]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/nommu.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[mirror_ubuntu-hirsute-kernel.git] / mm / nommu.c
1 /*
2 * linux/mm/nommu.c
3 *
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
6 *
7 * See Documentation/nommu-mmap.txt
8 *
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14 */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/sched/mm.h>
21 #include <linux/vmacache.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/blkdev.h>
30 #include <linux/backing-dev.h>
31 #include <linux/compiler.h>
32 #include <linux/mount.h>
33 #include <linux/personality.h>
34 #include <linux/security.h>
35 #include <linux/syscalls.h>
36 #include <linux/audit.h>
37 #include <linux/printk.h>
38
39 #include <linux/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52 int heap_stack_gap = 0;
53
54 atomic_long_t mmap_pages_allocated;
55
56 EXPORT_SYMBOL(mem_map);
57
58 /* list of mapped, potentially shareable regions */
59 static struct kmem_cache *vm_region_jar;
60 struct rb_root nommu_region_tree = RB_ROOT;
61 DECLARE_RWSEM(nommu_region_sem);
62
63 const struct vm_operations_struct generic_file_vm_ops = {
64 };
65
66 /*
67 * Return the total memory allocated for this pointer, not
68 * just what the caller asked for.
69 *
70 * Doesn't have to be accurate, i.e. may have races.
71 */
72 unsigned int kobjsize(const void *objp)
73 {
74 struct page *page;
75
76 /*
77 * If the object we have should not have ksize performed on it,
78 * return size of 0
79 */
80 if (!objp || !virt_addr_valid(objp))
81 return 0;
82
83 page = virt_to_head_page(objp);
84
85 /*
86 * If the allocator sets PageSlab, we know the pointer came from
87 * kmalloc().
88 */
89 if (PageSlab(page))
90 return ksize(objp);
91
92 /*
93 * If it's not a compound page, see if we have a matching VMA
94 * region. This test is intentionally done in reverse order,
95 * so if there's no VMA, we still fall through and hand back
96 * PAGE_SIZE for 0-order pages.
97 */
98 if (!PageCompound(page)) {
99 struct vm_area_struct *vma;
100
101 vma = find_vma(current->mm, (unsigned long)objp);
102 if (vma)
103 return vma->vm_end - vma->vm_start;
104 }
105
106 /*
107 * The ksize() function is only guaranteed to work for pointers
108 * returned by kmalloc(). So handle arbitrary pointers here.
109 */
110 return PAGE_SIZE << compound_order(page);
111 }
112
113 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
114 unsigned long start, unsigned long nr_pages,
115 unsigned int foll_flags, struct page **pages,
116 struct vm_area_struct **vmas, int *nonblocking)
117 {
118 struct vm_area_struct *vma;
119 unsigned long vm_flags;
120 int i;
121
122 /* calculate required read or write permissions.
123 * If FOLL_FORCE is set, we only require the "MAY" flags.
124 */
125 vm_flags = (foll_flags & FOLL_WRITE) ?
126 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
127 vm_flags &= (foll_flags & FOLL_FORCE) ?
128 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
129
130 for (i = 0; i < nr_pages; i++) {
131 vma = find_vma(mm, start);
132 if (!vma)
133 goto finish_or_fault;
134
135 /* protect what we can, including chardevs */
136 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
137 !(vm_flags & vma->vm_flags))
138 goto finish_or_fault;
139
140 if (pages) {
141 pages[i] = virt_to_page(start);
142 if (pages[i])
143 get_page(pages[i]);
144 }
145 if (vmas)
146 vmas[i] = vma;
147 start = (start + PAGE_SIZE) & PAGE_MASK;
148 }
149
150 return i;
151
152 finish_or_fault:
153 return i ? : -EFAULT;
154 }
155
156 /*
157 * get a list of pages in an address range belonging to the specified process
158 * and indicate the VMA that covers each page
159 * - this is potentially dodgy as we may end incrementing the page count of a
160 * slab page or a secondary page from a compound page
161 * - don't permit access to VMAs that don't support it, such as I/O mappings
162 */
163 long get_user_pages(unsigned long start, unsigned long nr_pages,
164 unsigned int gup_flags, struct page **pages,
165 struct vm_area_struct **vmas)
166 {
167 return __get_user_pages(current, current->mm, start, nr_pages,
168 gup_flags, pages, vmas, NULL);
169 }
170 EXPORT_SYMBOL(get_user_pages);
171
172 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
173 unsigned int gup_flags, struct page **pages,
174 int *locked)
175 {
176 return get_user_pages(start, nr_pages, gup_flags, pages, NULL);
177 }
178 EXPORT_SYMBOL(get_user_pages_locked);
179
180 static long __get_user_pages_unlocked(struct task_struct *tsk,
181 struct mm_struct *mm, unsigned long start,
182 unsigned long nr_pages, struct page **pages,
183 unsigned int gup_flags)
184 {
185 long ret;
186 down_read(&mm->mmap_sem);
187 ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
188 NULL, NULL);
189 up_read(&mm->mmap_sem);
190 return ret;
191 }
192
193 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
194 struct page **pages, unsigned int gup_flags)
195 {
196 return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
197 pages, gup_flags);
198 }
199 EXPORT_SYMBOL(get_user_pages_unlocked);
200
201 /**
202 * follow_pfn - look up PFN at a user virtual address
203 * @vma: memory mapping
204 * @address: user virtual address
205 * @pfn: location to store found PFN
206 *
207 * Only IO mappings and raw PFN mappings are allowed.
208 *
209 * Returns zero and the pfn at @pfn on success, -ve otherwise.
210 */
211 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
212 unsigned long *pfn)
213 {
214 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
215 return -EINVAL;
216
217 *pfn = address >> PAGE_SHIFT;
218 return 0;
219 }
220 EXPORT_SYMBOL(follow_pfn);
221
222 LIST_HEAD(vmap_area_list);
223
224 void vfree(const void *addr)
225 {
226 kfree(addr);
227 }
228 EXPORT_SYMBOL(vfree);
229
230 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
231 {
232 /*
233 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
234 * returns only a logical address.
235 */
236 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
237 }
238 EXPORT_SYMBOL(__vmalloc);
239
240 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
241 {
242 return __vmalloc(size, flags, PAGE_KERNEL);
243 }
244
245 void *vmalloc_user(unsigned long size)
246 {
247 void *ret;
248
249 ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
250 if (ret) {
251 struct vm_area_struct *vma;
252
253 down_write(&current->mm->mmap_sem);
254 vma = find_vma(current->mm, (unsigned long)ret);
255 if (vma)
256 vma->vm_flags |= VM_USERMAP;
257 up_write(&current->mm->mmap_sem);
258 }
259
260 return ret;
261 }
262 EXPORT_SYMBOL(vmalloc_user);
263
264 struct page *vmalloc_to_page(const void *addr)
265 {
266 return virt_to_page(addr);
267 }
268 EXPORT_SYMBOL(vmalloc_to_page);
269
270 unsigned long vmalloc_to_pfn(const void *addr)
271 {
272 return page_to_pfn(virt_to_page(addr));
273 }
274 EXPORT_SYMBOL(vmalloc_to_pfn);
275
276 long vread(char *buf, char *addr, unsigned long count)
277 {
278 /* Don't allow overflow */
279 if ((unsigned long) buf + count < count)
280 count = -(unsigned long) buf;
281
282 memcpy(buf, addr, count);
283 return count;
284 }
285
286 long vwrite(char *buf, char *addr, unsigned long count)
287 {
288 /* Don't allow overflow */
289 if ((unsigned long) addr + count < count)
290 count = -(unsigned long) addr;
291
292 memcpy(addr, buf, count);
293 return count;
294 }
295
296 /*
297 * vmalloc - allocate virtually contiguous memory
298 *
299 * @size: allocation size
300 *
301 * Allocate enough pages to cover @size from the page level
302 * allocator and map them into contiguous kernel virtual space.
303 *
304 * For tight control over page level allocator and protection flags
305 * use __vmalloc() instead.
306 */
307 void *vmalloc(unsigned long size)
308 {
309 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
310 }
311 EXPORT_SYMBOL(vmalloc);
312
313 /*
314 * vzalloc - allocate virtually contiguous memory with zero fill
315 *
316 * @size: allocation size
317 *
318 * Allocate enough pages to cover @size from the page level
319 * allocator and map them into contiguous kernel virtual space.
320 * The memory allocated is set to zero.
321 *
322 * For tight control over page level allocator and protection flags
323 * use __vmalloc() instead.
324 */
325 void *vzalloc(unsigned long size)
326 {
327 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
328 PAGE_KERNEL);
329 }
330 EXPORT_SYMBOL(vzalloc);
331
332 /**
333 * vmalloc_node - allocate memory on a specific node
334 * @size: allocation size
335 * @node: numa node
336 *
337 * Allocate enough pages to cover @size from the page level
338 * allocator and map them into contiguous kernel virtual space.
339 *
340 * For tight control over page level allocator and protection flags
341 * use __vmalloc() instead.
342 */
343 void *vmalloc_node(unsigned long size, int node)
344 {
345 return vmalloc(size);
346 }
347 EXPORT_SYMBOL(vmalloc_node);
348
349 /**
350 * vzalloc_node - allocate memory on a specific node with zero fill
351 * @size: allocation size
352 * @node: numa node
353 *
354 * Allocate enough pages to cover @size from the page level
355 * allocator and map them into contiguous kernel virtual space.
356 * The memory allocated is set to zero.
357 *
358 * For tight control over page level allocator and protection flags
359 * use __vmalloc() instead.
360 */
361 void *vzalloc_node(unsigned long size, int node)
362 {
363 return vzalloc(size);
364 }
365 EXPORT_SYMBOL(vzalloc_node);
366
367 /**
368 * vmalloc_exec - allocate virtually contiguous, executable memory
369 * @size: allocation size
370 *
371 * Kernel-internal function to allocate enough pages to cover @size
372 * the page level allocator and map them into contiguous and
373 * executable kernel virtual space.
374 *
375 * For tight control over page level allocator and protection flags
376 * use __vmalloc() instead.
377 */
378
379 void *vmalloc_exec(unsigned long size)
380 {
381 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
382 }
383
384 /**
385 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
386 * @size: allocation size
387 *
388 * Allocate enough 32bit PA addressable pages to cover @size from the
389 * page level allocator and map them into contiguous kernel virtual space.
390 */
391 void *vmalloc_32(unsigned long size)
392 {
393 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
394 }
395 EXPORT_SYMBOL(vmalloc_32);
396
397 /**
398 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
399 * @size: allocation size
400 *
401 * The resulting memory area is 32bit addressable and zeroed so it can be
402 * mapped to userspace without leaking data.
403 *
404 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
405 * remap_vmalloc_range() are permissible.
406 */
407 void *vmalloc_32_user(unsigned long size)
408 {
409 /*
410 * We'll have to sort out the ZONE_DMA bits for 64-bit,
411 * but for now this can simply use vmalloc_user() directly.
412 */
413 return vmalloc_user(size);
414 }
415 EXPORT_SYMBOL(vmalloc_32_user);
416
417 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
418 {
419 BUG();
420 return NULL;
421 }
422 EXPORT_SYMBOL(vmap);
423
424 void vunmap(const void *addr)
425 {
426 BUG();
427 }
428 EXPORT_SYMBOL(vunmap);
429
430 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
431 {
432 BUG();
433 return NULL;
434 }
435 EXPORT_SYMBOL(vm_map_ram);
436
437 void vm_unmap_ram(const void *mem, unsigned int count)
438 {
439 BUG();
440 }
441 EXPORT_SYMBOL(vm_unmap_ram);
442
443 void vm_unmap_aliases(void)
444 {
445 }
446 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
447
448 /*
449 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
450 * have one.
451 */
452 void __weak vmalloc_sync_all(void)
453 {
454 }
455
456 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
457 {
458 BUG();
459 return NULL;
460 }
461 EXPORT_SYMBOL_GPL(alloc_vm_area);
462
463 void free_vm_area(struct vm_struct *area)
464 {
465 BUG();
466 }
467 EXPORT_SYMBOL_GPL(free_vm_area);
468
469 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
470 struct page *page)
471 {
472 return -EINVAL;
473 }
474 EXPORT_SYMBOL(vm_insert_page);
475
476 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
477 unsigned long num)
478 {
479 return -EINVAL;
480 }
481 EXPORT_SYMBOL(vm_map_pages);
482
483 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
484 unsigned long num)
485 {
486 return -EINVAL;
487 }
488 EXPORT_SYMBOL(vm_map_pages_zero);
489
490 /*
491 * sys_brk() for the most part doesn't need the global kernel
492 * lock, except when an application is doing something nasty
493 * like trying to un-brk an area that has already been mapped
494 * to a regular file. in this case, the unmapping will need
495 * to invoke file system routines that need the global lock.
496 */
497 SYSCALL_DEFINE1(brk, unsigned long, brk)
498 {
499 struct mm_struct *mm = current->mm;
500
501 if (brk < mm->start_brk || brk > mm->context.end_brk)
502 return mm->brk;
503
504 if (mm->brk == brk)
505 return mm->brk;
506
507 /*
508 * Always allow shrinking brk
509 */
510 if (brk <= mm->brk) {
511 mm->brk = brk;
512 return brk;
513 }
514
515 /*
516 * Ok, looks good - let it rip.
517 */
518 flush_icache_range(mm->brk, brk);
519 return mm->brk = brk;
520 }
521
522 /*
523 * initialise the percpu counter for VM and region record slabs
524 */
525 void __init mmap_init(void)
526 {
527 int ret;
528
529 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
530 VM_BUG_ON(ret);
531 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
532 }
533
534 /*
535 * validate the region tree
536 * - the caller must hold the region lock
537 */
538 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
539 static noinline void validate_nommu_regions(void)
540 {
541 struct vm_region *region, *last;
542 struct rb_node *p, *lastp;
543
544 lastp = rb_first(&nommu_region_tree);
545 if (!lastp)
546 return;
547
548 last = rb_entry(lastp, struct vm_region, vm_rb);
549 BUG_ON(last->vm_end <= last->vm_start);
550 BUG_ON(last->vm_top < last->vm_end);
551
552 while ((p = rb_next(lastp))) {
553 region = rb_entry(p, struct vm_region, vm_rb);
554 last = rb_entry(lastp, struct vm_region, vm_rb);
555
556 BUG_ON(region->vm_end <= region->vm_start);
557 BUG_ON(region->vm_top < region->vm_end);
558 BUG_ON(region->vm_start < last->vm_top);
559
560 lastp = p;
561 }
562 }
563 #else
564 static void validate_nommu_regions(void)
565 {
566 }
567 #endif
568
569 /*
570 * add a region into the global tree
571 */
572 static void add_nommu_region(struct vm_region *region)
573 {
574 struct vm_region *pregion;
575 struct rb_node **p, *parent;
576
577 validate_nommu_regions();
578
579 parent = NULL;
580 p = &nommu_region_tree.rb_node;
581 while (*p) {
582 parent = *p;
583 pregion = rb_entry(parent, struct vm_region, vm_rb);
584 if (region->vm_start < pregion->vm_start)
585 p = &(*p)->rb_left;
586 else if (region->vm_start > pregion->vm_start)
587 p = &(*p)->rb_right;
588 else if (pregion == region)
589 return;
590 else
591 BUG();
592 }
593
594 rb_link_node(&region->vm_rb, parent, p);
595 rb_insert_color(&region->vm_rb, &nommu_region_tree);
596
597 validate_nommu_regions();
598 }
599
600 /*
601 * delete a region from the global tree
602 */
603 static void delete_nommu_region(struct vm_region *region)
604 {
605 BUG_ON(!nommu_region_tree.rb_node);
606
607 validate_nommu_regions();
608 rb_erase(&region->vm_rb, &nommu_region_tree);
609 validate_nommu_regions();
610 }
611
612 /*
613 * free a contiguous series of pages
614 */
615 static void free_page_series(unsigned long from, unsigned long to)
616 {
617 for (; from < to; from += PAGE_SIZE) {
618 struct page *page = virt_to_page(from);
619
620 atomic_long_dec(&mmap_pages_allocated);
621 put_page(page);
622 }
623 }
624
625 /*
626 * release a reference to a region
627 * - the caller must hold the region semaphore for writing, which this releases
628 * - the region may not have been added to the tree yet, in which case vm_top
629 * will equal vm_start
630 */
631 static void __put_nommu_region(struct vm_region *region)
632 __releases(nommu_region_sem)
633 {
634 BUG_ON(!nommu_region_tree.rb_node);
635
636 if (--region->vm_usage == 0) {
637 if (region->vm_top > region->vm_start)
638 delete_nommu_region(region);
639 up_write(&nommu_region_sem);
640
641 if (region->vm_file)
642 fput(region->vm_file);
643
644 /* IO memory and memory shared directly out of the pagecache
645 * from ramfs/tmpfs mustn't be released here */
646 if (region->vm_flags & VM_MAPPED_COPY)
647 free_page_series(region->vm_start, region->vm_top);
648 kmem_cache_free(vm_region_jar, region);
649 } else {
650 up_write(&nommu_region_sem);
651 }
652 }
653
654 /*
655 * release a reference to a region
656 */
657 static void put_nommu_region(struct vm_region *region)
658 {
659 down_write(&nommu_region_sem);
660 __put_nommu_region(region);
661 }
662
663 /*
664 * add a VMA into a process's mm_struct in the appropriate place in the list
665 * and tree and add to the address space's page tree also if not an anonymous
666 * page
667 * - should be called with mm->mmap_sem held writelocked
668 */
669 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
670 {
671 struct vm_area_struct *pvma, *prev;
672 struct address_space *mapping;
673 struct rb_node **p, *parent, *rb_prev;
674
675 BUG_ON(!vma->vm_region);
676
677 mm->map_count++;
678 vma->vm_mm = mm;
679
680 /* add the VMA to the mapping */
681 if (vma->vm_file) {
682 mapping = vma->vm_file->f_mapping;
683
684 i_mmap_lock_write(mapping);
685 flush_dcache_mmap_lock(mapping);
686 vma_interval_tree_insert(vma, &mapping->i_mmap);
687 flush_dcache_mmap_unlock(mapping);
688 i_mmap_unlock_write(mapping);
689 }
690
691 /* add the VMA to the tree */
692 parent = rb_prev = NULL;
693 p = &mm->mm_rb.rb_node;
694 while (*p) {
695 parent = *p;
696 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
697
698 /* sort by: start addr, end addr, VMA struct addr in that order
699 * (the latter is necessary as we may get identical VMAs) */
700 if (vma->vm_start < pvma->vm_start)
701 p = &(*p)->rb_left;
702 else if (vma->vm_start > pvma->vm_start) {
703 rb_prev = parent;
704 p = &(*p)->rb_right;
705 } else if (vma->vm_end < pvma->vm_end)
706 p = &(*p)->rb_left;
707 else if (vma->vm_end > pvma->vm_end) {
708 rb_prev = parent;
709 p = &(*p)->rb_right;
710 } else if (vma < pvma)
711 p = &(*p)->rb_left;
712 else if (vma > pvma) {
713 rb_prev = parent;
714 p = &(*p)->rb_right;
715 } else
716 BUG();
717 }
718
719 rb_link_node(&vma->vm_rb, parent, p);
720 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
721
722 /* add VMA to the VMA list also */
723 prev = NULL;
724 if (rb_prev)
725 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
726
727 __vma_link_list(mm, vma, prev, parent);
728 }
729
730 /*
731 * delete a VMA from its owning mm_struct and address space
732 */
733 static void delete_vma_from_mm(struct vm_area_struct *vma)
734 {
735 int i;
736 struct address_space *mapping;
737 struct mm_struct *mm = vma->vm_mm;
738 struct task_struct *curr = current;
739
740 mm->map_count--;
741 for (i = 0; i < VMACACHE_SIZE; i++) {
742 /* if the vma is cached, invalidate the entire cache */
743 if (curr->vmacache.vmas[i] == vma) {
744 vmacache_invalidate(mm);
745 break;
746 }
747 }
748
749 /* remove the VMA from the mapping */
750 if (vma->vm_file) {
751 mapping = vma->vm_file->f_mapping;
752
753 i_mmap_lock_write(mapping);
754 flush_dcache_mmap_lock(mapping);
755 vma_interval_tree_remove(vma, &mapping->i_mmap);
756 flush_dcache_mmap_unlock(mapping);
757 i_mmap_unlock_write(mapping);
758 }
759
760 /* remove from the MM's tree and list */
761 rb_erase(&vma->vm_rb, &mm->mm_rb);
762
763 if (vma->vm_prev)
764 vma->vm_prev->vm_next = vma->vm_next;
765 else
766 mm->mmap = vma->vm_next;
767
768 if (vma->vm_next)
769 vma->vm_next->vm_prev = vma->vm_prev;
770 }
771
772 /*
773 * destroy a VMA record
774 */
775 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
776 {
777 if (vma->vm_ops && vma->vm_ops->close)
778 vma->vm_ops->close(vma);
779 if (vma->vm_file)
780 fput(vma->vm_file);
781 put_nommu_region(vma->vm_region);
782 vm_area_free(vma);
783 }
784
785 /*
786 * look up the first VMA in which addr resides, NULL if none
787 * - should be called with mm->mmap_sem at least held readlocked
788 */
789 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
790 {
791 struct vm_area_struct *vma;
792
793 /* check the cache first */
794 vma = vmacache_find(mm, addr);
795 if (likely(vma))
796 return vma;
797
798 /* trawl the list (there may be multiple mappings in which addr
799 * resides) */
800 for (vma = mm->mmap; vma; vma = vma->vm_next) {
801 if (vma->vm_start > addr)
802 return NULL;
803 if (vma->vm_end > addr) {
804 vmacache_update(addr, vma);
805 return vma;
806 }
807 }
808
809 return NULL;
810 }
811 EXPORT_SYMBOL(find_vma);
812
813 /*
814 * find a VMA
815 * - we don't extend stack VMAs under NOMMU conditions
816 */
817 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
818 {
819 return find_vma(mm, addr);
820 }
821
822 /*
823 * expand a stack to a given address
824 * - not supported under NOMMU conditions
825 */
826 int expand_stack(struct vm_area_struct *vma, unsigned long address)
827 {
828 return -ENOMEM;
829 }
830
831 /*
832 * look up the first VMA exactly that exactly matches addr
833 * - should be called with mm->mmap_sem at least held readlocked
834 */
835 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
836 unsigned long addr,
837 unsigned long len)
838 {
839 struct vm_area_struct *vma;
840 unsigned long end = addr + len;
841
842 /* check the cache first */
843 vma = vmacache_find_exact(mm, addr, end);
844 if (vma)
845 return vma;
846
847 /* trawl the list (there may be multiple mappings in which addr
848 * resides) */
849 for (vma = mm->mmap; vma; vma = vma->vm_next) {
850 if (vma->vm_start < addr)
851 continue;
852 if (vma->vm_start > addr)
853 return NULL;
854 if (vma->vm_end == end) {
855 vmacache_update(addr, vma);
856 return vma;
857 }
858 }
859
860 return NULL;
861 }
862
863 /*
864 * determine whether a mapping should be permitted and, if so, what sort of
865 * mapping we're capable of supporting
866 */
867 static int validate_mmap_request(struct file *file,
868 unsigned long addr,
869 unsigned long len,
870 unsigned long prot,
871 unsigned long flags,
872 unsigned long pgoff,
873 unsigned long *_capabilities)
874 {
875 unsigned long capabilities, rlen;
876 int ret;
877
878 /* do the simple checks first */
879 if (flags & MAP_FIXED)
880 return -EINVAL;
881
882 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
883 (flags & MAP_TYPE) != MAP_SHARED)
884 return -EINVAL;
885
886 if (!len)
887 return -EINVAL;
888
889 /* Careful about overflows.. */
890 rlen = PAGE_ALIGN(len);
891 if (!rlen || rlen > TASK_SIZE)
892 return -ENOMEM;
893
894 /* offset overflow? */
895 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
896 return -EOVERFLOW;
897
898 if (file) {
899 /* files must support mmap */
900 if (!file->f_op->mmap)
901 return -ENODEV;
902
903 /* work out if what we've got could possibly be shared
904 * - we support chardevs that provide their own "memory"
905 * - we support files/blockdevs that are memory backed
906 */
907 if (file->f_op->mmap_capabilities) {
908 capabilities = file->f_op->mmap_capabilities(file);
909 } else {
910 /* no explicit capabilities set, so assume some
911 * defaults */
912 switch (file_inode(file)->i_mode & S_IFMT) {
913 case S_IFREG:
914 case S_IFBLK:
915 capabilities = NOMMU_MAP_COPY;
916 break;
917
918 case S_IFCHR:
919 capabilities =
920 NOMMU_MAP_DIRECT |
921 NOMMU_MAP_READ |
922 NOMMU_MAP_WRITE;
923 break;
924
925 default:
926 return -EINVAL;
927 }
928 }
929
930 /* eliminate any capabilities that we can't support on this
931 * device */
932 if (!file->f_op->get_unmapped_area)
933 capabilities &= ~NOMMU_MAP_DIRECT;
934 if (!(file->f_mode & FMODE_CAN_READ))
935 capabilities &= ~NOMMU_MAP_COPY;
936
937 /* The file shall have been opened with read permission. */
938 if (!(file->f_mode & FMODE_READ))
939 return -EACCES;
940
941 if (flags & MAP_SHARED) {
942 /* do checks for writing, appending and locking */
943 if ((prot & PROT_WRITE) &&
944 !(file->f_mode & FMODE_WRITE))
945 return -EACCES;
946
947 if (IS_APPEND(file_inode(file)) &&
948 (file->f_mode & FMODE_WRITE))
949 return -EACCES;
950
951 if (locks_verify_locked(file))
952 return -EAGAIN;
953
954 if (!(capabilities & NOMMU_MAP_DIRECT))
955 return -ENODEV;
956
957 /* we mustn't privatise shared mappings */
958 capabilities &= ~NOMMU_MAP_COPY;
959 } else {
960 /* we're going to read the file into private memory we
961 * allocate */
962 if (!(capabilities & NOMMU_MAP_COPY))
963 return -ENODEV;
964
965 /* we don't permit a private writable mapping to be
966 * shared with the backing device */
967 if (prot & PROT_WRITE)
968 capabilities &= ~NOMMU_MAP_DIRECT;
969 }
970
971 if (capabilities & NOMMU_MAP_DIRECT) {
972 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
973 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
974 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
975 ) {
976 capabilities &= ~NOMMU_MAP_DIRECT;
977 if (flags & MAP_SHARED) {
978 pr_warn("MAP_SHARED not completely supported on !MMU\n");
979 return -EINVAL;
980 }
981 }
982 }
983
984 /* handle executable mappings and implied executable
985 * mappings */
986 if (path_noexec(&file->f_path)) {
987 if (prot & PROT_EXEC)
988 return -EPERM;
989 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
990 /* handle implication of PROT_EXEC by PROT_READ */
991 if (current->personality & READ_IMPLIES_EXEC) {
992 if (capabilities & NOMMU_MAP_EXEC)
993 prot |= PROT_EXEC;
994 }
995 } else if ((prot & PROT_READ) &&
996 (prot & PROT_EXEC) &&
997 !(capabilities & NOMMU_MAP_EXEC)
998 ) {
999 /* backing file is not executable, try to copy */
1000 capabilities &= ~NOMMU_MAP_DIRECT;
1001 }
1002 } else {
1003 /* anonymous mappings are always memory backed and can be
1004 * privately mapped
1005 */
1006 capabilities = NOMMU_MAP_COPY;
1007
1008 /* handle PROT_EXEC implication by PROT_READ */
1009 if ((prot & PROT_READ) &&
1010 (current->personality & READ_IMPLIES_EXEC))
1011 prot |= PROT_EXEC;
1012 }
1013
1014 /* allow the security API to have its say */
1015 ret = security_mmap_addr(addr);
1016 if (ret < 0)
1017 return ret;
1018
1019 /* looks okay */
1020 *_capabilities = capabilities;
1021 return 0;
1022 }
1023
1024 /*
1025 * we've determined that we can make the mapping, now translate what we
1026 * now know into VMA flags
1027 */
1028 static unsigned long determine_vm_flags(struct file *file,
1029 unsigned long prot,
1030 unsigned long flags,
1031 unsigned long capabilities)
1032 {
1033 unsigned long vm_flags;
1034
1035 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1036 /* vm_flags |= mm->def_flags; */
1037
1038 if (!(capabilities & NOMMU_MAP_DIRECT)) {
1039 /* attempt to share read-only copies of mapped file chunks */
1040 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1041 if (file && !(prot & PROT_WRITE))
1042 vm_flags |= VM_MAYSHARE;
1043 } else {
1044 /* overlay a shareable mapping on the backing device or inode
1045 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1046 * romfs/cramfs */
1047 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1048 if (flags & MAP_SHARED)
1049 vm_flags |= VM_SHARED;
1050 }
1051
1052 /* refuse to let anyone share private mappings with this process if
1053 * it's being traced - otherwise breakpoints set in it may interfere
1054 * with another untraced process
1055 */
1056 if ((flags & MAP_PRIVATE) && current->ptrace)
1057 vm_flags &= ~VM_MAYSHARE;
1058
1059 return vm_flags;
1060 }
1061
1062 /*
1063 * set up a shared mapping on a file (the driver or filesystem provides and
1064 * pins the storage)
1065 */
1066 static int do_mmap_shared_file(struct vm_area_struct *vma)
1067 {
1068 int ret;
1069
1070 ret = call_mmap(vma->vm_file, vma);
1071 if (ret == 0) {
1072 vma->vm_region->vm_top = vma->vm_region->vm_end;
1073 return 0;
1074 }
1075 if (ret != -ENOSYS)
1076 return ret;
1077
1078 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1079 * opposed to tried but failed) so we can only give a suitable error as
1080 * it's not possible to make a private copy if MAP_SHARED was given */
1081 return -ENODEV;
1082 }
1083
1084 /*
1085 * set up a private mapping or an anonymous shared mapping
1086 */
1087 static int do_mmap_private(struct vm_area_struct *vma,
1088 struct vm_region *region,
1089 unsigned long len,
1090 unsigned long capabilities)
1091 {
1092 unsigned long total, point;
1093 void *base;
1094 int ret, order;
1095
1096 /* invoke the file's mapping function so that it can keep track of
1097 * shared mappings on devices or memory
1098 * - VM_MAYSHARE will be set if it may attempt to share
1099 */
1100 if (capabilities & NOMMU_MAP_DIRECT) {
1101 ret = call_mmap(vma->vm_file, vma);
1102 if (ret == 0) {
1103 /* shouldn't return success if we're not sharing */
1104 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1105 vma->vm_region->vm_top = vma->vm_region->vm_end;
1106 return 0;
1107 }
1108 if (ret != -ENOSYS)
1109 return ret;
1110
1111 /* getting an ENOSYS error indicates that direct mmap isn't
1112 * possible (as opposed to tried but failed) so we'll try to
1113 * make a private copy of the data and map that instead */
1114 }
1115
1116
1117 /* allocate some memory to hold the mapping
1118 * - note that this may not return a page-aligned address if the object
1119 * we're allocating is smaller than a page
1120 */
1121 order = get_order(len);
1122 total = 1 << order;
1123 point = len >> PAGE_SHIFT;
1124
1125 /* we don't want to allocate a power-of-2 sized page set */
1126 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1127 total = point;
1128
1129 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1130 if (!base)
1131 goto enomem;
1132
1133 atomic_long_add(total, &mmap_pages_allocated);
1134
1135 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1136 region->vm_start = (unsigned long) base;
1137 region->vm_end = region->vm_start + len;
1138 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1139
1140 vma->vm_start = region->vm_start;
1141 vma->vm_end = region->vm_start + len;
1142
1143 if (vma->vm_file) {
1144 /* read the contents of a file into the copy */
1145 loff_t fpos;
1146
1147 fpos = vma->vm_pgoff;
1148 fpos <<= PAGE_SHIFT;
1149
1150 ret = kernel_read(vma->vm_file, base, len, &fpos);
1151 if (ret < 0)
1152 goto error_free;
1153
1154 /* clear the last little bit */
1155 if (ret < len)
1156 memset(base + ret, 0, len - ret);
1157
1158 } else {
1159 vma_set_anonymous(vma);
1160 }
1161
1162 return 0;
1163
1164 error_free:
1165 free_page_series(region->vm_start, region->vm_top);
1166 region->vm_start = vma->vm_start = 0;
1167 region->vm_end = vma->vm_end = 0;
1168 region->vm_top = 0;
1169 return ret;
1170
1171 enomem:
1172 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1173 len, current->pid, current->comm);
1174 show_free_areas(0, NULL);
1175 return -ENOMEM;
1176 }
1177
1178 /*
1179 * handle mapping creation for uClinux
1180 */
1181 unsigned long do_mmap(struct file *file,
1182 unsigned long addr,
1183 unsigned long len,
1184 unsigned long prot,
1185 unsigned long flags,
1186 vm_flags_t vm_flags,
1187 unsigned long pgoff,
1188 unsigned long *populate,
1189 struct list_head *uf)
1190 {
1191 struct vm_area_struct *vma;
1192 struct vm_region *region;
1193 struct rb_node *rb;
1194 unsigned long capabilities, result;
1195 int ret;
1196
1197 *populate = 0;
1198
1199 /* decide whether we should attempt the mapping, and if so what sort of
1200 * mapping */
1201 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1202 &capabilities);
1203 if (ret < 0)
1204 return ret;
1205
1206 /* we ignore the address hint */
1207 addr = 0;
1208 len = PAGE_ALIGN(len);
1209
1210 /* we've determined that we can make the mapping, now translate what we
1211 * now know into VMA flags */
1212 vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1213
1214 /* we're going to need to record the mapping */
1215 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1216 if (!region)
1217 goto error_getting_region;
1218
1219 vma = vm_area_alloc(current->mm);
1220 if (!vma)
1221 goto error_getting_vma;
1222
1223 region->vm_usage = 1;
1224 region->vm_flags = vm_flags;
1225 region->vm_pgoff = pgoff;
1226
1227 vma->vm_flags = vm_flags;
1228 vma->vm_pgoff = pgoff;
1229
1230 if (file) {
1231 region->vm_file = get_file(file);
1232 vma->vm_file = get_file(file);
1233 }
1234
1235 down_write(&nommu_region_sem);
1236
1237 /* if we want to share, we need to check for regions created by other
1238 * mmap() calls that overlap with our proposed mapping
1239 * - we can only share with a superset match on most regular files
1240 * - shared mappings on character devices and memory backed files are
1241 * permitted to overlap inexactly as far as we are concerned for in
1242 * these cases, sharing is handled in the driver or filesystem rather
1243 * than here
1244 */
1245 if (vm_flags & VM_MAYSHARE) {
1246 struct vm_region *pregion;
1247 unsigned long pglen, rpglen, pgend, rpgend, start;
1248
1249 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1250 pgend = pgoff + pglen;
1251
1252 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1253 pregion = rb_entry(rb, struct vm_region, vm_rb);
1254
1255 if (!(pregion->vm_flags & VM_MAYSHARE))
1256 continue;
1257
1258 /* search for overlapping mappings on the same file */
1259 if (file_inode(pregion->vm_file) !=
1260 file_inode(file))
1261 continue;
1262
1263 if (pregion->vm_pgoff >= pgend)
1264 continue;
1265
1266 rpglen = pregion->vm_end - pregion->vm_start;
1267 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1268 rpgend = pregion->vm_pgoff + rpglen;
1269 if (pgoff >= rpgend)
1270 continue;
1271
1272 /* handle inexactly overlapping matches between
1273 * mappings */
1274 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1275 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1276 /* new mapping is not a subset of the region */
1277 if (!(capabilities & NOMMU_MAP_DIRECT))
1278 goto sharing_violation;
1279 continue;
1280 }
1281
1282 /* we've found a region we can share */
1283 pregion->vm_usage++;
1284 vma->vm_region = pregion;
1285 start = pregion->vm_start;
1286 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1287 vma->vm_start = start;
1288 vma->vm_end = start + len;
1289
1290 if (pregion->vm_flags & VM_MAPPED_COPY)
1291 vma->vm_flags |= VM_MAPPED_COPY;
1292 else {
1293 ret = do_mmap_shared_file(vma);
1294 if (ret < 0) {
1295 vma->vm_region = NULL;
1296 vma->vm_start = 0;
1297 vma->vm_end = 0;
1298 pregion->vm_usage--;
1299 pregion = NULL;
1300 goto error_just_free;
1301 }
1302 }
1303 fput(region->vm_file);
1304 kmem_cache_free(vm_region_jar, region);
1305 region = pregion;
1306 result = start;
1307 goto share;
1308 }
1309
1310 /* obtain the address at which to make a shared mapping
1311 * - this is the hook for quasi-memory character devices to
1312 * tell us the location of a shared mapping
1313 */
1314 if (capabilities & NOMMU_MAP_DIRECT) {
1315 addr = file->f_op->get_unmapped_area(file, addr, len,
1316 pgoff, flags);
1317 if (IS_ERR_VALUE(addr)) {
1318 ret = addr;
1319 if (ret != -ENOSYS)
1320 goto error_just_free;
1321
1322 /* the driver refused to tell us where to site
1323 * the mapping so we'll have to attempt to copy
1324 * it */
1325 ret = -ENODEV;
1326 if (!(capabilities & NOMMU_MAP_COPY))
1327 goto error_just_free;
1328
1329 capabilities &= ~NOMMU_MAP_DIRECT;
1330 } else {
1331 vma->vm_start = region->vm_start = addr;
1332 vma->vm_end = region->vm_end = addr + len;
1333 }
1334 }
1335 }
1336
1337 vma->vm_region = region;
1338
1339 /* set up the mapping
1340 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1341 */
1342 if (file && vma->vm_flags & VM_SHARED)
1343 ret = do_mmap_shared_file(vma);
1344 else
1345 ret = do_mmap_private(vma, region, len, capabilities);
1346 if (ret < 0)
1347 goto error_just_free;
1348 add_nommu_region(region);
1349
1350 /* clear anonymous mappings that don't ask for uninitialized data */
1351 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1352 memset((void *)region->vm_start, 0,
1353 region->vm_end - region->vm_start);
1354
1355 /* okay... we have a mapping; now we have to register it */
1356 result = vma->vm_start;
1357
1358 current->mm->total_vm += len >> PAGE_SHIFT;
1359
1360 share:
1361 add_vma_to_mm(current->mm, vma);
1362
1363 /* we flush the region from the icache only when the first executable
1364 * mapping of it is made */
1365 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1366 flush_icache_range(region->vm_start, region->vm_end);
1367 region->vm_icache_flushed = true;
1368 }
1369
1370 up_write(&nommu_region_sem);
1371
1372 return result;
1373
1374 error_just_free:
1375 up_write(&nommu_region_sem);
1376 error:
1377 if (region->vm_file)
1378 fput(region->vm_file);
1379 kmem_cache_free(vm_region_jar, region);
1380 if (vma->vm_file)
1381 fput(vma->vm_file);
1382 vm_area_free(vma);
1383 return ret;
1384
1385 sharing_violation:
1386 up_write(&nommu_region_sem);
1387 pr_warn("Attempt to share mismatched mappings\n");
1388 ret = -EINVAL;
1389 goto error;
1390
1391 error_getting_vma:
1392 kmem_cache_free(vm_region_jar, region);
1393 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1394 len, current->pid);
1395 show_free_areas(0, NULL);
1396 return -ENOMEM;
1397
1398 error_getting_region:
1399 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1400 len, current->pid);
1401 show_free_areas(0, NULL);
1402 return -ENOMEM;
1403 }
1404
1405 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1406 unsigned long prot, unsigned long flags,
1407 unsigned long fd, unsigned long pgoff)
1408 {
1409 struct file *file = NULL;
1410 unsigned long retval = -EBADF;
1411
1412 audit_mmap_fd(fd, flags);
1413 if (!(flags & MAP_ANONYMOUS)) {
1414 file = fget(fd);
1415 if (!file)
1416 goto out;
1417 }
1418
1419 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1420
1421 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1422
1423 if (file)
1424 fput(file);
1425 out:
1426 return retval;
1427 }
1428
1429 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1430 unsigned long, prot, unsigned long, flags,
1431 unsigned long, fd, unsigned long, pgoff)
1432 {
1433 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1434 }
1435
1436 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1437 struct mmap_arg_struct {
1438 unsigned long addr;
1439 unsigned long len;
1440 unsigned long prot;
1441 unsigned long flags;
1442 unsigned long fd;
1443 unsigned long offset;
1444 };
1445
1446 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1447 {
1448 struct mmap_arg_struct a;
1449
1450 if (copy_from_user(&a, arg, sizeof(a)))
1451 return -EFAULT;
1452 if (offset_in_page(a.offset))
1453 return -EINVAL;
1454
1455 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1456 a.offset >> PAGE_SHIFT);
1457 }
1458 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1459
1460 /*
1461 * split a vma into two pieces at address 'addr', a new vma is allocated either
1462 * for the first part or the tail.
1463 */
1464 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1465 unsigned long addr, int new_below)
1466 {
1467 struct vm_area_struct *new;
1468 struct vm_region *region;
1469 unsigned long npages;
1470
1471 /* we're only permitted to split anonymous regions (these should have
1472 * only a single usage on the region) */
1473 if (vma->vm_file)
1474 return -ENOMEM;
1475
1476 if (mm->map_count >= sysctl_max_map_count)
1477 return -ENOMEM;
1478
1479 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1480 if (!region)
1481 return -ENOMEM;
1482
1483 new = vm_area_dup(vma);
1484 if (!new) {
1485 kmem_cache_free(vm_region_jar, region);
1486 return -ENOMEM;
1487 }
1488
1489 /* most fields are the same, copy all, and then fixup */
1490 *region = *vma->vm_region;
1491 new->vm_region = region;
1492
1493 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1494
1495 if (new_below) {
1496 region->vm_top = region->vm_end = new->vm_end = addr;
1497 } else {
1498 region->vm_start = new->vm_start = addr;
1499 region->vm_pgoff = new->vm_pgoff += npages;
1500 }
1501
1502 if (new->vm_ops && new->vm_ops->open)
1503 new->vm_ops->open(new);
1504
1505 delete_vma_from_mm(vma);
1506 down_write(&nommu_region_sem);
1507 delete_nommu_region(vma->vm_region);
1508 if (new_below) {
1509 vma->vm_region->vm_start = vma->vm_start = addr;
1510 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1511 } else {
1512 vma->vm_region->vm_end = vma->vm_end = addr;
1513 vma->vm_region->vm_top = addr;
1514 }
1515 add_nommu_region(vma->vm_region);
1516 add_nommu_region(new->vm_region);
1517 up_write(&nommu_region_sem);
1518 add_vma_to_mm(mm, vma);
1519 add_vma_to_mm(mm, new);
1520 return 0;
1521 }
1522
1523 /*
1524 * shrink a VMA by removing the specified chunk from either the beginning or
1525 * the end
1526 */
1527 static int shrink_vma(struct mm_struct *mm,
1528 struct vm_area_struct *vma,
1529 unsigned long from, unsigned long to)
1530 {
1531 struct vm_region *region;
1532
1533 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1534 * and list */
1535 delete_vma_from_mm(vma);
1536 if (from > vma->vm_start)
1537 vma->vm_end = from;
1538 else
1539 vma->vm_start = to;
1540 add_vma_to_mm(mm, vma);
1541
1542 /* cut the backing region down to size */
1543 region = vma->vm_region;
1544 BUG_ON(region->vm_usage != 1);
1545
1546 down_write(&nommu_region_sem);
1547 delete_nommu_region(region);
1548 if (from > region->vm_start) {
1549 to = region->vm_top;
1550 region->vm_top = region->vm_end = from;
1551 } else {
1552 region->vm_start = to;
1553 }
1554 add_nommu_region(region);
1555 up_write(&nommu_region_sem);
1556
1557 free_page_series(from, to);
1558 return 0;
1559 }
1560
1561 /*
1562 * release a mapping
1563 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1564 * VMA, though it need not cover the whole VMA
1565 */
1566 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1567 {
1568 struct vm_area_struct *vma;
1569 unsigned long end;
1570 int ret;
1571
1572 len = PAGE_ALIGN(len);
1573 if (len == 0)
1574 return -EINVAL;
1575
1576 end = start + len;
1577
1578 /* find the first potentially overlapping VMA */
1579 vma = find_vma(mm, start);
1580 if (!vma) {
1581 static int limit;
1582 if (limit < 5) {
1583 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1584 current->pid, current->comm,
1585 start, start + len - 1);
1586 limit++;
1587 }
1588 return -EINVAL;
1589 }
1590
1591 /* we're allowed to split an anonymous VMA but not a file-backed one */
1592 if (vma->vm_file) {
1593 do {
1594 if (start > vma->vm_start)
1595 return -EINVAL;
1596 if (end == vma->vm_end)
1597 goto erase_whole_vma;
1598 vma = vma->vm_next;
1599 } while (vma);
1600 return -EINVAL;
1601 } else {
1602 /* the chunk must be a subset of the VMA found */
1603 if (start == vma->vm_start && end == vma->vm_end)
1604 goto erase_whole_vma;
1605 if (start < vma->vm_start || end > vma->vm_end)
1606 return -EINVAL;
1607 if (offset_in_page(start))
1608 return -EINVAL;
1609 if (end != vma->vm_end && offset_in_page(end))
1610 return -EINVAL;
1611 if (start != vma->vm_start && end != vma->vm_end) {
1612 ret = split_vma(mm, vma, start, 1);
1613 if (ret < 0)
1614 return ret;
1615 }
1616 return shrink_vma(mm, vma, start, end);
1617 }
1618
1619 erase_whole_vma:
1620 delete_vma_from_mm(vma);
1621 delete_vma(mm, vma);
1622 return 0;
1623 }
1624 EXPORT_SYMBOL(do_munmap);
1625
1626 int vm_munmap(unsigned long addr, size_t len)
1627 {
1628 struct mm_struct *mm = current->mm;
1629 int ret;
1630
1631 down_write(&mm->mmap_sem);
1632 ret = do_munmap(mm, addr, len, NULL);
1633 up_write(&mm->mmap_sem);
1634 return ret;
1635 }
1636 EXPORT_SYMBOL(vm_munmap);
1637
1638 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1639 {
1640 return vm_munmap(addr, len);
1641 }
1642
1643 /*
1644 * release all the mappings made in a process's VM space
1645 */
1646 void exit_mmap(struct mm_struct *mm)
1647 {
1648 struct vm_area_struct *vma;
1649
1650 if (!mm)
1651 return;
1652
1653 mm->total_vm = 0;
1654
1655 while ((vma = mm->mmap)) {
1656 mm->mmap = vma->vm_next;
1657 delete_vma_from_mm(vma);
1658 delete_vma(mm, vma);
1659 cond_resched();
1660 }
1661 }
1662
1663 int vm_brk(unsigned long addr, unsigned long len)
1664 {
1665 return -ENOMEM;
1666 }
1667
1668 /*
1669 * expand (or shrink) an existing mapping, potentially moving it at the same
1670 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1671 *
1672 * under NOMMU conditions, we only permit changing a mapping's size, and only
1673 * as long as it stays within the region allocated by do_mmap_private() and the
1674 * block is not shareable
1675 *
1676 * MREMAP_FIXED is not supported under NOMMU conditions
1677 */
1678 static unsigned long do_mremap(unsigned long addr,
1679 unsigned long old_len, unsigned long new_len,
1680 unsigned long flags, unsigned long new_addr)
1681 {
1682 struct vm_area_struct *vma;
1683
1684 /* insanity checks first */
1685 old_len = PAGE_ALIGN(old_len);
1686 new_len = PAGE_ALIGN(new_len);
1687 if (old_len == 0 || new_len == 0)
1688 return (unsigned long) -EINVAL;
1689
1690 if (offset_in_page(addr))
1691 return -EINVAL;
1692
1693 if (flags & MREMAP_FIXED && new_addr != addr)
1694 return (unsigned long) -EINVAL;
1695
1696 vma = find_vma_exact(current->mm, addr, old_len);
1697 if (!vma)
1698 return (unsigned long) -EINVAL;
1699
1700 if (vma->vm_end != vma->vm_start + old_len)
1701 return (unsigned long) -EFAULT;
1702
1703 if (vma->vm_flags & VM_MAYSHARE)
1704 return (unsigned long) -EPERM;
1705
1706 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1707 return (unsigned long) -ENOMEM;
1708
1709 /* all checks complete - do it */
1710 vma->vm_end = vma->vm_start + new_len;
1711 return vma->vm_start;
1712 }
1713
1714 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1715 unsigned long, new_len, unsigned long, flags,
1716 unsigned long, new_addr)
1717 {
1718 unsigned long ret;
1719
1720 down_write(&current->mm->mmap_sem);
1721 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1722 up_write(&current->mm->mmap_sem);
1723 return ret;
1724 }
1725
1726 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1727 unsigned int foll_flags)
1728 {
1729 return NULL;
1730 }
1731
1732 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1733 unsigned long pfn, unsigned long size, pgprot_t prot)
1734 {
1735 if (addr != (pfn << PAGE_SHIFT))
1736 return -EINVAL;
1737
1738 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1739 return 0;
1740 }
1741 EXPORT_SYMBOL(remap_pfn_range);
1742
1743 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1744 {
1745 unsigned long pfn = start >> PAGE_SHIFT;
1746 unsigned long vm_len = vma->vm_end - vma->vm_start;
1747
1748 pfn += vma->vm_pgoff;
1749 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1750 }
1751 EXPORT_SYMBOL(vm_iomap_memory);
1752
1753 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1754 unsigned long pgoff)
1755 {
1756 unsigned int size = vma->vm_end - vma->vm_start;
1757
1758 if (!(vma->vm_flags & VM_USERMAP))
1759 return -EINVAL;
1760
1761 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1762 vma->vm_end = vma->vm_start + size;
1763
1764 return 0;
1765 }
1766 EXPORT_SYMBOL(remap_vmalloc_range);
1767
1768 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1769 unsigned long len, unsigned long pgoff, unsigned long flags)
1770 {
1771 return -ENOMEM;
1772 }
1773
1774 vm_fault_t filemap_fault(struct vm_fault *vmf)
1775 {
1776 BUG();
1777 return 0;
1778 }
1779 EXPORT_SYMBOL(filemap_fault);
1780
1781 void filemap_map_pages(struct vm_fault *vmf,
1782 pgoff_t start_pgoff, pgoff_t end_pgoff)
1783 {
1784 BUG();
1785 }
1786 EXPORT_SYMBOL(filemap_map_pages);
1787
1788 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1789 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1790 {
1791 struct vm_area_struct *vma;
1792 int write = gup_flags & FOLL_WRITE;
1793
1794 down_read(&mm->mmap_sem);
1795
1796 /* the access must start within one of the target process's mappings */
1797 vma = find_vma(mm, addr);
1798 if (vma) {
1799 /* don't overrun this mapping */
1800 if (addr + len >= vma->vm_end)
1801 len = vma->vm_end - addr;
1802
1803 /* only read or write mappings where it is permitted */
1804 if (write && vma->vm_flags & VM_MAYWRITE)
1805 copy_to_user_page(vma, NULL, addr,
1806 (void *) addr, buf, len);
1807 else if (!write && vma->vm_flags & VM_MAYREAD)
1808 copy_from_user_page(vma, NULL, addr,
1809 buf, (void *) addr, len);
1810 else
1811 len = 0;
1812 } else {
1813 len = 0;
1814 }
1815
1816 up_read(&mm->mmap_sem);
1817
1818 return len;
1819 }
1820
1821 /**
1822 * access_remote_vm - access another process' address space
1823 * @mm: the mm_struct of the target address space
1824 * @addr: start address to access
1825 * @buf: source or destination buffer
1826 * @len: number of bytes to transfer
1827 * @gup_flags: flags modifying lookup behaviour
1828 *
1829 * The caller must hold a reference on @mm.
1830 */
1831 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1832 void *buf, int len, unsigned int gup_flags)
1833 {
1834 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1835 }
1836
1837 /*
1838 * Access another process' address space.
1839 * - source/target buffer must be kernel space
1840 */
1841 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1842 unsigned int gup_flags)
1843 {
1844 struct mm_struct *mm;
1845
1846 if (addr + len < addr)
1847 return 0;
1848
1849 mm = get_task_mm(tsk);
1850 if (!mm)
1851 return 0;
1852
1853 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1854
1855 mmput(mm);
1856 return len;
1857 }
1858 EXPORT_SYMBOL_GPL(access_process_vm);
1859
1860 /**
1861 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1862 * @inode: The inode to check
1863 * @size: The current filesize of the inode
1864 * @newsize: The proposed filesize of the inode
1865 *
1866 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1867 * make sure that that any outstanding VMAs aren't broken and then shrink the
1868 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1869 * automatically grant mappings that are too large.
1870 */
1871 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1872 size_t newsize)
1873 {
1874 struct vm_area_struct *vma;
1875 struct vm_region *region;
1876 pgoff_t low, high;
1877 size_t r_size, r_top;
1878
1879 low = newsize >> PAGE_SHIFT;
1880 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1881
1882 down_write(&nommu_region_sem);
1883 i_mmap_lock_read(inode->i_mapping);
1884
1885 /* search for VMAs that fall within the dead zone */
1886 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1887 /* found one - only interested if it's shared out of the page
1888 * cache */
1889 if (vma->vm_flags & VM_SHARED) {
1890 i_mmap_unlock_read(inode->i_mapping);
1891 up_write(&nommu_region_sem);
1892 return -ETXTBSY; /* not quite true, but near enough */
1893 }
1894 }
1895
1896 /* reduce any regions that overlap the dead zone - if in existence,
1897 * these will be pointed to by VMAs that don't overlap the dead zone
1898 *
1899 * we don't check for any regions that start beyond the EOF as there
1900 * shouldn't be any
1901 */
1902 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1903 if (!(vma->vm_flags & VM_SHARED))
1904 continue;
1905
1906 region = vma->vm_region;
1907 r_size = region->vm_top - region->vm_start;
1908 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1909
1910 if (r_top > newsize) {
1911 region->vm_top -= r_top - newsize;
1912 if (region->vm_end > region->vm_top)
1913 region->vm_end = region->vm_top;
1914 }
1915 }
1916
1917 i_mmap_unlock_read(inode->i_mapping);
1918 up_write(&nommu_region_sem);
1919 return 0;
1920 }
1921
1922 /*
1923 * Initialise sysctl_user_reserve_kbytes.
1924 *
1925 * This is intended to prevent a user from starting a single memory hogging
1926 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1927 * mode.
1928 *
1929 * The default value is min(3% of free memory, 128MB)
1930 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1931 */
1932 static int __meminit init_user_reserve(void)
1933 {
1934 unsigned long free_kbytes;
1935
1936 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1937
1938 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1939 return 0;
1940 }
1941 subsys_initcall(init_user_reserve);
1942
1943 /*
1944 * Initialise sysctl_admin_reserve_kbytes.
1945 *
1946 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1947 * to log in and kill a memory hogging process.
1948 *
1949 * Systems with more than 256MB will reserve 8MB, enough to recover
1950 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1951 * only reserve 3% of free pages by default.
1952 */
1953 static int __meminit init_admin_reserve(void)
1954 {
1955 unsigned long free_kbytes;
1956
1957 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1958
1959 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1960 return 0;
1961 }
1962 subsys_initcall(init_admin_reserve);