]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/oom_kill.c
oom_reaper: close race with exiting task
[mirror_ubuntu-zesty-kernel.git] / mm / oom_kill.c
1 /*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
9 *
10 * The routines in this file are used to kill a process when
11 * we're seriously out of memory. This gets called from __alloc_pages()
12 * in mm/page_alloc.c when we really run out of memory.
13 *
14 * Since we won't call these routines often (on a well-configured
15 * machine) this file will double as a 'coding guide' and a signpost
16 * for newbie kernel hackers. It features several pointers to major
17 * kernel subsystems and hints as to where to find out what things do.
18 */
19
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/swap.h>
26 #include <linux/timex.h>
27 #include <linux/jiffies.h>
28 #include <linux/cpuset.h>
29 #include <linux/export.h>
30 #include <linux/notifier.h>
31 #include <linux/memcontrol.h>
32 #include <linux/mempolicy.h>
33 #include <linux/security.h>
34 #include <linux/ptrace.h>
35 #include <linux/freezer.h>
36 #include <linux/ftrace.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kthread.h>
39 #include <linux/init.h>
40
41 #include <asm/tlb.h>
42 #include "internal.h"
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/oom.h>
46
47 int sysctl_panic_on_oom;
48 int sysctl_oom_kill_allocating_task;
49 int sysctl_oom_dump_tasks = 1;
50
51 DEFINE_MUTEX(oom_lock);
52
53 #ifdef CONFIG_NUMA
54 /**
55 * has_intersects_mems_allowed() - check task eligiblity for kill
56 * @start: task struct of which task to consider
57 * @mask: nodemask passed to page allocator for mempolicy ooms
58 *
59 * Task eligibility is determined by whether or not a candidate task, @tsk,
60 * shares the same mempolicy nodes as current if it is bound by such a policy
61 * and whether or not it has the same set of allowed cpuset nodes.
62 */
63 static bool has_intersects_mems_allowed(struct task_struct *start,
64 const nodemask_t *mask)
65 {
66 struct task_struct *tsk;
67 bool ret = false;
68
69 rcu_read_lock();
70 for_each_thread(start, tsk) {
71 if (mask) {
72 /*
73 * If this is a mempolicy constrained oom, tsk's
74 * cpuset is irrelevant. Only return true if its
75 * mempolicy intersects current, otherwise it may be
76 * needlessly killed.
77 */
78 ret = mempolicy_nodemask_intersects(tsk, mask);
79 } else {
80 /*
81 * This is not a mempolicy constrained oom, so only
82 * check the mems of tsk's cpuset.
83 */
84 ret = cpuset_mems_allowed_intersects(current, tsk);
85 }
86 if (ret)
87 break;
88 }
89 rcu_read_unlock();
90
91 return ret;
92 }
93 #else
94 static bool has_intersects_mems_allowed(struct task_struct *tsk,
95 const nodemask_t *mask)
96 {
97 return true;
98 }
99 #endif /* CONFIG_NUMA */
100
101 /*
102 * The process p may have detached its own ->mm while exiting or through
103 * use_mm(), but one or more of its subthreads may still have a valid
104 * pointer. Return p, or any of its subthreads with a valid ->mm, with
105 * task_lock() held.
106 */
107 struct task_struct *find_lock_task_mm(struct task_struct *p)
108 {
109 struct task_struct *t;
110
111 rcu_read_lock();
112
113 for_each_thread(p, t) {
114 task_lock(t);
115 if (likely(t->mm))
116 goto found;
117 task_unlock(t);
118 }
119 t = NULL;
120 found:
121 rcu_read_unlock();
122
123 return t;
124 }
125
126 /*
127 * order == -1 means the oom kill is required by sysrq, otherwise only
128 * for display purposes.
129 */
130 static inline bool is_sysrq_oom(struct oom_control *oc)
131 {
132 return oc->order == -1;
133 }
134
135 /* return true if the task is not adequate as candidate victim task. */
136 static bool oom_unkillable_task(struct task_struct *p,
137 struct mem_cgroup *memcg, const nodemask_t *nodemask)
138 {
139 if (is_global_init(p))
140 return true;
141 if (p->flags & PF_KTHREAD)
142 return true;
143
144 /* When mem_cgroup_out_of_memory() and p is not member of the group */
145 if (memcg && !task_in_mem_cgroup(p, memcg))
146 return true;
147
148 /* p may not have freeable memory in nodemask */
149 if (!has_intersects_mems_allowed(p, nodemask))
150 return true;
151
152 return false;
153 }
154
155 /**
156 * oom_badness - heuristic function to determine which candidate task to kill
157 * @p: task struct of which task we should calculate
158 * @totalpages: total present RAM allowed for page allocation
159 *
160 * The heuristic for determining which task to kill is made to be as simple and
161 * predictable as possible. The goal is to return the highest value for the
162 * task consuming the most memory to avoid subsequent oom failures.
163 */
164 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
165 const nodemask_t *nodemask, unsigned long totalpages)
166 {
167 long points;
168 long adj;
169
170 if (oom_unkillable_task(p, memcg, nodemask))
171 return 0;
172
173 p = find_lock_task_mm(p);
174 if (!p)
175 return 0;
176
177 /*
178 * Do not even consider tasks which are explicitly marked oom
179 * unkillable or have been already oom reaped.
180 */
181 adj = (long)p->signal->oom_score_adj;
182 if (adj == OOM_SCORE_ADJ_MIN ||
183 test_bit(MMF_OOM_REAPED, &p->mm->flags)) {
184 task_unlock(p);
185 return 0;
186 }
187
188 /*
189 * The baseline for the badness score is the proportion of RAM that each
190 * task's rss, pagetable and swap space use.
191 */
192 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
193 atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
194 task_unlock(p);
195
196 /*
197 * Root processes get 3% bonus, just like the __vm_enough_memory()
198 * implementation used by LSMs.
199 */
200 if (has_capability_noaudit(p, CAP_SYS_ADMIN))
201 points -= (points * 3) / 100;
202
203 /* Normalize to oom_score_adj units */
204 adj *= totalpages / 1000;
205 points += adj;
206
207 /*
208 * Never return 0 for an eligible task regardless of the root bonus and
209 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
210 */
211 return points > 0 ? points : 1;
212 }
213
214 /*
215 * Determine the type of allocation constraint.
216 */
217 #ifdef CONFIG_NUMA
218 static enum oom_constraint constrained_alloc(struct oom_control *oc,
219 unsigned long *totalpages)
220 {
221 struct zone *zone;
222 struct zoneref *z;
223 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
224 bool cpuset_limited = false;
225 int nid;
226
227 /* Default to all available memory */
228 *totalpages = totalram_pages + total_swap_pages;
229
230 if (!oc->zonelist)
231 return CONSTRAINT_NONE;
232 /*
233 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
234 * to kill current.We have to random task kill in this case.
235 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
236 */
237 if (oc->gfp_mask & __GFP_THISNODE)
238 return CONSTRAINT_NONE;
239
240 /*
241 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
242 * the page allocator means a mempolicy is in effect. Cpuset policy
243 * is enforced in get_page_from_freelist().
244 */
245 if (oc->nodemask &&
246 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
247 *totalpages = total_swap_pages;
248 for_each_node_mask(nid, *oc->nodemask)
249 *totalpages += node_spanned_pages(nid);
250 return CONSTRAINT_MEMORY_POLICY;
251 }
252
253 /* Check this allocation failure is caused by cpuset's wall function */
254 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
255 high_zoneidx, oc->nodemask)
256 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
257 cpuset_limited = true;
258
259 if (cpuset_limited) {
260 *totalpages = total_swap_pages;
261 for_each_node_mask(nid, cpuset_current_mems_allowed)
262 *totalpages += node_spanned_pages(nid);
263 return CONSTRAINT_CPUSET;
264 }
265 return CONSTRAINT_NONE;
266 }
267 #else
268 static enum oom_constraint constrained_alloc(struct oom_control *oc,
269 unsigned long *totalpages)
270 {
271 *totalpages = totalram_pages + total_swap_pages;
272 return CONSTRAINT_NONE;
273 }
274 #endif
275
276 enum oom_scan_t oom_scan_process_thread(struct oom_control *oc,
277 struct task_struct *task, unsigned long totalpages)
278 {
279 if (oom_unkillable_task(task, NULL, oc->nodemask))
280 return OOM_SCAN_CONTINUE;
281
282 /*
283 * This task already has access to memory reserves and is being killed.
284 * Don't allow any other task to have access to the reserves.
285 */
286 if (!is_sysrq_oom(oc) && atomic_read(&task->signal->oom_victims))
287 return OOM_SCAN_ABORT;
288
289 /*
290 * If task is allocating a lot of memory and has been marked to be
291 * killed first if it triggers an oom, then select it.
292 */
293 if (oom_task_origin(task))
294 return OOM_SCAN_SELECT;
295
296 return OOM_SCAN_OK;
297 }
298
299 /*
300 * Simple selection loop. We chose the process with the highest
301 * number of 'points'. Returns -1 on scan abort.
302 */
303 static struct task_struct *select_bad_process(struct oom_control *oc,
304 unsigned int *ppoints, unsigned long totalpages)
305 {
306 struct task_struct *p;
307 struct task_struct *chosen = NULL;
308 unsigned long chosen_points = 0;
309
310 rcu_read_lock();
311 for_each_process(p) {
312 unsigned int points;
313
314 switch (oom_scan_process_thread(oc, p, totalpages)) {
315 case OOM_SCAN_SELECT:
316 chosen = p;
317 chosen_points = ULONG_MAX;
318 /* fall through */
319 case OOM_SCAN_CONTINUE:
320 continue;
321 case OOM_SCAN_ABORT:
322 rcu_read_unlock();
323 return (struct task_struct *)(-1UL);
324 case OOM_SCAN_OK:
325 break;
326 };
327 points = oom_badness(p, NULL, oc->nodemask, totalpages);
328 if (!points || points < chosen_points)
329 continue;
330
331 chosen = p;
332 chosen_points = points;
333 }
334 if (chosen)
335 get_task_struct(chosen);
336 rcu_read_unlock();
337
338 *ppoints = chosen_points * 1000 / totalpages;
339 return chosen;
340 }
341
342 /**
343 * dump_tasks - dump current memory state of all system tasks
344 * @memcg: current's memory controller, if constrained
345 * @nodemask: nodemask passed to page allocator for mempolicy ooms
346 *
347 * Dumps the current memory state of all eligible tasks. Tasks not in the same
348 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
349 * are not shown.
350 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
351 * swapents, oom_score_adj value, and name.
352 */
353 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
354 {
355 struct task_struct *p;
356 struct task_struct *task;
357
358 pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name\n");
359 rcu_read_lock();
360 for_each_process(p) {
361 if (oom_unkillable_task(p, memcg, nodemask))
362 continue;
363
364 task = find_lock_task_mm(p);
365 if (!task) {
366 /*
367 * This is a kthread or all of p's threads have already
368 * detached their mm's. There's no need to report
369 * them; they can't be oom killed anyway.
370 */
371 continue;
372 }
373
374 pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu %5hd %s\n",
375 task->pid, from_kuid(&init_user_ns, task_uid(task)),
376 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
377 atomic_long_read(&task->mm->nr_ptes),
378 mm_nr_pmds(task->mm),
379 get_mm_counter(task->mm, MM_SWAPENTS),
380 task->signal->oom_score_adj, task->comm);
381 task_unlock(task);
382 }
383 rcu_read_unlock();
384 }
385
386 static void dump_header(struct oom_control *oc, struct task_struct *p,
387 struct mem_cgroup *memcg)
388 {
389 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
390 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
391 current->signal->oom_score_adj);
392
393 cpuset_print_current_mems_allowed();
394 dump_stack();
395 if (memcg)
396 mem_cgroup_print_oom_info(memcg, p);
397 else
398 show_mem(SHOW_MEM_FILTER_NODES);
399 if (sysctl_oom_dump_tasks)
400 dump_tasks(memcg, oc->nodemask);
401 }
402
403 /*
404 * Number of OOM victims in flight
405 */
406 static atomic_t oom_victims = ATOMIC_INIT(0);
407 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
408
409 bool oom_killer_disabled __read_mostly;
410
411 #define K(x) ((x) << (PAGE_SHIFT-10))
412
413 /*
414 * task->mm can be NULL if the task is the exited group leader. So to
415 * determine whether the task is using a particular mm, we examine all the
416 * task's threads: if one of those is using this mm then this task was also
417 * using it.
418 */
419 static bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
420 {
421 struct task_struct *t;
422
423 for_each_thread(p, t) {
424 struct mm_struct *t_mm = READ_ONCE(t->mm);
425 if (t_mm)
426 return t_mm == mm;
427 }
428 return false;
429 }
430
431
432 #ifdef CONFIG_MMU
433 /*
434 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
435 * victim (if that is possible) to help the OOM killer to move on.
436 */
437 static struct task_struct *oom_reaper_th;
438 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
439 static struct task_struct *oom_reaper_list;
440 static DEFINE_SPINLOCK(oom_reaper_lock);
441
442 static bool __oom_reap_task(struct task_struct *tsk)
443 {
444 struct mmu_gather tlb;
445 struct vm_area_struct *vma;
446 struct mm_struct *mm = NULL;
447 struct task_struct *p;
448 struct zap_details details = {.check_swap_entries = true,
449 .ignore_dirty = true};
450 bool ret = true;
451
452 /*
453 * We have to make sure to not race with the victim exit path
454 * and cause premature new oom victim selection:
455 * __oom_reap_task exit_mm
456 * atomic_inc_not_zero
457 * mmput
458 * atomic_dec_and_test
459 * exit_oom_victim
460 * [...]
461 * out_of_memory
462 * select_bad_process
463 * # no TIF_MEMDIE task selects new victim
464 * unmap_page_range # frees some memory
465 */
466 mutex_lock(&oom_lock);
467
468 /*
469 * Make sure we find the associated mm_struct even when the particular
470 * thread has already terminated and cleared its mm.
471 * We might have race with exit path so consider our work done if there
472 * is no mm.
473 */
474 p = find_lock_task_mm(tsk);
475 if (!p)
476 goto unlock_oom;
477
478 mm = p->mm;
479 if (!atomic_inc_not_zero(&mm->mm_users)) {
480 task_unlock(p);
481 goto unlock_oom;
482 }
483
484 task_unlock(p);
485
486 if (!down_read_trylock(&mm->mmap_sem)) {
487 ret = false;
488 goto unlock_oom;
489 }
490
491 tlb_gather_mmu(&tlb, mm, 0, -1);
492 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
493 if (is_vm_hugetlb_page(vma))
494 continue;
495
496 /*
497 * mlocked VMAs require explicit munlocking before unmap.
498 * Let's keep it simple here and skip such VMAs.
499 */
500 if (vma->vm_flags & VM_LOCKED)
501 continue;
502
503 /*
504 * Only anonymous pages have a good chance to be dropped
505 * without additional steps which we cannot afford as we
506 * are OOM already.
507 *
508 * We do not even care about fs backed pages because all
509 * which are reclaimable have already been reclaimed and
510 * we do not want to block exit_mmap by keeping mm ref
511 * count elevated without a good reason.
512 */
513 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
514 unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
515 &details);
516 }
517 tlb_finish_mmu(&tlb, 0, -1);
518 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
519 task_pid_nr(tsk), tsk->comm,
520 K(get_mm_counter(mm, MM_ANONPAGES)),
521 K(get_mm_counter(mm, MM_FILEPAGES)),
522 K(get_mm_counter(mm, MM_SHMEMPAGES)));
523 up_read(&mm->mmap_sem);
524
525 /*
526 * This task can be safely ignored because we cannot do much more
527 * to release its memory.
528 */
529 set_bit(MMF_OOM_REAPED, &mm->flags);
530 unlock_oom:
531 mutex_unlock(&oom_lock);
532 /*
533 * Drop our reference but make sure the mmput slow path is called from a
534 * different context because we shouldn't risk we get stuck there and
535 * put the oom_reaper out of the way.
536 */
537 if (mm)
538 mmput_async(mm);
539 return ret;
540 }
541
542 #define MAX_OOM_REAP_RETRIES 10
543 static void oom_reap_task(struct task_struct *tsk)
544 {
545 int attempts = 0;
546
547 /* Retry the down_read_trylock(mmap_sem) a few times */
548 while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task(tsk))
549 schedule_timeout_idle(HZ/10);
550
551 if (attempts > MAX_OOM_REAP_RETRIES) {
552 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
553 task_pid_nr(tsk), tsk->comm);
554 debug_show_all_locks();
555 }
556
557 /*
558 * Clear TIF_MEMDIE because the task shouldn't be sitting on a
559 * reasonably reclaimable memory anymore or it is not a good candidate
560 * for the oom victim right now because it cannot release its memory
561 * itself nor by the oom reaper.
562 */
563 tsk->oom_reaper_list = NULL;
564 exit_oom_victim(tsk);
565
566 /* Drop a reference taken by wake_oom_reaper */
567 put_task_struct(tsk);
568 }
569
570 static int oom_reaper(void *unused)
571 {
572 set_freezable();
573
574 while (true) {
575 struct task_struct *tsk = NULL;
576
577 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
578 spin_lock(&oom_reaper_lock);
579 if (oom_reaper_list != NULL) {
580 tsk = oom_reaper_list;
581 oom_reaper_list = tsk->oom_reaper_list;
582 }
583 spin_unlock(&oom_reaper_lock);
584
585 if (tsk)
586 oom_reap_task(tsk);
587 }
588
589 return 0;
590 }
591
592 static void wake_oom_reaper(struct task_struct *tsk)
593 {
594 if (!oom_reaper_th)
595 return;
596
597 /* tsk is already queued? */
598 if (tsk == oom_reaper_list || tsk->oom_reaper_list)
599 return;
600
601 get_task_struct(tsk);
602
603 spin_lock(&oom_reaper_lock);
604 tsk->oom_reaper_list = oom_reaper_list;
605 oom_reaper_list = tsk;
606 spin_unlock(&oom_reaper_lock);
607 wake_up(&oom_reaper_wait);
608 }
609
610 /* Check if we can reap the given task. This has to be called with stable
611 * tsk->mm
612 */
613 void try_oom_reaper(struct task_struct *tsk)
614 {
615 struct mm_struct *mm = tsk->mm;
616 struct task_struct *p;
617
618 if (!mm)
619 return;
620
621 /*
622 * There might be other threads/processes which are either not
623 * dying or even not killable.
624 */
625 if (atomic_read(&mm->mm_users) > 1) {
626 rcu_read_lock();
627 for_each_process(p) {
628 bool exiting;
629
630 if (!process_shares_mm(p, mm))
631 continue;
632 if (fatal_signal_pending(p))
633 continue;
634
635 /*
636 * If the task is exiting make sure the whole thread group
637 * is exiting and cannot acces mm anymore.
638 */
639 spin_lock_irq(&p->sighand->siglock);
640 exiting = signal_group_exit(p->signal);
641 spin_unlock_irq(&p->sighand->siglock);
642 if (exiting)
643 continue;
644
645 /* Give up */
646 rcu_read_unlock();
647 return;
648 }
649 rcu_read_unlock();
650 }
651
652 wake_oom_reaper(tsk);
653 }
654
655 static int __init oom_init(void)
656 {
657 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
658 if (IS_ERR(oom_reaper_th)) {
659 pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
660 PTR_ERR(oom_reaper_th));
661 oom_reaper_th = NULL;
662 }
663 return 0;
664 }
665 subsys_initcall(oom_init)
666 #else
667 static void wake_oom_reaper(struct task_struct *tsk)
668 {
669 }
670 #endif
671
672 /**
673 * mark_oom_victim - mark the given task as OOM victim
674 * @tsk: task to mark
675 *
676 * Has to be called with oom_lock held and never after
677 * oom has been disabled already.
678 */
679 void mark_oom_victim(struct task_struct *tsk)
680 {
681 WARN_ON(oom_killer_disabled);
682 /* OOM killer might race with memcg OOM */
683 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
684 return;
685 atomic_inc(&tsk->signal->oom_victims);
686 /*
687 * Make sure that the task is woken up from uninterruptible sleep
688 * if it is frozen because OOM killer wouldn't be able to free
689 * any memory and livelock. freezing_slow_path will tell the freezer
690 * that TIF_MEMDIE tasks should be ignored.
691 */
692 __thaw_task(tsk);
693 atomic_inc(&oom_victims);
694 }
695
696 /**
697 * exit_oom_victim - note the exit of an OOM victim
698 */
699 void exit_oom_victim(struct task_struct *tsk)
700 {
701 if (!test_and_clear_tsk_thread_flag(tsk, TIF_MEMDIE))
702 return;
703 atomic_dec(&tsk->signal->oom_victims);
704
705 if (!atomic_dec_return(&oom_victims))
706 wake_up_all(&oom_victims_wait);
707 }
708
709 /**
710 * oom_killer_disable - disable OOM killer
711 *
712 * Forces all page allocations to fail rather than trigger OOM killer.
713 * Will block and wait until all OOM victims are killed.
714 *
715 * The function cannot be called when there are runnable user tasks because
716 * the userspace would see unexpected allocation failures as a result. Any
717 * new usage of this function should be consulted with MM people.
718 *
719 * Returns true if successful and false if the OOM killer cannot be
720 * disabled.
721 */
722 bool oom_killer_disable(void)
723 {
724 /*
725 * Make sure to not race with an ongoing OOM killer. Check that the
726 * current is not killed (possibly due to sharing the victim's memory).
727 */
728 if (mutex_lock_killable(&oom_lock))
729 return false;
730 oom_killer_disabled = true;
731 mutex_unlock(&oom_lock);
732
733 wait_event(oom_victims_wait, !atomic_read(&oom_victims));
734
735 return true;
736 }
737
738 /**
739 * oom_killer_enable - enable OOM killer
740 */
741 void oom_killer_enable(void)
742 {
743 oom_killer_disabled = false;
744 }
745
746 /*
747 * Must be called while holding a reference to p, which will be released upon
748 * returning.
749 */
750 void oom_kill_process(struct oom_control *oc, struct task_struct *p,
751 unsigned int points, unsigned long totalpages,
752 struct mem_cgroup *memcg, const char *message)
753 {
754 struct task_struct *victim = p;
755 struct task_struct *child;
756 struct task_struct *t;
757 struct mm_struct *mm;
758 unsigned int victim_points = 0;
759 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
760 DEFAULT_RATELIMIT_BURST);
761 bool can_oom_reap = true;
762
763 /*
764 * If the task is already exiting, don't alarm the sysadmin or kill
765 * its children or threads, just set TIF_MEMDIE so it can die quickly
766 */
767 task_lock(p);
768 if (p->mm && task_will_free_mem(p)) {
769 mark_oom_victim(p);
770 try_oom_reaper(p);
771 task_unlock(p);
772 put_task_struct(p);
773 return;
774 }
775 task_unlock(p);
776
777 if (__ratelimit(&oom_rs))
778 dump_header(oc, p, memcg);
779
780 pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
781 message, task_pid_nr(p), p->comm, points);
782
783 /*
784 * If any of p's children has a different mm and is eligible for kill,
785 * the one with the highest oom_badness() score is sacrificed for its
786 * parent. This attempts to lose the minimal amount of work done while
787 * still freeing memory.
788 */
789 read_lock(&tasklist_lock);
790 for_each_thread(p, t) {
791 list_for_each_entry(child, &t->children, sibling) {
792 unsigned int child_points;
793
794 if (process_shares_mm(child, p->mm))
795 continue;
796 /*
797 * oom_badness() returns 0 if the thread is unkillable
798 */
799 child_points = oom_badness(child, memcg, oc->nodemask,
800 totalpages);
801 if (child_points > victim_points) {
802 put_task_struct(victim);
803 victim = child;
804 victim_points = child_points;
805 get_task_struct(victim);
806 }
807 }
808 }
809 read_unlock(&tasklist_lock);
810
811 p = find_lock_task_mm(victim);
812 if (!p) {
813 put_task_struct(victim);
814 return;
815 } else if (victim != p) {
816 get_task_struct(p);
817 put_task_struct(victim);
818 victim = p;
819 }
820
821 /* Get a reference to safely compare mm after task_unlock(victim) */
822 mm = victim->mm;
823 atomic_inc(&mm->mm_count);
824 /*
825 * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
826 * the OOM victim from depleting the memory reserves from the user
827 * space under its control.
828 */
829 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
830 mark_oom_victim(victim);
831 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
832 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
833 K(get_mm_counter(victim->mm, MM_ANONPAGES)),
834 K(get_mm_counter(victim->mm, MM_FILEPAGES)),
835 K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
836 task_unlock(victim);
837
838 /*
839 * Kill all user processes sharing victim->mm in other thread groups, if
840 * any. They don't get access to memory reserves, though, to avoid
841 * depletion of all memory. This prevents mm->mmap_sem livelock when an
842 * oom killed thread cannot exit because it requires the semaphore and
843 * its contended by another thread trying to allocate memory itself.
844 * That thread will now get access to memory reserves since it has a
845 * pending fatal signal.
846 */
847 rcu_read_lock();
848 for_each_process(p) {
849 if (!process_shares_mm(p, mm))
850 continue;
851 if (same_thread_group(p, victim))
852 continue;
853 if (unlikely(p->flags & PF_KTHREAD) || is_global_init(p) ||
854 p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
855 /*
856 * We cannot use oom_reaper for the mm shared by this
857 * process because it wouldn't get killed and so the
858 * memory might be still used.
859 */
860 can_oom_reap = false;
861 continue;
862 }
863 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
864 }
865 rcu_read_unlock();
866
867 if (can_oom_reap)
868 wake_oom_reaper(victim);
869
870 mmdrop(mm);
871 put_task_struct(victim);
872 }
873 #undef K
874
875 /*
876 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
877 */
878 void check_panic_on_oom(struct oom_control *oc, enum oom_constraint constraint,
879 struct mem_cgroup *memcg)
880 {
881 if (likely(!sysctl_panic_on_oom))
882 return;
883 if (sysctl_panic_on_oom != 2) {
884 /*
885 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
886 * does not panic for cpuset, mempolicy, or memcg allocation
887 * failures.
888 */
889 if (constraint != CONSTRAINT_NONE)
890 return;
891 }
892 /* Do not panic for oom kills triggered by sysrq */
893 if (is_sysrq_oom(oc))
894 return;
895 dump_header(oc, NULL, memcg);
896 panic("Out of memory: %s panic_on_oom is enabled\n",
897 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
898 }
899
900 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
901
902 int register_oom_notifier(struct notifier_block *nb)
903 {
904 return blocking_notifier_chain_register(&oom_notify_list, nb);
905 }
906 EXPORT_SYMBOL_GPL(register_oom_notifier);
907
908 int unregister_oom_notifier(struct notifier_block *nb)
909 {
910 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
911 }
912 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
913
914 /**
915 * out_of_memory - kill the "best" process when we run out of memory
916 * @oc: pointer to struct oom_control
917 *
918 * If we run out of memory, we have the choice between either
919 * killing a random task (bad), letting the system crash (worse)
920 * OR try to be smart about which process to kill. Note that we
921 * don't have to be perfect here, we just have to be good.
922 */
923 bool out_of_memory(struct oom_control *oc)
924 {
925 struct task_struct *p;
926 unsigned long totalpages;
927 unsigned long freed = 0;
928 unsigned int uninitialized_var(points);
929 enum oom_constraint constraint = CONSTRAINT_NONE;
930
931 if (oom_killer_disabled)
932 return false;
933
934 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
935 if (freed > 0)
936 /* Got some memory back in the last second. */
937 return true;
938
939 /*
940 * If current has a pending SIGKILL or is exiting, then automatically
941 * select it. The goal is to allow it to allocate so that it may
942 * quickly exit and free its memory.
943 *
944 * But don't select if current has already released its mm and cleared
945 * TIF_MEMDIE flag at exit_mm(), otherwise an OOM livelock may occur.
946 */
947 if (current->mm &&
948 (fatal_signal_pending(current) || task_will_free_mem(current))) {
949 mark_oom_victim(current);
950 try_oom_reaper(current);
951 return true;
952 }
953
954 /*
955 * The OOM killer does not compensate for IO-less reclaim.
956 * pagefault_out_of_memory lost its gfp context so we have to
957 * make sure exclude 0 mask - all other users should have at least
958 * ___GFP_DIRECT_RECLAIM to get here.
959 */
960 if (oc->gfp_mask && !(oc->gfp_mask & (__GFP_FS|__GFP_NOFAIL)))
961 return true;
962
963 /*
964 * Check if there were limitations on the allocation (only relevant for
965 * NUMA) that may require different handling.
966 */
967 constraint = constrained_alloc(oc, &totalpages);
968 if (constraint != CONSTRAINT_MEMORY_POLICY)
969 oc->nodemask = NULL;
970 check_panic_on_oom(oc, constraint, NULL);
971
972 if (sysctl_oom_kill_allocating_task && current->mm &&
973 !oom_unkillable_task(current, NULL, oc->nodemask) &&
974 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
975 get_task_struct(current);
976 oom_kill_process(oc, current, 0, totalpages, NULL,
977 "Out of memory (oom_kill_allocating_task)");
978 return true;
979 }
980
981 p = select_bad_process(oc, &points, totalpages);
982 /* Found nothing?!?! Either we hang forever, or we panic. */
983 if (!p && !is_sysrq_oom(oc)) {
984 dump_header(oc, NULL, NULL);
985 panic("Out of memory and no killable processes...\n");
986 }
987 if (p && p != (void *)-1UL) {
988 oom_kill_process(oc, p, points, totalpages, NULL,
989 "Out of memory");
990 /*
991 * Give the killed process a good chance to exit before trying
992 * to allocate memory again.
993 */
994 schedule_timeout_killable(1);
995 }
996 return true;
997 }
998
999 /*
1000 * The pagefault handler calls here because it is out of memory, so kill a
1001 * memory-hogging task. If any populated zone has ZONE_OOM_LOCKED set, a
1002 * parallel oom killing is already in progress so do nothing.
1003 */
1004 void pagefault_out_of_memory(void)
1005 {
1006 struct oom_control oc = {
1007 .zonelist = NULL,
1008 .nodemask = NULL,
1009 .gfp_mask = 0,
1010 .order = 0,
1011 };
1012
1013 if (mem_cgroup_oom_synchronize(true))
1014 return;
1015
1016 if (!mutex_trylock(&oom_lock))
1017 return;
1018
1019 if (!out_of_memory(&oc)) {
1020 /*
1021 * There shouldn't be any user tasks runnable while the
1022 * OOM killer is disabled, so the current task has to
1023 * be a racing OOM victim for which oom_killer_disable()
1024 * is waiting for.
1025 */
1026 WARN_ON(test_thread_flag(TIF_MEMDIE));
1027 }
1028
1029 mutex_unlock(&oom_lock);
1030 }