]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/oom_kill.c
oom: introduce find_lock_task_mm() to fix !mm false positives
[mirror_ubuntu-artful-kernel.git] / mm / oom_kill.c
1 /*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 *
8 * The routines in this file are used to kill a process when
9 * we're seriously out of memory. This gets called from __alloc_pages()
10 * in mm/page_alloc.c when we really run out of memory.
11 *
12 * Since we won't call these routines often (on a well-configured
13 * machine) this file will double as a 'coding guide' and a signpost
14 * for newbie kernel hackers. It features several pointers to major
15 * kernel subsystems and hints as to where to find out what things do.
16 */
17
18 #include <linux/oom.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/gfp.h>
22 #include <linux/sched.h>
23 #include <linux/swap.h>
24 #include <linux/timex.h>
25 #include <linux/jiffies.h>
26 #include <linux/cpuset.h>
27 #include <linux/module.h>
28 #include <linux/notifier.h>
29 #include <linux/memcontrol.h>
30 #include <linux/security.h>
31
32 int sysctl_panic_on_oom;
33 int sysctl_oom_kill_allocating_task;
34 int sysctl_oom_dump_tasks;
35 static DEFINE_SPINLOCK(zone_scan_lock);
36 /* #define DEBUG */
37
38 /*
39 * Is all threads of the target process nodes overlap ours?
40 */
41 static int has_intersects_mems_allowed(struct task_struct *tsk)
42 {
43 struct task_struct *t;
44
45 t = tsk;
46 do {
47 if (cpuset_mems_allowed_intersects(current, t))
48 return 1;
49 t = next_thread(t);
50 } while (t != tsk);
51
52 return 0;
53 }
54
55 static struct task_struct *find_lock_task_mm(struct task_struct *p)
56 {
57 struct task_struct *t = p;
58
59 do {
60 task_lock(t);
61 if (likely(t->mm))
62 return t;
63 task_unlock(t);
64 } while_each_thread(p, t);
65
66 return NULL;
67 }
68
69 /**
70 * badness - calculate a numeric value for how bad this task has been
71 * @p: task struct of which task we should calculate
72 * @uptime: current uptime in seconds
73 *
74 * The formula used is relatively simple and documented inline in the
75 * function. The main rationale is that we want to select a good task
76 * to kill when we run out of memory.
77 *
78 * Good in this context means that:
79 * 1) we lose the minimum amount of work done
80 * 2) we recover a large amount of memory
81 * 3) we don't kill anything innocent of eating tons of memory
82 * 4) we want to kill the minimum amount of processes (one)
83 * 5) we try to kill the process the user expects us to kill, this
84 * algorithm has been meticulously tuned to meet the principle
85 * of least surprise ... (be careful when you change it)
86 */
87
88 unsigned long badness(struct task_struct *p, unsigned long uptime)
89 {
90 unsigned long points, cpu_time, run_time;
91 struct task_struct *child;
92 struct task_struct *c, *t;
93 int oom_adj = p->signal->oom_adj;
94 struct task_cputime task_time;
95 unsigned long utime;
96 unsigned long stime;
97
98 if (oom_adj == OOM_DISABLE)
99 return 0;
100
101 p = find_lock_task_mm(p);
102 if (!p)
103 return 0;
104
105 /*
106 * The memory size of the process is the basis for the badness.
107 */
108 points = p->mm->total_vm;
109
110 /*
111 * After this unlock we can no longer dereference local variable `mm'
112 */
113 task_unlock(p);
114
115 /*
116 * swapoff can easily use up all memory, so kill those first.
117 */
118 if (p->flags & PF_OOM_ORIGIN)
119 return ULONG_MAX;
120
121 /*
122 * Processes which fork a lot of child processes are likely
123 * a good choice. We add half the vmsize of the children if they
124 * have an own mm. This prevents forking servers to flood the
125 * machine with an endless amount of children. In case a single
126 * child is eating the vast majority of memory, adding only half
127 * to the parents will make the child our kill candidate of choice.
128 */
129 t = p;
130 do {
131 list_for_each_entry(c, &t->children, sibling) {
132 child = find_lock_task_mm(c);
133 if (child) {
134 if (child->mm != p->mm)
135 points += child->mm->total_vm/2 + 1;
136 task_unlock(child);
137 }
138 }
139 } while_each_thread(p, t);
140
141 /*
142 * CPU time is in tens of seconds and run time is in thousands
143 * of seconds. There is no particular reason for this other than
144 * that it turned out to work very well in practice.
145 */
146 thread_group_cputime(p, &task_time);
147 utime = cputime_to_jiffies(task_time.utime);
148 stime = cputime_to_jiffies(task_time.stime);
149 cpu_time = (utime + stime) >> (SHIFT_HZ + 3);
150
151
152 if (uptime >= p->start_time.tv_sec)
153 run_time = (uptime - p->start_time.tv_sec) >> 10;
154 else
155 run_time = 0;
156
157 if (cpu_time)
158 points /= int_sqrt(cpu_time);
159 if (run_time)
160 points /= int_sqrt(int_sqrt(run_time));
161
162 /*
163 * Niced processes are most likely less important, so double
164 * their badness points.
165 */
166 if (task_nice(p) > 0)
167 points *= 2;
168
169 /*
170 * Superuser processes are usually more important, so we make it
171 * less likely that we kill those.
172 */
173 if (has_capability_noaudit(p, CAP_SYS_ADMIN) ||
174 has_capability_noaudit(p, CAP_SYS_RESOURCE))
175 points /= 4;
176
177 /*
178 * We don't want to kill a process with direct hardware access.
179 * Not only could that mess up the hardware, but usually users
180 * tend to only have this flag set on applications they think
181 * of as important.
182 */
183 if (has_capability_noaudit(p, CAP_SYS_RAWIO))
184 points /= 4;
185
186 /*
187 * If p's nodes don't overlap ours, it may still help to kill p
188 * because p may have allocated or otherwise mapped memory on
189 * this node before. However it will be less likely.
190 */
191 if (!has_intersects_mems_allowed(p))
192 points /= 8;
193
194 /*
195 * Adjust the score by oom_adj.
196 */
197 if (oom_adj) {
198 if (oom_adj > 0) {
199 if (!points)
200 points = 1;
201 points <<= oom_adj;
202 } else
203 points >>= -(oom_adj);
204 }
205
206 #ifdef DEBUG
207 printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
208 p->pid, p->comm, points);
209 #endif
210 return points;
211 }
212
213 /*
214 * Determine the type of allocation constraint.
215 */
216 #ifdef CONFIG_NUMA
217 static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
218 gfp_t gfp_mask, nodemask_t *nodemask)
219 {
220 struct zone *zone;
221 struct zoneref *z;
222 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
223
224 /*
225 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
226 * to kill current.We have to random task kill in this case.
227 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
228 */
229 if (gfp_mask & __GFP_THISNODE)
230 return CONSTRAINT_NONE;
231
232 /*
233 * The nodemask here is a nodemask passed to alloc_pages(). Now,
234 * cpuset doesn't use this nodemask for its hardwall/softwall/hierarchy
235 * feature. mempolicy is an only user of nodemask here.
236 * check mempolicy's nodemask contains all N_HIGH_MEMORY
237 */
238 if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask))
239 return CONSTRAINT_MEMORY_POLICY;
240
241 /* Check this allocation failure is caused by cpuset's wall function */
242 for_each_zone_zonelist_nodemask(zone, z, zonelist,
243 high_zoneidx, nodemask)
244 if (!cpuset_zone_allowed_softwall(zone, gfp_mask))
245 return CONSTRAINT_CPUSET;
246
247 return CONSTRAINT_NONE;
248 }
249 #else
250 static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
251 gfp_t gfp_mask, nodemask_t *nodemask)
252 {
253 return CONSTRAINT_NONE;
254 }
255 #endif
256
257 /*
258 * Simple selection loop. We chose the process with the highest
259 * number of 'points'. We expect the caller will lock the tasklist.
260 *
261 * (not docbooked, we don't want this one cluttering up the manual)
262 */
263 static struct task_struct *select_bad_process(unsigned long *ppoints,
264 struct mem_cgroup *mem)
265 {
266 struct task_struct *p;
267 struct task_struct *chosen = NULL;
268 struct timespec uptime;
269 *ppoints = 0;
270
271 do_posix_clock_monotonic_gettime(&uptime);
272 for_each_process(p) {
273 unsigned long points;
274
275 /* skip the init task and kthreads */
276 if (is_global_init(p) || (p->flags & PF_KTHREAD))
277 continue;
278 if (mem && !task_in_mem_cgroup(p, mem))
279 continue;
280
281 /*
282 * This task already has access to memory reserves and is
283 * being killed. Don't allow any other task access to the
284 * memory reserve.
285 *
286 * Note: this may have a chance of deadlock if it gets
287 * blocked waiting for another task which itself is waiting
288 * for memory. Is there a better alternative?
289 */
290 if (test_tsk_thread_flag(p, TIF_MEMDIE))
291 return ERR_PTR(-1UL);
292
293 /*
294 * This is in the process of releasing memory so wait for it
295 * to finish before killing some other task by mistake.
296 *
297 * However, if p is the current task, we allow the 'kill' to
298 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
299 * which will allow it to gain access to memory reserves in
300 * the process of exiting and releasing its resources.
301 * Otherwise we could get an easy OOM deadlock.
302 */
303 if ((p->flags & PF_EXITING) && p->mm) {
304 if (p != current)
305 return ERR_PTR(-1UL);
306
307 chosen = p;
308 *ppoints = ULONG_MAX;
309 }
310
311 if (p->signal->oom_adj == OOM_DISABLE)
312 continue;
313
314 points = badness(p, uptime.tv_sec);
315 if (points > *ppoints || !chosen) {
316 chosen = p;
317 *ppoints = points;
318 }
319 }
320
321 return chosen;
322 }
323
324 /**
325 * dump_tasks - dump current memory state of all system tasks
326 * @mem: target memory controller
327 *
328 * Dumps the current memory state of all system tasks, excluding kernel threads.
329 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
330 * score, and name.
331 *
332 * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are
333 * shown.
334 *
335 * Call with tasklist_lock read-locked.
336 */
337 static void dump_tasks(const struct mem_cgroup *mem)
338 {
339 struct task_struct *g, *p;
340
341 printk(KERN_INFO "[ pid ] uid tgid total_vm rss cpu oom_adj "
342 "name\n");
343 do_each_thread(g, p) {
344 struct mm_struct *mm;
345
346 if (mem && !task_in_mem_cgroup(p, mem))
347 continue;
348 if (!thread_group_leader(p))
349 continue;
350
351 task_lock(p);
352 mm = p->mm;
353 if (!mm) {
354 /*
355 * total_vm and rss sizes do not exist for tasks with no
356 * mm so there's no need to report them; they can't be
357 * oom killed anyway.
358 */
359 task_unlock(p);
360 continue;
361 }
362 printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d %3d %s\n",
363 p->pid, __task_cred(p)->uid, p->tgid, mm->total_vm,
364 get_mm_rss(mm), (int)task_cpu(p), p->signal->oom_adj,
365 p->comm);
366 task_unlock(p);
367 } while_each_thread(g, p);
368 }
369
370 static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order,
371 struct mem_cgroup *mem)
372 {
373 pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, "
374 "oom_adj=%d\n",
375 current->comm, gfp_mask, order, current->signal->oom_adj);
376 task_lock(current);
377 cpuset_print_task_mems_allowed(current);
378 task_unlock(current);
379 dump_stack();
380 mem_cgroup_print_oom_info(mem, p);
381 show_mem();
382 if (sysctl_oom_dump_tasks)
383 dump_tasks(mem);
384 }
385
386 #define K(x) ((x) << (PAGE_SHIFT-10))
387
388 /*
389 * Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO
390 * flag though it's unlikely that we select a process with CAP_SYS_RAW_IO
391 * set.
392 */
393 static void __oom_kill_task(struct task_struct *p, int verbose)
394 {
395 if (is_global_init(p)) {
396 WARN_ON(1);
397 printk(KERN_WARNING "tried to kill init!\n");
398 return;
399 }
400
401 p = find_lock_task_mm(p);
402 if (!p)
403 return;
404
405 if (verbose)
406 printk(KERN_ERR "Killed process %d (%s) "
407 "vsz:%lukB, anon-rss:%lukB, file-rss:%lukB\n",
408 task_pid_nr(p), p->comm,
409 K(p->mm->total_vm),
410 K(get_mm_counter(p->mm, MM_ANONPAGES)),
411 K(get_mm_counter(p->mm, MM_FILEPAGES)));
412 task_unlock(p);
413
414 /*
415 * We give our sacrificial lamb high priority and access to
416 * all the memory it needs. That way it should be able to
417 * exit() and clear out its resources quickly...
418 */
419 p->rt.time_slice = HZ;
420 set_tsk_thread_flag(p, TIF_MEMDIE);
421
422 force_sig(SIGKILL, p);
423 }
424
425 static int oom_kill_task(struct task_struct *p)
426 {
427 /* WARNING: mm may not be dereferenced since we did not obtain its
428 * value from get_task_mm(p). This is OK since all we need to do is
429 * compare mm to q->mm below.
430 *
431 * Furthermore, even if mm contains a non-NULL value, p->mm may
432 * change to NULL at any time since we do not hold task_lock(p).
433 * However, this is of no concern to us.
434 */
435 if (!p->mm || p->signal->oom_adj == OOM_DISABLE)
436 return 1;
437
438 __oom_kill_task(p, 1);
439
440 return 0;
441 }
442
443 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
444 unsigned long points, struct mem_cgroup *mem,
445 const char *message)
446 {
447 struct task_struct *c;
448 struct task_struct *t = p;
449
450 if (printk_ratelimit())
451 dump_header(p, gfp_mask, order, mem);
452
453 /*
454 * If the task is already exiting, don't alarm the sysadmin or kill
455 * its children or threads, just set TIF_MEMDIE so it can die quickly
456 */
457 if (p->flags & PF_EXITING) {
458 __oom_kill_task(p, 0);
459 return 0;
460 }
461
462 printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
463 message, task_pid_nr(p), p->comm, points);
464
465 /* Try to kill a child first */
466 do {
467 list_for_each_entry(c, &t->children, sibling) {
468 if (c->mm == p->mm)
469 continue;
470 if (mem && !task_in_mem_cgroup(c, mem))
471 continue;
472 if (!oom_kill_task(c))
473 return 0;
474 }
475 } while_each_thread(p, t);
476
477 return oom_kill_task(p);
478 }
479
480 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
481 void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
482 {
483 unsigned long points = 0;
484 struct task_struct *p;
485
486 if (sysctl_panic_on_oom == 2)
487 panic("out of memory(memcg). panic_on_oom is selected.\n");
488 read_lock(&tasklist_lock);
489 retry:
490 p = select_bad_process(&points, mem);
491 if (!p || PTR_ERR(p) == -1UL)
492 goto out;
493
494 if (oom_kill_process(p, gfp_mask, 0, points, mem,
495 "Memory cgroup out of memory"))
496 goto retry;
497 out:
498 read_unlock(&tasklist_lock);
499 }
500 #endif
501
502 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
503
504 int register_oom_notifier(struct notifier_block *nb)
505 {
506 return blocking_notifier_chain_register(&oom_notify_list, nb);
507 }
508 EXPORT_SYMBOL_GPL(register_oom_notifier);
509
510 int unregister_oom_notifier(struct notifier_block *nb)
511 {
512 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
513 }
514 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
515
516 /*
517 * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero
518 * if a parallel OOM killing is already taking place that includes a zone in
519 * the zonelist. Otherwise, locks all zones in the zonelist and returns 1.
520 */
521 int try_set_zone_oom(struct zonelist *zonelist, gfp_t gfp_mask)
522 {
523 struct zoneref *z;
524 struct zone *zone;
525 int ret = 1;
526
527 spin_lock(&zone_scan_lock);
528 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
529 if (zone_is_oom_locked(zone)) {
530 ret = 0;
531 goto out;
532 }
533 }
534
535 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
536 /*
537 * Lock each zone in the zonelist under zone_scan_lock so a
538 * parallel invocation of try_set_zone_oom() doesn't succeed
539 * when it shouldn't.
540 */
541 zone_set_flag(zone, ZONE_OOM_LOCKED);
542 }
543
544 out:
545 spin_unlock(&zone_scan_lock);
546 return ret;
547 }
548
549 /*
550 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
551 * allocation attempts with zonelists containing them may now recall the OOM
552 * killer, if necessary.
553 */
554 void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
555 {
556 struct zoneref *z;
557 struct zone *zone;
558
559 spin_lock(&zone_scan_lock);
560 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
561 zone_clear_flag(zone, ZONE_OOM_LOCKED);
562 }
563 spin_unlock(&zone_scan_lock);
564 }
565
566 /*
567 * Must be called with tasklist_lock held for read.
568 */
569 static void __out_of_memory(gfp_t gfp_mask, int order)
570 {
571 struct task_struct *p;
572 unsigned long points;
573
574 if (sysctl_oom_kill_allocating_task)
575 if (!oom_kill_process(current, gfp_mask, order, 0, NULL,
576 "Out of memory (oom_kill_allocating_task)"))
577 return;
578 retry:
579 /*
580 * Rambo mode: Shoot down a process and hope it solves whatever
581 * issues we may have.
582 */
583 p = select_bad_process(&points, NULL);
584
585 if (PTR_ERR(p) == -1UL)
586 return;
587
588 /* Found nothing?!?! Either we hang forever, or we panic. */
589 if (!p) {
590 read_unlock(&tasklist_lock);
591 dump_header(NULL, gfp_mask, order, NULL);
592 panic("Out of memory and no killable processes...\n");
593 }
594
595 if (oom_kill_process(p, gfp_mask, order, points, NULL,
596 "Out of memory"))
597 goto retry;
598 }
599
600 /*
601 * pagefault handler calls into here because it is out of memory but
602 * doesn't know exactly how or why.
603 */
604 void pagefault_out_of_memory(void)
605 {
606 unsigned long freed = 0;
607
608 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
609 if (freed > 0)
610 /* Got some memory back in the last second. */
611 return;
612
613 if (sysctl_panic_on_oom)
614 panic("out of memory from page fault. panic_on_oom is selected.\n");
615
616 read_lock(&tasklist_lock);
617 __out_of_memory(0, 0); /* unknown gfp_mask and order */
618 read_unlock(&tasklist_lock);
619
620 /*
621 * Give "p" a good chance of killing itself before we
622 * retry to allocate memory.
623 */
624 if (!test_thread_flag(TIF_MEMDIE))
625 schedule_timeout_uninterruptible(1);
626 }
627
628 /**
629 * out_of_memory - kill the "best" process when we run out of memory
630 * @zonelist: zonelist pointer
631 * @gfp_mask: memory allocation flags
632 * @order: amount of memory being requested as a power of 2
633 *
634 * If we run out of memory, we have the choice between either
635 * killing a random task (bad), letting the system crash (worse)
636 * OR try to be smart about which process to kill. Note that we
637 * don't have to be perfect here, we just have to be good.
638 */
639 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask,
640 int order, nodemask_t *nodemask)
641 {
642 unsigned long freed = 0;
643 enum oom_constraint constraint;
644
645 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
646 if (freed > 0)
647 /* Got some memory back in the last second. */
648 return;
649
650 if (sysctl_panic_on_oom == 2) {
651 dump_header(NULL, gfp_mask, order, NULL);
652 panic("out of memory. Compulsory panic_on_oom is selected.\n");
653 }
654
655 /*
656 * Check if there were limitations on the allocation (only relevant for
657 * NUMA) that may require different handling.
658 */
659 constraint = constrained_alloc(zonelist, gfp_mask, nodemask);
660 read_lock(&tasklist_lock);
661
662 switch (constraint) {
663 case CONSTRAINT_MEMORY_POLICY:
664 oom_kill_process(current, gfp_mask, order, 0, NULL,
665 "No available memory (MPOL_BIND)");
666 break;
667
668 case CONSTRAINT_NONE:
669 if (sysctl_panic_on_oom) {
670 dump_header(NULL, gfp_mask, order, NULL);
671 panic("out of memory. panic_on_oom is selected\n");
672 }
673 /* Fall-through */
674 case CONSTRAINT_CPUSET:
675 __out_of_memory(gfp_mask, order);
676 break;
677 }
678
679 read_unlock(&tasklist_lock);
680
681 /*
682 * Give "p" a good chance of killing itself before we
683 * retry to allocate memory unless "p" is current
684 */
685 if (!test_thread_flag(TIF_MEMDIE))
686 schedule_timeout_uninterruptible(1);
687 }