]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/oom_kill.c
mm/oom_kill: count global and memory cgroup oom kills
[mirror_ubuntu-bionic-kernel.git] / mm / oom_kill.c
1 /*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
9 *
10 * The routines in this file are used to kill a process when
11 * we're seriously out of memory. This gets called from __alloc_pages()
12 * in mm/page_alloc.c when we really run out of memory.
13 *
14 * Since we won't call these routines often (on a well-configured
15 * machine) this file will double as a 'coding guide' and a signpost
16 * for newbie kernel hackers. It features several pointers to major
17 * kernel subsystems and hints as to where to find out what things do.
18 */
19
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/sched/mm.h>
26 #include <linux/sched/coredump.h>
27 #include <linux/sched/task.h>
28 #include <linux/swap.h>
29 #include <linux/timex.h>
30 #include <linux/jiffies.h>
31 #include <linux/cpuset.h>
32 #include <linux/export.h>
33 #include <linux/notifier.h>
34 #include <linux/memcontrol.h>
35 #include <linux/mempolicy.h>
36 #include <linux/security.h>
37 #include <linux/ptrace.h>
38 #include <linux/freezer.h>
39 #include <linux/ftrace.h>
40 #include <linux/ratelimit.h>
41 #include <linux/kthread.h>
42 #include <linux/init.h>
43
44 #include <asm/tlb.h>
45 #include "internal.h"
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/oom.h>
49
50 int sysctl_panic_on_oom;
51 int sysctl_oom_kill_allocating_task;
52 int sysctl_oom_dump_tasks = 1;
53
54 DEFINE_MUTEX(oom_lock);
55
56 #ifdef CONFIG_NUMA
57 /**
58 * has_intersects_mems_allowed() - check task eligiblity for kill
59 * @start: task struct of which task to consider
60 * @mask: nodemask passed to page allocator for mempolicy ooms
61 *
62 * Task eligibility is determined by whether or not a candidate task, @tsk,
63 * shares the same mempolicy nodes as current if it is bound by such a policy
64 * and whether or not it has the same set of allowed cpuset nodes.
65 */
66 static bool has_intersects_mems_allowed(struct task_struct *start,
67 const nodemask_t *mask)
68 {
69 struct task_struct *tsk;
70 bool ret = false;
71
72 rcu_read_lock();
73 for_each_thread(start, tsk) {
74 if (mask) {
75 /*
76 * If this is a mempolicy constrained oom, tsk's
77 * cpuset is irrelevant. Only return true if its
78 * mempolicy intersects current, otherwise it may be
79 * needlessly killed.
80 */
81 ret = mempolicy_nodemask_intersects(tsk, mask);
82 } else {
83 /*
84 * This is not a mempolicy constrained oom, so only
85 * check the mems of tsk's cpuset.
86 */
87 ret = cpuset_mems_allowed_intersects(current, tsk);
88 }
89 if (ret)
90 break;
91 }
92 rcu_read_unlock();
93
94 return ret;
95 }
96 #else
97 static bool has_intersects_mems_allowed(struct task_struct *tsk,
98 const nodemask_t *mask)
99 {
100 return true;
101 }
102 #endif /* CONFIG_NUMA */
103
104 /*
105 * The process p may have detached its own ->mm while exiting or through
106 * use_mm(), but one or more of its subthreads may still have a valid
107 * pointer. Return p, or any of its subthreads with a valid ->mm, with
108 * task_lock() held.
109 */
110 struct task_struct *find_lock_task_mm(struct task_struct *p)
111 {
112 struct task_struct *t;
113
114 rcu_read_lock();
115
116 for_each_thread(p, t) {
117 task_lock(t);
118 if (likely(t->mm))
119 goto found;
120 task_unlock(t);
121 }
122 t = NULL;
123 found:
124 rcu_read_unlock();
125
126 return t;
127 }
128
129 /*
130 * order == -1 means the oom kill is required by sysrq, otherwise only
131 * for display purposes.
132 */
133 static inline bool is_sysrq_oom(struct oom_control *oc)
134 {
135 return oc->order == -1;
136 }
137
138 static inline bool is_memcg_oom(struct oom_control *oc)
139 {
140 return oc->memcg != NULL;
141 }
142
143 /* return true if the task is not adequate as candidate victim task. */
144 static bool oom_unkillable_task(struct task_struct *p,
145 struct mem_cgroup *memcg, const nodemask_t *nodemask)
146 {
147 if (is_global_init(p))
148 return true;
149 if (p->flags & PF_KTHREAD)
150 return true;
151
152 /* When mem_cgroup_out_of_memory() and p is not member of the group */
153 if (memcg && !task_in_mem_cgroup(p, memcg))
154 return true;
155
156 /* p may not have freeable memory in nodemask */
157 if (!has_intersects_mems_allowed(p, nodemask))
158 return true;
159
160 return false;
161 }
162
163 /**
164 * oom_badness - heuristic function to determine which candidate task to kill
165 * @p: task struct of which task we should calculate
166 * @totalpages: total present RAM allowed for page allocation
167 *
168 * The heuristic for determining which task to kill is made to be as simple and
169 * predictable as possible. The goal is to return the highest value for the
170 * task consuming the most memory to avoid subsequent oom failures.
171 */
172 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
173 const nodemask_t *nodemask, unsigned long totalpages)
174 {
175 long points;
176 long adj;
177
178 if (oom_unkillable_task(p, memcg, nodemask))
179 return 0;
180
181 p = find_lock_task_mm(p);
182 if (!p)
183 return 0;
184
185 /*
186 * Do not even consider tasks which are explicitly marked oom
187 * unkillable or have been already oom reaped or the are in
188 * the middle of vfork
189 */
190 adj = (long)p->signal->oom_score_adj;
191 if (adj == OOM_SCORE_ADJ_MIN ||
192 test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
193 in_vfork(p)) {
194 task_unlock(p);
195 return 0;
196 }
197
198 /*
199 * The baseline for the badness score is the proportion of RAM that each
200 * task's rss, pagetable and swap space use.
201 */
202 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
203 atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
204 task_unlock(p);
205
206 /*
207 * Root processes get 3% bonus, just like the __vm_enough_memory()
208 * implementation used by LSMs.
209 */
210 if (has_capability_noaudit(p, CAP_SYS_ADMIN))
211 points -= (points * 3) / 100;
212
213 /* Normalize to oom_score_adj units */
214 adj *= totalpages / 1000;
215 points += adj;
216
217 /*
218 * Never return 0 for an eligible task regardless of the root bonus and
219 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
220 */
221 return points > 0 ? points : 1;
222 }
223
224 enum oom_constraint {
225 CONSTRAINT_NONE,
226 CONSTRAINT_CPUSET,
227 CONSTRAINT_MEMORY_POLICY,
228 CONSTRAINT_MEMCG,
229 };
230
231 /*
232 * Determine the type of allocation constraint.
233 */
234 static enum oom_constraint constrained_alloc(struct oom_control *oc)
235 {
236 struct zone *zone;
237 struct zoneref *z;
238 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
239 bool cpuset_limited = false;
240 int nid;
241
242 if (is_memcg_oom(oc)) {
243 oc->totalpages = mem_cgroup_get_limit(oc->memcg) ?: 1;
244 return CONSTRAINT_MEMCG;
245 }
246
247 /* Default to all available memory */
248 oc->totalpages = totalram_pages + total_swap_pages;
249
250 if (!IS_ENABLED(CONFIG_NUMA))
251 return CONSTRAINT_NONE;
252
253 if (!oc->zonelist)
254 return CONSTRAINT_NONE;
255 /*
256 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
257 * to kill current.We have to random task kill in this case.
258 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
259 */
260 if (oc->gfp_mask & __GFP_THISNODE)
261 return CONSTRAINT_NONE;
262
263 /*
264 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
265 * the page allocator means a mempolicy is in effect. Cpuset policy
266 * is enforced in get_page_from_freelist().
267 */
268 if (oc->nodemask &&
269 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
270 oc->totalpages = total_swap_pages;
271 for_each_node_mask(nid, *oc->nodemask)
272 oc->totalpages += node_spanned_pages(nid);
273 return CONSTRAINT_MEMORY_POLICY;
274 }
275
276 /* Check this allocation failure is caused by cpuset's wall function */
277 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
278 high_zoneidx, oc->nodemask)
279 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
280 cpuset_limited = true;
281
282 if (cpuset_limited) {
283 oc->totalpages = total_swap_pages;
284 for_each_node_mask(nid, cpuset_current_mems_allowed)
285 oc->totalpages += node_spanned_pages(nid);
286 return CONSTRAINT_CPUSET;
287 }
288 return CONSTRAINT_NONE;
289 }
290
291 static int oom_evaluate_task(struct task_struct *task, void *arg)
292 {
293 struct oom_control *oc = arg;
294 unsigned long points;
295
296 if (oom_unkillable_task(task, NULL, oc->nodemask))
297 goto next;
298
299 /*
300 * This task already has access to memory reserves and is being killed.
301 * Don't allow any other task to have access to the reserves unless
302 * the task has MMF_OOM_SKIP because chances that it would release
303 * any memory is quite low.
304 */
305 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
306 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
307 goto next;
308 goto abort;
309 }
310
311 /*
312 * If task is allocating a lot of memory and has been marked to be
313 * killed first if it triggers an oom, then select it.
314 */
315 if (oom_task_origin(task)) {
316 points = ULONG_MAX;
317 goto select;
318 }
319
320 points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
321 if (!points || points < oc->chosen_points)
322 goto next;
323
324 /* Prefer thread group leaders for display purposes */
325 if (points == oc->chosen_points && thread_group_leader(oc->chosen))
326 goto next;
327 select:
328 if (oc->chosen)
329 put_task_struct(oc->chosen);
330 get_task_struct(task);
331 oc->chosen = task;
332 oc->chosen_points = points;
333 next:
334 return 0;
335 abort:
336 if (oc->chosen)
337 put_task_struct(oc->chosen);
338 oc->chosen = (void *)-1UL;
339 return 1;
340 }
341
342 /*
343 * Simple selection loop. We choose the process with the highest number of
344 * 'points'. In case scan was aborted, oc->chosen is set to -1.
345 */
346 static void select_bad_process(struct oom_control *oc)
347 {
348 if (is_memcg_oom(oc))
349 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
350 else {
351 struct task_struct *p;
352
353 rcu_read_lock();
354 for_each_process(p)
355 if (oom_evaluate_task(p, oc))
356 break;
357 rcu_read_unlock();
358 }
359
360 oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
361 }
362
363 /**
364 * dump_tasks - dump current memory state of all system tasks
365 * @memcg: current's memory controller, if constrained
366 * @nodemask: nodemask passed to page allocator for mempolicy ooms
367 *
368 * Dumps the current memory state of all eligible tasks. Tasks not in the same
369 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
370 * are not shown.
371 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
372 * swapents, oom_score_adj value, and name.
373 */
374 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
375 {
376 struct task_struct *p;
377 struct task_struct *task;
378
379 pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name\n");
380 rcu_read_lock();
381 for_each_process(p) {
382 if (oom_unkillable_task(p, memcg, nodemask))
383 continue;
384
385 task = find_lock_task_mm(p);
386 if (!task) {
387 /*
388 * This is a kthread or all of p's threads have already
389 * detached their mm's. There's no need to report
390 * them; they can't be oom killed anyway.
391 */
392 continue;
393 }
394
395 pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu %5hd %s\n",
396 task->pid, from_kuid(&init_user_ns, task_uid(task)),
397 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
398 atomic_long_read(&task->mm->nr_ptes),
399 mm_nr_pmds(task->mm),
400 get_mm_counter(task->mm, MM_SWAPENTS),
401 task->signal->oom_score_adj, task->comm);
402 task_unlock(task);
403 }
404 rcu_read_unlock();
405 }
406
407 static void dump_header(struct oom_control *oc, struct task_struct *p)
408 {
409 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), nodemask=",
410 current->comm, oc->gfp_mask, &oc->gfp_mask);
411 if (oc->nodemask)
412 pr_cont("%*pbl", nodemask_pr_args(oc->nodemask));
413 else
414 pr_cont("(null)");
415 pr_cont(", order=%d, oom_score_adj=%hd\n",
416 oc->order, current->signal->oom_score_adj);
417 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
418 pr_warn("COMPACTION is disabled!!!\n");
419
420 cpuset_print_current_mems_allowed();
421 dump_stack();
422 if (oc->memcg)
423 mem_cgroup_print_oom_info(oc->memcg, p);
424 else
425 show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
426 if (sysctl_oom_dump_tasks)
427 dump_tasks(oc->memcg, oc->nodemask);
428 }
429
430 /*
431 * Number of OOM victims in flight
432 */
433 static atomic_t oom_victims = ATOMIC_INIT(0);
434 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
435
436 static bool oom_killer_disabled __read_mostly;
437
438 #define K(x) ((x) << (PAGE_SHIFT-10))
439
440 /*
441 * task->mm can be NULL if the task is the exited group leader. So to
442 * determine whether the task is using a particular mm, we examine all the
443 * task's threads: if one of those is using this mm then this task was also
444 * using it.
445 */
446 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
447 {
448 struct task_struct *t;
449
450 for_each_thread(p, t) {
451 struct mm_struct *t_mm = READ_ONCE(t->mm);
452 if (t_mm)
453 return t_mm == mm;
454 }
455 return false;
456 }
457
458
459 #ifdef CONFIG_MMU
460 /*
461 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
462 * victim (if that is possible) to help the OOM killer to move on.
463 */
464 static struct task_struct *oom_reaper_th;
465 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
466 static struct task_struct *oom_reaper_list;
467 static DEFINE_SPINLOCK(oom_reaper_lock);
468
469 static bool __oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
470 {
471 struct mmu_gather tlb;
472 struct vm_area_struct *vma;
473 bool ret = true;
474
475 /*
476 * We have to make sure to not race with the victim exit path
477 * and cause premature new oom victim selection:
478 * __oom_reap_task_mm exit_mm
479 * mmget_not_zero
480 * mmput
481 * atomic_dec_and_test
482 * exit_oom_victim
483 * [...]
484 * out_of_memory
485 * select_bad_process
486 * # no TIF_MEMDIE task selects new victim
487 * unmap_page_range # frees some memory
488 */
489 mutex_lock(&oom_lock);
490
491 if (!down_read_trylock(&mm->mmap_sem)) {
492 ret = false;
493 goto unlock_oom;
494 }
495
496 /*
497 * increase mm_users only after we know we will reap something so
498 * that the mmput_async is called only when we have reaped something
499 * and delayed __mmput doesn't matter that much
500 */
501 if (!mmget_not_zero(mm)) {
502 up_read(&mm->mmap_sem);
503 goto unlock_oom;
504 }
505
506 /*
507 * Tell all users of get_user/copy_from_user etc... that the content
508 * is no longer stable. No barriers really needed because unmapping
509 * should imply barriers already and the reader would hit a page fault
510 * if it stumbled over a reaped memory.
511 */
512 set_bit(MMF_UNSTABLE, &mm->flags);
513
514 tlb_gather_mmu(&tlb, mm, 0, -1);
515 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
516 if (!can_madv_dontneed_vma(vma))
517 continue;
518
519 /*
520 * Only anonymous pages have a good chance to be dropped
521 * without additional steps which we cannot afford as we
522 * are OOM already.
523 *
524 * We do not even care about fs backed pages because all
525 * which are reclaimable have already been reclaimed and
526 * we do not want to block exit_mmap by keeping mm ref
527 * count elevated without a good reason.
528 */
529 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
530 unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
531 NULL);
532 }
533 tlb_finish_mmu(&tlb, 0, -1);
534 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
535 task_pid_nr(tsk), tsk->comm,
536 K(get_mm_counter(mm, MM_ANONPAGES)),
537 K(get_mm_counter(mm, MM_FILEPAGES)),
538 K(get_mm_counter(mm, MM_SHMEMPAGES)));
539 up_read(&mm->mmap_sem);
540
541 /*
542 * Drop our reference but make sure the mmput slow path is called from a
543 * different context because we shouldn't risk we get stuck there and
544 * put the oom_reaper out of the way.
545 */
546 mmput_async(mm);
547 unlock_oom:
548 mutex_unlock(&oom_lock);
549 return ret;
550 }
551
552 #define MAX_OOM_REAP_RETRIES 10
553 static void oom_reap_task(struct task_struct *tsk)
554 {
555 int attempts = 0;
556 struct mm_struct *mm = tsk->signal->oom_mm;
557
558 /* Retry the down_read_trylock(mmap_sem) a few times */
559 while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task_mm(tsk, mm))
560 schedule_timeout_idle(HZ/10);
561
562 if (attempts <= MAX_OOM_REAP_RETRIES)
563 goto done;
564
565
566 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
567 task_pid_nr(tsk), tsk->comm);
568 debug_show_all_locks();
569
570 done:
571 tsk->oom_reaper_list = NULL;
572
573 /*
574 * Hide this mm from OOM killer because it has been either reaped or
575 * somebody can't call up_write(mmap_sem).
576 */
577 set_bit(MMF_OOM_SKIP, &mm->flags);
578
579 /* Drop a reference taken by wake_oom_reaper */
580 put_task_struct(tsk);
581 }
582
583 static int oom_reaper(void *unused)
584 {
585 while (true) {
586 struct task_struct *tsk = NULL;
587
588 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
589 spin_lock(&oom_reaper_lock);
590 if (oom_reaper_list != NULL) {
591 tsk = oom_reaper_list;
592 oom_reaper_list = tsk->oom_reaper_list;
593 }
594 spin_unlock(&oom_reaper_lock);
595
596 if (tsk)
597 oom_reap_task(tsk);
598 }
599
600 return 0;
601 }
602
603 static void wake_oom_reaper(struct task_struct *tsk)
604 {
605 if (!oom_reaper_th)
606 return;
607
608 /* tsk is already queued? */
609 if (tsk == oom_reaper_list || tsk->oom_reaper_list)
610 return;
611
612 get_task_struct(tsk);
613
614 spin_lock(&oom_reaper_lock);
615 tsk->oom_reaper_list = oom_reaper_list;
616 oom_reaper_list = tsk;
617 spin_unlock(&oom_reaper_lock);
618 wake_up(&oom_reaper_wait);
619 }
620
621 static int __init oom_init(void)
622 {
623 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
624 if (IS_ERR(oom_reaper_th)) {
625 pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
626 PTR_ERR(oom_reaper_th));
627 oom_reaper_th = NULL;
628 }
629 return 0;
630 }
631 subsys_initcall(oom_init)
632 #else
633 static inline void wake_oom_reaper(struct task_struct *tsk)
634 {
635 }
636 #endif /* CONFIG_MMU */
637
638 /**
639 * mark_oom_victim - mark the given task as OOM victim
640 * @tsk: task to mark
641 *
642 * Has to be called with oom_lock held and never after
643 * oom has been disabled already.
644 *
645 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
646 * under task_lock or operate on the current).
647 */
648 static void mark_oom_victim(struct task_struct *tsk)
649 {
650 struct mm_struct *mm = tsk->mm;
651
652 WARN_ON(oom_killer_disabled);
653 /* OOM killer might race with memcg OOM */
654 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
655 return;
656
657 /* oom_mm is bound to the signal struct life time. */
658 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
659 mmgrab(tsk->signal->oom_mm);
660
661 /*
662 * Make sure that the task is woken up from uninterruptible sleep
663 * if it is frozen because OOM killer wouldn't be able to free
664 * any memory and livelock. freezing_slow_path will tell the freezer
665 * that TIF_MEMDIE tasks should be ignored.
666 */
667 __thaw_task(tsk);
668 atomic_inc(&oom_victims);
669 }
670
671 /**
672 * exit_oom_victim - note the exit of an OOM victim
673 */
674 void exit_oom_victim(void)
675 {
676 clear_thread_flag(TIF_MEMDIE);
677
678 if (!atomic_dec_return(&oom_victims))
679 wake_up_all(&oom_victims_wait);
680 }
681
682 /**
683 * oom_killer_enable - enable OOM killer
684 */
685 void oom_killer_enable(void)
686 {
687 oom_killer_disabled = false;
688 pr_info("OOM killer enabled.\n");
689 }
690
691 /**
692 * oom_killer_disable - disable OOM killer
693 * @timeout: maximum timeout to wait for oom victims in jiffies
694 *
695 * Forces all page allocations to fail rather than trigger OOM killer.
696 * Will block and wait until all OOM victims are killed or the given
697 * timeout expires.
698 *
699 * The function cannot be called when there are runnable user tasks because
700 * the userspace would see unexpected allocation failures as a result. Any
701 * new usage of this function should be consulted with MM people.
702 *
703 * Returns true if successful and false if the OOM killer cannot be
704 * disabled.
705 */
706 bool oom_killer_disable(signed long timeout)
707 {
708 signed long ret;
709
710 /*
711 * Make sure to not race with an ongoing OOM killer. Check that the
712 * current is not killed (possibly due to sharing the victim's memory).
713 */
714 if (mutex_lock_killable(&oom_lock))
715 return false;
716 oom_killer_disabled = true;
717 mutex_unlock(&oom_lock);
718
719 ret = wait_event_interruptible_timeout(oom_victims_wait,
720 !atomic_read(&oom_victims), timeout);
721 if (ret <= 0) {
722 oom_killer_enable();
723 return false;
724 }
725 pr_info("OOM killer disabled.\n");
726
727 return true;
728 }
729
730 static inline bool __task_will_free_mem(struct task_struct *task)
731 {
732 struct signal_struct *sig = task->signal;
733
734 /*
735 * A coredumping process may sleep for an extended period in exit_mm(),
736 * so the oom killer cannot assume that the process will promptly exit
737 * and release memory.
738 */
739 if (sig->flags & SIGNAL_GROUP_COREDUMP)
740 return false;
741
742 if (sig->flags & SIGNAL_GROUP_EXIT)
743 return true;
744
745 if (thread_group_empty(task) && (task->flags & PF_EXITING))
746 return true;
747
748 return false;
749 }
750
751 /*
752 * Checks whether the given task is dying or exiting and likely to
753 * release its address space. This means that all threads and processes
754 * sharing the same mm have to be killed or exiting.
755 * Caller has to make sure that task->mm is stable (hold task_lock or
756 * it operates on the current).
757 */
758 static bool task_will_free_mem(struct task_struct *task)
759 {
760 struct mm_struct *mm = task->mm;
761 struct task_struct *p;
762 bool ret = true;
763
764 /*
765 * Skip tasks without mm because it might have passed its exit_mm and
766 * exit_oom_victim. oom_reaper could have rescued that but do not rely
767 * on that for now. We can consider find_lock_task_mm in future.
768 */
769 if (!mm)
770 return false;
771
772 if (!__task_will_free_mem(task))
773 return false;
774
775 /*
776 * This task has already been drained by the oom reaper so there are
777 * only small chances it will free some more
778 */
779 if (test_bit(MMF_OOM_SKIP, &mm->flags))
780 return false;
781
782 if (atomic_read(&mm->mm_users) <= 1)
783 return true;
784
785 /*
786 * Make sure that all tasks which share the mm with the given tasks
787 * are dying as well to make sure that a) nobody pins its mm and
788 * b) the task is also reapable by the oom reaper.
789 */
790 rcu_read_lock();
791 for_each_process(p) {
792 if (!process_shares_mm(p, mm))
793 continue;
794 if (same_thread_group(task, p))
795 continue;
796 ret = __task_will_free_mem(p);
797 if (!ret)
798 break;
799 }
800 rcu_read_unlock();
801
802 return ret;
803 }
804
805 static void oom_kill_process(struct oom_control *oc, const char *message)
806 {
807 struct task_struct *p = oc->chosen;
808 unsigned int points = oc->chosen_points;
809 struct task_struct *victim = p;
810 struct task_struct *child;
811 struct task_struct *t;
812 struct mm_struct *mm;
813 unsigned int victim_points = 0;
814 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
815 DEFAULT_RATELIMIT_BURST);
816 bool can_oom_reap = true;
817
818 /*
819 * If the task is already exiting, don't alarm the sysadmin or kill
820 * its children or threads, just set TIF_MEMDIE so it can die quickly
821 */
822 task_lock(p);
823 if (task_will_free_mem(p)) {
824 mark_oom_victim(p);
825 wake_oom_reaper(p);
826 task_unlock(p);
827 put_task_struct(p);
828 return;
829 }
830 task_unlock(p);
831
832 if (__ratelimit(&oom_rs))
833 dump_header(oc, p);
834
835 pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
836 message, task_pid_nr(p), p->comm, points);
837
838 /*
839 * If any of p's children has a different mm and is eligible for kill,
840 * the one with the highest oom_badness() score is sacrificed for its
841 * parent. This attempts to lose the minimal amount of work done while
842 * still freeing memory.
843 */
844 read_lock(&tasklist_lock);
845 for_each_thread(p, t) {
846 list_for_each_entry(child, &t->children, sibling) {
847 unsigned int child_points;
848
849 if (process_shares_mm(child, p->mm))
850 continue;
851 /*
852 * oom_badness() returns 0 if the thread is unkillable
853 */
854 child_points = oom_badness(child,
855 oc->memcg, oc->nodemask, oc->totalpages);
856 if (child_points > victim_points) {
857 put_task_struct(victim);
858 victim = child;
859 victim_points = child_points;
860 get_task_struct(victim);
861 }
862 }
863 }
864 read_unlock(&tasklist_lock);
865
866 p = find_lock_task_mm(victim);
867 if (!p) {
868 put_task_struct(victim);
869 return;
870 } else if (victim != p) {
871 get_task_struct(p);
872 put_task_struct(victim);
873 victim = p;
874 }
875
876 /* Get a reference to safely compare mm after task_unlock(victim) */
877 mm = victim->mm;
878 mmgrab(mm);
879
880 /* Raise event before sending signal: task reaper must see this */
881 count_vm_event(OOM_KILL);
882 count_memcg_event_mm(mm, OOM_KILL);
883
884 /*
885 * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
886 * the OOM victim from depleting the memory reserves from the user
887 * space under its control.
888 */
889 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
890 mark_oom_victim(victim);
891 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
892 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
893 K(get_mm_counter(victim->mm, MM_ANONPAGES)),
894 K(get_mm_counter(victim->mm, MM_FILEPAGES)),
895 K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
896 task_unlock(victim);
897
898 /*
899 * Kill all user processes sharing victim->mm in other thread groups, if
900 * any. They don't get access to memory reserves, though, to avoid
901 * depletion of all memory. This prevents mm->mmap_sem livelock when an
902 * oom killed thread cannot exit because it requires the semaphore and
903 * its contended by another thread trying to allocate memory itself.
904 * That thread will now get access to memory reserves since it has a
905 * pending fatal signal.
906 */
907 rcu_read_lock();
908 for_each_process(p) {
909 if (!process_shares_mm(p, mm))
910 continue;
911 if (same_thread_group(p, victim))
912 continue;
913 if (is_global_init(p)) {
914 can_oom_reap = false;
915 set_bit(MMF_OOM_SKIP, &mm->flags);
916 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
917 task_pid_nr(victim), victim->comm,
918 task_pid_nr(p), p->comm);
919 continue;
920 }
921 /*
922 * No use_mm() user needs to read from the userspace so we are
923 * ok to reap it.
924 */
925 if (unlikely(p->flags & PF_KTHREAD))
926 continue;
927 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
928 }
929 rcu_read_unlock();
930
931 if (can_oom_reap)
932 wake_oom_reaper(victim);
933
934 mmdrop(mm);
935 put_task_struct(victim);
936 }
937 #undef K
938
939 /*
940 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
941 */
942 static void check_panic_on_oom(struct oom_control *oc,
943 enum oom_constraint constraint)
944 {
945 if (likely(!sysctl_panic_on_oom))
946 return;
947 if (sysctl_panic_on_oom != 2) {
948 /*
949 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
950 * does not panic for cpuset, mempolicy, or memcg allocation
951 * failures.
952 */
953 if (constraint != CONSTRAINT_NONE)
954 return;
955 }
956 /* Do not panic for oom kills triggered by sysrq */
957 if (is_sysrq_oom(oc))
958 return;
959 dump_header(oc, NULL);
960 panic("Out of memory: %s panic_on_oom is enabled\n",
961 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
962 }
963
964 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
965
966 int register_oom_notifier(struct notifier_block *nb)
967 {
968 return blocking_notifier_chain_register(&oom_notify_list, nb);
969 }
970 EXPORT_SYMBOL_GPL(register_oom_notifier);
971
972 int unregister_oom_notifier(struct notifier_block *nb)
973 {
974 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
975 }
976 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
977
978 /**
979 * out_of_memory - kill the "best" process when we run out of memory
980 * @oc: pointer to struct oom_control
981 *
982 * If we run out of memory, we have the choice between either
983 * killing a random task (bad), letting the system crash (worse)
984 * OR try to be smart about which process to kill. Note that we
985 * don't have to be perfect here, we just have to be good.
986 */
987 bool out_of_memory(struct oom_control *oc)
988 {
989 unsigned long freed = 0;
990 enum oom_constraint constraint = CONSTRAINT_NONE;
991
992 if (oom_killer_disabled)
993 return false;
994
995 if (!is_memcg_oom(oc)) {
996 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
997 if (freed > 0)
998 /* Got some memory back in the last second. */
999 return true;
1000 }
1001
1002 /*
1003 * If current has a pending SIGKILL or is exiting, then automatically
1004 * select it. The goal is to allow it to allocate so that it may
1005 * quickly exit and free its memory.
1006 */
1007 if (task_will_free_mem(current)) {
1008 mark_oom_victim(current);
1009 wake_oom_reaper(current);
1010 return true;
1011 }
1012
1013 /*
1014 * The OOM killer does not compensate for IO-less reclaim.
1015 * pagefault_out_of_memory lost its gfp context so we have to
1016 * make sure exclude 0 mask - all other users should have at least
1017 * ___GFP_DIRECT_RECLAIM to get here.
1018 */
1019 if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS))
1020 return true;
1021
1022 /*
1023 * Check if there were limitations on the allocation (only relevant for
1024 * NUMA and memcg) that may require different handling.
1025 */
1026 constraint = constrained_alloc(oc);
1027 if (constraint != CONSTRAINT_MEMORY_POLICY)
1028 oc->nodemask = NULL;
1029 check_panic_on_oom(oc, constraint);
1030
1031 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1032 current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
1033 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1034 get_task_struct(current);
1035 oc->chosen = current;
1036 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1037 return true;
1038 }
1039
1040 select_bad_process(oc);
1041 /* Found nothing?!?! Either we hang forever, or we panic. */
1042 if (!oc->chosen && !is_sysrq_oom(oc) && !is_memcg_oom(oc)) {
1043 dump_header(oc, NULL);
1044 panic("Out of memory and no killable processes...\n");
1045 }
1046 if (oc->chosen && oc->chosen != (void *)-1UL) {
1047 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1048 "Memory cgroup out of memory");
1049 /*
1050 * Give the killed process a good chance to exit before trying
1051 * to allocate memory again.
1052 */
1053 schedule_timeout_killable(1);
1054 }
1055 return !!oc->chosen;
1056 }
1057
1058 /*
1059 * The pagefault handler calls here because it is out of memory, so kill a
1060 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1061 * killing is already in progress so do nothing.
1062 */
1063 void pagefault_out_of_memory(void)
1064 {
1065 struct oom_control oc = {
1066 .zonelist = NULL,
1067 .nodemask = NULL,
1068 .memcg = NULL,
1069 .gfp_mask = 0,
1070 .order = 0,
1071 };
1072
1073 if (mem_cgroup_oom_synchronize(true))
1074 return;
1075
1076 if (!mutex_trylock(&oom_lock))
1077 return;
1078 out_of_memory(&oc);
1079 mutex_unlock(&oom_lock);
1080 }