]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/oom_kill.c
Merge branch 'drm-next-4.15-dc' of git://people.freedesktop.org/~agd5f/linux into...
[mirror_ubuntu-bionic-kernel.git] / mm / oom_kill.c
1 /*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
9 *
10 * The routines in this file are used to kill a process when
11 * we're seriously out of memory. This gets called from __alloc_pages()
12 * in mm/page_alloc.c when we really run out of memory.
13 *
14 * Since we won't call these routines often (on a well-configured
15 * machine) this file will double as a 'coding guide' and a signpost
16 * for newbie kernel hackers. It features several pointers to major
17 * kernel subsystems and hints as to where to find out what things do.
18 */
19
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/sched/mm.h>
26 #include <linux/sched/coredump.h>
27 #include <linux/sched/task.h>
28 #include <linux/swap.h>
29 #include <linux/timex.h>
30 #include <linux/jiffies.h>
31 #include <linux/cpuset.h>
32 #include <linux/export.h>
33 #include <linux/notifier.h>
34 #include <linux/memcontrol.h>
35 #include <linux/mempolicy.h>
36 #include <linux/security.h>
37 #include <linux/ptrace.h>
38 #include <linux/freezer.h>
39 #include <linux/ftrace.h>
40 #include <linux/ratelimit.h>
41 #include <linux/kthread.h>
42 #include <linux/init.h>
43
44 #include <asm/tlb.h>
45 #include "internal.h"
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/oom.h>
49
50 int sysctl_panic_on_oom;
51 int sysctl_oom_kill_allocating_task;
52 int sysctl_oom_dump_tasks = 1;
53
54 DEFINE_MUTEX(oom_lock);
55
56 #ifdef CONFIG_NUMA
57 /**
58 * has_intersects_mems_allowed() - check task eligiblity for kill
59 * @start: task struct of which task to consider
60 * @mask: nodemask passed to page allocator for mempolicy ooms
61 *
62 * Task eligibility is determined by whether or not a candidate task, @tsk,
63 * shares the same mempolicy nodes as current if it is bound by such a policy
64 * and whether or not it has the same set of allowed cpuset nodes.
65 */
66 static bool has_intersects_mems_allowed(struct task_struct *start,
67 const nodemask_t *mask)
68 {
69 struct task_struct *tsk;
70 bool ret = false;
71
72 rcu_read_lock();
73 for_each_thread(start, tsk) {
74 if (mask) {
75 /*
76 * If this is a mempolicy constrained oom, tsk's
77 * cpuset is irrelevant. Only return true if its
78 * mempolicy intersects current, otherwise it may be
79 * needlessly killed.
80 */
81 ret = mempolicy_nodemask_intersects(tsk, mask);
82 } else {
83 /*
84 * This is not a mempolicy constrained oom, so only
85 * check the mems of tsk's cpuset.
86 */
87 ret = cpuset_mems_allowed_intersects(current, tsk);
88 }
89 if (ret)
90 break;
91 }
92 rcu_read_unlock();
93
94 return ret;
95 }
96 #else
97 static bool has_intersects_mems_allowed(struct task_struct *tsk,
98 const nodemask_t *mask)
99 {
100 return true;
101 }
102 #endif /* CONFIG_NUMA */
103
104 /*
105 * The process p may have detached its own ->mm while exiting or through
106 * use_mm(), but one or more of its subthreads may still have a valid
107 * pointer. Return p, or any of its subthreads with a valid ->mm, with
108 * task_lock() held.
109 */
110 struct task_struct *find_lock_task_mm(struct task_struct *p)
111 {
112 struct task_struct *t;
113
114 rcu_read_lock();
115
116 for_each_thread(p, t) {
117 task_lock(t);
118 if (likely(t->mm))
119 goto found;
120 task_unlock(t);
121 }
122 t = NULL;
123 found:
124 rcu_read_unlock();
125
126 return t;
127 }
128
129 /*
130 * order == -1 means the oom kill is required by sysrq, otherwise only
131 * for display purposes.
132 */
133 static inline bool is_sysrq_oom(struct oom_control *oc)
134 {
135 return oc->order == -1;
136 }
137
138 static inline bool is_memcg_oom(struct oom_control *oc)
139 {
140 return oc->memcg != NULL;
141 }
142
143 /* return true if the task is not adequate as candidate victim task. */
144 static bool oom_unkillable_task(struct task_struct *p,
145 struct mem_cgroup *memcg, const nodemask_t *nodemask)
146 {
147 if (is_global_init(p))
148 return true;
149 if (p->flags & PF_KTHREAD)
150 return true;
151
152 /* When mem_cgroup_out_of_memory() and p is not member of the group */
153 if (memcg && !task_in_mem_cgroup(p, memcg))
154 return true;
155
156 /* p may not have freeable memory in nodemask */
157 if (!has_intersects_mems_allowed(p, nodemask))
158 return true;
159
160 return false;
161 }
162
163 /**
164 * oom_badness - heuristic function to determine which candidate task to kill
165 * @p: task struct of which task we should calculate
166 * @totalpages: total present RAM allowed for page allocation
167 *
168 * The heuristic for determining which task to kill is made to be as simple and
169 * predictable as possible. The goal is to return the highest value for the
170 * task consuming the most memory to avoid subsequent oom failures.
171 */
172 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
173 const nodemask_t *nodemask, unsigned long totalpages)
174 {
175 long points;
176 long adj;
177
178 if (oom_unkillable_task(p, memcg, nodemask))
179 return 0;
180
181 p = find_lock_task_mm(p);
182 if (!p)
183 return 0;
184
185 /*
186 * Do not even consider tasks which are explicitly marked oom
187 * unkillable or have been already oom reaped or the are in
188 * the middle of vfork
189 */
190 adj = (long)p->signal->oom_score_adj;
191 if (adj == OOM_SCORE_ADJ_MIN ||
192 test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
193 in_vfork(p)) {
194 task_unlock(p);
195 return 0;
196 }
197
198 /*
199 * The baseline for the badness score is the proportion of RAM that each
200 * task's rss, pagetable and swap space use.
201 */
202 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
203 atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
204 task_unlock(p);
205
206 /*
207 * Root processes get 3% bonus, just like the __vm_enough_memory()
208 * implementation used by LSMs.
209 */
210 if (has_capability_noaudit(p, CAP_SYS_ADMIN))
211 points -= (points * 3) / 100;
212
213 /* Normalize to oom_score_adj units */
214 adj *= totalpages / 1000;
215 points += adj;
216
217 /*
218 * Never return 0 for an eligible task regardless of the root bonus and
219 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
220 */
221 return points > 0 ? points : 1;
222 }
223
224 enum oom_constraint {
225 CONSTRAINT_NONE,
226 CONSTRAINT_CPUSET,
227 CONSTRAINT_MEMORY_POLICY,
228 CONSTRAINT_MEMCG,
229 };
230
231 /*
232 * Determine the type of allocation constraint.
233 */
234 static enum oom_constraint constrained_alloc(struct oom_control *oc)
235 {
236 struct zone *zone;
237 struct zoneref *z;
238 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
239 bool cpuset_limited = false;
240 int nid;
241
242 if (is_memcg_oom(oc)) {
243 oc->totalpages = mem_cgroup_get_limit(oc->memcg) ?: 1;
244 return CONSTRAINT_MEMCG;
245 }
246
247 /* Default to all available memory */
248 oc->totalpages = totalram_pages + total_swap_pages;
249
250 if (!IS_ENABLED(CONFIG_NUMA))
251 return CONSTRAINT_NONE;
252
253 if (!oc->zonelist)
254 return CONSTRAINT_NONE;
255 /*
256 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
257 * to kill current.We have to random task kill in this case.
258 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
259 */
260 if (oc->gfp_mask & __GFP_THISNODE)
261 return CONSTRAINT_NONE;
262
263 /*
264 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
265 * the page allocator means a mempolicy is in effect. Cpuset policy
266 * is enforced in get_page_from_freelist().
267 */
268 if (oc->nodemask &&
269 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
270 oc->totalpages = total_swap_pages;
271 for_each_node_mask(nid, *oc->nodemask)
272 oc->totalpages += node_spanned_pages(nid);
273 return CONSTRAINT_MEMORY_POLICY;
274 }
275
276 /* Check this allocation failure is caused by cpuset's wall function */
277 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
278 high_zoneidx, oc->nodemask)
279 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
280 cpuset_limited = true;
281
282 if (cpuset_limited) {
283 oc->totalpages = total_swap_pages;
284 for_each_node_mask(nid, cpuset_current_mems_allowed)
285 oc->totalpages += node_spanned_pages(nid);
286 return CONSTRAINT_CPUSET;
287 }
288 return CONSTRAINT_NONE;
289 }
290
291 static int oom_evaluate_task(struct task_struct *task, void *arg)
292 {
293 struct oom_control *oc = arg;
294 unsigned long points;
295
296 if (oom_unkillable_task(task, NULL, oc->nodemask))
297 goto next;
298
299 /*
300 * This task already has access to memory reserves and is being killed.
301 * Don't allow any other task to have access to the reserves unless
302 * the task has MMF_OOM_SKIP because chances that it would release
303 * any memory is quite low.
304 */
305 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
306 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
307 goto next;
308 goto abort;
309 }
310
311 /*
312 * If task is allocating a lot of memory and has been marked to be
313 * killed first if it triggers an oom, then select it.
314 */
315 if (oom_task_origin(task)) {
316 points = ULONG_MAX;
317 goto select;
318 }
319
320 points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
321 if (!points || points < oc->chosen_points)
322 goto next;
323
324 /* Prefer thread group leaders for display purposes */
325 if (points == oc->chosen_points && thread_group_leader(oc->chosen))
326 goto next;
327 select:
328 if (oc->chosen)
329 put_task_struct(oc->chosen);
330 get_task_struct(task);
331 oc->chosen = task;
332 oc->chosen_points = points;
333 next:
334 return 0;
335 abort:
336 if (oc->chosen)
337 put_task_struct(oc->chosen);
338 oc->chosen = (void *)-1UL;
339 return 1;
340 }
341
342 /*
343 * Simple selection loop. We choose the process with the highest number of
344 * 'points'. In case scan was aborted, oc->chosen is set to -1.
345 */
346 static void select_bad_process(struct oom_control *oc)
347 {
348 if (is_memcg_oom(oc))
349 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
350 else {
351 struct task_struct *p;
352
353 rcu_read_lock();
354 for_each_process(p)
355 if (oom_evaluate_task(p, oc))
356 break;
357 rcu_read_unlock();
358 }
359
360 oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
361 }
362
363 /**
364 * dump_tasks - dump current memory state of all system tasks
365 * @memcg: current's memory controller, if constrained
366 * @nodemask: nodemask passed to page allocator for mempolicy ooms
367 *
368 * Dumps the current memory state of all eligible tasks. Tasks not in the same
369 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
370 * are not shown.
371 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
372 * swapents, oom_score_adj value, and name.
373 */
374 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
375 {
376 struct task_struct *p;
377 struct task_struct *task;
378
379 pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name\n");
380 rcu_read_lock();
381 for_each_process(p) {
382 if (oom_unkillable_task(p, memcg, nodemask))
383 continue;
384
385 task = find_lock_task_mm(p);
386 if (!task) {
387 /*
388 * This is a kthread or all of p's threads have already
389 * detached their mm's. There's no need to report
390 * them; they can't be oom killed anyway.
391 */
392 continue;
393 }
394
395 pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu %5hd %s\n",
396 task->pid, from_kuid(&init_user_ns, task_uid(task)),
397 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
398 atomic_long_read(&task->mm->nr_ptes),
399 mm_nr_pmds(task->mm),
400 get_mm_counter(task->mm, MM_SWAPENTS),
401 task->signal->oom_score_adj, task->comm);
402 task_unlock(task);
403 }
404 rcu_read_unlock();
405 }
406
407 static void dump_header(struct oom_control *oc, struct task_struct *p)
408 {
409 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), nodemask=",
410 current->comm, oc->gfp_mask, &oc->gfp_mask);
411 if (oc->nodemask)
412 pr_cont("%*pbl", nodemask_pr_args(oc->nodemask));
413 else
414 pr_cont("(null)");
415 pr_cont(", order=%d, oom_score_adj=%hd\n",
416 oc->order, current->signal->oom_score_adj);
417 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
418 pr_warn("COMPACTION is disabled!!!\n");
419
420 cpuset_print_current_mems_allowed();
421 dump_stack();
422 if (oc->memcg)
423 mem_cgroup_print_oom_info(oc->memcg, p);
424 else
425 show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
426 if (sysctl_oom_dump_tasks)
427 dump_tasks(oc->memcg, oc->nodemask);
428 }
429
430 /*
431 * Number of OOM victims in flight
432 */
433 static atomic_t oom_victims = ATOMIC_INIT(0);
434 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
435
436 static bool oom_killer_disabled __read_mostly;
437
438 #define K(x) ((x) << (PAGE_SHIFT-10))
439
440 /*
441 * task->mm can be NULL if the task is the exited group leader. So to
442 * determine whether the task is using a particular mm, we examine all the
443 * task's threads: if one of those is using this mm then this task was also
444 * using it.
445 */
446 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
447 {
448 struct task_struct *t;
449
450 for_each_thread(p, t) {
451 struct mm_struct *t_mm = READ_ONCE(t->mm);
452 if (t_mm)
453 return t_mm == mm;
454 }
455 return false;
456 }
457
458
459 #ifdef CONFIG_MMU
460 /*
461 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
462 * victim (if that is possible) to help the OOM killer to move on.
463 */
464 static struct task_struct *oom_reaper_th;
465 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
466 static struct task_struct *oom_reaper_list;
467 static DEFINE_SPINLOCK(oom_reaper_lock);
468
469 static bool __oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
470 {
471 struct mmu_gather tlb;
472 struct vm_area_struct *vma;
473 bool ret = true;
474
475 /*
476 * We have to make sure to not race with the victim exit path
477 * and cause premature new oom victim selection:
478 * __oom_reap_task_mm exit_mm
479 * mmget_not_zero
480 * mmput
481 * atomic_dec_and_test
482 * exit_oom_victim
483 * [...]
484 * out_of_memory
485 * select_bad_process
486 * # no TIF_MEMDIE task selects new victim
487 * unmap_page_range # frees some memory
488 */
489 mutex_lock(&oom_lock);
490
491 if (!down_read_trylock(&mm->mmap_sem)) {
492 ret = false;
493 trace_skip_task_reaping(tsk->pid);
494 goto unlock_oom;
495 }
496
497 /*
498 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
499 * work on the mm anymore. The check for MMF_OOM_SKIP must run
500 * under mmap_sem for reading because it serializes against the
501 * down_write();up_write() cycle in exit_mmap().
502 */
503 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
504 up_read(&mm->mmap_sem);
505 trace_skip_task_reaping(tsk->pid);
506 goto unlock_oom;
507 }
508
509 trace_start_task_reaping(tsk->pid);
510
511 /*
512 * Tell all users of get_user/copy_from_user etc... that the content
513 * is no longer stable. No barriers really needed because unmapping
514 * should imply barriers already and the reader would hit a page fault
515 * if it stumbled over a reaped memory.
516 */
517 set_bit(MMF_UNSTABLE, &mm->flags);
518
519 tlb_gather_mmu(&tlb, mm, 0, -1);
520 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
521 if (!can_madv_dontneed_vma(vma))
522 continue;
523
524 /*
525 * Only anonymous pages have a good chance to be dropped
526 * without additional steps which we cannot afford as we
527 * are OOM already.
528 *
529 * We do not even care about fs backed pages because all
530 * which are reclaimable have already been reclaimed and
531 * we do not want to block exit_mmap by keeping mm ref
532 * count elevated without a good reason.
533 */
534 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
535 unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
536 NULL);
537 }
538 tlb_finish_mmu(&tlb, 0, -1);
539 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
540 task_pid_nr(tsk), tsk->comm,
541 K(get_mm_counter(mm, MM_ANONPAGES)),
542 K(get_mm_counter(mm, MM_FILEPAGES)),
543 K(get_mm_counter(mm, MM_SHMEMPAGES)));
544 up_read(&mm->mmap_sem);
545
546 trace_finish_task_reaping(tsk->pid);
547 unlock_oom:
548 mutex_unlock(&oom_lock);
549 return ret;
550 }
551
552 #define MAX_OOM_REAP_RETRIES 10
553 static void oom_reap_task(struct task_struct *tsk)
554 {
555 int attempts = 0;
556 struct mm_struct *mm = tsk->signal->oom_mm;
557
558 /* Retry the down_read_trylock(mmap_sem) a few times */
559 while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task_mm(tsk, mm))
560 schedule_timeout_idle(HZ/10);
561
562 if (attempts <= MAX_OOM_REAP_RETRIES)
563 goto done;
564
565
566 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
567 task_pid_nr(tsk), tsk->comm);
568 debug_show_all_locks();
569
570 done:
571 tsk->oom_reaper_list = NULL;
572
573 /*
574 * Hide this mm from OOM killer because it has been either reaped or
575 * somebody can't call up_write(mmap_sem).
576 */
577 set_bit(MMF_OOM_SKIP, &mm->flags);
578
579 /* Drop a reference taken by wake_oom_reaper */
580 put_task_struct(tsk);
581 }
582
583 static int oom_reaper(void *unused)
584 {
585 while (true) {
586 struct task_struct *tsk = NULL;
587
588 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
589 spin_lock(&oom_reaper_lock);
590 if (oom_reaper_list != NULL) {
591 tsk = oom_reaper_list;
592 oom_reaper_list = tsk->oom_reaper_list;
593 }
594 spin_unlock(&oom_reaper_lock);
595
596 if (tsk)
597 oom_reap_task(tsk);
598 }
599
600 return 0;
601 }
602
603 static void wake_oom_reaper(struct task_struct *tsk)
604 {
605 if (!oom_reaper_th)
606 return;
607
608 /* tsk is already queued? */
609 if (tsk == oom_reaper_list || tsk->oom_reaper_list)
610 return;
611
612 get_task_struct(tsk);
613
614 spin_lock(&oom_reaper_lock);
615 tsk->oom_reaper_list = oom_reaper_list;
616 oom_reaper_list = tsk;
617 spin_unlock(&oom_reaper_lock);
618 trace_wake_reaper(tsk->pid);
619 wake_up(&oom_reaper_wait);
620 }
621
622 static int __init oom_init(void)
623 {
624 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
625 if (IS_ERR(oom_reaper_th)) {
626 pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
627 PTR_ERR(oom_reaper_th));
628 oom_reaper_th = NULL;
629 }
630 return 0;
631 }
632 subsys_initcall(oom_init)
633 #else
634 static inline void wake_oom_reaper(struct task_struct *tsk)
635 {
636 }
637 #endif /* CONFIG_MMU */
638
639 /**
640 * mark_oom_victim - mark the given task as OOM victim
641 * @tsk: task to mark
642 *
643 * Has to be called with oom_lock held and never after
644 * oom has been disabled already.
645 *
646 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
647 * under task_lock or operate on the current).
648 */
649 static void mark_oom_victim(struct task_struct *tsk)
650 {
651 struct mm_struct *mm = tsk->mm;
652
653 WARN_ON(oom_killer_disabled);
654 /* OOM killer might race with memcg OOM */
655 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
656 return;
657
658 /* oom_mm is bound to the signal struct life time. */
659 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
660 mmgrab(tsk->signal->oom_mm);
661
662 /*
663 * Make sure that the task is woken up from uninterruptible sleep
664 * if it is frozen because OOM killer wouldn't be able to free
665 * any memory and livelock. freezing_slow_path will tell the freezer
666 * that TIF_MEMDIE tasks should be ignored.
667 */
668 __thaw_task(tsk);
669 atomic_inc(&oom_victims);
670 trace_mark_victim(tsk->pid);
671 }
672
673 /**
674 * exit_oom_victim - note the exit of an OOM victim
675 */
676 void exit_oom_victim(void)
677 {
678 clear_thread_flag(TIF_MEMDIE);
679
680 if (!atomic_dec_return(&oom_victims))
681 wake_up_all(&oom_victims_wait);
682 }
683
684 /**
685 * oom_killer_enable - enable OOM killer
686 */
687 void oom_killer_enable(void)
688 {
689 oom_killer_disabled = false;
690 pr_info("OOM killer enabled.\n");
691 }
692
693 /**
694 * oom_killer_disable - disable OOM killer
695 * @timeout: maximum timeout to wait for oom victims in jiffies
696 *
697 * Forces all page allocations to fail rather than trigger OOM killer.
698 * Will block and wait until all OOM victims are killed or the given
699 * timeout expires.
700 *
701 * The function cannot be called when there are runnable user tasks because
702 * the userspace would see unexpected allocation failures as a result. Any
703 * new usage of this function should be consulted with MM people.
704 *
705 * Returns true if successful and false if the OOM killer cannot be
706 * disabled.
707 */
708 bool oom_killer_disable(signed long timeout)
709 {
710 signed long ret;
711
712 /*
713 * Make sure to not race with an ongoing OOM killer. Check that the
714 * current is not killed (possibly due to sharing the victim's memory).
715 */
716 if (mutex_lock_killable(&oom_lock))
717 return false;
718 oom_killer_disabled = true;
719 mutex_unlock(&oom_lock);
720
721 ret = wait_event_interruptible_timeout(oom_victims_wait,
722 !atomic_read(&oom_victims), timeout);
723 if (ret <= 0) {
724 oom_killer_enable();
725 return false;
726 }
727 pr_info("OOM killer disabled.\n");
728
729 return true;
730 }
731
732 static inline bool __task_will_free_mem(struct task_struct *task)
733 {
734 struct signal_struct *sig = task->signal;
735
736 /*
737 * A coredumping process may sleep for an extended period in exit_mm(),
738 * so the oom killer cannot assume that the process will promptly exit
739 * and release memory.
740 */
741 if (sig->flags & SIGNAL_GROUP_COREDUMP)
742 return false;
743
744 if (sig->flags & SIGNAL_GROUP_EXIT)
745 return true;
746
747 if (thread_group_empty(task) && (task->flags & PF_EXITING))
748 return true;
749
750 return false;
751 }
752
753 /*
754 * Checks whether the given task is dying or exiting and likely to
755 * release its address space. This means that all threads and processes
756 * sharing the same mm have to be killed or exiting.
757 * Caller has to make sure that task->mm is stable (hold task_lock or
758 * it operates on the current).
759 */
760 static bool task_will_free_mem(struct task_struct *task)
761 {
762 struct mm_struct *mm = task->mm;
763 struct task_struct *p;
764 bool ret = true;
765
766 /*
767 * Skip tasks without mm because it might have passed its exit_mm and
768 * exit_oom_victim. oom_reaper could have rescued that but do not rely
769 * on that for now. We can consider find_lock_task_mm in future.
770 */
771 if (!mm)
772 return false;
773
774 if (!__task_will_free_mem(task))
775 return false;
776
777 /*
778 * This task has already been drained by the oom reaper so there are
779 * only small chances it will free some more
780 */
781 if (test_bit(MMF_OOM_SKIP, &mm->flags))
782 return false;
783
784 if (atomic_read(&mm->mm_users) <= 1)
785 return true;
786
787 /*
788 * Make sure that all tasks which share the mm with the given tasks
789 * are dying as well to make sure that a) nobody pins its mm and
790 * b) the task is also reapable by the oom reaper.
791 */
792 rcu_read_lock();
793 for_each_process(p) {
794 if (!process_shares_mm(p, mm))
795 continue;
796 if (same_thread_group(task, p))
797 continue;
798 ret = __task_will_free_mem(p);
799 if (!ret)
800 break;
801 }
802 rcu_read_unlock();
803
804 return ret;
805 }
806
807 static void oom_kill_process(struct oom_control *oc, const char *message)
808 {
809 struct task_struct *p = oc->chosen;
810 unsigned int points = oc->chosen_points;
811 struct task_struct *victim = p;
812 struct task_struct *child;
813 struct task_struct *t;
814 struct mm_struct *mm;
815 unsigned int victim_points = 0;
816 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
817 DEFAULT_RATELIMIT_BURST);
818 bool can_oom_reap = true;
819
820 /*
821 * If the task is already exiting, don't alarm the sysadmin or kill
822 * its children or threads, just give it access to memory reserves
823 * so it can die quickly
824 */
825 task_lock(p);
826 if (task_will_free_mem(p)) {
827 mark_oom_victim(p);
828 wake_oom_reaper(p);
829 task_unlock(p);
830 put_task_struct(p);
831 return;
832 }
833 task_unlock(p);
834
835 if (__ratelimit(&oom_rs))
836 dump_header(oc, p);
837
838 pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
839 message, task_pid_nr(p), p->comm, points);
840
841 /*
842 * If any of p's children has a different mm and is eligible for kill,
843 * the one with the highest oom_badness() score is sacrificed for its
844 * parent. This attempts to lose the minimal amount of work done while
845 * still freeing memory.
846 */
847 read_lock(&tasklist_lock);
848 for_each_thread(p, t) {
849 list_for_each_entry(child, &t->children, sibling) {
850 unsigned int child_points;
851
852 if (process_shares_mm(child, p->mm))
853 continue;
854 /*
855 * oom_badness() returns 0 if the thread is unkillable
856 */
857 child_points = oom_badness(child,
858 oc->memcg, oc->nodemask, oc->totalpages);
859 if (child_points > victim_points) {
860 put_task_struct(victim);
861 victim = child;
862 victim_points = child_points;
863 get_task_struct(victim);
864 }
865 }
866 }
867 read_unlock(&tasklist_lock);
868
869 p = find_lock_task_mm(victim);
870 if (!p) {
871 put_task_struct(victim);
872 return;
873 } else if (victim != p) {
874 get_task_struct(p);
875 put_task_struct(victim);
876 victim = p;
877 }
878
879 /* Get a reference to safely compare mm after task_unlock(victim) */
880 mm = victim->mm;
881 mmgrab(mm);
882
883 /* Raise event before sending signal: task reaper must see this */
884 count_vm_event(OOM_KILL);
885 count_memcg_event_mm(mm, OOM_KILL);
886
887 /*
888 * We should send SIGKILL before granting access to memory reserves
889 * in order to prevent the OOM victim from depleting the memory
890 * reserves from the user space under its control.
891 */
892 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
893 mark_oom_victim(victim);
894 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
895 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
896 K(get_mm_counter(victim->mm, MM_ANONPAGES)),
897 K(get_mm_counter(victim->mm, MM_FILEPAGES)),
898 K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
899 task_unlock(victim);
900
901 /*
902 * Kill all user processes sharing victim->mm in other thread groups, if
903 * any. They don't get access to memory reserves, though, to avoid
904 * depletion of all memory. This prevents mm->mmap_sem livelock when an
905 * oom killed thread cannot exit because it requires the semaphore and
906 * its contended by another thread trying to allocate memory itself.
907 * That thread will now get access to memory reserves since it has a
908 * pending fatal signal.
909 */
910 rcu_read_lock();
911 for_each_process(p) {
912 if (!process_shares_mm(p, mm))
913 continue;
914 if (same_thread_group(p, victim))
915 continue;
916 if (is_global_init(p)) {
917 can_oom_reap = false;
918 set_bit(MMF_OOM_SKIP, &mm->flags);
919 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
920 task_pid_nr(victim), victim->comm,
921 task_pid_nr(p), p->comm);
922 continue;
923 }
924 /*
925 * No use_mm() user needs to read from the userspace so we are
926 * ok to reap it.
927 */
928 if (unlikely(p->flags & PF_KTHREAD))
929 continue;
930 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
931 }
932 rcu_read_unlock();
933
934 if (can_oom_reap)
935 wake_oom_reaper(victim);
936
937 mmdrop(mm);
938 put_task_struct(victim);
939 }
940 #undef K
941
942 /*
943 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
944 */
945 static void check_panic_on_oom(struct oom_control *oc,
946 enum oom_constraint constraint)
947 {
948 if (likely(!sysctl_panic_on_oom))
949 return;
950 if (sysctl_panic_on_oom != 2) {
951 /*
952 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
953 * does not panic for cpuset, mempolicy, or memcg allocation
954 * failures.
955 */
956 if (constraint != CONSTRAINT_NONE)
957 return;
958 }
959 /* Do not panic for oom kills triggered by sysrq */
960 if (is_sysrq_oom(oc))
961 return;
962 dump_header(oc, NULL);
963 panic("Out of memory: %s panic_on_oom is enabled\n",
964 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
965 }
966
967 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
968
969 int register_oom_notifier(struct notifier_block *nb)
970 {
971 return blocking_notifier_chain_register(&oom_notify_list, nb);
972 }
973 EXPORT_SYMBOL_GPL(register_oom_notifier);
974
975 int unregister_oom_notifier(struct notifier_block *nb)
976 {
977 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
978 }
979 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
980
981 /**
982 * out_of_memory - kill the "best" process when we run out of memory
983 * @oc: pointer to struct oom_control
984 *
985 * If we run out of memory, we have the choice between either
986 * killing a random task (bad), letting the system crash (worse)
987 * OR try to be smart about which process to kill. Note that we
988 * don't have to be perfect here, we just have to be good.
989 */
990 bool out_of_memory(struct oom_control *oc)
991 {
992 unsigned long freed = 0;
993 enum oom_constraint constraint = CONSTRAINT_NONE;
994
995 if (oom_killer_disabled)
996 return false;
997
998 if (!is_memcg_oom(oc)) {
999 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1000 if (freed > 0)
1001 /* Got some memory back in the last second. */
1002 return true;
1003 }
1004
1005 /*
1006 * If current has a pending SIGKILL or is exiting, then automatically
1007 * select it. The goal is to allow it to allocate so that it may
1008 * quickly exit and free its memory.
1009 */
1010 if (task_will_free_mem(current)) {
1011 mark_oom_victim(current);
1012 wake_oom_reaper(current);
1013 return true;
1014 }
1015
1016 /*
1017 * The OOM killer does not compensate for IO-less reclaim.
1018 * pagefault_out_of_memory lost its gfp context so we have to
1019 * make sure exclude 0 mask - all other users should have at least
1020 * ___GFP_DIRECT_RECLAIM to get here.
1021 */
1022 if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS))
1023 return true;
1024
1025 /*
1026 * Check if there were limitations on the allocation (only relevant for
1027 * NUMA and memcg) that may require different handling.
1028 */
1029 constraint = constrained_alloc(oc);
1030 if (constraint != CONSTRAINT_MEMORY_POLICY)
1031 oc->nodemask = NULL;
1032 check_panic_on_oom(oc, constraint);
1033
1034 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1035 current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
1036 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1037 get_task_struct(current);
1038 oc->chosen = current;
1039 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1040 return true;
1041 }
1042
1043 select_bad_process(oc);
1044 /* Found nothing?!?! Either we hang forever, or we panic. */
1045 if (!oc->chosen && !is_sysrq_oom(oc) && !is_memcg_oom(oc)) {
1046 dump_header(oc, NULL);
1047 panic("Out of memory and no killable processes...\n");
1048 }
1049 if (oc->chosen && oc->chosen != (void *)-1UL) {
1050 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1051 "Memory cgroup out of memory");
1052 /*
1053 * Give the killed process a good chance to exit before trying
1054 * to allocate memory again.
1055 */
1056 schedule_timeout_killable(1);
1057 }
1058 return !!oc->chosen;
1059 }
1060
1061 /*
1062 * The pagefault handler calls here because it is out of memory, so kill a
1063 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1064 * killing is already in progress so do nothing.
1065 */
1066 void pagefault_out_of_memory(void)
1067 {
1068 struct oom_control oc = {
1069 .zonelist = NULL,
1070 .nodemask = NULL,
1071 .memcg = NULL,
1072 .gfp_mask = 0,
1073 .order = 0,
1074 };
1075
1076 if (mem_cgroup_oom_synchronize(true))
1077 return;
1078
1079 if (!mutex_trylock(&oom_lock))
1080 return;
1081 out_of_memory(&oc);
1082 mutex_unlock(&oom_lock);
1083 }