]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/oom_kill.c
mm, oom_reaper: do not mmput synchronously from the oom reaper context
[mirror_ubuntu-zesty-kernel.git] / mm / oom_kill.c
1 /*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
9 *
10 * The routines in this file are used to kill a process when
11 * we're seriously out of memory. This gets called from __alloc_pages()
12 * in mm/page_alloc.c when we really run out of memory.
13 *
14 * Since we won't call these routines often (on a well-configured
15 * machine) this file will double as a 'coding guide' and a signpost
16 * for newbie kernel hackers. It features several pointers to major
17 * kernel subsystems and hints as to where to find out what things do.
18 */
19
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/swap.h>
26 #include <linux/timex.h>
27 #include <linux/jiffies.h>
28 #include <linux/cpuset.h>
29 #include <linux/export.h>
30 #include <linux/notifier.h>
31 #include <linux/memcontrol.h>
32 #include <linux/mempolicy.h>
33 #include <linux/security.h>
34 #include <linux/ptrace.h>
35 #include <linux/freezer.h>
36 #include <linux/ftrace.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kthread.h>
39 #include <linux/init.h>
40
41 #include <asm/tlb.h>
42 #include "internal.h"
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/oom.h>
46
47 int sysctl_panic_on_oom;
48 int sysctl_oom_kill_allocating_task;
49 int sysctl_oom_dump_tasks = 1;
50
51 DEFINE_MUTEX(oom_lock);
52
53 #ifdef CONFIG_NUMA
54 /**
55 * has_intersects_mems_allowed() - check task eligiblity for kill
56 * @start: task struct of which task to consider
57 * @mask: nodemask passed to page allocator for mempolicy ooms
58 *
59 * Task eligibility is determined by whether or not a candidate task, @tsk,
60 * shares the same mempolicy nodes as current if it is bound by such a policy
61 * and whether or not it has the same set of allowed cpuset nodes.
62 */
63 static bool has_intersects_mems_allowed(struct task_struct *start,
64 const nodemask_t *mask)
65 {
66 struct task_struct *tsk;
67 bool ret = false;
68
69 rcu_read_lock();
70 for_each_thread(start, tsk) {
71 if (mask) {
72 /*
73 * If this is a mempolicy constrained oom, tsk's
74 * cpuset is irrelevant. Only return true if its
75 * mempolicy intersects current, otherwise it may be
76 * needlessly killed.
77 */
78 ret = mempolicy_nodemask_intersects(tsk, mask);
79 } else {
80 /*
81 * This is not a mempolicy constrained oom, so only
82 * check the mems of tsk's cpuset.
83 */
84 ret = cpuset_mems_allowed_intersects(current, tsk);
85 }
86 if (ret)
87 break;
88 }
89 rcu_read_unlock();
90
91 return ret;
92 }
93 #else
94 static bool has_intersects_mems_allowed(struct task_struct *tsk,
95 const nodemask_t *mask)
96 {
97 return true;
98 }
99 #endif /* CONFIG_NUMA */
100
101 /*
102 * The process p may have detached its own ->mm while exiting or through
103 * use_mm(), but one or more of its subthreads may still have a valid
104 * pointer. Return p, or any of its subthreads with a valid ->mm, with
105 * task_lock() held.
106 */
107 struct task_struct *find_lock_task_mm(struct task_struct *p)
108 {
109 struct task_struct *t;
110
111 rcu_read_lock();
112
113 for_each_thread(p, t) {
114 task_lock(t);
115 if (likely(t->mm))
116 goto found;
117 task_unlock(t);
118 }
119 t = NULL;
120 found:
121 rcu_read_unlock();
122
123 return t;
124 }
125
126 /*
127 * order == -1 means the oom kill is required by sysrq, otherwise only
128 * for display purposes.
129 */
130 static inline bool is_sysrq_oom(struct oom_control *oc)
131 {
132 return oc->order == -1;
133 }
134
135 /* return true if the task is not adequate as candidate victim task. */
136 static bool oom_unkillable_task(struct task_struct *p,
137 struct mem_cgroup *memcg, const nodemask_t *nodemask)
138 {
139 if (is_global_init(p))
140 return true;
141 if (p->flags & PF_KTHREAD)
142 return true;
143
144 /* When mem_cgroup_out_of_memory() and p is not member of the group */
145 if (memcg && !task_in_mem_cgroup(p, memcg))
146 return true;
147
148 /* p may not have freeable memory in nodemask */
149 if (!has_intersects_mems_allowed(p, nodemask))
150 return true;
151
152 return false;
153 }
154
155 /**
156 * oom_badness - heuristic function to determine which candidate task to kill
157 * @p: task struct of which task we should calculate
158 * @totalpages: total present RAM allowed for page allocation
159 *
160 * The heuristic for determining which task to kill is made to be as simple and
161 * predictable as possible. The goal is to return the highest value for the
162 * task consuming the most memory to avoid subsequent oom failures.
163 */
164 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
165 const nodemask_t *nodemask, unsigned long totalpages)
166 {
167 long points;
168 long adj;
169
170 if (oom_unkillable_task(p, memcg, nodemask))
171 return 0;
172
173 p = find_lock_task_mm(p);
174 if (!p)
175 return 0;
176
177 /*
178 * Do not even consider tasks which are explicitly marked oom
179 * unkillable or have been already oom reaped.
180 */
181 adj = (long)p->signal->oom_score_adj;
182 if (adj == OOM_SCORE_ADJ_MIN ||
183 test_bit(MMF_OOM_REAPED, &p->mm->flags)) {
184 task_unlock(p);
185 return 0;
186 }
187
188 /*
189 * The baseline for the badness score is the proportion of RAM that each
190 * task's rss, pagetable and swap space use.
191 */
192 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
193 atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
194 task_unlock(p);
195
196 /*
197 * Root processes get 3% bonus, just like the __vm_enough_memory()
198 * implementation used by LSMs.
199 */
200 if (has_capability_noaudit(p, CAP_SYS_ADMIN))
201 points -= (points * 3) / 100;
202
203 /* Normalize to oom_score_adj units */
204 adj *= totalpages / 1000;
205 points += adj;
206
207 /*
208 * Never return 0 for an eligible task regardless of the root bonus and
209 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
210 */
211 return points > 0 ? points : 1;
212 }
213
214 /*
215 * Determine the type of allocation constraint.
216 */
217 #ifdef CONFIG_NUMA
218 static enum oom_constraint constrained_alloc(struct oom_control *oc,
219 unsigned long *totalpages)
220 {
221 struct zone *zone;
222 struct zoneref *z;
223 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
224 bool cpuset_limited = false;
225 int nid;
226
227 /* Default to all available memory */
228 *totalpages = totalram_pages + total_swap_pages;
229
230 if (!oc->zonelist)
231 return CONSTRAINT_NONE;
232 /*
233 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
234 * to kill current.We have to random task kill in this case.
235 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
236 */
237 if (oc->gfp_mask & __GFP_THISNODE)
238 return CONSTRAINT_NONE;
239
240 /*
241 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
242 * the page allocator means a mempolicy is in effect. Cpuset policy
243 * is enforced in get_page_from_freelist().
244 */
245 if (oc->nodemask &&
246 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
247 *totalpages = total_swap_pages;
248 for_each_node_mask(nid, *oc->nodemask)
249 *totalpages += node_spanned_pages(nid);
250 return CONSTRAINT_MEMORY_POLICY;
251 }
252
253 /* Check this allocation failure is caused by cpuset's wall function */
254 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
255 high_zoneidx, oc->nodemask)
256 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
257 cpuset_limited = true;
258
259 if (cpuset_limited) {
260 *totalpages = total_swap_pages;
261 for_each_node_mask(nid, cpuset_current_mems_allowed)
262 *totalpages += node_spanned_pages(nid);
263 return CONSTRAINT_CPUSET;
264 }
265 return CONSTRAINT_NONE;
266 }
267 #else
268 static enum oom_constraint constrained_alloc(struct oom_control *oc,
269 unsigned long *totalpages)
270 {
271 *totalpages = totalram_pages + total_swap_pages;
272 return CONSTRAINT_NONE;
273 }
274 #endif
275
276 enum oom_scan_t oom_scan_process_thread(struct oom_control *oc,
277 struct task_struct *task, unsigned long totalpages)
278 {
279 if (oom_unkillable_task(task, NULL, oc->nodemask))
280 return OOM_SCAN_CONTINUE;
281
282 /*
283 * This task already has access to memory reserves and is being killed.
284 * Don't allow any other task to have access to the reserves.
285 */
286 if (test_tsk_thread_flag(task, TIF_MEMDIE)) {
287 if (!is_sysrq_oom(oc))
288 return OOM_SCAN_ABORT;
289 }
290 if (!task->mm)
291 return OOM_SCAN_CONTINUE;
292
293 /*
294 * If task is allocating a lot of memory and has been marked to be
295 * killed first if it triggers an oom, then select it.
296 */
297 if (oom_task_origin(task))
298 return OOM_SCAN_SELECT;
299
300 return OOM_SCAN_OK;
301 }
302
303 /*
304 * Simple selection loop. We chose the process with the highest
305 * number of 'points'. Returns -1 on scan abort.
306 */
307 static struct task_struct *select_bad_process(struct oom_control *oc,
308 unsigned int *ppoints, unsigned long totalpages)
309 {
310 struct task_struct *g, *p;
311 struct task_struct *chosen = NULL;
312 unsigned long chosen_points = 0;
313
314 rcu_read_lock();
315 for_each_process_thread(g, p) {
316 unsigned int points;
317
318 switch (oom_scan_process_thread(oc, p, totalpages)) {
319 case OOM_SCAN_SELECT:
320 chosen = p;
321 chosen_points = ULONG_MAX;
322 /* fall through */
323 case OOM_SCAN_CONTINUE:
324 continue;
325 case OOM_SCAN_ABORT:
326 rcu_read_unlock();
327 return (struct task_struct *)(-1UL);
328 case OOM_SCAN_OK:
329 break;
330 };
331 points = oom_badness(p, NULL, oc->nodemask, totalpages);
332 if (!points || points < chosen_points)
333 continue;
334 /* Prefer thread group leaders for display purposes */
335 if (points == chosen_points && thread_group_leader(chosen))
336 continue;
337
338 chosen = p;
339 chosen_points = points;
340 }
341 if (chosen)
342 get_task_struct(chosen);
343 rcu_read_unlock();
344
345 *ppoints = chosen_points * 1000 / totalpages;
346 return chosen;
347 }
348
349 /**
350 * dump_tasks - dump current memory state of all system tasks
351 * @memcg: current's memory controller, if constrained
352 * @nodemask: nodemask passed to page allocator for mempolicy ooms
353 *
354 * Dumps the current memory state of all eligible tasks. Tasks not in the same
355 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
356 * are not shown.
357 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
358 * swapents, oom_score_adj value, and name.
359 */
360 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
361 {
362 struct task_struct *p;
363 struct task_struct *task;
364
365 pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name\n");
366 rcu_read_lock();
367 for_each_process(p) {
368 if (oom_unkillable_task(p, memcg, nodemask))
369 continue;
370
371 task = find_lock_task_mm(p);
372 if (!task) {
373 /*
374 * This is a kthread or all of p's threads have already
375 * detached their mm's. There's no need to report
376 * them; they can't be oom killed anyway.
377 */
378 continue;
379 }
380
381 pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu %5hd %s\n",
382 task->pid, from_kuid(&init_user_ns, task_uid(task)),
383 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
384 atomic_long_read(&task->mm->nr_ptes),
385 mm_nr_pmds(task->mm),
386 get_mm_counter(task->mm, MM_SWAPENTS),
387 task->signal->oom_score_adj, task->comm);
388 task_unlock(task);
389 }
390 rcu_read_unlock();
391 }
392
393 static void dump_header(struct oom_control *oc, struct task_struct *p,
394 struct mem_cgroup *memcg)
395 {
396 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
397 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
398 current->signal->oom_score_adj);
399
400 cpuset_print_current_mems_allowed();
401 dump_stack();
402 if (memcg)
403 mem_cgroup_print_oom_info(memcg, p);
404 else
405 show_mem(SHOW_MEM_FILTER_NODES);
406 if (sysctl_oom_dump_tasks)
407 dump_tasks(memcg, oc->nodemask);
408 }
409
410 /*
411 * Number of OOM victims in flight
412 */
413 static atomic_t oom_victims = ATOMIC_INIT(0);
414 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
415
416 bool oom_killer_disabled __read_mostly;
417
418 #define K(x) ((x) << (PAGE_SHIFT-10))
419
420 /*
421 * task->mm can be NULL if the task is the exited group leader. So to
422 * determine whether the task is using a particular mm, we examine all the
423 * task's threads: if one of those is using this mm then this task was also
424 * using it.
425 */
426 static bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
427 {
428 struct task_struct *t;
429
430 for_each_thread(p, t) {
431 struct mm_struct *t_mm = READ_ONCE(t->mm);
432 if (t_mm)
433 return t_mm == mm;
434 }
435 return false;
436 }
437
438
439 #ifdef CONFIG_MMU
440 /*
441 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
442 * victim (if that is possible) to help the OOM killer to move on.
443 */
444 static struct task_struct *oom_reaper_th;
445 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
446 static struct task_struct *oom_reaper_list;
447 static DEFINE_SPINLOCK(oom_reaper_lock);
448
449 static bool __oom_reap_task(struct task_struct *tsk)
450 {
451 struct mmu_gather tlb;
452 struct vm_area_struct *vma;
453 struct mm_struct *mm;
454 struct task_struct *p;
455 struct zap_details details = {.check_swap_entries = true,
456 .ignore_dirty = true};
457 bool ret = true;
458
459 /*
460 * Make sure we find the associated mm_struct even when the particular
461 * thread has already terminated and cleared its mm.
462 * We might have race with exit path so consider our work done if there
463 * is no mm.
464 */
465 p = find_lock_task_mm(tsk);
466 if (!p)
467 return true;
468
469 mm = p->mm;
470 if (!atomic_inc_not_zero(&mm->mm_users)) {
471 task_unlock(p);
472 return true;
473 }
474
475 task_unlock(p);
476
477 if (!down_read_trylock(&mm->mmap_sem)) {
478 ret = false;
479 goto out;
480 }
481
482 tlb_gather_mmu(&tlb, mm, 0, -1);
483 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
484 if (is_vm_hugetlb_page(vma))
485 continue;
486
487 /*
488 * mlocked VMAs require explicit munlocking before unmap.
489 * Let's keep it simple here and skip such VMAs.
490 */
491 if (vma->vm_flags & VM_LOCKED)
492 continue;
493
494 /*
495 * Only anonymous pages have a good chance to be dropped
496 * without additional steps which we cannot afford as we
497 * are OOM already.
498 *
499 * We do not even care about fs backed pages because all
500 * which are reclaimable have already been reclaimed and
501 * we do not want to block exit_mmap by keeping mm ref
502 * count elevated without a good reason.
503 */
504 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
505 unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
506 &details);
507 }
508 tlb_finish_mmu(&tlb, 0, -1);
509 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
510 task_pid_nr(tsk), tsk->comm,
511 K(get_mm_counter(mm, MM_ANONPAGES)),
512 K(get_mm_counter(mm, MM_FILEPAGES)),
513 K(get_mm_counter(mm, MM_SHMEMPAGES)));
514 up_read(&mm->mmap_sem);
515
516 /*
517 * This task can be safely ignored because we cannot do much more
518 * to release its memory.
519 */
520 set_bit(MMF_OOM_REAPED, &mm->flags);
521 out:
522 /*
523 * Drop our reference but make sure the mmput slow path is called from a
524 * different context because we shouldn't risk we get stuck there and
525 * put the oom_reaper out of the way.
526 */
527 mmput_async(mm);
528 return ret;
529 }
530
531 #define MAX_OOM_REAP_RETRIES 10
532 static void oom_reap_task(struct task_struct *tsk)
533 {
534 int attempts = 0;
535
536 /* Retry the down_read_trylock(mmap_sem) a few times */
537 while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task(tsk))
538 schedule_timeout_idle(HZ/10);
539
540 if (attempts > MAX_OOM_REAP_RETRIES) {
541 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
542 task_pid_nr(tsk), tsk->comm);
543 debug_show_all_locks();
544 }
545
546 /*
547 * Clear TIF_MEMDIE because the task shouldn't be sitting on a
548 * reasonably reclaimable memory anymore or it is not a good candidate
549 * for the oom victim right now because it cannot release its memory
550 * itself nor by the oom reaper.
551 */
552 tsk->oom_reaper_list = NULL;
553 exit_oom_victim(tsk);
554
555 /* Drop a reference taken by wake_oom_reaper */
556 put_task_struct(tsk);
557 }
558
559 static int oom_reaper(void *unused)
560 {
561 set_freezable();
562
563 while (true) {
564 struct task_struct *tsk = NULL;
565
566 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
567 spin_lock(&oom_reaper_lock);
568 if (oom_reaper_list != NULL) {
569 tsk = oom_reaper_list;
570 oom_reaper_list = tsk->oom_reaper_list;
571 }
572 spin_unlock(&oom_reaper_lock);
573
574 if (tsk)
575 oom_reap_task(tsk);
576 }
577
578 return 0;
579 }
580
581 static void wake_oom_reaper(struct task_struct *tsk)
582 {
583 if (!oom_reaper_th)
584 return;
585
586 /* tsk is already queued? */
587 if (tsk == oom_reaper_list || tsk->oom_reaper_list)
588 return;
589
590 get_task_struct(tsk);
591
592 spin_lock(&oom_reaper_lock);
593 tsk->oom_reaper_list = oom_reaper_list;
594 oom_reaper_list = tsk;
595 spin_unlock(&oom_reaper_lock);
596 wake_up(&oom_reaper_wait);
597 }
598
599 /* Check if we can reap the given task. This has to be called with stable
600 * tsk->mm
601 */
602 void try_oom_reaper(struct task_struct *tsk)
603 {
604 struct mm_struct *mm = tsk->mm;
605 struct task_struct *p;
606
607 if (!mm)
608 return;
609
610 /*
611 * There might be other threads/processes which are either not
612 * dying or even not killable.
613 */
614 if (atomic_read(&mm->mm_users) > 1) {
615 rcu_read_lock();
616 for_each_process(p) {
617 bool exiting;
618
619 if (!process_shares_mm(p, mm))
620 continue;
621 if (same_thread_group(p, tsk))
622 continue;
623 if (fatal_signal_pending(p))
624 continue;
625
626 /*
627 * If the task is exiting make sure the whole thread group
628 * is exiting and cannot acces mm anymore.
629 */
630 spin_lock_irq(&p->sighand->siglock);
631 exiting = signal_group_exit(p->signal);
632 spin_unlock_irq(&p->sighand->siglock);
633 if (exiting)
634 continue;
635
636 /* Give up */
637 rcu_read_unlock();
638 return;
639 }
640 rcu_read_unlock();
641 }
642
643 wake_oom_reaper(tsk);
644 }
645
646 static int __init oom_init(void)
647 {
648 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
649 if (IS_ERR(oom_reaper_th)) {
650 pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
651 PTR_ERR(oom_reaper_th));
652 oom_reaper_th = NULL;
653 }
654 return 0;
655 }
656 subsys_initcall(oom_init)
657 #else
658 static void wake_oom_reaper(struct task_struct *tsk)
659 {
660 }
661 #endif
662
663 /**
664 * mark_oom_victim - mark the given task as OOM victim
665 * @tsk: task to mark
666 *
667 * Has to be called with oom_lock held and never after
668 * oom has been disabled already.
669 */
670 void mark_oom_victim(struct task_struct *tsk)
671 {
672 WARN_ON(oom_killer_disabled);
673 /* OOM killer might race with memcg OOM */
674 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
675 return;
676 /*
677 * Make sure that the task is woken up from uninterruptible sleep
678 * if it is frozen because OOM killer wouldn't be able to free
679 * any memory and livelock. freezing_slow_path will tell the freezer
680 * that TIF_MEMDIE tasks should be ignored.
681 */
682 __thaw_task(tsk);
683 atomic_inc(&oom_victims);
684 }
685
686 /**
687 * exit_oom_victim - note the exit of an OOM victim
688 */
689 void exit_oom_victim(struct task_struct *tsk)
690 {
691 if (!test_and_clear_tsk_thread_flag(tsk, TIF_MEMDIE))
692 return;
693
694 if (!atomic_dec_return(&oom_victims))
695 wake_up_all(&oom_victims_wait);
696 }
697
698 /**
699 * oom_killer_disable - disable OOM killer
700 *
701 * Forces all page allocations to fail rather than trigger OOM killer.
702 * Will block and wait until all OOM victims are killed.
703 *
704 * The function cannot be called when there are runnable user tasks because
705 * the userspace would see unexpected allocation failures as a result. Any
706 * new usage of this function should be consulted with MM people.
707 *
708 * Returns true if successful and false if the OOM killer cannot be
709 * disabled.
710 */
711 bool oom_killer_disable(void)
712 {
713 /*
714 * Make sure to not race with an ongoing OOM killer. Check that the
715 * current is not killed (possibly due to sharing the victim's memory).
716 */
717 if (mutex_lock_killable(&oom_lock))
718 return false;
719 oom_killer_disabled = true;
720 mutex_unlock(&oom_lock);
721
722 wait_event(oom_victims_wait, !atomic_read(&oom_victims));
723
724 return true;
725 }
726
727 /**
728 * oom_killer_enable - enable OOM killer
729 */
730 void oom_killer_enable(void)
731 {
732 oom_killer_disabled = false;
733 }
734
735 /*
736 * Must be called while holding a reference to p, which will be released upon
737 * returning.
738 */
739 void oom_kill_process(struct oom_control *oc, struct task_struct *p,
740 unsigned int points, unsigned long totalpages,
741 struct mem_cgroup *memcg, const char *message)
742 {
743 struct task_struct *victim = p;
744 struct task_struct *child;
745 struct task_struct *t;
746 struct mm_struct *mm;
747 unsigned int victim_points = 0;
748 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
749 DEFAULT_RATELIMIT_BURST);
750 bool can_oom_reap = true;
751
752 /*
753 * If the task is already exiting, don't alarm the sysadmin or kill
754 * its children or threads, just set TIF_MEMDIE so it can die quickly
755 */
756 task_lock(p);
757 if (p->mm && task_will_free_mem(p)) {
758 mark_oom_victim(p);
759 try_oom_reaper(p);
760 task_unlock(p);
761 put_task_struct(p);
762 return;
763 }
764 task_unlock(p);
765
766 if (__ratelimit(&oom_rs))
767 dump_header(oc, p, memcg);
768
769 pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
770 message, task_pid_nr(p), p->comm, points);
771
772 /*
773 * If any of p's children has a different mm and is eligible for kill,
774 * the one with the highest oom_badness() score is sacrificed for its
775 * parent. This attempts to lose the minimal amount of work done while
776 * still freeing memory.
777 */
778 read_lock(&tasklist_lock);
779 for_each_thread(p, t) {
780 list_for_each_entry(child, &t->children, sibling) {
781 unsigned int child_points;
782
783 if (process_shares_mm(child, p->mm))
784 continue;
785 /*
786 * oom_badness() returns 0 if the thread is unkillable
787 */
788 child_points = oom_badness(child, memcg, oc->nodemask,
789 totalpages);
790 if (child_points > victim_points) {
791 put_task_struct(victim);
792 victim = child;
793 victim_points = child_points;
794 get_task_struct(victim);
795 }
796 }
797 }
798 read_unlock(&tasklist_lock);
799
800 p = find_lock_task_mm(victim);
801 if (!p) {
802 put_task_struct(victim);
803 return;
804 } else if (victim != p) {
805 get_task_struct(p);
806 put_task_struct(victim);
807 victim = p;
808 }
809
810 /* Get a reference to safely compare mm after task_unlock(victim) */
811 mm = victim->mm;
812 atomic_inc(&mm->mm_count);
813 /*
814 * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
815 * the OOM victim from depleting the memory reserves from the user
816 * space under its control.
817 */
818 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
819 mark_oom_victim(victim);
820 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
821 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
822 K(get_mm_counter(victim->mm, MM_ANONPAGES)),
823 K(get_mm_counter(victim->mm, MM_FILEPAGES)),
824 K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
825 task_unlock(victim);
826
827 /*
828 * Kill all user processes sharing victim->mm in other thread groups, if
829 * any. They don't get access to memory reserves, though, to avoid
830 * depletion of all memory. This prevents mm->mmap_sem livelock when an
831 * oom killed thread cannot exit because it requires the semaphore and
832 * its contended by another thread trying to allocate memory itself.
833 * That thread will now get access to memory reserves since it has a
834 * pending fatal signal.
835 */
836 rcu_read_lock();
837 for_each_process(p) {
838 if (!process_shares_mm(p, mm))
839 continue;
840 if (same_thread_group(p, victim))
841 continue;
842 if (unlikely(p->flags & PF_KTHREAD) || is_global_init(p) ||
843 p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
844 /*
845 * We cannot use oom_reaper for the mm shared by this
846 * process because it wouldn't get killed and so the
847 * memory might be still used.
848 */
849 can_oom_reap = false;
850 continue;
851 }
852 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
853 }
854 rcu_read_unlock();
855
856 if (can_oom_reap)
857 wake_oom_reaper(victim);
858
859 mmdrop(mm);
860 put_task_struct(victim);
861 }
862 #undef K
863
864 /*
865 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
866 */
867 void check_panic_on_oom(struct oom_control *oc, enum oom_constraint constraint,
868 struct mem_cgroup *memcg)
869 {
870 if (likely(!sysctl_panic_on_oom))
871 return;
872 if (sysctl_panic_on_oom != 2) {
873 /*
874 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
875 * does not panic for cpuset, mempolicy, or memcg allocation
876 * failures.
877 */
878 if (constraint != CONSTRAINT_NONE)
879 return;
880 }
881 /* Do not panic for oom kills triggered by sysrq */
882 if (is_sysrq_oom(oc))
883 return;
884 dump_header(oc, NULL, memcg);
885 panic("Out of memory: %s panic_on_oom is enabled\n",
886 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
887 }
888
889 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
890
891 int register_oom_notifier(struct notifier_block *nb)
892 {
893 return blocking_notifier_chain_register(&oom_notify_list, nb);
894 }
895 EXPORT_SYMBOL_GPL(register_oom_notifier);
896
897 int unregister_oom_notifier(struct notifier_block *nb)
898 {
899 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
900 }
901 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
902
903 /**
904 * out_of_memory - kill the "best" process when we run out of memory
905 * @oc: pointer to struct oom_control
906 *
907 * If we run out of memory, we have the choice between either
908 * killing a random task (bad), letting the system crash (worse)
909 * OR try to be smart about which process to kill. Note that we
910 * don't have to be perfect here, we just have to be good.
911 */
912 bool out_of_memory(struct oom_control *oc)
913 {
914 struct task_struct *p;
915 unsigned long totalpages;
916 unsigned long freed = 0;
917 unsigned int uninitialized_var(points);
918 enum oom_constraint constraint = CONSTRAINT_NONE;
919
920 if (oom_killer_disabled)
921 return false;
922
923 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
924 if (freed > 0)
925 /* Got some memory back in the last second. */
926 return true;
927
928 /*
929 * If current has a pending SIGKILL or is exiting, then automatically
930 * select it. The goal is to allow it to allocate so that it may
931 * quickly exit and free its memory.
932 *
933 * But don't select if current has already released its mm and cleared
934 * TIF_MEMDIE flag at exit_mm(), otherwise an OOM livelock may occur.
935 */
936 if (current->mm &&
937 (fatal_signal_pending(current) || task_will_free_mem(current))) {
938 mark_oom_victim(current);
939 try_oom_reaper(current);
940 return true;
941 }
942
943 /*
944 * The OOM killer does not compensate for IO-less reclaim.
945 * pagefault_out_of_memory lost its gfp context so we have to
946 * make sure exclude 0 mask - all other users should have at least
947 * ___GFP_DIRECT_RECLAIM to get here.
948 */
949 if (oc->gfp_mask && !(oc->gfp_mask & (__GFP_FS|__GFP_NOFAIL)))
950 return true;
951
952 /*
953 * Check if there were limitations on the allocation (only relevant for
954 * NUMA) that may require different handling.
955 */
956 constraint = constrained_alloc(oc, &totalpages);
957 if (constraint != CONSTRAINT_MEMORY_POLICY)
958 oc->nodemask = NULL;
959 check_panic_on_oom(oc, constraint, NULL);
960
961 if (sysctl_oom_kill_allocating_task && current->mm &&
962 !oom_unkillable_task(current, NULL, oc->nodemask) &&
963 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
964 get_task_struct(current);
965 oom_kill_process(oc, current, 0, totalpages, NULL,
966 "Out of memory (oom_kill_allocating_task)");
967 return true;
968 }
969
970 p = select_bad_process(oc, &points, totalpages);
971 /* Found nothing?!?! Either we hang forever, or we panic. */
972 if (!p && !is_sysrq_oom(oc)) {
973 dump_header(oc, NULL, NULL);
974 panic("Out of memory and no killable processes...\n");
975 }
976 if (p && p != (void *)-1UL) {
977 oom_kill_process(oc, p, points, totalpages, NULL,
978 "Out of memory");
979 /*
980 * Give the killed process a good chance to exit before trying
981 * to allocate memory again.
982 */
983 schedule_timeout_killable(1);
984 }
985 return true;
986 }
987
988 /*
989 * The pagefault handler calls here because it is out of memory, so kill a
990 * memory-hogging task. If any populated zone has ZONE_OOM_LOCKED set, a
991 * parallel oom killing is already in progress so do nothing.
992 */
993 void pagefault_out_of_memory(void)
994 {
995 struct oom_control oc = {
996 .zonelist = NULL,
997 .nodemask = NULL,
998 .gfp_mask = 0,
999 .order = 0,
1000 };
1001
1002 if (mem_cgroup_oom_synchronize(true))
1003 return;
1004
1005 if (!mutex_trylock(&oom_lock))
1006 return;
1007
1008 if (!out_of_memory(&oc)) {
1009 /*
1010 * There shouldn't be any user tasks runnable while the
1011 * OOM killer is disabled, so the current task has to
1012 * be a racing OOM victim for which oom_killer_disable()
1013 * is waiting for.
1014 */
1015 WARN_ON(test_thread_flag(TIF_MEMDIE));
1016 }
1017
1018 mutex_unlock(&oom_lock);
1019 }