]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/page-writeback.c
UBUNTU: Ubuntu-5.15.0-39.42
[mirror_ubuntu-jammy-kernel.git] / mm / page-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/page-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7 *
8 * Contains functions related to writing back dirty pages at the
9 * address_space level.
10 *
11 * 10Apr2002 Andrew Morton
12 * Initial version
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/writeback.h>
24 #include <linux/init.h>
25 #include <linux/backing-dev.h>
26 #include <linux/task_io_accounting_ops.h>
27 #include <linux/blkdev.h>
28 #include <linux/mpage.h>
29 #include <linux/rmap.h>
30 #include <linux/percpu.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/pagevec.h>
36 #include <linux/timer.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/signal.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41
42 #include "internal.h"
43
44 /*
45 * Sleep at most 200ms at a time in balance_dirty_pages().
46 */
47 #define MAX_PAUSE max(HZ/5, 1)
48
49 /*
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
52 */
53 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
54
55 /*
56 * Estimate write bandwidth at 200ms intervals.
57 */
58 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
59
60 #define RATELIMIT_CALC_SHIFT 10
61
62 /*
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
65 */
66 static long ratelimit_pages = 32;
67
68 /* The following parameters are exported via /proc/sys/vm */
69
70 /*
71 * Start background writeback (via writeback threads) at this percentage
72 */
73 int dirty_background_ratio = 10;
74
75 /*
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
78 */
79 unsigned long dirty_background_bytes;
80
81 /*
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
84 */
85 int vm_highmem_is_dirtyable;
86
87 /*
88 * The generator of dirty data starts writeback at this percentage
89 */
90 int vm_dirty_ratio = 20;
91
92 /*
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
95 */
96 unsigned long vm_dirty_bytes;
97
98 /*
99 * The interval between `kupdate'-style writebacks
100 */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
105 /*
106 * The longest time for which data is allowed to remain dirty
107 */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109
110 /*
111 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
112 * a full sync is triggered after this time elapses without any disk activity.
113 */
114 int laptop_mode;
115
116 EXPORT_SYMBOL(laptop_mode);
117
118 /* End of sysctl-exported parameters */
119
120 struct wb_domain global_wb_domain;
121
122 /* consolidated parameters for balance_dirty_pages() and its subroutines */
123 struct dirty_throttle_control {
124 #ifdef CONFIG_CGROUP_WRITEBACK
125 struct wb_domain *dom;
126 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
127 #endif
128 struct bdi_writeback *wb;
129 struct fprop_local_percpu *wb_completions;
130
131 unsigned long avail; /* dirtyable */
132 unsigned long dirty; /* file_dirty + write + nfs */
133 unsigned long thresh; /* dirty threshold */
134 unsigned long bg_thresh; /* dirty background threshold */
135
136 unsigned long wb_dirty; /* per-wb counterparts */
137 unsigned long wb_thresh;
138 unsigned long wb_bg_thresh;
139
140 unsigned long pos_ratio;
141 };
142
143 /*
144 * Length of period for aging writeout fractions of bdis. This is an
145 * arbitrarily chosen number. The longer the period, the slower fractions will
146 * reflect changes in current writeout rate.
147 */
148 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
149
150 #ifdef CONFIG_CGROUP_WRITEBACK
151
152 #define GDTC_INIT(__wb) .wb = (__wb), \
153 .dom = &global_wb_domain, \
154 .wb_completions = &(__wb)->completions
155
156 #define GDTC_INIT_NO_WB .dom = &global_wb_domain
157
158 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
159 .dom = mem_cgroup_wb_domain(__wb), \
160 .wb_completions = &(__wb)->memcg_completions, \
161 .gdtc = __gdtc
162
163 static bool mdtc_valid(struct dirty_throttle_control *dtc)
164 {
165 return dtc->dom;
166 }
167
168 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
169 {
170 return dtc->dom;
171 }
172
173 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
174 {
175 return mdtc->gdtc;
176 }
177
178 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
179 {
180 return &wb->memcg_completions;
181 }
182
183 static void wb_min_max_ratio(struct bdi_writeback *wb,
184 unsigned long *minp, unsigned long *maxp)
185 {
186 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
187 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
188 unsigned long long min = wb->bdi->min_ratio;
189 unsigned long long max = wb->bdi->max_ratio;
190
191 /*
192 * @wb may already be clean by the time control reaches here and
193 * the total may not include its bw.
194 */
195 if (this_bw < tot_bw) {
196 if (min) {
197 min *= this_bw;
198 min = div64_ul(min, tot_bw);
199 }
200 if (max < 100) {
201 max *= this_bw;
202 max = div64_ul(max, tot_bw);
203 }
204 }
205
206 *minp = min;
207 *maxp = max;
208 }
209
210 #else /* CONFIG_CGROUP_WRITEBACK */
211
212 #define GDTC_INIT(__wb) .wb = (__wb), \
213 .wb_completions = &(__wb)->completions
214 #define GDTC_INIT_NO_WB
215 #define MDTC_INIT(__wb, __gdtc)
216
217 static bool mdtc_valid(struct dirty_throttle_control *dtc)
218 {
219 return false;
220 }
221
222 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
223 {
224 return &global_wb_domain;
225 }
226
227 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
228 {
229 return NULL;
230 }
231
232 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
233 {
234 return NULL;
235 }
236
237 static void wb_min_max_ratio(struct bdi_writeback *wb,
238 unsigned long *minp, unsigned long *maxp)
239 {
240 *minp = wb->bdi->min_ratio;
241 *maxp = wb->bdi->max_ratio;
242 }
243
244 #endif /* CONFIG_CGROUP_WRITEBACK */
245
246 /*
247 * In a memory zone, there is a certain amount of pages we consider
248 * available for the page cache, which is essentially the number of
249 * free and reclaimable pages, minus some zone reserves to protect
250 * lowmem and the ability to uphold the zone's watermarks without
251 * requiring writeback.
252 *
253 * This number of dirtyable pages is the base value of which the
254 * user-configurable dirty ratio is the effective number of pages that
255 * are allowed to be actually dirtied. Per individual zone, or
256 * globally by using the sum of dirtyable pages over all zones.
257 *
258 * Because the user is allowed to specify the dirty limit globally as
259 * absolute number of bytes, calculating the per-zone dirty limit can
260 * require translating the configured limit into a percentage of
261 * global dirtyable memory first.
262 */
263
264 /**
265 * node_dirtyable_memory - number of dirtyable pages in a node
266 * @pgdat: the node
267 *
268 * Return: the node's number of pages potentially available for dirty
269 * page cache. This is the base value for the per-node dirty limits.
270 */
271 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
272 {
273 unsigned long nr_pages = 0;
274 int z;
275
276 for (z = 0; z < MAX_NR_ZONES; z++) {
277 struct zone *zone = pgdat->node_zones + z;
278
279 if (!populated_zone(zone))
280 continue;
281
282 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
283 }
284
285 /*
286 * Pages reserved for the kernel should not be considered
287 * dirtyable, to prevent a situation where reclaim has to
288 * clean pages in order to balance the zones.
289 */
290 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
291
292 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
293 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
294
295 return nr_pages;
296 }
297
298 static unsigned long highmem_dirtyable_memory(unsigned long total)
299 {
300 #ifdef CONFIG_HIGHMEM
301 int node;
302 unsigned long x = 0;
303 int i;
304
305 for_each_node_state(node, N_HIGH_MEMORY) {
306 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
307 struct zone *z;
308 unsigned long nr_pages;
309
310 if (!is_highmem_idx(i))
311 continue;
312
313 z = &NODE_DATA(node)->node_zones[i];
314 if (!populated_zone(z))
315 continue;
316
317 nr_pages = zone_page_state(z, NR_FREE_PAGES);
318 /* watch for underflows */
319 nr_pages -= min(nr_pages, high_wmark_pages(z));
320 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
321 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
322 x += nr_pages;
323 }
324 }
325
326 /*
327 * Unreclaimable memory (kernel memory or anonymous memory
328 * without swap) can bring down the dirtyable pages below
329 * the zone's dirty balance reserve and the above calculation
330 * will underflow. However we still want to add in nodes
331 * which are below threshold (negative values) to get a more
332 * accurate calculation but make sure that the total never
333 * underflows.
334 */
335 if ((long)x < 0)
336 x = 0;
337
338 /*
339 * Make sure that the number of highmem pages is never larger
340 * than the number of the total dirtyable memory. This can only
341 * occur in very strange VM situations but we want to make sure
342 * that this does not occur.
343 */
344 return min(x, total);
345 #else
346 return 0;
347 #endif
348 }
349
350 /**
351 * global_dirtyable_memory - number of globally dirtyable pages
352 *
353 * Return: the global number of pages potentially available for dirty
354 * page cache. This is the base value for the global dirty limits.
355 */
356 static unsigned long global_dirtyable_memory(void)
357 {
358 unsigned long x;
359
360 x = global_zone_page_state(NR_FREE_PAGES);
361 /*
362 * Pages reserved for the kernel should not be considered
363 * dirtyable, to prevent a situation where reclaim has to
364 * clean pages in order to balance the zones.
365 */
366 x -= min(x, totalreserve_pages);
367
368 x += global_node_page_state(NR_INACTIVE_FILE);
369 x += global_node_page_state(NR_ACTIVE_FILE);
370
371 if (!vm_highmem_is_dirtyable)
372 x -= highmem_dirtyable_memory(x);
373
374 return x + 1; /* Ensure that we never return 0 */
375 }
376
377 /**
378 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
379 * @dtc: dirty_throttle_control of interest
380 *
381 * Calculate @dtc->thresh and ->bg_thresh considering
382 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
383 * must ensure that @dtc->avail is set before calling this function. The
384 * dirty limits will be lifted by 1/4 for real-time tasks.
385 */
386 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
387 {
388 const unsigned long available_memory = dtc->avail;
389 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
390 unsigned long bytes = vm_dirty_bytes;
391 unsigned long bg_bytes = dirty_background_bytes;
392 /* convert ratios to per-PAGE_SIZE for higher precision */
393 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
394 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
395 unsigned long thresh;
396 unsigned long bg_thresh;
397 struct task_struct *tsk;
398
399 /* gdtc is !NULL iff @dtc is for memcg domain */
400 if (gdtc) {
401 unsigned long global_avail = gdtc->avail;
402
403 /*
404 * The byte settings can't be applied directly to memcg
405 * domains. Convert them to ratios by scaling against
406 * globally available memory. As the ratios are in
407 * per-PAGE_SIZE, they can be obtained by dividing bytes by
408 * number of pages.
409 */
410 if (bytes)
411 ratio = min(DIV_ROUND_UP(bytes, global_avail),
412 PAGE_SIZE);
413 if (bg_bytes)
414 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
415 PAGE_SIZE);
416 bytes = bg_bytes = 0;
417 }
418
419 if (bytes)
420 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
421 else
422 thresh = (ratio * available_memory) / PAGE_SIZE;
423
424 if (bg_bytes)
425 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
426 else
427 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
428
429 if (bg_thresh >= thresh)
430 bg_thresh = thresh / 2;
431 tsk = current;
432 if (rt_task(tsk)) {
433 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
434 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
435 }
436 dtc->thresh = thresh;
437 dtc->bg_thresh = bg_thresh;
438
439 /* we should eventually report the domain in the TP */
440 if (!gdtc)
441 trace_global_dirty_state(bg_thresh, thresh);
442 }
443
444 /**
445 * global_dirty_limits - background-writeback and dirty-throttling thresholds
446 * @pbackground: out parameter for bg_thresh
447 * @pdirty: out parameter for thresh
448 *
449 * Calculate bg_thresh and thresh for global_wb_domain. See
450 * domain_dirty_limits() for details.
451 */
452 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
453 {
454 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
455
456 gdtc.avail = global_dirtyable_memory();
457 domain_dirty_limits(&gdtc);
458
459 *pbackground = gdtc.bg_thresh;
460 *pdirty = gdtc.thresh;
461 }
462
463 /**
464 * node_dirty_limit - maximum number of dirty pages allowed in a node
465 * @pgdat: the node
466 *
467 * Return: the maximum number of dirty pages allowed in a node, based
468 * on the node's dirtyable memory.
469 */
470 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
471 {
472 unsigned long node_memory = node_dirtyable_memory(pgdat);
473 struct task_struct *tsk = current;
474 unsigned long dirty;
475
476 if (vm_dirty_bytes)
477 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
478 node_memory / global_dirtyable_memory();
479 else
480 dirty = vm_dirty_ratio * node_memory / 100;
481
482 if (rt_task(tsk))
483 dirty += dirty / 4;
484
485 return dirty;
486 }
487
488 /**
489 * node_dirty_ok - tells whether a node is within its dirty limits
490 * @pgdat: the node to check
491 *
492 * Return: %true when the dirty pages in @pgdat are within the node's
493 * dirty limit, %false if the limit is exceeded.
494 */
495 bool node_dirty_ok(struct pglist_data *pgdat)
496 {
497 unsigned long limit = node_dirty_limit(pgdat);
498 unsigned long nr_pages = 0;
499
500 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
501 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
502
503 return nr_pages <= limit;
504 }
505
506 int dirty_background_ratio_handler(struct ctl_table *table, int write,
507 void *buffer, size_t *lenp, loff_t *ppos)
508 {
509 int ret;
510
511 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
512 if (ret == 0 && write)
513 dirty_background_bytes = 0;
514 return ret;
515 }
516
517 int dirty_background_bytes_handler(struct ctl_table *table, int write,
518 void *buffer, size_t *lenp, loff_t *ppos)
519 {
520 int ret;
521
522 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
523 if (ret == 0 && write)
524 dirty_background_ratio = 0;
525 return ret;
526 }
527
528 int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
529 size_t *lenp, loff_t *ppos)
530 {
531 int old_ratio = vm_dirty_ratio;
532 int ret;
533
534 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
535 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
536 writeback_set_ratelimit();
537 vm_dirty_bytes = 0;
538 }
539 return ret;
540 }
541
542 int dirty_bytes_handler(struct ctl_table *table, int write,
543 void *buffer, size_t *lenp, loff_t *ppos)
544 {
545 unsigned long old_bytes = vm_dirty_bytes;
546 int ret;
547
548 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
549 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
550 writeback_set_ratelimit();
551 vm_dirty_ratio = 0;
552 }
553 return ret;
554 }
555
556 static unsigned long wp_next_time(unsigned long cur_time)
557 {
558 cur_time += VM_COMPLETIONS_PERIOD_LEN;
559 /* 0 has a special meaning... */
560 if (!cur_time)
561 return 1;
562 return cur_time;
563 }
564
565 static void wb_domain_writeout_inc(struct wb_domain *dom,
566 struct fprop_local_percpu *completions,
567 unsigned int max_prop_frac)
568 {
569 __fprop_inc_percpu_max(&dom->completions, completions,
570 max_prop_frac);
571 /* First event after period switching was turned off? */
572 if (unlikely(!dom->period_time)) {
573 /*
574 * We can race with other __bdi_writeout_inc calls here but
575 * it does not cause any harm since the resulting time when
576 * timer will fire and what is in writeout_period_time will be
577 * roughly the same.
578 */
579 dom->period_time = wp_next_time(jiffies);
580 mod_timer(&dom->period_timer, dom->period_time);
581 }
582 }
583
584 /*
585 * Increment @wb's writeout completion count and the global writeout
586 * completion count. Called from test_clear_page_writeback().
587 */
588 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
589 {
590 struct wb_domain *cgdom;
591
592 inc_wb_stat(wb, WB_WRITTEN);
593 wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
594 wb->bdi->max_prop_frac);
595
596 cgdom = mem_cgroup_wb_domain(wb);
597 if (cgdom)
598 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
599 wb->bdi->max_prop_frac);
600 }
601
602 void wb_writeout_inc(struct bdi_writeback *wb)
603 {
604 unsigned long flags;
605
606 local_irq_save(flags);
607 __wb_writeout_inc(wb);
608 local_irq_restore(flags);
609 }
610 EXPORT_SYMBOL_GPL(wb_writeout_inc);
611
612 /*
613 * On idle system, we can be called long after we scheduled because we use
614 * deferred timers so count with missed periods.
615 */
616 static void writeout_period(struct timer_list *t)
617 {
618 struct wb_domain *dom = from_timer(dom, t, period_timer);
619 int miss_periods = (jiffies - dom->period_time) /
620 VM_COMPLETIONS_PERIOD_LEN;
621
622 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
623 dom->period_time = wp_next_time(dom->period_time +
624 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
625 mod_timer(&dom->period_timer, dom->period_time);
626 } else {
627 /*
628 * Aging has zeroed all fractions. Stop wasting CPU on period
629 * updates.
630 */
631 dom->period_time = 0;
632 }
633 }
634
635 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
636 {
637 memset(dom, 0, sizeof(*dom));
638
639 spin_lock_init(&dom->lock);
640
641 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
642
643 dom->dirty_limit_tstamp = jiffies;
644
645 return fprop_global_init(&dom->completions, gfp);
646 }
647
648 #ifdef CONFIG_CGROUP_WRITEBACK
649 void wb_domain_exit(struct wb_domain *dom)
650 {
651 del_timer_sync(&dom->period_timer);
652 fprop_global_destroy(&dom->completions);
653 }
654 #endif
655
656 /*
657 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
658 * registered backing devices, which, for obvious reasons, can not
659 * exceed 100%.
660 */
661 static unsigned int bdi_min_ratio;
662
663 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
664 {
665 int ret = 0;
666
667 spin_lock_bh(&bdi_lock);
668 if (min_ratio > bdi->max_ratio) {
669 ret = -EINVAL;
670 } else {
671 min_ratio -= bdi->min_ratio;
672 if (bdi_min_ratio + min_ratio < 100) {
673 bdi_min_ratio += min_ratio;
674 bdi->min_ratio += min_ratio;
675 } else {
676 ret = -EINVAL;
677 }
678 }
679 spin_unlock_bh(&bdi_lock);
680
681 return ret;
682 }
683
684 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
685 {
686 int ret = 0;
687
688 if (max_ratio > 100)
689 return -EINVAL;
690
691 spin_lock_bh(&bdi_lock);
692 if (bdi->min_ratio > max_ratio) {
693 ret = -EINVAL;
694 } else {
695 bdi->max_ratio = max_ratio;
696 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
697 }
698 spin_unlock_bh(&bdi_lock);
699
700 return ret;
701 }
702 EXPORT_SYMBOL(bdi_set_max_ratio);
703
704 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
705 unsigned long bg_thresh)
706 {
707 return (thresh + bg_thresh) / 2;
708 }
709
710 static unsigned long hard_dirty_limit(struct wb_domain *dom,
711 unsigned long thresh)
712 {
713 return max(thresh, dom->dirty_limit);
714 }
715
716 /*
717 * Memory which can be further allocated to a memcg domain is capped by
718 * system-wide clean memory excluding the amount being used in the domain.
719 */
720 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
721 unsigned long filepages, unsigned long headroom)
722 {
723 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
724 unsigned long clean = filepages - min(filepages, mdtc->dirty);
725 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
726 unsigned long other_clean = global_clean - min(global_clean, clean);
727
728 mdtc->avail = filepages + min(headroom, other_clean);
729 }
730
731 /**
732 * __wb_calc_thresh - @wb's share of dirty throttling threshold
733 * @dtc: dirty_throttle_context of interest
734 *
735 * Note that balance_dirty_pages() will only seriously take it as a hard limit
736 * when sleeping max_pause per page is not enough to keep the dirty pages under
737 * control. For example, when the device is completely stalled due to some error
738 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
739 * In the other normal situations, it acts more gently by throttling the tasks
740 * more (rather than completely block them) when the wb dirty pages go high.
741 *
742 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
743 * - starving fast devices
744 * - piling up dirty pages (that will take long time to sync) on slow devices
745 *
746 * The wb's share of dirty limit will be adapting to its throughput and
747 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
748 *
749 * Return: @wb's dirty limit in pages. The term "dirty" in the context of
750 * dirty balancing includes all PG_dirty and PG_writeback pages.
751 */
752 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
753 {
754 struct wb_domain *dom = dtc_dom(dtc);
755 unsigned long thresh = dtc->thresh;
756 u64 wb_thresh;
757 unsigned long numerator, denominator;
758 unsigned long wb_min_ratio, wb_max_ratio;
759
760 /*
761 * Calculate this BDI's share of the thresh ratio.
762 */
763 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
764 &numerator, &denominator);
765
766 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
767 wb_thresh *= numerator;
768 wb_thresh = div64_ul(wb_thresh, denominator);
769
770 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
771
772 wb_thresh += (thresh * wb_min_ratio) / 100;
773 if (wb_thresh > (thresh * wb_max_ratio) / 100)
774 wb_thresh = thresh * wb_max_ratio / 100;
775
776 return wb_thresh;
777 }
778
779 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
780 {
781 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
782 .thresh = thresh };
783 return __wb_calc_thresh(&gdtc);
784 }
785
786 /*
787 * setpoint - dirty 3
788 * f(dirty) := 1.0 + (----------------)
789 * limit - setpoint
790 *
791 * it's a 3rd order polynomial that subjects to
792 *
793 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
794 * (2) f(setpoint) = 1.0 => the balance point
795 * (3) f(limit) = 0 => the hard limit
796 * (4) df/dx <= 0 => negative feedback control
797 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
798 * => fast response on large errors; small oscillation near setpoint
799 */
800 static long long pos_ratio_polynom(unsigned long setpoint,
801 unsigned long dirty,
802 unsigned long limit)
803 {
804 long long pos_ratio;
805 long x;
806
807 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
808 (limit - setpoint) | 1);
809 pos_ratio = x;
810 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
811 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
812 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
813
814 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
815 }
816
817 /*
818 * Dirty position control.
819 *
820 * (o) global/bdi setpoints
821 *
822 * We want the dirty pages be balanced around the global/wb setpoints.
823 * When the number of dirty pages is higher/lower than the setpoint, the
824 * dirty position control ratio (and hence task dirty ratelimit) will be
825 * decreased/increased to bring the dirty pages back to the setpoint.
826 *
827 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
828 *
829 * if (dirty < setpoint) scale up pos_ratio
830 * if (dirty > setpoint) scale down pos_ratio
831 *
832 * if (wb_dirty < wb_setpoint) scale up pos_ratio
833 * if (wb_dirty > wb_setpoint) scale down pos_ratio
834 *
835 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
836 *
837 * (o) global control line
838 *
839 * ^ pos_ratio
840 * |
841 * | |<===== global dirty control scope ======>|
842 * 2.0 * * * * * * *
843 * | .*
844 * | . *
845 * | . *
846 * | . *
847 * | . *
848 * | . *
849 * 1.0 ................................*
850 * | . . *
851 * | . . *
852 * | . . *
853 * | . . *
854 * | . . *
855 * 0 +------------.------------------.----------------------*------------->
856 * freerun^ setpoint^ limit^ dirty pages
857 *
858 * (o) wb control line
859 *
860 * ^ pos_ratio
861 * |
862 * | *
863 * | *
864 * | *
865 * | *
866 * | * |<=========== span ============>|
867 * 1.0 .......................*
868 * | . *
869 * | . *
870 * | . *
871 * | . *
872 * | . *
873 * | . *
874 * | . *
875 * | . *
876 * | . *
877 * | . *
878 * | . *
879 * 1/4 ...............................................* * * * * * * * * * * *
880 * | . .
881 * | . .
882 * | . .
883 * 0 +----------------------.-------------------------------.------------->
884 * wb_setpoint^ x_intercept^
885 *
886 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
887 * be smoothly throttled down to normal if it starts high in situations like
888 * - start writing to a slow SD card and a fast disk at the same time. The SD
889 * card's wb_dirty may rush to many times higher than wb_setpoint.
890 * - the wb dirty thresh drops quickly due to change of JBOD workload
891 */
892 static void wb_position_ratio(struct dirty_throttle_control *dtc)
893 {
894 struct bdi_writeback *wb = dtc->wb;
895 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
896 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
897 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
898 unsigned long wb_thresh = dtc->wb_thresh;
899 unsigned long x_intercept;
900 unsigned long setpoint; /* dirty pages' target balance point */
901 unsigned long wb_setpoint;
902 unsigned long span;
903 long long pos_ratio; /* for scaling up/down the rate limit */
904 long x;
905
906 dtc->pos_ratio = 0;
907
908 if (unlikely(dtc->dirty >= limit))
909 return;
910
911 /*
912 * global setpoint
913 *
914 * See comment for pos_ratio_polynom().
915 */
916 setpoint = (freerun + limit) / 2;
917 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
918
919 /*
920 * The strictlimit feature is a tool preventing mistrusted filesystems
921 * from growing a large number of dirty pages before throttling. For
922 * such filesystems balance_dirty_pages always checks wb counters
923 * against wb limits. Even if global "nr_dirty" is under "freerun".
924 * This is especially important for fuse which sets bdi->max_ratio to
925 * 1% by default. Without strictlimit feature, fuse writeback may
926 * consume arbitrary amount of RAM because it is accounted in
927 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
928 *
929 * Here, in wb_position_ratio(), we calculate pos_ratio based on
930 * two values: wb_dirty and wb_thresh. Let's consider an example:
931 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
932 * limits are set by default to 10% and 20% (background and throttle).
933 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
934 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
935 * about ~6K pages (as the average of background and throttle wb
936 * limits). The 3rd order polynomial will provide positive feedback if
937 * wb_dirty is under wb_setpoint and vice versa.
938 *
939 * Note, that we cannot use global counters in these calculations
940 * because we want to throttle process writing to a strictlimit wb
941 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
942 * in the example above).
943 */
944 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
945 long long wb_pos_ratio;
946
947 if (dtc->wb_dirty < 8) {
948 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
949 2 << RATELIMIT_CALC_SHIFT);
950 return;
951 }
952
953 if (dtc->wb_dirty >= wb_thresh)
954 return;
955
956 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
957 dtc->wb_bg_thresh);
958
959 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
960 return;
961
962 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
963 wb_thresh);
964
965 /*
966 * Typically, for strictlimit case, wb_setpoint << setpoint
967 * and pos_ratio >> wb_pos_ratio. In the other words global
968 * state ("dirty") is not limiting factor and we have to
969 * make decision based on wb counters. But there is an
970 * important case when global pos_ratio should get precedence:
971 * global limits are exceeded (e.g. due to activities on other
972 * wb's) while given strictlimit wb is below limit.
973 *
974 * "pos_ratio * wb_pos_ratio" would work for the case above,
975 * but it would look too non-natural for the case of all
976 * activity in the system coming from a single strictlimit wb
977 * with bdi->max_ratio == 100%.
978 *
979 * Note that min() below somewhat changes the dynamics of the
980 * control system. Normally, pos_ratio value can be well over 3
981 * (when globally we are at freerun and wb is well below wb
982 * setpoint). Now the maximum pos_ratio in the same situation
983 * is 2. We might want to tweak this if we observe the control
984 * system is too slow to adapt.
985 */
986 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
987 return;
988 }
989
990 /*
991 * We have computed basic pos_ratio above based on global situation. If
992 * the wb is over/under its share of dirty pages, we want to scale
993 * pos_ratio further down/up. That is done by the following mechanism.
994 */
995
996 /*
997 * wb setpoint
998 *
999 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1000 *
1001 * x_intercept - wb_dirty
1002 * := --------------------------
1003 * x_intercept - wb_setpoint
1004 *
1005 * The main wb control line is a linear function that subjects to
1006 *
1007 * (1) f(wb_setpoint) = 1.0
1008 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1009 * or equally: x_intercept = wb_setpoint + 8 * write_bw
1010 *
1011 * For single wb case, the dirty pages are observed to fluctuate
1012 * regularly within range
1013 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1014 * for various filesystems, where (2) can yield in a reasonable 12.5%
1015 * fluctuation range for pos_ratio.
1016 *
1017 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1018 * own size, so move the slope over accordingly and choose a slope that
1019 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1020 */
1021 if (unlikely(wb_thresh > dtc->thresh))
1022 wb_thresh = dtc->thresh;
1023 /*
1024 * It's very possible that wb_thresh is close to 0 not because the
1025 * device is slow, but that it has remained inactive for long time.
1026 * Honour such devices a reasonable good (hopefully IO efficient)
1027 * threshold, so that the occasional writes won't be blocked and active
1028 * writes can rampup the threshold quickly.
1029 */
1030 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1031 /*
1032 * scale global setpoint to wb's:
1033 * wb_setpoint = setpoint * wb_thresh / thresh
1034 */
1035 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1036 wb_setpoint = setpoint * (u64)x >> 16;
1037 /*
1038 * Use span=(8*write_bw) in single wb case as indicated by
1039 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1040 *
1041 * wb_thresh thresh - wb_thresh
1042 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1043 * thresh thresh
1044 */
1045 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1046 x_intercept = wb_setpoint + span;
1047
1048 if (dtc->wb_dirty < x_intercept - span / 4) {
1049 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1050 (x_intercept - wb_setpoint) | 1);
1051 } else
1052 pos_ratio /= 4;
1053
1054 /*
1055 * wb reserve area, safeguard against dirty pool underrun and disk idle
1056 * It may push the desired control point of global dirty pages higher
1057 * than setpoint.
1058 */
1059 x_intercept = wb_thresh / 2;
1060 if (dtc->wb_dirty < x_intercept) {
1061 if (dtc->wb_dirty > x_intercept / 8)
1062 pos_ratio = div_u64(pos_ratio * x_intercept,
1063 dtc->wb_dirty);
1064 else
1065 pos_ratio *= 8;
1066 }
1067
1068 dtc->pos_ratio = pos_ratio;
1069 }
1070
1071 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1072 unsigned long elapsed,
1073 unsigned long written)
1074 {
1075 const unsigned long period = roundup_pow_of_two(3 * HZ);
1076 unsigned long avg = wb->avg_write_bandwidth;
1077 unsigned long old = wb->write_bandwidth;
1078 u64 bw;
1079
1080 /*
1081 * bw = written * HZ / elapsed
1082 *
1083 * bw * elapsed + write_bandwidth * (period - elapsed)
1084 * write_bandwidth = ---------------------------------------------------
1085 * period
1086 *
1087 * @written may have decreased due to account_page_redirty().
1088 * Avoid underflowing @bw calculation.
1089 */
1090 bw = written - min(written, wb->written_stamp);
1091 bw *= HZ;
1092 if (unlikely(elapsed > period)) {
1093 bw = div64_ul(bw, elapsed);
1094 avg = bw;
1095 goto out;
1096 }
1097 bw += (u64)wb->write_bandwidth * (period - elapsed);
1098 bw >>= ilog2(period);
1099
1100 /*
1101 * one more level of smoothing, for filtering out sudden spikes
1102 */
1103 if (avg > old && old >= (unsigned long)bw)
1104 avg -= (avg - old) >> 3;
1105
1106 if (avg < old && old <= (unsigned long)bw)
1107 avg += (old - avg) >> 3;
1108
1109 out:
1110 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1111 avg = max(avg, 1LU);
1112 if (wb_has_dirty_io(wb)) {
1113 long delta = avg - wb->avg_write_bandwidth;
1114 WARN_ON_ONCE(atomic_long_add_return(delta,
1115 &wb->bdi->tot_write_bandwidth) <= 0);
1116 }
1117 wb->write_bandwidth = bw;
1118 WRITE_ONCE(wb->avg_write_bandwidth, avg);
1119 }
1120
1121 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1122 {
1123 struct wb_domain *dom = dtc_dom(dtc);
1124 unsigned long thresh = dtc->thresh;
1125 unsigned long limit = dom->dirty_limit;
1126
1127 /*
1128 * Follow up in one step.
1129 */
1130 if (limit < thresh) {
1131 limit = thresh;
1132 goto update;
1133 }
1134
1135 /*
1136 * Follow down slowly. Use the higher one as the target, because thresh
1137 * may drop below dirty. This is exactly the reason to introduce
1138 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1139 */
1140 thresh = max(thresh, dtc->dirty);
1141 if (limit > thresh) {
1142 limit -= (limit - thresh) >> 5;
1143 goto update;
1144 }
1145 return;
1146 update:
1147 dom->dirty_limit = limit;
1148 }
1149
1150 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1151 unsigned long now)
1152 {
1153 struct wb_domain *dom = dtc_dom(dtc);
1154
1155 /*
1156 * check locklessly first to optimize away locking for the most time
1157 */
1158 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1159 return;
1160
1161 spin_lock(&dom->lock);
1162 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1163 update_dirty_limit(dtc);
1164 dom->dirty_limit_tstamp = now;
1165 }
1166 spin_unlock(&dom->lock);
1167 }
1168
1169 /*
1170 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1171 *
1172 * Normal wb tasks will be curbed at or below it in long term.
1173 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1174 */
1175 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1176 unsigned long dirtied,
1177 unsigned long elapsed)
1178 {
1179 struct bdi_writeback *wb = dtc->wb;
1180 unsigned long dirty = dtc->dirty;
1181 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1182 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1183 unsigned long setpoint = (freerun + limit) / 2;
1184 unsigned long write_bw = wb->avg_write_bandwidth;
1185 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1186 unsigned long dirty_rate;
1187 unsigned long task_ratelimit;
1188 unsigned long balanced_dirty_ratelimit;
1189 unsigned long step;
1190 unsigned long x;
1191 unsigned long shift;
1192
1193 /*
1194 * The dirty rate will match the writeout rate in long term, except
1195 * when dirty pages are truncated by userspace or re-dirtied by FS.
1196 */
1197 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1198
1199 /*
1200 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1201 */
1202 task_ratelimit = (u64)dirty_ratelimit *
1203 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1204 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1205
1206 /*
1207 * A linear estimation of the "balanced" throttle rate. The theory is,
1208 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1209 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1210 * formula will yield the balanced rate limit (write_bw / N).
1211 *
1212 * Note that the expanded form is not a pure rate feedback:
1213 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1214 * but also takes pos_ratio into account:
1215 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1216 *
1217 * (1) is not realistic because pos_ratio also takes part in balancing
1218 * the dirty rate. Consider the state
1219 * pos_ratio = 0.5 (3)
1220 * rate = 2 * (write_bw / N) (4)
1221 * If (1) is used, it will stuck in that state! Because each dd will
1222 * be throttled at
1223 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1224 * yielding
1225 * dirty_rate = N * task_ratelimit = write_bw (6)
1226 * put (6) into (1) we get
1227 * rate_(i+1) = rate_(i) (7)
1228 *
1229 * So we end up using (2) to always keep
1230 * rate_(i+1) ~= (write_bw / N) (8)
1231 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1232 * pos_ratio is able to drive itself to 1.0, which is not only where
1233 * the dirty count meet the setpoint, but also where the slope of
1234 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1235 */
1236 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1237 dirty_rate | 1);
1238 /*
1239 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1240 */
1241 if (unlikely(balanced_dirty_ratelimit > write_bw))
1242 balanced_dirty_ratelimit = write_bw;
1243
1244 /*
1245 * We could safely do this and return immediately:
1246 *
1247 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
1248 *
1249 * However to get a more stable dirty_ratelimit, the below elaborated
1250 * code makes use of task_ratelimit to filter out singular points and
1251 * limit the step size.
1252 *
1253 * The below code essentially only uses the relative value of
1254 *
1255 * task_ratelimit - dirty_ratelimit
1256 * = (pos_ratio - 1) * dirty_ratelimit
1257 *
1258 * which reflects the direction and size of dirty position error.
1259 */
1260
1261 /*
1262 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1263 * task_ratelimit is on the same side of dirty_ratelimit, too.
1264 * For example, when
1265 * - dirty_ratelimit > balanced_dirty_ratelimit
1266 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1267 * lowering dirty_ratelimit will help meet both the position and rate
1268 * control targets. Otherwise, don't update dirty_ratelimit if it will
1269 * only help meet the rate target. After all, what the users ultimately
1270 * feel and care are stable dirty rate and small position error.
1271 *
1272 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1273 * and filter out the singular points of balanced_dirty_ratelimit. Which
1274 * keeps jumping around randomly and can even leap far away at times
1275 * due to the small 200ms estimation period of dirty_rate (we want to
1276 * keep that period small to reduce time lags).
1277 */
1278 step = 0;
1279
1280 /*
1281 * For strictlimit case, calculations above were based on wb counters
1282 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1283 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1284 * Hence, to calculate "step" properly, we have to use wb_dirty as
1285 * "dirty" and wb_setpoint as "setpoint".
1286 *
1287 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1288 * it's possible that wb_thresh is close to zero due to inactivity
1289 * of backing device.
1290 */
1291 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1292 dirty = dtc->wb_dirty;
1293 if (dtc->wb_dirty < 8)
1294 setpoint = dtc->wb_dirty + 1;
1295 else
1296 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1297 }
1298
1299 if (dirty < setpoint) {
1300 x = min3(wb->balanced_dirty_ratelimit,
1301 balanced_dirty_ratelimit, task_ratelimit);
1302 if (dirty_ratelimit < x)
1303 step = x - dirty_ratelimit;
1304 } else {
1305 x = max3(wb->balanced_dirty_ratelimit,
1306 balanced_dirty_ratelimit, task_ratelimit);
1307 if (dirty_ratelimit > x)
1308 step = dirty_ratelimit - x;
1309 }
1310
1311 /*
1312 * Don't pursue 100% rate matching. It's impossible since the balanced
1313 * rate itself is constantly fluctuating. So decrease the track speed
1314 * when it gets close to the target. Helps eliminate pointless tremors.
1315 */
1316 shift = dirty_ratelimit / (2 * step + 1);
1317 if (shift < BITS_PER_LONG)
1318 step = DIV_ROUND_UP(step >> shift, 8);
1319 else
1320 step = 0;
1321
1322 if (dirty_ratelimit < balanced_dirty_ratelimit)
1323 dirty_ratelimit += step;
1324 else
1325 dirty_ratelimit -= step;
1326
1327 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1328 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1329
1330 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1331 }
1332
1333 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1334 struct dirty_throttle_control *mdtc,
1335 bool update_ratelimit)
1336 {
1337 struct bdi_writeback *wb = gdtc->wb;
1338 unsigned long now = jiffies;
1339 unsigned long elapsed;
1340 unsigned long dirtied;
1341 unsigned long written;
1342
1343 spin_lock(&wb->list_lock);
1344
1345 /*
1346 * Lockless checks for elapsed time are racy and delayed update after
1347 * IO completion doesn't do it at all (to make sure written pages are
1348 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1349 * division errors.
1350 */
1351 elapsed = max(now - wb->bw_time_stamp, 1UL);
1352 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1353 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1354
1355 if (update_ratelimit) {
1356 domain_update_dirty_limit(gdtc, now);
1357 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1358
1359 /*
1360 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1361 * compiler has no way to figure that out. Help it.
1362 */
1363 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1364 domain_update_dirty_limit(mdtc, now);
1365 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1366 }
1367 }
1368 wb_update_write_bandwidth(wb, elapsed, written);
1369
1370 wb->dirtied_stamp = dirtied;
1371 wb->written_stamp = written;
1372 WRITE_ONCE(wb->bw_time_stamp, now);
1373 spin_unlock(&wb->list_lock);
1374 }
1375
1376 void wb_update_bandwidth(struct bdi_writeback *wb)
1377 {
1378 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1379
1380 __wb_update_bandwidth(&gdtc, NULL, false);
1381 }
1382
1383 /* Interval after which we consider wb idle and don't estimate bandwidth */
1384 #define WB_BANDWIDTH_IDLE_JIF (HZ)
1385
1386 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1387 {
1388 unsigned long now = jiffies;
1389 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1390
1391 if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1392 !atomic_read(&wb->writeback_inodes)) {
1393 spin_lock(&wb->list_lock);
1394 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1395 wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1396 WRITE_ONCE(wb->bw_time_stamp, now);
1397 spin_unlock(&wb->list_lock);
1398 }
1399 }
1400
1401 /*
1402 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1403 * will look to see if it needs to start dirty throttling.
1404 *
1405 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1406 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1407 * (the number of pages we may dirty without exceeding the dirty limits).
1408 */
1409 static unsigned long dirty_poll_interval(unsigned long dirty,
1410 unsigned long thresh)
1411 {
1412 if (thresh > dirty)
1413 return 1UL << (ilog2(thresh - dirty) >> 1);
1414
1415 return 1;
1416 }
1417
1418 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1419 unsigned long wb_dirty)
1420 {
1421 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1422 unsigned long t;
1423
1424 /*
1425 * Limit pause time for small memory systems. If sleeping for too long
1426 * time, a small pool of dirty/writeback pages may go empty and disk go
1427 * idle.
1428 *
1429 * 8 serves as the safety ratio.
1430 */
1431 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1432 t++;
1433
1434 return min_t(unsigned long, t, MAX_PAUSE);
1435 }
1436
1437 static long wb_min_pause(struct bdi_writeback *wb,
1438 long max_pause,
1439 unsigned long task_ratelimit,
1440 unsigned long dirty_ratelimit,
1441 int *nr_dirtied_pause)
1442 {
1443 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1444 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1445 long t; /* target pause */
1446 long pause; /* estimated next pause */
1447 int pages; /* target nr_dirtied_pause */
1448
1449 /* target for 10ms pause on 1-dd case */
1450 t = max(1, HZ / 100);
1451
1452 /*
1453 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1454 * overheads.
1455 *
1456 * (N * 10ms) on 2^N concurrent tasks.
1457 */
1458 if (hi > lo)
1459 t += (hi - lo) * (10 * HZ) / 1024;
1460
1461 /*
1462 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1463 * on the much more stable dirty_ratelimit. However the next pause time
1464 * will be computed based on task_ratelimit and the two rate limits may
1465 * depart considerably at some time. Especially if task_ratelimit goes
1466 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1467 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1468 * result task_ratelimit won't be executed faithfully, which could
1469 * eventually bring down dirty_ratelimit.
1470 *
1471 * We apply two rules to fix it up:
1472 * 1) try to estimate the next pause time and if necessary, use a lower
1473 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1474 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1475 * 2) limit the target pause time to max_pause/2, so that the normal
1476 * small fluctuations of task_ratelimit won't trigger rule (1) and
1477 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1478 */
1479 t = min(t, 1 + max_pause / 2);
1480 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1481
1482 /*
1483 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1484 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1485 * When the 16 consecutive reads are often interrupted by some dirty
1486 * throttling pause during the async writes, cfq will go into idles
1487 * (deadline is fine). So push nr_dirtied_pause as high as possible
1488 * until reaches DIRTY_POLL_THRESH=32 pages.
1489 */
1490 if (pages < DIRTY_POLL_THRESH) {
1491 t = max_pause;
1492 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1493 if (pages > DIRTY_POLL_THRESH) {
1494 pages = DIRTY_POLL_THRESH;
1495 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1496 }
1497 }
1498
1499 pause = HZ * pages / (task_ratelimit + 1);
1500 if (pause > max_pause) {
1501 t = max_pause;
1502 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1503 }
1504
1505 *nr_dirtied_pause = pages;
1506 /*
1507 * The minimal pause time will normally be half the target pause time.
1508 */
1509 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1510 }
1511
1512 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1513 {
1514 struct bdi_writeback *wb = dtc->wb;
1515 unsigned long wb_reclaimable;
1516
1517 /*
1518 * wb_thresh is not treated as some limiting factor as
1519 * dirty_thresh, due to reasons
1520 * - in JBOD setup, wb_thresh can fluctuate a lot
1521 * - in a system with HDD and USB key, the USB key may somehow
1522 * go into state (wb_dirty >> wb_thresh) either because
1523 * wb_dirty starts high, or because wb_thresh drops low.
1524 * In this case we don't want to hard throttle the USB key
1525 * dirtiers for 100 seconds until wb_dirty drops under
1526 * wb_thresh. Instead the auxiliary wb control line in
1527 * wb_position_ratio() will let the dirtier task progress
1528 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
1529 */
1530 dtc->wb_thresh = __wb_calc_thresh(dtc);
1531 dtc->wb_bg_thresh = dtc->thresh ?
1532 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1533
1534 /*
1535 * In order to avoid the stacked BDI deadlock we need
1536 * to ensure we accurately count the 'dirty' pages when
1537 * the threshold is low.
1538 *
1539 * Otherwise it would be possible to get thresh+n pages
1540 * reported dirty, even though there are thresh-m pages
1541 * actually dirty; with m+n sitting in the percpu
1542 * deltas.
1543 */
1544 if (dtc->wb_thresh < 2 * wb_stat_error()) {
1545 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1546 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1547 } else {
1548 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1549 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1550 }
1551 }
1552
1553 /*
1554 * balance_dirty_pages() must be called by processes which are generating dirty
1555 * data. It looks at the number of dirty pages in the machine and will force
1556 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1557 * If we're over `background_thresh' then the writeback threads are woken to
1558 * perform some writeout.
1559 */
1560 static void balance_dirty_pages(struct bdi_writeback *wb,
1561 unsigned long pages_dirtied)
1562 {
1563 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1564 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1565 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1566 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1567 &mdtc_stor : NULL;
1568 struct dirty_throttle_control *sdtc;
1569 unsigned long nr_reclaimable; /* = file_dirty */
1570 long period;
1571 long pause;
1572 long max_pause;
1573 long min_pause;
1574 int nr_dirtied_pause;
1575 bool dirty_exceeded = false;
1576 unsigned long task_ratelimit;
1577 unsigned long dirty_ratelimit;
1578 struct backing_dev_info *bdi = wb->bdi;
1579 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1580 unsigned long start_time = jiffies;
1581
1582 for (;;) {
1583 unsigned long now = jiffies;
1584 unsigned long dirty, thresh, bg_thresh;
1585 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1586 unsigned long m_thresh = 0;
1587 unsigned long m_bg_thresh = 0;
1588
1589 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
1590 gdtc->avail = global_dirtyable_memory();
1591 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1592
1593 domain_dirty_limits(gdtc);
1594
1595 if (unlikely(strictlimit)) {
1596 wb_dirty_limits(gdtc);
1597
1598 dirty = gdtc->wb_dirty;
1599 thresh = gdtc->wb_thresh;
1600 bg_thresh = gdtc->wb_bg_thresh;
1601 } else {
1602 dirty = gdtc->dirty;
1603 thresh = gdtc->thresh;
1604 bg_thresh = gdtc->bg_thresh;
1605 }
1606
1607 if (mdtc) {
1608 unsigned long filepages, headroom, writeback;
1609
1610 /*
1611 * If @wb belongs to !root memcg, repeat the same
1612 * basic calculations for the memcg domain.
1613 */
1614 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1615 &mdtc->dirty, &writeback);
1616 mdtc->dirty += writeback;
1617 mdtc_calc_avail(mdtc, filepages, headroom);
1618
1619 domain_dirty_limits(mdtc);
1620
1621 if (unlikely(strictlimit)) {
1622 wb_dirty_limits(mdtc);
1623 m_dirty = mdtc->wb_dirty;
1624 m_thresh = mdtc->wb_thresh;
1625 m_bg_thresh = mdtc->wb_bg_thresh;
1626 } else {
1627 m_dirty = mdtc->dirty;
1628 m_thresh = mdtc->thresh;
1629 m_bg_thresh = mdtc->bg_thresh;
1630 }
1631 }
1632
1633 /*
1634 * Throttle it only when the background writeback cannot
1635 * catch-up. This avoids (excessively) small writeouts
1636 * when the wb limits are ramping up in case of !strictlimit.
1637 *
1638 * In strictlimit case make decision based on the wb counters
1639 * and limits. Small writeouts when the wb limits are ramping
1640 * up are the price we consciously pay for strictlimit-ing.
1641 *
1642 * If memcg domain is in effect, @dirty should be under
1643 * both global and memcg freerun ceilings.
1644 */
1645 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1646 (!mdtc ||
1647 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1648 unsigned long intv;
1649 unsigned long m_intv;
1650
1651 free_running:
1652 intv = dirty_poll_interval(dirty, thresh);
1653 m_intv = ULONG_MAX;
1654
1655 current->dirty_paused_when = now;
1656 current->nr_dirtied = 0;
1657 if (mdtc)
1658 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1659 current->nr_dirtied_pause = min(intv, m_intv);
1660 break;
1661 }
1662
1663 if (unlikely(!writeback_in_progress(wb)))
1664 wb_start_background_writeback(wb);
1665
1666 mem_cgroup_flush_foreign(wb);
1667
1668 /*
1669 * Calculate global domain's pos_ratio and select the
1670 * global dtc by default.
1671 */
1672 if (!strictlimit) {
1673 wb_dirty_limits(gdtc);
1674
1675 if ((current->flags & PF_LOCAL_THROTTLE) &&
1676 gdtc->wb_dirty <
1677 dirty_freerun_ceiling(gdtc->wb_thresh,
1678 gdtc->wb_bg_thresh))
1679 /*
1680 * LOCAL_THROTTLE tasks must not be throttled
1681 * when below the per-wb freerun ceiling.
1682 */
1683 goto free_running;
1684 }
1685
1686 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1687 ((gdtc->dirty > gdtc->thresh) || strictlimit);
1688
1689 wb_position_ratio(gdtc);
1690 sdtc = gdtc;
1691
1692 if (mdtc) {
1693 /*
1694 * If memcg domain is in effect, calculate its
1695 * pos_ratio. @wb should satisfy constraints from
1696 * both global and memcg domains. Choose the one
1697 * w/ lower pos_ratio.
1698 */
1699 if (!strictlimit) {
1700 wb_dirty_limits(mdtc);
1701
1702 if ((current->flags & PF_LOCAL_THROTTLE) &&
1703 mdtc->wb_dirty <
1704 dirty_freerun_ceiling(mdtc->wb_thresh,
1705 mdtc->wb_bg_thresh))
1706 /*
1707 * LOCAL_THROTTLE tasks must not be
1708 * throttled when below the per-wb
1709 * freerun ceiling.
1710 */
1711 goto free_running;
1712 }
1713 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1714 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1715
1716 wb_position_ratio(mdtc);
1717 if (mdtc->pos_ratio < gdtc->pos_ratio)
1718 sdtc = mdtc;
1719 }
1720
1721 if (dirty_exceeded && !wb->dirty_exceeded)
1722 wb->dirty_exceeded = 1;
1723
1724 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1725 BANDWIDTH_INTERVAL))
1726 __wb_update_bandwidth(gdtc, mdtc, true);
1727
1728 /* throttle according to the chosen dtc */
1729 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1730 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1731 RATELIMIT_CALC_SHIFT;
1732 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1733 min_pause = wb_min_pause(wb, max_pause,
1734 task_ratelimit, dirty_ratelimit,
1735 &nr_dirtied_pause);
1736
1737 if (unlikely(task_ratelimit == 0)) {
1738 period = max_pause;
1739 pause = max_pause;
1740 goto pause;
1741 }
1742 period = HZ * pages_dirtied / task_ratelimit;
1743 pause = period;
1744 if (current->dirty_paused_when)
1745 pause -= now - current->dirty_paused_when;
1746 /*
1747 * For less than 1s think time (ext3/4 may block the dirtier
1748 * for up to 800ms from time to time on 1-HDD; so does xfs,
1749 * however at much less frequency), try to compensate it in
1750 * future periods by updating the virtual time; otherwise just
1751 * do a reset, as it may be a light dirtier.
1752 */
1753 if (pause < min_pause) {
1754 trace_balance_dirty_pages(wb,
1755 sdtc->thresh,
1756 sdtc->bg_thresh,
1757 sdtc->dirty,
1758 sdtc->wb_thresh,
1759 sdtc->wb_dirty,
1760 dirty_ratelimit,
1761 task_ratelimit,
1762 pages_dirtied,
1763 period,
1764 min(pause, 0L),
1765 start_time);
1766 if (pause < -HZ) {
1767 current->dirty_paused_when = now;
1768 current->nr_dirtied = 0;
1769 } else if (period) {
1770 current->dirty_paused_when += period;
1771 current->nr_dirtied = 0;
1772 } else if (current->nr_dirtied_pause <= pages_dirtied)
1773 current->nr_dirtied_pause += pages_dirtied;
1774 break;
1775 }
1776 if (unlikely(pause > max_pause)) {
1777 /* for occasional dropped task_ratelimit */
1778 now += min(pause - max_pause, max_pause);
1779 pause = max_pause;
1780 }
1781
1782 pause:
1783 trace_balance_dirty_pages(wb,
1784 sdtc->thresh,
1785 sdtc->bg_thresh,
1786 sdtc->dirty,
1787 sdtc->wb_thresh,
1788 sdtc->wb_dirty,
1789 dirty_ratelimit,
1790 task_ratelimit,
1791 pages_dirtied,
1792 period,
1793 pause,
1794 start_time);
1795 __set_current_state(TASK_KILLABLE);
1796 wb->dirty_sleep = now;
1797 io_schedule_timeout(pause);
1798
1799 current->dirty_paused_when = now + pause;
1800 current->nr_dirtied = 0;
1801 current->nr_dirtied_pause = nr_dirtied_pause;
1802
1803 /*
1804 * This is typically equal to (dirty < thresh) and can also
1805 * keep "1000+ dd on a slow USB stick" under control.
1806 */
1807 if (task_ratelimit)
1808 break;
1809
1810 /*
1811 * In the case of an unresponsive NFS server and the NFS dirty
1812 * pages exceeds dirty_thresh, give the other good wb's a pipe
1813 * to go through, so that tasks on them still remain responsive.
1814 *
1815 * In theory 1 page is enough to keep the consumer-producer
1816 * pipe going: the flusher cleans 1 page => the task dirties 1
1817 * more page. However wb_dirty has accounting errors. So use
1818 * the larger and more IO friendly wb_stat_error.
1819 */
1820 if (sdtc->wb_dirty <= wb_stat_error())
1821 break;
1822
1823 if (fatal_signal_pending(current))
1824 break;
1825 }
1826
1827 if (!dirty_exceeded && wb->dirty_exceeded)
1828 wb->dirty_exceeded = 0;
1829
1830 if (writeback_in_progress(wb))
1831 return;
1832
1833 /*
1834 * In laptop mode, we wait until hitting the higher threshold before
1835 * starting background writeout, and then write out all the way down
1836 * to the lower threshold. So slow writers cause minimal disk activity.
1837 *
1838 * In normal mode, we start background writeout at the lower
1839 * background_thresh, to keep the amount of dirty memory low.
1840 */
1841 if (laptop_mode)
1842 return;
1843
1844 if (nr_reclaimable > gdtc->bg_thresh)
1845 wb_start_background_writeback(wb);
1846 }
1847
1848 static DEFINE_PER_CPU(int, bdp_ratelimits);
1849
1850 /*
1851 * Normal tasks are throttled by
1852 * loop {
1853 * dirty tsk->nr_dirtied_pause pages;
1854 * take a snap in balance_dirty_pages();
1855 * }
1856 * However there is a worst case. If every task exit immediately when dirtied
1857 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1858 * called to throttle the page dirties. The solution is to save the not yet
1859 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1860 * randomly into the running tasks. This works well for the above worst case,
1861 * as the new task will pick up and accumulate the old task's leaked dirty
1862 * count and eventually get throttled.
1863 */
1864 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1865
1866 /**
1867 * balance_dirty_pages_ratelimited - balance dirty memory state
1868 * @mapping: address_space which was dirtied
1869 *
1870 * Processes which are dirtying memory should call in here once for each page
1871 * which was newly dirtied. The function will periodically check the system's
1872 * dirty state and will initiate writeback if needed.
1873 *
1874 * Once we're over the dirty memory limit we decrease the ratelimiting
1875 * by a lot, to prevent individual processes from overshooting the limit
1876 * by (ratelimit_pages) each.
1877 */
1878 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1879 {
1880 struct inode *inode = mapping->host;
1881 struct backing_dev_info *bdi = inode_to_bdi(inode);
1882 struct bdi_writeback *wb = NULL;
1883 int ratelimit;
1884 int *p;
1885
1886 if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
1887 return;
1888
1889 if (inode_cgwb_enabled(inode))
1890 wb = wb_get_create_current(bdi, GFP_KERNEL);
1891 if (!wb)
1892 wb = &bdi->wb;
1893
1894 ratelimit = current->nr_dirtied_pause;
1895 if (wb->dirty_exceeded)
1896 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1897
1898 preempt_disable();
1899 /*
1900 * This prevents one CPU to accumulate too many dirtied pages without
1901 * calling into balance_dirty_pages(), which can happen when there are
1902 * 1000+ tasks, all of them start dirtying pages at exactly the same
1903 * time, hence all honoured too large initial task->nr_dirtied_pause.
1904 */
1905 p = this_cpu_ptr(&bdp_ratelimits);
1906 if (unlikely(current->nr_dirtied >= ratelimit))
1907 *p = 0;
1908 else if (unlikely(*p >= ratelimit_pages)) {
1909 *p = 0;
1910 ratelimit = 0;
1911 }
1912 /*
1913 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1914 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1915 * the dirty throttling and livelock other long-run dirtiers.
1916 */
1917 p = this_cpu_ptr(&dirty_throttle_leaks);
1918 if (*p > 0 && current->nr_dirtied < ratelimit) {
1919 unsigned long nr_pages_dirtied;
1920 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1921 *p -= nr_pages_dirtied;
1922 current->nr_dirtied += nr_pages_dirtied;
1923 }
1924 preempt_enable();
1925
1926 if (unlikely(current->nr_dirtied >= ratelimit))
1927 balance_dirty_pages(wb, current->nr_dirtied);
1928
1929 wb_put(wb);
1930 }
1931 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1932
1933 /**
1934 * wb_over_bg_thresh - does @wb need to be written back?
1935 * @wb: bdi_writeback of interest
1936 *
1937 * Determines whether background writeback should keep writing @wb or it's
1938 * clean enough.
1939 *
1940 * Return: %true if writeback should continue.
1941 */
1942 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1943 {
1944 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1945 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1946 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1947 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1948 &mdtc_stor : NULL;
1949 unsigned long reclaimable;
1950 unsigned long thresh;
1951
1952 /*
1953 * Similar to balance_dirty_pages() but ignores pages being written
1954 * as we're trying to decide whether to put more under writeback.
1955 */
1956 gdtc->avail = global_dirtyable_memory();
1957 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
1958 domain_dirty_limits(gdtc);
1959
1960 if (gdtc->dirty > gdtc->bg_thresh)
1961 return true;
1962
1963 thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
1964 if (thresh < 2 * wb_stat_error())
1965 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1966 else
1967 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1968
1969 if (reclaimable > thresh)
1970 return true;
1971
1972 if (mdtc) {
1973 unsigned long filepages, headroom, writeback;
1974
1975 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1976 &writeback);
1977 mdtc_calc_avail(mdtc, filepages, headroom);
1978 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
1979
1980 if (mdtc->dirty > mdtc->bg_thresh)
1981 return true;
1982
1983 thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
1984 if (thresh < 2 * wb_stat_error())
1985 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1986 else
1987 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1988
1989 if (reclaimable > thresh)
1990 return true;
1991 }
1992
1993 return false;
1994 }
1995
1996 /*
1997 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1998 */
1999 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
2000 void *buffer, size_t *length, loff_t *ppos)
2001 {
2002 unsigned int old_interval = dirty_writeback_interval;
2003 int ret;
2004
2005 ret = proc_dointvec(table, write, buffer, length, ppos);
2006
2007 /*
2008 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2009 * and a different non-zero value will wakeup the writeback threads.
2010 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2011 * iterate over all bdis and wbs.
2012 * The reason we do this is to make the change take effect immediately.
2013 */
2014 if (!ret && write && dirty_writeback_interval &&
2015 dirty_writeback_interval != old_interval)
2016 wakeup_flusher_threads(WB_REASON_PERIODIC);
2017
2018 return ret;
2019 }
2020
2021 void laptop_mode_timer_fn(struct timer_list *t)
2022 {
2023 struct backing_dev_info *backing_dev_info =
2024 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2025
2026 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2027 }
2028
2029 /*
2030 * We've spun up the disk and we're in laptop mode: schedule writeback
2031 * of all dirty data a few seconds from now. If the flush is already scheduled
2032 * then push it back - the user is still using the disk.
2033 */
2034 void laptop_io_completion(struct backing_dev_info *info)
2035 {
2036 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2037 }
2038
2039 /*
2040 * We're in laptop mode and we've just synced. The sync's writes will have
2041 * caused another writeback to be scheduled by laptop_io_completion.
2042 * Nothing needs to be written back anymore, so we unschedule the writeback.
2043 */
2044 void laptop_sync_completion(void)
2045 {
2046 struct backing_dev_info *bdi;
2047
2048 rcu_read_lock();
2049
2050 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2051 del_timer(&bdi->laptop_mode_wb_timer);
2052
2053 rcu_read_unlock();
2054 }
2055
2056 /*
2057 * If ratelimit_pages is too high then we can get into dirty-data overload
2058 * if a large number of processes all perform writes at the same time.
2059 *
2060 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2061 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2062 * thresholds.
2063 */
2064
2065 void writeback_set_ratelimit(void)
2066 {
2067 struct wb_domain *dom = &global_wb_domain;
2068 unsigned long background_thresh;
2069 unsigned long dirty_thresh;
2070
2071 global_dirty_limits(&background_thresh, &dirty_thresh);
2072 dom->dirty_limit = dirty_thresh;
2073 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2074 if (ratelimit_pages < 16)
2075 ratelimit_pages = 16;
2076 }
2077
2078 static int page_writeback_cpu_online(unsigned int cpu)
2079 {
2080 writeback_set_ratelimit();
2081 return 0;
2082 }
2083
2084 /*
2085 * Called early on to tune the page writeback dirty limits.
2086 *
2087 * We used to scale dirty pages according to how total memory
2088 * related to pages that could be allocated for buffers.
2089 *
2090 * However, that was when we used "dirty_ratio" to scale with
2091 * all memory, and we don't do that any more. "dirty_ratio"
2092 * is now applied to total non-HIGHPAGE memory, and as such we can't
2093 * get into the old insane situation any more where we had
2094 * large amounts of dirty pages compared to a small amount of
2095 * non-HIGHMEM memory.
2096 *
2097 * But we might still want to scale the dirty_ratio by how
2098 * much memory the box has..
2099 */
2100 void __init page_writeback_init(void)
2101 {
2102 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2103
2104 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2105 page_writeback_cpu_online, NULL);
2106 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2107 page_writeback_cpu_online);
2108 }
2109
2110 /**
2111 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2112 * @mapping: address space structure to write
2113 * @start: starting page index
2114 * @end: ending page index (inclusive)
2115 *
2116 * This function scans the page range from @start to @end (inclusive) and tags
2117 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2118 * that write_cache_pages (or whoever calls this function) will then use
2119 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2120 * used to avoid livelocking of writeback by a process steadily creating new
2121 * dirty pages in the file (thus it is important for this function to be quick
2122 * so that it can tag pages faster than a dirtying process can create them).
2123 */
2124 void tag_pages_for_writeback(struct address_space *mapping,
2125 pgoff_t start, pgoff_t end)
2126 {
2127 XA_STATE(xas, &mapping->i_pages, start);
2128 unsigned int tagged = 0;
2129 void *page;
2130
2131 xas_lock_irq(&xas);
2132 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2133 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2134 if (++tagged % XA_CHECK_SCHED)
2135 continue;
2136
2137 xas_pause(&xas);
2138 xas_unlock_irq(&xas);
2139 cond_resched();
2140 xas_lock_irq(&xas);
2141 }
2142 xas_unlock_irq(&xas);
2143 }
2144 EXPORT_SYMBOL(tag_pages_for_writeback);
2145
2146 /**
2147 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2148 * @mapping: address space structure to write
2149 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2150 * @writepage: function called for each page
2151 * @data: data passed to writepage function
2152 *
2153 * If a page is already under I/O, write_cache_pages() skips it, even
2154 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2155 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2156 * and msync() need to guarantee that all the data which was dirty at the time
2157 * the call was made get new I/O started against them. If wbc->sync_mode is
2158 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2159 * existing IO to complete.
2160 *
2161 * To avoid livelocks (when other process dirties new pages), we first tag
2162 * pages which should be written back with TOWRITE tag and only then start
2163 * writing them. For data-integrity sync we have to be careful so that we do
2164 * not miss some pages (e.g., because some other process has cleared TOWRITE
2165 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2166 * by the process clearing the DIRTY tag (and submitting the page for IO).
2167 *
2168 * To avoid deadlocks between range_cyclic writeback and callers that hold
2169 * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2170 * we do not loop back to the start of the file. Doing so causes a page
2171 * lock/page writeback access order inversion - we should only ever lock
2172 * multiple pages in ascending page->index order, and looping back to the start
2173 * of the file violates that rule and causes deadlocks.
2174 *
2175 * Return: %0 on success, negative error code otherwise
2176 */
2177 int write_cache_pages(struct address_space *mapping,
2178 struct writeback_control *wbc, writepage_t writepage,
2179 void *data)
2180 {
2181 int ret = 0;
2182 int done = 0;
2183 int error;
2184 struct pagevec pvec;
2185 int nr_pages;
2186 pgoff_t index;
2187 pgoff_t end; /* Inclusive */
2188 pgoff_t done_index;
2189 int range_whole = 0;
2190 xa_mark_t tag;
2191
2192 pagevec_init(&pvec);
2193 if (wbc->range_cyclic) {
2194 index = mapping->writeback_index; /* prev offset */
2195 end = -1;
2196 } else {
2197 index = wbc->range_start >> PAGE_SHIFT;
2198 end = wbc->range_end >> PAGE_SHIFT;
2199 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2200 range_whole = 1;
2201 }
2202 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2203 tag_pages_for_writeback(mapping, index, end);
2204 tag = PAGECACHE_TAG_TOWRITE;
2205 } else {
2206 tag = PAGECACHE_TAG_DIRTY;
2207 }
2208 done_index = index;
2209 while (!done && (index <= end)) {
2210 int i;
2211
2212 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2213 tag);
2214 if (nr_pages == 0)
2215 break;
2216
2217 for (i = 0; i < nr_pages; i++) {
2218 struct page *page = pvec.pages[i];
2219
2220 done_index = page->index;
2221
2222 lock_page(page);
2223
2224 /*
2225 * Page truncated or invalidated. We can freely skip it
2226 * then, even for data integrity operations: the page
2227 * has disappeared concurrently, so there could be no
2228 * real expectation of this data integrity operation
2229 * even if there is now a new, dirty page at the same
2230 * pagecache address.
2231 */
2232 if (unlikely(page->mapping != mapping)) {
2233 continue_unlock:
2234 unlock_page(page);
2235 continue;
2236 }
2237
2238 if (!PageDirty(page)) {
2239 /* someone wrote it for us */
2240 goto continue_unlock;
2241 }
2242
2243 if (PageWriteback(page)) {
2244 if (wbc->sync_mode != WB_SYNC_NONE)
2245 wait_on_page_writeback(page);
2246 else
2247 goto continue_unlock;
2248 }
2249
2250 BUG_ON(PageWriteback(page));
2251 if (!clear_page_dirty_for_io(page))
2252 goto continue_unlock;
2253
2254 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2255 error = (*writepage)(page, wbc, data);
2256 if (unlikely(error)) {
2257 /*
2258 * Handle errors according to the type of
2259 * writeback. There's no need to continue for
2260 * background writeback. Just push done_index
2261 * past this page so media errors won't choke
2262 * writeout for the entire file. For integrity
2263 * writeback, we must process the entire dirty
2264 * set regardless of errors because the fs may
2265 * still have state to clear for each page. In
2266 * that case we continue processing and return
2267 * the first error.
2268 */
2269 if (error == AOP_WRITEPAGE_ACTIVATE) {
2270 unlock_page(page);
2271 error = 0;
2272 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2273 ret = error;
2274 done_index = page->index + 1;
2275 done = 1;
2276 break;
2277 }
2278 if (!ret)
2279 ret = error;
2280 }
2281
2282 /*
2283 * We stop writing back only if we are not doing
2284 * integrity sync. In case of integrity sync we have to
2285 * keep going until we have written all the pages
2286 * we tagged for writeback prior to entering this loop.
2287 */
2288 if (--wbc->nr_to_write <= 0 &&
2289 wbc->sync_mode == WB_SYNC_NONE) {
2290 done = 1;
2291 break;
2292 }
2293 }
2294 pagevec_release(&pvec);
2295 cond_resched();
2296 }
2297
2298 /*
2299 * If we hit the last page and there is more work to be done: wrap
2300 * back the index back to the start of the file for the next
2301 * time we are called.
2302 */
2303 if (wbc->range_cyclic && !done)
2304 done_index = 0;
2305 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2306 mapping->writeback_index = done_index;
2307
2308 return ret;
2309 }
2310 EXPORT_SYMBOL(write_cache_pages);
2311
2312 /*
2313 * Function used by generic_writepages to call the real writepage
2314 * function and set the mapping flags on error
2315 */
2316 static int __writepage(struct page *page, struct writeback_control *wbc,
2317 void *data)
2318 {
2319 struct address_space *mapping = data;
2320 int ret = mapping->a_ops->writepage(page, wbc);
2321 mapping_set_error(mapping, ret);
2322 return ret;
2323 }
2324
2325 /**
2326 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2327 * @mapping: address space structure to write
2328 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2329 *
2330 * This is a library function, which implements the writepages()
2331 * address_space_operation.
2332 *
2333 * Return: %0 on success, negative error code otherwise
2334 */
2335 int generic_writepages(struct address_space *mapping,
2336 struct writeback_control *wbc)
2337 {
2338 struct blk_plug plug;
2339 int ret;
2340
2341 /* deal with chardevs and other special file */
2342 if (!mapping->a_ops->writepage)
2343 return 0;
2344
2345 blk_start_plug(&plug);
2346 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2347 blk_finish_plug(&plug);
2348 return ret;
2349 }
2350
2351 EXPORT_SYMBOL(generic_writepages);
2352
2353 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2354 {
2355 int ret;
2356 struct bdi_writeback *wb;
2357
2358 if (wbc->nr_to_write <= 0)
2359 return 0;
2360 wb = inode_to_wb_wbc(mapping->host, wbc);
2361 wb_bandwidth_estimate_start(wb);
2362 while (1) {
2363 if (mapping->a_ops->writepages)
2364 ret = mapping->a_ops->writepages(mapping, wbc);
2365 else
2366 ret = generic_writepages(mapping, wbc);
2367 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2368 break;
2369 cond_resched();
2370 congestion_wait(BLK_RW_ASYNC, HZ/50);
2371 }
2372 /*
2373 * Usually few pages are written by now from those we've just submitted
2374 * but if there's constant writeback being submitted, this makes sure
2375 * writeback bandwidth is updated once in a while.
2376 */
2377 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2378 BANDWIDTH_INTERVAL))
2379 wb_update_bandwidth(wb);
2380 return ret;
2381 }
2382
2383 /**
2384 * write_one_page - write out a single page and wait on I/O
2385 * @page: the page to write
2386 *
2387 * The page must be locked by the caller and will be unlocked upon return.
2388 *
2389 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2390 * function returns.
2391 *
2392 * Return: %0 on success, negative error code otherwise
2393 */
2394 int write_one_page(struct page *page)
2395 {
2396 struct address_space *mapping = page->mapping;
2397 int ret = 0;
2398 struct writeback_control wbc = {
2399 .sync_mode = WB_SYNC_ALL,
2400 .nr_to_write = 1,
2401 };
2402
2403 BUG_ON(!PageLocked(page));
2404
2405 wait_on_page_writeback(page);
2406
2407 if (clear_page_dirty_for_io(page)) {
2408 get_page(page);
2409 ret = mapping->a_ops->writepage(page, &wbc);
2410 if (ret == 0)
2411 wait_on_page_writeback(page);
2412 put_page(page);
2413 } else {
2414 unlock_page(page);
2415 }
2416
2417 if (!ret)
2418 ret = filemap_check_errors(mapping);
2419 return ret;
2420 }
2421 EXPORT_SYMBOL(write_one_page);
2422
2423 /*
2424 * For address_spaces which do not use buffers nor write back.
2425 */
2426 int __set_page_dirty_no_writeback(struct page *page)
2427 {
2428 if (!PageDirty(page))
2429 return !TestSetPageDirty(page);
2430 return 0;
2431 }
2432 EXPORT_SYMBOL(__set_page_dirty_no_writeback);
2433
2434 /*
2435 * Helper function for set_page_dirty family.
2436 *
2437 * Caller must hold lock_page_memcg().
2438 *
2439 * NOTE: This relies on being atomic wrt interrupts.
2440 */
2441 static void account_page_dirtied(struct page *page,
2442 struct address_space *mapping)
2443 {
2444 struct inode *inode = mapping->host;
2445
2446 trace_writeback_dirty_page(page, mapping);
2447
2448 if (mapping_can_writeback(mapping)) {
2449 struct bdi_writeback *wb;
2450
2451 inode_attach_wb(inode, page);
2452 wb = inode_to_wb(inode);
2453
2454 __inc_lruvec_page_state(page, NR_FILE_DIRTY);
2455 __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2456 __inc_node_page_state(page, NR_DIRTIED);
2457 inc_wb_stat(wb, WB_RECLAIMABLE);
2458 inc_wb_stat(wb, WB_DIRTIED);
2459 task_io_account_write(PAGE_SIZE);
2460 current->nr_dirtied++;
2461 __this_cpu_inc(bdp_ratelimits);
2462
2463 mem_cgroup_track_foreign_dirty(page, wb);
2464 }
2465 }
2466
2467 /*
2468 * Helper function for deaccounting dirty page without writeback.
2469 *
2470 * Caller must hold lock_page_memcg().
2471 */
2472 void account_page_cleaned(struct page *page, struct address_space *mapping,
2473 struct bdi_writeback *wb)
2474 {
2475 if (mapping_can_writeback(mapping)) {
2476 dec_lruvec_page_state(page, NR_FILE_DIRTY);
2477 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2478 dec_wb_stat(wb, WB_RECLAIMABLE);
2479 task_io_account_cancelled_write(PAGE_SIZE);
2480 }
2481 }
2482
2483 /*
2484 * Mark the page dirty, and set it dirty in the page cache, and mark the inode
2485 * dirty.
2486 *
2487 * If warn is true, then emit a warning if the page is not uptodate and has
2488 * not been truncated.
2489 *
2490 * The caller must hold lock_page_memcg().
2491 */
2492 void __set_page_dirty(struct page *page, struct address_space *mapping,
2493 int warn)
2494 {
2495 unsigned long flags;
2496
2497 xa_lock_irqsave(&mapping->i_pages, flags);
2498 if (page->mapping) { /* Race with truncate? */
2499 WARN_ON_ONCE(warn && !PageUptodate(page));
2500 account_page_dirtied(page, mapping);
2501 __xa_set_mark(&mapping->i_pages, page_index(page),
2502 PAGECACHE_TAG_DIRTY);
2503 }
2504 xa_unlock_irqrestore(&mapping->i_pages, flags);
2505 }
2506
2507 /*
2508 * For address_spaces which do not use buffers. Just tag the page as dirty in
2509 * the xarray.
2510 *
2511 * This is also used when a single buffer is being dirtied: we want to set the
2512 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2513 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2514 *
2515 * The caller must ensure this doesn't race with truncation. Most will simply
2516 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2517 * the pte lock held, which also locks out truncation.
2518 */
2519 int __set_page_dirty_nobuffers(struct page *page)
2520 {
2521 lock_page_memcg(page);
2522 if (!TestSetPageDirty(page)) {
2523 struct address_space *mapping = page_mapping(page);
2524
2525 if (!mapping) {
2526 unlock_page_memcg(page);
2527 return 1;
2528 }
2529 __set_page_dirty(page, mapping, !PagePrivate(page));
2530 unlock_page_memcg(page);
2531
2532 if (mapping->host) {
2533 /* !PageAnon && !swapper_space */
2534 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2535 }
2536 return 1;
2537 }
2538 unlock_page_memcg(page);
2539 return 0;
2540 }
2541 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2542
2543 /*
2544 * Call this whenever redirtying a page, to de-account the dirty counters
2545 * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written
2546 * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to
2547 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2548 * control.
2549 */
2550 void account_page_redirty(struct page *page)
2551 {
2552 struct address_space *mapping = page->mapping;
2553
2554 if (mapping && mapping_can_writeback(mapping)) {
2555 struct inode *inode = mapping->host;
2556 struct bdi_writeback *wb;
2557 struct wb_lock_cookie cookie = {};
2558
2559 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2560 current->nr_dirtied--;
2561 dec_node_page_state(page, NR_DIRTIED);
2562 dec_wb_stat(wb, WB_DIRTIED);
2563 unlocked_inode_to_wb_end(inode, &cookie);
2564 }
2565 }
2566 EXPORT_SYMBOL(account_page_redirty);
2567
2568 /*
2569 * When a writepage implementation decides that it doesn't want to write this
2570 * page for some reason, it should redirty the locked page via
2571 * redirty_page_for_writepage() and it should then unlock the page and return 0
2572 */
2573 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2574 {
2575 int ret;
2576
2577 wbc->pages_skipped++;
2578 ret = __set_page_dirty_nobuffers(page);
2579 account_page_redirty(page);
2580 return ret;
2581 }
2582 EXPORT_SYMBOL(redirty_page_for_writepage);
2583
2584 /*
2585 * Dirty a page.
2586 *
2587 * For pages with a mapping this should be done under the page lock for the
2588 * benefit of asynchronous memory errors who prefer a consistent dirty state.
2589 * This rule can be broken in some special cases, but should be better not to.
2590 */
2591 int set_page_dirty(struct page *page)
2592 {
2593 struct address_space *mapping = page_mapping(page);
2594
2595 page = compound_head(page);
2596 if (likely(mapping)) {
2597 /*
2598 * readahead/lru_deactivate_page could remain
2599 * PG_readahead/PG_reclaim due to race with end_page_writeback
2600 * About readahead, if the page is written, the flags would be
2601 * reset. So no problem.
2602 * About lru_deactivate_page, if the page is redirty, the flag
2603 * will be reset. So no problem. but if the page is used by readahead
2604 * it will confuse readahead and make it restart the size rampup
2605 * process. But it's a trivial problem.
2606 */
2607 if (PageReclaim(page))
2608 ClearPageReclaim(page);
2609 return mapping->a_ops->set_page_dirty(page);
2610 }
2611 if (!PageDirty(page)) {
2612 if (!TestSetPageDirty(page))
2613 return 1;
2614 }
2615 return 0;
2616 }
2617 EXPORT_SYMBOL(set_page_dirty);
2618
2619 /*
2620 * set_page_dirty() is racy if the caller has no reference against
2621 * page->mapping->host, and if the page is unlocked. This is because another
2622 * CPU could truncate the page off the mapping and then free the mapping.
2623 *
2624 * Usually, the page _is_ locked, or the caller is a user-space process which
2625 * holds a reference on the inode by having an open file.
2626 *
2627 * In other cases, the page should be locked before running set_page_dirty().
2628 */
2629 int set_page_dirty_lock(struct page *page)
2630 {
2631 int ret;
2632
2633 lock_page(page);
2634 ret = set_page_dirty(page);
2635 unlock_page(page);
2636 return ret;
2637 }
2638 EXPORT_SYMBOL(set_page_dirty_lock);
2639
2640 /*
2641 * This cancels just the dirty bit on the kernel page itself, it does NOT
2642 * actually remove dirty bits on any mmap's that may be around. It also
2643 * leaves the page tagged dirty, so any sync activity will still find it on
2644 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2645 * look at the dirty bits in the VM.
2646 *
2647 * Doing this should *normally* only ever be done when a page is truncated,
2648 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2649 * this when it notices that somebody has cleaned out all the buffers on a
2650 * page without actually doing it through the VM. Can you say "ext3 is
2651 * horribly ugly"? Thought you could.
2652 */
2653 void __cancel_dirty_page(struct page *page)
2654 {
2655 struct address_space *mapping = page_mapping(page);
2656
2657 if (mapping_can_writeback(mapping)) {
2658 struct inode *inode = mapping->host;
2659 struct bdi_writeback *wb;
2660 struct wb_lock_cookie cookie = {};
2661
2662 lock_page_memcg(page);
2663 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2664
2665 if (TestClearPageDirty(page))
2666 account_page_cleaned(page, mapping, wb);
2667
2668 unlocked_inode_to_wb_end(inode, &cookie);
2669 unlock_page_memcg(page);
2670 } else {
2671 ClearPageDirty(page);
2672 }
2673 }
2674 EXPORT_SYMBOL(__cancel_dirty_page);
2675
2676 /*
2677 * Clear a page's dirty flag, while caring for dirty memory accounting.
2678 * Returns true if the page was previously dirty.
2679 *
2680 * This is for preparing to put the page under writeout. We leave the page
2681 * tagged as dirty in the xarray so that a concurrent write-for-sync
2682 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2683 * implementation will run either set_page_writeback() or set_page_dirty(),
2684 * at which stage we bring the page's dirty flag and xarray dirty tag
2685 * back into sync.
2686 *
2687 * This incoherency between the page's dirty flag and xarray tag is
2688 * unfortunate, but it only exists while the page is locked.
2689 */
2690 int clear_page_dirty_for_io(struct page *page)
2691 {
2692 struct address_space *mapping = page_mapping(page);
2693 int ret = 0;
2694
2695 VM_BUG_ON_PAGE(!PageLocked(page), page);
2696
2697 if (mapping && mapping_can_writeback(mapping)) {
2698 struct inode *inode = mapping->host;
2699 struct bdi_writeback *wb;
2700 struct wb_lock_cookie cookie = {};
2701
2702 /*
2703 * Yes, Virginia, this is indeed insane.
2704 *
2705 * We use this sequence to make sure that
2706 * (a) we account for dirty stats properly
2707 * (b) we tell the low-level filesystem to
2708 * mark the whole page dirty if it was
2709 * dirty in a pagetable. Only to then
2710 * (c) clean the page again and return 1 to
2711 * cause the writeback.
2712 *
2713 * This way we avoid all nasty races with the
2714 * dirty bit in multiple places and clearing
2715 * them concurrently from different threads.
2716 *
2717 * Note! Normally the "set_page_dirty(page)"
2718 * has no effect on the actual dirty bit - since
2719 * that will already usually be set. But we
2720 * need the side effects, and it can help us
2721 * avoid races.
2722 *
2723 * We basically use the page "master dirty bit"
2724 * as a serialization point for all the different
2725 * threads doing their things.
2726 */
2727 if (page_mkclean(page))
2728 set_page_dirty(page);
2729 /*
2730 * We carefully synchronise fault handlers against
2731 * installing a dirty pte and marking the page dirty
2732 * at this point. We do this by having them hold the
2733 * page lock while dirtying the page, and pages are
2734 * always locked coming in here, so we get the desired
2735 * exclusion.
2736 */
2737 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2738 if (TestClearPageDirty(page)) {
2739 dec_lruvec_page_state(page, NR_FILE_DIRTY);
2740 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2741 dec_wb_stat(wb, WB_RECLAIMABLE);
2742 ret = 1;
2743 }
2744 unlocked_inode_to_wb_end(inode, &cookie);
2745 return ret;
2746 }
2747 return TestClearPageDirty(page);
2748 }
2749 EXPORT_SYMBOL(clear_page_dirty_for_io);
2750
2751 static void wb_inode_writeback_start(struct bdi_writeback *wb)
2752 {
2753 atomic_inc(&wb->writeback_inodes);
2754 }
2755
2756 static void wb_inode_writeback_end(struct bdi_writeback *wb)
2757 {
2758 atomic_dec(&wb->writeback_inodes);
2759 /*
2760 * Make sure estimate of writeback throughput gets updated after
2761 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
2762 * (which is the interval other bandwidth updates use for batching) so
2763 * that if multiple inodes end writeback at a similar time, they get
2764 * batched into one bandwidth update.
2765 */
2766 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
2767 }
2768
2769 int test_clear_page_writeback(struct page *page)
2770 {
2771 struct address_space *mapping = page_mapping(page);
2772 int ret;
2773
2774 lock_page_memcg(page);
2775 if (mapping && mapping_use_writeback_tags(mapping)) {
2776 struct inode *inode = mapping->host;
2777 struct backing_dev_info *bdi = inode_to_bdi(inode);
2778 unsigned long flags;
2779
2780 xa_lock_irqsave(&mapping->i_pages, flags);
2781 ret = TestClearPageWriteback(page);
2782 if (ret) {
2783 __xa_clear_mark(&mapping->i_pages, page_index(page),
2784 PAGECACHE_TAG_WRITEBACK);
2785 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2786 struct bdi_writeback *wb = inode_to_wb(inode);
2787
2788 dec_wb_stat(wb, WB_WRITEBACK);
2789 __wb_writeout_inc(wb);
2790 if (!mapping_tagged(mapping,
2791 PAGECACHE_TAG_WRITEBACK))
2792 wb_inode_writeback_end(wb);
2793 }
2794 }
2795
2796 if (mapping->host && !mapping_tagged(mapping,
2797 PAGECACHE_TAG_WRITEBACK))
2798 sb_clear_inode_writeback(mapping->host);
2799
2800 xa_unlock_irqrestore(&mapping->i_pages, flags);
2801 } else {
2802 ret = TestClearPageWriteback(page);
2803 }
2804 if (ret) {
2805 dec_lruvec_page_state(page, NR_WRITEBACK);
2806 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2807 inc_node_page_state(page, NR_WRITTEN);
2808 }
2809 unlock_page_memcg(page);
2810 return ret;
2811 }
2812
2813 int __test_set_page_writeback(struct page *page, bool keep_write)
2814 {
2815 struct address_space *mapping = page_mapping(page);
2816 int ret, access_ret;
2817
2818 lock_page_memcg(page);
2819 if (mapping && mapping_use_writeback_tags(mapping)) {
2820 XA_STATE(xas, &mapping->i_pages, page_index(page));
2821 struct inode *inode = mapping->host;
2822 struct backing_dev_info *bdi = inode_to_bdi(inode);
2823 unsigned long flags;
2824
2825 xas_lock_irqsave(&xas, flags);
2826 xas_load(&xas);
2827 ret = TestSetPageWriteback(page);
2828 if (!ret) {
2829 bool on_wblist;
2830
2831 on_wblist = mapping_tagged(mapping,
2832 PAGECACHE_TAG_WRITEBACK);
2833
2834 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
2835 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2836 struct bdi_writeback *wb = inode_to_wb(inode);
2837
2838 inc_wb_stat(wb, WB_WRITEBACK);
2839 if (!on_wblist)
2840 wb_inode_writeback_start(wb);
2841 }
2842
2843 /*
2844 * We can come through here when swapping anonymous
2845 * pages, so we don't necessarily have an inode to track
2846 * for sync.
2847 */
2848 if (mapping->host && !on_wblist)
2849 sb_mark_inode_writeback(mapping->host);
2850 }
2851 if (!PageDirty(page))
2852 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
2853 if (!keep_write)
2854 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2855 xas_unlock_irqrestore(&xas, flags);
2856 } else {
2857 ret = TestSetPageWriteback(page);
2858 }
2859 if (!ret) {
2860 inc_lruvec_page_state(page, NR_WRITEBACK);
2861 inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2862 }
2863 unlock_page_memcg(page);
2864 access_ret = arch_make_page_accessible(page);
2865 /*
2866 * If writeback has been triggered on a page that cannot be made
2867 * accessible, it is too late to recover here.
2868 */
2869 VM_BUG_ON_PAGE(access_ret != 0, page);
2870
2871 return ret;
2872
2873 }
2874 EXPORT_SYMBOL(__test_set_page_writeback);
2875
2876 /*
2877 * Wait for a page to complete writeback
2878 */
2879 void wait_on_page_writeback(struct page *page)
2880 {
2881 while (PageWriteback(page)) {
2882 trace_wait_on_page_writeback(page, page_mapping(page));
2883 wait_on_page_bit(page, PG_writeback);
2884 }
2885 }
2886 EXPORT_SYMBOL_GPL(wait_on_page_writeback);
2887
2888 /*
2889 * Wait for a page to complete writeback. Returns -EINTR if we get a
2890 * fatal signal while waiting.
2891 */
2892 int wait_on_page_writeback_killable(struct page *page)
2893 {
2894 while (PageWriteback(page)) {
2895 trace_wait_on_page_writeback(page, page_mapping(page));
2896 if (wait_on_page_bit_killable(page, PG_writeback))
2897 return -EINTR;
2898 }
2899
2900 return 0;
2901 }
2902 EXPORT_SYMBOL_GPL(wait_on_page_writeback_killable);
2903
2904 /**
2905 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2906 * @page: The page to wait on.
2907 *
2908 * This function determines if the given page is related to a backing device
2909 * that requires page contents to be held stable during writeback. If so, then
2910 * it will wait for any pending writeback to complete.
2911 */
2912 void wait_for_stable_page(struct page *page)
2913 {
2914 page = thp_head(page);
2915 if (page->mapping->host->i_sb->s_iflags & SB_I_STABLE_WRITES)
2916 wait_on_page_writeback(page);
2917 }
2918 EXPORT_SYMBOL_GPL(wait_for_stable_page);