]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/page-writeback.c
writeback: fix ppc compile warnings on do_div(long long, unsigned long)
[mirror_ubuntu-zesty-kernel.git] / mm / page-writeback.c
1 /*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002 Andrew Morton
11 * Initial version
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
38
39 /*
40 * Sleep at most 200ms at a time in balance_dirty_pages().
41 */
42 #define MAX_PAUSE max(HZ/5, 1)
43
44 /*
45 * Estimate write bandwidth at 200ms intervals.
46 */
47 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
48
49 #define RATELIMIT_CALC_SHIFT 10
50
51 /*
52 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
53 * will look to see if it needs to force writeback or throttling.
54 */
55 static long ratelimit_pages = 32;
56
57 /* The following parameters are exported via /proc/sys/vm */
58
59 /*
60 * Start background writeback (via writeback threads) at this percentage
61 */
62 int dirty_background_ratio = 10;
63
64 /*
65 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
66 * dirty_background_ratio * the amount of dirtyable memory
67 */
68 unsigned long dirty_background_bytes;
69
70 /*
71 * free highmem will not be subtracted from the total free memory
72 * for calculating free ratios if vm_highmem_is_dirtyable is true
73 */
74 int vm_highmem_is_dirtyable;
75
76 /*
77 * The generator of dirty data starts writeback at this percentage
78 */
79 int vm_dirty_ratio = 20;
80
81 /*
82 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
83 * vm_dirty_ratio * the amount of dirtyable memory
84 */
85 unsigned long vm_dirty_bytes;
86
87 /*
88 * The interval between `kupdate'-style writebacks
89 */
90 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
91
92 /*
93 * The longest time for which data is allowed to remain dirty
94 */
95 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
96
97 /*
98 * Flag that makes the machine dump writes/reads and block dirtyings.
99 */
100 int block_dump;
101
102 /*
103 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
104 * a full sync is triggered after this time elapses without any disk activity.
105 */
106 int laptop_mode;
107
108 EXPORT_SYMBOL(laptop_mode);
109
110 /* End of sysctl-exported parameters */
111
112 unsigned long global_dirty_limit;
113
114 /*
115 * Scale the writeback cache size proportional to the relative writeout speeds.
116 *
117 * We do this by keeping a floating proportion between BDIs, based on page
118 * writeback completions [end_page_writeback()]. Those devices that write out
119 * pages fastest will get the larger share, while the slower will get a smaller
120 * share.
121 *
122 * We use page writeout completions because we are interested in getting rid of
123 * dirty pages. Having them written out is the primary goal.
124 *
125 * We introduce a concept of time, a period over which we measure these events,
126 * because demand can/will vary over time. The length of this period itself is
127 * measured in page writeback completions.
128 *
129 */
130 static struct prop_descriptor vm_completions;
131 static struct prop_descriptor vm_dirties;
132
133 /*
134 * couple the period to the dirty_ratio:
135 *
136 * period/2 ~ roundup_pow_of_two(dirty limit)
137 */
138 static int calc_period_shift(void)
139 {
140 unsigned long dirty_total;
141
142 if (vm_dirty_bytes)
143 dirty_total = vm_dirty_bytes / PAGE_SIZE;
144 else
145 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
146 100;
147 return 2 + ilog2(dirty_total - 1);
148 }
149
150 /*
151 * update the period when the dirty threshold changes.
152 */
153 static void update_completion_period(void)
154 {
155 int shift = calc_period_shift();
156 prop_change_shift(&vm_completions, shift);
157 prop_change_shift(&vm_dirties, shift);
158
159 writeback_set_ratelimit();
160 }
161
162 int dirty_background_ratio_handler(struct ctl_table *table, int write,
163 void __user *buffer, size_t *lenp,
164 loff_t *ppos)
165 {
166 int ret;
167
168 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
169 if (ret == 0 && write)
170 dirty_background_bytes = 0;
171 return ret;
172 }
173
174 int dirty_background_bytes_handler(struct ctl_table *table, int write,
175 void __user *buffer, size_t *lenp,
176 loff_t *ppos)
177 {
178 int ret;
179
180 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
181 if (ret == 0 && write)
182 dirty_background_ratio = 0;
183 return ret;
184 }
185
186 int dirty_ratio_handler(struct ctl_table *table, int write,
187 void __user *buffer, size_t *lenp,
188 loff_t *ppos)
189 {
190 int old_ratio = vm_dirty_ratio;
191 int ret;
192
193 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
194 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
195 update_completion_period();
196 vm_dirty_bytes = 0;
197 }
198 return ret;
199 }
200
201
202 int dirty_bytes_handler(struct ctl_table *table, int write,
203 void __user *buffer, size_t *lenp,
204 loff_t *ppos)
205 {
206 unsigned long old_bytes = vm_dirty_bytes;
207 int ret;
208
209 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
210 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
211 update_completion_period();
212 vm_dirty_ratio = 0;
213 }
214 return ret;
215 }
216
217 /*
218 * Increment the BDI's writeout completion count and the global writeout
219 * completion count. Called from test_clear_page_writeback().
220 */
221 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
222 {
223 __inc_bdi_stat(bdi, BDI_WRITTEN);
224 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
225 bdi->max_prop_frac);
226 }
227
228 void bdi_writeout_inc(struct backing_dev_info *bdi)
229 {
230 unsigned long flags;
231
232 local_irq_save(flags);
233 __bdi_writeout_inc(bdi);
234 local_irq_restore(flags);
235 }
236 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
237
238 void task_dirty_inc(struct task_struct *tsk)
239 {
240 prop_inc_single(&vm_dirties, &tsk->dirties);
241 }
242
243 /*
244 * Obtain an accurate fraction of the BDI's portion.
245 */
246 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
247 long *numerator, long *denominator)
248 {
249 prop_fraction_percpu(&vm_completions, &bdi->completions,
250 numerator, denominator);
251 }
252
253 /*
254 *
255 */
256 static unsigned int bdi_min_ratio;
257
258 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
259 {
260 int ret = 0;
261
262 spin_lock_bh(&bdi_lock);
263 if (min_ratio > bdi->max_ratio) {
264 ret = -EINVAL;
265 } else {
266 min_ratio -= bdi->min_ratio;
267 if (bdi_min_ratio + min_ratio < 100) {
268 bdi_min_ratio += min_ratio;
269 bdi->min_ratio += min_ratio;
270 } else {
271 ret = -EINVAL;
272 }
273 }
274 spin_unlock_bh(&bdi_lock);
275
276 return ret;
277 }
278
279 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
280 {
281 int ret = 0;
282
283 if (max_ratio > 100)
284 return -EINVAL;
285
286 spin_lock_bh(&bdi_lock);
287 if (bdi->min_ratio > max_ratio) {
288 ret = -EINVAL;
289 } else {
290 bdi->max_ratio = max_ratio;
291 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
292 }
293 spin_unlock_bh(&bdi_lock);
294
295 return ret;
296 }
297 EXPORT_SYMBOL(bdi_set_max_ratio);
298
299 /*
300 * Work out the current dirty-memory clamping and background writeout
301 * thresholds.
302 *
303 * The main aim here is to lower them aggressively if there is a lot of mapped
304 * memory around. To avoid stressing page reclaim with lots of unreclaimable
305 * pages. It is better to clamp down on writers than to start swapping, and
306 * performing lots of scanning.
307 *
308 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
309 *
310 * We don't permit the clamping level to fall below 5% - that is getting rather
311 * excessive.
312 *
313 * We make sure that the background writeout level is below the adjusted
314 * clamping level.
315 */
316
317 static unsigned long highmem_dirtyable_memory(unsigned long total)
318 {
319 #ifdef CONFIG_HIGHMEM
320 int node;
321 unsigned long x = 0;
322
323 for_each_node_state(node, N_HIGH_MEMORY) {
324 struct zone *z =
325 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
326
327 x += zone_page_state(z, NR_FREE_PAGES) +
328 zone_reclaimable_pages(z);
329 }
330 /*
331 * Make sure that the number of highmem pages is never larger
332 * than the number of the total dirtyable memory. This can only
333 * occur in very strange VM situations but we want to make sure
334 * that this does not occur.
335 */
336 return min(x, total);
337 #else
338 return 0;
339 #endif
340 }
341
342 /**
343 * determine_dirtyable_memory - amount of memory that may be used
344 *
345 * Returns the numebr of pages that can currently be freed and used
346 * by the kernel for direct mappings.
347 */
348 unsigned long determine_dirtyable_memory(void)
349 {
350 unsigned long x;
351
352 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
353
354 if (!vm_highmem_is_dirtyable)
355 x -= highmem_dirtyable_memory(x);
356
357 return x + 1; /* Ensure that we never return 0 */
358 }
359
360 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
361 unsigned long bg_thresh)
362 {
363 return (thresh + bg_thresh) / 2;
364 }
365
366 static unsigned long hard_dirty_limit(unsigned long thresh)
367 {
368 return max(thresh, global_dirty_limit);
369 }
370
371 /*
372 * global_dirty_limits - background-writeback and dirty-throttling thresholds
373 *
374 * Calculate the dirty thresholds based on sysctl parameters
375 * - vm.dirty_background_ratio or vm.dirty_background_bytes
376 * - vm.dirty_ratio or vm.dirty_bytes
377 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
378 * real-time tasks.
379 */
380 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
381 {
382 unsigned long background;
383 unsigned long dirty;
384 unsigned long uninitialized_var(available_memory);
385 struct task_struct *tsk;
386
387 if (!vm_dirty_bytes || !dirty_background_bytes)
388 available_memory = determine_dirtyable_memory();
389
390 if (vm_dirty_bytes)
391 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
392 else
393 dirty = (vm_dirty_ratio * available_memory) / 100;
394
395 if (dirty_background_bytes)
396 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
397 else
398 background = (dirty_background_ratio * available_memory) / 100;
399
400 if (background >= dirty)
401 background = dirty / 2;
402 tsk = current;
403 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
404 background += background / 4;
405 dirty += dirty / 4;
406 }
407 *pbackground = background;
408 *pdirty = dirty;
409 trace_global_dirty_state(background, dirty);
410 }
411
412 /**
413 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
414 * @bdi: the backing_dev_info to query
415 * @dirty: global dirty limit in pages
416 *
417 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
418 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
419 * And the "limit" in the name is not seriously taken as hard limit in
420 * balance_dirty_pages().
421 *
422 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
423 * - starving fast devices
424 * - piling up dirty pages (that will take long time to sync) on slow devices
425 *
426 * The bdi's share of dirty limit will be adapting to its throughput and
427 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
428 */
429 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
430 {
431 u64 bdi_dirty;
432 long numerator, denominator;
433
434 /*
435 * Calculate this BDI's share of the dirty ratio.
436 */
437 bdi_writeout_fraction(bdi, &numerator, &denominator);
438
439 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
440 bdi_dirty *= numerator;
441 do_div(bdi_dirty, denominator);
442
443 bdi_dirty += (dirty * bdi->min_ratio) / 100;
444 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
445 bdi_dirty = dirty * bdi->max_ratio / 100;
446
447 return bdi_dirty;
448 }
449
450 /*
451 * Dirty position control.
452 *
453 * (o) global/bdi setpoints
454 *
455 * We want the dirty pages be balanced around the global/bdi setpoints.
456 * When the number of dirty pages is higher/lower than the setpoint, the
457 * dirty position control ratio (and hence task dirty ratelimit) will be
458 * decreased/increased to bring the dirty pages back to the setpoint.
459 *
460 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
461 *
462 * if (dirty < setpoint) scale up pos_ratio
463 * if (dirty > setpoint) scale down pos_ratio
464 *
465 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
466 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
467 *
468 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
469 *
470 * (o) global control line
471 *
472 * ^ pos_ratio
473 * |
474 * | |<===== global dirty control scope ======>|
475 * 2.0 .............*
476 * | .*
477 * | . *
478 * | . *
479 * | . *
480 * | . *
481 * | . *
482 * 1.0 ................................*
483 * | . . *
484 * | . . *
485 * | . . *
486 * | . . *
487 * | . . *
488 * 0 +------------.------------------.----------------------*------------->
489 * freerun^ setpoint^ limit^ dirty pages
490 *
491 * (o) bdi control line
492 *
493 * ^ pos_ratio
494 * |
495 * | *
496 * | *
497 * | *
498 * | *
499 * | * |<=========== span ============>|
500 * 1.0 .......................*
501 * | . *
502 * | . *
503 * | . *
504 * | . *
505 * | . *
506 * | . *
507 * | . *
508 * | . *
509 * | . *
510 * | . *
511 * | . *
512 * 1/4 ...............................................* * * * * * * * * * * *
513 * | . .
514 * | . .
515 * | . .
516 * 0 +----------------------.-------------------------------.------------->
517 * bdi_setpoint^ x_intercept^
518 *
519 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
520 * be smoothly throttled down to normal if it starts high in situations like
521 * - start writing to a slow SD card and a fast disk at the same time. The SD
522 * card's bdi_dirty may rush to many times higher than bdi_setpoint.
523 * - the bdi dirty thresh drops quickly due to change of JBOD workload
524 */
525 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
526 unsigned long thresh,
527 unsigned long bg_thresh,
528 unsigned long dirty,
529 unsigned long bdi_thresh,
530 unsigned long bdi_dirty)
531 {
532 unsigned long write_bw = bdi->avg_write_bandwidth;
533 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
534 unsigned long limit = hard_dirty_limit(thresh);
535 unsigned long x_intercept;
536 unsigned long setpoint; /* dirty pages' target balance point */
537 unsigned long bdi_setpoint;
538 unsigned long span;
539 long long pos_ratio; /* for scaling up/down the rate limit */
540 long x;
541
542 if (unlikely(dirty >= limit))
543 return 0;
544
545 /*
546 * global setpoint
547 *
548 * setpoint - dirty 3
549 * f(dirty) := 1.0 + (----------------)
550 * limit - setpoint
551 *
552 * it's a 3rd order polynomial that subjects to
553 *
554 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
555 * (2) f(setpoint) = 1.0 => the balance point
556 * (3) f(limit) = 0 => the hard limit
557 * (4) df/dx <= 0 => negative feedback control
558 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
559 * => fast response on large errors; small oscillation near setpoint
560 */
561 setpoint = (freerun + limit) / 2;
562 x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
563 limit - setpoint + 1);
564 pos_ratio = x;
565 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
566 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
567 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
568
569 /*
570 * We have computed basic pos_ratio above based on global situation. If
571 * the bdi is over/under its share of dirty pages, we want to scale
572 * pos_ratio further down/up. That is done by the following mechanism.
573 */
574
575 /*
576 * bdi setpoint
577 *
578 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
579 *
580 * x_intercept - bdi_dirty
581 * := --------------------------
582 * x_intercept - bdi_setpoint
583 *
584 * The main bdi control line is a linear function that subjects to
585 *
586 * (1) f(bdi_setpoint) = 1.0
587 * (2) k = - 1 / (8 * write_bw) (in single bdi case)
588 * or equally: x_intercept = bdi_setpoint + 8 * write_bw
589 *
590 * For single bdi case, the dirty pages are observed to fluctuate
591 * regularly within range
592 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
593 * for various filesystems, where (2) can yield in a reasonable 12.5%
594 * fluctuation range for pos_ratio.
595 *
596 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
597 * own size, so move the slope over accordingly and choose a slope that
598 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
599 */
600 if (unlikely(bdi_thresh > thresh))
601 bdi_thresh = thresh;
602 bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
603 /*
604 * scale global setpoint to bdi's:
605 * bdi_setpoint = setpoint * bdi_thresh / thresh
606 */
607 x = div_u64((u64)bdi_thresh << 16, thresh + 1);
608 bdi_setpoint = setpoint * (u64)x >> 16;
609 /*
610 * Use span=(8*write_bw) in single bdi case as indicated by
611 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
612 *
613 * bdi_thresh thresh - bdi_thresh
614 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
615 * thresh thresh
616 */
617 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
618 x_intercept = bdi_setpoint + span;
619
620 if (bdi_dirty < x_intercept - span / 4) {
621 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
622 x_intercept - bdi_setpoint + 1);
623 } else
624 pos_ratio /= 4;
625
626 /*
627 * bdi reserve area, safeguard against dirty pool underrun and disk idle
628 * It may push the desired control point of global dirty pages higher
629 * than setpoint.
630 */
631 x_intercept = bdi_thresh / 2;
632 if (bdi_dirty < x_intercept) {
633 if (bdi_dirty > x_intercept / 8)
634 pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
635 else
636 pos_ratio *= 8;
637 }
638
639 return pos_ratio;
640 }
641
642 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
643 unsigned long elapsed,
644 unsigned long written)
645 {
646 const unsigned long period = roundup_pow_of_two(3 * HZ);
647 unsigned long avg = bdi->avg_write_bandwidth;
648 unsigned long old = bdi->write_bandwidth;
649 u64 bw;
650
651 /*
652 * bw = written * HZ / elapsed
653 *
654 * bw * elapsed + write_bandwidth * (period - elapsed)
655 * write_bandwidth = ---------------------------------------------------
656 * period
657 */
658 bw = written - bdi->written_stamp;
659 bw *= HZ;
660 if (unlikely(elapsed > period)) {
661 do_div(bw, elapsed);
662 avg = bw;
663 goto out;
664 }
665 bw += (u64)bdi->write_bandwidth * (period - elapsed);
666 bw >>= ilog2(period);
667
668 /*
669 * one more level of smoothing, for filtering out sudden spikes
670 */
671 if (avg > old && old >= (unsigned long)bw)
672 avg -= (avg - old) >> 3;
673
674 if (avg < old && old <= (unsigned long)bw)
675 avg += (old - avg) >> 3;
676
677 out:
678 bdi->write_bandwidth = bw;
679 bdi->avg_write_bandwidth = avg;
680 }
681
682 /*
683 * The global dirtyable memory and dirty threshold could be suddenly knocked
684 * down by a large amount (eg. on the startup of KVM in a swapless system).
685 * This may throw the system into deep dirty exceeded state and throttle
686 * heavy/light dirtiers alike. To retain good responsiveness, maintain
687 * global_dirty_limit for tracking slowly down to the knocked down dirty
688 * threshold.
689 */
690 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
691 {
692 unsigned long limit = global_dirty_limit;
693
694 /*
695 * Follow up in one step.
696 */
697 if (limit < thresh) {
698 limit = thresh;
699 goto update;
700 }
701
702 /*
703 * Follow down slowly. Use the higher one as the target, because thresh
704 * may drop below dirty. This is exactly the reason to introduce
705 * global_dirty_limit which is guaranteed to lie above the dirty pages.
706 */
707 thresh = max(thresh, dirty);
708 if (limit > thresh) {
709 limit -= (limit - thresh) >> 5;
710 goto update;
711 }
712 return;
713 update:
714 global_dirty_limit = limit;
715 }
716
717 static void global_update_bandwidth(unsigned long thresh,
718 unsigned long dirty,
719 unsigned long now)
720 {
721 static DEFINE_SPINLOCK(dirty_lock);
722 static unsigned long update_time;
723
724 /*
725 * check locklessly first to optimize away locking for the most time
726 */
727 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
728 return;
729
730 spin_lock(&dirty_lock);
731 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
732 update_dirty_limit(thresh, dirty);
733 update_time = now;
734 }
735 spin_unlock(&dirty_lock);
736 }
737
738 /*
739 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
740 *
741 * Normal bdi tasks will be curbed at or below it in long term.
742 * Obviously it should be around (write_bw / N) when there are N dd tasks.
743 */
744 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
745 unsigned long thresh,
746 unsigned long bg_thresh,
747 unsigned long dirty,
748 unsigned long bdi_thresh,
749 unsigned long bdi_dirty,
750 unsigned long dirtied,
751 unsigned long elapsed)
752 {
753 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
754 unsigned long limit = hard_dirty_limit(thresh);
755 unsigned long setpoint = (freerun + limit) / 2;
756 unsigned long write_bw = bdi->avg_write_bandwidth;
757 unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
758 unsigned long dirty_rate;
759 unsigned long task_ratelimit;
760 unsigned long balanced_dirty_ratelimit;
761 unsigned long pos_ratio;
762 unsigned long step;
763 unsigned long x;
764
765 /*
766 * The dirty rate will match the writeout rate in long term, except
767 * when dirty pages are truncated by userspace or re-dirtied by FS.
768 */
769 dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
770
771 pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
772 bdi_thresh, bdi_dirty);
773 /*
774 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
775 */
776 task_ratelimit = (u64)dirty_ratelimit *
777 pos_ratio >> RATELIMIT_CALC_SHIFT;
778 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
779
780 /*
781 * A linear estimation of the "balanced" throttle rate. The theory is,
782 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
783 * dirty_rate will be measured to be (N * task_ratelimit). So the below
784 * formula will yield the balanced rate limit (write_bw / N).
785 *
786 * Note that the expanded form is not a pure rate feedback:
787 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
788 * but also takes pos_ratio into account:
789 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
790 *
791 * (1) is not realistic because pos_ratio also takes part in balancing
792 * the dirty rate. Consider the state
793 * pos_ratio = 0.5 (3)
794 * rate = 2 * (write_bw / N) (4)
795 * If (1) is used, it will stuck in that state! Because each dd will
796 * be throttled at
797 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
798 * yielding
799 * dirty_rate = N * task_ratelimit = write_bw (6)
800 * put (6) into (1) we get
801 * rate_(i+1) = rate_(i) (7)
802 *
803 * So we end up using (2) to always keep
804 * rate_(i+1) ~= (write_bw / N) (8)
805 * regardless of the value of pos_ratio. As long as (8) is satisfied,
806 * pos_ratio is able to drive itself to 1.0, which is not only where
807 * the dirty count meet the setpoint, but also where the slope of
808 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
809 */
810 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
811 dirty_rate | 1);
812
813 /*
814 * We could safely do this and return immediately:
815 *
816 * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
817 *
818 * However to get a more stable dirty_ratelimit, the below elaborated
819 * code makes use of task_ratelimit to filter out sigular points and
820 * limit the step size.
821 *
822 * The below code essentially only uses the relative value of
823 *
824 * task_ratelimit - dirty_ratelimit
825 * = (pos_ratio - 1) * dirty_ratelimit
826 *
827 * which reflects the direction and size of dirty position error.
828 */
829
830 /*
831 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
832 * task_ratelimit is on the same side of dirty_ratelimit, too.
833 * For example, when
834 * - dirty_ratelimit > balanced_dirty_ratelimit
835 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
836 * lowering dirty_ratelimit will help meet both the position and rate
837 * control targets. Otherwise, don't update dirty_ratelimit if it will
838 * only help meet the rate target. After all, what the users ultimately
839 * feel and care are stable dirty rate and small position error.
840 *
841 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
842 * and filter out the sigular points of balanced_dirty_ratelimit. Which
843 * keeps jumping around randomly and can even leap far away at times
844 * due to the small 200ms estimation period of dirty_rate (we want to
845 * keep that period small to reduce time lags).
846 */
847 step = 0;
848 if (dirty < setpoint) {
849 x = min(bdi->balanced_dirty_ratelimit,
850 min(balanced_dirty_ratelimit, task_ratelimit));
851 if (dirty_ratelimit < x)
852 step = x - dirty_ratelimit;
853 } else {
854 x = max(bdi->balanced_dirty_ratelimit,
855 max(balanced_dirty_ratelimit, task_ratelimit));
856 if (dirty_ratelimit > x)
857 step = dirty_ratelimit - x;
858 }
859
860 /*
861 * Don't pursue 100% rate matching. It's impossible since the balanced
862 * rate itself is constantly fluctuating. So decrease the track speed
863 * when it gets close to the target. Helps eliminate pointless tremors.
864 */
865 step >>= dirty_ratelimit / (2 * step + 1);
866 /*
867 * Limit the tracking speed to avoid overshooting.
868 */
869 step = (step + 7) / 8;
870
871 if (dirty_ratelimit < balanced_dirty_ratelimit)
872 dirty_ratelimit += step;
873 else
874 dirty_ratelimit -= step;
875
876 bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
877 bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
878 }
879
880 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
881 unsigned long thresh,
882 unsigned long bg_thresh,
883 unsigned long dirty,
884 unsigned long bdi_thresh,
885 unsigned long bdi_dirty,
886 unsigned long start_time)
887 {
888 unsigned long now = jiffies;
889 unsigned long elapsed = now - bdi->bw_time_stamp;
890 unsigned long dirtied;
891 unsigned long written;
892
893 /*
894 * rate-limit, only update once every 200ms.
895 */
896 if (elapsed < BANDWIDTH_INTERVAL)
897 return;
898
899 dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
900 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
901
902 /*
903 * Skip quiet periods when disk bandwidth is under-utilized.
904 * (at least 1s idle time between two flusher runs)
905 */
906 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
907 goto snapshot;
908
909 if (thresh) {
910 global_update_bandwidth(thresh, dirty, now);
911 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
912 bdi_thresh, bdi_dirty,
913 dirtied, elapsed);
914 }
915 bdi_update_write_bandwidth(bdi, elapsed, written);
916
917 snapshot:
918 bdi->dirtied_stamp = dirtied;
919 bdi->written_stamp = written;
920 bdi->bw_time_stamp = now;
921 }
922
923 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
924 unsigned long thresh,
925 unsigned long bg_thresh,
926 unsigned long dirty,
927 unsigned long bdi_thresh,
928 unsigned long bdi_dirty,
929 unsigned long start_time)
930 {
931 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
932 return;
933 spin_lock(&bdi->wb.list_lock);
934 __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
935 bdi_thresh, bdi_dirty, start_time);
936 spin_unlock(&bdi->wb.list_lock);
937 }
938
939 /*
940 * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
941 * will look to see if it needs to start dirty throttling.
942 *
943 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
944 * global_page_state() too often. So scale it near-sqrt to the safety margin
945 * (the number of pages we may dirty without exceeding the dirty limits).
946 */
947 static unsigned long dirty_poll_interval(unsigned long dirty,
948 unsigned long thresh)
949 {
950 if (thresh > dirty)
951 return 1UL << (ilog2(thresh - dirty) >> 1);
952
953 return 1;
954 }
955
956 static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
957 unsigned long bdi_dirty)
958 {
959 unsigned long bw = bdi->avg_write_bandwidth;
960 unsigned long hi = ilog2(bw);
961 unsigned long lo = ilog2(bdi->dirty_ratelimit);
962 unsigned long t;
963
964 /* target for 20ms max pause on 1-dd case */
965 t = HZ / 50;
966
967 /*
968 * Scale up pause time for concurrent dirtiers in order to reduce CPU
969 * overheads.
970 *
971 * (N * 20ms) on 2^N concurrent tasks.
972 */
973 if (hi > lo)
974 t += (hi - lo) * (20 * HZ) / 1024;
975
976 /*
977 * Limit pause time for small memory systems. If sleeping for too long
978 * time, a small pool of dirty/writeback pages may go empty and disk go
979 * idle.
980 *
981 * 8 serves as the safety ratio.
982 */
983 if (bdi_dirty)
984 t = min(t, bdi_dirty * HZ / (8 * bw + 1));
985
986 /*
987 * The pause time will be settled within range (max_pause/4, max_pause).
988 * Apply a minimal value of 4 to get a non-zero max_pause/4.
989 */
990 return clamp_val(t, 4, MAX_PAUSE);
991 }
992
993 /*
994 * balance_dirty_pages() must be called by processes which are generating dirty
995 * data. It looks at the number of dirty pages in the machine and will force
996 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
997 * If we're over `background_thresh' then the writeback threads are woken to
998 * perform some writeout.
999 */
1000 static void balance_dirty_pages(struct address_space *mapping,
1001 unsigned long pages_dirtied)
1002 {
1003 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1004 unsigned long bdi_reclaimable;
1005 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
1006 unsigned long bdi_dirty;
1007 unsigned long freerun;
1008 unsigned long background_thresh;
1009 unsigned long dirty_thresh;
1010 unsigned long bdi_thresh;
1011 long pause = 0;
1012 long uninitialized_var(max_pause);
1013 bool dirty_exceeded = false;
1014 unsigned long task_ratelimit;
1015 unsigned long uninitialized_var(dirty_ratelimit);
1016 unsigned long pos_ratio;
1017 struct backing_dev_info *bdi = mapping->backing_dev_info;
1018 unsigned long start_time = jiffies;
1019
1020 for (;;) {
1021 /*
1022 * Unstable writes are a feature of certain networked
1023 * filesystems (i.e. NFS) in which data may have been
1024 * written to the server's write cache, but has not yet
1025 * been flushed to permanent storage.
1026 */
1027 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1028 global_page_state(NR_UNSTABLE_NFS);
1029 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1030
1031 global_dirty_limits(&background_thresh, &dirty_thresh);
1032
1033 /*
1034 * Throttle it only when the background writeback cannot
1035 * catch-up. This avoids (excessively) small writeouts
1036 * when the bdi limits are ramping up.
1037 */
1038 freerun = dirty_freerun_ceiling(dirty_thresh,
1039 background_thresh);
1040 if (nr_dirty <= freerun)
1041 break;
1042
1043 if (unlikely(!writeback_in_progress(bdi)))
1044 bdi_start_background_writeback(bdi);
1045
1046 /*
1047 * bdi_thresh is not treated as some limiting factor as
1048 * dirty_thresh, due to reasons
1049 * - in JBOD setup, bdi_thresh can fluctuate a lot
1050 * - in a system with HDD and USB key, the USB key may somehow
1051 * go into state (bdi_dirty >> bdi_thresh) either because
1052 * bdi_dirty starts high, or because bdi_thresh drops low.
1053 * In this case we don't want to hard throttle the USB key
1054 * dirtiers for 100 seconds until bdi_dirty drops under
1055 * bdi_thresh. Instead the auxiliary bdi control line in
1056 * bdi_position_ratio() will let the dirtier task progress
1057 * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1058 */
1059 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1060
1061 /*
1062 * In order to avoid the stacked BDI deadlock we need
1063 * to ensure we accurately count the 'dirty' pages when
1064 * the threshold is low.
1065 *
1066 * Otherwise it would be possible to get thresh+n pages
1067 * reported dirty, even though there are thresh-m pages
1068 * actually dirty; with m+n sitting in the percpu
1069 * deltas.
1070 */
1071 if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1072 bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1073 bdi_dirty = bdi_reclaimable +
1074 bdi_stat_sum(bdi, BDI_WRITEBACK);
1075 } else {
1076 bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1077 bdi_dirty = bdi_reclaimable +
1078 bdi_stat(bdi, BDI_WRITEBACK);
1079 }
1080
1081 dirty_exceeded = (bdi_dirty > bdi_thresh) ||
1082 (nr_dirty > dirty_thresh);
1083 if (dirty_exceeded && !bdi->dirty_exceeded)
1084 bdi->dirty_exceeded = 1;
1085
1086 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1087 nr_dirty, bdi_thresh, bdi_dirty,
1088 start_time);
1089
1090 max_pause = bdi_max_pause(bdi, bdi_dirty);
1091
1092 dirty_ratelimit = bdi->dirty_ratelimit;
1093 pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1094 background_thresh, nr_dirty,
1095 bdi_thresh, bdi_dirty);
1096 if (unlikely(pos_ratio == 0)) {
1097 pause = max_pause;
1098 goto pause;
1099 }
1100 task_ratelimit = (u64)dirty_ratelimit *
1101 pos_ratio >> RATELIMIT_CALC_SHIFT;
1102 pause = (HZ * pages_dirtied) / (task_ratelimit | 1);
1103 if (unlikely(pause <= 0)) {
1104 pause = 1; /* avoid resetting nr_dirtied_pause below */
1105 break;
1106 }
1107 pause = min(pause, max_pause);
1108
1109 pause:
1110 __set_current_state(TASK_UNINTERRUPTIBLE);
1111 io_schedule_timeout(pause);
1112
1113 dirty_thresh = hard_dirty_limit(dirty_thresh);
1114 /*
1115 * max-pause area. If dirty exceeded but still within this
1116 * area, no need to sleep for more than 200ms: (a) 8 pages per
1117 * 200ms is typically more than enough to curb heavy dirtiers;
1118 * (b) the pause time limit makes the dirtiers more responsive.
1119 */
1120 if (nr_dirty < dirty_thresh)
1121 break;
1122 }
1123
1124 if (!dirty_exceeded && bdi->dirty_exceeded)
1125 bdi->dirty_exceeded = 0;
1126
1127 current->nr_dirtied = 0;
1128 if (pause == 0) { /* in freerun area */
1129 current->nr_dirtied_pause =
1130 dirty_poll_interval(nr_dirty, dirty_thresh);
1131 } else if (pause <= max_pause / 4 &&
1132 pages_dirtied >= current->nr_dirtied_pause) {
1133 current->nr_dirtied_pause = clamp_val(
1134 dirty_ratelimit * (max_pause / 2) / HZ,
1135 pages_dirtied + pages_dirtied / 8,
1136 pages_dirtied * 4);
1137 } else if (pause >= max_pause) {
1138 current->nr_dirtied_pause = 1 | clamp_val(
1139 dirty_ratelimit * (max_pause / 2) / HZ,
1140 pages_dirtied / 4,
1141 pages_dirtied - pages_dirtied / 8);
1142 }
1143
1144 if (writeback_in_progress(bdi))
1145 return;
1146
1147 /*
1148 * In laptop mode, we wait until hitting the higher threshold before
1149 * starting background writeout, and then write out all the way down
1150 * to the lower threshold. So slow writers cause minimal disk activity.
1151 *
1152 * In normal mode, we start background writeout at the lower
1153 * background_thresh, to keep the amount of dirty memory low.
1154 */
1155 if (laptop_mode)
1156 return;
1157
1158 if (nr_reclaimable > background_thresh)
1159 bdi_start_background_writeback(bdi);
1160 }
1161
1162 void set_page_dirty_balance(struct page *page, int page_mkwrite)
1163 {
1164 if (set_page_dirty(page) || page_mkwrite) {
1165 struct address_space *mapping = page_mapping(page);
1166
1167 if (mapping)
1168 balance_dirty_pages_ratelimited(mapping);
1169 }
1170 }
1171
1172 static DEFINE_PER_CPU(int, bdp_ratelimits);
1173
1174 /**
1175 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
1176 * @mapping: address_space which was dirtied
1177 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1178 *
1179 * Processes which are dirtying memory should call in here once for each page
1180 * which was newly dirtied. The function will periodically check the system's
1181 * dirty state and will initiate writeback if needed.
1182 *
1183 * On really big machines, get_writeback_state is expensive, so try to avoid
1184 * calling it too often (ratelimiting). But once we're over the dirty memory
1185 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1186 * from overshooting the limit by (ratelimit_pages) each.
1187 */
1188 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1189 unsigned long nr_pages_dirtied)
1190 {
1191 struct backing_dev_info *bdi = mapping->backing_dev_info;
1192 int ratelimit;
1193 int *p;
1194
1195 if (!bdi_cap_account_dirty(bdi))
1196 return;
1197
1198 ratelimit = current->nr_dirtied_pause;
1199 if (bdi->dirty_exceeded)
1200 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1201
1202 current->nr_dirtied += nr_pages_dirtied;
1203
1204 preempt_disable();
1205 /*
1206 * This prevents one CPU to accumulate too many dirtied pages without
1207 * calling into balance_dirty_pages(), which can happen when there are
1208 * 1000+ tasks, all of them start dirtying pages at exactly the same
1209 * time, hence all honoured too large initial task->nr_dirtied_pause.
1210 */
1211 p = &__get_cpu_var(bdp_ratelimits);
1212 if (unlikely(current->nr_dirtied >= ratelimit))
1213 *p = 0;
1214 else {
1215 *p += nr_pages_dirtied;
1216 if (unlikely(*p >= ratelimit_pages)) {
1217 *p = 0;
1218 ratelimit = 0;
1219 }
1220 }
1221 preempt_enable();
1222
1223 if (unlikely(current->nr_dirtied >= ratelimit))
1224 balance_dirty_pages(mapping, current->nr_dirtied);
1225 }
1226 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1227
1228 void throttle_vm_writeout(gfp_t gfp_mask)
1229 {
1230 unsigned long background_thresh;
1231 unsigned long dirty_thresh;
1232
1233 for ( ; ; ) {
1234 global_dirty_limits(&background_thresh, &dirty_thresh);
1235
1236 /*
1237 * Boost the allowable dirty threshold a bit for page
1238 * allocators so they don't get DoS'ed by heavy writers
1239 */
1240 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1241
1242 if (global_page_state(NR_UNSTABLE_NFS) +
1243 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1244 break;
1245 congestion_wait(BLK_RW_ASYNC, HZ/10);
1246
1247 /*
1248 * The caller might hold locks which can prevent IO completion
1249 * or progress in the filesystem. So we cannot just sit here
1250 * waiting for IO to complete.
1251 */
1252 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1253 break;
1254 }
1255 }
1256
1257 /*
1258 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1259 */
1260 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1261 void __user *buffer, size_t *length, loff_t *ppos)
1262 {
1263 proc_dointvec(table, write, buffer, length, ppos);
1264 bdi_arm_supers_timer();
1265 return 0;
1266 }
1267
1268 #ifdef CONFIG_BLOCK
1269 void laptop_mode_timer_fn(unsigned long data)
1270 {
1271 struct request_queue *q = (struct request_queue *)data;
1272 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1273 global_page_state(NR_UNSTABLE_NFS);
1274
1275 /*
1276 * We want to write everything out, not just down to the dirty
1277 * threshold
1278 */
1279 if (bdi_has_dirty_io(&q->backing_dev_info))
1280 bdi_start_writeback(&q->backing_dev_info, nr_pages);
1281 }
1282
1283 /*
1284 * We've spun up the disk and we're in laptop mode: schedule writeback
1285 * of all dirty data a few seconds from now. If the flush is already scheduled
1286 * then push it back - the user is still using the disk.
1287 */
1288 void laptop_io_completion(struct backing_dev_info *info)
1289 {
1290 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1291 }
1292
1293 /*
1294 * We're in laptop mode and we've just synced. The sync's writes will have
1295 * caused another writeback to be scheduled by laptop_io_completion.
1296 * Nothing needs to be written back anymore, so we unschedule the writeback.
1297 */
1298 void laptop_sync_completion(void)
1299 {
1300 struct backing_dev_info *bdi;
1301
1302 rcu_read_lock();
1303
1304 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1305 del_timer(&bdi->laptop_mode_wb_timer);
1306
1307 rcu_read_unlock();
1308 }
1309 #endif
1310
1311 /*
1312 * If ratelimit_pages is too high then we can get into dirty-data overload
1313 * if a large number of processes all perform writes at the same time.
1314 * If it is too low then SMP machines will call the (expensive)
1315 * get_writeback_state too often.
1316 *
1317 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1318 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1319 * thresholds.
1320 */
1321
1322 void writeback_set_ratelimit(void)
1323 {
1324 unsigned long background_thresh;
1325 unsigned long dirty_thresh;
1326 global_dirty_limits(&background_thresh, &dirty_thresh);
1327 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1328 if (ratelimit_pages < 16)
1329 ratelimit_pages = 16;
1330 }
1331
1332 static int __cpuinit
1333 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1334 {
1335 writeback_set_ratelimit();
1336 return NOTIFY_DONE;
1337 }
1338
1339 static struct notifier_block __cpuinitdata ratelimit_nb = {
1340 .notifier_call = ratelimit_handler,
1341 .next = NULL,
1342 };
1343
1344 /*
1345 * Called early on to tune the page writeback dirty limits.
1346 *
1347 * We used to scale dirty pages according to how total memory
1348 * related to pages that could be allocated for buffers (by
1349 * comparing nr_free_buffer_pages() to vm_total_pages.
1350 *
1351 * However, that was when we used "dirty_ratio" to scale with
1352 * all memory, and we don't do that any more. "dirty_ratio"
1353 * is now applied to total non-HIGHPAGE memory (by subtracting
1354 * totalhigh_pages from vm_total_pages), and as such we can't
1355 * get into the old insane situation any more where we had
1356 * large amounts of dirty pages compared to a small amount of
1357 * non-HIGHMEM memory.
1358 *
1359 * But we might still want to scale the dirty_ratio by how
1360 * much memory the box has..
1361 */
1362 void __init page_writeback_init(void)
1363 {
1364 int shift;
1365
1366 writeback_set_ratelimit();
1367 register_cpu_notifier(&ratelimit_nb);
1368
1369 shift = calc_period_shift();
1370 prop_descriptor_init(&vm_completions, shift);
1371 prop_descriptor_init(&vm_dirties, shift);
1372 }
1373
1374 /**
1375 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1376 * @mapping: address space structure to write
1377 * @start: starting page index
1378 * @end: ending page index (inclusive)
1379 *
1380 * This function scans the page range from @start to @end (inclusive) and tags
1381 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1382 * that write_cache_pages (or whoever calls this function) will then use
1383 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1384 * used to avoid livelocking of writeback by a process steadily creating new
1385 * dirty pages in the file (thus it is important for this function to be quick
1386 * so that it can tag pages faster than a dirtying process can create them).
1387 */
1388 /*
1389 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1390 */
1391 void tag_pages_for_writeback(struct address_space *mapping,
1392 pgoff_t start, pgoff_t end)
1393 {
1394 #define WRITEBACK_TAG_BATCH 4096
1395 unsigned long tagged;
1396
1397 do {
1398 spin_lock_irq(&mapping->tree_lock);
1399 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1400 &start, end, WRITEBACK_TAG_BATCH,
1401 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1402 spin_unlock_irq(&mapping->tree_lock);
1403 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1404 cond_resched();
1405 /* We check 'start' to handle wrapping when end == ~0UL */
1406 } while (tagged >= WRITEBACK_TAG_BATCH && start);
1407 }
1408 EXPORT_SYMBOL(tag_pages_for_writeback);
1409
1410 /**
1411 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1412 * @mapping: address space structure to write
1413 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1414 * @writepage: function called for each page
1415 * @data: data passed to writepage function
1416 *
1417 * If a page is already under I/O, write_cache_pages() skips it, even
1418 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1419 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1420 * and msync() need to guarantee that all the data which was dirty at the time
1421 * the call was made get new I/O started against them. If wbc->sync_mode is
1422 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1423 * existing IO to complete.
1424 *
1425 * To avoid livelocks (when other process dirties new pages), we first tag
1426 * pages which should be written back with TOWRITE tag and only then start
1427 * writing them. For data-integrity sync we have to be careful so that we do
1428 * not miss some pages (e.g., because some other process has cleared TOWRITE
1429 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1430 * by the process clearing the DIRTY tag (and submitting the page for IO).
1431 */
1432 int write_cache_pages(struct address_space *mapping,
1433 struct writeback_control *wbc, writepage_t writepage,
1434 void *data)
1435 {
1436 int ret = 0;
1437 int done = 0;
1438 struct pagevec pvec;
1439 int nr_pages;
1440 pgoff_t uninitialized_var(writeback_index);
1441 pgoff_t index;
1442 pgoff_t end; /* Inclusive */
1443 pgoff_t done_index;
1444 int cycled;
1445 int range_whole = 0;
1446 int tag;
1447
1448 pagevec_init(&pvec, 0);
1449 if (wbc->range_cyclic) {
1450 writeback_index = mapping->writeback_index; /* prev offset */
1451 index = writeback_index;
1452 if (index == 0)
1453 cycled = 1;
1454 else
1455 cycled = 0;
1456 end = -1;
1457 } else {
1458 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1459 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1460 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1461 range_whole = 1;
1462 cycled = 1; /* ignore range_cyclic tests */
1463 }
1464 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1465 tag = PAGECACHE_TAG_TOWRITE;
1466 else
1467 tag = PAGECACHE_TAG_DIRTY;
1468 retry:
1469 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1470 tag_pages_for_writeback(mapping, index, end);
1471 done_index = index;
1472 while (!done && (index <= end)) {
1473 int i;
1474
1475 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1476 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1477 if (nr_pages == 0)
1478 break;
1479
1480 for (i = 0; i < nr_pages; i++) {
1481 struct page *page = pvec.pages[i];
1482
1483 /*
1484 * At this point, the page may be truncated or
1485 * invalidated (changing page->mapping to NULL), or
1486 * even swizzled back from swapper_space to tmpfs file
1487 * mapping. However, page->index will not change
1488 * because we have a reference on the page.
1489 */
1490 if (page->index > end) {
1491 /*
1492 * can't be range_cyclic (1st pass) because
1493 * end == -1 in that case.
1494 */
1495 done = 1;
1496 break;
1497 }
1498
1499 done_index = page->index;
1500
1501 lock_page(page);
1502
1503 /*
1504 * Page truncated or invalidated. We can freely skip it
1505 * then, even for data integrity operations: the page
1506 * has disappeared concurrently, so there could be no
1507 * real expectation of this data interity operation
1508 * even if there is now a new, dirty page at the same
1509 * pagecache address.
1510 */
1511 if (unlikely(page->mapping != mapping)) {
1512 continue_unlock:
1513 unlock_page(page);
1514 continue;
1515 }
1516
1517 if (!PageDirty(page)) {
1518 /* someone wrote it for us */
1519 goto continue_unlock;
1520 }
1521
1522 if (PageWriteback(page)) {
1523 if (wbc->sync_mode != WB_SYNC_NONE)
1524 wait_on_page_writeback(page);
1525 else
1526 goto continue_unlock;
1527 }
1528
1529 BUG_ON(PageWriteback(page));
1530 if (!clear_page_dirty_for_io(page))
1531 goto continue_unlock;
1532
1533 trace_wbc_writepage(wbc, mapping->backing_dev_info);
1534 ret = (*writepage)(page, wbc, data);
1535 if (unlikely(ret)) {
1536 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1537 unlock_page(page);
1538 ret = 0;
1539 } else {
1540 /*
1541 * done_index is set past this page,
1542 * so media errors will not choke
1543 * background writeout for the entire
1544 * file. This has consequences for
1545 * range_cyclic semantics (ie. it may
1546 * not be suitable for data integrity
1547 * writeout).
1548 */
1549 done_index = page->index + 1;
1550 done = 1;
1551 break;
1552 }
1553 }
1554
1555 /*
1556 * We stop writing back only if we are not doing
1557 * integrity sync. In case of integrity sync we have to
1558 * keep going until we have written all the pages
1559 * we tagged for writeback prior to entering this loop.
1560 */
1561 if (--wbc->nr_to_write <= 0 &&
1562 wbc->sync_mode == WB_SYNC_NONE) {
1563 done = 1;
1564 break;
1565 }
1566 }
1567 pagevec_release(&pvec);
1568 cond_resched();
1569 }
1570 if (!cycled && !done) {
1571 /*
1572 * range_cyclic:
1573 * We hit the last page and there is more work to be done: wrap
1574 * back to the start of the file
1575 */
1576 cycled = 1;
1577 index = 0;
1578 end = writeback_index - 1;
1579 goto retry;
1580 }
1581 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1582 mapping->writeback_index = done_index;
1583
1584 return ret;
1585 }
1586 EXPORT_SYMBOL(write_cache_pages);
1587
1588 /*
1589 * Function used by generic_writepages to call the real writepage
1590 * function and set the mapping flags on error
1591 */
1592 static int __writepage(struct page *page, struct writeback_control *wbc,
1593 void *data)
1594 {
1595 struct address_space *mapping = data;
1596 int ret = mapping->a_ops->writepage(page, wbc);
1597 mapping_set_error(mapping, ret);
1598 return ret;
1599 }
1600
1601 /**
1602 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1603 * @mapping: address space structure to write
1604 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1605 *
1606 * This is a library function, which implements the writepages()
1607 * address_space_operation.
1608 */
1609 int generic_writepages(struct address_space *mapping,
1610 struct writeback_control *wbc)
1611 {
1612 struct blk_plug plug;
1613 int ret;
1614
1615 /* deal with chardevs and other special file */
1616 if (!mapping->a_ops->writepage)
1617 return 0;
1618
1619 blk_start_plug(&plug);
1620 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1621 blk_finish_plug(&plug);
1622 return ret;
1623 }
1624
1625 EXPORT_SYMBOL(generic_writepages);
1626
1627 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1628 {
1629 int ret;
1630
1631 if (wbc->nr_to_write <= 0)
1632 return 0;
1633 if (mapping->a_ops->writepages)
1634 ret = mapping->a_ops->writepages(mapping, wbc);
1635 else
1636 ret = generic_writepages(mapping, wbc);
1637 return ret;
1638 }
1639
1640 /**
1641 * write_one_page - write out a single page and optionally wait on I/O
1642 * @page: the page to write
1643 * @wait: if true, wait on writeout
1644 *
1645 * The page must be locked by the caller and will be unlocked upon return.
1646 *
1647 * write_one_page() returns a negative error code if I/O failed.
1648 */
1649 int write_one_page(struct page *page, int wait)
1650 {
1651 struct address_space *mapping = page->mapping;
1652 int ret = 0;
1653 struct writeback_control wbc = {
1654 .sync_mode = WB_SYNC_ALL,
1655 .nr_to_write = 1,
1656 };
1657
1658 BUG_ON(!PageLocked(page));
1659
1660 if (wait)
1661 wait_on_page_writeback(page);
1662
1663 if (clear_page_dirty_for_io(page)) {
1664 page_cache_get(page);
1665 ret = mapping->a_ops->writepage(page, &wbc);
1666 if (ret == 0 && wait) {
1667 wait_on_page_writeback(page);
1668 if (PageError(page))
1669 ret = -EIO;
1670 }
1671 page_cache_release(page);
1672 } else {
1673 unlock_page(page);
1674 }
1675 return ret;
1676 }
1677 EXPORT_SYMBOL(write_one_page);
1678
1679 /*
1680 * For address_spaces which do not use buffers nor write back.
1681 */
1682 int __set_page_dirty_no_writeback(struct page *page)
1683 {
1684 if (!PageDirty(page))
1685 return !TestSetPageDirty(page);
1686 return 0;
1687 }
1688
1689 /*
1690 * Helper function for set_page_dirty family.
1691 * NOTE: This relies on being atomic wrt interrupts.
1692 */
1693 void account_page_dirtied(struct page *page, struct address_space *mapping)
1694 {
1695 if (mapping_cap_account_dirty(mapping)) {
1696 __inc_zone_page_state(page, NR_FILE_DIRTY);
1697 __inc_zone_page_state(page, NR_DIRTIED);
1698 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1699 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1700 task_dirty_inc(current);
1701 task_io_account_write(PAGE_CACHE_SIZE);
1702 }
1703 }
1704 EXPORT_SYMBOL(account_page_dirtied);
1705
1706 /*
1707 * Helper function for set_page_writeback family.
1708 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1709 * wrt interrupts.
1710 */
1711 void account_page_writeback(struct page *page)
1712 {
1713 inc_zone_page_state(page, NR_WRITEBACK);
1714 }
1715 EXPORT_SYMBOL(account_page_writeback);
1716
1717 /*
1718 * For address_spaces which do not use buffers. Just tag the page as dirty in
1719 * its radix tree.
1720 *
1721 * This is also used when a single buffer is being dirtied: we want to set the
1722 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1723 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1724 *
1725 * Most callers have locked the page, which pins the address_space in memory.
1726 * But zap_pte_range() does not lock the page, however in that case the
1727 * mapping is pinned by the vma's ->vm_file reference.
1728 *
1729 * We take care to handle the case where the page was truncated from the
1730 * mapping by re-checking page_mapping() inside tree_lock.
1731 */
1732 int __set_page_dirty_nobuffers(struct page *page)
1733 {
1734 if (!TestSetPageDirty(page)) {
1735 struct address_space *mapping = page_mapping(page);
1736 struct address_space *mapping2;
1737
1738 if (!mapping)
1739 return 1;
1740
1741 spin_lock_irq(&mapping->tree_lock);
1742 mapping2 = page_mapping(page);
1743 if (mapping2) { /* Race with truncate? */
1744 BUG_ON(mapping2 != mapping);
1745 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1746 account_page_dirtied(page, mapping);
1747 radix_tree_tag_set(&mapping->page_tree,
1748 page_index(page), PAGECACHE_TAG_DIRTY);
1749 }
1750 spin_unlock_irq(&mapping->tree_lock);
1751 if (mapping->host) {
1752 /* !PageAnon && !swapper_space */
1753 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1754 }
1755 return 1;
1756 }
1757 return 0;
1758 }
1759 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1760
1761 /*
1762 * When a writepage implementation decides that it doesn't want to write this
1763 * page for some reason, it should redirty the locked page via
1764 * redirty_page_for_writepage() and it should then unlock the page and return 0
1765 */
1766 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1767 {
1768 wbc->pages_skipped++;
1769 return __set_page_dirty_nobuffers(page);
1770 }
1771 EXPORT_SYMBOL(redirty_page_for_writepage);
1772
1773 /*
1774 * Dirty a page.
1775 *
1776 * For pages with a mapping this should be done under the page lock
1777 * for the benefit of asynchronous memory errors who prefer a consistent
1778 * dirty state. This rule can be broken in some special cases,
1779 * but should be better not to.
1780 *
1781 * If the mapping doesn't provide a set_page_dirty a_op, then
1782 * just fall through and assume that it wants buffer_heads.
1783 */
1784 int set_page_dirty(struct page *page)
1785 {
1786 struct address_space *mapping = page_mapping(page);
1787
1788 if (likely(mapping)) {
1789 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1790 /*
1791 * readahead/lru_deactivate_page could remain
1792 * PG_readahead/PG_reclaim due to race with end_page_writeback
1793 * About readahead, if the page is written, the flags would be
1794 * reset. So no problem.
1795 * About lru_deactivate_page, if the page is redirty, the flag
1796 * will be reset. So no problem. but if the page is used by readahead
1797 * it will confuse readahead and make it restart the size rampup
1798 * process. But it's a trivial problem.
1799 */
1800 ClearPageReclaim(page);
1801 #ifdef CONFIG_BLOCK
1802 if (!spd)
1803 spd = __set_page_dirty_buffers;
1804 #endif
1805 return (*spd)(page);
1806 }
1807 if (!PageDirty(page)) {
1808 if (!TestSetPageDirty(page))
1809 return 1;
1810 }
1811 return 0;
1812 }
1813 EXPORT_SYMBOL(set_page_dirty);
1814
1815 /*
1816 * set_page_dirty() is racy if the caller has no reference against
1817 * page->mapping->host, and if the page is unlocked. This is because another
1818 * CPU could truncate the page off the mapping and then free the mapping.
1819 *
1820 * Usually, the page _is_ locked, or the caller is a user-space process which
1821 * holds a reference on the inode by having an open file.
1822 *
1823 * In other cases, the page should be locked before running set_page_dirty().
1824 */
1825 int set_page_dirty_lock(struct page *page)
1826 {
1827 int ret;
1828
1829 lock_page(page);
1830 ret = set_page_dirty(page);
1831 unlock_page(page);
1832 return ret;
1833 }
1834 EXPORT_SYMBOL(set_page_dirty_lock);
1835
1836 /*
1837 * Clear a page's dirty flag, while caring for dirty memory accounting.
1838 * Returns true if the page was previously dirty.
1839 *
1840 * This is for preparing to put the page under writeout. We leave the page
1841 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1842 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1843 * implementation will run either set_page_writeback() or set_page_dirty(),
1844 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1845 * back into sync.
1846 *
1847 * This incoherency between the page's dirty flag and radix-tree tag is
1848 * unfortunate, but it only exists while the page is locked.
1849 */
1850 int clear_page_dirty_for_io(struct page *page)
1851 {
1852 struct address_space *mapping = page_mapping(page);
1853
1854 BUG_ON(!PageLocked(page));
1855
1856 if (mapping && mapping_cap_account_dirty(mapping)) {
1857 /*
1858 * Yes, Virginia, this is indeed insane.
1859 *
1860 * We use this sequence to make sure that
1861 * (a) we account for dirty stats properly
1862 * (b) we tell the low-level filesystem to
1863 * mark the whole page dirty if it was
1864 * dirty in a pagetable. Only to then
1865 * (c) clean the page again and return 1 to
1866 * cause the writeback.
1867 *
1868 * This way we avoid all nasty races with the
1869 * dirty bit in multiple places and clearing
1870 * them concurrently from different threads.
1871 *
1872 * Note! Normally the "set_page_dirty(page)"
1873 * has no effect on the actual dirty bit - since
1874 * that will already usually be set. But we
1875 * need the side effects, and it can help us
1876 * avoid races.
1877 *
1878 * We basically use the page "master dirty bit"
1879 * as a serialization point for all the different
1880 * threads doing their things.
1881 */
1882 if (page_mkclean(page))
1883 set_page_dirty(page);
1884 /*
1885 * We carefully synchronise fault handlers against
1886 * installing a dirty pte and marking the page dirty
1887 * at this point. We do this by having them hold the
1888 * page lock at some point after installing their
1889 * pte, but before marking the page dirty.
1890 * Pages are always locked coming in here, so we get
1891 * the desired exclusion. See mm/memory.c:do_wp_page()
1892 * for more comments.
1893 */
1894 if (TestClearPageDirty(page)) {
1895 dec_zone_page_state(page, NR_FILE_DIRTY);
1896 dec_bdi_stat(mapping->backing_dev_info,
1897 BDI_RECLAIMABLE);
1898 return 1;
1899 }
1900 return 0;
1901 }
1902 return TestClearPageDirty(page);
1903 }
1904 EXPORT_SYMBOL(clear_page_dirty_for_io);
1905
1906 int test_clear_page_writeback(struct page *page)
1907 {
1908 struct address_space *mapping = page_mapping(page);
1909 int ret;
1910
1911 if (mapping) {
1912 struct backing_dev_info *bdi = mapping->backing_dev_info;
1913 unsigned long flags;
1914
1915 spin_lock_irqsave(&mapping->tree_lock, flags);
1916 ret = TestClearPageWriteback(page);
1917 if (ret) {
1918 radix_tree_tag_clear(&mapping->page_tree,
1919 page_index(page),
1920 PAGECACHE_TAG_WRITEBACK);
1921 if (bdi_cap_account_writeback(bdi)) {
1922 __dec_bdi_stat(bdi, BDI_WRITEBACK);
1923 __bdi_writeout_inc(bdi);
1924 }
1925 }
1926 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1927 } else {
1928 ret = TestClearPageWriteback(page);
1929 }
1930 if (ret) {
1931 dec_zone_page_state(page, NR_WRITEBACK);
1932 inc_zone_page_state(page, NR_WRITTEN);
1933 }
1934 return ret;
1935 }
1936
1937 int test_set_page_writeback(struct page *page)
1938 {
1939 struct address_space *mapping = page_mapping(page);
1940 int ret;
1941
1942 if (mapping) {
1943 struct backing_dev_info *bdi = mapping->backing_dev_info;
1944 unsigned long flags;
1945
1946 spin_lock_irqsave(&mapping->tree_lock, flags);
1947 ret = TestSetPageWriteback(page);
1948 if (!ret) {
1949 radix_tree_tag_set(&mapping->page_tree,
1950 page_index(page),
1951 PAGECACHE_TAG_WRITEBACK);
1952 if (bdi_cap_account_writeback(bdi))
1953 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1954 }
1955 if (!PageDirty(page))
1956 radix_tree_tag_clear(&mapping->page_tree,
1957 page_index(page),
1958 PAGECACHE_TAG_DIRTY);
1959 radix_tree_tag_clear(&mapping->page_tree,
1960 page_index(page),
1961 PAGECACHE_TAG_TOWRITE);
1962 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1963 } else {
1964 ret = TestSetPageWriteback(page);
1965 }
1966 if (!ret)
1967 account_page_writeback(page);
1968 return ret;
1969
1970 }
1971 EXPORT_SYMBOL(test_set_page_writeback);
1972
1973 /*
1974 * Return true if any of the pages in the mapping are marked with the
1975 * passed tag.
1976 */
1977 int mapping_tagged(struct address_space *mapping, int tag)
1978 {
1979 return radix_tree_tagged(&mapping->page_tree, tag);
1980 }
1981 EXPORT_SYMBOL(mapping_tagged);