]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/oom_kill.c
oom, oom_reaper: allow to reap mm shared by the kthreads
[mirror_ubuntu-artful-kernel.git] / mm / oom_kill.c
1 /*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
9 *
10 * The routines in this file are used to kill a process when
11 * we're seriously out of memory. This gets called from __alloc_pages()
12 * in mm/page_alloc.c when we really run out of memory.
13 *
14 * Since we won't call these routines often (on a well-configured
15 * machine) this file will double as a 'coding guide' and a signpost
16 * for newbie kernel hackers. It features several pointers to major
17 * kernel subsystems and hints as to where to find out what things do.
18 */
19
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/swap.h>
26 #include <linux/timex.h>
27 #include <linux/jiffies.h>
28 #include <linux/cpuset.h>
29 #include <linux/export.h>
30 #include <linux/notifier.h>
31 #include <linux/memcontrol.h>
32 #include <linux/mempolicy.h>
33 #include <linux/security.h>
34 #include <linux/ptrace.h>
35 #include <linux/freezer.h>
36 #include <linux/ftrace.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kthread.h>
39 #include <linux/init.h>
40
41 #include <asm/tlb.h>
42 #include "internal.h"
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/oom.h>
46
47 int sysctl_panic_on_oom;
48 int sysctl_oom_kill_allocating_task;
49 int sysctl_oom_dump_tasks = 1;
50
51 DEFINE_MUTEX(oom_lock);
52
53 #ifdef CONFIG_NUMA
54 /**
55 * has_intersects_mems_allowed() - check task eligiblity for kill
56 * @start: task struct of which task to consider
57 * @mask: nodemask passed to page allocator for mempolicy ooms
58 *
59 * Task eligibility is determined by whether or not a candidate task, @tsk,
60 * shares the same mempolicy nodes as current if it is bound by such a policy
61 * and whether or not it has the same set of allowed cpuset nodes.
62 */
63 static bool has_intersects_mems_allowed(struct task_struct *start,
64 const nodemask_t *mask)
65 {
66 struct task_struct *tsk;
67 bool ret = false;
68
69 rcu_read_lock();
70 for_each_thread(start, tsk) {
71 if (mask) {
72 /*
73 * If this is a mempolicy constrained oom, tsk's
74 * cpuset is irrelevant. Only return true if its
75 * mempolicy intersects current, otherwise it may be
76 * needlessly killed.
77 */
78 ret = mempolicy_nodemask_intersects(tsk, mask);
79 } else {
80 /*
81 * This is not a mempolicy constrained oom, so only
82 * check the mems of tsk's cpuset.
83 */
84 ret = cpuset_mems_allowed_intersects(current, tsk);
85 }
86 if (ret)
87 break;
88 }
89 rcu_read_unlock();
90
91 return ret;
92 }
93 #else
94 static bool has_intersects_mems_allowed(struct task_struct *tsk,
95 const nodemask_t *mask)
96 {
97 return true;
98 }
99 #endif /* CONFIG_NUMA */
100
101 /*
102 * The process p may have detached its own ->mm while exiting or through
103 * use_mm(), but one or more of its subthreads may still have a valid
104 * pointer. Return p, or any of its subthreads with a valid ->mm, with
105 * task_lock() held.
106 */
107 struct task_struct *find_lock_task_mm(struct task_struct *p)
108 {
109 struct task_struct *t;
110
111 rcu_read_lock();
112
113 for_each_thread(p, t) {
114 task_lock(t);
115 if (likely(t->mm))
116 goto found;
117 task_unlock(t);
118 }
119 t = NULL;
120 found:
121 rcu_read_unlock();
122
123 return t;
124 }
125
126 /*
127 * order == -1 means the oom kill is required by sysrq, otherwise only
128 * for display purposes.
129 */
130 static inline bool is_sysrq_oom(struct oom_control *oc)
131 {
132 return oc->order == -1;
133 }
134
135 static inline bool is_memcg_oom(struct oom_control *oc)
136 {
137 return oc->memcg != NULL;
138 }
139
140 /* return true if the task is not adequate as candidate victim task. */
141 static bool oom_unkillable_task(struct task_struct *p,
142 struct mem_cgroup *memcg, const nodemask_t *nodemask)
143 {
144 if (is_global_init(p))
145 return true;
146 if (p->flags & PF_KTHREAD)
147 return true;
148
149 /* When mem_cgroup_out_of_memory() and p is not member of the group */
150 if (memcg && !task_in_mem_cgroup(p, memcg))
151 return true;
152
153 /* p may not have freeable memory in nodemask */
154 if (!has_intersects_mems_allowed(p, nodemask))
155 return true;
156
157 return false;
158 }
159
160 /**
161 * oom_badness - heuristic function to determine which candidate task to kill
162 * @p: task struct of which task we should calculate
163 * @totalpages: total present RAM allowed for page allocation
164 *
165 * The heuristic for determining which task to kill is made to be as simple and
166 * predictable as possible. The goal is to return the highest value for the
167 * task consuming the most memory to avoid subsequent oom failures.
168 */
169 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
170 const nodemask_t *nodemask, unsigned long totalpages)
171 {
172 long points;
173 long adj;
174
175 if (oom_unkillable_task(p, memcg, nodemask))
176 return 0;
177
178 p = find_lock_task_mm(p);
179 if (!p)
180 return 0;
181
182 /*
183 * Do not even consider tasks which are explicitly marked oom
184 * unkillable or have been already oom reaped or the are in
185 * the middle of vfork
186 */
187 adj = (long)p->signal->oom_score_adj;
188 if (adj == OOM_SCORE_ADJ_MIN ||
189 test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
190 in_vfork(p)) {
191 task_unlock(p);
192 return 0;
193 }
194
195 /*
196 * The baseline for the badness score is the proportion of RAM that each
197 * task's rss, pagetable and swap space use.
198 */
199 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
200 atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
201 task_unlock(p);
202
203 /*
204 * Root processes get 3% bonus, just like the __vm_enough_memory()
205 * implementation used by LSMs.
206 */
207 if (has_capability_noaudit(p, CAP_SYS_ADMIN))
208 points -= (points * 3) / 100;
209
210 /* Normalize to oom_score_adj units */
211 adj *= totalpages / 1000;
212 points += adj;
213
214 /*
215 * Never return 0 for an eligible task regardless of the root bonus and
216 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
217 */
218 return points > 0 ? points : 1;
219 }
220
221 enum oom_constraint {
222 CONSTRAINT_NONE,
223 CONSTRAINT_CPUSET,
224 CONSTRAINT_MEMORY_POLICY,
225 CONSTRAINT_MEMCG,
226 };
227
228 /*
229 * Determine the type of allocation constraint.
230 */
231 static enum oom_constraint constrained_alloc(struct oom_control *oc)
232 {
233 struct zone *zone;
234 struct zoneref *z;
235 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
236 bool cpuset_limited = false;
237 int nid;
238
239 if (is_memcg_oom(oc)) {
240 oc->totalpages = mem_cgroup_get_limit(oc->memcg) ?: 1;
241 return CONSTRAINT_MEMCG;
242 }
243
244 /* Default to all available memory */
245 oc->totalpages = totalram_pages + total_swap_pages;
246
247 if (!IS_ENABLED(CONFIG_NUMA))
248 return CONSTRAINT_NONE;
249
250 if (!oc->zonelist)
251 return CONSTRAINT_NONE;
252 /*
253 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
254 * to kill current.We have to random task kill in this case.
255 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
256 */
257 if (oc->gfp_mask & __GFP_THISNODE)
258 return CONSTRAINT_NONE;
259
260 /*
261 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
262 * the page allocator means a mempolicy is in effect. Cpuset policy
263 * is enforced in get_page_from_freelist().
264 */
265 if (oc->nodemask &&
266 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
267 oc->totalpages = total_swap_pages;
268 for_each_node_mask(nid, *oc->nodemask)
269 oc->totalpages += node_spanned_pages(nid);
270 return CONSTRAINT_MEMORY_POLICY;
271 }
272
273 /* Check this allocation failure is caused by cpuset's wall function */
274 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
275 high_zoneidx, oc->nodemask)
276 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
277 cpuset_limited = true;
278
279 if (cpuset_limited) {
280 oc->totalpages = total_swap_pages;
281 for_each_node_mask(nid, cpuset_current_mems_allowed)
282 oc->totalpages += node_spanned_pages(nid);
283 return CONSTRAINT_CPUSET;
284 }
285 return CONSTRAINT_NONE;
286 }
287
288 static int oom_evaluate_task(struct task_struct *task, void *arg)
289 {
290 struct oom_control *oc = arg;
291 unsigned long points;
292
293 if (oom_unkillable_task(task, NULL, oc->nodemask))
294 goto next;
295
296 /*
297 * This task already has access to memory reserves and is being killed.
298 * Don't allow any other task to have access to the reserves unless
299 * the task has MMF_OOM_SKIP because chances that it would release
300 * any memory is quite low.
301 */
302 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
303 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
304 goto next;
305 goto abort;
306 }
307
308 /*
309 * If task is allocating a lot of memory and has been marked to be
310 * killed first if it triggers an oom, then select it.
311 */
312 if (oom_task_origin(task)) {
313 points = ULONG_MAX;
314 goto select;
315 }
316
317 points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
318 if (!points || points < oc->chosen_points)
319 goto next;
320
321 /* Prefer thread group leaders for display purposes */
322 if (points == oc->chosen_points && thread_group_leader(oc->chosen))
323 goto next;
324 select:
325 if (oc->chosen)
326 put_task_struct(oc->chosen);
327 get_task_struct(task);
328 oc->chosen = task;
329 oc->chosen_points = points;
330 next:
331 return 0;
332 abort:
333 if (oc->chosen)
334 put_task_struct(oc->chosen);
335 oc->chosen = (void *)-1UL;
336 return 1;
337 }
338
339 /*
340 * Simple selection loop. We choose the process with the highest number of
341 * 'points'. In case scan was aborted, oc->chosen is set to -1.
342 */
343 static void select_bad_process(struct oom_control *oc)
344 {
345 if (is_memcg_oom(oc))
346 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
347 else {
348 struct task_struct *p;
349
350 rcu_read_lock();
351 for_each_process(p)
352 if (oom_evaluate_task(p, oc))
353 break;
354 rcu_read_unlock();
355 }
356
357 oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
358 }
359
360 /**
361 * dump_tasks - dump current memory state of all system tasks
362 * @memcg: current's memory controller, if constrained
363 * @nodemask: nodemask passed to page allocator for mempolicy ooms
364 *
365 * Dumps the current memory state of all eligible tasks. Tasks not in the same
366 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
367 * are not shown.
368 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
369 * swapents, oom_score_adj value, and name.
370 */
371 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
372 {
373 struct task_struct *p;
374 struct task_struct *task;
375
376 pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name\n");
377 rcu_read_lock();
378 for_each_process(p) {
379 if (oom_unkillable_task(p, memcg, nodemask))
380 continue;
381
382 task = find_lock_task_mm(p);
383 if (!task) {
384 /*
385 * This is a kthread or all of p's threads have already
386 * detached their mm's. There's no need to report
387 * them; they can't be oom killed anyway.
388 */
389 continue;
390 }
391
392 pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu %5hd %s\n",
393 task->pid, from_kuid(&init_user_ns, task_uid(task)),
394 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
395 atomic_long_read(&task->mm->nr_ptes),
396 mm_nr_pmds(task->mm),
397 get_mm_counter(task->mm, MM_SWAPENTS),
398 task->signal->oom_score_adj, task->comm);
399 task_unlock(task);
400 }
401 rcu_read_unlock();
402 }
403
404 static void dump_header(struct oom_control *oc, struct task_struct *p)
405 {
406 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
407 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
408 current->signal->oom_score_adj);
409
410 cpuset_print_current_mems_allowed();
411 dump_stack();
412 if (oc->memcg)
413 mem_cgroup_print_oom_info(oc->memcg, p);
414 else
415 show_mem(SHOW_MEM_FILTER_NODES);
416 if (sysctl_oom_dump_tasks)
417 dump_tasks(oc->memcg, oc->nodemask);
418 }
419
420 /*
421 * Number of OOM victims in flight
422 */
423 static atomic_t oom_victims = ATOMIC_INIT(0);
424 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
425
426 static bool oom_killer_disabled __read_mostly;
427
428 #define K(x) ((x) << (PAGE_SHIFT-10))
429
430 /*
431 * task->mm can be NULL if the task is the exited group leader. So to
432 * determine whether the task is using a particular mm, we examine all the
433 * task's threads: if one of those is using this mm then this task was also
434 * using it.
435 */
436 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
437 {
438 struct task_struct *t;
439
440 for_each_thread(p, t) {
441 struct mm_struct *t_mm = READ_ONCE(t->mm);
442 if (t_mm)
443 return t_mm == mm;
444 }
445 return false;
446 }
447
448
449 #ifdef CONFIG_MMU
450 /*
451 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
452 * victim (if that is possible) to help the OOM killer to move on.
453 */
454 static struct task_struct *oom_reaper_th;
455 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
456 static struct task_struct *oom_reaper_list;
457 static DEFINE_SPINLOCK(oom_reaper_lock);
458
459 static bool __oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
460 {
461 struct mmu_gather tlb;
462 struct vm_area_struct *vma;
463 struct zap_details details = {.check_swap_entries = true,
464 .ignore_dirty = true};
465 bool ret = true;
466
467 /*
468 * We have to make sure to not race with the victim exit path
469 * and cause premature new oom victim selection:
470 * __oom_reap_task_mm exit_mm
471 * mmget_not_zero
472 * mmput
473 * atomic_dec_and_test
474 * exit_oom_victim
475 * [...]
476 * out_of_memory
477 * select_bad_process
478 * # no TIF_MEMDIE task selects new victim
479 * unmap_page_range # frees some memory
480 */
481 mutex_lock(&oom_lock);
482
483 if (!down_read_trylock(&mm->mmap_sem)) {
484 ret = false;
485 goto unlock_oom;
486 }
487
488 /*
489 * increase mm_users only after we know we will reap something so
490 * that the mmput_async is called only when we have reaped something
491 * and delayed __mmput doesn't matter that much
492 */
493 if (!mmget_not_zero(mm)) {
494 up_read(&mm->mmap_sem);
495 goto unlock_oom;
496 }
497
498 /*
499 * Tell all users of get_user/copy_from_user etc... that the content
500 * is no longer stable. No barriers really needed because unmapping
501 * should imply barriers already and the reader would hit a page fault
502 * if it stumbled over a reaped memory.
503 */
504 set_bit(MMF_UNSTABLE, &mm->flags);
505
506 tlb_gather_mmu(&tlb, mm, 0, -1);
507 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
508 if (is_vm_hugetlb_page(vma))
509 continue;
510
511 /*
512 * mlocked VMAs require explicit munlocking before unmap.
513 * Let's keep it simple here and skip such VMAs.
514 */
515 if (vma->vm_flags & VM_LOCKED)
516 continue;
517
518 /*
519 * Only anonymous pages have a good chance to be dropped
520 * without additional steps which we cannot afford as we
521 * are OOM already.
522 *
523 * We do not even care about fs backed pages because all
524 * which are reclaimable have already been reclaimed and
525 * we do not want to block exit_mmap by keeping mm ref
526 * count elevated without a good reason.
527 */
528 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
529 unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
530 &details);
531 }
532 tlb_finish_mmu(&tlb, 0, -1);
533 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
534 task_pid_nr(tsk), tsk->comm,
535 K(get_mm_counter(mm, MM_ANONPAGES)),
536 K(get_mm_counter(mm, MM_FILEPAGES)),
537 K(get_mm_counter(mm, MM_SHMEMPAGES)));
538 up_read(&mm->mmap_sem);
539
540 /*
541 * Drop our reference but make sure the mmput slow path is called from a
542 * different context because we shouldn't risk we get stuck there and
543 * put the oom_reaper out of the way.
544 */
545 mmput_async(mm);
546 unlock_oom:
547 mutex_unlock(&oom_lock);
548 return ret;
549 }
550
551 #define MAX_OOM_REAP_RETRIES 10
552 static void oom_reap_task(struct task_struct *tsk)
553 {
554 int attempts = 0;
555 struct mm_struct *mm = tsk->signal->oom_mm;
556
557 /* Retry the down_read_trylock(mmap_sem) a few times */
558 while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task_mm(tsk, mm))
559 schedule_timeout_idle(HZ/10);
560
561 if (attempts <= MAX_OOM_REAP_RETRIES)
562 goto done;
563
564
565 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
566 task_pid_nr(tsk), tsk->comm);
567 debug_show_all_locks();
568
569 done:
570 tsk->oom_reaper_list = NULL;
571
572 /*
573 * Hide this mm from OOM killer because it has been either reaped or
574 * somebody can't call up_write(mmap_sem).
575 */
576 set_bit(MMF_OOM_SKIP, &mm->flags);
577
578 /* Drop a reference taken by wake_oom_reaper */
579 put_task_struct(tsk);
580 }
581
582 static int oom_reaper(void *unused)
583 {
584 while (true) {
585 struct task_struct *tsk = NULL;
586
587 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
588 spin_lock(&oom_reaper_lock);
589 if (oom_reaper_list != NULL) {
590 tsk = oom_reaper_list;
591 oom_reaper_list = tsk->oom_reaper_list;
592 }
593 spin_unlock(&oom_reaper_lock);
594
595 if (tsk)
596 oom_reap_task(tsk);
597 }
598
599 return 0;
600 }
601
602 static void wake_oom_reaper(struct task_struct *tsk)
603 {
604 if (!oom_reaper_th)
605 return;
606
607 /* tsk is already queued? */
608 if (tsk == oom_reaper_list || tsk->oom_reaper_list)
609 return;
610
611 get_task_struct(tsk);
612
613 spin_lock(&oom_reaper_lock);
614 tsk->oom_reaper_list = oom_reaper_list;
615 oom_reaper_list = tsk;
616 spin_unlock(&oom_reaper_lock);
617 wake_up(&oom_reaper_wait);
618 }
619
620 static int __init oom_init(void)
621 {
622 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
623 if (IS_ERR(oom_reaper_th)) {
624 pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
625 PTR_ERR(oom_reaper_th));
626 oom_reaper_th = NULL;
627 }
628 return 0;
629 }
630 subsys_initcall(oom_init)
631 #else
632 static inline void wake_oom_reaper(struct task_struct *tsk)
633 {
634 }
635 #endif /* CONFIG_MMU */
636
637 /**
638 * mark_oom_victim - mark the given task as OOM victim
639 * @tsk: task to mark
640 *
641 * Has to be called with oom_lock held and never after
642 * oom has been disabled already.
643 *
644 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
645 * under task_lock or operate on the current).
646 */
647 static void mark_oom_victim(struct task_struct *tsk)
648 {
649 struct mm_struct *mm = tsk->mm;
650
651 WARN_ON(oom_killer_disabled);
652 /* OOM killer might race with memcg OOM */
653 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
654 return;
655
656 /* oom_mm is bound to the signal struct life time. */
657 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
658 atomic_inc(&tsk->signal->oom_mm->mm_count);
659
660 /*
661 * Make sure that the task is woken up from uninterruptible sleep
662 * if it is frozen because OOM killer wouldn't be able to free
663 * any memory and livelock. freezing_slow_path will tell the freezer
664 * that TIF_MEMDIE tasks should be ignored.
665 */
666 __thaw_task(tsk);
667 atomic_inc(&oom_victims);
668 }
669
670 /**
671 * exit_oom_victim - note the exit of an OOM victim
672 */
673 void exit_oom_victim(void)
674 {
675 clear_thread_flag(TIF_MEMDIE);
676
677 if (!atomic_dec_return(&oom_victims))
678 wake_up_all(&oom_victims_wait);
679 }
680
681 /**
682 * oom_killer_enable - enable OOM killer
683 */
684 void oom_killer_enable(void)
685 {
686 oom_killer_disabled = false;
687 }
688
689 /**
690 * oom_killer_disable - disable OOM killer
691 * @timeout: maximum timeout to wait for oom victims in jiffies
692 *
693 * Forces all page allocations to fail rather than trigger OOM killer.
694 * Will block and wait until all OOM victims are killed or the given
695 * timeout expires.
696 *
697 * The function cannot be called when there are runnable user tasks because
698 * the userspace would see unexpected allocation failures as a result. Any
699 * new usage of this function should be consulted with MM people.
700 *
701 * Returns true if successful and false if the OOM killer cannot be
702 * disabled.
703 */
704 bool oom_killer_disable(signed long timeout)
705 {
706 signed long ret;
707
708 /*
709 * Make sure to not race with an ongoing OOM killer. Check that the
710 * current is not killed (possibly due to sharing the victim's memory).
711 */
712 if (mutex_lock_killable(&oom_lock))
713 return false;
714 oom_killer_disabled = true;
715 mutex_unlock(&oom_lock);
716
717 ret = wait_event_interruptible_timeout(oom_victims_wait,
718 !atomic_read(&oom_victims), timeout);
719 if (ret <= 0) {
720 oom_killer_enable();
721 return false;
722 }
723
724 return true;
725 }
726
727 static inline bool __task_will_free_mem(struct task_struct *task)
728 {
729 struct signal_struct *sig = task->signal;
730
731 /*
732 * A coredumping process may sleep for an extended period in exit_mm(),
733 * so the oom killer cannot assume that the process will promptly exit
734 * and release memory.
735 */
736 if (sig->flags & SIGNAL_GROUP_COREDUMP)
737 return false;
738
739 if (sig->flags & SIGNAL_GROUP_EXIT)
740 return true;
741
742 if (thread_group_empty(task) && (task->flags & PF_EXITING))
743 return true;
744
745 return false;
746 }
747
748 /*
749 * Checks whether the given task is dying or exiting and likely to
750 * release its address space. This means that all threads and processes
751 * sharing the same mm have to be killed or exiting.
752 * Caller has to make sure that task->mm is stable (hold task_lock or
753 * it operates on the current).
754 */
755 static bool task_will_free_mem(struct task_struct *task)
756 {
757 struct mm_struct *mm = task->mm;
758 struct task_struct *p;
759 bool ret = true;
760
761 /*
762 * Skip tasks without mm because it might have passed its exit_mm and
763 * exit_oom_victim. oom_reaper could have rescued that but do not rely
764 * on that for now. We can consider find_lock_task_mm in future.
765 */
766 if (!mm)
767 return false;
768
769 if (!__task_will_free_mem(task))
770 return false;
771
772 /*
773 * This task has already been drained by the oom reaper so there are
774 * only small chances it will free some more
775 */
776 if (test_bit(MMF_OOM_SKIP, &mm->flags))
777 return false;
778
779 if (atomic_read(&mm->mm_users) <= 1)
780 return true;
781
782 /*
783 * Make sure that all tasks which share the mm with the given tasks
784 * are dying as well to make sure that a) nobody pins its mm and
785 * b) the task is also reapable by the oom reaper.
786 */
787 rcu_read_lock();
788 for_each_process(p) {
789 if (!process_shares_mm(p, mm))
790 continue;
791 if (same_thread_group(task, p))
792 continue;
793 ret = __task_will_free_mem(p);
794 if (!ret)
795 break;
796 }
797 rcu_read_unlock();
798
799 return ret;
800 }
801
802 static void oom_kill_process(struct oom_control *oc, const char *message)
803 {
804 struct task_struct *p = oc->chosen;
805 unsigned int points = oc->chosen_points;
806 struct task_struct *victim = p;
807 struct task_struct *child;
808 struct task_struct *t;
809 struct mm_struct *mm;
810 unsigned int victim_points = 0;
811 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
812 DEFAULT_RATELIMIT_BURST);
813 bool can_oom_reap = true;
814
815 /*
816 * If the task is already exiting, don't alarm the sysadmin or kill
817 * its children or threads, just set TIF_MEMDIE so it can die quickly
818 */
819 task_lock(p);
820 if (task_will_free_mem(p)) {
821 mark_oom_victim(p);
822 wake_oom_reaper(p);
823 task_unlock(p);
824 put_task_struct(p);
825 return;
826 }
827 task_unlock(p);
828
829 if (__ratelimit(&oom_rs))
830 dump_header(oc, p);
831
832 pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
833 message, task_pid_nr(p), p->comm, points);
834
835 /*
836 * If any of p's children has a different mm and is eligible for kill,
837 * the one with the highest oom_badness() score is sacrificed for its
838 * parent. This attempts to lose the minimal amount of work done while
839 * still freeing memory.
840 */
841 read_lock(&tasklist_lock);
842 for_each_thread(p, t) {
843 list_for_each_entry(child, &t->children, sibling) {
844 unsigned int child_points;
845
846 if (process_shares_mm(child, p->mm))
847 continue;
848 /*
849 * oom_badness() returns 0 if the thread is unkillable
850 */
851 child_points = oom_badness(child,
852 oc->memcg, oc->nodemask, oc->totalpages);
853 if (child_points > victim_points) {
854 put_task_struct(victim);
855 victim = child;
856 victim_points = child_points;
857 get_task_struct(victim);
858 }
859 }
860 }
861 read_unlock(&tasklist_lock);
862
863 p = find_lock_task_mm(victim);
864 if (!p) {
865 put_task_struct(victim);
866 return;
867 } else if (victim != p) {
868 get_task_struct(p);
869 put_task_struct(victim);
870 victim = p;
871 }
872
873 /* Get a reference to safely compare mm after task_unlock(victim) */
874 mm = victim->mm;
875 atomic_inc(&mm->mm_count);
876 /*
877 * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
878 * the OOM victim from depleting the memory reserves from the user
879 * space under its control.
880 */
881 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
882 mark_oom_victim(victim);
883 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
884 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
885 K(get_mm_counter(victim->mm, MM_ANONPAGES)),
886 K(get_mm_counter(victim->mm, MM_FILEPAGES)),
887 K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
888 task_unlock(victim);
889
890 /*
891 * Kill all user processes sharing victim->mm in other thread groups, if
892 * any. They don't get access to memory reserves, though, to avoid
893 * depletion of all memory. This prevents mm->mmap_sem livelock when an
894 * oom killed thread cannot exit because it requires the semaphore and
895 * its contended by another thread trying to allocate memory itself.
896 * That thread will now get access to memory reserves since it has a
897 * pending fatal signal.
898 */
899 rcu_read_lock();
900 for_each_process(p) {
901 if (!process_shares_mm(p, mm))
902 continue;
903 if (same_thread_group(p, victim))
904 continue;
905 if (is_global_init(p)) {
906 can_oom_reap = false;
907 set_bit(MMF_OOM_SKIP, &mm->flags);
908 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
909 task_pid_nr(victim), victim->comm,
910 task_pid_nr(p), p->comm);
911 continue;
912 }
913 /*
914 * No use_mm() user needs to read from the userspace so we are
915 * ok to reap it.
916 */
917 if (unlikely(p->flags & PF_KTHREAD))
918 continue;
919 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
920 }
921 rcu_read_unlock();
922
923 if (can_oom_reap)
924 wake_oom_reaper(victim);
925
926 mmdrop(mm);
927 put_task_struct(victim);
928 }
929 #undef K
930
931 /*
932 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
933 */
934 static void check_panic_on_oom(struct oom_control *oc,
935 enum oom_constraint constraint)
936 {
937 if (likely(!sysctl_panic_on_oom))
938 return;
939 if (sysctl_panic_on_oom != 2) {
940 /*
941 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
942 * does not panic for cpuset, mempolicy, or memcg allocation
943 * failures.
944 */
945 if (constraint != CONSTRAINT_NONE)
946 return;
947 }
948 /* Do not panic for oom kills triggered by sysrq */
949 if (is_sysrq_oom(oc))
950 return;
951 dump_header(oc, NULL);
952 panic("Out of memory: %s panic_on_oom is enabled\n",
953 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
954 }
955
956 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
957
958 int register_oom_notifier(struct notifier_block *nb)
959 {
960 return blocking_notifier_chain_register(&oom_notify_list, nb);
961 }
962 EXPORT_SYMBOL_GPL(register_oom_notifier);
963
964 int unregister_oom_notifier(struct notifier_block *nb)
965 {
966 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
967 }
968 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
969
970 /**
971 * out_of_memory - kill the "best" process when we run out of memory
972 * @oc: pointer to struct oom_control
973 *
974 * If we run out of memory, we have the choice between either
975 * killing a random task (bad), letting the system crash (worse)
976 * OR try to be smart about which process to kill. Note that we
977 * don't have to be perfect here, we just have to be good.
978 */
979 bool out_of_memory(struct oom_control *oc)
980 {
981 unsigned long freed = 0;
982 enum oom_constraint constraint = CONSTRAINT_NONE;
983
984 if (oom_killer_disabled)
985 return false;
986
987 if (!is_memcg_oom(oc)) {
988 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
989 if (freed > 0)
990 /* Got some memory back in the last second. */
991 return true;
992 }
993
994 /*
995 * If current has a pending SIGKILL or is exiting, then automatically
996 * select it. The goal is to allow it to allocate so that it may
997 * quickly exit and free its memory.
998 */
999 if (task_will_free_mem(current)) {
1000 mark_oom_victim(current);
1001 wake_oom_reaper(current);
1002 return true;
1003 }
1004
1005 /*
1006 * The OOM killer does not compensate for IO-less reclaim.
1007 * pagefault_out_of_memory lost its gfp context so we have to
1008 * make sure exclude 0 mask - all other users should have at least
1009 * ___GFP_DIRECT_RECLAIM to get here.
1010 */
1011 if (oc->gfp_mask && !(oc->gfp_mask & (__GFP_FS|__GFP_NOFAIL)))
1012 return true;
1013
1014 /*
1015 * Check if there were limitations on the allocation (only relevant for
1016 * NUMA and memcg) that may require different handling.
1017 */
1018 constraint = constrained_alloc(oc);
1019 if (constraint != CONSTRAINT_MEMORY_POLICY)
1020 oc->nodemask = NULL;
1021 check_panic_on_oom(oc, constraint);
1022
1023 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1024 current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
1025 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1026 get_task_struct(current);
1027 oc->chosen = current;
1028 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1029 return true;
1030 }
1031
1032 select_bad_process(oc);
1033 /* Found nothing?!?! Either we hang forever, or we panic. */
1034 if (!oc->chosen && !is_sysrq_oom(oc) && !is_memcg_oom(oc)) {
1035 dump_header(oc, NULL);
1036 panic("Out of memory and no killable processes...\n");
1037 }
1038 if (oc->chosen && oc->chosen != (void *)-1UL) {
1039 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1040 "Memory cgroup out of memory");
1041 /*
1042 * Give the killed process a good chance to exit before trying
1043 * to allocate memory again.
1044 */
1045 schedule_timeout_killable(1);
1046 }
1047 return !!oc->chosen;
1048 }
1049
1050 /*
1051 * The pagefault handler calls here because it is out of memory, so kill a
1052 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1053 * killing is already in progress so do nothing.
1054 */
1055 void pagefault_out_of_memory(void)
1056 {
1057 struct oom_control oc = {
1058 .zonelist = NULL,
1059 .nodemask = NULL,
1060 .memcg = NULL,
1061 .gfp_mask = 0,
1062 .order = 0,
1063 };
1064
1065 if (mem_cgroup_oom_synchronize(true))
1066 return;
1067
1068 if (!mutex_trylock(&oom_lock))
1069 return;
1070
1071 if (!out_of_memory(&oc)) {
1072 /*
1073 * There shouldn't be any user tasks runnable while the
1074 * OOM killer is disabled, so the current task has to
1075 * be a racing OOM victim for which oom_killer_disable()
1076 * is waiting for.
1077 */
1078 WARN_ON(test_thread_flag(TIF_MEMDIE));
1079 }
1080
1081 mutex_unlock(&oom_lock);
1082 }