]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/oom_kill.c
Merge branches 'pm-opp', 'pm-misc', 'pm-avs' and 'pm-tools'
[mirror_ubuntu-hirsute-kernel.git] / mm / oom_kill.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/oom_kill.c
4 *
5 * Copyright (C) 1998,2000 Rik van Riel
6 * Thanks go out to Claus Fischer for some serious inspiration and
7 * for goading me into coding this file...
8 * Copyright (C) 2010 Google, Inc.
9 * Rewritten by David Rientjes
10 *
11 * The routines in this file are used to kill a process when
12 * we're seriously out of memory. This gets called from __alloc_pages()
13 * in mm/page_alloc.c when we really run out of memory.
14 *
15 * Since we won't call these routines often (on a well-configured
16 * machine) this file will double as a 'coding guide' and a signpost
17 * for newbie kernel hackers. It features several pointers to major
18 * kernel subsystems and hints as to where to find out what things do.
19 */
20
21 #include <linux/oom.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/gfp.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/coredump.h>
28 #include <linux/sched/task.h>
29 #include <linux/swap.h>
30 #include <linux/timex.h>
31 #include <linux/jiffies.h>
32 #include <linux/cpuset.h>
33 #include <linux/export.h>
34 #include <linux/notifier.h>
35 #include <linux/memcontrol.h>
36 #include <linux/mempolicy.h>
37 #include <linux/security.h>
38 #include <linux/ptrace.h>
39 #include <linux/freezer.h>
40 #include <linux/ftrace.h>
41 #include <linux/ratelimit.h>
42 #include <linux/kthread.h>
43 #include <linux/init.h>
44 #include <linux/mmu_notifier.h>
45
46 #include <asm/tlb.h>
47 #include "internal.h"
48 #include "slab.h"
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/oom.h>
52
53 int sysctl_panic_on_oom;
54 int sysctl_oom_kill_allocating_task;
55 int sysctl_oom_dump_tasks = 1;
56
57 /*
58 * Serializes oom killer invocations (out_of_memory()) from all contexts to
59 * prevent from over eager oom killing (e.g. when the oom killer is invoked
60 * from different domains).
61 *
62 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
63 * and mark_oom_victim
64 */
65 DEFINE_MUTEX(oom_lock);
66
67 #ifdef CONFIG_NUMA
68 /**
69 * has_intersects_mems_allowed() - check task eligiblity for kill
70 * @start: task struct of which task to consider
71 * @mask: nodemask passed to page allocator for mempolicy ooms
72 *
73 * Task eligibility is determined by whether or not a candidate task, @tsk,
74 * shares the same mempolicy nodes as current if it is bound by such a policy
75 * and whether or not it has the same set of allowed cpuset nodes.
76 */
77 static bool has_intersects_mems_allowed(struct task_struct *start,
78 const nodemask_t *mask)
79 {
80 struct task_struct *tsk;
81 bool ret = false;
82
83 rcu_read_lock();
84 for_each_thread(start, tsk) {
85 if (mask) {
86 /*
87 * If this is a mempolicy constrained oom, tsk's
88 * cpuset is irrelevant. Only return true if its
89 * mempolicy intersects current, otherwise it may be
90 * needlessly killed.
91 */
92 ret = mempolicy_nodemask_intersects(tsk, mask);
93 } else {
94 /*
95 * This is not a mempolicy constrained oom, so only
96 * check the mems of tsk's cpuset.
97 */
98 ret = cpuset_mems_allowed_intersects(current, tsk);
99 }
100 if (ret)
101 break;
102 }
103 rcu_read_unlock();
104
105 return ret;
106 }
107 #else
108 static bool has_intersects_mems_allowed(struct task_struct *tsk,
109 const nodemask_t *mask)
110 {
111 return true;
112 }
113 #endif /* CONFIG_NUMA */
114
115 /*
116 * The process p may have detached its own ->mm while exiting or through
117 * use_mm(), but one or more of its subthreads may still have a valid
118 * pointer. Return p, or any of its subthreads with a valid ->mm, with
119 * task_lock() held.
120 */
121 struct task_struct *find_lock_task_mm(struct task_struct *p)
122 {
123 struct task_struct *t;
124
125 rcu_read_lock();
126
127 for_each_thread(p, t) {
128 task_lock(t);
129 if (likely(t->mm))
130 goto found;
131 task_unlock(t);
132 }
133 t = NULL;
134 found:
135 rcu_read_unlock();
136
137 return t;
138 }
139
140 /*
141 * order == -1 means the oom kill is required by sysrq, otherwise only
142 * for display purposes.
143 */
144 static inline bool is_sysrq_oom(struct oom_control *oc)
145 {
146 return oc->order == -1;
147 }
148
149 static inline bool is_memcg_oom(struct oom_control *oc)
150 {
151 return oc->memcg != NULL;
152 }
153
154 /* return true if the task is not adequate as candidate victim task. */
155 static bool oom_unkillable_task(struct task_struct *p,
156 struct mem_cgroup *memcg, const nodemask_t *nodemask)
157 {
158 if (is_global_init(p))
159 return true;
160 if (p->flags & PF_KTHREAD)
161 return true;
162
163 /* When mem_cgroup_out_of_memory() and p is not member of the group */
164 if (memcg && !task_in_mem_cgroup(p, memcg))
165 return true;
166
167 /* p may not have freeable memory in nodemask */
168 if (!has_intersects_mems_allowed(p, nodemask))
169 return true;
170
171 return false;
172 }
173
174 /*
175 * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
176 * than all user memory (LRU pages)
177 */
178 static bool is_dump_unreclaim_slabs(void)
179 {
180 unsigned long nr_lru;
181
182 nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
183 global_node_page_state(NR_INACTIVE_ANON) +
184 global_node_page_state(NR_ACTIVE_FILE) +
185 global_node_page_state(NR_INACTIVE_FILE) +
186 global_node_page_state(NR_ISOLATED_ANON) +
187 global_node_page_state(NR_ISOLATED_FILE) +
188 global_node_page_state(NR_UNEVICTABLE);
189
190 return (global_node_page_state(NR_SLAB_UNRECLAIMABLE) > nr_lru);
191 }
192
193 /**
194 * oom_badness - heuristic function to determine which candidate task to kill
195 * @p: task struct of which task we should calculate
196 * @totalpages: total present RAM allowed for page allocation
197 * @memcg: task's memory controller, if constrained
198 * @nodemask: nodemask passed to page allocator for mempolicy ooms
199 *
200 * The heuristic for determining which task to kill is made to be as simple and
201 * predictable as possible. The goal is to return the highest value for the
202 * task consuming the most memory to avoid subsequent oom failures.
203 */
204 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
205 const nodemask_t *nodemask, unsigned long totalpages)
206 {
207 long points;
208 long adj;
209
210 if (oom_unkillable_task(p, memcg, nodemask))
211 return 0;
212
213 p = find_lock_task_mm(p);
214 if (!p)
215 return 0;
216
217 /*
218 * Do not even consider tasks which are explicitly marked oom
219 * unkillable or have been already oom reaped or the are in
220 * the middle of vfork
221 */
222 adj = (long)p->signal->oom_score_adj;
223 if (adj == OOM_SCORE_ADJ_MIN ||
224 test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
225 in_vfork(p)) {
226 task_unlock(p);
227 return 0;
228 }
229
230 /*
231 * The baseline for the badness score is the proportion of RAM that each
232 * task's rss, pagetable and swap space use.
233 */
234 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
235 mm_pgtables_bytes(p->mm) / PAGE_SIZE;
236 task_unlock(p);
237
238 /* Normalize to oom_score_adj units */
239 adj *= totalpages / 1000;
240 points += adj;
241
242 /*
243 * Never return 0 for an eligible task regardless of the root bonus and
244 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
245 */
246 return points > 0 ? points : 1;
247 }
248
249 static const char * const oom_constraint_text[] = {
250 [CONSTRAINT_NONE] = "CONSTRAINT_NONE",
251 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
252 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
253 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
254 };
255
256 /*
257 * Determine the type of allocation constraint.
258 */
259 static enum oom_constraint constrained_alloc(struct oom_control *oc)
260 {
261 struct zone *zone;
262 struct zoneref *z;
263 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
264 bool cpuset_limited = false;
265 int nid;
266
267 if (is_memcg_oom(oc)) {
268 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
269 return CONSTRAINT_MEMCG;
270 }
271
272 /* Default to all available memory */
273 oc->totalpages = totalram_pages() + total_swap_pages;
274
275 if (!IS_ENABLED(CONFIG_NUMA))
276 return CONSTRAINT_NONE;
277
278 if (!oc->zonelist)
279 return CONSTRAINT_NONE;
280 /*
281 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
282 * to kill current.We have to random task kill in this case.
283 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
284 */
285 if (oc->gfp_mask & __GFP_THISNODE)
286 return CONSTRAINT_NONE;
287
288 /*
289 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
290 * the page allocator means a mempolicy is in effect. Cpuset policy
291 * is enforced in get_page_from_freelist().
292 */
293 if (oc->nodemask &&
294 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
295 oc->totalpages = total_swap_pages;
296 for_each_node_mask(nid, *oc->nodemask)
297 oc->totalpages += node_spanned_pages(nid);
298 return CONSTRAINT_MEMORY_POLICY;
299 }
300
301 /* Check this allocation failure is caused by cpuset's wall function */
302 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
303 high_zoneidx, oc->nodemask)
304 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
305 cpuset_limited = true;
306
307 if (cpuset_limited) {
308 oc->totalpages = total_swap_pages;
309 for_each_node_mask(nid, cpuset_current_mems_allowed)
310 oc->totalpages += node_spanned_pages(nid);
311 return CONSTRAINT_CPUSET;
312 }
313 return CONSTRAINT_NONE;
314 }
315
316 static int oom_evaluate_task(struct task_struct *task, void *arg)
317 {
318 struct oom_control *oc = arg;
319 unsigned long points;
320
321 if (oom_unkillable_task(task, NULL, oc->nodemask))
322 goto next;
323
324 /*
325 * This task already has access to memory reserves and is being killed.
326 * Don't allow any other task to have access to the reserves unless
327 * the task has MMF_OOM_SKIP because chances that it would release
328 * any memory is quite low.
329 */
330 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
331 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
332 goto next;
333 goto abort;
334 }
335
336 /*
337 * If task is allocating a lot of memory and has been marked to be
338 * killed first if it triggers an oom, then select it.
339 */
340 if (oom_task_origin(task)) {
341 points = ULONG_MAX;
342 goto select;
343 }
344
345 points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
346 if (!points || points < oc->chosen_points)
347 goto next;
348
349 /* Prefer thread group leaders for display purposes */
350 if (points == oc->chosen_points && thread_group_leader(oc->chosen))
351 goto next;
352 select:
353 if (oc->chosen)
354 put_task_struct(oc->chosen);
355 get_task_struct(task);
356 oc->chosen = task;
357 oc->chosen_points = points;
358 next:
359 return 0;
360 abort:
361 if (oc->chosen)
362 put_task_struct(oc->chosen);
363 oc->chosen = (void *)-1UL;
364 return 1;
365 }
366
367 /*
368 * Simple selection loop. We choose the process with the highest number of
369 * 'points'. In case scan was aborted, oc->chosen is set to -1.
370 */
371 static void select_bad_process(struct oom_control *oc)
372 {
373 if (is_memcg_oom(oc))
374 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
375 else {
376 struct task_struct *p;
377
378 rcu_read_lock();
379 for_each_process(p)
380 if (oom_evaluate_task(p, oc))
381 break;
382 rcu_read_unlock();
383 }
384
385 oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
386 }
387
388 /**
389 * dump_tasks - dump current memory state of all system tasks
390 * @memcg: current's memory controller, if constrained
391 * @nodemask: nodemask passed to page allocator for mempolicy ooms
392 *
393 * Dumps the current memory state of all eligible tasks. Tasks not in the same
394 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
395 * are not shown.
396 * State information includes task's pid, uid, tgid, vm size, rss,
397 * pgtables_bytes, swapents, oom_score_adj value, and name.
398 */
399 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
400 {
401 struct task_struct *p;
402 struct task_struct *task;
403
404 pr_info("Tasks state (memory values in pages):\n");
405 pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n");
406 rcu_read_lock();
407 for_each_process(p) {
408 if (oom_unkillable_task(p, memcg, nodemask))
409 continue;
410
411 task = find_lock_task_mm(p);
412 if (!task) {
413 /*
414 * This is a kthread or all of p's threads have already
415 * detached their mm's. There's no need to report
416 * them; they can't be oom killed anyway.
417 */
418 continue;
419 }
420
421 pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n",
422 task->pid, from_kuid(&init_user_ns, task_uid(task)),
423 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
424 mm_pgtables_bytes(task->mm),
425 get_mm_counter(task->mm, MM_SWAPENTS),
426 task->signal->oom_score_adj, task->comm);
427 task_unlock(task);
428 }
429 rcu_read_unlock();
430 }
431
432 static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
433 {
434 /* one line summary of the oom killer context. */
435 pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
436 oom_constraint_text[oc->constraint],
437 nodemask_pr_args(oc->nodemask));
438 cpuset_print_current_mems_allowed();
439 mem_cgroup_print_oom_context(oc->memcg, victim);
440 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
441 from_kuid(&init_user_ns, task_uid(victim)));
442 }
443
444 static void dump_header(struct oom_control *oc, struct task_struct *p)
445 {
446 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
447 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
448 current->signal->oom_score_adj);
449 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
450 pr_warn("COMPACTION is disabled!!!\n");
451
452 dump_stack();
453 if (is_memcg_oom(oc))
454 mem_cgroup_print_oom_meminfo(oc->memcg);
455 else {
456 show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
457 if (is_dump_unreclaim_slabs())
458 dump_unreclaimable_slab();
459 }
460 if (sysctl_oom_dump_tasks)
461 dump_tasks(oc->memcg, oc->nodemask);
462 if (p)
463 dump_oom_summary(oc, p);
464 }
465
466 /*
467 * Number of OOM victims in flight
468 */
469 static atomic_t oom_victims = ATOMIC_INIT(0);
470 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
471
472 static bool oom_killer_disabled __read_mostly;
473
474 #define K(x) ((x) << (PAGE_SHIFT-10))
475
476 /*
477 * task->mm can be NULL if the task is the exited group leader. So to
478 * determine whether the task is using a particular mm, we examine all the
479 * task's threads: if one of those is using this mm then this task was also
480 * using it.
481 */
482 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
483 {
484 struct task_struct *t;
485
486 for_each_thread(p, t) {
487 struct mm_struct *t_mm = READ_ONCE(t->mm);
488 if (t_mm)
489 return t_mm == mm;
490 }
491 return false;
492 }
493
494 #ifdef CONFIG_MMU
495 /*
496 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
497 * victim (if that is possible) to help the OOM killer to move on.
498 */
499 static struct task_struct *oom_reaper_th;
500 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
501 static struct task_struct *oom_reaper_list;
502 static DEFINE_SPINLOCK(oom_reaper_lock);
503
504 bool __oom_reap_task_mm(struct mm_struct *mm)
505 {
506 struct vm_area_struct *vma;
507 bool ret = true;
508
509 /*
510 * Tell all users of get_user/copy_from_user etc... that the content
511 * is no longer stable. No barriers really needed because unmapping
512 * should imply barriers already and the reader would hit a page fault
513 * if it stumbled over a reaped memory.
514 */
515 set_bit(MMF_UNSTABLE, &mm->flags);
516
517 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
518 if (!can_madv_dontneed_vma(vma))
519 continue;
520
521 /*
522 * Only anonymous pages have a good chance to be dropped
523 * without additional steps which we cannot afford as we
524 * are OOM already.
525 *
526 * We do not even care about fs backed pages because all
527 * which are reclaimable have already been reclaimed and
528 * we do not want to block exit_mmap by keeping mm ref
529 * count elevated without a good reason.
530 */
531 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
532 struct mmu_notifier_range range;
533 struct mmu_gather tlb;
534
535 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
536 vma, mm, vma->vm_start,
537 vma->vm_end);
538 tlb_gather_mmu(&tlb, mm, range.start, range.end);
539 if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
540 tlb_finish_mmu(&tlb, range.start, range.end);
541 ret = false;
542 continue;
543 }
544 unmap_page_range(&tlb, vma, range.start, range.end, NULL);
545 mmu_notifier_invalidate_range_end(&range);
546 tlb_finish_mmu(&tlb, range.start, range.end);
547 }
548 }
549
550 return ret;
551 }
552
553 /*
554 * Reaps the address space of the give task.
555 *
556 * Returns true on success and false if none or part of the address space
557 * has been reclaimed and the caller should retry later.
558 */
559 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
560 {
561 bool ret = true;
562
563 if (!down_read_trylock(&mm->mmap_sem)) {
564 trace_skip_task_reaping(tsk->pid);
565 return false;
566 }
567
568 /*
569 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
570 * work on the mm anymore. The check for MMF_OOM_SKIP must run
571 * under mmap_sem for reading because it serializes against the
572 * down_write();up_write() cycle in exit_mmap().
573 */
574 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
575 trace_skip_task_reaping(tsk->pid);
576 goto out_unlock;
577 }
578
579 trace_start_task_reaping(tsk->pid);
580
581 /* failed to reap part of the address space. Try again later */
582 ret = __oom_reap_task_mm(mm);
583 if (!ret)
584 goto out_finish;
585
586 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
587 task_pid_nr(tsk), tsk->comm,
588 K(get_mm_counter(mm, MM_ANONPAGES)),
589 K(get_mm_counter(mm, MM_FILEPAGES)),
590 K(get_mm_counter(mm, MM_SHMEMPAGES)));
591 out_finish:
592 trace_finish_task_reaping(tsk->pid);
593 out_unlock:
594 up_read(&mm->mmap_sem);
595
596 return ret;
597 }
598
599 #define MAX_OOM_REAP_RETRIES 10
600 static void oom_reap_task(struct task_struct *tsk)
601 {
602 int attempts = 0;
603 struct mm_struct *mm = tsk->signal->oom_mm;
604
605 /* Retry the down_read_trylock(mmap_sem) a few times */
606 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
607 schedule_timeout_idle(HZ/10);
608
609 if (attempts <= MAX_OOM_REAP_RETRIES ||
610 test_bit(MMF_OOM_SKIP, &mm->flags))
611 goto done;
612
613 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
614 task_pid_nr(tsk), tsk->comm);
615 debug_show_all_locks();
616
617 done:
618 tsk->oom_reaper_list = NULL;
619
620 /*
621 * Hide this mm from OOM killer because it has been either reaped or
622 * somebody can't call up_write(mmap_sem).
623 */
624 set_bit(MMF_OOM_SKIP, &mm->flags);
625
626 /* Drop a reference taken by wake_oom_reaper */
627 put_task_struct(tsk);
628 }
629
630 static int oom_reaper(void *unused)
631 {
632 while (true) {
633 struct task_struct *tsk = NULL;
634
635 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
636 spin_lock(&oom_reaper_lock);
637 if (oom_reaper_list != NULL) {
638 tsk = oom_reaper_list;
639 oom_reaper_list = tsk->oom_reaper_list;
640 }
641 spin_unlock(&oom_reaper_lock);
642
643 if (tsk)
644 oom_reap_task(tsk);
645 }
646
647 return 0;
648 }
649
650 static void wake_oom_reaper(struct task_struct *tsk)
651 {
652 /* mm is already queued? */
653 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
654 return;
655
656 get_task_struct(tsk);
657
658 spin_lock(&oom_reaper_lock);
659 tsk->oom_reaper_list = oom_reaper_list;
660 oom_reaper_list = tsk;
661 spin_unlock(&oom_reaper_lock);
662 trace_wake_reaper(tsk->pid);
663 wake_up(&oom_reaper_wait);
664 }
665
666 static int __init oom_init(void)
667 {
668 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
669 return 0;
670 }
671 subsys_initcall(oom_init)
672 #else
673 static inline void wake_oom_reaper(struct task_struct *tsk)
674 {
675 }
676 #endif /* CONFIG_MMU */
677
678 /**
679 * mark_oom_victim - mark the given task as OOM victim
680 * @tsk: task to mark
681 *
682 * Has to be called with oom_lock held and never after
683 * oom has been disabled already.
684 *
685 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
686 * under task_lock or operate on the current).
687 */
688 static void mark_oom_victim(struct task_struct *tsk)
689 {
690 struct mm_struct *mm = tsk->mm;
691
692 WARN_ON(oom_killer_disabled);
693 /* OOM killer might race with memcg OOM */
694 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
695 return;
696
697 /* oom_mm is bound to the signal struct life time. */
698 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
699 mmgrab(tsk->signal->oom_mm);
700 set_bit(MMF_OOM_VICTIM, &mm->flags);
701 }
702
703 /*
704 * Make sure that the task is woken up from uninterruptible sleep
705 * if it is frozen because OOM killer wouldn't be able to free
706 * any memory and livelock. freezing_slow_path will tell the freezer
707 * that TIF_MEMDIE tasks should be ignored.
708 */
709 __thaw_task(tsk);
710 atomic_inc(&oom_victims);
711 trace_mark_victim(tsk->pid);
712 }
713
714 /**
715 * exit_oom_victim - note the exit of an OOM victim
716 */
717 void exit_oom_victim(void)
718 {
719 clear_thread_flag(TIF_MEMDIE);
720
721 if (!atomic_dec_return(&oom_victims))
722 wake_up_all(&oom_victims_wait);
723 }
724
725 /**
726 * oom_killer_enable - enable OOM killer
727 */
728 void oom_killer_enable(void)
729 {
730 oom_killer_disabled = false;
731 pr_info("OOM killer enabled.\n");
732 }
733
734 /**
735 * oom_killer_disable - disable OOM killer
736 * @timeout: maximum timeout to wait for oom victims in jiffies
737 *
738 * Forces all page allocations to fail rather than trigger OOM killer.
739 * Will block and wait until all OOM victims are killed or the given
740 * timeout expires.
741 *
742 * The function cannot be called when there are runnable user tasks because
743 * the userspace would see unexpected allocation failures as a result. Any
744 * new usage of this function should be consulted with MM people.
745 *
746 * Returns true if successful and false if the OOM killer cannot be
747 * disabled.
748 */
749 bool oom_killer_disable(signed long timeout)
750 {
751 signed long ret;
752
753 /*
754 * Make sure to not race with an ongoing OOM killer. Check that the
755 * current is not killed (possibly due to sharing the victim's memory).
756 */
757 if (mutex_lock_killable(&oom_lock))
758 return false;
759 oom_killer_disabled = true;
760 mutex_unlock(&oom_lock);
761
762 ret = wait_event_interruptible_timeout(oom_victims_wait,
763 !atomic_read(&oom_victims), timeout);
764 if (ret <= 0) {
765 oom_killer_enable();
766 return false;
767 }
768 pr_info("OOM killer disabled.\n");
769
770 return true;
771 }
772
773 static inline bool __task_will_free_mem(struct task_struct *task)
774 {
775 struct signal_struct *sig = task->signal;
776
777 /*
778 * A coredumping process may sleep for an extended period in exit_mm(),
779 * so the oom killer cannot assume that the process will promptly exit
780 * and release memory.
781 */
782 if (sig->flags & SIGNAL_GROUP_COREDUMP)
783 return false;
784
785 if (sig->flags & SIGNAL_GROUP_EXIT)
786 return true;
787
788 if (thread_group_empty(task) && (task->flags & PF_EXITING))
789 return true;
790
791 return false;
792 }
793
794 /*
795 * Checks whether the given task is dying or exiting and likely to
796 * release its address space. This means that all threads and processes
797 * sharing the same mm have to be killed or exiting.
798 * Caller has to make sure that task->mm is stable (hold task_lock or
799 * it operates on the current).
800 */
801 static bool task_will_free_mem(struct task_struct *task)
802 {
803 struct mm_struct *mm = task->mm;
804 struct task_struct *p;
805 bool ret = true;
806
807 /*
808 * Skip tasks without mm because it might have passed its exit_mm and
809 * exit_oom_victim. oom_reaper could have rescued that but do not rely
810 * on that for now. We can consider find_lock_task_mm in future.
811 */
812 if (!mm)
813 return false;
814
815 if (!__task_will_free_mem(task))
816 return false;
817
818 /*
819 * This task has already been drained by the oom reaper so there are
820 * only small chances it will free some more
821 */
822 if (test_bit(MMF_OOM_SKIP, &mm->flags))
823 return false;
824
825 if (atomic_read(&mm->mm_users) <= 1)
826 return true;
827
828 /*
829 * Make sure that all tasks which share the mm with the given tasks
830 * are dying as well to make sure that a) nobody pins its mm and
831 * b) the task is also reapable by the oom reaper.
832 */
833 rcu_read_lock();
834 for_each_process(p) {
835 if (!process_shares_mm(p, mm))
836 continue;
837 if (same_thread_group(task, p))
838 continue;
839 ret = __task_will_free_mem(p);
840 if (!ret)
841 break;
842 }
843 rcu_read_unlock();
844
845 return ret;
846 }
847
848 static void __oom_kill_process(struct task_struct *victim, const char *message)
849 {
850 struct task_struct *p;
851 struct mm_struct *mm;
852 bool can_oom_reap = true;
853
854 p = find_lock_task_mm(victim);
855 if (!p) {
856 put_task_struct(victim);
857 return;
858 } else if (victim != p) {
859 get_task_struct(p);
860 put_task_struct(victim);
861 victim = p;
862 }
863
864 /* Get a reference to safely compare mm after task_unlock(victim) */
865 mm = victim->mm;
866 mmgrab(mm);
867
868 /* Raise event before sending signal: task reaper must see this */
869 count_vm_event(OOM_KILL);
870 memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
871
872 /*
873 * We should send SIGKILL before granting access to memory reserves
874 * in order to prevent the OOM victim from depleting the memory
875 * reserves from the user space under its control.
876 */
877 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
878 mark_oom_victim(victim);
879 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
880 message, task_pid_nr(victim), victim->comm,
881 K(victim->mm->total_vm),
882 K(get_mm_counter(victim->mm, MM_ANONPAGES)),
883 K(get_mm_counter(victim->mm, MM_FILEPAGES)),
884 K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
885 task_unlock(victim);
886
887 /*
888 * Kill all user processes sharing victim->mm in other thread groups, if
889 * any. They don't get access to memory reserves, though, to avoid
890 * depletion of all memory. This prevents mm->mmap_sem livelock when an
891 * oom killed thread cannot exit because it requires the semaphore and
892 * its contended by another thread trying to allocate memory itself.
893 * That thread will now get access to memory reserves since it has a
894 * pending fatal signal.
895 */
896 rcu_read_lock();
897 for_each_process(p) {
898 if (!process_shares_mm(p, mm))
899 continue;
900 if (same_thread_group(p, victim))
901 continue;
902 if (is_global_init(p)) {
903 can_oom_reap = false;
904 set_bit(MMF_OOM_SKIP, &mm->flags);
905 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
906 task_pid_nr(victim), victim->comm,
907 task_pid_nr(p), p->comm);
908 continue;
909 }
910 /*
911 * No use_mm() user needs to read from the userspace so we are
912 * ok to reap it.
913 */
914 if (unlikely(p->flags & PF_KTHREAD))
915 continue;
916 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
917 }
918 rcu_read_unlock();
919
920 if (can_oom_reap)
921 wake_oom_reaper(victim);
922
923 mmdrop(mm);
924 put_task_struct(victim);
925 }
926 #undef K
927
928 /*
929 * Kill provided task unless it's secured by setting
930 * oom_score_adj to OOM_SCORE_ADJ_MIN.
931 */
932 static int oom_kill_memcg_member(struct task_struct *task, void *message)
933 {
934 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
935 !is_global_init(task)) {
936 get_task_struct(task);
937 __oom_kill_process(task, message);
938 }
939 return 0;
940 }
941
942 static void oom_kill_process(struct oom_control *oc, const char *message)
943 {
944 struct task_struct *victim = oc->chosen;
945 struct mem_cgroup *oom_group;
946 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
947 DEFAULT_RATELIMIT_BURST);
948
949 /*
950 * If the task is already exiting, don't alarm the sysadmin or kill
951 * its children or threads, just give it access to memory reserves
952 * so it can die quickly
953 */
954 task_lock(victim);
955 if (task_will_free_mem(victim)) {
956 mark_oom_victim(victim);
957 wake_oom_reaper(victim);
958 task_unlock(victim);
959 put_task_struct(victim);
960 return;
961 }
962 task_unlock(victim);
963
964 if (__ratelimit(&oom_rs))
965 dump_header(oc, victim);
966
967 /*
968 * Do we need to kill the entire memory cgroup?
969 * Or even one of the ancestor memory cgroups?
970 * Check this out before killing the victim task.
971 */
972 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
973
974 __oom_kill_process(victim, message);
975
976 /*
977 * If necessary, kill all tasks in the selected memory cgroup.
978 */
979 if (oom_group) {
980 mem_cgroup_print_oom_group(oom_group);
981 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
982 (void*)message);
983 mem_cgroup_put(oom_group);
984 }
985 }
986
987 /*
988 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
989 */
990 static void check_panic_on_oom(struct oom_control *oc)
991 {
992 if (likely(!sysctl_panic_on_oom))
993 return;
994 if (sysctl_panic_on_oom != 2) {
995 /*
996 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
997 * does not panic for cpuset, mempolicy, or memcg allocation
998 * failures.
999 */
1000 if (oc->constraint != CONSTRAINT_NONE)
1001 return;
1002 }
1003 /* Do not panic for oom kills triggered by sysrq */
1004 if (is_sysrq_oom(oc))
1005 return;
1006 dump_header(oc, NULL);
1007 panic("Out of memory: %s panic_on_oom is enabled\n",
1008 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1009 }
1010
1011 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1012
1013 int register_oom_notifier(struct notifier_block *nb)
1014 {
1015 return blocking_notifier_chain_register(&oom_notify_list, nb);
1016 }
1017 EXPORT_SYMBOL_GPL(register_oom_notifier);
1018
1019 int unregister_oom_notifier(struct notifier_block *nb)
1020 {
1021 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1022 }
1023 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1024
1025 /**
1026 * out_of_memory - kill the "best" process when we run out of memory
1027 * @oc: pointer to struct oom_control
1028 *
1029 * If we run out of memory, we have the choice between either
1030 * killing a random task (bad), letting the system crash (worse)
1031 * OR try to be smart about which process to kill. Note that we
1032 * don't have to be perfect here, we just have to be good.
1033 */
1034 bool out_of_memory(struct oom_control *oc)
1035 {
1036 unsigned long freed = 0;
1037
1038 if (oom_killer_disabled)
1039 return false;
1040
1041 if (!is_memcg_oom(oc)) {
1042 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1043 if (freed > 0)
1044 /* Got some memory back in the last second. */
1045 return true;
1046 }
1047
1048 /*
1049 * If current has a pending SIGKILL or is exiting, then automatically
1050 * select it. The goal is to allow it to allocate so that it may
1051 * quickly exit and free its memory.
1052 */
1053 if (task_will_free_mem(current)) {
1054 mark_oom_victim(current);
1055 wake_oom_reaper(current);
1056 return true;
1057 }
1058
1059 /*
1060 * The OOM killer does not compensate for IO-less reclaim.
1061 * pagefault_out_of_memory lost its gfp context so we have to
1062 * make sure exclude 0 mask - all other users should have at least
1063 * ___GFP_DIRECT_RECLAIM to get here.
1064 */
1065 if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS))
1066 return true;
1067
1068 /*
1069 * Check if there were limitations on the allocation (only relevant for
1070 * NUMA and memcg) that may require different handling.
1071 */
1072 oc->constraint = constrained_alloc(oc);
1073 if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1074 oc->nodemask = NULL;
1075 check_panic_on_oom(oc);
1076
1077 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1078 current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
1079 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1080 get_task_struct(current);
1081 oc->chosen = current;
1082 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1083 return true;
1084 }
1085
1086 select_bad_process(oc);
1087 /* Found nothing?!?! */
1088 if (!oc->chosen) {
1089 dump_header(oc, NULL);
1090 pr_warn("Out of memory and no killable processes...\n");
1091 /*
1092 * If we got here due to an actual allocation at the
1093 * system level, we cannot survive this and will enter
1094 * an endless loop in the allocator. Bail out now.
1095 */
1096 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1097 panic("System is deadlocked on memory\n");
1098 }
1099 if (oc->chosen && oc->chosen != (void *)-1UL)
1100 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1101 "Memory cgroup out of memory");
1102 return !!oc->chosen;
1103 }
1104
1105 /*
1106 * The pagefault handler calls here because it is out of memory, so kill a
1107 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1108 * killing is already in progress so do nothing.
1109 */
1110 void pagefault_out_of_memory(void)
1111 {
1112 struct oom_control oc = {
1113 .zonelist = NULL,
1114 .nodemask = NULL,
1115 .memcg = NULL,
1116 .gfp_mask = 0,
1117 .order = 0,
1118 };
1119
1120 if (mem_cgroup_oom_synchronize(true))
1121 return;
1122
1123 if (!mutex_trylock(&oom_lock))
1124 return;
1125 out_of_memory(&oc);
1126 mutex_unlock(&oom_lock);
1127 }