]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/oom_kill.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[mirror_ubuntu-artful-kernel.git] / mm / oom_kill.c
1 /*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
9 *
10 * The routines in this file are used to kill a process when
11 * we're seriously out of memory. This gets called from __alloc_pages()
12 * in mm/page_alloc.c when we really run out of memory.
13 *
14 * Since we won't call these routines often (on a well-configured
15 * machine) this file will double as a 'coding guide' and a signpost
16 * for newbie kernel hackers. It features several pointers to major
17 * kernel subsystems and hints as to where to find out what things do.
18 */
19
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/swap.h>
26 #include <linux/timex.h>
27 #include <linux/jiffies.h>
28 #include <linux/cpuset.h>
29 #include <linux/export.h>
30 #include <linux/notifier.h>
31 #include <linux/memcontrol.h>
32 #include <linux/mempolicy.h>
33 #include <linux/security.h>
34 #include <linux/ptrace.h>
35 #include <linux/freezer.h>
36 #include <linux/ftrace.h>
37 #include <linux/ratelimit.h>
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/oom.h>
41
42 int sysctl_panic_on_oom;
43 int sysctl_oom_kill_allocating_task;
44 int sysctl_oom_dump_tasks = 1;
45
46 DEFINE_MUTEX(oom_lock);
47
48 #ifdef CONFIG_NUMA
49 /**
50 * has_intersects_mems_allowed() - check task eligiblity for kill
51 * @start: task struct of which task to consider
52 * @mask: nodemask passed to page allocator for mempolicy ooms
53 *
54 * Task eligibility is determined by whether or not a candidate task, @tsk,
55 * shares the same mempolicy nodes as current if it is bound by such a policy
56 * and whether or not it has the same set of allowed cpuset nodes.
57 */
58 static bool has_intersects_mems_allowed(struct task_struct *start,
59 const nodemask_t *mask)
60 {
61 struct task_struct *tsk;
62 bool ret = false;
63
64 rcu_read_lock();
65 for_each_thread(start, tsk) {
66 if (mask) {
67 /*
68 * If this is a mempolicy constrained oom, tsk's
69 * cpuset is irrelevant. Only return true if its
70 * mempolicy intersects current, otherwise it may be
71 * needlessly killed.
72 */
73 ret = mempolicy_nodemask_intersects(tsk, mask);
74 } else {
75 /*
76 * This is not a mempolicy constrained oom, so only
77 * check the mems of tsk's cpuset.
78 */
79 ret = cpuset_mems_allowed_intersects(current, tsk);
80 }
81 if (ret)
82 break;
83 }
84 rcu_read_unlock();
85
86 return ret;
87 }
88 #else
89 static bool has_intersects_mems_allowed(struct task_struct *tsk,
90 const nodemask_t *mask)
91 {
92 return true;
93 }
94 #endif /* CONFIG_NUMA */
95
96 /*
97 * The process p may have detached its own ->mm while exiting or through
98 * use_mm(), but one or more of its subthreads may still have a valid
99 * pointer. Return p, or any of its subthreads with a valid ->mm, with
100 * task_lock() held.
101 */
102 struct task_struct *find_lock_task_mm(struct task_struct *p)
103 {
104 struct task_struct *t;
105
106 rcu_read_lock();
107
108 for_each_thread(p, t) {
109 task_lock(t);
110 if (likely(t->mm))
111 goto found;
112 task_unlock(t);
113 }
114 t = NULL;
115 found:
116 rcu_read_unlock();
117
118 return t;
119 }
120
121 /*
122 * order == -1 means the oom kill is required by sysrq, otherwise only
123 * for display purposes.
124 */
125 static inline bool is_sysrq_oom(struct oom_control *oc)
126 {
127 return oc->order == -1;
128 }
129
130 /* return true if the task is not adequate as candidate victim task. */
131 static bool oom_unkillable_task(struct task_struct *p,
132 struct mem_cgroup *memcg, const nodemask_t *nodemask)
133 {
134 if (is_global_init(p))
135 return true;
136 if (p->flags & PF_KTHREAD)
137 return true;
138
139 /* When mem_cgroup_out_of_memory() and p is not member of the group */
140 if (memcg && !task_in_mem_cgroup(p, memcg))
141 return true;
142
143 /* p may not have freeable memory in nodemask */
144 if (!has_intersects_mems_allowed(p, nodemask))
145 return true;
146
147 return false;
148 }
149
150 /**
151 * oom_badness - heuristic function to determine which candidate task to kill
152 * @p: task struct of which task we should calculate
153 * @totalpages: total present RAM allowed for page allocation
154 *
155 * The heuristic for determining which task to kill is made to be as simple and
156 * predictable as possible. The goal is to return the highest value for the
157 * task consuming the most memory to avoid subsequent oom failures.
158 */
159 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
160 const nodemask_t *nodemask, unsigned long totalpages)
161 {
162 long points;
163 long adj;
164
165 if (oom_unkillable_task(p, memcg, nodemask))
166 return 0;
167
168 p = find_lock_task_mm(p);
169 if (!p)
170 return 0;
171
172 adj = (long)p->signal->oom_score_adj;
173 if (adj == OOM_SCORE_ADJ_MIN) {
174 task_unlock(p);
175 return 0;
176 }
177
178 /*
179 * The baseline for the badness score is the proportion of RAM that each
180 * task's rss, pagetable and swap space use.
181 */
182 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
183 atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
184 task_unlock(p);
185
186 /*
187 * Root processes get 3% bonus, just like the __vm_enough_memory()
188 * implementation used by LSMs.
189 */
190 if (has_capability_noaudit(p, CAP_SYS_ADMIN))
191 points -= (points * 3) / 100;
192
193 /* Normalize to oom_score_adj units */
194 adj *= totalpages / 1000;
195 points += adj;
196
197 /*
198 * Never return 0 for an eligible task regardless of the root bonus and
199 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
200 */
201 return points > 0 ? points : 1;
202 }
203
204 /*
205 * Determine the type of allocation constraint.
206 */
207 #ifdef CONFIG_NUMA
208 static enum oom_constraint constrained_alloc(struct oom_control *oc,
209 unsigned long *totalpages)
210 {
211 struct zone *zone;
212 struct zoneref *z;
213 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
214 bool cpuset_limited = false;
215 int nid;
216
217 /* Default to all available memory */
218 *totalpages = totalram_pages + total_swap_pages;
219
220 if (!oc->zonelist)
221 return CONSTRAINT_NONE;
222 /*
223 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
224 * to kill current.We have to random task kill in this case.
225 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
226 */
227 if (oc->gfp_mask & __GFP_THISNODE)
228 return CONSTRAINT_NONE;
229
230 /*
231 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
232 * the page allocator means a mempolicy is in effect. Cpuset policy
233 * is enforced in get_page_from_freelist().
234 */
235 if (oc->nodemask &&
236 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
237 *totalpages = total_swap_pages;
238 for_each_node_mask(nid, *oc->nodemask)
239 *totalpages += node_spanned_pages(nid);
240 return CONSTRAINT_MEMORY_POLICY;
241 }
242
243 /* Check this allocation failure is caused by cpuset's wall function */
244 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
245 high_zoneidx, oc->nodemask)
246 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
247 cpuset_limited = true;
248
249 if (cpuset_limited) {
250 *totalpages = total_swap_pages;
251 for_each_node_mask(nid, cpuset_current_mems_allowed)
252 *totalpages += node_spanned_pages(nid);
253 return CONSTRAINT_CPUSET;
254 }
255 return CONSTRAINT_NONE;
256 }
257 #else
258 static enum oom_constraint constrained_alloc(struct oom_control *oc,
259 unsigned long *totalpages)
260 {
261 *totalpages = totalram_pages + total_swap_pages;
262 return CONSTRAINT_NONE;
263 }
264 #endif
265
266 enum oom_scan_t oom_scan_process_thread(struct oom_control *oc,
267 struct task_struct *task, unsigned long totalpages)
268 {
269 if (oom_unkillable_task(task, NULL, oc->nodemask))
270 return OOM_SCAN_CONTINUE;
271
272 /*
273 * This task already has access to memory reserves and is being killed.
274 * Don't allow any other task to have access to the reserves.
275 */
276 if (test_tsk_thread_flag(task, TIF_MEMDIE)) {
277 if (!is_sysrq_oom(oc))
278 return OOM_SCAN_ABORT;
279 }
280 if (!task->mm)
281 return OOM_SCAN_CONTINUE;
282
283 /*
284 * If task is allocating a lot of memory and has been marked to be
285 * killed first if it triggers an oom, then select it.
286 */
287 if (oom_task_origin(task))
288 return OOM_SCAN_SELECT;
289
290 if (task_will_free_mem(task) && !is_sysrq_oom(oc))
291 return OOM_SCAN_ABORT;
292
293 return OOM_SCAN_OK;
294 }
295
296 /*
297 * Simple selection loop. We chose the process with the highest
298 * number of 'points'. Returns -1 on scan abort.
299 */
300 static struct task_struct *select_bad_process(struct oom_control *oc,
301 unsigned int *ppoints, unsigned long totalpages)
302 {
303 struct task_struct *g, *p;
304 struct task_struct *chosen = NULL;
305 unsigned long chosen_points = 0;
306
307 rcu_read_lock();
308 for_each_process_thread(g, p) {
309 unsigned int points;
310
311 switch (oom_scan_process_thread(oc, p, totalpages)) {
312 case OOM_SCAN_SELECT:
313 chosen = p;
314 chosen_points = ULONG_MAX;
315 /* fall through */
316 case OOM_SCAN_CONTINUE:
317 continue;
318 case OOM_SCAN_ABORT:
319 rcu_read_unlock();
320 return (struct task_struct *)(-1UL);
321 case OOM_SCAN_OK:
322 break;
323 };
324 points = oom_badness(p, NULL, oc->nodemask, totalpages);
325 if (!points || points < chosen_points)
326 continue;
327 /* Prefer thread group leaders for display purposes */
328 if (points == chosen_points && thread_group_leader(chosen))
329 continue;
330
331 chosen = p;
332 chosen_points = points;
333 }
334 if (chosen)
335 get_task_struct(chosen);
336 rcu_read_unlock();
337
338 *ppoints = chosen_points * 1000 / totalpages;
339 return chosen;
340 }
341
342 /**
343 * dump_tasks - dump current memory state of all system tasks
344 * @memcg: current's memory controller, if constrained
345 * @nodemask: nodemask passed to page allocator for mempolicy ooms
346 *
347 * Dumps the current memory state of all eligible tasks. Tasks not in the same
348 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
349 * are not shown.
350 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
351 * swapents, oom_score_adj value, and name.
352 */
353 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
354 {
355 struct task_struct *p;
356 struct task_struct *task;
357
358 pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name\n");
359 rcu_read_lock();
360 for_each_process(p) {
361 if (oom_unkillable_task(p, memcg, nodemask))
362 continue;
363
364 task = find_lock_task_mm(p);
365 if (!task) {
366 /*
367 * This is a kthread or all of p's threads have already
368 * detached their mm's. There's no need to report
369 * them; they can't be oom killed anyway.
370 */
371 continue;
372 }
373
374 pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu %5hd %s\n",
375 task->pid, from_kuid(&init_user_ns, task_uid(task)),
376 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
377 atomic_long_read(&task->mm->nr_ptes),
378 mm_nr_pmds(task->mm),
379 get_mm_counter(task->mm, MM_SWAPENTS),
380 task->signal->oom_score_adj, task->comm);
381 task_unlock(task);
382 }
383 rcu_read_unlock();
384 }
385
386 static void dump_header(struct oom_control *oc, struct task_struct *p,
387 struct mem_cgroup *memcg)
388 {
389 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, "
390 "oom_score_adj=%hd\n",
391 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
392 current->signal->oom_score_adj);
393
394 cpuset_print_current_mems_allowed();
395 dump_stack();
396 if (memcg)
397 mem_cgroup_print_oom_info(memcg, p);
398 else
399 show_mem(SHOW_MEM_FILTER_NODES);
400 if (sysctl_oom_dump_tasks)
401 dump_tasks(memcg, oc->nodemask);
402 }
403
404 /*
405 * Number of OOM victims in flight
406 */
407 static atomic_t oom_victims = ATOMIC_INIT(0);
408 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
409
410 bool oom_killer_disabled __read_mostly;
411
412 /**
413 * mark_oom_victim - mark the given task as OOM victim
414 * @tsk: task to mark
415 *
416 * Has to be called with oom_lock held and never after
417 * oom has been disabled already.
418 */
419 void mark_oom_victim(struct task_struct *tsk)
420 {
421 WARN_ON(oom_killer_disabled);
422 /* OOM killer might race with memcg OOM */
423 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
424 return;
425 /*
426 * Make sure that the task is woken up from uninterruptible sleep
427 * if it is frozen because OOM killer wouldn't be able to free
428 * any memory and livelock. freezing_slow_path will tell the freezer
429 * that TIF_MEMDIE tasks should be ignored.
430 */
431 __thaw_task(tsk);
432 atomic_inc(&oom_victims);
433 }
434
435 /**
436 * exit_oom_victim - note the exit of an OOM victim
437 */
438 void exit_oom_victim(void)
439 {
440 clear_thread_flag(TIF_MEMDIE);
441
442 if (!atomic_dec_return(&oom_victims))
443 wake_up_all(&oom_victims_wait);
444 }
445
446 /**
447 * oom_killer_disable - disable OOM killer
448 *
449 * Forces all page allocations to fail rather than trigger OOM killer.
450 * Will block and wait until all OOM victims are killed.
451 *
452 * The function cannot be called when there are runnable user tasks because
453 * the userspace would see unexpected allocation failures as a result. Any
454 * new usage of this function should be consulted with MM people.
455 *
456 * Returns true if successful and false if the OOM killer cannot be
457 * disabled.
458 */
459 bool oom_killer_disable(void)
460 {
461 /*
462 * Make sure to not race with an ongoing OOM killer
463 * and that the current is not the victim.
464 */
465 mutex_lock(&oom_lock);
466 if (test_thread_flag(TIF_MEMDIE)) {
467 mutex_unlock(&oom_lock);
468 return false;
469 }
470
471 oom_killer_disabled = true;
472 mutex_unlock(&oom_lock);
473
474 wait_event(oom_victims_wait, !atomic_read(&oom_victims));
475
476 return true;
477 }
478
479 /**
480 * oom_killer_enable - enable OOM killer
481 */
482 void oom_killer_enable(void)
483 {
484 oom_killer_disabled = false;
485 }
486
487 /*
488 * task->mm can be NULL if the task is the exited group leader. So to
489 * determine whether the task is using a particular mm, we examine all the
490 * task's threads: if one of those is using this mm then this task was also
491 * using it.
492 */
493 static bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
494 {
495 struct task_struct *t;
496
497 for_each_thread(p, t) {
498 struct mm_struct *t_mm = READ_ONCE(t->mm);
499 if (t_mm)
500 return t_mm == mm;
501 }
502 return false;
503 }
504
505 #define K(x) ((x) << (PAGE_SHIFT-10))
506 /*
507 * Must be called while holding a reference to p, which will be released upon
508 * returning.
509 */
510 void oom_kill_process(struct oom_control *oc, struct task_struct *p,
511 unsigned int points, unsigned long totalpages,
512 struct mem_cgroup *memcg, const char *message)
513 {
514 struct task_struct *victim = p;
515 struct task_struct *child;
516 struct task_struct *t;
517 struct mm_struct *mm;
518 unsigned int victim_points = 0;
519 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
520 DEFAULT_RATELIMIT_BURST);
521
522 /*
523 * If the task is already exiting, don't alarm the sysadmin or kill
524 * its children or threads, just set TIF_MEMDIE so it can die quickly
525 */
526 task_lock(p);
527 if (p->mm && task_will_free_mem(p)) {
528 mark_oom_victim(p);
529 task_unlock(p);
530 put_task_struct(p);
531 return;
532 }
533 task_unlock(p);
534
535 if (__ratelimit(&oom_rs))
536 dump_header(oc, p, memcg);
537
538 pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
539 message, task_pid_nr(p), p->comm, points);
540
541 /*
542 * If any of p's children has a different mm and is eligible for kill,
543 * the one with the highest oom_badness() score is sacrificed for its
544 * parent. This attempts to lose the minimal amount of work done while
545 * still freeing memory.
546 */
547 read_lock(&tasklist_lock);
548 for_each_thread(p, t) {
549 list_for_each_entry(child, &t->children, sibling) {
550 unsigned int child_points;
551
552 if (process_shares_mm(child, p->mm))
553 continue;
554 /*
555 * oom_badness() returns 0 if the thread is unkillable
556 */
557 child_points = oom_badness(child, memcg, oc->nodemask,
558 totalpages);
559 if (child_points > victim_points) {
560 put_task_struct(victim);
561 victim = child;
562 victim_points = child_points;
563 get_task_struct(victim);
564 }
565 }
566 }
567 read_unlock(&tasklist_lock);
568
569 p = find_lock_task_mm(victim);
570 if (!p) {
571 put_task_struct(victim);
572 return;
573 } else if (victim != p) {
574 get_task_struct(p);
575 put_task_struct(victim);
576 victim = p;
577 }
578
579 /* Get a reference to safely compare mm after task_unlock(victim) */
580 mm = victim->mm;
581 atomic_inc(&mm->mm_count);
582 /*
583 * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
584 * the OOM victim from depleting the memory reserves from the user
585 * space under its control.
586 */
587 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
588 mark_oom_victim(victim);
589 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
590 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
591 K(get_mm_counter(victim->mm, MM_ANONPAGES)),
592 K(get_mm_counter(victim->mm, MM_FILEPAGES)),
593 K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
594 task_unlock(victim);
595
596 /*
597 * Kill all user processes sharing victim->mm in other thread groups, if
598 * any. They don't get access to memory reserves, though, to avoid
599 * depletion of all memory. This prevents mm->mmap_sem livelock when an
600 * oom killed thread cannot exit because it requires the semaphore and
601 * its contended by another thread trying to allocate memory itself.
602 * That thread will now get access to memory reserves since it has a
603 * pending fatal signal.
604 */
605 rcu_read_lock();
606 for_each_process(p) {
607 if (!process_shares_mm(p, mm))
608 continue;
609 if (same_thread_group(p, victim))
610 continue;
611 if (unlikely(p->flags & PF_KTHREAD))
612 continue;
613 if (is_global_init(p))
614 continue;
615 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
616 continue;
617
618 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
619 }
620 rcu_read_unlock();
621
622 mmdrop(mm);
623 put_task_struct(victim);
624 }
625 #undef K
626
627 /*
628 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
629 */
630 void check_panic_on_oom(struct oom_control *oc, enum oom_constraint constraint,
631 struct mem_cgroup *memcg)
632 {
633 if (likely(!sysctl_panic_on_oom))
634 return;
635 if (sysctl_panic_on_oom != 2) {
636 /*
637 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
638 * does not panic for cpuset, mempolicy, or memcg allocation
639 * failures.
640 */
641 if (constraint != CONSTRAINT_NONE)
642 return;
643 }
644 /* Do not panic for oom kills triggered by sysrq */
645 if (is_sysrq_oom(oc))
646 return;
647 dump_header(oc, NULL, memcg);
648 panic("Out of memory: %s panic_on_oom is enabled\n",
649 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
650 }
651
652 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
653
654 int register_oom_notifier(struct notifier_block *nb)
655 {
656 return blocking_notifier_chain_register(&oom_notify_list, nb);
657 }
658 EXPORT_SYMBOL_GPL(register_oom_notifier);
659
660 int unregister_oom_notifier(struct notifier_block *nb)
661 {
662 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
663 }
664 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
665
666 /**
667 * out_of_memory - kill the "best" process when we run out of memory
668 * @oc: pointer to struct oom_control
669 *
670 * If we run out of memory, we have the choice between either
671 * killing a random task (bad), letting the system crash (worse)
672 * OR try to be smart about which process to kill. Note that we
673 * don't have to be perfect here, we just have to be good.
674 */
675 bool out_of_memory(struct oom_control *oc)
676 {
677 struct task_struct *p;
678 unsigned long totalpages;
679 unsigned long freed = 0;
680 unsigned int uninitialized_var(points);
681 enum oom_constraint constraint = CONSTRAINT_NONE;
682
683 if (oom_killer_disabled)
684 return false;
685
686 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
687 if (freed > 0)
688 /* Got some memory back in the last second. */
689 return true;
690
691 /*
692 * If current has a pending SIGKILL or is exiting, then automatically
693 * select it. The goal is to allow it to allocate so that it may
694 * quickly exit and free its memory.
695 *
696 * But don't select if current has already released its mm and cleared
697 * TIF_MEMDIE flag at exit_mm(), otherwise an OOM livelock may occur.
698 */
699 if (current->mm &&
700 (fatal_signal_pending(current) || task_will_free_mem(current))) {
701 mark_oom_victim(current);
702 return true;
703 }
704
705 /*
706 * Check if there were limitations on the allocation (only relevant for
707 * NUMA) that may require different handling.
708 */
709 constraint = constrained_alloc(oc, &totalpages);
710 if (constraint != CONSTRAINT_MEMORY_POLICY)
711 oc->nodemask = NULL;
712 check_panic_on_oom(oc, constraint, NULL);
713
714 if (sysctl_oom_kill_allocating_task && current->mm &&
715 !oom_unkillable_task(current, NULL, oc->nodemask) &&
716 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
717 get_task_struct(current);
718 oom_kill_process(oc, current, 0, totalpages, NULL,
719 "Out of memory (oom_kill_allocating_task)");
720 return true;
721 }
722
723 p = select_bad_process(oc, &points, totalpages);
724 /* Found nothing?!?! Either we hang forever, or we panic. */
725 if (!p && !is_sysrq_oom(oc)) {
726 dump_header(oc, NULL, NULL);
727 panic("Out of memory and no killable processes...\n");
728 }
729 if (p && p != (void *)-1UL) {
730 oom_kill_process(oc, p, points, totalpages, NULL,
731 "Out of memory");
732 /*
733 * Give the killed process a good chance to exit before trying
734 * to allocate memory again.
735 */
736 schedule_timeout_killable(1);
737 }
738 return true;
739 }
740
741 /*
742 * The pagefault handler calls here because it is out of memory, so kill a
743 * memory-hogging task. If any populated zone has ZONE_OOM_LOCKED set, a
744 * parallel oom killing is already in progress so do nothing.
745 */
746 void pagefault_out_of_memory(void)
747 {
748 struct oom_control oc = {
749 .zonelist = NULL,
750 .nodemask = NULL,
751 .gfp_mask = 0,
752 .order = 0,
753 };
754
755 if (mem_cgroup_oom_synchronize(true))
756 return;
757
758 if (!mutex_trylock(&oom_lock))
759 return;
760
761 if (!out_of_memory(&oc)) {
762 /*
763 * There shouldn't be any user tasks runnable while the
764 * OOM killer is disabled, so the current task has to
765 * be a racing OOM victim for which oom_killer_disable()
766 * is waiting for.
767 */
768 WARN_ON(test_thread_flag(TIF_MEMDIE));
769 }
770
771 mutex_unlock(&oom_lock);
772 }