]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/page-writeback.c
writeback: separate out domain_dirty_limits()
[mirror_ubuntu-jammy-kernel.git] / mm / page-writeback.c
1 /*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002 Andrew Morton
11 * Initial version
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41
42 #include "internal.h"
43
44 /*
45 * Sleep at most 200ms at a time in balance_dirty_pages().
46 */
47 #define MAX_PAUSE max(HZ/5, 1)
48
49 /*
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
52 */
53 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
54
55 /*
56 * Estimate write bandwidth at 200ms intervals.
57 */
58 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
59
60 #define RATELIMIT_CALC_SHIFT 10
61
62 /*
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
65 */
66 static long ratelimit_pages = 32;
67
68 /* The following parameters are exported via /proc/sys/vm */
69
70 /*
71 * Start background writeback (via writeback threads) at this percentage
72 */
73 int dirty_background_ratio = 10;
74
75 /*
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
78 */
79 unsigned long dirty_background_bytes;
80
81 /*
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
84 */
85 int vm_highmem_is_dirtyable;
86
87 /*
88 * The generator of dirty data starts writeback at this percentage
89 */
90 int vm_dirty_ratio = 20;
91
92 /*
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
95 */
96 unsigned long vm_dirty_bytes;
97
98 /*
99 * The interval between `kupdate'-style writebacks
100 */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
105 /*
106 * The longest time for which data is allowed to remain dirty
107 */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109
110 /*
111 * Flag that makes the machine dump writes/reads and block dirtyings.
112 */
113 int block_dump;
114
115 /*
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
118 */
119 int laptop_mode;
120
121 EXPORT_SYMBOL(laptop_mode);
122
123 /* End of sysctl-exported parameters */
124
125 struct wb_domain global_wb_domain;
126
127 /* consolidated parameters for balance_dirty_pages() and its subroutines */
128 struct dirty_throttle_control {
129 #ifdef CONFIG_CGROUP_WRITEBACK
130 struct wb_domain *dom;
131 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
132 #endif
133 struct bdi_writeback *wb;
134 struct fprop_local_percpu *wb_completions;
135
136 unsigned long avail; /* dirtyable */
137 unsigned long dirty; /* file_dirty + write + nfs */
138 unsigned long thresh; /* dirty threshold */
139 unsigned long bg_thresh; /* dirty background threshold */
140
141 unsigned long wb_dirty; /* per-wb counterparts */
142 unsigned long wb_thresh;
143 unsigned long wb_bg_thresh;
144
145 unsigned long pos_ratio;
146 };
147
148 #define DTC_INIT_COMMON(__wb) .wb = (__wb), \
149 .wb_completions = &(__wb)->completions
150
151 /*
152 * Length of period for aging writeout fractions of bdis. This is an
153 * arbitrarily chosen number. The longer the period, the slower fractions will
154 * reflect changes in current writeout rate.
155 */
156 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
157
158 #ifdef CONFIG_CGROUP_WRITEBACK
159
160 #define GDTC_INIT(__wb) .dom = &global_wb_domain, \
161 DTC_INIT_COMMON(__wb)
162 #define GDTC_INIT_NO_WB .dom = &global_wb_domain
163
164 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
165 {
166 return dtc->dom;
167 }
168
169 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
170 {
171 return mdtc->gdtc;
172 }
173
174 static void wb_min_max_ratio(struct bdi_writeback *wb,
175 unsigned long *minp, unsigned long *maxp)
176 {
177 unsigned long this_bw = wb->avg_write_bandwidth;
178 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
179 unsigned long long min = wb->bdi->min_ratio;
180 unsigned long long max = wb->bdi->max_ratio;
181
182 /*
183 * @wb may already be clean by the time control reaches here and
184 * the total may not include its bw.
185 */
186 if (this_bw < tot_bw) {
187 if (min) {
188 min *= this_bw;
189 do_div(min, tot_bw);
190 }
191 if (max < 100) {
192 max *= this_bw;
193 do_div(max, tot_bw);
194 }
195 }
196
197 *minp = min;
198 *maxp = max;
199 }
200
201 #else /* CONFIG_CGROUP_WRITEBACK */
202
203 #define GDTC_INIT(__wb) DTC_INIT_COMMON(__wb)
204 #define GDTC_INIT_NO_WB
205
206 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
207 {
208 return &global_wb_domain;
209 }
210
211 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
212 {
213 return NULL;
214 }
215
216 static void wb_min_max_ratio(struct bdi_writeback *wb,
217 unsigned long *minp, unsigned long *maxp)
218 {
219 *minp = wb->bdi->min_ratio;
220 *maxp = wb->bdi->max_ratio;
221 }
222
223 #endif /* CONFIG_CGROUP_WRITEBACK */
224
225 /*
226 * In a memory zone, there is a certain amount of pages we consider
227 * available for the page cache, which is essentially the number of
228 * free and reclaimable pages, minus some zone reserves to protect
229 * lowmem and the ability to uphold the zone's watermarks without
230 * requiring writeback.
231 *
232 * This number of dirtyable pages is the base value of which the
233 * user-configurable dirty ratio is the effictive number of pages that
234 * are allowed to be actually dirtied. Per individual zone, or
235 * globally by using the sum of dirtyable pages over all zones.
236 *
237 * Because the user is allowed to specify the dirty limit globally as
238 * absolute number of bytes, calculating the per-zone dirty limit can
239 * require translating the configured limit into a percentage of
240 * global dirtyable memory first.
241 */
242
243 /**
244 * zone_dirtyable_memory - number of dirtyable pages in a zone
245 * @zone: the zone
246 *
247 * Returns the zone's number of pages potentially available for dirty
248 * page cache. This is the base value for the per-zone dirty limits.
249 */
250 static unsigned long zone_dirtyable_memory(struct zone *zone)
251 {
252 unsigned long nr_pages;
253
254 nr_pages = zone_page_state(zone, NR_FREE_PAGES);
255 nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
256
257 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
258 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
259
260 return nr_pages;
261 }
262
263 static unsigned long highmem_dirtyable_memory(unsigned long total)
264 {
265 #ifdef CONFIG_HIGHMEM
266 int node;
267 unsigned long x = 0;
268
269 for_each_node_state(node, N_HIGH_MEMORY) {
270 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
271
272 x += zone_dirtyable_memory(z);
273 }
274 /*
275 * Unreclaimable memory (kernel memory or anonymous memory
276 * without swap) can bring down the dirtyable pages below
277 * the zone's dirty balance reserve and the above calculation
278 * will underflow. However we still want to add in nodes
279 * which are below threshold (negative values) to get a more
280 * accurate calculation but make sure that the total never
281 * underflows.
282 */
283 if ((long)x < 0)
284 x = 0;
285
286 /*
287 * Make sure that the number of highmem pages is never larger
288 * than the number of the total dirtyable memory. This can only
289 * occur in very strange VM situations but we want to make sure
290 * that this does not occur.
291 */
292 return min(x, total);
293 #else
294 return 0;
295 #endif
296 }
297
298 /**
299 * global_dirtyable_memory - number of globally dirtyable pages
300 *
301 * Returns the global number of pages potentially available for dirty
302 * page cache. This is the base value for the global dirty limits.
303 */
304 static unsigned long global_dirtyable_memory(void)
305 {
306 unsigned long x;
307
308 x = global_page_state(NR_FREE_PAGES);
309 x -= min(x, dirty_balance_reserve);
310
311 x += global_page_state(NR_INACTIVE_FILE);
312 x += global_page_state(NR_ACTIVE_FILE);
313
314 if (!vm_highmem_is_dirtyable)
315 x -= highmem_dirtyable_memory(x);
316
317 return x + 1; /* Ensure that we never return 0 */
318 }
319
320 /**
321 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
322 * @dtc: dirty_throttle_control of interest
323 *
324 * Calculate @dtc->thresh and ->bg_thresh considering
325 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
326 * must ensure that @dtc->avail is set before calling this function. The
327 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
328 * real-time tasks.
329 */
330 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
331 {
332 const unsigned long available_memory = dtc->avail;
333 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
334 unsigned long bytes = vm_dirty_bytes;
335 unsigned long bg_bytes = dirty_background_bytes;
336 unsigned long ratio = vm_dirty_ratio;
337 unsigned long bg_ratio = dirty_background_ratio;
338 unsigned long thresh;
339 unsigned long bg_thresh;
340 struct task_struct *tsk;
341
342 /* gdtc is !NULL iff @dtc is for memcg domain */
343 if (gdtc) {
344 unsigned long global_avail = gdtc->avail;
345
346 /*
347 * The byte settings can't be applied directly to memcg
348 * domains. Convert them to ratios by scaling against
349 * globally available memory.
350 */
351 if (bytes)
352 ratio = min(DIV_ROUND_UP(bytes, PAGE_SIZE) * 100 /
353 global_avail, 100UL);
354 if (bg_bytes)
355 bg_ratio = min(DIV_ROUND_UP(bg_bytes, PAGE_SIZE) * 100 /
356 global_avail, 100UL);
357 bytes = bg_bytes = 0;
358 }
359
360 if (bytes)
361 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
362 else
363 thresh = (ratio * available_memory) / 100;
364
365 if (bg_bytes)
366 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
367 else
368 bg_thresh = (bg_ratio * available_memory) / 100;
369
370 if (bg_thresh >= thresh)
371 bg_thresh = thresh / 2;
372 tsk = current;
373 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
374 bg_thresh += bg_thresh / 4;
375 thresh += thresh / 4;
376 }
377 dtc->thresh = thresh;
378 dtc->bg_thresh = bg_thresh;
379
380 /* we should eventually report the domain in the TP */
381 if (!gdtc)
382 trace_global_dirty_state(bg_thresh, thresh);
383 }
384
385 /**
386 * global_dirty_limits - background-writeback and dirty-throttling thresholds
387 * @pbackground: out parameter for bg_thresh
388 * @pdirty: out parameter for thresh
389 *
390 * Calculate bg_thresh and thresh for global_wb_domain. See
391 * domain_dirty_limits() for details.
392 */
393 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
394 {
395 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
396
397 gdtc.avail = global_dirtyable_memory();
398 domain_dirty_limits(&gdtc);
399
400 *pbackground = gdtc.bg_thresh;
401 *pdirty = gdtc.thresh;
402 }
403
404 /**
405 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
406 * @zone: the zone
407 *
408 * Returns the maximum number of dirty pages allowed in a zone, based
409 * on the zone's dirtyable memory.
410 */
411 static unsigned long zone_dirty_limit(struct zone *zone)
412 {
413 unsigned long zone_memory = zone_dirtyable_memory(zone);
414 struct task_struct *tsk = current;
415 unsigned long dirty;
416
417 if (vm_dirty_bytes)
418 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
419 zone_memory / global_dirtyable_memory();
420 else
421 dirty = vm_dirty_ratio * zone_memory / 100;
422
423 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
424 dirty += dirty / 4;
425
426 return dirty;
427 }
428
429 /**
430 * zone_dirty_ok - tells whether a zone is within its dirty limits
431 * @zone: the zone to check
432 *
433 * Returns %true when the dirty pages in @zone are within the zone's
434 * dirty limit, %false if the limit is exceeded.
435 */
436 bool zone_dirty_ok(struct zone *zone)
437 {
438 unsigned long limit = zone_dirty_limit(zone);
439
440 return zone_page_state(zone, NR_FILE_DIRTY) +
441 zone_page_state(zone, NR_UNSTABLE_NFS) +
442 zone_page_state(zone, NR_WRITEBACK) <= limit;
443 }
444
445 int dirty_background_ratio_handler(struct ctl_table *table, int write,
446 void __user *buffer, size_t *lenp,
447 loff_t *ppos)
448 {
449 int ret;
450
451 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
452 if (ret == 0 && write)
453 dirty_background_bytes = 0;
454 return ret;
455 }
456
457 int dirty_background_bytes_handler(struct ctl_table *table, int write,
458 void __user *buffer, size_t *lenp,
459 loff_t *ppos)
460 {
461 int ret;
462
463 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
464 if (ret == 0 && write)
465 dirty_background_ratio = 0;
466 return ret;
467 }
468
469 int dirty_ratio_handler(struct ctl_table *table, int write,
470 void __user *buffer, size_t *lenp,
471 loff_t *ppos)
472 {
473 int old_ratio = vm_dirty_ratio;
474 int ret;
475
476 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
477 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
478 writeback_set_ratelimit();
479 vm_dirty_bytes = 0;
480 }
481 return ret;
482 }
483
484 int dirty_bytes_handler(struct ctl_table *table, int write,
485 void __user *buffer, size_t *lenp,
486 loff_t *ppos)
487 {
488 unsigned long old_bytes = vm_dirty_bytes;
489 int ret;
490
491 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
492 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
493 writeback_set_ratelimit();
494 vm_dirty_ratio = 0;
495 }
496 return ret;
497 }
498
499 static unsigned long wp_next_time(unsigned long cur_time)
500 {
501 cur_time += VM_COMPLETIONS_PERIOD_LEN;
502 /* 0 has a special meaning... */
503 if (!cur_time)
504 return 1;
505 return cur_time;
506 }
507
508 static void wb_domain_writeout_inc(struct wb_domain *dom,
509 struct fprop_local_percpu *completions,
510 unsigned int max_prop_frac)
511 {
512 __fprop_inc_percpu_max(&dom->completions, completions,
513 max_prop_frac);
514 /* First event after period switching was turned off? */
515 if (!unlikely(dom->period_time)) {
516 /*
517 * We can race with other __bdi_writeout_inc calls here but
518 * it does not cause any harm since the resulting time when
519 * timer will fire and what is in writeout_period_time will be
520 * roughly the same.
521 */
522 dom->period_time = wp_next_time(jiffies);
523 mod_timer(&dom->period_timer, dom->period_time);
524 }
525 }
526
527 /*
528 * Increment @wb's writeout completion count and the global writeout
529 * completion count. Called from test_clear_page_writeback().
530 */
531 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
532 {
533 __inc_wb_stat(wb, WB_WRITTEN);
534 wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
535 wb->bdi->max_prop_frac);
536 }
537
538 void wb_writeout_inc(struct bdi_writeback *wb)
539 {
540 unsigned long flags;
541
542 local_irq_save(flags);
543 __wb_writeout_inc(wb);
544 local_irq_restore(flags);
545 }
546 EXPORT_SYMBOL_GPL(wb_writeout_inc);
547
548 /*
549 * On idle system, we can be called long after we scheduled because we use
550 * deferred timers so count with missed periods.
551 */
552 static void writeout_period(unsigned long t)
553 {
554 struct wb_domain *dom = (void *)t;
555 int miss_periods = (jiffies - dom->period_time) /
556 VM_COMPLETIONS_PERIOD_LEN;
557
558 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
559 dom->period_time = wp_next_time(dom->period_time +
560 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
561 mod_timer(&dom->period_timer, dom->period_time);
562 } else {
563 /*
564 * Aging has zeroed all fractions. Stop wasting CPU on period
565 * updates.
566 */
567 dom->period_time = 0;
568 }
569 }
570
571 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
572 {
573 memset(dom, 0, sizeof(*dom));
574
575 spin_lock_init(&dom->lock);
576
577 init_timer_deferrable(&dom->period_timer);
578 dom->period_timer.function = writeout_period;
579 dom->period_timer.data = (unsigned long)dom;
580
581 dom->dirty_limit_tstamp = jiffies;
582
583 return fprop_global_init(&dom->completions, gfp);
584 }
585
586 /*
587 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
588 * registered backing devices, which, for obvious reasons, can not
589 * exceed 100%.
590 */
591 static unsigned int bdi_min_ratio;
592
593 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
594 {
595 int ret = 0;
596
597 spin_lock_bh(&bdi_lock);
598 if (min_ratio > bdi->max_ratio) {
599 ret = -EINVAL;
600 } else {
601 min_ratio -= bdi->min_ratio;
602 if (bdi_min_ratio + min_ratio < 100) {
603 bdi_min_ratio += min_ratio;
604 bdi->min_ratio += min_ratio;
605 } else {
606 ret = -EINVAL;
607 }
608 }
609 spin_unlock_bh(&bdi_lock);
610
611 return ret;
612 }
613
614 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
615 {
616 int ret = 0;
617
618 if (max_ratio > 100)
619 return -EINVAL;
620
621 spin_lock_bh(&bdi_lock);
622 if (bdi->min_ratio > max_ratio) {
623 ret = -EINVAL;
624 } else {
625 bdi->max_ratio = max_ratio;
626 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
627 }
628 spin_unlock_bh(&bdi_lock);
629
630 return ret;
631 }
632 EXPORT_SYMBOL(bdi_set_max_ratio);
633
634 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
635 unsigned long bg_thresh)
636 {
637 return (thresh + bg_thresh) / 2;
638 }
639
640 static unsigned long hard_dirty_limit(struct wb_domain *dom,
641 unsigned long thresh)
642 {
643 return max(thresh, dom->dirty_limit);
644 }
645
646 /**
647 * __wb_calc_thresh - @wb's share of dirty throttling threshold
648 * @dtc: dirty_throttle_context of interest
649 *
650 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
651 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
652 *
653 * Note that balance_dirty_pages() will only seriously take it as a hard limit
654 * when sleeping max_pause per page is not enough to keep the dirty pages under
655 * control. For example, when the device is completely stalled due to some error
656 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
657 * In the other normal situations, it acts more gently by throttling the tasks
658 * more (rather than completely block them) when the wb dirty pages go high.
659 *
660 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
661 * - starving fast devices
662 * - piling up dirty pages (that will take long time to sync) on slow devices
663 *
664 * The wb's share of dirty limit will be adapting to its throughput and
665 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
666 */
667 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
668 {
669 struct wb_domain *dom = dtc_dom(dtc);
670 unsigned long thresh = dtc->thresh;
671 u64 wb_thresh;
672 long numerator, denominator;
673 unsigned long wb_min_ratio, wb_max_ratio;
674
675 /*
676 * Calculate this BDI's share of the thresh ratio.
677 */
678 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
679 &numerator, &denominator);
680
681 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
682 wb_thresh *= numerator;
683 do_div(wb_thresh, denominator);
684
685 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
686
687 wb_thresh += (thresh * wb_min_ratio) / 100;
688 if (wb_thresh > (thresh * wb_max_ratio) / 100)
689 wb_thresh = thresh * wb_max_ratio / 100;
690
691 return wb_thresh;
692 }
693
694 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
695 {
696 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
697 .thresh = thresh };
698 return __wb_calc_thresh(&gdtc);
699 }
700
701 /*
702 * setpoint - dirty 3
703 * f(dirty) := 1.0 + (----------------)
704 * limit - setpoint
705 *
706 * it's a 3rd order polynomial that subjects to
707 *
708 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
709 * (2) f(setpoint) = 1.0 => the balance point
710 * (3) f(limit) = 0 => the hard limit
711 * (4) df/dx <= 0 => negative feedback control
712 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
713 * => fast response on large errors; small oscillation near setpoint
714 */
715 static long long pos_ratio_polynom(unsigned long setpoint,
716 unsigned long dirty,
717 unsigned long limit)
718 {
719 long long pos_ratio;
720 long x;
721
722 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
723 limit - setpoint + 1);
724 pos_ratio = x;
725 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
726 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
727 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
728
729 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
730 }
731
732 /*
733 * Dirty position control.
734 *
735 * (o) global/bdi setpoints
736 *
737 * We want the dirty pages be balanced around the global/wb setpoints.
738 * When the number of dirty pages is higher/lower than the setpoint, the
739 * dirty position control ratio (and hence task dirty ratelimit) will be
740 * decreased/increased to bring the dirty pages back to the setpoint.
741 *
742 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
743 *
744 * if (dirty < setpoint) scale up pos_ratio
745 * if (dirty > setpoint) scale down pos_ratio
746 *
747 * if (wb_dirty < wb_setpoint) scale up pos_ratio
748 * if (wb_dirty > wb_setpoint) scale down pos_ratio
749 *
750 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
751 *
752 * (o) global control line
753 *
754 * ^ pos_ratio
755 * |
756 * | |<===== global dirty control scope ======>|
757 * 2.0 .............*
758 * | .*
759 * | . *
760 * | . *
761 * | . *
762 * | . *
763 * | . *
764 * 1.0 ................................*
765 * | . . *
766 * | . . *
767 * | . . *
768 * | . . *
769 * | . . *
770 * 0 +------------.------------------.----------------------*------------->
771 * freerun^ setpoint^ limit^ dirty pages
772 *
773 * (o) wb control line
774 *
775 * ^ pos_ratio
776 * |
777 * | *
778 * | *
779 * | *
780 * | *
781 * | * |<=========== span ============>|
782 * 1.0 .......................*
783 * | . *
784 * | . *
785 * | . *
786 * | . *
787 * | . *
788 * | . *
789 * | . *
790 * | . *
791 * | . *
792 * | . *
793 * | . *
794 * 1/4 ...............................................* * * * * * * * * * * *
795 * | . .
796 * | . .
797 * | . .
798 * 0 +----------------------.-------------------------------.------------->
799 * wb_setpoint^ x_intercept^
800 *
801 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
802 * be smoothly throttled down to normal if it starts high in situations like
803 * - start writing to a slow SD card and a fast disk at the same time. The SD
804 * card's wb_dirty may rush to many times higher than wb_setpoint.
805 * - the wb dirty thresh drops quickly due to change of JBOD workload
806 */
807 static void wb_position_ratio(struct dirty_throttle_control *dtc)
808 {
809 struct bdi_writeback *wb = dtc->wb;
810 unsigned long write_bw = wb->avg_write_bandwidth;
811 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
812 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
813 unsigned long wb_thresh = dtc->wb_thresh;
814 unsigned long x_intercept;
815 unsigned long setpoint; /* dirty pages' target balance point */
816 unsigned long wb_setpoint;
817 unsigned long span;
818 long long pos_ratio; /* for scaling up/down the rate limit */
819 long x;
820
821 dtc->pos_ratio = 0;
822
823 if (unlikely(dtc->dirty >= limit))
824 return;
825
826 /*
827 * global setpoint
828 *
829 * See comment for pos_ratio_polynom().
830 */
831 setpoint = (freerun + limit) / 2;
832 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
833
834 /*
835 * The strictlimit feature is a tool preventing mistrusted filesystems
836 * from growing a large number of dirty pages before throttling. For
837 * such filesystems balance_dirty_pages always checks wb counters
838 * against wb limits. Even if global "nr_dirty" is under "freerun".
839 * This is especially important for fuse which sets bdi->max_ratio to
840 * 1% by default. Without strictlimit feature, fuse writeback may
841 * consume arbitrary amount of RAM because it is accounted in
842 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
843 *
844 * Here, in wb_position_ratio(), we calculate pos_ratio based on
845 * two values: wb_dirty and wb_thresh. Let's consider an example:
846 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
847 * limits are set by default to 10% and 20% (background and throttle).
848 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
849 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
850 * about ~6K pages (as the average of background and throttle wb
851 * limits). The 3rd order polynomial will provide positive feedback if
852 * wb_dirty is under wb_setpoint and vice versa.
853 *
854 * Note, that we cannot use global counters in these calculations
855 * because we want to throttle process writing to a strictlimit wb
856 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
857 * in the example above).
858 */
859 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
860 long long wb_pos_ratio;
861
862 if (dtc->wb_dirty < 8) {
863 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
864 2 << RATELIMIT_CALC_SHIFT);
865 return;
866 }
867
868 if (dtc->wb_dirty >= wb_thresh)
869 return;
870
871 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
872 dtc->wb_bg_thresh);
873
874 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
875 return;
876
877 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
878 wb_thresh);
879
880 /*
881 * Typically, for strictlimit case, wb_setpoint << setpoint
882 * and pos_ratio >> wb_pos_ratio. In the other words global
883 * state ("dirty") is not limiting factor and we have to
884 * make decision based on wb counters. But there is an
885 * important case when global pos_ratio should get precedence:
886 * global limits are exceeded (e.g. due to activities on other
887 * wb's) while given strictlimit wb is below limit.
888 *
889 * "pos_ratio * wb_pos_ratio" would work for the case above,
890 * but it would look too non-natural for the case of all
891 * activity in the system coming from a single strictlimit wb
892 * with bdi->max_ratio == 100%.
893 *
894 * Note that min() below somewhat changes the dynamics of the
895 * control system. Normally, pos_ratio value can be well over 3
896 * (when globally we are at freerun and wb is well below wb
897 * setpoint). Now the maximum pos_ratio in the same situation
898 * is 2. We might want to tweak this if we observe the control
899 * system is too slow to adapt.
900 */
901 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
902 return;
903 }
904
905 /*
906 * We have computed basic pos_ratio above based on global situation. If
907 * the wb is over/under its share of dirty pages, we want to scale
908 * pos_ratio further down/up. That is done by the following mechanism.
909 */
910
911 /*
912 * wb setpoint
913 *
914 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
915 *
916 * x_intercept - wb_dirty
917 * := --------------------------
918 * x_intercept - wb_setpoint
919 *
920 * The main wb control line is a linear function that subjects to
921 *
922 * (1) f(wb_setpoint) = 1.0
923 * (2) k = - 1 / (8 * write_bw) (in single wb case)
924 * or equally: x_intercept = wb_setpoint + 8 * write_bw
925 *
926 * For single wb case, the dirty pages are observed to fluctuate
927 * regularly within range
928 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
929 * for various filesystems, where (2) can yield in a reasonable 12.5%
930 * fluctuation range for pos_ratio.
931 *
932 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
933 * own size, so move the slope over accordingly and choose a slope that
934 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
935 */
936 if (unlikely(wb_thresh > dtc->thresh))
937 wb_thresh = dtc->thresh;
938 /*
939 * It's very possible that wb_thresh is close to 0 not because the
940 * device is slow, but that it has remained inactive for long time.
941 * Honour such devices a reasonable good (hopefully IO efficient)
942 * threshold, so that the occasional writes won't be blocked and active
943 * writes can rampup the threshold quickly.
944 */
945 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
946 /*
947 * scale global setpoint to wb's:
948 * wb_setpoint = setpoint * wb_thresh / thresh
949 */
950 x = div_u64((u64)wb_thresh << 16, dtc->thresh + 1);
951 wb_setpoint = setpoint * (u64)x >> 16;
952 /*
953 * Use span=(8*write_bw) in single wb case as indicated by
954 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
955 *
956 * wb_thresh thresh - wb_thresh
957 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
958 * thresh thresh
959 */
960 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
961 x_intercept = wb_setpoint + span;
962
963 if (dtc->wb_dirty < x_intercept - span / 4) {
964 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
965 x_intercept - wb_setpoint + 1);
966 } else
967 pos_ratio /= 4;
968
969 /*
970 * wb reserve area, safeguard against dirty pool underrun and disk idle
971 * It may push the desired control point of global dirty pages higher
972 * than setpoint.
973 */
974 x_intercept = wb_thresh / 2;
975 if (dtc->wb_dirty < x_intercept) {
976 if (dtc->wb_dirty > x_intercept / 8)
977 pos_ratio = div_u64(pos_ratio * x_intercept,
978 dtc->wb_dirty);
979 else
980 pos_ratio *= 8;
981 }
982
983 dtc->pos_ratio = pos_ratio;
984 }
985
986 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
987 unsigned long elapsed,
988 unsigned long written)
989 {
990 const unsigned long period = roundup_pow_of_two(3 * HZ);
991 unsigned long avg = wb->avg_write_bandwidth;
992 unsigned long old = wb->write_bandwidth;
993 u64 bw;
994
995 /*
996 * bw = written * HZ / elapsed
997 *
998 * bw * elapsed + write_bandwidth * (period - elapsed)
999 * write_bandwidth = ---------------------------------------------------
1000 * period
1001 *
1002 * @written may have decreased due to account_page_redirty().
1003 * Avoid underflowing @bw calculation.
1004 */
1005 bw = written - min(written, wb->written_stamp);
1006 bw *= HZ;
1007 if (unlikely(elapsed > period)) {
1008 do_div(bw, elapsed);
1009 avg = bw;
1010 goto out;
1011 }
1012 bw += (u64)wb->write_bandwidth * (period - elapsed);
1013 bw >>= ilog2(period);
1014
1015 /*
1016 * one more level of smoothing, for filtering out sudden spikes
1017 */
1018 if (avg > old && old >= (unsigned long)bw)
1019 avg -= (avg - old) >> 3;
1020
1021 if (avg < old && old <= (unsigned long)bw)
1022 avg += (old - avg) >> 3;
1023
1024 out:
1025 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1026 avg = max(avg, 1LU);
1027 if (wb_has_dirty_io(wb)) {
1028 long delta = avg - wb->avg_write_bandwidth;
1029 WARN_ON_ONCE(atomic_long_add_return(delta,
1030 &wb->bdi->tot_write_bandwidth) <= 0);
1031 }
1032 wb->write_bandwidth = bw;
1033 wb->avg_write_bandwidth = avg;
1034 }
1035
1036 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1037 {
1038 struct wb_domain *dom = dtc_dom(dtc);
1039 unsigned long thresh = dtc->thresh;
1040 unsigned long limit = dom->dirty_limit;
1041
1042 /*
1043 * Follow up in one step.
1044 */
1045 if (limit < thresh) {
1046 limit = thresh;
1047 goto update;
1048 }
1049
1050 /*
1051 * Follow down slowly. Use the higher one as the target, because thresh
1052 * may drop below dirty. This is exactly the reason to introduce
1053 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1054 */
1055 thresh = max(thresh, dtc->dirty);
1056 if (limit > thresh) {
1057 limit -= (limit - thresh) >> 5;
1058 goto update;
1059 }
1060 return;
1061 update:
1062 dom->dirty_limit = limit;
1063 }
1064
1065 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1066 unsigned long now)
1067 {
1068 struct wb_domain *dom = dtc_dom(dtc);
1069
1070 /*
1071 * check locklessly first to optimize away locking for the most time
1072 */
1073 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1074 return;
1075
1076 spin_lock(&dom->lock);
1077 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1078 update_dirty_limit(dtc);
1079 dom->dirty_limit_tstamp = now;
1080 }
1081 spin_unlock(&dom->lock);
1082 }
1083
1084 /*
1085 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1086 *
1087 * Normal wb tasks will be curbed at or below it in long term.
1088 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1089 */
1090 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1091 unsigned long dirtied,
1092 unsigned long elapsed)
1093 {
1094 struct bdi_writeback *wb = dtc->wb;
1095 unsigned long dirty = dtc->dirty;
1096 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1097 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1098 unsigned long setpoint = (freerun + limit) / 2;
1099 unsigned long write_bw = wb->avg_write_bandwidth;
1100 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1101 unsigned long dirty_rate;
1102 unsigned long task_ratelimit;
1103 unsigned long balanced_dirty_ratelimit;
1104 unsigned long step;
1105 unsigned long x;
1106
1107 /*
1108 * The dirty rate will match the writeout rate in long term, except
1109 * when dirty pages are truncated by userspace or re-dirtied by FS.
1110 */
1111 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1112
1113 /*
1114 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1115 */
1116 task_ratelimit = (u64)dirty_ratelimit *
1117 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1118 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1119
1120 /*
1121 * A linear estimation of the "balanced" throttle rate. The theory is,
1122 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1123 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1124 * formula will yield the balanced rate limit (write_bw / N).
1125 *
1126 * Note that the expanded form is not a pure rate feedback:
1127 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1128 * but also takes pos_ratio into account:
1129 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1130 *
1131 * (1) is not realistic because pos_ratio also takes part in balancing
1132 * the dirty rate. Consider the state
1133 * pos_ratio = 0.5 (3)
1134 * rate = 2 * (write_bw / N) (4)
1135 * If (1) is used, it will stuck in that state! Because each dd will
1136 * be throttled at
1137 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1138 * yielding
1139 * dirty_rate = N * task_ratelimit = write_bw (6)
1140 * put (6) into (1) we get
1141 * rate_(i+1) = rate_(i) (7)
1142 *
1143 * So we end up using (2) to always keep
1144 * rate_(i+1) ~= (write_bw / N) (8)
1145 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1146 * pos_ratio is able to drive itself to 1.0, which is not only where
1147 * the dirty count meet the setpoint, but also where the slope of
1148 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1149 */
1150 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1151 dirty_rate | 1);
1152 /*
1153 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1154 */
1155 if (unlikely(balanced_dirty_ratelimit > write_bw))
1156 balanced_dirty_ratelimit = write_bw;
1157
1158 /*
1159 * We could safely do this and return immediately:
1160 *
1161 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
1162 *
1163 * However to get a more stable dirty_ratelimit, the below elaborated
1164 * code makes use of task_ratelimit to filter out singular points and
1165 * limit the step size.
1166 *
1167 * The below code essentially only uses the relative value of
1168 *
1169 * task_ratelimit - dirty_ratelimit
1170 * = (pos_ratio - 1) * dirty_ratelimit
1171 *
1172 * which reflects the direction and size of dirty position error.
1173 */
1174
1175 /*
1176 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1177 * task_ratelimit is on the same side of dirty_ratelimit, too.
1178 * For example, when
1179 * - dirty_ratelimit > balanced_dirty_ratelimit
1180 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1181 * lowering dirty_ratelimit will help meet both the position and rate
1182 * control targets. Otherwise, don't update dirty_ratelimit if it will
1183 * only help meet the rate target. After all, what the users ultimately
1184 * feel and care are stable dirty rate and small position error.
1185 *
1186 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1187 * and filter out the singular points of balanced_dirty_ratelimit. Which
1188 * keeps jumping around randomly and can even leap far away at times
1189 * due to the small 200ms estimation period of dirty_rate (we want to
1190 * keep that period small to reduce time lags).
1191 */
1192 step = 0;
1193
1194 /*
1195 * For strictlimit case, calculations above were based on wb counters
1196 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1197 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1198 * Hence, to calculate "step" properly, we have to use wb_dirty as
1199 * "dirty" and wb_setpoint as "setpoint".
1200 *
1201 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1202 * it's possible that wb_thresh is close to zero due to inactivity
1203 * of backing device.
1204 */
1205 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1206 dirty = dtc->wb_dirty;
1207 if (dtc->wb_dirty < 8)
1208 setpoint = dtc->wb_dirty + 1;
1209 else
1210 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1211 }
1212
1213 if (dirty < setpoint) {
1214 x = min3(wb->balanced_dirty_ratelimit,
1215 balanced_dirty_ratelimit, task_ratelimit);
1216 if (dirty_ratelimit < x)
1217 step = x - dirty_ratelimit;
1218 } else {
1219 x = max3(wb->balanced_dirty_ratelimit,
1220 balanced_dirty_ratelimit, task_ratelimit);
1221 if (dirty_ratelimit > x)
1222 step = dirty_ratelimit - x;
1223 }
1224
1225 /*
1226 * Don't pursue 100% rate matching. It's impossible since the balanced
1227 * rate itself is constantly fluctuating. So decrease the track speed
1228 * when it gets close to the target. Helps eliminate pointless tremors.
1229 */
1230 step >>= dirty_ratelimit / (2 * step + 1);
1231 /*
1232 * Limit the tracking speed to avoid overshooting.
1233 */
1234 step = (step + 7) / 8;
1235
1236 if (dirty_ratelimit < balanced_dirty_ratelimit)
1237 dirty_ratelimit += step;
1238 else
1239 dirty_ratelimit -= step;
1240
1241 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1242 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1243
1244 trace_bdi_dirty_ratelimit(wb->bdi, dirty_rate, task_ratelimit);
1245 }
1246
1247 static void __wb_update_bandwidth(struct dirty_throttle_control *dtc,
1248 unsigned long start_time,
1249 bool update_ratelimit)
1250 {
1251 struct bdi_writeback *wb = dtc->wb;
1252 unsigned long now = jiffies;
1253 unsigned long elapsed = now - wb->bw_time_stamp;
1254 unsigned long dirtied;
1255 unsigned long written;
1256
1257 lockdep_assert_held(&wb->list_lock);
1258
1259 /*
1260 * rate-limit, only update once every 200ms.
1261 */
1262 if (elapsed < BANDWIDTH_INTERVAL)
1263 return;
1264
1265 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1266 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1267
1268 /*
1269 * Skip quiet periods when disk bandwidth is under-utilized.
1270 * (at least 1s idle time between two flusher runs)
1271 */
1272 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1273 goto snapshot;
1274
1275 if (update_ratelimit) {
1276 domain_update_bandwidth(dtc, now);
1277 wb_update_dirty_ratelimit(dtc, dirtied, elapsed);
1278 }
1279 wb_update_write_bandwidth(wb, elapsed, written);
1280
1281 snapshot:
1282 wb->dirtied_stamp = dirtied;
1283 wb->written_stamp = written;
1284 wb->bw_time_stamp = now;
1285 }
1286
1287 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1288 {
1289 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1290
1291 __wb_update_bandwidth(&gdtc, start_time, false);
1292 }
1293
1294 /*
1295 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1296 * will look to see if it needs to start dirty throttling.
1297 *
1298 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1299 * global_page_state() too often. So scale it near-sqrt to the safety margin
1300 * (the number of pages we may dirty without exceeding the dirty limits).
1301 */
1302 static unsigned long dirty_poll_interval(unsigned long dirty,
1303 unsigned long thresh)
1304 {
1305 if (thresh > dirty)
1306 return 1UL << (ilog2(thresh - dirty) >> 1);
1307
1308 return 1;
1309 }
1310
1311 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1312 unsigned long wb_dirty)
1313 {
1314 unsigned long bw = wb->avg_write_bandwidth;
1315 unsigned long t;
1316
1317 /*
1318 * Limit pause time for small memory systems. If sleeping for too long
1319 * time, a small pool of dirty/writeback pages may go empty and disk go
1320 * idle.
1321 *
1322 * 8 serves as the safety ratio.
1323 */
1324 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1325 t++;
1326
1327 return min_t(unsigned long, t, MAX_PAUSE);
1328 }
1329
1330 static long wb_min_pause(struct bdi_writeback *wb,
1331 long max_pause,
1332 unsigned long task_ratelimit,
1333 unsigned long dirty_ratelimit,
1334 int *nr_dirtied_pause)
1335 {
1336 long hi = ilog2(wb->avg_write_bandwidth);
1337 long lo = ilog2(wb->dirty_ratelimit);
1338 long t; /* target pause */
1339 long pause; /* estimated next pause */
1340 int pages; /* target nr_dirtied_pause */
1341
1342 /* target for 10ms pause on 1-dd case */
1343 t = max(1, HZ / 100);
1344
1345 /*
1346 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1347 * overheads.
1348 *
1349 * (N * 10ms) on 2^N concurrent tasks.
1350 */
1351 if (hi > lo)
1352 t += (hi - lo) * (10 * HZ) / 1024;
1353
1354 /*
1355 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1356 * on the much more stable dirty_ratelimit. However the next pause time
1357 * will be computed based on task_ratelimit and the two rate limits may
1358 * depart considerably at some time. Especially if task_ratelimit goes
1359 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1360 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1361 * result task_ratelimit won't be executed faithfully, which could
1362 * eventually bring down dirty_ratelimit.
1363 *
1364 * We apply two rules to fix it up:
1365 * 1) try to estimate the next pause time and if necessary, use a lower
1366 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1367 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1368 * 2) limit the target pause time to max_pause/2, so that the normal
1369 * small fluctuations of task_ratelimit won't trigger rule (1) and
1370 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1371 */
1372 t = min(t, 1 + max_pause / 2);
1373 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1374
1375 /*
1376 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1377 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1378 * When the 16 consecutive reads are often interrupted by some dirty
1379 * throttling pause during the async writes, cfq will go into idles
1380 * (deadline is fine). So push nr_dirtied_pause as high as possible
1381 * until reaches DIRTY_POLL_THRESH=32 pages.
1382 */
1383 if (pages < DIRTY_POLL_THRESH) {
1384 t = max_pause;
1385 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1386 if (pages > DIRTY_POLL_THRESH) {
1387 pages = DIRTY_POLL_THRESH;
1388 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1389 }
1390 }
1391
1392 pause = HZ * pages / (task_ratelimit + 1);
1393 if (pause > max_pause) {
1394 t = max_pause;
1395 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1396 }
1397
1398 *nr_dirtied_pause = pages;
1399 /*
1400 * The minimal pause time will normally be half the target pause time.
1401 */
1402 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1403 }
1404
1405 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1406 {
1407 struct bdi_writeback *wb = dtc->wb;
1408 unsigned long wb_reclaimable;
1409
1410 /*
1411 * wb_thresh is not treated as some limiting factor as
1412 * dirty_thresh, due to reasons
1413 * - in JBOD setup, wb_thresh can fluctuate a lot
1414 * - in a system with HDD and USB key, the USB key may somehow
1415 * go into state (wb_dirty >> wb_thresh) either because
1416 * wb_dirty starts high, or because wb_thresh drops low.
1417 * In this case we don't want to hard throttle the USB key
1418 * dirtiers for 100 seconds until wb_dirty drops under
1419 * wb_thresh. Instead the auxiliary wb control line in
1420 * wb_position_ratio() will let the dirtier task progress
1421 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
1422 */
1423 dtc->wb_thresh = __wb_calc_thresh(dtc);
1424 dtc->wb_bg_thresh = dtc->thresh ?
1425 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1426
1427 /*
1428 * In order to avoid the stacked BDI deadlock we need
1429 * to ensure we accurately count the 'dirty' pages when
1430 * the threshold is low.
1431 *
1432 * Otherwise it would be possible to get thresh+n pages
1433 * reported dirty, even though there are thresh-m pages
1434 * actually dirty; with m+n sitting in the percpu
1435 * deltas.
1436 */
1437 if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1438 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1439 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1440 } else {
1441 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1442 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1443 }
1444 }
1445
1446 /*
1447 * balance_dirty_pages() must be called by processes which are generating dirty
1448 * data. It looks at the number of dirty pages in the machine and will force
1449 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1450 * If we're over `background_thresh' then the writeback threads are woken to
1451 * perform some writeout.
1452 */
1453 static void balance_dirty_pages(struct address_space *mapping,
1454 struct bdi_writeback *wb,
1455 unsigned long pages_dirtied)
1456 {
1457 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1458 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1459 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1460 long period;
1461 long pause;
1462 long max_pause;
1463 long min_pause;
1464 int nr_dirtied_pause;
1465 bool dirty_exceeded = false;
1466 unsigned long task_ratelimit;
1467 unsigned long dirty_ratelimit;
1468 struct backing_dev_info *bdi = wb->bdi;
1469 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1470 unsigned long start_time = jiffies;
1471
1472 for (;;) {
1473 unsigned long now = jiffies;
1474 unsigned long dirty, thresh, bg_thresh;
1475
1476 /*
1477 * Unstable writes are a feature of certain networked
1478 * filesystems (i.e. NFS) in which data may have been
1479 * written to the server's write cache, but has not yet
1480 * been flushed to permanent storage.
1481 */
1482 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1483 global_page_state(NR_UNSTABLE_NFS);
1484 gdtc->avail = global_dirtyable_memory();
1485 gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1486
1487 domain_dirty_limits(gdtc);
1488
1489 if (unlikely(strictlimit)) {
1490 wb_dirty_limits(gdtc);
1491
1492 dirty = gdtc->wb_dirty;
1493 thresh = gdtc->wb_thresh;
1494 bg_thresh = gdtc->wb_bg_thresh;
1495 } else {
1496 dirty = gdtc->dirty;
1497 thresh = gdtc->thresh;
1498 bg_thresh = gdtc->bg_thresh;
1499 }
1500
1501 /*
1502 * Throttle it only when the background writeback cannot
1503 * catch-up. This avoids (excessively) small writeouts
1504 * when the wb limits are ramping up in case of !strictlimit.
1505 *
1506 * In strictlimit case make decision based on the wb counters
1507 * and limits. Small writeouts when the wb limits are ramping
1508 * up are the price we consciously pay for strictlimit-ing.
1509 */
1510 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
1511 current->dirty_paused_when = now;
1512 current->nr_dirtied = 0;
1513 current->nr_dirtied_pause =
1514 dirty_poll_interval(dirty, thresh);
1515 break;
1516 }
1517
1518 if (unlikely(!writeback_in_progress(wb)))
1519 wb_start_background_writeback(wb);
1520
1521 if (!strictlimit)
1522 wb_dirty_limits(gdtc);
1523
1524 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1525 ((gdtc->dirty > gdtc->thresh) || strictlimit);
1526
1527 wb_position_ratio(gdtc);
1528
1529 if (dirty_exceeded && !wb->dirty_exceeded)
1530 wb->dirty_exceeded = 1;
1531
1532 if (time_is_before_jiffies(wb->bw_time_stamp +
1533 BANDWIDTH_INTERVAL)) {
1534 spin_lock(&wb->list_lock);
1535 __wb_update_bandwidth(gdtc, start_time, true);
1536 spin_unlock(&wb->list_lock);
1537 }
1538
1539 dirty_ratelimit = wb->dirty_ratelimit;
1540 task_ratelimit = ((u64)dirty_ratelimit * gdtc->pos_ratio) >>
1541 RATELIMIT_CALC_SHIFT;
1542 max_pause = wb_max_pause(wb, gdtc->wb_dirty);
1543 min_pause = wb_min_pause(wb, max_pause,
1544 task_ratelimit, dirty_ratelimit,
1545 &nr_dirtied_pause);
1546
1547 if (unlikely(task_ratelimit == 0)) {
1548 period = max_pause;
1549 pause = max_pause;
1550 goto pause;
1551 }
1552 period = HZ * pages_dirtied / task_ratelimit;
1553 pause = period;
1554 if (current->dirty_paused_when)
1555 pause -= now - current->dirty_paused_when;
1556 /*
1557 * For less than 1s think time (ext3/4 may block the dirtier
1558 * for up to 800ms from time to time on 1-HDD; so does xfs,
1559 * however at much less frequency), try to compensate it in
1560 * future periods by updating the virtual time; otherwise just
1561 * do a reset, as it may be a light dirtier.
1562 */
1563 if (pause < min_pause) {
1564 trace_balance_dirty_pages(bdi,
1565 gdtc->thresh,
1566 gdtc->bg_thresh,
1567 gdtc->dirty,
1568 gdtc->wb_thresh,
1569 gdtc->wb_dirty,
1570 dirty_ratelimit,
1571 task_ratelimit,
1572 pages_dirtied,
1573 period,
1574 min(pause, 0L),
1575 start_time);
1576 if (pause < -HZ) {
1577 current->dirty_paused_when = now;
1578 current->nr_dirtied = 0;
1579 } else if (period) {
1580 current->dirty_paused_when += period;
1581 current->nr_dirtied = 0;
1582 } else if (current->nr_dirtied_pause <= pages_dirtied)
1583 current->nr_dirtied_pause += pages_dirtied;
1584 break;
1585 }
1586 if (unlikely(pause > max_pause)) {
1587 /* for occasional dropped task_ratelimit */
1588 now += min(pause - max_pause, max_pause);
1589 pause = max_pause;
1590 }
1591
1592 pause:
1593 trace_balance_dirty_pages(bdi,
1594 gdtc->thresh,
1595 gdtc->bg_thresh,
1596 gdtc->dirty,
1597 gdtc->wb_thresh,
1598 gdtc->wb_dirty,
1599 dirty_ratelimit,
1600 task_ratelimit,
1601 pages_dirtied,
1602 period,
1603 pause,
1604 start_time);
1605 __set_current_state(TASK_KILLABLE);
1606 io_schedule_timeout(pause);
1607
1608 current->dirty_paused_when = now + pause;
1609 current->nr_dirtied = 0;
1610 current->nr_dirtied_pause = nr_dirtied_pause;
1611
1612 /*
1613 * This is typically equal to (dirty < thresh) and can also
1614 * keep "1000+ dd on a slow USB stick" under control.
1615 */
1616 if (task_ratelimit)
1617 break;
1618
1619 /*
1620 * In the case of an unresponding NFS server and the NFS dirty
1621 * pages exceeds dirty_thresh, give the other good wb's a pipe
1622 * to go through, so that tasks on them still remain responsive.
1623 *
1624 * In theory 1 page is enough to keep the comsumer-producer
1625 * pipe going: the flusher cleans 1 page => the task dirties 1
1626 * more page. However wb_dirty has accounting errors. So use
1627 * the larger and more IO friendly wb_stat_error.
1628 */
1629 if (gdtc->wb_dirty <= wb_stat_error(wb))
1630 break;
1631
1632 if (fatal_signal_pending(current))
1633 break;
1634 }
1635
1636 if (!dirty_exceeded && wb->dirty_exceeded)
1637 wb->dirty_exceeded = 0;
1638
1639 if (writeback_in_progress(wb))
1640 return;
1641
1642 /*
1643 * In laptop mode, we wait until hitting the higher threshold before
1644 * starting background writeout, and then write out all the way down
1645 * to the lower threshold. So slow writers cause minimal disk activity.
1646 *
1647 * In normal mode, we start background writeout at the lower
1648 * background_thresh, to keep the amount of dirty memory low.
1649 */
1650 if (laptop_mode)
1651 return;
1652
1653 if (nr_reclaimable > gdtc->bg_thresh)
1654 wb_start_background_writeback(wb);
1655 }
1656
1657 static DEFINE_PER_CPU(int, bdp_ratelimits);
1658
1659 /*
1660 * Normal tasks are throttled by
1661 * loop {
1662 * dirty tsk->nr_dirtied_pause pages;
1663 * take a snap in balance_dirty_pages();
1664 * }
1665 * However there is a worst case. If every task exit immediately when dirtied
1666 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1667 * called to throttle the page dirties. The solution is to save the not yet
1668 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1669 * randomly into the running tasks. This works well for the above worst case,
1670 * as the new task will pick up and accumulate the old task's leaked dirty
1671 * count and eventually get throttled.
1672 */
1673 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1674
1675 /**
1676 * balance_dirty_pages_ratelimited - balance dirty memory state
1677 * @mapping: address_space which was dirtied
1678 *
1679 * Processes which are dirtying memory should call in here once for each page
1680 * which was newly dirtied. The function will periodically check the system's
1681 * dirty state and will initiate writeback if needed.
1682 *
1683 * On really big machines, get_writeback_state is expensive, so try to avoid
1684 * calling it too often (ratelimiting). But once we're over the dirty memory
1685 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1686 * from overshooting the limit by (ratelimit_pages) each.
1687 */
1688 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1689 {
1690 struct inode *inode = mapping->host;
1691 struct backing_dev_info *bdi = inode_to_bdi(inode);
1692 struct bdi_writeback *wb = NULL;
1693 int ratelimit;
1694 int *p;
1695
1696 if (!bdi_cap_account_dirty(bdi))
1697 return;
1698
1699 if (inode_cgwb_enabled(inode))
1700 wb = wb_get_create_current(bdi, GFP_KERNEL);
1701 if (!wb)
1702 wb = &bdi->wb;
1703
1704 ratelimit = current->nr_dirtied_pause;
1705 if (wb->dirty_exceeded)
1706 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1707
1708 preempt_disable();
1709 /*
1710 * This prevents one CPU to accumulate too many dirtied pages without
1711 * calling into balance_dirty_pages(), which can happen when there are
1712 * 1000+ tasks, all of them start dirtying pages at exactly the same
1713 * time, hence all honoured too large initial task->nr_dirtied_pause.
1714 */
1715 p = this_cpu_ptr(&bdp_ratelimits);
1716 if (unlikely(current->nr_dirtied >= ratelimit))
1717 *p = 0;
1718 else if (unlikely(*p >= ratelimit_pages)) {
1719 *p = 0;
1720 ratelimit = 0;
1721 }
1722 /*
1723 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1724 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1725 * the dirty throttling and livelock other long-run dirtiers.
1726 */
1727 p = this_cpu_ptr(&dirty_throttle_leaks);
1728 if (*p > 0 && current->nr_dirtied < ratelimit) {
1729 unsigned long nr_pages_dirtied;
1730 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1731 *p -= nr_pages_dirtied;
1732 current->nr_dirtied += nr_pages_dirtied;
1733 }
1734 preempt_enable();
1735
1736 if (unlikely(current->nr_dirtied >= ratelimit))
1737 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1738
1739 wb_put(wb);
1740 }
1741 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1742
1743 void throttle_vm_writeout(gfp_t gfp_mask)
1744 {
1745 unsigned long background_thresh;
1746 unsigned long dirty_thresh;
1747
1748 for ( ; ; ) {
1749 global_dirty_limits(&background_thresh, &dirty_thresh);
1750 dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1751
1752 /*
1753 * Boost the allowable dirty threshold a bit for page
1754 * allocators so they don't get DoS'ed by heavy writers
1755 */
1756 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1757
1758 if (global_page_state(NR_UNSTABLE_NFS) +
1759 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1760 break;
1761 congestion_wait(BLK_RW_ASYNC, HZ/10);
1762
1763 /*
1764 * The caller might hold locks which can prevent IO completion
1765 * or progress in the filesystem. So we cannot just sit here
1766 * waiting for IO to complete.
1767 */
1768 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1769 break;
1770 }
1771 }
1772
1773 /*
1774 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1775 */
1776 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1777 void __user *buffer, size_t *length, loff_t *ppos)
1778 {
1779 proc_dointvec(table, write, buffer, length, ppos);
1780 return 0;
1781 }
1782
1783 #ifdef CONFIG_BLOCK
1784 void laptop_mode_timer_fn(unsigned long data)
1785 {
1786 struct request_queue *q = (struct request_queue *)data;
1787 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1788 global_page_state(NR_UNSTABLE_NFS);
1789 struct bdi_writeback *wb;
1790 struct wb_iter iter;
1791
1792 /*
1793 * We want to write everything out, not just down to the dirty
1794 * threshold
1795 */
1796 if (!bdi_has_dirty_io(&q->backing_dev_info))
1797 return;
1798
1799 bdi_for_each_wb(wb, &q->backing_dev_info, &iter, 0)
1800 if (wb_has_dirty_io(wb))
1801 wb_start_writeback(wb, nr_pages, true,
1802 WB_REASON_LAPTOP_TIMER);
1803 }
1804
1805 /*
1806 * We've spun up the disk and we're in laptop mode: schedule writeback
1807 * of all dirty data a few seconds from now. If the flush is already scheduled
1808 * then push it back - the user is still using the disk.
1809 */
1810 void laptop_io_completion(struct backing_dev_info *info)
1811 {
1812 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1813 }
1814
1815 /*
1816 * We're in laptop mode and we've just synced. The sync's writes will have
1817 * caused another writeback to be scheduled by laptop_io_completion.
1818 * Nothing needs to be written back anymore, so we unschedule the writeback.
1819 */
1820 void laptop_sync_completion(void)
1821 {
1822 struct backing_dev_info *bdi;
1823
1824 rcu_read_lock();
1825
1826 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1827 del_timer(&bdi->laptop_mode_wb_timer);
1828
1829 rcu_read_unlock();
1830 }
1831 #endif
1832
1833 /*
1834 * If ratelimit_pages is too high then we can get into dirty-data overload
1835 * if a large number of processes all perform writes at the same time.
1836 * If it is too low then SMP machines will call the (expensive)
1837 * get_writeback_state too often.
1838 *
1839 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1840 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1841 * thresholds.
1842 */
1843
1844 void writeback_set_ratelimit(void)
1845 {
1846 struct wb_domain *dom = &global_wb_domain;
1847 unsigned long background_thresh;
1848 unsigned long dirty_thresh;
1849
1850 global_dirty_limits(&background_thresh, &dirty_thresh);
1851 dom->dirty_limit = dirty_thresh;
1852 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1853 if (ratelimit_pages < 16)
1854 ratelimit_pages = 16;
1855 }
1856
1857 static int
1858 ratelimit_handler(struct notifier_block *self, unsigned long action,
1859 void *hcpu)
1860 {
1861
1862 switch (action & ~CPU_TASKS_FROZEN) {
1863 case CPU_ONLINE:
1864 case CPU_DEAD:
1865 writeback_set_ratelimit();
1866 return NOTIFY_OK;
1867 default:
1868 return NOTIFY_DONE;
1869 }
1870 }
1871
1872 static struct notifier_block ratelimit_nb = {
1873 .notifier_call = ratelimit_handler,
1874 .next = NULL,
1875 };
1876
1877 /*
1878 * Called early on to tune the page writeback dirty limits.
1879 *
1880 * We used to scale dirty pages according to how total memory
1881 * related to pages that could be allocated for buffers (by
1882 * comparing nr_free_buffer_pages() to vm_total_pages.
1883 *
1884 * However, that was when we used "dirty_ratio" to scale with
1885 * all memory, and we don't do that any more. "dirty_ratio"
1886 * is now applied to total non-HIGHPAGE memory (by subtracting
1887 * totalhigh_pages from vm_total_pages), and as such we can't
1888 * get into the old insane situation any more where we had
1889 * large amounts of dirty pages compared to a small amount of
1890 * non-HIGHMEM memory.
1891 *
1892 * But we might still want to scale the dirty_ratio by how
1893 * much memory the box has..
1894 */
1895 void __init page_writeback_init(void)
1896 {
1897 writeback_set_ratelimit();
1898 register_cpu_notifier(&ratelimit_nb);
1899
1900 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
1901 }
1902
1903 /**
1904 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1905 * @mapping: address space structure to write
1906 * @start: starting page index
1907 * @end: ending page index (inclusive)
1908 *
1909 * This function scans the page range from @start to @end (inclusive) and tags
1910 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1911 * that write_cache_pages (or whoever calls this function) will then use
1912 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1913 * used to avoid livelocking of writeback by a process steadily creating new
1914 * dirty pages in the file (thus it is important for this function to be quick
1915 * so that it can tag pages faster than a dirtying process can create them).
1916 */
1917 /*
1918 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1919 */
1920 void tag_pages_for_writeback(struct address_space *mapping,
1921 pgoff_t start, pgoff_t end)
1922 {
1923 #define WRITEBACK_TAG_BATCH 4096
1924 unsigned long tagged;
1925
1926 do {
1927 spin_lock_irq(&mapping->tree_lock);
1928 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1929 &start, end, WRITEBACK_TAG_BATCH,
1930 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1931 spin_unlock_irq(&mapping->tree_lock);
1932 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1933 cond_resched();
1934 /* We check 'start' to handle wrapping when end == ~0UL */
1935 } while (tagged >= WRITEBACK_TAG_BATCH && start);
1936 }
1937 EXPORT_SYMBOL(tag_pages_for_writeback);
1938
1939 /**
1940 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1941 * @mapping: address space structure to write
1942 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1943 * @writepage: function called for each page
1944 * @data: data passed to writepage function
1945 *
1946 * If a page is already under I/O, write_cache_pages() skips it, even
1947 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1948 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1949 * and msync() need to guarantee that all the data which was dirty at the time
1950 * the call was made get new I/O started against them. If wbc->sync_mode is
1951 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1952 * existing IO to complete.
1953 *
1954 * To avoid livelocks (when other process dirties new pages), we first tag
1955 * pages which should be written back with TOWRITE tag and only then start
1956 * writing them. For data-integrity sync we have to be careful so that we do
1957 * not miss some pages (e.g., because some other process has cleared TOWRITE
1958 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1959 * by the process clearing the DIRTY tag (and submitting the page for IO).
1960 */
1961 int write_cache_pages(struct address_space *mapping,
1962 struct writeback_control *wbc, writepage_t writepage,
1963 void *data)
1964 {
1965 int ret = 0;
1966 int done = 0;
1967 struct pagevec pvec;
1968 int nr_pages;
1969 pgoff_t uninitialized_var(writeback_index);
1970 pgoff_t index;
1971 pgoff_t end; /* Inclusive */
1972 pgoff_t done_index;
1973 int cycled;
1974 int range_whole = 0;
1975 int tag;
1976
1977 pagevec_init(&pvec, 0);
1978 if (wbc->range_cyclic) {
1979 writeback_index = mapping->writeback_index; /* prev offset */
1980 index = writeback_index;
1981 if (index == 0)
1982 cycled = 1;
1983 else
1984 cycled = 0;
1985 end = -1;
1986 } else {
1987 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1988 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1989 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1990 range_whole = 1;
1991 cycled = 1; /* ignore range_cyclic tests */
1992 }
1993 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1994 tag = PAGECACHE_TAG_TOWRITE;
1995 else
1996 tag = PAGECACHE_TAG_DIRTY;
1997 retry:
1998 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1999 tag_pages_for_writeback(mapping, index, end);
2000 done_index = index;
2001 while (!done && (index <= end)) {
2002 int i;
2003
2004 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2005 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2006 if (nr_pages == 0)
2007 break;
2008
2009 for (i = 0; i < nr_pages; i++) {
2010 struct page *page = pvec.pages[i];
2011
2012 /*
2013 * At this point, the page may be truncated or
2014 * invalidated (changing page->mapping to NULL), or
2015 * even swizzled back from swapper_space to tmpfs file
2016 * mapping. However, page->index will not change
2017 * because we have a reference on the page.
2018 */
2019 if (page->index > end) {
2020 /*
2021 * can't be range_cyclic (1st pass) because
2022 * end == -1 in that case.
2023 */
2024 done = 1;
2025 break;
2026 }
2027
2028 done_index = page->index;
2029
2030 lock_page(page);
2031
2032 /*
2033 * Page truncated or invalidated. We can freely skip it
2034 * then, even for data integrity operations: the page
2035 * has disappeared concurrently, so there could be no
2036 * real expectation of this data interity operation
2037 * even if there is now a new, dirty page at the same
2038 * pagecache address.
2039 */
2040 if (unlikely(page->mapping != mapping)) {
2041 continue_unlock:
2042 unlock_page(page);
2043 continue;
2044 }
2045
2046 if (!PageDirty(page)) {
2047 /* someone wrote it for us */
2048 goto continue_unlock;
2049 }
2050
2051 if (PageWriteback(page)) {
2052 if (wbc->sync_mode != WB_SYNC_NONE)
2053 wait_on_page_writeback(page);
2054 else
2055 goto continue_unlock;
2056 }
2057
2058 BUG_ON(PageWriteback(page));
2059 if (!clear_page_dirty_for_io(page))
2060 goto continue_unlock;
2061
2062 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2063 ret = (*writepage)(page, wbc, data);
2064 if (unlikely(ret)) {
2065 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2066 unlock_page(page);
2067 ret = 0;
2068 } else {
2069 /*
2070 * done_index is set past this page,
2071 * so media errors will not choke
2072 * background writeout for the entire
2073 * file. This has consequences for
2074 * range_cyclic semantics (ie. it may
2075 * not be suitable for data integrity
2076 * writeout).
2077 */
2078 done_index = page->index + 1;
2079 done = 1;
2080 break;
2081 }
2082 }
2083
2084 /*
2085 * We stop writing back only if we are not doing
2086 * integrity sync. In case of integrity sync we have to
2087 * keep going until we have written all the pages
2088 * we tagged for writeback prior to entering this loop.
2089 */
2090 if (--wbc->nr_to_write <= 0 &&
2091 wbc->sync_mode == WB_SYNC_NONE) {
2092 done = 1;
2093 break;
2094 }
2095 }
2096 pagevec_release(&pvec);
2097 cond_resched();
2098 }
2099 if (!cycled && !done) {
2100 /*
2101 * range_cyclic:
2102 * We hit the last page and there is more work to be done: wrap
2103 * back to the start of the file
2104 */
2105 cycled = 1;
2106 index = 0;
2107 end = writeback_index - 1;
2108 goto retry;
2109 }
2110 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2111 mapping->writeback_index = done_index;
2112
2113 return ret;
2114 }
2115 EXPORT_SYMBOL(write_cache_pages);
2116
2117 /*
2118 * Function used by generic_writepages to call the real writepage
2119 * function and set the mapping flags on error
2120 */
2121 static int __writepage(struct page *page, struct writeback_control *wbc,
2122 void *data)
2123 {
2124 struct address_space *mapping = data;
2125 int ret = mapping->a_ops->writepage(page, wbc);
2126 mapping_set_error(mapping, ret);
2127 return ret;
2128 }
2129
2130 /**
2131 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2132 * @mapping: address space structure to write
2133 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2134 *
2135 * This is a library function, which implements the writepages()
2136 * address_space_operation.
2137 */
2138 int generic_writepages(struct address_space *mapping,
2139 struct writeback_control *wbc)
2140 {
2141 struct blk_plug plug;
2142 int ret;
2143
2144 /* deal with chardevs and other special file */
2145 if (!mapping->a_ops->writepage)
2146 return 0;
2147
2148 blk_start_plug(&plug);
2149 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2150 blk_finish_plug(&plug);
2151 return ret;
2152 }
2153
2154 EXPORT_SYMBOL(generic_writepages);
2155
2156 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2157 {
2158 int ret;
2159
2160 if (wbc->nr_to_write <= 0)
2161 return 0;
2162 if (mapping->a_ops->writepages)
2163 ret = mapping->a_ops->writepages(mapping, wbc);
2164 else
2165 ret = generic_writepages(mapping, wbc);
2166 return ret;
2167 }
2168
2169 /**
2170 * write_one_page - write out a single page and optionally wait on I/O
2171 * @page: the page to write
2172 * @wait: if true, wait on writeout
2173 *
2174 * The page must be locked by the caller and will be unlocked upon return.
2175 *
2176 * write_one_page() returns a negative error code if I/O failed.
2177 */
2178 int write_one_page(struct page *page, int wait)
2179 {
2180 struct address_space *mapping = page->mapping;
2181 int ret = 0;
2182 struct writeback_control wbc = {
2183 .sync_mode = WB_SYNC_ALL,
2184 .nr_to_write = 1,
2185 };
2186
2187 BUG_ON(!PageLocked(page));
2188
2189 if (wait)
2190 wait_on_page_writeback(page);
2191
2192 if (clear_page_dirty_for_io(page)) {
2193 page_cache_get(page);
2194 ret = mapping->a_ops->writepage(page, &wbc);
2195 if (ret == 0 && wait) {
2196 wait_on_page_writeback(page);
2197 if (PageError(page))
2198 ret = -EIO;
2199 }
2200 page_cache_release(page);
2201 } else {
2202 unlock_page(page);
2203 }
2204 return ret;
2205 }
2206 EXPORT_SYMBOL(write_one_page);
2207
2208 /*
2209 * For address_spaces which do not use buffers nor write back.
2210 */
2211 int __set_page_dirty_no_writeback(struct page *page)
2212 {
2213 if (!PageDirty(page))
2214 return !TestSetPageDirty(page);
2215 return 0;
2216 }
2217
2218 /*
2219 * Helper function for set_page_dirty family.
2220 *
2221 * Caller must hold mem_cgroup_begin_page_stat().
2222 *
2223 * NOTE: This relies on being atomic wrt interrupts.
2224 */
2225 void account_page_dirtied(struct page *page, struct address_space *mapping,
2226 struct mem_cgroup *memcg)
2227 {
2228 struct inode *inode = mapping->host;
2229
2230 trace_writeback_dirty_page(page, mapping);
2231
2232 if (mapping_cap_account_dirty(mapping)) {
2233 struct bdi_writeback *wb;
2234
2235 inode_attach_wb(inode, page);
2236 wb = inode_to_wb(inode);
2237
2238 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2239 __inc_zone_page_state(page, NR_FILE_DIRTY);
2240 __inc_zone_page_state(page, NR_DIRTIED);
2241 __inc_wb_stat(wb, WB_RECLAIMABLE);
2242 __inc_wb_stat(wb, WB_DIRTIED);
2243 task_io_account_write(PAGE_CACHE_SIZE);
2244 current->nr_dirtied++;
2245 this_cpu_inc(bdp_ratelimits);
2246 }
2247 }
2248 EXPORT_SYMBOL(account_page_dirtied);
2249
2250 /*
2251 * Helper function for deaccounting dirty page without writeback.
2252 *
2253 * Caller must hold mem_cgroup_begin_page_stat().
2254 */
2255 void account_page_cleaned(struct page *page, struct address_space *mapping,
2256 struct mem_cgroup *memcg)
2257 {
2258 if (mapping_cap_account_dirty(mapping)) {
2259 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2260 dec_zone_page_state(page, NR_FILE_DIRTY);
2261 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
2262 task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2263 }
2264 }
2265
2266 /*
2267 * For address_spaces which do not use buffers. Just tag the page as dirty in
2268 * its radix tree.
2269 *
2270 * This is also used when a single buffer is being dirtied: we want to set the
2271 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2272 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2273 *
2274 * The caller must ensure this doesn't race with truncation. Most will simply
2275 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2276 * the pte lock held, which also locks out truncation.
2277 */
2278 int __set_page_dirty_nobuffers(struct page *page)
2279 {
2280 struct mem_cgroup *memcg;
2281
2282 memcg = mem_cgroup_begin_page_stat(page);
2283 if (!TestSetPageDirty(page)) {
2284 struct address_space *mapping = page_mapping(page);
2285 unsigned long flags;
2286
2287 if (!mapping) {
2288 mem_cgroup_end_page_stat(memcg);
2289 return 1;
2290 }
2291
2292 spin_lock_irqsave(&mapping->tree_lock, flags);
2293 BUG_ON(page_mapping(page) != mapping);
2294 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2295 account_page_dirtied(page, mapping, memcg);
2296 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2297 PAGECACHE_TAG_DIRTY);
2298 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2299 mem_cgroup_end_page_stat(memcg);
2300
2301 if (mapping->host) {
2302 /* !PageAnon && !swapper_space */
2303 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2304 }
2305 return 1;
2306 }
2307 mem_cgroup_end_page_stat(memcg);
2308 return 0;
2309 }
2310 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2311
2312 /*
2313 * Call this whenever redirtying a page, to de-account the dirty counters
2314 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2315 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2316 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2317 * control.
2318 */
2319 void account_page_redirty(struct page *page)
2320 {
2321 struct address_space *mapping = page->mapping;
2322
2323 if (mapping && mapping_cap_account_dirty(mapping)) {
2324 struct bdi_writeback *wb = inode_to_wb(mapping->host);
2325
2326 current->nr_dirtied--;
2327 dec_zone_page_state(page, NR_DIRTIED);
2328 dec_wb_stat(wb, WB_DIRTIED);
2329 }
2330 }
2331 EXPORT_SYMBOL(account_page_redirty);
2332
2333 /*
2334 * When a writepage implementation decides that it doesn't want to write this
2335 * page for some reason, it should redirty the locked page via
2336 * redirty_page_for_writepage() and it should then unlock the page and return 0
2337 */
2338 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2339 {
2340 int ret;
2341
2342 wbc->pages_skipped++;
2343 ret = __set_page_dirty_nobuffers(page);
2344 account_page_redirty(page);
2345 return ret;
2346 }
2347 EXPORT_SYMBOL(redirty_page_for_writepage);
2348
2349 /*
2350 * Dirty a page.
2351 *
2352 * For pages with a mapping this should be done under the page lock
2353 * for the benefit of asynchronous memory errors who prefer a consistent
2354 * dirty state. This rule can be broken in some special cases,
2355 * but should be better not to.
2356 *
2357 * If the mapping doesn't provide a set_page_dirty a_op, then
2358 * just fall through and assume that it wants buffer_heads.
2359 */
2360 int set_page_dirty(struct page *page)
2361 {
2362 struct address_space *mapping = page_mapping(page);
2363
2364 if (likely(mapping)) {
2365 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2366 /*
2367 * readahead/lru_deactivate_page could remain
2368 * PG_readahead/PG_reclaim due to race with end_page_writeback
2369 * About readahead, if the page is written, the flags would be
2370 * reset. So no problem.
2371 * About lru_deactivate_page, if the page is redirty, the flag
2372 * will be reset. So no problem. but if the page is used by readahead
2373 * it will confuse readahead and make it restart the size rampup
2374 * process. But it's a trivial problem.
2375 */
2376 if (PageReclaim(page))
2377 ClearPageReclaim(page);
2378 #ifdef CONFIG_BLOCK
2379 if (!spd)
2380 spd = __set_page_dirty_buffers;
2381 #endif
2382 return (*spd)(page);
2383 }
2384 if (!PageDirty(page)) {
2385 if (!TestSetPageDirty(page))
2386 return 1;
2387 }
2388 return 0;
2389 }
2390 EXPORT_SYMBOL(set_page_dirty);
2391
2392 /*
2393 * set_page_dirty() is racy if the caller has no reference against
2394 * page->mapping->host, and if the page is unlocked. This is because another
2395 * CPU could truncate the page off the mapping and then free the mapping.
2396 *
2397 * Usually, the page _is_ locked, or the caller is a user-space process which
2398 * holds a reference on the inode by having an open file.
2399 *
2400 * In other cases, the page should be locked before running set_page_dirty().
2401 */
2402 int set_page_dirty_lock(struct page *page)
2403 {
2404 int ret;
2405
2406 lock_page(page);
2407 ret = set_page_dirty(page);
2408 unlock_page(page);
2409 return ret;
2410 }
2411 EXPORT_SYMBOL(set_page_dirty_lock);
2412
2413 /*
2414 * This cancels just the dirty bit on the kernel page itself, it does NOT
2415 * actually remove dirty bits on any mmap's that may be around. It also
2416 * leaves the page tagged dirty, so any sync activity will still find it on
2417 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2418 * look at the dirty bits in the VM.
2419 *
2420 * Doing this should *normally* only ever be done when a page is truncated,
2421 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2422 * this when it notices that somebody has cleaned out all the buffers on a
2423 * page without actually doing it through the VM. Can you say "ext3 is
2424 * horribly ugly"? Thought you could.
2425 */
2426 void cancel_dirty_page(struct page *page)
2427 {
2428 struct address_space *mapping = page_mapping(page);
2429
2430 if (mapping_cap_account_dirty(mapping)) {
2431 struct mem_cgroup *memcg;
2432
2433 memcg = mem_cgroup_begin_page_stat(page);
2434
2435 if (TestClearPageDirty(page))
2436 account_page_cleaned(page, mapping, memcg);
2437
2438 mem_cgroup_end_page_stat(memcg);
2439 } else {
2440 ClearPageDirty(page);
2441 }
2442 }
2443 EXPORT_SYMBOL(cancel_dirty_page);
2444
2445 /*
2446 * Clear a page's dirty flag, while caring for dirty memory accounting.
2447 * Returns true if the page was previously dirty.
2448 *
2449 * This is for preparing to put the page under writeout. We leave the page
2450 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2451 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2452 * implementation will run either set_page_writeback() or set_page_dirty(),
2453 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2454 * back into sync.
2455 *
2456 * This incoherency between the page's dirty flag and radix-tree tag is
2457 * unfortunate, but it only exists while the page is locked.
2458 */
2459 int clear_page_dirty_for_io(struct page *page)
2460 {
2461 struct address_space *mapping = page_mapping(page);
2462 struct mem_cgroup *memcg;
2463 int ret = 0;
2464
2465 BUG_ON(!PageLocked(page));
2466
2467 if (mapping && mapping_cap_account_dirty(mapping)) {
2468 /*
2469 * Yes, Virginia, this is indeed insane.
2470 *
2471 * We use this sequence to make sure that
2472 * (a) we account for dirty stats properly
2473 * (b) we tell the low-level filesystem to
2474 * mark the whole page dirty if it was
2475 * dirty in a pagetable. Only to then
2476 * (c) clean the page again and return 1 to
2477 * cause the writeback.
2478 *
2479 * This way we avoid all nasty races with the
2480 * dirty bit in multiple places and clearing
2481 * them concurrently from different threads.
2482 *
2483 * Note! Normally the "set_page_dirty(page)"
2484 * has no effect on the actual dirty bit - since
2485 * that will already usually be set. But we
2486 * need the side effects, and it can help us
2487 * avoid races.
2488 *
2489 * We basically use the page "master dirty bit"
2490 * as a serialization point for all the different
2491 * threads doing their things.
2492 */
2493 if (page_mkclean(page))
2494 set_page_dirty(page);
2495 /*
2496 * We carefully synchronise fault handlers against
2497 * installing a dirty pte and marking the page dirty
2498 * at this point. We do this by having them hold the
2499 * page lock while dirtying the page, and pages are
2500 * always locked coming in here, so we get the desired
2501 * exclusion.
2502 */
2503 memcg = mem_cgroup_begin_page_stat(page);
2504 if (TestClearPageDirty(page)) {
2505 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2506 dec_zone_page_state(page, NR_FILE_DIRTY);
2507 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
2508 ret = 1;
2509 }
2510 mem_cgroup_end_page_stat(memcg);
2511 return ret;
2512 }
2513 return TestClearPageDirty(page);
2514 }
2515 EXPORT_SYMBOL(clear_page_dirty_for_io);
2516
2517 int test_clear_page_writeback(struct page *page)
2518 {
2519 struct address_space *mapping = page_mapping(page);
2520 struct mem_cgroup *memcg;
2521 int ret;
2522
2523 memcg = mem_cgroup_begin_page_stat(page);
2524 if (mapping) {
2525 struct inode *inode = mapping->host;
2526 struct backing_dev_info *bdi = inode_to_bdi(inode);
2527 unsigned long flags;
2528
2529 spin_lock_irqsave(&mapping->tree_lock, flags);
2530 ret = TestClearPageWriteback(page);
2531 if (ret) {
2532 radix_tree_tag_clear(&mapping->page_tree,
2533 page_index(page),
2534 PAGECACHE_TAG_WRITEBACK);
2535 if (bdi_cap_account_writeback(bdi)) {
2536 struct bdi_writeback *wb = inode_to_wb(inode);
2537
2538 __dec_wb_stat(wb, WB_WRITEBACK);
2539 __wb_writeout_inc(wb);
2540 }
2541 }
2542 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2543 } else {
2544 ret = TestClearPageWriteback(page);
2545 }
2546 if (ret) {
2547 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2548 dec_zone_page_state(page, NR_WRITEBACK);
2549 inc_zone_page_state(page, NR_WRITTEN);
2550 }
2551 mem_cgroup_end_page_stat(memcg);
2552 return ret;
2553 }
2554
2555 int __test_set_page_writeback(struct page *page, bool keep_write)
2556 {
2557 struct address_space *mapping = page_mapping(page);
2558 struct mem_cgroup *memcg;
2559 int ret;
2560
2561 memcg = mem_cgroup_begin_page_stat(page);
2562 if (mapping) {
2563 struct inode *inode = mapping->host;
2564 struct backing_dev_info *bdi = inode_to_bdi(inode);
2565 unsigned long flags;
2566
2567 spin_lock_irqsave(&mapping->tree_lock, flags);
2568 ret = TestSetPageWriteback(page);
2569 if (!ret) {
2570 radix_tree_tag_set(&mapping->page_tree,
2571 page_index(page),
2572 PAGECACHE_TAG_WRITEBACK);
2573 if (bdi_cap_account_writeback(bdi))
2574 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2575 }
2576 if (!PageDirty(page))
2577 radix_tree_tag_clear(&mapping->page_tree,
2578 page_index(page),
2579 PAGECACHE_TAG_DIRTY);
2580 if (!keep_write)
2581 radix_tree_tag_clear(&mapping->page_tree,
2582 page_index(page),
2583 PAGECACHE_TAG_TOWRITE);
2584 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2585 } else {
2586 ret = TestSetPageWriteback(page);
2587 }
2588 if (!ret) {
2589 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2590 inc_zone_page_state(page, NR_WRITEBACK);
2591 }
2592 mem_cgroup_end_page_stat(memcg);
2593 return ret;
2594
2595 }
2596 EXPORT_SYMBOL(__test_set_page_writeback);
2597
2598 /*
2599 * Return true if any of the pages in the mapping are marked with the
2600 * passed tag.
2601 */
2602 int mapping_tagged(struct address_space *mapping, int tag)
2603 {
2604 return radix_tree_tagged(&mapping->page_tree, tag);
2605 }
2606 EXPORT_SYMBOL(mapping_tagged);
2607
2608 /**
2609 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2610 * @page: The page to wait on.
2611 *
2612 * This function determines if the given page is related to a backing device
2613 * that requires page contents to be held stable during writeback. If so, then
2614 * it will wait for any pending writeback to complete.
2615 */
2616 void wait_for_stable_page(struct page *page)
2617 {
2618 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2619 wait_on_page_writeback(page);
2620 }
2621 EXPORT_SYMBOL_GPL(wait_for_stable_page);