]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/oom_kill.c
mm: use early_pfn_to_nid in register_page_bootmem_info_node
[mirror_ubuntu-artful-kernel.git] / mm / oom_kill.c
1 /*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
9 *
10 * The routines in this file are used to kill a process when
11 * we're seriously out of memory. This gets called from __alloc_pages()
12 * in mm/page_alloc.c when we really run out of memory.
13 *
14 * Since we won't call these routines often (on a well-configured
15 * machine) this file will double as a 'coding guide' and a signpost
16 * for newbie kernel hackers. It features several pointers to major
17 * kernel subsystems and hints as to where to find out what things do.
18 */
19
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/swap.h>
26 #include <linux/timex.h>
27 #include <linux/jiffies.h>
28 #include <linux/cpuset.h>
29 #include <linux/export.h>
30 #include <linux/notifier.h>
31 #include <linux/memcontrol.h>
32 #include <linux/mempolicy.h>
33 #include <linux/security.h>
34 #include <linux/ptrace.h>
35 #include <linux/freezer.h>
36 #include <linux/ftrace.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kthread.h>
39 #include <linux/init.h>
40
41 #include <asm/tlb.h>
42 #include "internal.h"
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/oom.h>
46
47 int sysctl_panic_on_oom;
48 int sysctl_oom_kill_allocating_task;
49 int sysctl_oom_dump_tasks = 1;
50
51 DEFINE_MUTEX(oom_lock);
52
53 #ifdef CONFIG_NUMA
54 /**
55 * has_intersects_mems_allowed() - check task eligiblity for kill
56 * @start: task struct of which task to consider
57 * @mask: nodemask passed to page allocator for mempolicy ooms
58 *
59 * Task eligibility is determined by whether or not a candidate task, @tsk,
60 * shares the same mempolicy nodes as current if it is bound by such a policy
61 * and whether or not it has the same set of allowed cpuset nodes.
62 */
63 static bool has_intersects_mems_allowed(struct task_struct *start,
64 const nodemask_t *mask)
65 {
66 struct task_struct *tsk;
67 bool ret = false;
68
69 rcu_read_lock();
70 for_each_thread(start, tsk) {
71 if (mask) {
72 /*
73 * If this is a mempolicy constrained oom, tsk's
74 * cpuset is irrelevant. Only return true if its
75 * mempolicy intersects current, otherwise it may be
76 * needlessly killed.
77 */
78 ret = mempolicy_nodemask_intersects(tsk, mask);
79 } else {
80 /*
81 * This is not a mempolicy constrained oom, so only
82 * check the mems of tsk's cpuset.
83 */
84 ret = cpuset_mems_allowed_intersects(current, tsk);
85 }
86 if (ret)
87 break;
88 }
89 rcu_read_unlock();
90
91 return ret;
92 }
93 #else
94 static bool has_intersects_mems_allowed(struct task_struct *tsk,
95 const nodemask_t *mask)
96 {
97 return true;
98 }
99 #endif /* CONFIG_NUMA */
100
101 /*
102 * The process p may have detached its own ->mm while exiting or through
103 * use_mm(), but one or more of its subthreads may still have a valid
104 * pointer. Return p, or any of its subthreads with a valid ->mm, with
105 * task_lock() held.
106 */
107 struct task_struct *find_lock_task_mm(struct task_struct *p)
108 {
109 struct task_struct *t;
110
111 rcu_read_lock();
112
113 for_each_thread(p, t) {
114 task_lock(t);
115 if (likely(t->mm))
116 goto found;
117 task_unlock(t);
118 }
119 t = NULL;
120 found:
121 rcu_read_unlock();
122
123 return t;
124 }
125
126 /*
127 * order == -1 means the oom kill is required by sysrq, otherwise only
128 * for display purposes.
129 */
130 static inline bool is_sysrq_oom(struct oom_control *oc)
131 {
132 return oc->order == -1;
133 }
134
135 /* return true if the task is not adequate as candidate victim task. */
136 static bool oom_unkillable_task(struct task_struct *p,
137 struct mem_cgroup *memcg, const nodemask_t *nodemask)
138 {
139 if (is_global_init(p))
140 return true;
141 if (p->flags & PF_KTHREAD)
142 return true;
143
144 /* When mem_cgroup_out_of_memory() and p is not member of the group */
145 if (memcg && !task_in_mem_cgroup(p, memcg))
146 return true;
147
148 /* p may not have freeable memory in nodemask */
149 if (!has_intersects_mems_allowed(p, nodemask))
150 return true;
151
152 return false;
153 }
154
155 /**
156 * oom_badness - heuristic function to determine which candidate task to kill
157 * @p: task struct of which task we should calculate
158 * @totalpages: total present RAM allowed for page allocation
159 *
160 * The heuristic for determining which task to kill is made to be as simple and
161 * predictable as possible. The goal is to return the highest value for the
162 * task consuming the most memory to avoid subsequent oom failures.
163 */
164 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
165 const nodemask_t *nodemask, unsigned long totalpages)
166 {
167 long points;
168 long adj;
169
170 if (oom_unkillable_task(p, memcg, nodemask))
171 return 0;
172
173 p = find_lock_task_mm(p);
174 if (!p)
175 return 0;
176
177 /*
178 * Do not even consider tasks which are explicitly marked oom
179 * unkillable or have been already oom reaped.
180 */
181 adj = (long)p->signal->oom_score_adj;
182 if (adj == OOM_SCORE_ADJ_MIN ||
183 test_bit(MMF_OOM_REAPED, &p->mm->flags)) {
184 task_unlock(p);
185 return 0;
186 }
187
188 /*
189 * The baseline for the badness score is the proportion of RAM that each
190 * task's rss, pagetable and swap space use.
191 */
192 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
193 atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
194 task_unlock(p);
195
196 /*
197 * Root processes get 3% bonus, just like the __vm_enough_memory()
198 * implementation used by LSMs.
199 */
200 if (has_capability_noaudit(p, CAP_SYS_ADMIN))
201 points -= (points * 3) / 100;
202
203 /* Normalize to oom_score_adj units */
204 adj *= totalpages / 1000;
205 points += adj;
206
207 /*
208 * Never return 0 for an eligible task regardless of the root bonus and
209 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
210 */
211 return points > 0 ? points : 1;
212 }
213
214 /*
215 * Determine the type of allocation constraint.
216 */
217 #ifdef CONFIG_NUMA
218 static enum oom_constraint constrained_alloc(struct oom_control *oc,
219 unsigned long *totalpages)
220 {
221 struct zone *zone;
222 struct zoneref *z;
223 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
224 bool cpuset_limited = false;
225 int nid;
226
227 /* Default to all available memory */
228 *totalpages = totalram_pages + total_swap_pages;
229
230 if (!oc->zonelist)
231 return CONSTRAINT_NONE;
232 /*
233 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
234 * to kill current.We have to random task kill in this case.
235 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
236 */
237 if (oc->gfp_mask & __GFP_THISNODE)
238 return CONSTRAINT_NONE;
239
240 /*
241 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
242 * the page allocator means a mempolicy is in effect. Cpuset policy
243 * is enforced in get_page_from_freelist().
244 */
245 if (oc->nodemask &&
246 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
247 *totalpages = total_swap_pages;
248 for_each_node_mask(nid, *oc->nodemask)
249 *totalpages += node_spanned_pages(nid);
250 return CONSTRAINT_MEMORY_POLICY;
251 }
252
253 /* Check this allocation failure is caused by cpuset's wall function */
254 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
255 high_zoneidx, oc->nodemask)
256 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
257 cpuset_limited = true;
258
259 if (cpuset_limited) {
260 *totalpages = total_swap_pages;
261 for_each_node_mask(nid, cpuset_current_mems_allowed)
262 *totalpages += node_spanned_pages(nid);
263 return CONSTRAINT_CPUSET;
264 }
265 return CONSTRAINT_NONE;
266 }
267 #else
268 static enum oom_constraint constrained_alloc(struct oom_control *oc,
269 unsigned long *totalpages)
270 {
271 *totalpages = totalram_pages + total_swap_pages;
272 return CONSTRAINT_NONE;
273 }
274 #endif
275
276 enum oom_scan_t oom_scan_process_thread(struct oom_control *oc,
277 struct task_struct *task, unsigned long totalpages)
278 {
279 if (oom_unkillable_task(task, NULL, oc->nodemask))
280 return OOM_SCAN_CONTINUE;
281
282 /*
283 * This task already has access to memory reserves and is being killed.
284 * Don't allow any other task to have access to the reserves.
285 */
286 if (!is_sysrq_oom(oc) && atomic_read(&task->signal->oom_victims))
287 return OOM_SCAN_ABORT;
288
289 /*
290 * If task is allocating a lot of memory and has been marked to be
291 * killed first if it triggers an oom, then select it.
292 */
293 if (oom_task_origin(task))
294 return OOM_SCAN_SELECT;
295
296 return OOM_SCAN_OK;
297 }
298
299 /*
300 * Simple selection loop. We chose the process with the highest
301 * number of 'points'. Returns -1 on scan abort.
302 */
303 static struct task_struct *select_bad_process(struct oom_control *oc,
304 unsigned int *ppoints, unsigned long totalpages)
305 {
306 struct task_struct *p;
307 struct task_struct *chosen = NULL;
308 unsigned long chosen_points = 0;
309
310 rcu_read_lock();
311 for_each_process(p) {
312 unsigned int points;
313
314 switch (oom_scan_process_thread(oc, p, totalpages)) {
315 case OOM_SCAN_SELECT:
316 chosen = p;
317 chosen_points = ULONG_MAX;
318 /* fall through */
319 case OOM_SCAN_CONTINUE:
320 continue;
321 case OOM_SCAN_ABORT:
322 rcu_read_unlock();
323 return (struct task_struct *)(-1UL);
324 case OOM_SCAN_OK:
325 break;
326 };
327 points = oom_badness(p, NULL, oc->nodemask, totalpages);
328 if (!points || points < chosen_points)
329 continue;
330
331 chosen = p;
332 chosen_points = points;
333 }
334 if (chosen)
335 get_task_struct(chosen);
336 rcu_read_unlock();
337
338 *ppoints = chosen_points * 1000 / totalpages;
339 return chosen;
340 }
341
342 /**
343 * dump_tasks - dump current memory state of all system tasks
344 * @memcg: current's memory controller, if constrained
345 * @nodemask: nodemask passed to page allocator for mempolicy ooms
346 *
347 * Dumps the current memory state of all eligible tasks. Tasks not in the same
348 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
349 * are not shown.
350 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
351 * swapents, oom_score_adj value, and name.
352 */
353 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
354 {
355 struct task_struct *p;
356 struct task_struct *task;
357
358 pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name\n");
359 rcu_read_lock();
360 for_each_process(p) {
361 if (oom_unkillable_task(p, memcg, nodemask))
362 continue;
363
364 task = find_lock_task_mm(p);
365 if (!task) {
366 /*
367 * This is a kthread or all of p's threads have already
368 * detached their mm's. There's no need to report
369 * them; they can't be oom killed anyway.
370 */
371 continue;
372 }
373
374 pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu %5hd %s\n",
375 task->pid, from_kuid(&init_user_ns, task_uid(task)),
376 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
377 atomic_long_read(&task->mm->nr_ptes),
378 mm_nr_pmds(task->mm),
379 get_mm_counter(task->mm, MM_SWAPENTS),
380 task->signal->oom_score_adj, task->comm);
381 task_unlock(task);
382 }
383 rcu_read_unlock();
384 }
385
386 static void dump_header(struct oom_control *oc, struct task_struct *p,
387 struct mem_cgroup *memcg)
388 {
389 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
390 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
391 current->signal->oom_score_adj);
392
393 cpuset_print_current_mems_allowed();
394 dump_stack();
395 if (memcg)
396 mem_cgroup_print_oom_info(memcg, p);
397 else
398 show_mem(SHOW_MEM_FILTER_NODES);
399 if (sysctl_oom_dump_tasks)
400 dump_tasks(memcg, oc->nodemask);
401 }
402
403 /*
404 * Number of OOM victims in flight
405 */
406 static atomic_t oom_victims = ATOMIC_INIT(0);
407 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
408
409 bool oom_killer_disabled __read_mostly;
410
411 #define K(x) ((x) << (PAGE_SHIFT-10))
412
413 /*
414 * task->mm can be NULL if the task is the exited group leader. So to
415 * determine whether the task is using a particular mm, we examine all the
416 * task's threads: if one of those is using this mm then this task was also
417 * using it.
418 */
419 static bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
420 {
421 struct task_struct *t;
422
423 for_each_thread(p, t) {
424 struct mm_struct *t_mm = READ_ONCE(t->mm);
425 if (t_mm)
426 return t_mm == mm;
427 }
428 return false;
429 }
430
431
432 #ifdef CONFIG_MMU
433 /*
434 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
435 * victim (if that is possible) to help the OOM killer to move on.
436 */
437 static struct task_struct *oom_reaper_th;
438 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
439 static struct task_struct *oom_reaper_list;
440 static DEFINE_SPINLOCK(oom_reaper_lock);
441
442 static bool __oom_reap_task(struct task_struct *tsk)
443 {
444 struct mmu_gather tlb;
445 struct vm_area_struct *vma;
446 struct mm_struct *mm;
447 struct task_struct *p;
448 struct zap_details details = {.check_swap_entries = true,
449 .ignore_dirty = true};
450 bool ret = true;
451
452 /*
453 * Make sure we find the associated mm_struct even when the particular
454 * thread has already terminated and cleared its mm.
455 * We might have race with exit path so consider our work done if there
456 * is no mm.
457 */
458 p = find_lock_task_mm(tsk);
459 if (!p)
460 return true;
461
462 mm = p->mm;
463 if (!atomic_inc_not_zero(&mm->mm_users)) {
464 task_unlock(p);
465 return true;
466 }
467
468 task_unlock(p);
469
470 if (!down_read_trylock(&mm->mmap_sem)) {
471 ret = false;
472 goto out;
473 }
474
475 tlb_gather_mmu(&tlb, mm, 0, -1);
476 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
477 if (is_vm_hugetlb_page(vma))
478 continue;
479
480 /*
481 * mlocked VMAs require explicit munlocking before unmap.
482 * Let's keep it simple here and skip such VMAs.
483 */
484 if (vma->vm_flags & VM_LOCKED)
485 continue;
486
487 /*
488 * Only anonymous pages have a good chance to be dropped
489 * without additional steps which we cannot afford as we
490 * are OOM already.
491 *
492 * We do not even care about fs backed pages because all
493 * which are reclaimable have already been reclaimed and
494 * we do not want to block exit_mmap by keeping mm ref
495 * count elevated without a good reason.
496 */
497 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
498 unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
499 &details);
500 }
501 tlb_finish_mmu(&tlb, 0, -1);
502 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
503 task_pid_nr(tsk), tsk->comm,
504 K(get_mm_counter(mm, MM_ANONPAGES)),
505 K(get_mm_counter(mm, MM_FILEPAGES)),
506 K(get_mm_counter(mm, MM_SHMEMPAGES)));
507 up_read(&mm->mmap_sem);
508
509 /*
510 * This task can be safely ignored because we cannot do much more
511 * to release its memory.
512 */
513 set_bit(MMF_OOM_REAPED, &mm->flags);
514 out:
515 /*
516 * Drop our reference but make sure the mmput slow path is called from a
517 * different context because we shouldn't risk we get stuck there and
518 * put the oom_reaper out of the way.
519 */
520 mmput_async(mm);
521 return ret;
522 }
523
524 #define MAX_OOM_REAP_RETRIES 10
525 static void oom_reap_task(struct task_struct *tsk)
526 {
527 int attempts = 0;
528
529 /* Retry the down_read_trylock(mmap_sem) a few times */
530 while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task(tsk))
531 schedule_timeout_idle(HZ/10);
532
533 if (attempts > MAX_OOM_REAP_RETRIES) {
534 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
535 task_pid_nr(tsk), tsk->comm);
536 debug_show_all_locks();
537 }
538
539 /*
540 * Clear TIF_MEMDIE because the task shouldn't be sitting on a
541 * reasonably reclaimable memory anymore or it is not a good candidate
542 * for the oom victim right now because it cannot release its memory
543 * itself nor by the oom reaper.
544 */
545 tsk->oom_reaper_list = NULL;
546 exit_oom_victim(tsk);
547
548 /* Drop a reference taken by wake_oom_reaper */
549 put_task_struct(tsk);
550 }
551
552 static int oom_reaper(void *unused)
553 {
554 set_freezable();
555
556 while (true) {
557 struct task_struct *tsk = NULL;
558
559 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
560 spin_lock(&oom_reaper_lock);
561 if (oom_reaper_list != NULL) {
562 tsk = oom_reaper_list;
563 oom_reaper_list = tsk->oom_reaper_list;
564 }
565 spin_unlock(&oom_reaper_lock);
566
567 if (tsk)
568 oom_reap_task(tsk);
569 }
570
571 return 0;
572 }
573
574 static void wake_oom_reaper(struct task_struct *tsk)
575 {
576 if (!oom_reaper_th)
577 return;
578
579 /* tsk is already queued? */
580 if (tsk == oom_reaper_list || tsk->oom_reaper_list)
581 return;
582
583 get_task_struct(tsk);
584
585 spin_lock(&oom_reaper_lock);
586 tsk->oom_reaper_list = oom_reaper_list;
587 oom_reaper_list = tsk;
588 spin_unlock(&oom_reaper_lock);
589 wake_up(&oom_reaper_wait);
590 }
591
592 /* Check if we can reap the given task. This has to be called with stable
593 * tsk->mm
594 */
595 void try_oom_reaper(struct task_struct *tsk)
596 {
597 struct mm_struct *mm = tsk->mm;
598 struct task_struct *p;
599
600 if (!mm)
601 return;
602
603 /*
604 * There might be other threads/processes which are either not
605 * dying or even not killable.
606 */
607 if (atomic_read(&mm->mm_users) > 1) {
608 rcu_read_lock();
609 for_each_process(p) {
610 bool exiting;
611
612 if (!process_shares_mm(p, mm))
613 continue;
614 if (fatal_signal_pending(p))
615 continue;
616
617 /*
618 * If the task is exiting make sure the whole thread group
619 * is exiting and cannot acces mm anymore.
620 */
621 spin_lock_irq(&p->sighand->siglock);
622 exiting = signal_group_exit(p->signal);
623 spin_unlock_irq(&p->sighand->siglock);
624 if (exiting)
625 continue;
626
627 /* Give up */
628 rcu_read_unlock();
629 return;
630 }
631 rcu_read_unlock();
632 }
633
634 wake_oom_reaper(tsk);
635 }
636
637 static int __init oom_init(void)
638 {
639 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
640 if (IS_ERR(oom_reaper_th)) {
641 pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
642 PTR_ERR(oom_reaper_th));
643 oom_reaper_th = NULL;
644 }
645 return 0;
646 }
647 subsys_initcall(oom_init)
648 #else
649 static void wake_oom_reaper(struct task_struct *tsk)
650 {
651 }
652 #endif
653
654 /**
655 * mark_oom_victim - mark the given task as OOM victim
656 * @tsk: task to mark
657 *
658 * Has to be called with oom_lock held and never after
659 * oom has been disabled already.
660 */
661 void mark_oom_victim(struct task_struct *tsk)
662 {
663 WARN_ON(oom_killer_disabled);
664 /* OOM killer might race with memcg OOM */
665 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
666 return;
667 atomic_inc(&tsk->signal->oom_victims);
668 /*
669 * Make sure that the task is woken up from uninterruptible sleep
670 * if it is frozen because OOM killer wouldn't be able to free
671 * any memory and livelock. freezing_slow_path will tell the freezer
672 * that TIF_MEMDIE tasks should be ignored.
673 */
674 __thaw_task(tsk);
675 atomic_inc(&oom_victims);
676 }
677
678 /**
679 * exit_oom_victim - note the exit of an OOM victim
680 */
681 void exit_oom_victim(struct task_struct *tsk)
682 {
683 if (!test_and_clear_tsk_thread_flag(tsk, TIF_MEMDIE))
684 return;
685 atomic_dec(&tsk->signal->oom_victims);
686
687 if (!atomic_dec_return(&oom_victims))
688 wake_up_all(&oom_victims_wait);
689 }
690
691 /**
692 * oom_killer_disable - disable OOM killer
693 *
694 * Forces all page allocations to fail rather than trigger OOM killer.
695 * Will block and wait until all OOM victims are killed.
696 *
697 * The function cannot be called when there are runnable user tasks because
698 * the userspace would see unexpected allocation failures as a result. Any
699 * new usage of this function should be consulted with MM people.
700 *
701 * Returns true if successful and false if the OOM killer cannot be
702 * disabled.
703 */
704 bool oom_killer_disable(void)
705 {
706 /*
707 * Make sure to not race with an ongoing OOM killer. Check that the
708 * current is not killed (possibly due to sharing the victim's memory).
709 */
710 if (mutex_lock_killable(&oom_lock))
711 return false;
712 oom_killer_disabled = true;
713 mutex_unlock(&oom_lock);
714
715 wait_event(oom_victims_wait, !atomic_read(&oom_victims));
716
717 return true;
718 }
719
720 /**
721 * oom_killer_enable - enable OOM killer
722 */
723 void oom_killer_enable(void)
724 {
725 oom_killer_disabled = false;
726 }
727
728 /*
729 * Must be called while holding a reference to p, which will be released upon
730 * returning.
731 */
732 void oom_kill_process(struct oom_control *oc, struct task_struct *p,
733 unsigned int points, unsigned long totalpages,
734 struct mem_cgroup *memcg, const char *message)
735 {
736 struct task_struct *victim = p;
737 struct task_struct *child;
738 struct task_struct *t;
739 struct mm_struct *mm;
740 unsigned int victim_points = 0;
741 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
742 DEFAULT_RATELIMIT_BURST);
743 bool can_oom_reap = true;
744
745 /*
746 * If the task is already exiting, don't alarm the sysadmin or kill
747 * its children or threads, just set TIF_MEMDIE so it can die quickly
748 */
749 task_lock(p);
750 if (p->mm && task_will_free_mem(p)) {
751 mark_oom_victim(p);
752 try_oom_reaper(p);
753 task_unlock(p);
754 put_task_struct(p);
755 return;
756 }
757 task_unlock(p);
758
759 if (__ratelimit(&oom_rs))
760 dump_header(oc, p, memcg);
761
762 pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
763 message, task_pid_nr(p), p->comm, points);
764
765 /*
766 * If any of p's children has a different mm and is eligible for kill,
767 * the one with the highest oom_badness() score is sacrificed for its
768 * parent. This attempts to lose the minimal amount of work done while
769 * still freeing memory.
770 */
771 read_lock(&tasklist_lock);
772 for_each_thread(p, t) {
773 list_for_each_entry(child, &t->children, sibling) {
774 unsigned int child_points;
775
776 if (process_shares_mm(child, p->mm))
777 continue;
778 /*
779 * oom_badness() returns 0 if the thread is unkillable
780 */
781 child_points = oom_badness(child, memcg, oc->nodemask,
782 totalpages);
783 if (child_points > victim_points) {
784 put_task_struct(victim);
785 victim = child;
786 victim_points = child_points;
787 get_task_struct(victim);
788 }
789 }
790 }
791 read_unlock(&tasklist_lock);
792
793 p = find_lock_task_mm(victim);
794 if (!p) {
795 put_task_struct(victim);
796 return;
797 } else if (victim != p) {
798 get_task_struct(p);
799 put_task_struct(victim);
800 victim = p;
801 }
802
803 /* Get a reference to safely compare mm after task_unlock(victim) */
804 mm = victim->mm;
805 atomic_inc(&mm->mm_count);
806 /*
807 * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
808 * the OOM victim from depleting the memory reserves from the user
809 * space under its control.
810 */
811 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
812 mark_oom_victim(victim);
813 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
814 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
815 K(get_mm_counter(victim->mm, MM_ANONPAGES)),
816 K(get_mm_counter(victim->mm, MM_FILEPAGES)),
817 K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
818 task_unlock(victim);
819
820 /*
821 * Kill all user processes sharing victim->mm in other thread groups, if
822 * any. They don't get access to memory reserves, though, to avoid
823 * depletion of all memory. This prevents mm->mmap_sem livelock when an
824 * oom killed thread cannot exit because it requires the semaphore and
825 * its contended by another thread trying to allocate memory itself.
826 * That thread will now get access to memory reserves since it has a
827 * pending fatal signal.
828 */
829 rcu_read_lock();
830 for_each_process(p) {
831 if (!process_shares_mm(p, mm))
832 continue;
833 if (same_thread_group(p, victim))
834 continue;
835 if (unlikely(p->flags & PF_KTHREAD) || is_global_init(p) ||
836 p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
837 /*
838 * We cannot use oom_reaper for the mm shared by this
839 * process because it wouldn't get killed and so the
840 * memory might be still used.
841 */
842 can_oom_reap = false;
843 continue;
844 }
845 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
846 }
847 rcu_read_unlock();
848
849 if (can_oom_reap)
850 wake_oom_reaper(victim);
851
852 mmdrop(mm);
853 put_task_struct(victim);
854 }
855 #undef K
856
857 /*
858 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
859 */
860 void check_panic_on_oom(struct oom_control *oc, enum oom_constraint constraint,
861 struct mem_cgroup *memcg)
862 {
863 if (likely(!sysctl_panic_on_oom))
864 return;
865 if (sysctl_panic_on_oom != 2) {
866 /*
867 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
868 * does not panic for cpuset, mempolicy, or memcg allocation
869 * failures.
870 */
871 if (constraint != CONSTRAINT_NONE)
872 return;
873 }
874 /* Do not panic for oom kills triggered by sysrq */
875 if (is_sysrq_oom(oc))
876 return;
877 dump_header(oc, NULL, memcg);
878 panic("Out of memory: %s panic_on_oom is enabled\n",
879 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
880 }
881
882 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
883
884 int register_oom_notifier(struct notifier_block *nb)
885 {
886 return blocking_notifier_chain_register(&oom_notify_list, nb);
887 }
888 EXPORT_SYMBOL_GPL(register_oom_notifier);
889
890 int unregister_oom_notifier(struct notifier_block *nb)
891 {
892 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
893 }
894 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
895
896 /**
897 * out_of_memory - kill the "best" process when we run out of memory
898 * @oc: pointer to struct oom_control
899 *
900 * If we run out of memory, we have the choice between either
901 * killing a random task (bad), letting the system crash (worse)
902 * OR try to be smart about which process to kill. Note that we
903 * don't have to be perfect here, we just have to be good.
904 */
905 bool out_of_memory(struct oom_control *oc)
906 {
907 struct task_struct *p;
908 unsigned long totalpages;
909 unsigned long freed = 0;
910 unsigned int uninitialized_var(points);
911 enum oom_constraint constraint = CONSTRAINT_NONE;
912
913 if (oom_killer_disabled)
914 return false;
915
916 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
917 if (freed > 0)
918 /* Got some memory back in the last second. */
919 return true;
920
921 /*
922 * If current has a pending SIGKILL or is exiting, then automatically
923 * select it. The goal is to allow it to allocate so that it may
924 * quickly exit and free its memory.
925 *
926 * But don't select if current has already released its mm and cleared
927 * TIF_MEMDIE flag at exit_mm(), otherwise an OOM livelock may occur.
928 */
929 if (current->mm &&
930 (fatal_signal_pending(current) || task_will_free_mem(current))) {
931 mark_oom_victim(current);
932 try_oom_reaper(current);
933 return true;
934 }
935
936 /*
937 * The OOM killer does not compensate for IO-less reclaim.
938 * pagefault_out_of_memory lost its gfp context so we have to
939 * make sure exclude 0 mask - all other users should have at least
940 * ___GFP_DIRECT_RECLAIM to get here.
941 */
942 if (oc->gfp_mask && !(oc->gfp_mask & (__GFP_FS|__GFP_NOFAIL)))
943 return true;
944
945 /*
946 * Check if there were limitations on the allocation (only relevant for
947 * NUMA) that may require different handling.
948 */
949 constraint = constrained_alloc(oc, &totalpages);
950 if (constraint != CONSTRAINT_MEMORY_POLICY)
951 oc->nodemask = NULL;
952 check_panic_on_oom(oc, constraint, NULL);
953
954 if (sysctl_oom_kill_allocating_task && current->mm &&
955 !oom_unkillable_task(current, NULL, oc->nodemask) &&
956 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
957 get_task_struct(current);
958 oom_kill_process(oc, current, 0, totalpages, NULL,
959 "Out of memory (oom_kill_allocating_task)");
960 return true;
961 }
962
963 p = select_bad_process(oc, &points, totalpages);
964 /* Found nothing?!?! Either we hang forever, or we panic. */
965 if (!p && !is_sysrq_oom(oc)) {
966 dump_header(oc, NULL, NULL);
967 panic("Out of memory and no killable processes...\n");
968 }
969 if (p && p != (void *)-1UL) {
970 oom_kill_process(oc, p, points, totalpages, NULL,
971 "Out of memory");
972 /*
973 * Give the killed process a good chance to exit before trying
974 * to allocate memory again.
975 */
976 schedule_timeout_killable(1);
977 }
978 return true;
979 }
980
981 /*
982 * The pagefault handler calls here because it is out of memory, so kill a
983 * memory-hogging task. If any populated zone has ZONE_OOM_LOCKED set, a
984 * parallel oom killing is already in progress so do nothing.
985 */
986 void pagefault_out_of_memory(void)
987 {
988 struct oom_control oc = {
989 .zonelist = NULL,
990 .nodemask = NULL,
991 .gfp_mask = 0,
992 .order = 0,
993 };
994
995 if (mem_cgroup_oom_synchronize(true))
996 return;
997
998 if (!mutex_trylock(&oom_lock))
999 return;
1000
1001 if (!out_of_memory(&oc)) {
1002 /*
1003 * There shouldn't be any user tasks runnable while the
1004 * OOM killer is disabled, so the current task has to
1005 * be a racing OOM victim for which oom_killer_disable()
1006 * is waiting for.
1007 */
1008 WARN_ON(test_thread_flag(TIF_MEMDIE));
1009 }
1010
1011 mutex_unlock(&oom_lock);
1012 }