]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/oom_kill.c
cdcf89cb9ff22f092da2b09ea0c595d0dac8c282
[mirror_ubuntu-jammy-kernel.git] / mm / oom_kill.c
1 /*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 *
8 * The routines in this file are used to kill a process when
9 * we're seriously out of memory. This gets called from __alloc_pages()
10 * in mm/page_alloc.c when we really run out of memory.
11 *
12 * Since we won't call these routines often (on a well-configured
13 * machine) this file will double as a 'coding guide' and a signpost
14 * for newbie kernel hackers. It features several pointers to major
15 * kernel subsystems and hints as to where to find out what things do.
16 */
17
18 #include <linux/oom.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/sched.h>
22 #include <linux/swap.h>
23 #include <linux/timex.h>
24 #include <linux/jiffies.h>
25 #include <linux/cpuset.h>
26 #include <linux/module.h>
27 #include <linux/notifier.h>
28 #include <linux/memcontrol.h>
29 #include <linux/security.h>
30
31 int sysctl_panic_on_oom;
32 int sysctl_oom_kill_allocating_task;
33 int sysctl_oom_dump_tasks;
34 static DEFINE_SPINLOCK(zone_scan_lock);
35 /* #define DEBUG */
36
37 /**
38 * badness - calculate a numeric value for how bad this task has been
39 * @p: task struct of which task we should calculate
40 * @uptime: current uptime in seconds
41 *
42 * The formula used is relatively simple and documented inline in the
43 * function. The main rationale is that we want to select a good task
44 * to kill when we run out of memory.
45 *
46 * Good in this context means that:
47 * 1) we lose the minimum amount of work done
48 * 2) we recover a large amount of memory
49 * 3) we don't kill anything innocent of eating tons of memory
50 * 4) we want to kill the minimum amount of processes (one)
51 * 5) we try to kill the process the user expects us to kill, this
52 * algorithm has been meticulously tuned to meet the principle
53 * of least surprise ... (be careful when you change it)
54 */
55
56 unsigned long badness(struct task_struct *p, unsigned long uptime)
57 {
58 unsigned long points, cpu_time, run_time;
59 struct mm_struct *mm;
60 struct task_struct *child;
61 int oom_adj;
62
63 task_lock(p);
64 mm = p->mm;
65 if (!mm) {
66 task_unlock(p);
67 return 0;
68 }
69 oom_adj = mm->oom_adj;
70 if (oom_adj == OOM_DISABLE) {
71 task_unlock(p);
72 return 0;
73 }
74
75 /*
76 * The memory size of the process is the basis for the badness.
77 */
78 points = mm->total_vm;
79
80 /*
81 * After this unlock we can no longer dereference local variable `mm'
82 */
83 task_unlock(p);
84
85 /*
86 * swapoff can easily use up all memory, so kill those first.
87 */
88 if (p->flags & PF_SWAPOFF)
89 return ULONG_MAX;
90
91 /*
92 * Processes which fork a lot of child processes are likely
93 * a good choice. We add half the vmsize of the children if they
94 * have an own mm. This prevents forking servers to flood the
95 * machine with an endless amount of children. In case a single
96 * child is eating the vast majority of memory, adding only half
97 * to the parents will make the child our kill candidate of choice.
98 */
99 list_for_each_entry(child, &p->children, sibling) {
100 task_lock(child);
101 if (child->mm != mm && child->mm)
102 points += child->mm->total_vm/2 + 1;
103 task_unlock(child);
104 }
105
106 /*
107 * CPU time is in tens of seconds and run time is in thousands
108 * of seconds. There is no particular reason for this other than
109 * that it turned out to work very well in practice.
110 */
111 cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
112 >> (SHIFT_HZ + 3);
113
114 if (uptime >= p->start_time.tv_sec)
115 run_time = (uptime - p->start_time.tv_sec) >> 10;
116 else
117 run_time = 0;
118
119 if (cpu_time)
120 points /= int_sqrt(cpu_time);
121 if (run_time)
122 points /= int_sqrt(int_sqrt(run_time));
123
124 /*
125 * Niced processes are most likely less important, so double
126 * their badness points.
127 */
128 if (task_nice(p) > 0)
129 points *= 2;
130
131 /*
132 * Superuser processes are usually more important, so we make it
133 * less likely that we kill those.
134 */
135 if (has_capability_noaudit(p, CAP_SYS_ADMIN) ||
136 has_capability_noaudit(p, CAP_SYS_RESOURCE))
137 points /= 4;
138
139 /*
140 * We don't want to kill a process with direct hardware access.
141 * Not only could that mess up the hardware, but usually users
142 * tend to only have this flag set on applications they think
143 * of as important.
144 */
145 if (has_capability_noaudit(p, CAP_SYS_RAWIO))
146 points /= 4;
147
148 /*
149 * If p's nodes don't overlap ours, it may still help to kill p
150 * because p may have allocated or otherwise mapped memory on
151 * this node before. However it will be less likely.
152 */
153 if (!cpuset_mems_allowed_intersects(current, p))
154 points /= 8;
155
156 /*
157 * Adjust the score by oom_adj.
158 */
159 if (oom_adj) {
160 if (oom_adj > 0) {
161 if (!points)
162 points = 1;
163 points <<= oom_adj;
164 } else
165 points >>= -(oom_adj);
166 }
167
168 #ifdef DEBUG
169 printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
170 p->pid, p->comm, points);
171 #endif
172 return points;
173 }
174
175 /*
176 * Determine the type of allocation constraint.
177 */
178 static inline enum oom_constraint constrained_alloc(struct zonelist *zonelist,
179 gfp_t gfp_mask)
180 {
181 #ifdef CONFIG_NUMA
182 struct zone *zone;
183 struct zoneref *z;
184 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
185 nodemask_t nodes = node_states[N_HIGH_MEMORY];
186
187 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
188 if (cpuset_zone_allowed_softwall(zone, gfp_mask))
189 node_clear(zone_to_nid(zone), nodes);
190 else
191 return CONSTRAINT_CPUSET;
192
193 if (!nodes_empty(nodes))
194 return CONSTRAINT_MEMORY_POLICY;
195 #endif
196
197 return CONSTRAINT_NONE;
198 }
199
200 /*
201 * Simple selection loop. We chose the process with the highest
202 * number of 'points'. We expect the caller will lock the tasklist.
203 *
204 * (not docbooked, we don't want this one cluttering up the manual)
205 */
206 static struct task_struct *select_bad_process(unsigned long *ppoints,
207 struct mem_cgroup *mem)
208 {
209 struct task_struct *g, *p;
210 struct task_struct *chosen = NULL;
211 struct timespec uptime;
212 *ppoints = 0;
213
214 do_posix_clock_monotonic_gettime(&uptime);
215 do_each_thread(g, p) {
216 unsigned long points;
217
218 /*
219 * skip kernel threads and tasks which have already released
220 * their mm.
221 */
222 if (!p->mm)
223 continue;
224 /* skip the init task */
225 if (is_global_init(p))
226 continue;
227 if (mem && !task_in_mem_cgroup(p, mem))
228 continue;
229
230 /*
231 * This task already has access to memory reserves and is
232 * being killed. Don't allow any other task access to the
233 * memory reserve.
234 *
235 * Note: this may have a chance of deadlock if it gets
236 * blocked waiting for another task which itself is waiting
237 * for memory. Is there a better alternative?
238 */
239 if (test_tsk_thread_flag(p, TIF_MEMDIE))
240 return ERR_PTR(-1UL);
241
242 /*
243 * This is in the process of releasing memory so wait for it
244 * to finish before killing some other task by mistake.
245 *
246 * However, if p is the current task, we allow the 'kill' to
247 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
248 * which will allow it to gain access to memory reserves in
249 * the process of exiting and releasing its resources.
250 * Otherwise we could get an easy OOM deadlock.
251 */
252 if (p->flags & PF_EXITING) {
253 if (p != current)
254 return ERR_PTR(-1UL);
255
256 chosen = p;
257 *ppoints = ULONG_MAX;
258 }
259
260 points = badness(p, uptime.tv_sec);
261 if (points > *ppoints) {
262 chosen = p;
263 *ppoints = points;
264 }
265 } while_each_thread(g, p);
266
267 return chosen;
268 }
269
270 /**
271 * dump_tasks - dump current memory state of all system tasks
272 * @mem: target memory controller
273 *
274 * Dumps the current memory state of all system tasks, excluding kernel threads.
275 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
276 * score, and name.
277 *
278 * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are
279 * shown.
280 *
281 * Call with tasklist_lock read-locked.
282 */
283 static void dump_tasks(const struct mem_cgroup *mem)
284 {
285 struct task_struct *g, *p;
286
287 printk(KERN_INFO "[ pid ] uid tgid total_vm rss cpu oom_adj "
288 "name\n");
289 do_each_thread(g, p) {
290 struct mm_struct *mm;
291
292 if (mem && !task_in_mem_cgroup(p, mem))
293 continue;
294 if (!thread_group_leader(p))
295 continue;
296
297 task_lock(p);
298 mm = p->mm;
299 if (!mm) {
300 /*
301 * total_vm and rss sizes do not exist for tasks with no
302 * mm so there's no need to report them; they can't be
303 * oom killed anyway.
304 */
305 task_unlock(p);
306 continue;
307 }
308 printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d %3d %s\n",
309 p->pid, __task_cred(p)->uid, p->tgid, mm->total_vm,
310 get_mm_rss(mm), (int)task_cpu(p), mm->oom_adj, p->comm);
311 task_unlock(p);
312 } while_each_thread(g, p);
313 }
314
315 /*
316 * Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO
317 * flag though it's unlikely that we select a process with CAP_SYS_RAW_IO
318 * set.
319 */
320 static void __oom_kill_task(struct task_struct *p, int verbose)
321 {
322 if (is_global_init(p)) {
323 WARN_ON(1);
324 printk(KERN_WARNING "tried to kill init!\n");
325 return;
326 }
327
328 if (!p->mm) {
329 WARN_ON(1);
330 printk(KERN_WARNING "tried to kill an mm-less task!\n");
331 return;
332 }
333
334 if (verbose)
335 printk(KERN_ERR "Killed process %d (%s)\n",
336 task_pid_nr(p), p->comm);
337
338 /*
339 * We give our sacrificial lamb high priority and access to
340 * all the memory it needs. That way it should be able to
341 * exit() and clear out its resources quickly...
342 */
343 p->rt.time_slice = HZ;
344 set_tsk_thread_flag(p, TIF_MEMDIE);
345
346 force_sig(SIGKILL, p);
347 }
348
349 static int oom_kill_task(struct task_struct *p)
350 {
351 struct mm_struct *mm;
352 struct task_struct *g, *q;
353
354 task_lock(p);
355 mm = p->mm;
356 if (!mm || mm->oom_adj == OOM_DISABLE) {
357 task_unlock(p);
358 return 1;
359 }
360 task_unlock(p);
361 __oom_kill_task(p, 1);
362
363 /*
364 * kill all processes that share the ->mm (i.e. all threads),
365 * but are in a different thread group. Don't let them have access
366 * to memory reserves though, otherwise we might deplete all memory.
367 */
368 do_each_thread(g, q) {
369 if (q->mm == mm && !same_thread_group(q, p))
370 force_sig(SIGKILL, q);
371 } while_each_thread(g, q);
372
373 return 0;
374 }
375
376 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
377 unsigned long points, struct mem_cgroup *mem,
378 const char *message)
379 {
380 struct task_struct *c;
381
382 if (printk_ratelimit()) {
383 task_lock(current);
384 printk(KERN_WARNING "%s invoked oom-killer: "
385 "gfp_mask=0x%x, order=%d, oom_adj=%d\n",
386 current->comm, gfp_mask, order,
387 current->mm ? current->mm->oom_adj : OOM_DISABLE);
388 cpuset_print_task_mems_allowed(current);
389 task_unlock(current);
390 dump_stack();
391 mem_cgroup_print_oom_info(mem, current);
392 show_mem();
393 if (sysctl_oom_dump_tasks)
394 dump_tasks(mem);
395 }
396
397 /*
398 * If the task is already exiting, don't alarm the sysadmin or kill
399 * its children or threads, just set TIF_MEMDIE so it can die quickly
400 */
401 if (p->flags & PF_EXITING) {
402 __oom_kill_task(p, 0);
403 return 0;
404 }
405
406 printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
407 message, task_pid_nr(p), p->comm, points);
408
409 /* Try to kill a child first */
410 list_for_each_entry(c, &p->children, sibling) {
411 if (c->mm == p->mm)
412 continue;
413 if (!oom_kill_task(c))
414 return 0;
415 }
416 return oom_kill_task(p);
417 }
418
419 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
420 void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
421 {
422 unsigned long points = 0;
423 struct task_struct *p;
424
425 read_lock(&tasklist_lock);
426 retry:
427 p = select_bad_process(&points, mem);
428 if (PTR_ERR(p) == -1UL)
429 goto out;
430
431 if (!p)
432 p = current;
433
434 if (oom_kill_process(p, gfp_mask, 0, points, mem,
435 "Memory cgroup out of memory"))
436 goto retry;
437 out:
438 read_unlock(&tasklist_lock);
439 }
440 #endif
441
442 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
443
444 int register_oom_notifier(struct notifier_block *nb)
445 {
446 return blocking_notifier_chain_register(&oom_notify_list, nb);
447 }
448 EXPORT_SYMBOL_GPL(register_oom_notifier);
449
450 int unregister_oom_notifier(struct notifier_block *nb)
451 {
452 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
453 }
454 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
455
456 /*
457 * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero
458 * if a parallel OOM killing is already taking place that includes a zone in
459 * the zonelist. Otherwise, locks all zones in the zonelist and returns 1.
460 */
461 int try_set_zone_oom(struct zonelist *zonelist, gfp_t gfp_mask)
462 {
463 struct zoneref *z;
464 struct zone *zone;
465 int ret = 1;
466
467 spin_lock(&zone_scan_lock);
468 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
469 if (zone_is_oom_locked(zone)) {
470 ret = 0;
471 goto out;
472 }
473 }
474
475 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
476 /*
477 * Lock each zone in the zonelist under zone_scan_lock so a
478 * parallel invocation of try_set_zone_oom() doesn't succeed
479 * when it shouldn't.
480 */
481 zone_set_flag(zone, ZONE_OOM_LOCKED);
482 }
483
484 out:
485 spin_unlock(&zone_scan_lock);
486 return ret;
487 }
488
489 /*
490 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
491 * allocation attempts with zonelists containing them may now recall the OOM
492 * killer, if necessary.
493 */
494 void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
495 {
496 struct zoneref *z;
497 struct zone *zone;
498
499 spin_lock(&zone_scan_lock);
500 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
501 zone_clear_flag(zone, ZONE_OOM_LOCKED);
502 }
503 spin_unlock(&zone_scan_lock);
504 }
505
506 /*
507 * Must be called with tasklist_lock held for read.
508 */
509 static void __out_of_memory(gfp_t gfp_mask, int order)
510 {
511 struct task_struct *p;
512 unsigned long points;
513
514 if (sysctl_oom_kill_allocating_task)
515 if (!oom_kill_process(current, gfp_mask, order, 0, NULL,
516 "Out of memory (oom_kill_allocating_task)"))
517 return;
518 retry:
519 /*
520 * Rambo mode: Shoot down a process and hope it solves whatever
521 * issues we may have.
522 */
523 p = select_bad_process(&points, NULL);
524
525 if (PTR_ERR(p) == -1UL)
526 return;
527
528 /* Found nothing?!?! Either we hang forever, or we panic. */
529 if (!p) {
530 read_unlock(&tasklist_lock);
531 panic("Out of memory and no killable processes...\n");
532 }
533
534 if (oom_kill_process(p, gfp_mask, order, points, NULL,
535 "Out of memory"))
536 goto retry;
537 }
538
539 /*
540 * pagefault handler calls into here because it is out of memory but
541 * doesn't know exactly how or why.
542 */
543 void pagefault_out_of_memory(void)
544 {
545 unsigned long freed = 0;
546
547 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
548 if (freed > 0)
549 /* Got some memory back in the last second. */
550 return;
551
552 /*
553 * If this is from memcg, oom-killer is already invoked.
554 * and not worth to go system-wide-oom.
555 */
556 if (mem_cgroup_oom_called(current))
557 goto rest_and_return;
558
559 if (sysctl_panic_on_oom)
560 panic("out of memory from page fault. panic_on_oom is selected.\n");
561
562 read_lock(&tasklist_lock);
563 __out_of_memory(0, 0); /* unknown gfp_mask and order */
564 read_unlock(&tasklist_lock);
565
566 /*
567 * Give "p" a good chance of killing itself before we
568 * retry to allocate memory.
569 */
570 rest_and_return:
571 if (!test_thread_flag(TIF_MEMDIE))
572 schedule_timeout_uninterruptible(1);
573 }
574
575 /**
576 * out_of_memory - kill the "best" process when we run out of memory
577 * @zonelist: zonelist pointer
578 * @gfp_mask: memory allocation flags
579 * @order: amount of memory being requested as a power of 2
580 *
581 * If we run out of memory, we have the choice between either
582 * killing a random task (bad), letting the system crash (worse)
583 * OR try to be smart about which process to kill. Note that we
584 * don't have to be perfect here, we just have to be good.
585 */
586 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
587 {
588 unsigned long freed = 0;
589 enum oom_constraint constraint;
590
591 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
592 if (freed > 0)
593 /* Got some memory back in the last second. */
594 return;
595
596 if (sysctl_panic_on_oom == 2)
597 panic("out of memory. Compulsory panic_on_oom is selected.\n");
598
599 /*
600 * Check if there were limitations on the allocation (only relevant for
601 * NUMA) that may require different handling.
602 */
603 constraint = constrained_alloc(zonelist, gfp_mask);
604 read_lock(&tasklist_lock);
605
606 switch (constraint) {
607 case CONSTRAINT_MEMORY_POLICY:
608 oom_kill_process(current, gfp_mask, order, 0, NULL,
609 "No available memory (MPOL_BIND)");
610 break;
611
612 case CONSTRAINT_NONE:
613 if (sysctl_panic_on_oom)
614 panic("out of memory. panic_on_oom is selected\n");
615 /* Fall-through */
616 case CONSTRAINT_CPUSET:
617 __out_of_memory(gfp_mask, order);
618 break;
619 }
620
621 read_unlock(&tasklist_lock);
622
623 /*
624 * Give "p" a good chance of killing itself before we
625 * retry to allocate memory unless "p" is current
626 */
627 if (!test_thread_flag(TIF_MEMDIE))
628 schedule_timeout_uninterruptible(1);
629 }