]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/page-writeback.c
swap: use an array for the LRU pagevecs
[mirror_ubuntu-bionic-kernel.git] / mm / page-writeback.c
1 /*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002 Andrew Morton
11 * Initial version
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37
38 /*
39 * The maximum number of pages to writeout in a single bdflush/kupdate
40 * operation. We do this so we don't hold I_SYNC against an inode for
41 * enormous amounts of time, which would block a userspace task which has
42 * been forced to throttle against that inode. Also, the code reevaluates
43 * the dirty each time it has written this many pages.
44 */
45 #define MAX_WRITEBACK_PAGES 1024
46
47 /*
48 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
49 * will look to see if it needs to force writeback or throttling.
50 */
51 static long ratelimit_pages = 32;
52
53 /*
54 * When balance_dirty_pages decides that the caller needs to perform some
55 * non-background writeback, this is how many pages it will attempt to write.
56 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
57 * large amounts of I/O are submitted.
58 */
59 static inline long sync_writeback_pages(void)
60 {
61 return ratelimit_pages + ratelimit_pages / 2;
62 }
63
64 /* The following parameters are exported via /proc/sys/vm */
65
66 /*
67 * Start background writeback (via pdflush) at this percentage
68 */
69 int dirty_background_ratio = 5;
70
71 /*
72 * free highmem will not be subtracted from the total free memory
73 * for calculating free ratios if vm_highmem_is_dirtyable is true
74 */
75 int vm_highmem_is_dirtyable;
76
77 /*
78 * The generator of dirty data starts writeback at this percentage
79 */
80 int vm_dirty_ratio = 10;
81
82 /*
83 * The interval between `kupdate'-style writebacks, in jiffies
84 */
85 int dirty_writeback_interval = 5 * HZ;
86
87 /*
88 * The longest number of jiffies for which data is allowed to remain dirty
89 */
90 int dirty_expire_interval = 30 * HZ;
91
92 /*
93 * Flag that makes the machine dump writes/reads and block dirtyings.
94 */
95 int block_dump;
96
97 /*
98 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
99 * a full sync is triggered after this time elapses without any disk activity.
100 */
101 int laptop_mode;
102
103 EXPORT_SYMBOL(laptop_mode);
104
105 /* End of sysctl-exported parameters */
106
107
108 static void background_writeout(unsigned long _min_pages);
109
110 /*
111 * Scale the writeback cache size proportional to the relative writeout speeds.
112 *
113 * We do this by keeping a floating proportion between BDIs, based on page
114 * writeback completions [end_page_writeback()]. Those devices that write out
115 * pages fastest will get the larger share, while the slower will get a smaller
116 * share.
117 *
118 * We use page writeout completions because we are interested in getting rid of
119 * dirty pages. Having them written out is the primary goal.
120 *
121 * We introduce a concept of time, a period over which we measure these events,
122 * because demand can/will vary over time. The length of this period itself is
123 * measured in page writeback completions.
124 *
125 */
126 static struct prop_descriptor vm_completions;
127 static struct prop_descriptor vm_dirties;
128
129 /*
130 * couple the period to the dirty_ratio:
131 *
132 * period/2 ~ roundup_pow_of_two(dirty limit)
133 */
134 static int calc_period_shift(void)
135 {
136 unsigned long dirty_total;
137
138 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 100;
139 return 2 + ilog2(dirty_total - 1);
140 }
141
142 /*
143 * update the period when the dirty ratio changes.
144 */
145 int dirty_ratio_handler(struct ctl_table *table, int write,
146 struct file *filp, void __user *buffer, size_t *lenp,
147 loff_t *ppos)
148 {
149 int old_ratio = vm_dirty_ratio;
150 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
151 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
152 int shift = calc_period_shift();
153 prop_change_shift(&vm_completions, shift);
154 prop_change_shift(&vm_dirties, shift);
155 }
156 return ret;
157 }
158
159 /*
160 * Increment the BDI's writeout completion count and the global writeout
161 * completion count. Called from test_clear_page_writeback().
162 */
163 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
164 {
165 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
166 bdi->max_prop_frac);
167 }
168
169 void bdi_writeout_inc(struct backing_dev_info *bdi)
170 {
171 unsigned long flags;
172
173 local_irq_save(flags);
174 __bdi_writeout_inc(bdi);
175 local_irq_restore(flags);
176 }
177 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
178
179 static inline void task_dirty_inc(struct task_struct *tsk)
180 {
181 prop_inc_single(&vm_dirties, &tsk->dirties);
182 }
183
184 /*
185 * Obtain an accurate fraction of the BDI's portion.
186 */
187 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
188 long *numerator, long *denominator)
189 {
190 if (bdi_cap_writeback_dirty(bdi)) {
191 prop_fraction_percpu(&vm_completions, &bdi->completions,
192 numerator, denominator);
193 } else {
194 *numerator = 0;
195 *denominator = 1;
196 }
197 }
198
199 /*
200 * Clip the earned share of dirty pages to that which is actually available.
201 * This avoids exceeding the total dirty_limit when the floating averages
202 * fluctuate too quickly.
203 */
204 static void
205 clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
206 {
207 long avail_dirty;
208
209 avail_dirty = dirty -
210 (global_page_state(NR_FILE_DIRTY) +
211 global_page_state(NR_WRITEBACK) +
212 global_page_state(NR_UNSTABLE_NFS) +
213 global_page_state(NR_WRITEBACK_TEMP));
214
215 if (avail_dirty < 0)
216 avail_dirty = 0;
217
218 avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
219 bdi_stat(bdi, BDI_WRITEBACK);
220
221 *pbdi_dirty = min(*pbdi_dirty, avail_dirty);
222 }
223
224 static inline void task_dirties_fraction(struct task_struct *tsk,
225 long *numerator, long *denominator)
226 {
227 prop_fraction_single(&vm_dirties, &tsk->dirties,
228 numerator, denominator);
229 }
230
231 /*
232 * scale the dirty limit
233 *
234 * task specific dirty limit:
235 *
236 * dirty -= (dirty/8) * p_{t}
237 */
238 static void task_dirty_limit(struct task_struct *tsk, long *pdirty)
239 {
240 long numerator, denominator;
241 long dirty = *pdirty;
242 u64 inv = dirty >> 3;
243
244 task_dirties_fraction(tsk, &numerator, &denominator);
245 inv *= numerator;
246 do_div(inv, denominator);
247
248 dirty -= inv;
249 if (dirty < *pdirty/2)
250 dirty = *pdirty/2;
251
252 *pdirty = dirty;
253 }
254
255 /*
256 *
257 */
258 static DEFINE_SPINLOCK(bdi_lock);
259 static unsigned int bdi_min_ratio;
260
261 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
262 {
263 int ret = 0;
264 unsigned long flags;
265
266 spin_lock_irqsave(&bdi_lock, flags);
267 if (min_ratio > bdi->max_ratio) {
268 ret = -EINVAL;
269 } else {
270 min_ratio -= bdi->min_ratio;
271 if (bdi_min_ratio + min_ratio < 100) {
272 bdi_min_ratio += min_ratio;
273 bdi->min_ratio += min_ratio;
274 } else {
275 ret = -EINVAL;
276 }
277 }
278 spin_unlock_irqrestore(&bdi_lock, flags);
279
280 return ret;
281 }
282
283 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
284 {
285 unsigned long flags;
286 int ret = 0;
287
288 if (max_ratio > 100)
289 return -EINVAL;
290
291 spin_lock_irqsave(&bdi_lock, flags);
292 if (bdi->min_ratio > max_ratio) {
293 ret = -EINVAL;
294 } else {
295 bdi->max_ratio = max_ratio;
296 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
297 }
298 spin_unlock_irqrestore(&bdi_lock, flags);
299
300 return ret;
301 }
302 EXPORT_SYMBOL(bdi_set_max_ratio);
303
304 /*
305 * Work out the current dirty-memory clamping and background writeout
306 * thresholds.
307 *
308 * The main aim here is to lower them aggressively if there is a lot of mapped
309 * memory around. To avoid stressing page reclaim with lots of unreclaimable
310 * pages. It is better to clamp down on writers than to start swapping, and
311 * performing lots of scanning.
312 *
313 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
314 *
315 * We don't permit the clamping level to fall below 5% - that is getting rather
316 * excessive.
317 *
318 * We make sure that the background writeout level is below the adjusted
319 * clamping level.
320 */
321
322 static unsigned long highmem_dirtyable_memory(unsigned long total)
323 {
324 #ifdef CONFIG_HIGHMEM
325 int node;
326 unsigned long x = 0;
327
328 for_each_node_state(node, N_HIGH_MEMORY) {
329 struct zone *z =
330 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
331
332 x += zone_page_state(z, NR_FREE_PAGES)
333 + zone_page_state(z, NR_INACTIVE)
334 + zone_page_state(z, NR_ACTIVE);
335 }
336 /*
337 * Make sure that the number of highmem pages is never larger
338 * than the number of the total dirtyable memory. This can only
339 * occur in very strange VM situations but we want to make sure
340 * that this does not occur.
341 */
342 return min(x, total);
343 #else
344 return 0;
345 #endif
346 }
347
348 /**
349 * determine_dirtyable_memory - amount of memory that may be used
350 *
351 * Returns the numebr of pages that can currently be freed and used
352 * by the kernel for direct mappings.
353 */
354 unsigned long determine_dirtyable_memory(void)
355 {
356 unsigned long x;
357
358 x = global_page_state(NR_FREE_PAGES)
359 + global_page_state(NR_INACTIVE)
360 + global_page_state(NR_ACTIVE);
361
362 if (!vm_highmem_is_dirtyable)
363 x -= highmem_dirtyable_memory(x);
364
365 return x + 1; /* Ensure that we never return 0 */
366 }
367
368 void
369 get_dirty_limits(long *pbackground, long *pdirty, long *pbdi_dirty,
370 struct backing_dev_info *bdi)
371 {
372 int background_ratio; /* Percentages */
373 int dirty_ratio;
374 long background;
375 long dirty;
376 unsigned long available_memory = determine_dirtyable_memory();
377 struct task_struct *tsk;
378
379 dirty_ratio = vm_dirty_ratio;
380 if (dirty_ratio < 5)
381 dirty_ratio = 5;
382
383 background_ratio = dirty_background_ratio;
384 if (background_ratio >= dirty_ratio)
385 background_ratio = dirty_ratio / 2;
386
387 background = (background_ratio * available_memory) / 100;
388 dirty = (dirty_ratio * available_memory) / 100;
389 tsk = current;
390 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
391 background += background / 4;
392 dirty += dirty / 4;
393 }
394 *pbackground = background;
395 *pdirty = dirty;
396
397 if (bdi) {
398 u64 bdi_dirty;
399 long numerator, denominator;
400
401 /*
402 * Calculate this BDI's share of the dirty ratio.
403 */
404 bdi_writeout_fraction(bdi, &numerator, &denominator);
405
406 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
407 bdi_dirty *= numerator;
408 do_div(bdi_dirty, denominator);
409 bdi_dirty += (dirty * bdi->min_ratio) / 100;
410 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
411 bdi_dirty = dirty * bdi->max_ratio / 100;
412
413 *pbdi_dirty = bdi_dirty;
414 clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
415 task_dirty_limit(current, pbdi_dirty);
416 }
417 }
418
419 /*
420 * balance_dirty_pages() must be called by processes which are generating dirty
421 * data. It looks at the number of dirty pages in the machine and will force
422 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
423 * If we're over `background_thresh' then pdflush is woken to perform some
424 * writeout.
425 */
426 static void balance_dirty_pages(struct address_space *mapping)
427 {
428 long nr_reclaimable, bdi_nr_reclaimable;
429 long nr_writeback, bdi_nr_writeback;
430 long background_thresh;
431 long dirty_thresh;
432 long bdi_thresh;
433 unsigned long pages_written = 0;
434 unsigned long write_chunk = sync_writeback_pages();
435
436 struct backing_dev_info *bdi = mapping->backing_dev_info;
437
438 for (;;) {
439 struct writeback_control wbc = {
440 .bdi = bdi,
441 .sync_mode = WB_SYNC_NONE,
442 .older_than_this = NULL,
443 .nr_to_write = write_chunk,
444 .range_cyclic = 1,
445 };
446
447 get_dirty_limits(&background_thresh, &dirty_thresh,
448 &bdi_thresh, bdi);
449
450 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
451 global_page_state(NR_UNSTABLE_NFS);
452 nr_writeback = global_page_state(NR_WRITEBACK);
453
454 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
455 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
456
457 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
458 break;
459
460 /*
461 * Throttle it only when the background writeback cannot
462 * catch-up. This avoids (excessively) small writeouts
463 * when the bdi limits are ramping up.
464 */
465 if (nr_reclaimable + nr_writeback <
466 (background_thresh + dirty_thresh) / 2)
467 break;
468
469 if (!bdi->dirty_exceeded)
470 bdi->dirty_exceeded = 1;
471
472 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
473 * Unstable writes are a feature of certain networked
474 * filesystems (i.e. NFS) in which data may have been
475 * written to the server's write cache, but has not yet
476 * been flushed to permanent storage.
477 */
478 if (bdi_nr_reclaimable) {
479 writeback_inodes(&wbc);
480 pages_written += write_chunk - wbc.nr_to_write;
481 get_dirty_limits(&background_thresh, &dirty_thresh,
482 &bdi_thresh, bdi);
483 }
484
485 /*
486 * In order to avoid the stacked BDI deadlock we need
487 * to ensure we accurately count the 'dirty' pages when
488 * the threshold is low.
489 *
490 * Otherwise it would be possible to get thresh+n pages
491 * reported dirty, even though there are thresh-m pages
492 * actually dirty; with m+n sitting in the percpu
493 * deltas.
494 */
495 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
496 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
497 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
498 } else if (bdi_nr_reclaimable) {
499 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
500 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
501 }
502
503 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
504 break;
505 if (pages_written >= write_chunk)
506 break; /* We've done our duty */
507
508 congestion_wait(WRITE, HZ/10);
509 }
510
511 if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
512 bdi->dirty_exceeded)
513 bdi->dirty_exceeded = 0;
514
515 if (writeback_in_progress(bdi))
516 return; /* pdflush is already working this queue */
517
518 /*
519 * In laptop mode, we wait until hitting the higher threshold before
520 * starting background writeout, and then write out all the way down
521 * to the lower threshold. So slow writers cause minimal disk activity.
522 *
523 * In normal mode, we start background writeout at the lower
524 * background_thresh, to keep the amount of dirty memory low.
525 */
526 if ((laptop_mode && pages_written) ||
527 (!laptop_mode && (global_page_state(NR_FILE_DIRTY)
528 + global_page_state(NR_UNSTABLE_NFS)
529 > background_thresh)))
530 pdflush_operation(background_writeout, 0);
531 }
532
533 void set_page_dirty_balance(struct page *page, int page_mkwrite)
534 {
535 if (set_page_dirty(page) || page_mkwrite) {
536 struct address_space *mapping = page_mapping(page);
537
538 if (mapping)
539 balance_dirty_pages_ratelimited(mapping);
540 }
541 }
542
543 /**
544 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
545 * @mapping: address_space which was dirtied
546 * @nr_pages_dirtied: number of pages which the caller has just dirtied
547 *
548 * Processes which are dirtying memory should call in here once for each page
549 * which was newly dirtied. The function will periodically check the system's
550 * dirty state and will initiate writeback if needed.
551 *
552 * On really big machines, get_writeback_state is expensive, so try to avoid
553 * calling it too often (ratelimiting). But once we're over the dirty memory
554 * limit we decrease the ratelimiting by a lot, to prevent individual processes
555 * from overshooting the limit by (ratelimit_pages) each.
556 */
557 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
558 unsigned long nr_pages_dirtied)
559 {
560 static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
561 unsigned long ratelimit;
562 unsigned long *p;
563
564 ratelimit = ratelimit_pages;
565 if (mapping->backing_dev_info->dirty_exceeded)
566 ratelimit = 8;
567
568 /*
569 * Check the rate limiting. Also, we do not want to throttle real-time
570 * tasks in balance_dirty_pages(). Period.
571 */
572 preempt_disable();
573 p = &__get_cpu_var(ratelimits);
574 *p += nr_pages_dirtied;
575 if (unlikely(*p >= ratelimit)) {
576 *p = 0;
577 preempt_enable();
578 balance_dirty_pages(mapping);
579 return;
580 }
581 preempt_enable();
582 }
583 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
584
585 void throttle_vm_writeout(gfp_t gfp_mask)
586 {
587 long background_thresh;
588 long dirty_thresh;
589
590 for ( ; ; ) {
591 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
592
593 /*
594 * Boost the allowable dirty threshold a bit for page
595 * allocators so they don't get DoS'ed by heavy writers
596 */
597 dirty_thresh += dirty_thresh / 10; /* wheeee... */
598
599 if (global_page_state(NR_UNSTABLE_NFS) +
600 global_page_state(NR_WRITEBACK) <= dirty_thresh)
601 break;
602 congestion_wait(WRITE, HZ/10);
603
604 /*
605 * The caller might hold locks which can prevent IO completion
606 * or progress in the filesystem. So we cannot just sit here
607 * waiting for IO to complete.
608 */
609 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
610 break;
611 }
612 }
613
614 /*
615 * writeback at least _min_pages, and keep writing until the amount of dirty
616 * memory is less than the background threshold, or until we're all clean.
617 */
618 static void background_writeout(unsigned long _min_pages)
619 {
620 long min_pages = _min_pages;
621 struct writeback_control wbc = {
622 .bdi = NULL,
623 .sync_mode = WB_SYNC_NONE,
624 .older_than_this = NULL,
625 .nr_to_write = 0,
626 .nonblocking = 1,
627 .range_cyclic = 1,
628 };
629
630 for ( ; ; ) {
631 long background_thresh;
632 long dirty_thresh;
633
634 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
635 if (global_page_state(NR_FILE_DIRTY) +
636 global_page_state(NR_UNSTABLE_NFS) < background_thresh
637 && min_pages <= 0)
638 break;
639 wbc.more_io = 0;
640 wbc.encountered_congestion = 0;
641 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
642 wbc.pages_skipped = 0;
643 writeback_inodes(&wbc);
644 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
645 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
646 /* Wrote less than expected */
647 if (wbc.encountered_congestion || wbc.more_io)
648 congestion_wait(WRITE, HZ/10);
649 else
650 break;
651 }
652 }
653 }
654
655 /*
656 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
657 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
658 * -1 if all pdflush threads were busy.
659 */
660 int wakeup_pdflush(long nr_pages)
661 {
662 if (nr_pages == 0)
663 nr_pages = global_page_state(NR_FILE_DIRTY) +
664 global_page_state(NR_UNSTABLE_NFS);
665 return pdflush_operation(background_writeout, nr_pages);
666 }
667
668 static void wb_timer_fn(unsigned long unused);
669 static void laptop_timer_fn(unsigned long unused);
670
671 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
672 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
673
674 /*
675 * Periodic writeback of "old" data.
676 *
677 * Define "old": the first time one of an inode's pages is dirtied, we mark the
678 * dirtying-time in the inode's address_space. So this periodic writeback code
679 * just walks the superblock inode list, writing back any inodes which are
680 * older than a specific point in time.
681 *
682 * Try to run once per dirty_writeback_interval. But if a writeback event
683 * takes longer than a dirty_writeback_interval interval, then leave a
684 * one-second gap.
685 *
686 * older_than_this takes precedence over nr_to_write. So we'll only write back
687 * all dirty pages if they are all attached to "old" mappings.
688 */
689 static void wb_kupdate(unsigned long arg)
690 {
691 unsigned long oldest_jif;
692 unsigned long start_jif;
693 unsigned long next_jif;
694 long nr_to_write;
695 struct writeback_control wbc = {
696 .bdi = NULL,
697 .sync_mode = WB_SYNC_NONE,
698 .older_than_this = &oldest_jif,
699 .nr_to_write = 0,
700 .nonblocking = 1,
701 .for_kupdate = 1,
702 .range_cyclic = 1,
703 };
704
705 sync_supers();
706
707 oldest_jif = jiffies - dirty_expire_interval;
708 start_jif = jiffies;
709 next_jif = start_jif + dirty_writeback_interval;
710 nr_to_write = global_page_state(NR_FILE_DIRTY) +
711 global_page_state(NR_UNSTABLE_NFS) +
712 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
713 while (nr_to_write > 0) {
714 wbc.more_io = 0;
715 wbc.encountered_congestion = 0;
716 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
717 writeback_inodes(&wbc);
718 if (wbc.nr_to_write > 0) {
719 if (wbc.encountered_congestion || wbc.more_io)
720 congestion_wait(WRITE, HZ/10);
721 else
722 break; /* All the old data is written */
723 }
724 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
725 }
726 if (time_before(next_jif, jiffies + HZ))
727 next_jif = jiffies + HZ;
728 if (dirty_writeback_interval)
729 mod_timer(&wb_timer, next_jif);
730 }
731
732 /*
733 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
734 */
735 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
736 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
737 {
738 proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
739 if (dirty_writeback_interval)
740 mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
741 else
742 del_timer(&wb_timer);
743 return 0;
744 }
745
746 static void wb_timer_fn(unsigned long unused)
747 {
748 if (pdflush_operation(wb_kupdate, 0) < 0)
749 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
750 }
751
752 static void laptop_flush(unsigned long unused)
753 {
754 sys_sync();
755 }
756
757 static void laptop_timer_fn(unsigned long unused)
758 {
759 pdflush_operation(laptop_flush, 0);
760 }
761
762 /*
763 * We've spun up the disk and we're in laptop mode: schedule writeback
764 * of all dirty data a few seconds from now. If the flush is already scheduled
765 * then push it back - the user is still using the disk.
766 */
767 void laptop_io_completion(void)
768 {
769 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
770 }
771
772 /*
773 * We're in laptop mode and we've just synced. The sync's writes will have
774 * caused another writeback to be scheduled by laptop_io_completion.
775 * Nothing needs to be written back anymore, so we unschedule the writeback.
776 */
777 void laptop_sync_completion(void)
778 {
779 del_timer(&laptop_mode_wb_timer);
780 }
781
782 /*
783 * If ratelimit_pages is too high then we can get into dirty-data overload
784 * if a large number of processes all perform writes at the same time.
785 * If it is too low then SMP machines will call the (expensive)
786 * get_writeback_state too often.
787 *
788 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
789 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
790 * thresholds before writeback cuts in.
791 *
792 * But the limit should not be set too high. Because it also controls the
793 * amount of memory which the balance_dirty_pages() caller has to write back.
794 * If this is too large then the caller will block on the IO queue all the
795 * time. So limit it to four megabytes - the balance_dirty_pages() caller
796 * will write six megabyte chunks, max.
797 */
798
799 void writeback_set_ratelimit(void)
800 {
801 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
802 if (ratelimit_pages < 16)
803 ratelimit_pages = 16;
804 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
805 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
806 }
807
808 static int __cpuinit
809 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
810 {
811 writeback_set_ratelimit();
812 return NOTIFY_DONE;
813 }
814
815 static struct notifier_block __cpuinitdata ratelimit_nb = {
816 .notifier_call = ratelimit_handler,
817 .next = NULL,
818 };
819
820 /*
821 * Called early on to tune the page writeback dirty limits.
822 *
823 * We used to scale dirty pages according to how total memory
824 * related to pages that could be allocated for buffers (by
825 * comparing nr_free_buffer_pages() to vm_total_pages.
826 *
827 * However, that was when we used "dirty_ratio" to scale with
828 * all memory, and we don't do that any more. "dirty_ratio"
829 * is now applied to total non-HIGHPAGE memory (by subtracting
830 * totalhigh_pages from vm_total_pages), and as such we can't
831 * get into the old insane situation any more where we had
832 * large amounts of dirty pages compared to a small amount of
833 * non-HIGHMEM memory.
834 *
835 * But we might still want to scale the dirty_ratio by how
836 * much memory the box has..
837 */
838 void __init page_writeback_init(void)
839 {
840 int shift;
841
842 mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
843 writeback_set_ratelimit();
844 register_cpu_notifier(&ratelimit_nb);
845
846 shift = calc_period_shift();
847 prop_descriptor_init(&vm_completions, shift);
848 prop_descriptor_init(&vm_dirties, shift);
849 }
850
851 /**
852 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
853 * @mapping: address space structure to write
854 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
855 * @writepage: function called for each page
856 * @data: data passed to writepage function
857 *
858 * If a page is already under I/O, write_cache_pages() skips it, even
859 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
860 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
861 * and msync() need to guarantee that all the data which was dirty at the time
862 * the call was made get new I/O started against them. If wbc->sync_mode is
863 * WB_SYNC_ALL then we were called for data integrity and we must wait for
864 * existing IO to complete.
865 */
866 int write_cache_pages(struct address_space *mapping,
867 struct writeback_control *wbc, writepage_t writepage,
868 void *data)
869 {
870 struct backing_dev_info *bdi = mapping->backing_dev_info;
871 int ret = 0;
872 int done = 0;
873 struct pagevec pvec;
874 int nr_pages;
875 pgoff_t index;
876 pgoff_t end; /* Inclusive */
877 int scanned = 0;
878 int range_whole = 0;
879 long nr_to_write = wbc->nr_to_write;
880
881 if (wbc->nonblocking && bdi_write_congested(bdi)) {
882 wbc->encountered_congestion = 1;
883 return 0;
884 }
885
886 pagevec_init(&pvec, 0);
887 if (wbc->range_cyclic) {
888 index = mapping->writeback_index; /* Start from prev offset */
889 end = -1;
890 } else {
891 index = wbc->range_start >> PAGE_CACHE_SHIFT;
892 end = wbc->range_end >> PAGE_CACHE_SHIFT;
893 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
894 range_whole = 1;
895 scanned = 1;
896 }
897 retry:
898 while (!done && (index <= end) &&
899 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
900 PAGECACHE_TAG_DIRTY,
901 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
902 unsigned i;
903
904 scanned = 1;
905 for (i = 0; i < nr_pages; i++) {
906 struct page *page = pvec.pages[i];
907
908 /*
909 * At this point we hold neither mapping->tree_lock nor
910 * lock on the page itself: the page may be truncated or
911 * invalidated (changing page->mapping to NULL), or even
912 * swizzled back from swapper_space to tmpfs file
913 * mapping
914 */
915 lock_page(page);
916
917 if (unlikely(page->mapping != mapping)) {
918 unlock_page(page);
919 continue;
920 }
921
922 if (!wbc->range_cyclic && page->index > end) {
923 done = 1;
924 unlock_page(page);
925 continue;
926 }
927
928 if (wbc->sync_mode != WB_SYNC_NONE)
929 wait_on_page_writeback(page);
930
931 if (PageWriteback(page) ||
932 !clear_page_dirty_for_io(page)) {
933 unlock_page(page);
934 continue;
935 }
936
937 ret = (*writepage)(page, wbc, data);
938
939 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
940 unlock_page(page);
941 ret = 0;
942 }
943 if (ret || (--nr_to_write <= 0))
944 done = 1;
945 if (wbc->nonblocking && bdi_write_congested(bdi)) {
946 wbc->encountered_congestion = 1;
947 done = 1;
948 }
949 }
950 pagevec_release(&pvec);
951 cond_resched();
952 }
953 if (!scanned && !done) {
954 /*
955 * We hit the last page and there is more work to be done: wrap
956 * back to the start of the file
957 */
958 scanned = 1;
959 index = 0;
960 goto retry;
961 }
962 if (!wbc->no_nrwrite_index_update) {
963 if (wbc->range_cyclic || (range_whole && nr_to_write > 0))
964 mapping->writeback_index = index;
965 wbc->nr_to_write = nr_to_write;
966 }
967
968 return ret;
969 }
970 EXPORT_SYMBOL(write_cache_pages);
971
972 /*
973 * Function used by generic_writepages to call the real writepage
974 * function and set the mapping flags on error
975 */
976 static int __writepage(struct page *page, struct writeback_control *wbc,
977 void *data)
978 {
979 struct address_space *mapping = data;
980 int ret = mapping->a_ops->writepage(page, wbc);
981 mapping_set_error(mapping, ret);
982 return ret;
983 }
984
985 /**
986 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
987 * @mapping: address space structure to write
988 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
989 *
990 * This is a library function, which implements the writepages()
991 * address_space_operation.
992 */
993 int generic_writepages(struct address_space *mapping,
994 struct writeback_control *wbc)
995 {
996 /* deal with chardevs and other special file */
997 if (!mapping->a_ops->writepage)
998 return 0;
999
1000 return write_cache_pages(mapping, wbc, __writepage, mapping);
1001 }
1002
1003 EXPORT_SYMBOL(generic_writepages);
1004
1005 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1006 {
1007 int ret;
1008
1009 if (wbc->nr_to_write <= 0)
1010 return 0;
1011 wbc->for_writepages = 1;
1012 if (mapping->a_ops->writepages)
1013 ret = mapping->a_ops->writepages(mapping, wbc);
1014 else
1015 ret = generic_writepages(mapping, wbc);
1016 wbc->for_writepages = 0;
1017 return ret;
1018 }
1019
1020 /**
1021 * write_one_page - write out a single page and optionally wait on I/O
1022 * @page: the page to write
1023 * @wait: if true, wait on writeout
1024 *
1025 * The page must be locked by the caller and will be unlocked upon return.
1026 *
1027 * write_one_page() returns a negative error code if I/O failed.
1028 */
1029 int write_one_page(struct page *page, int wait)
1030 {
1031 struct address_space *mapping = page->mapping;
1032 int ret = 0;
1033 struct writeback_control wbc = {
1034 .sync_mode = WB_SYNC_ALL,
1035 .nr_to_write = 1,
1036 };
1037
1038 BUG_ON(!PageLocked(page));
1039
1040 if (wait)
1041 wait_on_page_writeback(page);
1042
1043 if (clear_page_dirty_for_io(page)) {
1044 page_cache_get(page);
1045 ret = mapping->a_ops->writepage(page, &wbc);
1046 if (ret == 0 && wait) {
1047 wait_on_page_writeback(page);
1048 if (PageError(page))
1049 ret = -EIO;
1050 }
1051 page_cache_release(page);
1052 } else {
1053 unlock_page(page);
1054 }
1055 return ret;
1056 }
1057 EXPORT_SYMBOL(write_one_page);
1058
1059 /*
1060 * For address_spaces which do not use buffers nor write back.
1061 */
1062 int __set_page_dirty_no_writeback(struct page *page)
1063 {
1064 if (!PageDirty(page))
1065 SetPageDirty(page);
1066 return 0;
1067 }
1068
1069 /*
1070 * For address_spaces which do not use buffers. Just tag the page as dirty in
1071 * its radix tree.
1072 *
1073 * This is also used when a single buffer is being dirtied: we want to set the
1074 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1075 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1076 *
1077 * Most callers have locked the page, which pins the address_space in memory.
1078 * But zap_pte_range() does not lock the page, however in that case the
1079 * mapping is pinned by the vma's ->vm_file reference.
1080 *
1081 * We take care to handle the case where the page was truncated from the
1082 * mapping by re-checking page_mapping() inside tree_lock.
1083 */
1084 int __set_page_dirty_nobuffers(struct page *page)
1085 {
1086 if (!TestSetPageDirty(page)) {
1087 struct address_space *mapping = page_mapping(page);
1088 struct address_space *mapping2;
1089
1090 if (!mapping)
1091 return 1;
1092
1093 spin_lock_irq(&mapping->tree_lock);
1094 mapping2 = page_mapping(page);
1095 if (mapping2) { /* Race with truncate? */
1096 BUG_ON(mapping2 != mapping);
1097 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1098 if (mapping_cap_account_dirty(mapping)) {
1099 __inc_zone_page_state(page, NR_FILE_DIRTY);
1100 __inc_bdi_stat(mapping->backing_dev_info,
1101 BDI_RECLAIMABLE);
1102 task_io_account_write(PAGE_CACHE_SIZE);
1103 }
1104 radix_tree_tag_set(&mapping->page_tree,
1105 page_index(page), PAGECACHE_TAG_DIRTY);
1106 }
1107 spin_unlock_irq(&mapping->tree_lock);
1108 if (mapping->host) {
1109 /* !PageAnon && !swapper_space */
1110 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1111 }
1112 return 1;
1113 }
1114 return 0;
1115 }
1116 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1117
1118 /*
1119 * When a writepage implementation decides that it doesn't want to write this
1120 * page for some reason, it should redirty the locked page via
1121 * redirty_page_for_writepage() and it should then unlock the page and return 0
1122 */
1123 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1124 {
1125 wbc->pages_skipped++;
1126 return __set_page_dirty_nobuffers(page);
1127 }
1128 EXPORT_SYMBOL(redirty_page_for_writepage);
1129
1130 /*
1131 * If the mapping doesn't provide a set_page_dirty a_op, then
1132 * just fall through and assume that it wants buffer_heads.
1133 */
1134 static int __set_page_dirty(struct page *page)
1135 {
1136 struct address_space *mapping = page_mapping(page);
1137
1138 if (likely(mapping)) {
1139 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1140 #ifdef CONFIG_BLOCK
1141 if (!spd)
1142 spd = __set_page_dirty_buffers;
1143 #endif
1144 return (*spd)(page);
1145 }
1146 if (!PageDirty(page)) {
1147 if (!TestSetPageDirty(page))
1148 return 1;
1149 }
1150 return 0;
1151 }
1152
1153 int set_page_dirty(struct page *page)
1154 {
1155 int ret = __set_page_dirty(page);
1156 if (ret)
1157 task_dirty_inc(current);
1158 return ret;
1159 }
1160 EXPORT_SYMBOL(set_page_dirty);
1161
1162 /*
1163 * set_page_dirty() is racy if the caller has no reference against
1164 * page->mapping->host, and if the page is unlocked. This is because another
1165 * CPU could truncate the page off the mapping and then free the mapping.
1166 *
1167 * Usually, the page _is_ locked, or the caller is a user-space process which
1168 * holds a reference on the inode by having an open file.
1169 *
1170 * In other cases, the page should be locked before running set_page_dirty().
1171 */
1172 int set_page_dirty_lock(struct page *page)
1173 {
1174 int ret;
1175
1176 lock_page_nosync(page);
1177 ret = set_page_dirty(page);
1178 unlock_page(page);
1179 return ret;
1180 }
1181 EXPORT_SYMBOL(set_page_dirty_lock);
1182
1183 /*
1184 * Clear a page's dirty flag, while caring for dirty memory accounting.
1185 * Returns true if the page was previously dirty.
1186 *
1187 * This is for preparing to put the page under writeout. We leave the page
1188 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1189 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1190 * implementation will run either set_page_writeback() or set_page_dirty(),
1191 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1192 * back into sync.
1193 *
1194 * This incoherency between the page's dirty flag and radix-tree tag is
1195 * unfortunate, but it only exists while the page is locked.
1196 */
1197 int clear_page_dirty_for_io(struct page *page)
1198 {
1199 struct address_space *mapping = page_mapping(page);
1200
1201 BUG_ON(!PageLocked(page));
1202
1203 ClearPageReclaim(page);
1204 if (mapping && mapping_cap_account_dirty(mapping)) {
1205 /*
1206 * Yes, Virginia, this is indeed insane.
1207 *
1208 * We use this sequence to make sure that
1209 * (a) we account for dirty stats properly
1210 * (b) we tell the low-level filesystem to
1211 * mark the whole page dirty if it was
1212 * dirty in a pagetable. Only to then
1213 * (c) clean the page again and return 1 to
1214 * cause the writeback.
1215 *
1216 * This way we avoid all nasty races with the
1217 * dirty bit in multiple places and clearing
1218 * them concurrently from different threads.
1219 *
1220 * Note! Normally the "set_page_dirty(page)"
1221 * has no effect on the actual dirty bit - since
1222 * that will already usually be set. But we
1223 * need the side effects, and it can help us
1224 * avoid races.
1225 *
1226 * We basically use the page "master dirty bit"
1227 * as a serialization point for all the different
1228 * threads doing their things.
1229 */
1230 if (page_mkclean(page))
1231 set_page_dirty(page);
1232 /*
1233 * We carefully synchronise fault handlers against
1234 * installing a dirty pte and marking the page dirty
1235 * at this point. We do this by having them hold the
1236 * page lock at some point after installing their
1237 * pte, but before marking the page dirty.
1238 * Pages are always locked coming in here, so we get
1239 * the desired exclusion. See mm/memory.c:do_wp_page()
1240 * for more comments.
1241 */
1242 if (TestClearPageDirty(page)) {
1243 dec_zone_page_state(page, NR_FILE_DIRTY);
1244 dec_bdi_stat(mapping->backing_dev_info,
1245 BDI_RECLAIMABLE);
1246 return 1;
1247 }
1248 return 0;
1249 }
1250 return TestClearPageDirty(page);
1251 }
1252 EXPORT_SYMBOL(clear_page_dirty_for_io);
1253
1254 int test_clear_page_writeback(struct page *page)
1255 {
1256 struct address_space *mapping = page_mapping(page);
1257 int ret;
1258
1259 if (mapping) {
1260 struct backing_dev_info *bdi = mapping->backing_dev_info;
1261 unsigned long flags;
1262
1263 spin_lock_irqsave(&mapping->tree_lock, flags);
1264 ret = TestClearPageWriteback(page);
1265 if (ret) {
1266 radix_tree_tag_clear(&mapping->page_tree,
1267 page_index(page),
1268 PAGECACHE_TAG_WRITEBACK);
1269 if (bdi_cap_account_writeback(bdi)) {
1270 __dec_bdi_stat(bdi, BDI_WRITEBACK);
1271 __bdi_writeout_inc(bdi);
1272 }
1273 }
1274 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1275 } else {
1276 ret = TestClearPageWriteback(page);
1277 }
1278 if (ret)
1279 dec_zone_page_state(page, NR_WRITEBACK);
1280 return ret;
1281 }
1282
1283 int test_set_page_writeback(struct page *page)
1284 {
1285 struct address_space *mapping = page_mapping(page);
1286 int ret;
1287
1288 if (mapping) {
1289 struct backing_dev_info *bdi = mapping->backing_dev_info;
1290 unsigned long flags;
1291
1292 spin_lock_irqsave(&mapping->tree_lock, flags);
1293 ret = TestSetPageWriteback(page);
1294 if (!ret) {
1295 radix_tree_tag_set(&mapping->page_tree,
1296 page_index(page),
1297 PAGECACHE_TAG_WRITEBACK);
1298 if (bdi_cap_account_writeback(bdi))
1299 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1300 }
1301 if (!PageDirty(page))
1302 radix_tree_tag_clear(&mapping->page_tree,
1303 page_index(page),
1304 PAGECACHE_TAG_DIRTY);
1305 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1306 } else {
1307 ret = TestSetPageWriteback(page);
1308 }
1309 if (!ret)
1310 inc_zone_page_state(page, NR_WRITEBACK);
1311 return ret;
1312
1313 }
1314 EXPORT_SYMBOL(test_set_page_writeback);
1315
1316 /*
1317 * Return true if any of the pages in the mapping are marked with the
1318 * passed tag.
1319 */
1320 int mapping_tagged(struct address_space *mapping, int tag)
1321 {
1322 int ret;
1323 rcu_read_lock();
1324 ret = radix_tree_tagged(&mapping->page_tree, tag);
1325 rcu_read_unlock();
1326 return ret;
1327 }
1328 EXPORT_SYMBOL(mapping_tagged);