]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/page-writeback.c
SLUB: include lifetime stats and sets of cpus / nodes in tracking output
[mirror_ubuntu-jammy-kernel.git] / mm / page-writeback.c
1 /*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains functions related to writing back dirty pages at the
7 * address_space level.
8 *
9 * 10Apr2002 akpm@zip.com.au
10 * Initial version
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/spinlock.h>
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/slab.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/init.h>
23 #include <linux/backing-dev.h>
24 #include <linux/task_io_accounting_ops.h>
25 #include <linux/blkdev.h>
26 #include <linux/mpage.h>
27 #include <linux/rmap.h>
28 #include <linux/percpu.h>
29 #include <linux/notifier.h>
30 #include <linux/smp.h>
31 #include <linux/sysctl.h>
32 #include <linux/cpu.h>
33 #include <linux/syscalls.h>
34 #include <linux/buffer_head.h>
35 #include <linux/pagevec.h>
36
37 /*
38 * The maximum number of pages to writeout in a single bdflush/kupdate
39 * operation. We do this so we don't hold I_LOCK against an inode for
40 * enormous amounts of time, which would block a userspace task which has
41 * been forced to throttle against that inode. Also, the code reevaluates
42 * the dirty each time it has written this many pages.
43 */
44 #define MAX_WRITEBACK_PAGES 1024
45
46 /*
47 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
48 * will look to see if it needs to force writeback or throttling.
49 */
50 static long ratelimit_pages = 32;
51
52 static int dirty_exceeded __cacheline_aligned_in_smp; /* Dirty mem may be over limit */
53
54 /*
55 * When balance_dirty_pages decides that the caller needs to perform some
56 * non-background writeback, this is how many pages it will attempt to write.
57 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
58 * large amounts of I/O are submitted.
59 */
60 static inline long sync_writeback_pages(void)
61 {
62 return ratelimit_pages + ratelimit_pages / 2;
63 }
64
65 /* The following parameters are exported via /proc/sys/vm */
66
67 /*
68 * Start background writeback (via pdflush) at this percentage
69 */
70 int dirty_background_ratio = 5;
71
72 /*
73 * The generator of dirty data starts writeback at this percentage
74 */
75 int vm_dirty_ratio = 10;
76
77 /*
78 * The interval between `kupdate'-style writebacks, in jiffies
79 */
80 int dirty_writeback_interval = 5 * HZ;
81
82 /*
83 * The longest number of jiffies for which data is allowed to remain dirty
84 */
85 int dirty_expire_interval = 30 * HZ;
86
87 /*
88 * Flag that makes the machine dump writes/reads and block dirtyings.
89 */
90 int block_dump;
91
92 /*
93 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
94 * a full sync is triggered after this time elapses without any disk activity.
95 */
96 int laptop_mode;
97
98 EXPORT_SYMBOL(laptop_mode);
99
100 /* End of sysctl-exported parameters */
101
102
103 static void background_writeout(unsigned long _min_pages);
104
105 /*
106 * Work out the current dirty-memory clamping and background writeout
107 * thresholds.
108 *
109 * The main aim here is to lower them aggressively if there is a lot of mapped
110 * memory around. To avoid stressing page reclaim with lots of unreclaimable
111 * pages. It is better to clamp down on writers than to start swapping, and
112 * performing lots of scanning.
113 *
114 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
115 *
116 * We don't permit the clamping level to fall below 5% - that is getting rather
117 * excessive.
118 *
119 * We make sure that the background writeout level is below the adjusted
120 * clamping level.
121 */
122
123 static unsigned long highmem_dirtyable_memory(unsigned long total)
124 {
125 #ifdef CONFIG_HIGHMEM
126 int node;
127 unsigned long x = 0;
128
129 for_each_online_node(node) {
130 struct zone *z =
131 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
132
133 x += zone_page_state(z, NR_FREE_PAGES)
134 + zone_page_state(z, NR_INACTIVE)
135 + zone_page_state(z, NR_ACTIVE);
136 }
137 /*
138 * Make sure that the number of highmem pages is never larger
139 * than the number of the total dirtyable memory. This can only
140 * occur in very strange VM situations but we want to make sure
141 * that this does not occur.
142 */
143 return min(x, total);
144 #else
145 return 0;
146 #endif
147 }
148
149 static unsigned long determine_dirtyable_memory(void)
150 {
151 unsigned long x;
152
153 x = global_page_state(NR_FREE_PAGES)
154 + global_page_state(NR_INACTIVE)
155 + global_page_state(NR_ACTIVE);
156 x -= highmem_dirtyable_memory(x);
157 return x + 1; /* Ensure that we never return 0 */
158 }
159
160 static void
161 get_dirty_limits(long *pbackground, long *pdirty,
162 struct address_space *mapping)
163 {
164 int background_ratio; /* Percentages */
165 int dirty_ratio;
166 int unmapped_ratio;
167 long background;
168 long dirty;
169 unsigned long available_memory = determine_dirtyable_memory();
170 struct task_struct *tsk;
171
172 unmapped_ratio = 100 - ((global_page_state(NR_FILE_MAPPED) +
173 global_page_state(NR_ANON_PAGES)) * 100) /
174 available_memory;
175
176 dirty_ratio = vm_dirty_ratio;
177 if (dirty_ratio > unmapped_ratio / 2)
178 dirty_ratio = unmapped_ratio / 2;
179
180 if (dirty_ratio < 5)
181 dirty_ratio = 5;
182
183 background_ratio = dirty_background_ratio;
184 if (background_ratio >= dirty_ratio)
185 background_ratio = dirty_ratio / 2;
186
187 background = (background_ratio * available_memory) / 100;
188 dirty = (dirty_ratio * available_memory) / 100;
189 tsk = current;
190 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
191 background += background / 4;
192 dirty += dirty / 4;
193 }
194 *pbackground = background;
195 *pdirty = dirty;
196 }
197
198 /*
199 * balance_dirty_pages() must be called by processes which are generating dirty
200 * data. It looks at the number of dirty pages in the machine and will force
201 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
202 * If we're over `background_thresh' then pdflush is woken to perform some
203 * writeout.
204 */
205 static void balance_dirty_pages(struct address_space *mapping)
206 {
207 long nr_reclaimable;
208 long background_thresh;
209 long dirty_thresh;
210 unsigned long pages_written = 0;
211 unsigned long write_chunk = sync_writeback_pages();
212
213 struct backing_dev_info *bdi = mapping->backing_dev_info;
214
215 for (;;) {
216 struct writeback_control wbc = {
217 .bdi = bdi,
218 .sync_mode = WB_SYNC_NONE,
219 .older_than_this = NULL,
220 .nr_to_write = write_chunk,
221 .range_cyclic = 1,
222 };
223
224 get_dirty_limits(&background_thresh, &dirty_thresh, mapping);
225 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
226 global_page_state(NR_UNSTABLE_NFS);
227 if (nr_reclaimable + global_page_state(NR_WRITEBACK) <=
228 dirty_thresh)
229 break;
230
231 if (!dirty_exceeded)
232 dirty_exceeded = 1;
233
234 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
235 * Unstable writes are a feature of certain networked
236 * filesystems (i.e. NFS) in which data may have been
237 * written to the server's write cache, but has not yet
238 * been flushed to permanent storage.
239 */
240 if (nr_reclaimable) {
241 writeback_inodes(&wbc);
242 get_dirty_limits(&background_thresh,
243 &dirty_thresh, mapping);
244 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
245 global_page_state(NR_UNSTABLE_NFS);
246 if (nr_reclaimable +
247 global_page_state(NR_WRITEBACK)
248 <= dirty_thresh)
249 break;
250 pages_written += write_chunk - wbc.nr_to_write;
251 if (pages_written >= write_chunk)
252 break; /* We've done our duty */
253 }
254 congestion_wait(WRITE, HZ/10);
255 }
256
257 if (nr_reclaimable + global_page_state(NR_WRITEBACK)
258 <= dirty_thresh && dirty_exceeded)
259 dirty_exceeded = 0;
260
261 if (writeback_in_progress(bdi))
262 return; /* pdflush is already working this queue */
263
264 /*
265 * In laptop mode, we wait until hitting the higher threshold before
266 * starting background writeout, and then write out all the way down
267 * to the lower threshold. So slow writers cause minimal disk activity.
268 *
269 * In normal mode, we start background writeout at the lower
270 * background_thresh, to keep the amount of dirty memory low.
271 */
272 if ((laptop_mode && pages_written) ||
273 (!laptop_mode && (nr_reclaimable > background_thresh)))
274 pdflush_operation(background_writeout, 0);
275 }
276
277 void set_page_dirty_balance(struct page *page)
278 {
279 if (set_page_dirty(page)) {
280 struct address_space *mapping = page_mapping(page);
281
282 if (mapping)
283 balance_dirty_pages_ratelimited(mapping);
284 }
285 }
286
287 /**
288 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
289 * @mapping: address_space which was dirtied
290 * @nr_pages_dirtied: number of pages which the caller has just dirtied
291 *
292 * Processes which are dirtying memory should call in here once for each page
293 * which was newly dirtied. The function will periodically check the system's
294 * dirty state and will initiate writeback if needed.
295 *
296 * On really big machines, get_writeback_state is expensive, so try to avoid
297 * calling it too often (ratelimiting). But once we're over the dirty memory
298 * limit we decrease the ratelimiting by a lot, to prevent individual processes
299 * from overshooting the limit by (ratelimit_pages) each.
300 */
301 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
302 unsigned long nr_pages_dirtied)
303 {
304 static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
305 unsigned long ratelimit;
306 unsigned long *p;
307
308 ratelimit = ratelimit_pages;
309 if (dirty_exceeded)
310 ratelimit = 8;
311
312 /*
313 * Check the rate limiting. Also, we do not want to throttle real-time
314 * tasks in balance_dirty_pages(). Period.
315 */
316 preempt_disable();
317 p = &__get_cpu_var(ratelimits);
318 *p += nr_pages_dirtied;
319 if (unlikely(*p >= ratelimit)) {
320 *p = 0;
321 preempt_enable();
322 balance_dirty_pages(mapping);
323 return;
324 }
325 preempt_enable();
326 }
327 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
328
329 void throttle_vm_writeout(gfp_t gfp_mask)
330 {
331 long background_thresh;
332 long dirty_thresh;
333
334 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) {
335 /*
336 * The caller might hold locks which can prevent IO completion
337 * or progress in the filesystem. So we cannot just sit here
338 * waiting for IO to complete.
339 */
340 congestion_wait(WRITE, HZ/10);
341 return;
342 }
343
344 for ( ; ; ) {
345 get_dirty_limits(&background_thresh, &dirty_thresh, NULL);
346
347 /*
348 * Boost the allowable dirty threshold a bit for page
349 * allocators so they don't get DoS'ed by heavy writers
350 */
351 dirty_thresh += dirty_thresh / 10; /* wheeee... */
352
353 if (global_page_state(NR_UNSTABLE_NFS) +
354 global_page_state(NR_WRITEBACK) <= dirty_thresh)
355 break;
356 congestion_wait(WRITE, HZ/10);
357 }
358 }
359
360 /*
361 * writeback at least _min_pages, and keep writing until the amount of dirty
362 * memory is less than the background threshold, or until we're all clean.
363 */
364 static void background_writeout(unsigned long _min_pages)
365 {
366 long min_pages = _min_pages;
367 struct writeback_control wbc = {
368 .bdi = NULL,
369 .sync_mode = WB_SYNC_NONE,
370 .older_than_this = NULL,
371 .nr_to_write = 0,
372 .nonblocking = 1,
373 .range_cyclic = 1,
374 };
375
376 for ( ; ; ) {
377 long background_thresh;
378 long dirty_thresh;
379
380 get_dirty_limits(&background_thresh, &dirty_thresh, NULL);
381 if (global_page_state(NR_FILE_DIRTY) +
382 global_page_state(NR_UNSTABLE_NFS) < background_thresh
383 && min_pages <= 0)
384 break;
385 wbc.encountered_congestion = 0;
386 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
387 wbc.pages_skipped = 0;
388 writeback_inodes(&wbc);
389 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
390 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
391 /* Wrote less than expected */
392 congestion_wait(WRITE, HZ/10);
393 if (!wbc.encountered_congestion)
394 break;
395 }
396 }
397 }
398
399 /*
400 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
401 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
402 * -1 if all pdflush threads were busy.
403 */
404 int wakeup_pdflush(long nr_pages)
405 {
406 if (nr_pages == 0)
407 nr_pages = global_page_state(NR_FILE_DIRTY) +
408 global_page_state(NR_UNSTABLE_NFS);
409 return pdflush_operation(background_writeout, nr_pages);
410 }
411
412 static void wb_timer_fn(unsigned long unused);
413 static void laptop_timer_fn(unsigned long unused);
414
415 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
416 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
417
418 /*
419 * Periodic writeback of "old" data.
420 *
421 * Define "old": the first time one of an inode's pages is dirtied, we mark the
422 * dirtying-time in the inode's address_space. So this periodic writeback code
423 * just walks the superblock inode list, writing back any inodes which are
424 * older than a specific point in time.
425 *
426 * Try to run once per dirty_writeback_interval. But if a writeback event
427 * takes longer than a dirty_writeback_interval interval, then leave a
428 * one-second gap.
429 *
430 * older_than_this takes precedence over nr_to_write. So we'll only write back
431 * all dirty pages if they are all attached to "old" mappings.
432 */
433 static void wb_kupdate(unsigned long arg)
434 {
435 unsigned long oldest_jif;
436 unsigned long start_jif;
437 unsigned long next_jif;
438 long nr_to_write;
439 struct writeback_control wbc = {
440 .bdi = NULL,
441 .sync_mode = WB_SYNC_NONE,
442 .older_than_this = &oldest_jif,
443 .nr_to_write = 0,
444 .nonblocking = 1,
445 .for_kupdate = 1,
446 .range_cyclic = 1,
447 };
448
449 sync_supers();
450
451 oldest_jif = jiffies - dirty_expire_interval;
452 start_jif = jiffies;
453 next_jif = start_jif + dirty_writeback_interval;
454 nr_to_write = global_page_state(NR_FILE_DIRTY) +
455 global_page_state(NR_UNSTABLE_NFS) +
456 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
457 while (nr_to_write > 0) {
458 wbc.encountered_congestion = 0;
459 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
460 writeback_inodes(&wbc);
461 if (wbc.nr_to_write > 0) {
462 if (wbc.encountered_congestion)
463 congestion_wait(WRITE, HZ/10);
464 else
465 break; /* All the old data is written */
466 }
467 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
468 }
469 if (time_before(next_jif, jiffies + HZ))
470 next_jif = jiffies + HZ;
471 if (dirty_writeback_interval)
472 mod_timer(&wb_timer, next_jif);
473 }
474
475 /*
476 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
477 */
478 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
479 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
480 {
481 proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
482 if (dirty_writeback_interval) {
483 mod_timer(&wb_timer,
484 jiffies + dirty_writeback_interval);
485 } else {
486 del_timer(&wb_timer);
487 }
488 return 0;
489 }
490
491 static void wb_timer_fn(unsigned long unused)
492 {
493 if (pdflush_operation(wb_kupdate, 0) < 0)
494 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
495 }
496
497 static void laptop_flush(unsigned long unused)
498 {
499 sys_sync();
500 }
501
502 static void laptop_timer_fn(unsigned long unused)
503 {
504 pdflush_operation(laptop_flush, 0);
505 }
506
507 /*
508 * We've spun up the disk and we're in laptop mode: schedule writeback
509 * of all dirty data a few seconds from now. If the flush is already scheduled
510 * then push it back - the user is still using the disk.
511 */
512 void laptop_io_completion(void)
513 {
514 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
515 }
516
517 /*
518 * We're in laptop mode and we've just synced. The sync's writes will have
519 * caused another writeback to be scheduled by laptop_io_completion.
520 * Nothing needs to be written back anymore, so we unschedule the writeback.
521 */
522 void laptop_sync_completion(void)
523 {
524 del_timer(&laptop_mode_wb_timer);
525 }
526
527 /*
528 * If ratelimit_pages is too high then we can get into dirty-data overload
529 * if a large number of processes all perform writes at the same time.
530 * If it is too low then SMP machines will call the (expensive)
531 * get_writeback_state too often.
532 *
533 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
534 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
535 * thresholds before writeback cuts in.
536 *
537 * But the limit should not be set too high. Because it also controls the
538 * amount of memory which the balance_dirty_pages() caller has to write back.
539 * If this is too large then the caller will block on the IO queue all the
540 * time. So limit it to four megabytes - the balance_dirty_pages() caller
541 * will write six megabyte chunks, max.
542 */
543
544 void writeback_set_ratelimit(void)
545 {
546 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
547 if (ratelimit_pages < 16)
548 ratelimit_pages = 16;
549 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
550 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
551 }
552
553 static int __cpuinit
554 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
555 {
556 writeback_set_ratelimit();
557 return NOTIFY_DONE;
558 }
559
560 static struct notifier_block __cpuinitdata ratelimit_nb = {
561 .notifier_call = ratelimit_handler,
562 .next = NULL,
563 };
564
565 /*
566 * Called early on to tune the page writeback dirty limits.
567 *
568 * We used to scale dirty pages according to how total memory
569 * related to pages that could be allocated for buffers (by
570 * comparing nr_free_buffer_pages() to vm_total_pages.
571 *
572 * However, that was when we used "dirty_ratio" to scale with
573 * all memory, and we don't do that any more. "dirty_ratio"
574 * is now applied to total non-HIGHPAGE memory (by subtracting
575 * totalhigh_pages from vm_total_pages), and as such we can't
576 * get into the old insane situation any more where we had
577 * large amounts of dirty pages compared to a small amount of
578 * non-HIGHMEM memory.
579 *
580 * But we might still want to scale the dirty_ratio by how
581 * much memory the box has..
582 */
583 void __init page_writeback_init(void)
584 {
585 mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
586 writeback_set_ratelimit();
587 register_cpu_notifier(&ratelimit_nb);
588 }
589
590 /**
591 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
592 * @mapping: address space structure to write
593 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
594 *
595 * This is a library function, which implements the writepages()
596 * address_space_operation.
597 *
598 * If a page is already under I/O, generic_writepages() skips it, even
599 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
600 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
601 * and msync() need to guarantee that all the data which was dirty at the time
602 * the call was made get new I/O started against them. If wbc->sync_mode is
603 * WB_SYNC_ALL then we were called for data integrity and we must wait for
604 * existing IO to complete.
605 *
606 * Derived from mpage_writepages() - if you fix this you should check that
607 * also!
608 */
609 int generic_writepages(struct address_space *mapping,
610 struct writeback_control *wbc)
611 {
612 struct backing_dev_info *bdi = mapping->backing_dev_info;
613 int ret = 0;
614 int done = 0;
615 int (*writepage)(struct page *page, struct writeback_control *wbc);
616 struct pagevec pvec;
617 int nr_pages;
618 pgoff_t index;
619 pgoff_t end; /* Inclusive */
620 int scanned = 0;
621 int range_whole = 0;
622
623 if (wbc->nonblocking && bdi_write_congested(bdi)) {
624 wbc->encountered_congestion = 1;
625 return 0;
626 }
627
628 writepage = mapping->a_ops->writepage;
629
630 /* deal with chardevs and other special file */
631 if (!writepage)
632 return 0;
633
634 pagevec_init(&pvec, 0);
635 if (wbc->range_cyclic) {
636 index = mapping->writeback_index; /* Start from prev offset */
637 end = -1;
638 } else {
639 index = wbc->range_start >> PAGE_CACHE_SHIFT;
640 end = wbc->range_end >> PAGE_CACHE_SHIFT;
641 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
642 range_whole = 1;
643 scanned = 1;
644 }
645 retry:
646 while (!done && (index <= end) &&
647 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
648 PAGECACHE_TAG_DIRTY,
649 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
650 unsigned i;
651
652 scanned = 1;
653 for (i = 0; i < nr_pages; i++) {
654 struct page *page = pvec.pages[i];
655
656 /*
657 * At this point we hold neither mapping->tree_lock nor
658 * lock on the page itself: the page may be truncated or
659 * invalidated (changing page->mapping to NULL), or even
660 * swizzled back from swapper_space to tmpfs file
661 * mapping
662 */
663 lock_page(page);
664
665 if (unlikely(page->mapping != mapping)) {
666 unlock_page(page);
667 continue;
668 }
669
670 if (!wbc->range_cyclic && page->index > end) {
671 done = 1;
672 unlock_page(page);
673 continue;
674 }
675
676 if (wbc->sync_mode != WB_SYNC_NONE)
677 wait_on_page_writeback(page);
678
679 if (PageWriteback(page) ||
680 !clear_page_dirty_for_io(page)) {
681 unlock_page(page);
682 continue;
683 }
684
685 ret = (*writepage)(page, wbc);
686 mapping_set_error(mapping, ret);
687
688 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE))
689 unlock_page(page);
690 if (ret || (--(wbc->nr_to_write) <= 0))
691 done = 1;
692 if (wbc->nonblocking && bdi_write_congested(bdi)) {
693 wbc->encountered_congestion = 1;
694 done = 1;
695 }
696 }
697 pagevec_release(&pvec);
698 cond_resched();
699 }
700 if (!scanned && !done) {
701 /*
702 * We hit the last page and there is more work to be done: wrap
703 * back to the start of the file
704 */
705 scanned = 1;
706 index = 0;
707 goto retry;
708 }
709 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
710 mapping->writeback_index = index;
711 return ret;
712 }
713
714 EXPORT_SYMBOL(generic_writepages);
715
716 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
717 {
718 int ret;
719
720 if (wbc->nr_to_write <= 0)
721 return 0;
722 wbc->for_writepages = 1;
723 if (mapping->a_ops->writepages)
724 ret = mapping->a_ops->writepages(mapping, wbc);
725 else
726 ret = generic_writepages(mapping, wbc);
727 wbc->for_writepages = 0;
728 return ret;
729 }
730
731 /**
732 * write_one_page - write out a single page and optionally wait on I/O
733 * @page: the page to write
734 * @wait: if true, wait on writeout
735 *
736 * The page must be locked by the caller and will be unlocked upon return.
737 *
738 * write_one_page() returns a negative error code if I/O failed.
739 */
740 int write_one_page(struct page *page, int wait)
741 {
742 struct address_space *mapping = page->mapping;
743 int ret = 0;
744 struct writeback_control wbc = {
745 .sync_mode = WB_SYNC_ALL,
746 .nr_to_write = 1,
747 };
748
749 BUG_ON(!PageLocked(page));
750
751 if (wait)
752 wait_on_page_writeback(page);
753
754 if (clear_page_dirty_for_io(page)) {
755 page_cache_get(page);
756 ret = mapping->a_ops->writepage(page, &wbc);
757 if (ret == 0 && wait) {
758 wait_on_page_writeback(page);
759 if (PageError(page))
760 ret = -EIO;
761 }
762 page_cache_release(page);
763 } else {
764 unlock_page(page);
765 }
766 return ret;
767 }
768 EXPORT_SYMBOL(write_one_page);
769
770 /*
771 * For address_spaces which do not use buffers nor write back.
772 */
773 int __set_page_dirty_no_writeback(struct page *page)
774 {
775 if (!PageDirty(page))
776 SetPageDirty(page);
777 return 0;
778 }
779
780 /*
781 * For address_spaces which do not use buffers. Just tag the page as dirty in
782 * its radix tree.
783 *
784 * This is also used when a single buffer is being dirtied: we want to set the
785 * page dirty in that case, but not all the buffers. This is a "bottom-up"
786 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
787 *
788 * Most callers have locked the page, which pins the address_space in memory.
789 * But zap_pte_range() does not lock the page, however in that case the
790 * mapping is pinned by the vma's ->vm_file reference.
791 *
792 * We take care to handle the case where the page was truncated from the
793 * mapping by re-checking page_mapping() insode tree_lock.
794 */
795 int __set_page_dirty_nobuffers(struct page *page)
796 {
797 if (!TestSetPageDirty(page)) {
798 struct address_space *mapping = page_mapping(page);
799 struct address_space *mapping2;
800
801 if (!mapping)
802 return 1;
803
804 write_lock_irq(&mapping->tree_lock);
805 mapping2 = page_mapping(page);
806 if (mapping2) { /* Race with truncate? */
807 BUG_ON(mapping2 != mapping);
808 if (mapping_cap_account_dirty(mapping)) {
809 __inc_zone_page_state(page, NR_FILE_DIRTY);
810 task_io_account_write(PAGE_CACHE_SIZE);
811 }
812 radix_tree_tag_set(&mapping->page_tree,
813 page_index(page), PAGECACHE_TAG_DIRTY);
814 }
815 write_unlock_irq(&mapping->tree_lock);
816 if (mapping->host) {
817 /* !PageAnon && !swapper_space */
818 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
819 }
820 return 1;
821 }
822 return 0;
823 }
824 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
825
826 /*
827 * When a writepage implementation decides that it doesn't want to write this
828 * page for some reason, it should redirty the locked page via
829 * redirty_page_for_writepage() and it should then unlock the page and return 0
830 */
831 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
832 {
833 wbc->pages_skipped++;
834 return __set_page_dirty_nobuffers(page);
835 }
836 EXPORT_SYMBOL(redirty_page_for_writepage);
837
838 /*
839 * If the mapping doesn't provide a set_page_dirty a_op, then
840 * just fall through and assume that it wants buffer_heads.
841 */
842 int fastcall set_page_dirty(struct page *page)
843 {
844 struct address_space *mapping = page_mapping(page);
845
846 if (likely(mapping)) {
847 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
848 #ifdef CONFIG_BLOCK
849 if (!spd)
850 spd = __set_page_dirty_buffers;
851 #endif
852 return (*spd)(page);
853 }
854 if (!PageDirty(page)) {
855 if (!TestSetPageDirty(page))
856 return 1;
857 }
858 return 0;
859 }
860 EXPORT_SYMBOL(set_page_dirty);
861
862 /*
863 * set_page_dirty() is racy if the caller has no reference against
864 * page->mapping->host, and if the page is unlocked. This is because another
865 * CPU could truncate the page off the mapping and then free the mapping.
866 *
867 * Usually, the page _is_ locked, or the caller is a user-space process which
868 * holds a reference on the inode by having an open file.
869 *
870 * In other cases, the page should be locked before running set_page_dirty().
871 */
872 int set_page_dirty_lock(struct page *page)
873 {
874 int ret;
875
876 lock_page_nosync(page);
877 ret = set_page_dirty(page);
878 unlock_page(page);
879 return ret;
880 }
881 EXPORT_SYMBOL(set_page_dirty_lock);
882
883 /*
884 * Clear a page's dirty flag, while caring for dirty memory accounting.
885 * Returns true if the page was previously dirty.
886 *
887 * This is for preparing to put the page under writeout. We leave the page
888 * tagged as dirty in the radix tree so that a concurrent write-for-sync
889 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
890 * implementation will run either set_page_writeback() or set_page_dirty(),
891 * at which stage we bring the page's dirty flag and radix-tree dirty tag
892 * back into sync.
893 *
894 * This incoherency between the page's dirty flag and radix-tree tag is
895 * unfortunate, but it only exists while the page is locked.
896 */
897 int clear_page_dirty_for_io(struct page *page)
898 {
899 struct address_space *mapping = page_mapping(page);
900
901 if (mapping && mapping_cap_account_dirty(mapping)) {
902 /*
903 * Yes, Virginia, this is indeed insane.
904 *
905 * We use this sequence to make sure that
906 * (a) we account for dirty stats properly
907 * (b) we tell the low-level filesystem to
908 * mark the whole page dirty if it was
909 * dirty in a pagetable. Only to then
910 * (c) clean the page again and return 1 to
911 * cause the writeback.
912 *
913 * This way we avoid all nasty races with the
914 * dirty bit in multiple places and clearing
915 * them concurrently from different threads.
916 *
917 * Note! Normally the "set_page_dirty(page)"
918 * has no effect on the actual dirty bit - since
919 * that will already usually be set. But we
920 * need the side effects, and it can help us
921 * avoid races.
922 *
923 * We basically use the page "master dirty bit"
924 * as a serialization point for all the different
925 * threads doing their things.
926 *
927 * FIXME! We still have a race here: if somebody
928 * adds the page back to the page tables in
929 * between the "page_mkclean()" and the "TestClearPageDirty()",
930 * we might have it mapped without the dirty bit set.
931 */
932 if (page_mkclean(page))
933 set_page_dirty(page);
934 if (TestClearPageDirty(page)) {
935 dec_zone_page_state(page, NR_FILE_DIRTY);
936 return 1;
937 }
938 return 0;
939 }
940 return TestClearPageDirty(page);
941 }
942 EXPORT_SYMBOL(clear_page_dirty_for_io);
943
944 int test_clear_page_writeback(struct page *page)
945 {
946 struct address_space *mapping = page_mapping(page);
947 int ret;
948
949 if (mapping) {
950 unsigned long flags;
951
952 write_lock_irqsave(&mapping->tree_lock, flags);
953 ret = TestClearPageWriteback(page);
954 if (ret)
955 radix_tree_tag_clear(&mapping->page_tree,
956 page_index(page),
957 PAGECACHE_TAG_WRITEBACK);
958 write_unlock_irqrestore(&mapping->tree_lock, flags);
959 } else {
960 ret = TestClearPageWriteback(page);
961 }
962 return ret;
963 }
964
965 int test_set_page_writeback(struct page *page)
966 {
967 struct address_space *mapping = page_mapping(page);
968 int ret;
969
970 if (mapping) {
971 unsigned long flags;
972
973 write_lock_irqsave(&mapping->tree_lock, flags);
974 ret = TestSetPageWriteback(page);
975 if (!ret)
976 radix_tree_tag_set(&mapping->page_tree,
977 page_index(page),
978 PAGECACHE_TAG_WRITEBACK);
979 if (!PageDirty(page))
980 radix_tree_tag_clear(&mapping->page_tree,
981 page_index(page),
982 PAGECACHE_TAG_DIRTY);
983 write_unlock_irqrestore(&mapping->tree_lock, flags);
984 } else {
985 ret = TestSetPageWriteback(page);
986 }
987 return ret;
988
989 }
990 EXPORT_SYMBOL(test_set_page_writeback);
991
992 /*
993 * Return true if any of the pages in the mapping are marged with the
994 * passed tag.
995 */
996 int mapping_tagged(struct address_space *mapping, int tag)
997 {
998 unsigned long flags;
999 int ret;
1000
1001 read_lock_irqsave(&mapping->tree_lock, flags);
1002 ret = radix_tree_tagged(&mapping->page_tree, tag);
1003 read_unlock_irqrestore(&mapping->tree_lock, flags);
1004 return ret;
1005 }
1006 EXPORT_SYMBOL(mapping_tagged);