]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/oom_kill.c
Merge branch 'libnvdimm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdim...
[mirror_ubuntu-artful-kernel.git] / mm / oom_kill.c
1 /*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
9 *
10 * The routines in this file are used to kill a process when
11 * we're seriously out of memory. This gets called from __alloc_pages()
12 * in mm/page_alloc.c when we really run out of memory.
13 *
14 * Since we won't call these routines often (on a well-configured
15 * machine) this file will double as a 'coding guide' and a signpost
16 * for newbie kernel hackers. It features several pointers to major
17 * kernel subsystems and hints as to where to find out what things do.
18 */
19
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/sched/mm.h>
26 #include <linux/sched/coredump.h>
27 #include <linux/sched/task.h>
28 #include <linux/swap.h>
29 #include <linux/timex.h>
30 #include <linux/jiffies.h>
31 #include <linux/cpuset.h>
32 #include <linux/export.h>
33 #include <linux/notifier.h>
34 #include <linux/memcontrol.h>
35 #include <linux/mempolicy.h>
36 #include <linux/security.h>
37 #include <linux/ptrace.h>
38 #include <linux/freezer.h>
39 #include <linux/ftrace.h>
40 #include <linux/ratelimit.h>
41 #include <linux/kthread.h>
42 #include <linux/init.h>
43
44 #include <asm/tlb.h>
45 #include "internal.h"
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/oom.h>
49
50 int sysctl_panic_on_oom;
51 int sysctl_oom_kill_allocating_task;
52 int sysctl_oom_dump_tasks = 1;
53
54 DEFINE_MUTEX(oom_lock);
55
56 #ifdef CONFIG_NUMA
57 /**
58 * has_intersects_mems_allowed() - check task eligiblity for kill
59 * @start: task struct of which task to consider
60 * @mask: nodemask passed to page allocator for mempolicy ooms
61 *
62 * Task eligibility is determined by whether or not a candidate task, @tsk,
63 * shares the same mempolicy nodes as current if it is bound by such a policy
64 * and whether or not it has the same set of allowed cpuset nodes.
65 */
66 static bool has_intersects_mems_allowed(struct task_struct *start,
67 const nodemask_t *mask)
68 {
69 struct task_struct *tsk;
70 bool ret = false;
71
72 rcu_read_lock();
73 for_each_thread(start, tsk) {
74 if (mask) {
75 /*
76 * If this is a mempolicy constrained oom, tsk's
77 * cpuset is irrelevant. Only return true if its
78 * mempolicy intersects current, otherwise it may be
79 * needlessly killed.
80 */
81 ret = mempolicy_nodemask_intersects(tsk, mask);
82 } else {
83 /*
84 * This is not a mempolicy constrained oom, so only
85 * check the mems of tsk's cpuset.
86 */
87 ret = cpuset_mems_allowed_intersects(current, tsk);
88 }
89 if (ret)
90 break;
91 }
92 rcu_read_unlock();
93
94 return ret;
95 }
96 #else
97 static bool has_intersects_mems_allowed(struct task_struct *tsk,
98 const nodemask_t *mask)
99 {
100 return true;
101 }
102 #endif /* CONFIG_NUMA */
103
104 /*
105 * The process p may have detached its own ->mm while exiting or through
106 * use_mm(), but one or more of its subthreads may still have a valid
107 * pointer. Return p, or any of its subthreads with a valid ->mm, with
108 * task_lock() held.
109 */
110 struct task_struct *find_lock_task_mm(struct task_struct *p)
111 {
112 struct task_struct *t;
113
114 rcu_read_lock();
115
116 for_each_thread(p, t) {
117 task_lock(t);
118 if (likely(t->mm))
119 goto found;
120 task_unlock(t);
121 }
122 t = NULL;
123 found:
124 rcu_read_unlock();
125
126 return t;
127 }
128
129 /*
130 * order == -1 means the oom kill is required by sysrq, otherwise only
131 * for display purposes.
132 */
133 static inline bool is_sysrq_oom(struct oom_control *oc)
134 {
135 return oc->order == -1;
136 }
137
138 static inline bool is_memcg_oom(struct oom_control *oc)
139 {
140 return oc->memcg != NULL;
141 }
142
143 /* return true if the task is not adequate as candidate victim task. */
144 static bool oom_unkillable_task(struct task_struct *p,
145 struct mem_cgroup *memcg, const nodemask_t *nodemask)
146 {
147 if (is_global_init(p))
148 return true;
149 if (p->flags & PF_KTHREAD)
150 return true;
151
152 /* When mem_cgroup_out_of_memory() and p is not member of the group */
153 if (memcg && !task_in_mem_cgroup(p, memcg))
154 return true;
155
156 /* p may not have freeable memory in nodemask */
157 if (!has_intersects_mems_allowed(p, nodemask))
158 return true;
159
160 return false;
161 }
162
163 /**
164 * oom_badness - heuristic function to determine which candidate task to kill
165 * @p: task struct of which task we should calculate
166 * @totalpages: total present RAM allowed for page allocation
167 *
168 * The heuristic for determining which task to kill is made to be as simple and
169 * predictable as possible. The goal is to return the highest value for the
170 * task consuming the most memory to avoid subsequent oom failures.
171 */
172 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
173 const nodemask_t *nodemask, unsigned long totalpages)
174 {
175 long points;
176 long adj;
177
178 if (oom_unkillable_task(p, memcg, nodemask))
179 return 0;
180
181 p = find_lock_task_mm(p);
182 if (!p)
183 return 0;
184
185 /*
186 * Do not even consider tasks which are explicitly marked oom
187 * unkillable or have been already oom reaped or the are in
188 * the middle of vfork
189 */
190 adj = (long)p->signal->oom_score_adj;
191 if (adj == OOM_SCORE_ADJ_MIN ||
192 test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
193 in_vfork(p)) {
194 task_unlock(p);
195 return 0;
196 }
197
198 /*
199 * The baseline for the badness score is the proportion of RAM that each
200 * task's rss, pagetable and swap space use.
201 */
202 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
203 atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
204 task_unlock(p);
205
206 /*
207 * Root processes get 3% bonus, just like the __vm_enough_memory()
208 * implementation used by LSMs.
209 */
210 if (has_capability_noaudit(p, CAP_SYS_ADMIN))
211 points -= (points * 3) / 100;
212
213 /* Normalize to oom_score_adj units */
214 adj *= totalpages / 1000;
215 points += adj;
216
217 /*
218 * Never return 0 for an eligible task regardless of the root bonus and
219 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
220 */
221 return points > 0 ? points : 1;
222 }
223
224 enum oom_constraint {
225 CONSTRAINT_NONE,
226 CONSTRAINT_CPUSET,
227 CONSTRAINT_MEMORY_POLICY,
228 CONSTRAINT_MEMCG,
229 };
230
231 /*
232 * Determine the type of allocation constraint.
233 */
234 static enum oom_constraint constrained_alloc(struct oom_control *oc)
235 {
236 struct zone *zone;
237 struct zoneref *z;
238 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
239 bool cpuset_limited = false;
240 int nid;
241
242 if (is_memcg_oom(oc)) {
243 oc->totalpages = mem_cgroup_get_limit(oc->memcg) ?: 1;
244 return CONSTRAINT_MEMCG;
245 }
246
247 /* Default to all available memory */
248 oc->totalpages = totalram_pages + total_swap_pages;
249
250 if (!IS_ENABLED(CONFIG_NUMA))
251 return CONSTRAINT_NONE;
252
253 if (!oc->zonelist)
254 return CONSTRAINT_NONE;
255 /*
256 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
257 * to kill current.We have to random task kill in this case.
258 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
259 */
260 if (oc->gfp_mask & __GFP_THISNODE)
261 return CONSTRAINT_NONE;
262
263 /*
264 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
265 * the page allocator means a mempolicy is in effect. Cpuset policy
266 * is enforced in get_page_from_freelist().
267 */
268 if (oc->nodemask &&
269 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
270 oc->totalpages = total_swap_pages;
271 for_each_node_mask(nid, *oc->nodemask)
272 oc->totalpages += node_spanned_pages(nid);
273 return CONSTRAINT_MEMORY_POLICY;
274 }
275
276 /* Check this allocation failure is caused by cpuset's wall function */
277 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
278 high_zoneidx, oc->nodemask)
279 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
280 cpuset_limited = true;
281
282 if (cpuset_limited) {
283 oc->totalpages = total_swap_pages;
284 for_each_node_mask(nid, cpuset_current_mems_allowed)
285 oc->totalpages += node_spanned_pages(nid);
286 return CONSTRAINT_CPUSET;
287 }
288 return CONSTRAINT_NONE;
289 }
290
291 static int oom_evaluate_task(struct task_struct *task, void *arg)
292 {
293 struct oom_control *oc = arg;
294 unsigned long points;
295
296 if (oom_unkillable_task(task, NULL, oc->nodemask))
297 goto next;
298
299 /*
300 * This task already has access to memory reserves and is being killed.
301 * Don't allow any other task to have access to the reserves unless
302 * the task has MMF_OOM_SKIP because chances that it would release
303 * any memory is quite low.
304 */
305 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
306 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
307 goto next;
308 goto abort;
309 }
310
311 /*
312 * If task is allocating a lot of memory and has been marked to be
313 * killed first if it triggers an oom, then select it.
314 */
315 if (oom_task_origin(task)) {
316 points = ULONG_MAX;
317 goto select;
318 }
319
320 points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
321 if (!points || points < oc->chosen_points)
322 goto next;
323
324 /* Prefer thread group leaders for display purposes */
325 if (points == oc->chosen_points && thread_group_leader(oc->chosen))
326 goto next;
327 select:
328 if (oc->chosen)
329 put_task_struct(oc->chosen);
330 get_task_struct(task);
331 oc->chosen = task;
332 oc->chosen_points = points;
333 next:
334 return 0;
335 abort:
336 if (oc->chosen)
337 put_task_struct(oc->chosen);
338 oc->chosen = (void *)-1UL;
339 return 1;
340 }
341
342 /*
343 * Simple selection loop. We choose the process with the highest number of
344 * 'points'. In case scan was aborted, oc->chosen is set to -1.
345 */
346 static void select_bad_process(struct oom_control *oc)
347 {
348 if (is_memcg_oom(oc))
349 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
350 else {
351 struct task_struct *p;
352
353 rcu_read_lock();
354 for_each_process(p)
355 if (oom_evaluate_task(p, oc))
356 break;
357 rcu_read_unlock();
358 }
359
360 oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
361 }
362
363 /**
364 * dump_tasks - dump current memory state of all system tasks
365 * @memcg: current's memory controller, if constrained
366 * @nodemask: nodemask passed to page allocator for mempolicy ooms
367 *
368 * Dumps the current memory state of all eligible tasks. Tasks not in the same
369 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
370 * are not shown.
371 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
372 * swapents, oom_score_adj value, and name.
373 */
374 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
375 {
376 struct task_struct *p;
377 struct task_struct *task;
378
379 pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name\n");
380 rcu_read_lock();
381 for_each_process(p) {
382 if (oom_unkillable_task(p, memcg, nodemask))
383 continue;
384
385 task = find_lock_task_mm(p);
386 if (!task) {
387 /*
388 * This is a kthread or all of p's threads have already
389 * detached their mm's. There's no need to report
390 * them; they can't be oom killed anyway.
391 */
392 continue;
393 }
394
395 pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu %5hd %s\n",
396 task->pid, from_kuid(&init_user_ns, task_uid(task)),
397 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
398 atomic_long_read(&task->mm->nr_ptes),
399 mm_nr_pmds(task->mm),
400 get_mm_counter(task->mm, MM_SWAPENTS),
401 task->signal->oom_score_adj, task->comm);
402 task_unlock(task);
403 }
404 rcu_read_unlock();
405 }
406
407 static void dump_header(struct oom_control *oc, struct task_struct *p)
408 {
409 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), nodemask=",
410 current->comm, oc->gfp_mask, &oc->gfp_mask);
411 if (oc->nodemask)
412 pr_cont("%*pbl", nodemask_pr_args(oc->nodemask));
413 else
414 pr_cont("(null)");
415 pr_cont(", order=%d, oom_score_adj=%hd\n",
416 oc->order, current->signal->oom_score_adj);
417 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
418 pr_warn("COMPACTION is disabled!!!\n");
419
420 cpuset_print_current_mems_allowed();
421 dump_stack();
422 if (oc->memcg)
423 mem_cgroup_print_oom_info(oc->memcg, p);
424 else
425 show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
426 if (sysctl_oom_dump_tasks)
427 dump_tasks(oc->memcg, oc->nodemask);
428 }
429
430 /*
431 * Number of OOM victims in flight
432 */
433 static atomic_t oom_victims = ATOMIC_INIT(0);
434 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
435
436 static bool oom_killer_disabled __read_mostly;
437
438 #define K(x) ((x) << (PAGE_SHIFT-10))
439
440 /*
441 * task->mm can be NULL if the task is the exited group leader. So to
442 * determine whether the task is using a particular mm, we examine all the
443 * task's threads: if one of those is using this mm then this task was also
444 * using it.
445 */
446 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
447 {
448 struct task_struct *t;
449
450 for_each_thread(p, t) {
451 struct mm_struct *t_mm = READ_ONCE(t->mm);
452 if (t_mm)
453 return t_mm == mm;
454 }
455 return false;
456 }
457
458
459 #ifdef CONFIG_MMU
460 /*
461 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
462 * victim (if that is possible) to help the OOM killer to move on.
463 */
464 static struct task_struct *oom_reaper_th;
465 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
466 static struct task_struct *oom_reaper_list;
467 static DEFINE_SPINLOCK(oom_reaper_lock);
468
469 static bool __oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
470 {
471 struct mmu_gather tlb;
472 struct vm_area_struct *vma;
473 bool ret = true;
474
475 /*
476 * We have to make sure to not race with the victim exit path
477 * and cause premature new oom victim selection:
478 * __oom_reap_task_mm exit_mm
479 * mmget_not_zero
480 * mmput
481 * atomic_dec_and_test
482 * exit_oom_victim
483 * [...]
484 * out_of_memory
485 * select_bad_process
486 * # no TIF_MEMDIE task selects new victim
487 * unmap_page_range # frees some memory
488 */
489 mutex_lock(&oom_lock);
490
491 if (!down_read_trylock(&mm->mmap_sem)) {
492 ret = false;
493 trace_skip_task_reaping(tsk->pid);
494 goto unlock_oom;
495 }
496
497 /*
498 * increase mm_users only after we know we will reap something so
499 * that the mmput_async is called only when we have reaped something
500 * and delayed __mmput doesn't matter that much
501 */
502 if (!mmget_not_zero(mm)) {
503 up_read(&mm->mmap_sem);
504 trace_skip_task_reaping(tsk->pid);
505 goto unlock_oom;
506 }
507
508 trace_start_task_reaping(tsk->pid);
509
510 /*
511 * Tell all users of get_user/copy_from_user etc... that the content
512 * is no longer stable. No barriers really needed because unmapping
513 * should imply barriers already and the reader would hit a page fault
514 * if it stumbled over a reaped memory.
515 */
516 set_bit(MMF_UNSTABLE, &mm->flags);
517
518 tlb_gather_mmu(&tlb, mm, 0, -1);
519 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
520 if (!can_madv_dontneed_vma(vma))
521 continue;
522
523 /*
524 * Only anonymous pages have a good chance to be dropped
525 * without additional steps which we cannot afford as we
526 * are OOM already.
527 *
528 * We do not even care about fs backed pages because all
529 * which are reclaimable have already been reclaimed and
530 * we do not want to block exit_mmap by keeping mm ref
531 * count elevated without a good reason.
532 */
533 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
534 unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
535 NULL);
536 }
537 tlb_finish_mmu(&tlb, 0, -1);
538 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
539 task_pid_nr(tsk), tsk->comm,
540 K(get_mm_counter(mm, MM_ANONPAGES)),
541 K(get_mm_counter(mm, MM_FILEPAGES)),
542 K(get_mm_counter(mm, MM_SHMEMPAGES)));
543 up_read(&mm->mmap_sem);
544
545 /*
546 * Drop our reference but make sure the mmput slow path is called from a
547 * different context because we shouldn't risk we get stuck there and
548 * put the oom_reaper out of the way.
549 */
550 mmput_async(mm);
551 trace_finish_task_reaping(tsk->pid);
552 unlock_oom:
553 mutex_unlock(&oom_lock);
554 return ret;
555 }
556
557 #define MAX_OOM_REAP_RETRIES 10
558 static void oom_reap_task(struct task_struct *tsk)
559 {
560 int attempts = 0;
561 struct mm_struct *mm = tsk->signal->oom_mm;
562
563 /* Retry the down_read_trylock(mmap_sem) a few times */
564 while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task_mm(tsk, mm))
565 schedule_timeout_idle(HZ/10);
566
567 if (attempts <= MAX_OOM_REAP_RETRIES)
568 goto done;
569
570
571 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
572 task_pid_nr(tsk), tsk->comm);
573 debug_show_all_locks();
574
575 done:
576 tsk->oom_reaper_list = NULL;
577
578 /*
579 * Hide this mm from OOM killer because it has been either reaped or
580 * somebody can't call up_write(mmap_sem).
581 */
582 set_bit(MMF_OOM_SKIP, &mm->flags);
583
584 /* Drop a reference taken by wake_oom_reaper */
585 put_task_struct(tsk);
586 }
587
588 static int oom_reaper(void *unused)
589 {
590 while (true) {
591 struct task_struct *tsk = NULL;
592
593 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
594 spin_lock(&oom_reaper_lock);
595 if (oom_reaper_list != NULL) {
596 tsk = oom_reaper_list;
597 oom_reaper_list = tsk->oom_reaper_list;
598 }
599 spin_unlock(&oom_reaper_lock);
600
601 if (tsk)
602 oom_reap_task(tsk);
603 }
604
605 return 0;
606 }
607
608 static void wake_oom_reaper(struct task_struct *tsk)
609 {
610 if (!oom_reaper_th)
611 return;
612
613 /* tsk is already queued? */
614 if (tsk == oom_reaper_list || tsk->oom_reaper_list)
615 return;
616
617 get_task_struct(tsk);
618
619 spin_lock(&oom_reaper_lock);
620 tsk->oom_reaper_list = oom_reaper_list;
621 oom_reaper_list = tsk;
622 spin_unlock(&oom_reaper_lock);
623 trace_wake_reaper(tsk->pid);
624 wake_up(&oom_reaper_wait);
625 }
626
627 static int __init oom_init(void)
628 {
629 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
630 if (IS_ERR(oom_reaper_th)) {
631 pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
632 PTR_ERR(oom_reaper_th));
633 oom_reaper_th = NULL;
634 }
635 return 0;
636 }
637 subsys_initcall(oom_init)
638 #else
639 static inline void wake_oom_reaper(struct task_struct *tsk)
640 {
641 }
642 #endif /* CONFIG_MMU */
643
644 /**
645 * mark_oom_victim - mark the given task as OOM victim
646 * @tsk: task to mark
647 *
648 * Has to be called with oom_lock held and never after
649 * oom has been disabled already.
650 *
651 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
652 * under task_lock or operate on the current).
653 */
654 static void mark_oom_victim(struct task_struct *tsk)
655 {
656 struct mm_struct *mm = tsk->mm;
657
658 WARN_ON(oom_killer_disabled);
659 /* OOM killer might race with memcg OOM */
660 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
661 return;
662
663 /* oom_mm is bound to the signal struct life time. */
664 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
665 mmgrab(tsk->signal->oom_mm);
666
667 /*
668 * Make sure that the task is woken up from uninterruptible sleep
669 * if it is frozen because OOM killer wouldn't be able to free
670 * any memory and livelock. freezing_slow_path will tell the freezer
671 * that TIF_MEMDIE tasks should be ignored.
672 */
673 __thaw_task(tsk);
674 atomic_inc(&oom_victims);
675 trace_mark_victim(tsk->pid);
676 }
677
678 /**
679 * exit_oom_victim - note the exit of an OOM victim
680 */
681 void exit_oom_victim(void)
682 {
683 clear_thread_flag(TIF_MEMDIE);
684
685 if (!atomic_dec_return(&oom_victims))
686 wake_up_all(&oom_victims_wait);
687 }
688
689 /**
690 * oom_killer_enable - enable OOM killer
691 */
692 void oom_killer_enable(void)
693 {
694 oom_killer_disabled = false;
695 pr_info("OOM killer enabled.\n");
696 }
697
698 /**
699 * oom_killer_disable - disable OOM killer
700 * @timeout: maximum timeout to wait for oom victims in jiffies
701 *
702 * Forces all page allocations to fail rather than trigger OOM killer.
703 * Will block and wait until all OOM victims are killed or the given
704 * timeout expires.
705 *
706 * The function cannot be called when there are runnable user tasks because
707 * the userspace would see unexpected allocation failures as a result. Any
708 * new usage of this function should be consulted with MM people.
709 *
710 * Returns true if successful and false if the OOM killer cannot be
711 * disabled.
712 */
713 bool oom_killer_disable(signed long timeout)
714 {
715 signed long ret;
716
717 /*
718 * Make sure to not race with an ongoing OOM killer. Check that the
719 * current is not killed (possibly due to sharing the victim's memory).
720 */
721 if (mutex_lock_killable(&oom_lock))
722 return false;
723 oom_killer_disabled = true;
724 mutex_unlock(&oom_lock);
725
726 ret = wait_event_interruptible_timeout(oom_victims_wait,
727 !atomic_read(&oom_victims), timeout);
728 if (ret <= 0) {
729 oom_killer_enable();
730 return false;
731 }
732 pr_info("OOM killer disabled.\n");
733
734 return true;
735 }
736
737 static inline bool __task_will_free_mem(struct task_struct *task)
738 {
739 struct signal_struct *sig = task->signal;
740
741 /*
742 * A coredumping process may sleep for an extended period in exit_mm(),
743 * so the oom killer cannot assume that the process will promptly exit
744 * and release memory.
745 */
746 if (sig->flags & SIGNAL_GROUP_COREDUMP)
747 return false;
748
749 if (sig->flags & SIGNAL_GROUP_EXIT)
750 return true;
751
752 if (thread_group_empty(task) && (task->flags & PF_EXITING))
753 return true;
754
755 return false;
756 }
757
758 /*
759 * Checks whether the given task is dying or exiting and likely to
760 * release its address space. This means that all threads and processes
761 * sharing the same mm have to be killed or exiting.
762 * Caller has to make sure that task->mm is stable (hold task_lock or
763 * it operates on the current).
764 */
765 static bool task_will_free_mem(struct task_struct *task)
766 {
767 struct mm_struct *mm = task->mm;
768 struct task_struct *p;
769 bool ret = true;
770
771 /*
772 * Skip tasks without mm because it might have passed its exit_mm and
773 * exit_oom_victim. oom_reaper could have rescued that but do not rely
774 * on that for now. We can consider find_lock_task_mm in future.
775 */
776 if (!mm)
777 return false;
778
779 if (!__task_will_free_mem(task))
780 return false;
781
782 /*
783 * This task has already been drained by the oom reaper so there are
784 * only small chances it will free some more
785 */
786 if (test_bit(MMF_OOM_SKIP, &mm->flags))
787 return false;
788
789 if (atomic_read(&mm->mm_users) <= 1)
790 return true;
791
792 /*
793 * Make sure that all tasks which share the mm with the given tasks
794 * are dying as well to make sure that a) nobody pins its mm and
795 * b) the task is also reapable by the oom reaper.
796 */
797 rcu_read_lock();
798 for_each_process(p) {
799 if (!process_shares_mm(p, mm))
800 continue;
801 if (same_thread_group(task, p))
802 continue;
803 ret = __task_will_free_mem(p);
804 if (!ret)
805 break;
806 }
807 rcu_read_unlock();
808
809 return ret;
810 }
811
812 static void oom_kill_process(struct oom_control *oc, const char *message)
813 {
814 struct task_struct *p = oc->chosen;
815 unsigned int points = oc->chosen_points;
816 struct task_struct *victim = p;
817 struct task_struct *child;
818 struct task_struct *t;
819 struct mm_struct *mm;
820 unsigned int victim_points = 0;
821 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
822 DEFAULT_RATELIMIT_BURST);
823 bool can_oom_reap = true;
824
825 /*
826 * If the task is already exiting, don't alarm the sysadmin or kill
827 * its children or threads, just set TIF_MEMDIE so it can die quickly
828 */
829 task_lock(p);
830 if (task_will_free_mem(p)) {
831 mark_oom_victim(p);
832 wake_oom_reaper(p);
833 task_unlock(p);
834 put_task_struct(p);
835 return;
836 }
837 task_unlock(p);
838
839 if (__ratelimit(&oom_rs))
840 dump_header(oc, p);
841
842 pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
843 message, task_pid_nr(p), p->comm, points);
844
845 /*
846 * If any of p's children has a different mm and is eligible for kill,
847 * the one with the highest oom_badness() score is sacrificed for its
848 * parent. This attempts to lose the minimal amount of work done while
849 * still freeing memory.
850 */
851 read_lock(&tasklist_lock);
852 for_each_thread(p, t) {
853 list_for_each_entry(child, &t->children, sibling) {
854 unsigned int child_points;
855
856 if (process_shares_mm(child, p->mm))
857 continue;
858 /*
859 * oom_badness() returns 0 if the thread is unkillable
860 */
861 child_points = oom_badness(child,
862 oc->memcg, oc->nodemask, oc->totalpages);
863 if (child_points > victim_points) {
864 put_task_struct(victim);
865 victim = child;
866 victim_points = child_points;
867 get_task_struct(victim);
868 }
869 }
870 }
871 read_unlock(&tasklist_lock);
872
873 p = find_lock_task_mm(victim);
874 if (!p) {
875 put_task_struct(victim);
876 return;
877 } else if (victim != p) {
878 get_task_struct(p);
879 put_task_struct(victim);
880 victim = p;
881 }
882
883 /* Get a reference to safely compare mm after task_unlock(victim) */
884 mm = victim->mm;
885 mmgrab(mm);
886
887 /* Raise event before sending signal: task reaper must see this */
888 count_vm_event(OOM_KILL);
889 count_memcg_event_mm(mm, OOM_KILL);
890
891 /*
892 * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
893 * the OOM victim from depleting the memory reserves from the user
894 * space under its control.
895 */
896 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
897 mark_oom_victim(victim);
898 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
899 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
900 K(get_mm_counter(victim->mm, MM_ANONPAGES)),
901 K(get_mm_counter(victim->mm, MM_FILEPAGES)),
902 K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
903 task_unlock(victim);
904
905 /*
906 * Kill all user processes sharing victim->mm in other thread groups, if
907 * any. They don't get access to memory reserves, though, to avoid
908 * depletion of all memory. This prevents mm->mmap_sem livelock when an
909 * oom killed thread cannot exit because it requires the semaphore and
910 * its contended by another thread trying to allocate memory itself.
911 * That thread will now get access to memory reserves since it has a
912 * pending fatal signal.
913 */
914 rcu_read_lock();
915 for_each_process(p) {
916 if (!process_shares_mm(p, mm))
917 continue;
918 if (same_thread_group(p, victim))
919 continue;
920 if (is_global_init(p)) {
921 can_oom_reap = false;
922 set_bit(MMF_OOM_SKIP, &mm->flags);
923 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
924 task_pid_nr(victim), victim->comm,
925 task_pid_nr(p), p->comm);
926 continue;
927 }
928 /*
929 * No use_mm() user needs to read from the userspace so we are
930 * ok to reap it.
931 */
932 if (unlikely(p->flags & PF_KTHREAD))
933 continue;
934 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
935 }
936 rcu_read_unlock();
937
938 if (can_oom_reap)
939 wake_oom_reaper(victim);
940
941 mmdrop(mm);
942 put_task_struct(victim);
943 }
944 #undef K
945
946 /*
947 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
948 */
949 static void check_panic_on_oom(struct oom_control *oc,
950 enum oom_constraint constraint)
951 {
952 if (likely(!sysctl_panic_on_oom))
953 return;
954 if (sysctl_panic_on_oom != 2) {
955 /*
956 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
957 * does not panic for cpuset, mempolicy, or memcg allocation
958 * failures.
959 */
960 if (constraint != CONSTRAINT_NONE)
961 return;
962 }
963 /* Do not panic for oom kills triggered by sysrq */
964 if (is_sysrq_oom(oc))
965 return;
966 dump_header(oc, NULL);
967 panic("Out of memory: %s panic_on_oom is enabled\n",
968 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
969 }
970
971 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
972
973 int register_oom_notifier(struct notifier_block *nb)
974 {
975 return blocking_notifier_chain_register(&oom_notify_list, nb);
976 }
977 EXPORT_SYMBOL_GPL(register_oom_notifier);
978
979 int unregister_oom_notifier(struct notifier_block *nb)
980 {
981 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
982 }
983 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
984
985 /**
986 * out_of_memory - kill the "best" process when we run out of memory
987 * @oc: pointer to struct oom_control
988 *
989 * If we run out of memory, we have the choice between either
990 * killing a random task (bad), letting the system crash (worse)
991 * OR try to be smart about which process to kill. Note that we
992 * don't have to be perfect here, we just have to be good.
993 */
994 bool out_of_memory(struct oom_control *oc)
995 {
996 unsigned long freed = 0;
997 enum oom_constraint constraint = CONSTRAINT_NONE;
998
999 if (oom_killer_disabled)
1000 return false;
1001
1002 if (!is_memcg_oom(oc)) {
1003 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1004 if (freed > 0)
1005 /* Got some memory back in the last second. */
1006 return true;
1007 }
1008
1009 /*
1010 * If current has a pending SIGKILL or is exiting, then automatically
1011 * select it. The goal is to allow it to allocate so that it may
1012 * quickly exit and free its memory.
1013 */
1014 if (task_will_free_mem(current)) {
1015 mark_oom_victim(current);
1016 wake_oom_reaper(current);
1017 return true;
1018 }
1019
1020 /*
1021 * The OOM killer does not compensate for IO-less reclaim.
1022 * pagefault_out_of_memory lost its gfp context so we have to
1023 * make sure exclude 0 mask - all other users should have at least
1024 * ___GFP_DIRECT_RECLAIM to get here.
1025 */
1026 if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS))
1027 return true;
1028
1029 /*
1030 * Check if there were limitations on the allocation (only relevant for
1031 * NUMA and memcg) that may require different handling.
1032 */
1033 constraint = constrained_alloc(oc);
1034 if (constraint != CONSTRAINT_MEMORY_POLICY)
1035 oc->nodemask = NULL;
1036 check_panic_on_oom(oc, constraint);
1037
1038 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1039 current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
1040 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1041 get_task_struct(current);
1042 oc->chosen = current;
1043 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1044 return true;
1045 }
1046
1047 select_bad_process(oc);
1048 /* Found nothing?!?! Either we hang forever, or we panic. */
1049 if (!oc->chosen && !is_sysrq_oom(oc) && !is_memcg_oom(oc)) {
1050 dump_header(oc, NULL);
1051 panic("Out of memory and no killable processes...\n");
1052 }
1053 if (oc->chosen && oc->chosen != (void *)-1UL) {
1054 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1055 "Memory cgroup out of memory");
1056 /*
1057 * Give the killed process a good chance to exit before trying
1058 * to allocate memory again.
1059 */
1060 schedule_timeout_killable(1);
1061 }
1062 return !!oc->chosen;
1063 }
1064
1065 /*
1066 * The pagefault handler calls here because it is out of memory, so kill a
1067 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1068 * killing is already in progress so do nothing.
1069 */
1070 void pagefault_out_of_memory(void)
1071 {
1072 struct oom_control oc = {
1073 .zonelist = NULL,
1074 .nodemask = NULL,
1075 .memcg = NULL,
1076 .gfp_mask = 0,
1077 .order = 0,
1078 };
1079
1080 if (mem_cgroup_oom_synchronize(true))
1081 return;
1082
1083 if (!mutex_trylock(&oom_lock))
1084 return;
1085 out_of_memory(&oc);
1086 mutex_unlock(&oom_lock);
1087 }