pregion->vm_start)
586 p = &(*p)->rb_left;
587 else if (region->vm_start > pregion->vm_start)
588 p = &(*p)->rb_right;
589 else if (pregion == region)
590 return;
591 else
592 BUG();
593 }
594
595 rb_link_node(&region->vm_rb, parent, p);
596 rb_insert_color(&region->vm_rb, &nommu_region_tree);
597
598 validate_nommu_regions();
599 }
600
601 /*
602 * delete a region from the global tree
603 */
604 static void delete_nommu_region(struct vm_region *region)
605 {
606 BUG_ON(!nommu_region_tree.rb_node);
607
608 validate_nommu_regions();
609 rb_erase(&region->vm_rb, &nommu_region_tree);
610 validate_nommu_regions();
611 }
612
613 /*
614 * free a contiguous series of pages
615 */
616 static void free_page_series(unsigned long from, unsigned long to)
617 {
618 for (; from < to; from += PAGE_SIZE) {
619 struct page *page = virt_to_page(from);
620
621 atomic_long_dec(&mmap_pages_allocated);
622 put_page(page);
623 }
624 }
625
626 /*
627 * release a reference to a region
628 * - the caller must hold the region semaphore for writing, which this releases
629 * - the region may not have been added to the tree yet, in which case vm_top
630 * will equal vm_start
631 */
632 static void __put_nommu_region(struct vm_region *region)
633 __releases(nommu_region_sem)
634 {
635 BUG_ON(!nommu_region_tree.rb_node);
636
637 if (--region->vm_usage == 0) {
638 if (region->vm_top > region->vm_start)
639 delete_nommu_region(region);
640 up_write(&nommu_region_sem);
641
642 if (region->vm_file)
643 fput(region->vm_file);
644
645 /* IO memory and memory shared directly out of the pagecache
646 * from ramfs/tmpfs mustn't be released here */
647 if (region->vm_flags & VM_MAPPED_COPY)
648 free_page_series(region->vm_start, region->vm_top);
649 kmem_cache_free(vm_region_jar, region);
650 } else {
651 up_write(&nommu_region_sem);
652 }
653 }
654
655 /*
656 * release a reference to a region
657 */
658 static void put_nommu_region(struct vm_region *region)
659 {
660 down_write(&nommu_region_sem);
661 __put_nommu_region(region);
662 }
663
664 /*
665 * add a VMA into a process's mm_struct in the appropriate place in the list
666 * and tree and add to the address space's page tree also if not an anonymous
667 * page
668 * - should be called with mm->mmap_sem held writelocked
669 */
670 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
671 {
672 struct vm_area_struct *pvma, *prev;
673 struct address_space *mapping;
674 struct rb_node **p, *parent, *rb_prev;
675
676 BUG_ON(!vma->vm_region);
677
678 mm->map_count++;
679 vma->vm_mm = mm;
680
681 /* add the VMA to the mapping */
682 if (vma->vm_file) {
683 mapping = vma->vm_file->f_mapping;
684
685 i_mmap_lock_write(mapping);
686 flush_dcache_mmap_lock(mapping);
687 vma_interval_tree_insert(vma, &mapping->i_mmap);
688 flush_dcache_mmap_unlock(mapping);
689 i_mmap_unlock_write(mapping);
690 }
691
692 /* add the VMA to the tree */
693 parent = rb_prev = NULL;
694 p = &mm->mm_rb.rb_node;
695 while (*p) {
696 parent = *p;
697 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
698
699 /* sort by: start addr, end addr, VMA struct addr in that order
700 * (the latter is necessary as we may get identical VMAs) */
701 if (vma->vm_start < pvma->vm_start)
702 p = &(*p)->rb_left;
703 else if (vma->vm_start > pvma->vm_start) {
704 rb_prev = parent;
705 p = &(*p)->rb_right;
706 } else if (vma->vm_end < pvma->vm_end)
707 p = &(*p)->rb_left;
708 else if (vma->vm_end > pvma->vm_end) {
709 rb_prev = parent;
710 p = &(*p)->rb_right;
711 } else if (vma < pvma)
712 p = &(*p)->rb_left;
713 else if (vma > pvma) {
714 rb_prev = parent;
715 p = &(*p)->rb_right;
716 } else
717 BUG();
718 }
719
720 rb_link_node(&vma->vm_rb, parent, p);
721 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
722
723 /* add VMA to the VMA list also */
724 prev = NULL;
725 if (rb_prev)
726 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
727
728 __vma_link_list(mm, vma, prev, parent);
729 }
730
731 /*
732 * delete a VMA from its owning mm_struct and address space
733 */
734 static void delete_vma_from_mm(struct vm_area_struct *vma)
735 {
736 int i;
737 struct address_space *mapping;
738 struct mm_struct *mm = vma->vm_mm;
739 struct task_struct *curr = current;
740
741 mm->map_count--;
742 for (i = 0; i < VMACACHE_SIZE; i++) {
743 /* if the vma is cached, invalidate the entire cache */
744 if (curr->vmacache.vmas[i] == vma) {
745 vmacache_invalidate(mm);
746 break;
747 }
748 }
749
750 /* remove the VMA from the mapping */
751 if (vma->vm_file) {
752 mapping = vma->vm_file->f_mapping;
753
754 i_mmap_lock_write(mapping);
755 flush_dcache_mmap_lock(mapping);
756 vma_interval_tree_remove(vma, &mapping->i_mmap);
757 flush_dcache_mmap_unlock(mapping);
758 i_mmap_unlock_write(mapping);
759 }
760
761 /* remove from the MM's tree and list */
762 rb_erase(&vma->vm_rb, &mm->mm_rb);
763
764 if (vma->vm_prev)
765 vma->vm_prev->vm_next = vma->vm_next;
766 else
767 mm->mmap = vma->vm_next;
768
769 if (vma->vm_next)
770 vma->vm_next->vm_prev = vma->vm_prev;
771 }
772
773 /*
774 * destroy a VMA record
775 */
776 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
777 {
778 if (vma->vm_ops && vma->vm_ops->close)
779 vma->vm_ops->close(vma);
780 if (vma->vm_file)
781 fput(vma->vm_file);
782 put_nommu_region(vma->vm_region);
783 vm_area_free(vma);
784 }
785
786 /*
787 * look up the first VMA in which addr resides, NULL if none
788 * - should be called with mm->mmap_sem at least held readlocked
789 */
790 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
791 {
792 struct vm_area_struct *vma;
793
794 /* check the cache first */
795 vma = vmacache_find(mm, addr);
796 if (likely(vma))
797 return vma;
798
799 /* trawl the list (there may be multiple mappings in which addr
800 * resides) */
801 for (vma = mm->mmap; vma; vma = vma->vm_next) {
802 if (vma->vm_start > addr)
803 return NULL;
804 if (vma->vm_end > addr) {
805 vmacache_update(addr, vma);
806 return vma;
807 }
808 }
809
810 return NULL;
811 }
812 EXPORT_SYMBOL(find_vma);
813
814 /*
815 * find a VMA
816 * - we don't extend stack VMAs under NOMMU conditions
817 */
818 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
819 {
820 return find_vma(mm, addr);
821 }
822
823 /*
824 * expand a stack to a given address
825 * - not supported under NOMMU conditions
826 */
827 int expand_stack(struct vm_area_struct *vma, unsigned long address)
828 {
829 return -ENOMEM;
830 }
831
832 /*
833 * look up the first VMA exactly that exactly matches addr
834 * - should be called with mm->mmap_sem at least held readlocked
835 */
836 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
837 unsigned long addr,
838 unsigned long len)
839 {
840 struct vm_area_struct *vma;
841 unsigned long end = addr + len;
842
843 /* check the cache first */
844 vma = vmacache_find_exact(mm, addr, end);
845 if (vma)
846 return vma;
847
848 /* trawl the list (there may be multiple mappings in which addr
849 * resides) */
850 for (vma = mm->mmap; vma; vma = vma->vm_next) {
851 if (vma->vm_start < addr)
852 continue;
853 if (vma->vm_start > addr)
854 return NULL;
855 if (vma->vm_end == end) {
856 vmacache_update(addr, vma);
857 return vma;
858 }
859 }
860
861 return NULL;
862 }
863
864 /*
865 * determine whether a mapping should be permitted and, if so, what sort of
866 * mapping we're capable of supporting
867 */
868 static int validate_mmap_request(struct file *file,
869 unsigned long addr,
870 unsigned long len,
871 unsigned long prot,
872 unsigned long flags,
873 unsigned long pgoff,
874 unsigned long *_capabilities)
875 {
876 unsigned long capabilities, rlen;
877 int ret;
878
879 /* do the simple checks first */
880 if (flags & MAP_FIXED)
881 return -EINVAL;
882
883 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
884 (flags & MAP_TYPE) != MAP_SHARED)
885 return -EINVAL;
886
887 if (!len)
888 return -EINVAL;
889
890 /* Careful about overflows.. */
891 rlen = PAGE_ALIGN(len);
892 if (!rlen || rlen > TASK_SIZE)
893 return -ENOMEM;
894
895 /* offset overflow? */
896 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
897 return -EOVERFLOW;
898
899 if (file) {
900 /* files must support mmap */
901 if (!file->f_op->mmap)
902 return -ENODEV;
903
904 /* work out if what we've got could possibly be shared
905 * - we support chardevs that provide their own "memory"
906 * - we support files/blockdevs that are memory backed
907 */
908 if (file->f_op->mmap_capabilities) {
909 capabilities = file->f_op->mmap_capabilities(file);
910 } else {
911 /* no explicit capabilities set, so assume some
912 * defaults */
913 switch (file_inode(file)->i_mode & S_IFMT) {
914 case S_IFREG:
915 case S_IFBLK:
916 capabilities = NOMMU_MAP_COPY;
917 break;
918
919 case S_IFCHR:
920 capabilities =
921 NOMMU_MAP_DIRECT |
922 NOMMU_MAP_READ |
923 NOMMU_MAP_WRITE;
924 break;
925
926 default:
927 return -EINVAL;
928 }
929 }
930
931 /* eliminate any capabilities that we can't support on this
932 * device */
933 if (!file->f_op->get_unmapped_area)
934 capabilities &= ~NOMMU_MAP_DIRECT;
935 if (!(file->f_mode & FMODE_CAN_READ))
936 capabilities &= ~NOMMU_MAP_COPY;
937
938 /* The file shall have been opened with read permission. */
939 if (!(file->f_mode & FMODE_READ))
940 return -EACCES;
941
942 if (flags & MAP_SHARED) {
943 /* do checks for writing, appending and locking */
944 if ((prot & PROT_WRITE) &&
945 !(file->f_mode & FMODE_WRITE))
946 return -EACCES;
947
948 if (IS_APPEND(file_inode(file)) &&
949 (file->f_mode & FMODE_WRITE))
950 return -EACCES;
951
952 if (locks_verify_locked(file))
953 return -EAGAIN;
954
955 if (!(capabilities & NOMMU_MAP_DIRECT))
956 return -ENODEV;
957
958 /* we mustn't privatise shared mappings */
959 capabilities &= ~NOMMU_MAP_COPY;
960 } else {
961 /* we're going to read the file into private memory we
962 * allocate */
963 if (!(capabilities & NOMMU_MAP_COPY))
964 return -ENODEV;
965
966 /* we don't permit a private writable mapping to be
967 * shared with the backing device */
968 if (prot & PROT_WRITE)
969 capabilities &= ~NOMMU_MAP_DIRECT;
970 }
971
972 if (capabilities & NOMMU_MAP_DIRECT) {
973 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
974 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
975 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
976 ) {
977 capabilities &= ~NOMMU_MAP_DIRECT;
978 if (flags & MAP_SHARED) {
979 pr_warn("MAP_SHARED not completely supported on !MMU\n");
980 return -EINVAL;
981 }
982 }
983 }
984
985 /* handle executable mappings and implied executable
986 * mappings */
987 if (path_noexec(&file->f_path)) {
988 if (prot & PROT_EXEC)
989 return -EPERM;
990 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
991 /* handle implication of PROT_EXEC by PROT_READ */
992 if (current->personality & READ_IMPLIES_EXEC) {
993 if (capabilities & NOMMU_MAP_EXEC)
994 prot |= PROT_EXEC;
995 }
996 } else if ((prot & PROT_READ) &&
997 (prot & PROT_EXEC) &&
998 !(capabilities & NOMMU_MAP_EXEC)
999 ) {
1000 /* backing file is not executable, try to copy */
1001 capabilities &= ~NOMMU_MAP_DIRECT;
1002 }
1003 } else {
1004 /* anonymous mappings are always memory backed and can be
1005 * privately mapped
1006 */
1007 capabilities = NOMMU_MAP_COPY;
1008
1009 /* handle PROT_EXEC implication by PROT_READ */
1010 if ((prot & PROT_READ) &&
1011 (current->personality & READ_IMPLIES_EXEC))
1012 prot |= PROT_EXEC;
1013 }
1014
1015 /* allow the security API to have its say */
1016 ret = security_mmap_addr(addr);
1017 if (ret < 0)
1018 return ret;
1019
1020 /* looks okay */
1021 *_capabilities = capabilities;
1022 return 0;
1023 }
1024
1025 /*
1026 * we've determined that we can make the mapping, now translate what we
1027 * now know into VMA flags
1028 */
1029 static unsigned long determine_vm_flags(struct file *file,
1030 unsigned long prot,
1031 unsigned long flags,
1032 unsigned long capabilities)
1033 {
1034 unsigned long vm_flags;
1035
1036 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1037 /* vm_flags |= mm->def_flags; */
1038
1039 if (!(capabilities & NOMMU_MAP_DIRECT)) {
1040 /* attempt to share read-only copies of mapped file chunks */
1041 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1042 if (file && !(prot & PROT_WRITE))
1043 vm_flags |= VM_MAYSHARE;
1044 } else {
1045 /* overlay a shareable mapping on the backing device or inode
1046 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1047 * romfs/cramfs */
1048 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1049 if (flags & MAP_SHARED)
1050 vm_flags |= VM_SHARED;
1051 }
1052
1053 /* refuse to let anyone share private mappings with this process if
1054 * it's being traced - otherwise breakpoints set in it may interfere
1055 * with another untraced process
1056 */
1057 if ((flags & MAP_PRIVATE) && current->ptrace)
1058 vm_flags &= ~VM_MAYSHARE;
1059
1060 return vm_flags;
1061 }
1062
1063 /*
1064 * set up a shared mapping on a file (the driver or filesystem provides and
1065 * pins the storage)
1066 */
1067 static int do_mmap_shared_file(struct vm_area_struct *vma)
1068 {
1069 int ret;
1070
1071 ret = call_mmap(vma->vm_file, vma);
1072 if (ret == 0) {
1073 vma->vm_region->vm_top = vma->vm_region->vm_end;
1074 return 0;
1075 }
1076 if (ret != -ENOSYS)
1077 return ret;
1078
1079 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1080 * opposed to tried but failed) so we can only give a suitable error as
1081 * it's not possible to make a private copy if MAP_SHARED was given */
1082 return -ENODEV;
1083 }
1084
1085 /*
1086 * set up a private mapping or an anonymous shared mapping
1087 */
1088 static int do_mmap_private(struct vm_area_struct *vma,
1089 struct vm_region *region,
1090 unsigned long len,
1091 unsigned long capabilities)
1092 {
1093 unsigned long total, point;
1094 void *base;
1095 int ret, order;
1096
1097 /* invoke the file's mapping function so that it can keep track of
1098 * shared mappings on devices or memory
1099 * - VM_MAYSHARE will be set if it may attempt to share
1100 */
1101 if (capabilities & NOMMU_MAP_DIRECT) {
1102 ret = call_mmap(vma->vm_file, vma);
1103 if (ret == 0) {
1104 /* shouldn't return success if we're not sharing */
1105 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1106 vma->vm_region->vm_top = vma->vm_region->vm_end;
1107 return 0;
1108 }
1109 if (ret != -ENOSYS)
1110 return ret;
1111
1112 /* getting an ENOSYS error indicates that direct mmap isn't
1113 * possible (as opposed to tried but failed) so we'll try to
1114 * make a private copy of the data and map that instead */
1115 }
1116
1117
1118 /* allocate some memory to hold the mapping
1119 * - note that this may not return a page-aligned address if the object
1120 * we're allocating is smaller than a page
1121 */
1122 order = get_order(len);
1123 total = 1 << order;
1124 point = len >> PAGE_SHIFT;
1125
1126 /* we don't want to allocate a power-of-2 sized page set */
1127 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1128 total = point;
1129
1130 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1131 if (!base)
1132 goto enomem;
1133
1134 atomic_long_add(total, &mmap_pages_allocated);
1135
1136 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1137 region->vm_start = (unsigned long) base;
1138 region->vm_end = region->vm_start + len;
1139 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1140
1141 vma->vm_start = region->vm_start;
1142 vma->vm_end = region->vm_start + len;
1143
1144 if (vma->vm_file) {
1145 /* read the contents of a file into the copy */
1146 loff_t fpos;
1147
1148 fpos = vma->vm_pgoff;
1149 fpos <<= PAGE_SHIFT;
1150
1151 ret = kernel_read(vma->vm_file, base, len, &fpos);
1152 if (ret < 0)
1153 goto error_free;
1154
1155 /* clear the last little bit */
1156 if (ret < len)
1157 memset(base + ret, 0, len - ret);
1158
1159 } else {
1160 vma_set_anonymous(vma);
1161 }
1162
1163 return 0;
1164
1165 error_free:
1166 free_page_series(region->vm_start, region->vm_top);
1167 region->vm_start = vma->vm_start = 0;
1168 region->vm_end = vma->vm_end = 0;
1169 region->vm_top = 0;
1170 return ret;
1171
1172 enomem:
1173 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1174 len, current->pid, current->comm);
1175 show_free_areas(0, NULL);
1176 return -ENOMEM;
1177 }
1178
1179 /*
1180 * handle mapping creation for uClinux
1181 */
1182 unsigned long do_mmap(struct file *file,
1183 unsigned long addr,
1184 unsigned long len,
1185 unsigned long prot,
1186 unsigned long flags,
1187 vm_flags_t vm_flags,
1188 unsigned long pgoff,
1189 unsigned long *populate,
1190 struct list_head *uf)
1191 {
1192 struct vm_area_struct *vma;
1193 struct vm_region *region;
1194 struct rb_node *rb;
1195 unsigned long capabilities, result;
1196 int ret;
1197
1198 *populate = 0;
1199
1200 /* decide whether we should attempt the mapping, and if so what sort of
1201 * mapping */
1202 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1203 &capabilities);
1204 if (ret < 0)
1205 return ret;
1206
1207 /* we ignore the address hint */
1208 addr = 0;
1209 len = PAGE_ALIGN(len);
1210
1211 /* we've determined that we can make the mapping, now translate what we
1212 * now know into VMA flags */
1213 vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1214
1215 /* we're going to need to record the mapping */
1216 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1217 if (!region)
1218 goto error_getting_region;
1219
1220 vma = vm_area_alloc(current->mm);
1221 if (!vma)
1222 goto error_getting_vma;
1223
1224 region->vm_usage = 1;
1225 region->vm_flags = vm_flags;
1226 region->vm_pgoff = pgoff;
1227
1228 vma->vm_flags = vm_flags;
1229 vma->vm_pgoff = pgoff;
1230
1231 if (file) {
1232 region->vm_file = get_file(file);
1233 vma->vm_file = get_file(file);
1234 }
1235
1236 down_write(&nommu_region_sem);
1237
1238 /* if we want to share, we need to check for regions created by other
1239 * mmap() calls that overlap with our proposed mapping
1240 * - we can only share with a superset match on most regular files
1241 * - shared mappings on character devices and memory backed files are
1242 * permitted to overlap inexactly as far as we are concerned for in
1243 * these cases, sharing is handled in the driver or filesystem rather
1244 * than here
1245 */
1246 if (vm_flags & VM_MAYSHARE) {
1247 struct vm_region *pregion;
1248 unsigned long pglen, rpglen, pgend, rpgend, start;
1249
1250 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1251 pgend = pgoff + pglen;
1252
1253 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1254 pregion = rb_entry(rb, struct vm_region, vm_rb);
1255
1256 if (!(pregion->vm_flags & VM_MAYSHARE))
1257 continue;
1258
1259 /* search for overlapping mappings on the same file */
1260 if (file_inode(pregion->vm_file) !=
1261 file_inode(file))
1262 continue;
1263
1264 if (pregion->vm_pgoff >= pgend)
1265 continue;
1266
1267 rpglen = pregion->vm_end - pregion->vm_start;
1268 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1269 rpgend = pregion->vm_pgoff + rpglen;
1270 if (pgoff >= rpgend)
1271 continue;
1272
1273 /* handle inexactly overlapping matches between
1274 * mappings */
1275 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1276 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1277 /* new mapping is not a subset of the region */
1278 if (!(capabilities & NOMMU_MAP_DIRECT))
1279 goto sharing_violation;
1280 continue;
1281 }
1282
1283 /* we've found a region we can share */
1284 pregion->vm_usage++;
1285 vma->vm_region = pregion;
1286 start = pregion->vm_start;
1287 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1288 vma->vm_start = start;
1289 vma->vm_end = start + len;
1290
1291 if (pregion->vm_flags & VM_MAPPED_COPY)
1292 vma->vm_flags |= VM_MAPPED_COPY;
1293 else {
1294 ret = do_mmap_shared_file(vma);
1295 if (ret < 0) {
1296 vma->vm_region = NULL;
1297 vma->vm_start = 0;
1298 vma->vm_end = 0;
1299 pregion->vm_usage--;
1300 pregion = NULL;
1301 goto error_just_free;
1302 }
1303 }
1304 fput(region->vm_file);
1305 kmem_cache_free(vm_region_jar, region);
1306 region = pregion;
1307 result = start;
1308 goto share;
1309 }
1310
1311 /* obtain the address at which to make a shared mapping
1312 * - this is the hook for quasi-memory character devices to
1313 * tell us the location of a shared mapping
1314 */
1315 if (capabilities & NOMMU_MAP_DIRECT) {
1316 addr = file->f_op->get_unmapped_area(file, addr, len,
1317 pgoff, flags);
1318 if (IS_ERR_VALUE(addr)) {
1319 ret = addr;
1320 if (ret != -ENOSYS)
1321 goto error_just_free;
1322
1323 /* the driver refused to tell us where to site
1324 * the mapping so we'll have to attempt to copy
1325 * it */
1326 ret = -ENODEV;
1327 if (!(capabilities & NOMMU_MAP_COPY))
1328 goto error_just_free;
1329
1330 capabilities &= ~NOMMU_MAP_DIRECT;
1331 } else {
1332 vma->vm_start = region->vm_start = addr;
1333 vma->vm_end = region->vm_end = addr + len;
1334 }
1335 }
1336 }
1337
1338 vma->vm_region = region;
1339
1340 /* set up the mapping
1341 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1342 */
1343 if (file && vma->vm_flags & VM_SHARED)
1344 ret = do_mmap_shared_file(vma);
1345 else
1346 ret = do_mmap_private(vma, region, len, capabilities);
1347 if (ret < 0)
1348 goto error_just_free;
1349 add_nommu_region(region);
1350
1351 /* clear anonymous mappings that don't ask for uninitialized data */
1352 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1353 memset((void *)region->vm_start, 0,
1354 region->vm_end - region->vm_start);
1355
1356 /* okay... we have a mapping; now we have to register it */
1357 result = vma->vm_start;
1358
1359 current->mm->total_vm += len >> PAGE_SHIFT;
1360
1361 share:
1362 add_vma_to_mm(current->mm, vma);
1363
1364 /* we flush the region from the icache only when the first executable
1365 * mapping of it is made */
1366 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1367 flush_icache_range(region->vm_start, region->vm_end);
1368 region->vm_icache_flushed = true;
1369 }
1370
1371 up_write(&nommu_region_sem);
1372
1373 return result;
1374
1375 error_just_free:
1376 up_write(&nommu_region_sem);
1377 error:
1378 if (region->vm_file)
1379 fput(region->vm_file);
1380 kmem_cache_free(vm_region_jar, region);
1381 if (vma->vm_file)
1382 fput(vma->vm_file);
1383 vm_area_free(vma);
1384 return ret;
1385
1386 sharing_violation:
1387 up_write(&nommu_region_sem);
1388 pr_warn("Attempt to share mismatched mappings\n");
1389 ret = -EINVAL;
1390 goto error;
1391
1392 error_getting_vma:
1393 kmem_cache_free(vm_region_jar, region);
1394 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1395 len, current->pid);
1396 show_free_areas(0, NULL);
1397 return -ENOMEM;
1398
1399 error_getting_region:
1400 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1401 len, current->pid);
1402 show_free_areas(0, NULL);
1403 return -ENOMEM;
1404 }
1405
1406 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1407 unsigned long prot, unsigned long flags,
1408 unsigned long fd, unsigned long pgoff)
1409 {
1410 struct file *file = NULL;
1411 unsigned long retval = -EBADF;
1412
1413 audit_mmap_fd(fd, flags);
1414 if (!(flags & MAP_ANONYMOUS)) {
1415 file = fget(fd);
1416 if (!file)
1417 goto out;
1418 }
1419
1420 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1421
1422 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1423
1424 if (file)
1425 fput(file);
1426 out:
1427 return retval;
1428 }
1429
1430 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1431 unsigned long, prot, unsigned long, flags,
1432 unsigned long, fd, unsigned long, pgoff)
1433 {
1434 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1435 }
1436
1437 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1438 struct mmap_arg_struct {
1439 unsigned long addr;
1440 unsigned long len;
1441 unsigned long prot;
1442 unsigned long flags;
1443 unsigned long fd;
1444 unsigned long offset;
1445 };
1446
1447 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1448 {
1449 struct mmap_arg_struct a;
1450
1451 if (copy_from_user(&a, arg, sizeof(a)))
1452 return -EFAULT;
1453 if (offset_in_page(a.offset))
1454 return -EINVAL;
1455
1456 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1457 a.offset >> PAGE_SHIFT);
1458 }
1459 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1460
1461 /*
1462 * split a vma into two pieces at address 'addr', a new vma is allocated either
1463 * for the first part or the tail.
1464 */
1465 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1466 unsigned long addr, int new_below)
1467 {
1468 struct vm_area_struct *new;
1469 struct vm_region *region;
1470 unsigned long npages;
1471
1472 /* we're only permitted to split anonymous regions (these should have
1473 * only a single usage on the region) */
1474 if (vma->vm_file)
1475 return -ENOMEM;
1476
1477 if (mm->map_count >= sysctl_max_map_count)
1478 return -ENOMEM;
1479
1480 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1481 if (!region)
1482 return -ENOMEM;
1483
1484 new = vm_area_dup(vma);
1485 if (!new) {
1486 kmem_cache_free(vm_region_jar, region);
1487 return -ENOMEM;
1488 }
1489
1490 /* most fields are the same, copy all, and then fixup */
1491 *region = *vma->vm_region;
1492 new->vm_region = region;
1493
1494 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1495
1496 if (new_below) {
1497 region->vm_top = region->vm_end = new->vm_end = addr;
1498 } else {
1499 region->vm_start = new->vm_start = addr;
1500 region->vm_pgoff = new->vm_pgoff += npages;
1501 }
1502
1503 if (new->vm_ops && new->vm_ops->open)
1504 new->vm_ops->open(new);
1505
1506 delete_vma_from_mm(vma);
1507 down_write(&nommu_region_sem);
1508 delete_nommu_region(vma->vm_region);
1509 if (new_below) {
1510 vma->vm_region->vm_start = vma->vm_start = addr;
1511 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1512 } else {
1513 vma->vm_region->vm_end = vma->vm_end = addr;
1514 vma->vm_region->vm_top = addr;
1515 }
1516 add_nommu_region(vma->vm_region);
1517 add_nommu_region(new->vm_region);
1518 up_write(&nommu_region_sem);
1519 add_vma_to_mm(mm, vma);
1520 add_vma_to_mm(mm, new);
1521 return 0;
1522 }
1523
1524 /*
1525 * shrink a VMA by removing the specified chunk from either the beginning or
1526 * the end
1527 */
1528 static int shrink_vma(struct mm_struct *mm,
1529 struct vm_area_struct *vma,
1530 unsigned long from, unsigned long to)
1531 {
1532 struct vm_region *region;
1533
1534 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1535 * and list */
1536 delete_vma_from_mm(vma);
1537 if (from > vma->vm_start)
1538 vma->vm_end = from;
1539 else
1540 vma->vm_start = to;
1541 add_vma_to_mm(mm, vma);
1542
1543 /* cut the backing region down to size */
1544 region = vma->vm_region;
1545 BUG_ON(region->vm_usage != 1);
1546
1547 down_write(&nommu_region_sem);
1548 delete_nommu_region(region);
1549 if (from > region->vm_start) {
1550 to = region->vm_top;
1551 region->vm_top = region->vm_end = from;
1552 } else {
1553 region->vm_start = to;
1554 }
1555 add_nommu_region(region);
1556 up_write(&nommu_region_sem);
1557
1558 free_page_series(from, to);
1559 return 0;
1560 }
1561
1562 /*
1563 * release a mapping
1564 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1565 * VMA, though it need not cover the whole VMA
1566 */
1567 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1568 {
1569 struct vm_area_struct *vma;
1570 unsigned long end;
1571 int ret;
1572
1573 len = PAGE_ALIGN(len);
1574 if (len == 0)
1575 return -EINVAL;
1576
1577 end = start + len;
1578
1579 /* find the first potentially overlapping VMA */
1580 vma = find_vma(mm, start);
1581 if (!vma) {
1582 static int limit;
1583 if (limit < 5) {
1584 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1585 current->pid, current->comm,
1586 start, start + len - 1);
1587 limit++;
1588 }
1589 return -EINVAL;
1590 }
1591
1592 /* we're allowed to split an anonymous VMA but not a file-backed one */
1593 if (vma->vm_file) {
1594 do {
1595 if (start > vma->vm_start)
1596 return -EINVAL;
1597 if (end == vma->vm_end)
1598 goto erase_whole_vma;
1599 vma = vma->vm_next;
1600 } while (vma);
1601 return -EINVAL;
1602 } else {
1603 /* the chunk must be a subset of the VMA found */
1604 if (start == vma->vm_start && end == vma->vm_end)
1605 goto erase_whole_vma;
1606 if (start < vma->vm_start || end > vma->vm_end)
1607 return -EINVAL;
1608 if (offset_in_page(start))
1609 return -EINVAL;
1610 if (end != vma->vm_end && offset_in_page(end))
1611 return -EINVAL;
1612 if (start != vma->vm_start && end != vma->vm_end) {
1613 ret = split_vma(mm, vma, start, 1);
1614 if (ret < 0)
1615 return ret;
1616 }
1617 return shrink_vma(mm, vma, start, end);
1618 }
1619
1620 erase_whole_vma:
1621 delete_vma_from_mm(vma);
1622 delete_vma(mm, vma);
1623 return 0;
1624 }
1625 EXPORT_SYMBOL(do_munmap);
1626
1627 int vm_munmap(unsigned long addr, size_t len)
1628 {
1629 struct mm_struct *mm = current->mm;
1630 int ret;
1631
1632 down_write(&mm->mmap_sem);
1633 ret = do_munmap(mm, addr, len, NULL);
1634 up_write(&mm->mmap_sem);
1635 return ret;
1636 }
1637 EXPORT_SYMBOL(vm_munmap);
1638
1639 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1640 {
1641 return vm_munmap(addr, len);
1642 }
1643
1644 /*
1645 * release all the mappings made in a process's VM space
1646 */
1647 void exit_mmap(struct mm_struct *mm)
1648 {
1649 struct vm_area_struct *vma;
1650
1651 if (!mm)
1652 return;
1653
1654 mm->total_vm = 0;
1655
1656 while ((vma = mm->mmap)) {
1657 mm->mmap = vma->vm_next;
1658 delete_vma_from_mm(vma);
1659 delete_vma(mm, vma);
1660 cond_resched();
1661 }
1662 }
1663
1664 int vm_brk(unsigned long addr, unsigned long len)
1665 {
1666 return -ENOMEM;
1667 }
1668
1669 /*
1670 * expand (or shrink) an existing mapping, potentially moving it at the same
1671 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1672 *
1673 * under NOMMU conditions, we only permit changing a mapping's size, and only
1674 * as long as it stays within the region allocated by do_mmap_private() and the
1675 * block is not shareable
1676 *
1677 * MREMAP_FIXED is not supported under NOMMU conditions
1678 */
1679 static unsigned long do_mremap(unsigned long addr,
1680 unsigned long old_len, unsigned long new_len,
1681 unsigned long flags, unsigned long new_addr)
1682 {
1683 struct vm_area_struct *vma;
1684
1685 /* insanity checks first */
1686 old_len = PAGE_ALIGN(old_len);
1687 new_len = PAGE_ALIGN(new_len);
1688 if (old_len == 0 || new_len == 0)
1689 return (unsigned long) -EINVAL;
1690
1691 if (offset_in_page(addr))
1692 return -EINVAL;
1693
1694 if (flags & MREMAP_FIXED && new_addr != addr)
1695 return (unsigned long) -EINVAL;
1696
1697 vma = find_vma_exact(current->mm, addr, old_len);
1698 if (!vma)
1699 return (unsigned long) -EINVAL;
1700
1701 if (vma->vm_end != vma->vm_start + old_len)
1702 return (unsigned long) -EFAULT;
1703
1704 if (vma->vm_flags & VM_MAYSHARE)
1705 return (unsigned long) -EPERM;
1706
1707 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1708 return (unsigned long) -ENOMEM;
1709
1710 /* all checks complete - do it */
1711 vma->vm_end = vma->vm_start + new_len;
1712 return vma->vm_start;
1713 }
1714
1715 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1716 unsigned long, new_len, unsigned long, flags,
1717 unsigned long, new_addr)
1718 {
1719 unsigned long ret;
1720
1721 down_write(&current->mm->mmap_sem);
1722 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1723 up_write(&current->mm->mmap_sem);
1724 return ret;
1725 }
1726
1727 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1728 unsigned int foll_flags)
1729 {
1730 return NULL;
1731 }
1732
1733 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1734 unsigned long pfn, unsigned long size, pgprot_t prot)
1735 {
1736 if (addr != (pfn << PAGE_SHIFT))
1737 return -EINVAL;
1738
1739 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1740 return 0;
1741 }
1742 EXPORT_SYMBOL(remap_pfn_range);
1743
1744 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1745 {
1746 unsigned long pfn = start >> PAGE_SHIFT;
1747 unsigned long vm_len = vma->vm_end - vma->vm_start;
1748
1749 pfn += vma->vm_pgoff;
1750 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1751 }
1752 EXPORT_SYMBOL(vm_iomap_memory);
1753
1754 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1755 unsigned long pgoff)
1756 {
1757 unsigned int size = vma->vm_end - vma->vm_start;
1758
1759 if (!(vma->vm_flags & VM_USERMAP))
1760 return -EINVAL;
1761
1762 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1763 vma->vm_end = vma->vm_start + size;
1764
1765 return 0;
1766 }
1767 EXPORT_SYMBOL(remap_vmalloc_range);
1768
1769 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1770 unsigned long len, unsigned long pgoff, unsigned long flags)
1771 {
1772 return -ENOMEM;
1773 }
1774
1775 vm_fault_t filemap_fault(struct vm_fault *vmf)
1776 {
1777 BUG();
1778 return 0;
1779 }
1780 EXPORT_SYMBOL(filemap_fault);
1781
1782 void filemap_map_pages(struct vm_fault *vmf,
1783 pgoff_t start_pgoff, pgoff_t end_pgoff)
1784 {
1785 BUG();
1786 }
1787 EXPORT_SYMBOL(filemap_map_pages);
1788
1789 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1790 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1791 {
1792 struct vm_area_struct *vma;
1793 int write = gup_flags & FOLL_WRITE;
1794
1795 down_read(&mm->mmap_sem);
1796
1797 /* the access must start within one of the target process's mappings */
1798 vma = find_vma(mm, addr);
1799 if (vma) {
1800 /* don't overrun this mapping */
1801 if (addr + len >= vma->vm_end)
1802 len = vma->vm_end - addr;
1803
1804 /* only read or write mappings where it is permitted */
1805 if (write && vma->vm_flags & VM_MAYWRITE)
1806 copy_to_user_page(vma, NULL, addr,
1807 (void *) addr, buf, len);
1808 else if (!write && vma->vm_flags & VM_MAYREAD)
1809 copy_from_user_page(vma, NULL, addr,
1810 buf, (void *) addr, len);
1811 else
1812 len = 0;
1813 } else {
1814 len = 0;
1815 }
1816
1817 up_read(&mm->mmap_sem);
1818
1819 return len;
1820 }
1821
1822 /**
1823 * access_remote_vm - access another process' address space
1824 * @mm: the mm_struct of the target address space
1825 * @addr: start address to access
1826 * @buf: source or destination buffer
1827 * @len: number of bytes to transfer
1828 * @gup_flags: flags modifying lookup behaviour
1829 *
1830 * The caller must hold a reference on @mm.
1831 */
1832 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1833 void *buf, int len, unsigned int gup_flags)
1834 {
1835 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1836 }
1837
1838 /*
1839 * Access another process' address space.
1840 * - source/target buffer must be kernel space
1841 */
1842 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1843 unsigned int gup_flags)
1844 {
1845 struct mm_struct *mm;
1846
1847 if (addr + len < addr)
1848 return 0;
1849
1850 mm = get_task_mm(tsk);
1851 if (!mm)
1852 return 0;
1853
1854 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1855
1856 mmput(mm);
1857 return len;
1858 }
1859 EXPORT_SYMBOL_GPL(access_process_vm);
1860
1861 /**
1862 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1863 * @inode: The inode to check
1864 * @size: The current filesize of the inode
1865 * @newsize: The proposed filesize of the inode
1866 *
1867 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1868 * make sure that that any outstanding VMAs aren't broken and then shrink the
1869 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1870 * automatically grant mappings that are too large.
1871 */
1872 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1873 size_t newsize)
1874 {
1875 struct vm_area_struct *vma;
1876 struct vm_region *region;
1877 pgoff_t low, high;
1878 size_t r_size, r_top;
1879
1880 low = newsize >> PAGE_SHIFT;
1881 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1882
1883 down_write(&nommu_region_sem);
1884 i_mmap_lock_read(inode->i_mapping);
1885
1886 /* search for VMAs that fall within the dead zone */
1887 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1888 /* found one - only interested if it's shared out of the page
1889 * cache */
1890 if (vma->vm_flags & VM_SHARED) {
1891 i_mmap_unlock_read(inode->i_mapping);
1892 up_write(&nommu_region_sem);
1893 return -ETXTBSY; /* not quite true, but near enough */
1894 }
1895 }
1896
1897 /* reduce any regions that overlap the dead zone - if in existence,
1898 * these will be pointed to by VMAs that don't overlap the dead zone
1899 *
1900 * we don't check for any regions that start beyond the EOF as there
1901 * shouldn't be any
1902 */
1903 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1904 if (!(vma->vm_flags & VM_SHARED))
1905 continue;
1906
1907 region = vma->vm_region;
1908 r_size = region->vm_top - region->vm_start;
1909 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1910
1911 if (r_top > newsize) {
1912 region->vm_top -= r_top - newsize;
1913 if (region->vm_end > region->vm_top)
1914 region->vm_end = region->vm_top;
1915 }
1916 }
1917
1918 i_mmap_unlock_read(inode->i_mapping);
1919 up_write(&nommu_region_sem);
1920 return 0;
1921 }
1922
1923 /*
1924 * Initialise sysctl_user_reserve_kbytes.
1925 *
1926 * This is intended to prevent a user from starting a single memory hogging
1927 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1928 * mode.
1929 *
1930 * The default value is min(3% of free memory, 128MB)
1931 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1932 */
1933 static int __meminit init_user_reserve(void)
1934 {
1935 unsigned long free_kbytes;
1936
1937 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1938
1939 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1940 return 0;
1941 }
1942 subsys_initcall(init_user_reserve);
1943
1944 /*
1945 * Initialise sysctl_admin_reserve_kbytes.
1946 *
1947 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1948 * to log in and kill a memory hogging process.
1949 *
1950 * Systems with more than 256MB will reserve 8MB, enough to recover
1951 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1952 * only reserve 3% of free pages by default.
1953 */
1954 static int __meminit init_admin_reserve(void)
1955 {
1956 unsigned long free_kbytes;
1957
1958 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1959
1960 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1961 return 0;
1962 }
1963 subsys_initcall(init_admin_reserve);