]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/page-writeback.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/geert/linux...
[mirror_ubuntu-zesty-kernel.git] / mm / page-writeback.c
1 /*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002 Andrew Morton
11 * Initial version
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37
38 /*
39 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
40 * will look to see if it needs to force writeback or throttling.
41 */
42 static long ratelimit_pages = 32;
43
44 /*
45 * When balance_dirty_pages decides that the caller needs to perform some
46 * non-background writeback, this is how many pages it will attempt to write.
47 * It should be somewhat larger than dirtied pages to ensure that reasonably
48 * large amounts of I/O are submitted.
49 */
50 static inline long sync_writeback_pages(unsigned long dirtied)
51 {
52 if (dirtied < ratelimit_pages)
53 dirtied = ratelimit_pages;
54
55 return dirtied + dirtied / 2;
56 }
57
58 /* The following parameters are exported via /proc/sys/vm */
59
60 /*
61 * Start background writeback (via writeback threads) at this percentage
62 */
63 int dirty_background_ratio = 10;
64
65 /*
66 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
67 * dirty_background_ratio * the amount of dirtyable memory
68 */
69 unsigned long dirty_background_bytes;
70
71 /*
72 * free highmem will not be subtracted from the total free memory
73 * for calculating free ratios if vm_highmem_is_dirtyable is true
74 */
75 int vm_highmem_is_dirtyable;
76
77 /*
78 * The generator of dirty data starts writeback at this percentage
79 */
80 int vm_dirty_ratio = 20;
81
82 /*
83 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
84 * vm_dirty_ratio * the amount of dirtyable memory
85 */
86 unsigned long vm_dirty_bytes;
87
88 /*
89 * The interval between `kupdate'-style writebacks
90 */
91 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
92
93 /*
94 * The longest time for which data is allowed to remain dirty
95 */
96 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
97
98 /*
99 * Flag that makes the machine dump writes/reads and block dirtyings.
100 */
101 int block_dump;
102
103 /*
104 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
105 * a full sync is triggered after this time elapses without any disk activity.
106 */
107 int laptop_mode;
108
109 EXPORT_SYMBOL(laptop_mode);
110
111 /* End of sysctl-exported parameters */
112
113
114 /*
115 * Scale the writeback cache size proportional to the relative writeout speeds.
116 *
117 * We do this by keeping a floating proportion between BDIs, based on page
118 * writeback completions [end_page_writeback()]. Those devices that write out
119 * pages fastest will get the larger share, while the slower will get a smaller
120 * share.
121 *
122 * We use page writeout completions because we are interested in getting rid of
123 * dirty pages. Having them written out is the primary goal.
124 *
125 * We introduce a concept of time, a period over which we measure these events,
126 * because demand can/will vary over time. The length of this period itself is
127 * measured in page writeback completions.
128 *
129 */
130 static struct prop_descriptor vm_completions;
131 static struct prop_descriptor vm_dirties;
132
133 /*
134 * couple the period to the dirty_ratio:
135 *
136 * period/2 ~ roundup_pow_of_two(dirty limit)
137 */
138 static int calc_period_shift(void)
139 {
140 unsigned long dirty_total;
141
142 if (vm_dirty_bytes)
143 dirty_total = vm_dirty_bytes / PAGE_SIZE;
144 else
145 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
146 100;
147 return 2 + ilog2(dirty_total - 1);
148 }
149
150 /*
151 * update the period when the dirty threshold changes.
152 */
153 static void update_completion_period(void)
154 {
155 int shift = calc_period_shift();
156 prop_change_shift(&vm_completions, shift);
157 prop_change_shift(&vm_dirties, shift);
158 }
159
160 int dirty_background_ratio_handler(struct ctl_table *table, int write,
161 void __user *buffer, size_t *lenp,
162 loff_t *ppos)
163 {
164 int ret;
165
166 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
167 if (ret == 0 && write)
168 dirty_background_bytes = 0;
169 return ret;
170 }
171
172 int dirty_background_bytes_handler(struct ctl_table *table, int write,
173 void __user *buffer, size_t *lenp,
174 loff_t *ppos)
175 {
176 int ret;
177
178 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
179 if (ret == 0 && write)
180 dirty_background_ratio = 0;
181 return ret;
182 }
183
184 int dirty_ratio_handler(struct ctl_table *table, int write,
185 void __user *buffer, size_t *lenp,
186 loff_t *ppos)
187 {
188 int old_ratio = vm_dirty_ratio;
189 int ret;
190
191 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
192 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
193 update_completion_period();
194 vm_dirty_bytes = 0;
195 }
196 return ret;
197 }
198
199
200 int dirty_bytes_handler(struct ctl_table *table, int write,
201 void __user *buffer, size_t *lenp,
202 loff_t *ppos)
203 {
204 unsigned long old_bytes = vm_dirty_bytes;
205 int ret;
206
207 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
208 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
209 update_completion_period();
210 vm_dirty_ratio = 0;
211 }
212 return ret;
213 }
214
215 /*
216 * Increment the BDI's writeout completion count and the global writeout
217 * completion count. Called from test_clear_page_writeback().
218 */
219 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
220 {
221 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
222 bdi->max_prop_frac);
223 }
224
225 void bdi_writeout_inc(struct backing_dev_info *bdi)
226 {
227 unsigned long flags;
228
229 local_irq_save(flags);
230 __bdi_writeout_inc(bdi);
231 local_irq_restore(flags);
232 }
233 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
234
235 void task_dirty_inc(struct task_struct *tsk)
236 {
237 prop_inc_single(&vm_dirties, &tsk->dirties);
238 }
239
240 /*
241 * Obtain an accurate fraction of the BDI's portion.
242 */
243 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
244 long *numerator, long *denominator)
245 {
246 if (bdi_cap_writeback_dirty(bdi)) {
247 prop_fraction_percpu(&vm_completions, &bdi->completions,
248 numerator, denominator);
249 } else {
250 *numerator = 0;
251 *denominator = 1;
252 }
253 }
254
255 /*
256 * Clip the earned share of dirty pages to that which is actually available.
257 * This avoids exceeding the total dirty_limit when the floating averages
258 * fluctuate too quickly.
259 */
260 static void clip_bdi_dirty_limit(struct backing_dev_info *bdi,
261 unsigned long dirty, unsigned long *pbdi_dirty)
262 {
263 unsigned long avail_dirty;
264
265 avail_dirty = global_page_state(NR_FILE_DIRTY) +
266 global_page_state(NR_WRITEBACK) +
267 global_page_state(NR_UNSTABLE_NFS) +
268 global_page_state(NR_WRITEBACK_TEMP);
269
270 if (avail_dirty < dirty)
271 avail_dirty = dirty - avail_dirty;
272 else
273 avail_dirty = 0;
274
275 avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
276 bdi_stat(bdi, BDI_WRITEBACK);
277
278 *pbdi_dirty = min(*pbdi_dirty, avail_dirty);
279 }
280
281 static inline void task_dirties_fraction(struct task_struct *tsk,
282 long *numerator, long *denominator)
283 {
284 prop_fraction_single(&vm_dirties, &tsk->dirties,
285 numerator, denominator);
286 }
287
288 /*
289 * scale the dirty limit
290 *
291 * task specific dirty limit:
292 *
293 * dirty -= (dirty/8) * p_{t}
294 */
295 static void task_dirty_limit(struct task_struct *tsk, unsigned long *pdirty)
296 {
297 long numerator, denominator;
298 unsigned long dirty = *pdirty;
299 u64 inv = dirty >> 3;
300
301 task_dirties_fraction(tsk, &numerator, &denominator);
302 inv *= numerator;
303 do_div(inv, denominator);
304
305 dirty -= inv;
306 if (dirty < *pdirty/2)
307 dirty = *pdirty/2;
308
309 *pdirty = dirty;
310 }
311
312 /*
313 *
314 */
315 static unsigned int bdi_min_ratio;
316
317 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
318 {
319 int ret = 0;
320
321 spin_lock_bh(&bdi_lock);
322 if (min_ratio > bdi->max_ratio) {
323 ret = -EINVAL;
324 } else {
325 min_ratio -= bdi->min_ratio;
326 if (bdi_min_ratio + min_ratio < 100) {
327 bdi_min_ratio += min_ratio;
328 bdi->min_ratio += min_ratio;
329 } else {
330 ret = -EINVAL;
331 }
332 }
333 spin_unlock_bh(&bdi_lock);
334
335 return ret;
336 }
337
338 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
339 {
340 int ret = 0;
341
342 if (max_ratio > 100)
343 return -EINVAL;
344
345 spin_lock_bh(&bdi_lock);
346 if (bdi->min_ratio > max_ratio) {
347 ret = -EINVAL;
348 } else {
349 bdi->max_ratio = max_ratio;
350 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
351 }
352 spin_unlock_bh(&bdi_lock);
353
354 return ret;
355 }
356 EXPORT_SYMBOL(bdi_set_max_ratio);
357
358 /*
359 * Work out the current dirty-memory clamping and background writeout
360 * thresholds.
361 *
362 * The main aim here is to lower them aggressively if there is a lot of mapped
363 * memory around. To avoid stressing page reclaim with lots of unreclaimable
364 * pages. It is better to clamp down on writers than to start swapping, and
365 * performing lots of scanning.
366 *
367 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
368 *
369 * We don't permit the clamping level to fall below 5% - that is getting rather
370 * excessive.
371 *
372 * We make sure that the background writeout level is below the adjusted
373 * clamping level.
374 */
375
376 static unsigned long highmem_dirtyable_memory(unsigned long total)
377 {
378 #ifdef CONFIG_HIGHMEM
379 int node;
380 unsigned long x = 0;
381
382 for_each_node_state(node, N_HIGH_MEMORY) {
383 struct zone *z =
384 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
385
386 x += zone_page_state(z, NR_FREE_PAGES) +
387 zone_reclaimable_pages(z);
388 }
389 /*
390 * Make sure that the number of highmem pages is never larger
391 * than the number of the total dirtyable memory. This can only
392 * occur in very strange VM situations but we want to make sure
393 * that this does not occur.
394 */
395 return min(x, total);
396 #else
397 return 0;
398 #endif
399 }
400
401 /**
402 * determine_dirtyable_memory - amount of memory that may be used
403 *
404 * Returns the numebr of pages that can currently be freed and used
405 * by the kernel for direct mappings.
406 */
407 unsigned long determine_dirtyable_memory(void)
408 {
409 unsigned long x;
410
411 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
412
413 if (!vm_highmem_is_dirtyable)
414 x -= highmem_dirtyable_memory(x);
415
416 return x + 1; /* Ensure that we never return 0 */
417 }
418
419 void
420 get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty,
421 unsigned long *pbdi_dirty, struct backing_dev_info *bdi)
422 {
423 unsigned long background;
424 unsigned long dirty;
425 unsigned long available_memory = determine_dirtyable_memory();
426 struct task_struct *tsk;
427
428 if (vm_dirty_bytes)
429 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
430 else {
431 int dirty_ratio;
432
433 dirty_ratio = vm_dirty_ratio;
434 if (dirty_ratio < 5)
435 dirty_ratio = 5;
436 dirty = (dirty_ratio * available_memory) / 100;
437 }
438
439 if (dirty_background_bytes)
440 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
441 else
442 background = (dirty_background_ratio * available_memory) / 100;
443
444 if (background >= dirty)
445 background = dirty / 2;
446 tsk = current;
447 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
448 background += background / 4;
449 dirty += dirty / 4;
450 }
451 *pbackground = background;
452 *pdirty = dirty;
453
454 if (bdi) {
455 u64 bdi_dirty;
456 long numerator, denominator;
457
458 /*
459 * Calculate this BDI's share of the dirty ratio.
460 */
461 bdi_writeout_fraction(bdi, &numerator, &denominator);
462
463 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
464 bdi_dirty *= numerator;
465 do_div(bdi_dirty, denominator);
466 bdi_dirty += (dirty * bdi->min_ratio) / 100;
467 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
468 bdi_dirty = dirty * bdi->max_ratio / 100;
469
470 *pbdi_dirty = bdi_dirty;
471 clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
472 task_dirty_limit(current, pbdi_dirty);
473 }
474 }
475
476 /*
477 * balance_dirty_pages() must be called by processes which are generating dirty
478 * data. It looks at the number of dirty pages in the machine and will force
479 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
480 * If we're over `background_thresh' then the writeback threads are woken to
481 * perform some writeout.
482 */
483 static void balance_dirty_pages(struct address_space *mapping,
484 unsigned long write_chunk)
485 {
486 long nr_reclaimable, bdi_nr_reclaimable;
487 long nr_writeback, bdi_nr_writeback;
488 unsigned long background_thresh;
489 unsigned long dirty_thresh;
490 unsigned long bdi_thresh;
491 unsigned long pages_written = 0;
492 unsigned long pause = 1;
493
494 struct backing_dev_info *bdi = mapping->backing_dev_info;
495
496 for (;;) {
497 struct writeback_control wbc = {
498 .sync_mode = WB_SYNC_NONE,
499 .older_than_this = NULL,
500 .nr_to_write = write_chunk,
501 .range_cyclic = 1,
502 };
503
504 get_dirty_limits(&background_thresh, &dirty_thresh,
505 &bdi_thresh, bdi);
506
507 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
508 global_page_state(NR_UNSTABLE_NFS);
509 nr_writeback = global_page_state(NR_WRITEBACK);
510
511 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
512 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
513
514 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
515 break;
516
517 /*
518 * Throttle it only when the background writeback cannot
519 * catch-up. This avoids (excessively) small writeouts
520 * when the bdi limits are ramping up.
521 */
522 if (nr_reclaimable + nr_writeback <
523 (background_thresh + dirty_thresh) / 2)
524 break;
525
526 if (!bdi->dirty_exceeded)
527 bdi->dirty_exceeded = 1;
528
529 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
530 * Unstable writes are a feature of certain networked
531 * filesystems (i.e. NFS) in which data may have been
532 * written to the server's write cache, but has not yet
533 * been flushed to permanent storage.
534 * Only move pages to writeback if this bdi is over its
535 * threshold otherwise wait until the disk writes catch
536 * up.
537 */
538 if (bdi_nr_reclaimable > bdi_thresh) {
539 writeback_inodes_wb(&bdi->wb, &wbc);
540 pages_written += write_chunk - wbc.nr_to_write;
541 get_dirty_limits(&background_thresh, &dirty_thresh,
542 &bdi_thresh, bdi);
543 }
544
545 /*
546 * In order to avoid the stacked BDI deadlock we need
547 * to ensure we accurately count the 'dirty' pages when
548 * the threshold is low.
549 *
550 * Otherwise it would be possible to get thresh+n pages
551 * reported dirty, even though there are thresh-m pages
552 * actually dirty; with m+n sitting in the percpu
553 * deltas.
554 */
555 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
556 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
557 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
558 } else if (bdi_nr_reclaimable) {
559 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
560 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
561 }
562
563 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
564 break;
565 if (pages_written >= write_chunk)
566 break; /* We've done our duty */
567
568 __set_current_state(TASK_INTERRUPTIBLE);
569 io_schedule_timeout(pause);
570
571 /*
572 * Increase the delay for each loop, up to our previous
573 * default of taking a 100ms nap.
574 */
575 pause <<= 1;
576 if (pause > HZ / 10)
577 pause = HZ / 10;
578 }
579
580 if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
581 bdi->dirty_exceeded)
582 bdi->dirty_exceeded = 0;
583
584 if (writeback_in_progress(bdi))
585 return;
586
587 /*
588 * In laptop mode, we wait until hitting the higher threshold before
589 * starting background writeout, and then write out all the way down
590 * to the lower threshold. So slow writers cause minimal disk activity.
591 *
592 * In normal mode, we start background writeout at the lower
593 * background_thresh, to keep the amount of dirty memory low.
594 */
595 if ((laptop_mode && pages_written) ||
596 (!laptop_mode && ((global_page_state(NR_FILE_DIRTY)
597 + global_page_state(NR_UNSTABLE_NFS))
598 > background_thresh)))
599 bdi_start_background_writeback(bdi);
600 }
601
602 void set_page_dirty_balance(struct page *page, int page_mkwrite)
603 {
604 if (set_page_dirty(page) || page_mkwrite) {
605 struct address_space *mapping = page_mapping(page);
606
607 if (mapping)
608 balance_dirty_pages_ratelimited(mapping);
609 }
610 }
611
612 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
613
614 /**
615 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
616 * @mapping: address_space which was dirtied
617 * @nr_pages_dirtied: number of pages which the caller has just dirtied
618 *
619 * Processes which are dirtying memory should call in here once for each page
620 * which was newly dirtied. The function will periodically check the system's
621 * dirty state and will initiate writeback if needed.
622 *
623 * On really big machines, get_writeback_state is expensive, so try to avoid
624 * calling it too often (ratelimiting). But once we're over the dirty memory
625 * limit we decrease the ratelimiting by a lot, to prevent individual processes
626 * from overshooting the limit by (ratelimit_pages) each.
627 */
628 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
629 unsigned long nr_pages_dirtied)
630 {
631 unsigned long ratelimit;
632 unsigned long *p;
633
634 ratelimit = ratelimit_pages;
635 if (mapping->backing_dev_info->dirty_exceeded)
636 ratelimit = 8;
637
638 /*
639 * Check the rate limiting. Also, we do not want to throttle real-time
640 * tasks in balance_dirty_pages(). Period.
641 */
642 preempt_disable();
643 p = &__get_cpu_var(bdp_ratelimits);
644 *p += nr_pages_dirtied;
645 if (unlikely(*p >= ratelimit)) {
646 ratelimit = sync_writeback_pages(*p);
647 *p = 0;
648 preempt_enable();
649 balance_dirty_pages(mapping, ratelimit);
650 return;
651 }
652 preempt_enable();
653 }
654 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
655
656 void throttle_vm_writeout(gfp_t gfp_mask)
657 {
658 unsigned long background_thresh;
659 unsigned long dirty_thresh;
660
661 for ( ; ; ) {
662 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
663
664 /*
665 * Boost the allowable dirty threshold a bit for page
666 * allocators so they don't get DoS'ed by heavy writers
667 */
668 dirty_thresh += dirty_thresh / 10; /* wheeee... */
669
670 if (global_page_state(NR_UNSTABLE_NFS) +
671 global_page_state(NR_WRITEBACK) <= dirty_thresh)
672 break;
673 congestion_wait(BLK_RW_ASYNC, HZ/10);
674
675 /*
676 * The caller might hold locks which can prevent IO completion
677 * or progress in the filesystem. So we cannot just sit here
678 * waiting for IO to complete.
679 */
680 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
681 break;
682 }
683 }
684
685 /*
686 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
687 */
688 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
689 void __user *buffer, size_t *length, loff_t *ppos)
690 {
691 proc_dointvec(table, write, buffer, length, ppos);
692 bdi_arm_supers_timer();
693 return 0;
694 }
695
696 #ifdef CONFIG_BLOCK
697 void laptop_mode_timer_fn(unsigned long data)
698 {
699 struct request_queue *q = (struct request_queue *)data;
700 int nr_pages = global_page_state(NR_FILE_DIRTY) +
701 global_page_state(NR_UNSTABLE_NFS);
702
703 /*
704 * We want to write everything out, not just down to the dirty
705 * threshold
706 */
707 if (bdi_has_dirty_io(&q->backing_dev_info))
708 bdi_start_writeback(&q->backing_dev_info, nr_pages);
709 }
710
711 /*
712 * We've spun up the disk and we're in laptop mode: schedule writeback
713 * of all dirty data a few seconds from now. If the flush is already scheduled
714 * then push it back - the user is still using the disk.
715 */
716 void laptop_io_completion(struct backing_dev_info *info)
717 {
718 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
719 }
720
721 /*
722 * We're in laptop mode and we've just synced. The sync's writes will have
723 * caused another writeback to be scheduled by laptop_io_completion.
724 * Nothing needs to be written back anymore, so we unschedule the writeback.
725 */
726 void laptop_sync_completion(void)
727 {
728 struct backing_dev_info *bdi;
729
730 rcu_read_lock();
731
732 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
733 del_timer(&bdi->laptop_mode_wb_timer);
734
735 rcu_read_unlock();
736 }
737 #endif
738
739 /*
740 * If ratelimit_pages is too high then we can get into dirty-data overload
741 * if a large number of processes all perform writes at the same time.
742 * If it is too low then SMP machines will call the (expensive)
743 * get_writeback_state too often.
744 *
745 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
746 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
747 * thresholds before writeback cuts in.
748 *
749 * But the limit should not be set too high. Because it also controls the
750 * amount of memory which the balance_dirty_pages() caller has to write back.
751 * If this is too large then the caller will block on the IO queue all the
752 * time. So limit it to four megabytes - the balance_dirty_pages() caller
753 * will write six megabyte chunks, max.
754 */
755
756 void writeback_set_ratelimit(void)
757 {
758 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
759 if (ratelimit_pages < 16)
760 ratelimit_pages = 16;
761 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
762 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
763 }
764
765 static int __cpuinit
766 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
767 {
768 writeback_set_ratelimit();
769 return NOTIFY_DONE;
770 }
771
772 static struct notifier_block __cpuinitdata ratelimit_nb = {
773 .notifier_call = ratelimit_handler,
774 .next = NULL,
775 };
776
777 /*
778 * Called early on to tune the page writeback dirty limits.
779 *
780 * We used to scale dirty pages according to how total memory
781 * related to pages that could be allocated for buffers (by
782 * comparing nr_free_buffer_pages() to vm_total_pages.
783 *
784 * However, that was when we used "dirty_ratio" to scale with
785 * all memory, and we don't do that any more. "dirty_ratio"
786 * is now applied to total non-HIGHPAGE memory (by subtracting
787 * totalhigh_pages from vm_total_pages), and as such we can't
788 * get into the old insane situation any more where we had
789 * large amounts of dirty pages compared to a small amount of
790 * non-HIGHMEM memory.
791 *
792 * But we might still want to scale the dirty_ratio by how
793 * much memory the box has..
794 */
795 void __init page_writeback_init(void)
796 {
797 int shift;
798
799 writeback_set_ratelimit();
800 register_cpu_notifier(&ratelimit_nb);
801
802 shift = calc_period_shift();
803 prop_descriptor_init(&vm_completions, shift);
804 prop_descriptor_init(&vm_dirties, shift);
805 }
806
807 /**
808 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
809 * @mapping: address space structure to write
810 * @start: starting page index
811 * @end: ending page index (inclusive)
812 *
813 * This function scans the page range from @start to @end (inclusive) and tags
814 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
815 * that write_cache_pages (or whoever calls this function) will then use
816 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
817 * used to avoid livelocking of writeback by a process steadily creating new
818 * dirty pages in the file (thus it is important for this function to be quick
819 * so that it can tag pages faster than a dirtying process can create them).
820 */
821 /*
822 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
823 */
824 #define WRITEBACK_TAG_BATCH 4096
825 void tag_pages_for_writeback(struct address_space *mapping,
826 pgoff_t start, pgoff_t end)
827 {
828 unsigned long tagged;
829
830 do {
831 spin_lock_irq(&mapping->tree_lock);
832 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
833 &start, end, WRITEBACK_TAG_BATCH,
834 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
835 spin_unlock_irq(&mapping->tree_lock);
836 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
837 cond_resched();
838 } while (tagged >= WRITEBACK_TAG_BATCH);
839 }
840 EXPORT_SYMBOL(tag_pages_for_writeback);
841
842 /**
843 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
844 * @mapping: address space structure to write
845 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
846 * @writepage: function called for each page
847 * @data: data passed to writepage function
848 *
849 * If a page is already under I/O, write_cache_pages() skips it, even
850 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
851 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
852 * and msync() need to guarantee that all the data which was dirty at the time
853 * the call was made get new I/O started against them. If wbc->sync_mode is
854 * WB_SYNC_ALL then we were called for data integrity and we must wait for
855 * existing IO to complete.
856 *
857 * To avoid livelocks (when other process dirties new pages), we first tag
858 * pages which should be written back with TOWRITE tag and only then start
859 * writing them. For data-integrity sync we have to be careful so that we do
860 * not miss some pages (e.g., because some other process has cleared TOWRITE
861 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
862 * by the process clearing the DIRTY tag (and submitting the page for IO).
863 */
864 int write_cache_pages(struct address_space *mapping,
865 struct writeback_control *wbc, writepage_t writepage,
866 void *data)
867 {
868 int ret = 0;
869 int done = 0;
870 struct pagevec pvec;
871 int nr_pages;
872 pgoff_t uninitialized_var(writeback_index);
873 pgoff_t index;
874 pgoff_t end; /* Inclusive */
875 pgoff_t done_index;
876 int cycled;
877 int range_whole = 0;
878 int tag;
879
880 pagevec_init(&pvec, 0);
881 if (wbc->range_cyclic) {
882 writeback_index = mapping->writeback_index; /* prev offset */
883 index = writeback_index;
884 if (index == 0)
885 cycled = 1;
886 else
887 cycled = 0;
888 end = -1;
889 } else {
890 index = wbc->range_start >> PAGE_CACHE_SHIFT;
891 end = wbc->range_end >> PAGE_CACHE_SHIFT;
892 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
893 range_whole = 1;
894 cycled = 1; /* ignore range_cyclic tests */
895 }
896 if (wbc->sync_mode == WB_SYNC_ALL)
897 tag = PAGECACHE_TAG_TOWRITE;
898 else
899 tag = PAGECACHE_TAG_DIRTY;
900 retry:
901 if (wbc->sync_mode == WB_SYNC_ALL)
902 tag_pages_for_writeback(mapping, index, end);
903 done_index = index;
904 while (!done && (index <= end)) {
905 int i;
906
907 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
908 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
909 if (nr_pages == 0)
910 break;
911
912 for (i = 0; i < nr_pages; i++) {
913 struct page *page = pvec.pages[i];
914
915 /*
916 * At this point, the page may be truncated or
917 * invalidated (changing page->mapping to NULL), or
918 * even swizzled back from swapper_space to tmpfs file
919 * mapping. However, page->index will not change
920 * because we have a reference on the page.
921 */
922 if (page->index > end) {
923 /*
924 * can't be range_cyclic (1st pass) because
925 * end == -1 in that case.
926 */
927 done = 1;
928 break;
929 }
930
931 done_index = page->index + 1;
932
933 lock_page(page);
934
935 /*
936 * Page truncated or invalidated. We can freely skip it
937 * then, even for data integrity operations: the page
938 * has disappeared concurrently, so there could be no
939 * real expectation of this data interity operation
940 * even if there is now a new, dirty page at the same
941 * pagecache address.
942 */
943 if (unlikely(page->mapping != mapping)) {
944 continue_unlock:
945 unlock_page(page);
946 continue;
947 }
948
949 if (!PageDirty(page)) {
950 /* someone wrote it for us */
951 goto continue_unlock;
952 }
953
954 if (PageWriteback(page)) {
955 if (wbc->sync_mode != WB_SYNC_NONE)
956 wait_on_page_writeback(page);
957 else
958 goto continue_unlock;
959 }
960
961 BUG_ON(PageWriteback(page));
962 if (!clear_page_dirty_for_io(page))
963 goto continue_unlock;
964
965 ret = (*writepage)(page, wbc, data);
966 if (unlikely(ret)) {
967 if (ret == AOP_WRITEPAGE_ACTIVATE) {
968 unlock_page(page);
969 ret = 0;
970 } else {
971 /*
972 * done_index is set past this page,
973 * so media errors will not choke
974 * background writeout for the entire
975 * file. This has consequences for
976 * range_cyclic semantics (ie. it may
977 * not be suitable for data integrity
978 * writeout).
979 */
980 done = 1;
981 break;
982 }
983 }
984
985 if (wbc->nr_to_write > 0) {
986 if (--wbc->nr_to_write == 0 &&
987 wbc->sync_mode == WB_SYNC_NONE) {
988 /*
989 * We stop writing back only if we are
990 * not doing integrity sync. In case of
991 * integrity sync we have to keep going
992 * because someone may be concurrently
993 * dirtying pages, and we might have
994 * synced a lot of newly appeared dirty
995 * pages, but have not synced all of the
996 * old dirty pages.
997 */
998 done = 1;
999 break;
1000 }
1001 }
1002 }
1003 pagevec_release(&pvec);
1004 cond_resched();
1005 }
1006 if (!cycled && !done) {
1007 /*
1008 * range_cyclic:
1009 * We hit the last page and there is more work to be done: wrap
1010 * back to the start of the file
1011 */
1012 cycled = 1;
1013 index = 0;
1014 end = writeback_index - 1;
1015 goto retry;
1016 }
1017 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1018 mapping->writeback_index = done_index;
1019
1020 return ret;
1021 }
1022 EXPORT_SYMBOL(write_cache_pages);
1023
1024 /*
1025 * Function used by generic_writepages to call the real writepage
1026 * function and set the mapping flags on error
1027 */
1028 static int __writepage(struct page *page, struct writeback_control *wbc,
1029 void *data)
1030 {
1031 struct address_space *mapping = data;
1032 int ret = mapping->a_ops->writepage(page, wbc);
1033 mapping_set_error(mapping, ret);
1034 return ret;
1035 }
1036
1037 /**
1038 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1039 * @mapping: address space structure to write
1040 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1041 *
1042 * This is a library function, which implements the writepages()
1043 * address_space_operation.
1044 */
1045 int generic_writepages(struct address_space *mapping,
1046 struct writeback_control *wbc)
1047 {
1048 /* deal with chardevs and other special file */
1049 if (!mapping->a_ops->writepage)
1050 return 0;
1051
1052 return write_cache_pages(mapping, wbc, __writepage, mapping);
1053 }
1054
1055 EXPORT_SYMBOL(generic_writepages);
1056
1057 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1058 {
1059 int ret;
1060
1061 if (wbc->nr_to_write <= 0)
1062 return 0;
1063 if (mapping->a_ops->writepages)
1064 ret = mapping->a_ops->writepages(mapping, wbc);
1065 else
1066 ret = generic_writepages(mapping, wbc);
1067 return ret;
1068 }
1069
1070 /**
1071 * write_one_page - write out a single page and optionally wait on I/O
1072 * @page: the page to write
1073 * @wait: if true, wait on writeout
1074 *
1075 * The page must be locked by the caller and will be unlocked upon return.
1076 *
1077 * write_one_page() returns a negative error code if I/O failed.
1078 */
1079 int write_one_page(struct page *page, int wait)
1080 {
1081 struct address_space *mapping = page->mapping;
1082 int ret = 0;
1083 struct writeback_control wbc = {
1084 .sync_mode = WB_SYNC_ALL,
1085 .nr_to_write = 1,
1086 };
1087
1088 BUG_ON(!PageLocked(page));
1089
1090 if (wait)
1091 wait_on_page_writeback(page);
1092
1093 if (clear_page_dirty_for_io(page)) {
1094 page_cache_get(page);
1095 ret = mapping->a_ops->writepage(page, &wbc);
1096 if (ret == 0 && wait) {
1097 wait_on_page_writeback(page);
1098 if (PageError(page))
1099 ret = -EIO;
1100 }
1101 page_cache_release(page);
1102 } else {
1103 unlock_page(page);
1104 }
1105 return ret;
1106 }
1107 EXPORT_SYMBOL(write_one_page);
1108
1109 /*
1110 * For address_spaces which do not use buffers nor write back.
1111 */
1112 int __set_page_dirty_no_writeback(struct page *page)
1113 {
1114 if (!PageDirty(page))
1115 SetPageDirty(page);
1116 return 0;
1117 }
1118
1119 /*
1120 * Helper function for set_page_dirty family.
1121 * NOTE: This relies on being atomic wrt interrupts.
1122 */
1123 void account_page_dirtied(struct page *page, struct address_space *mapping)
1124 {
1125 if (mapping_cap_account_dirty(mapping)) {
1126 __inc_zone_page_state(page, NR_FILE_DIRTY);
1127 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1128 task_dirty_inc(current);
1129 task_io_account_write(PAGE_CACHE_SIZE);
1130 }
1131 }
1132
1133 /*
1134 * For address_spaces which do not use buffers. Just tag the page as dirty in
1135 * its radix tree.
1136 *
1137 * This is also used when a single buffer is being dirtied: we want to set the
1138 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1139 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1140 *
1141 * Most callers have locked the page, which pins the address_space in memory.
1142 * But zap_pte_range() does not lock the page, however in that case the
1143 * mapping is pinned by the vma's ->vm_file reference.
1144 *
1145 * We take care to handle the case where the page was truncated from the
1146 * mapping by re-checking page_mapping() inside tree_lock.
1147 */
1148 int __set_page_dirty_nobuffers(struct page *page)
1149 {
1150 if (!TestSetPageDirty(page)) {
1151 struct address_space *mapping = page_mapping(page);
1152 struct address_space *mapping2;
1153
1154 if (!mapping)
1155 return 1;
1156
1157 spin_lock_irq(&mapping->tree_lock);
1158 mapping2 = page_mapping(page);
1159 if (mapping2) { /* Race with truncate? */
1160 BUG_ON(mapping2 != mapping);
1161 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1162 account_page_dirtied(page, mapping);
1163 radix_tree_tag_set(&mapping->page_tree,
1164 page_index(page), PAGECACHE_TAG_DIRTY);
1165 }
1166 spin_unlock_irq(&mapping->tree_lock);
1167 if (mapping->host) {
1168 /* !PageAnon && !swapper_space */
1169 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1170 }
1171 return 1;
1172 }
1173 return 0;
1174 }
1175 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1176
1177 /*
1178 * When a writepage implementation decides that it doesn't want to write this
1179 * page for some reason, it should redirty the locked page via
1180 * redirty_page_for_writepage() and it should then unlock the page and return 0
1181 */
1182 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1183 {
1184 wbc->pages_skipped++;
1185 return __set_page_dirty_nobuffers(page);
1186 }
1187 EXPORT_SYMBOL(redirty_page_for_writepage);
1188
1189 /*
1190 * Dirty a page.
1191 *
1192 * For pages with a mapping this should be done under the page lock
1193 * for the benefit of asynchronous memory errors who prefer a consistent
1194 * dirty state. This rule can be broken in some special cases,
1195 * but should be better not to.
1196 *
1197 * If the mapping doesn't provide a set_page_dirty a_op, then
1198 * just fall through and assume that it wants buffer_heads.
1199 */
1200 int set_page_dirty(struct page *page)
1201 {
1202 struct address_space *mapping = page_mapping(page);
1203
1204 if (likely(mapping)) {
1205 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1206 #ifdef CONFIG_BLOCK
1207 if (!spd)
1208 spd = __set_page_dirty_buffers;
1209 #endif
1210 return (*spd)(page);
1211 }
1212 if (!PageDirty(page)) {
1213 if (!TestSetPageDirty(page))
1214 return 1;
1215 }
1216 return 0;
1217 }
1218 EXPORT_SYMBOL(set_page_dirty);
1219
1220 /*
1221 * set_page_dirty() is racy if the caller has no reference against
1222 * page->mapping->host, and if the page is unlocked. This is because another
1223 * CPU could truncate the page off the mapping and then free the mapping.
1224 *
1225 * Usually, the page _is_ locked, or the caller is a user-space process which
1226 * holds a reference on the inode by having an open file.
1227 *
1228 * In other cases, the page should be locked before running set_page_dirty().
1229 */
1230 int set_page_dirty_lock(struct page *page)
1231 {
1232 int ret;
1233
1234 lock_page_nosync(page);
1235 ret = set_page_dirty(page);
1236 unlock_page(page);
1237 return ret;
1238 }
1239 EXPORT_SYMBOL(set_page_dirty_lock);
1240
1241 /*
1242 * Clear a page's dirty flag, while caring for dirty memory accounting.
1243 * Returns true if the page was previously dirty.
1244 *
1245 * This is for preparing to put the page under writeout. We leave the page
1246 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1247 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1248 * implementation will run either set_page_writeback() or set_page_dirty(),
1249 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1250 * back into sync.
1251 *
1252 * This incoherency between the page's dirty flag and radix-tree tag is
1253 * unfortunate, but it only exists while the page is locked.
1254 */
1255 int clear_page_dirty_for_io(struct page *page)
1256 {
1257 struct address_space *mapping = page_mapping(page);
1258
1259 BUG_ON(!PageLocked(page));
1260
1261 ClearPageReclaim(page);
1262 if (mapping && mapping_cap_account_dirty(mapping)) {
1263 /*
1264 * Yes, Virginia, this is indeed insane.
1265 *
1266 * We use this sequence to make sure that
1267 * (a) we account for dirty stats properly
1268 * (b) we tell the low-level filesystem to
1269 * mark the whole page dirty if it was
1270 * dirty in a pagetable. Only to then
1271 * (c) clean the page again and return 1 to
1272 * cause the writeback.
1273 *
1274 * This way we avoid all nasty races with the
1275 * dirty bit in multiple places and clearing
1276 * them concurrently from different threads.
1277 *
1278 * Note! Normally the "set_page_dirty(page)"
1279 * has no effect on the actual dirty bit - since
1280 * that will already usually be set. But we
1281 * need the side effects, and it can help us
1282 * avoid races.
1283 *
1284 * We basically use the page "master dirty bit"
1285 * as a serialization point for all the different
1286 * threads doing their things.
1287 */
1288 if (page_mkclean(page))
1289 set_page_dirty(page);
1290 /*
1291 * We carefully synchronise fault handlers against
1292 * installing a dirty pte and marking the page dirty
1293 * at this point. We do this by having them hold the
1294 * page lock at some point after installing their
1295 * pte, but before marking the page dirty.
1296 * Pages are always locked coming in here, so we get
1297 * the desired exclusion. See mm/memory.c:do_wp_page()
1298 * for more comments.
1299 */
1300 if (TestClearPageDirty(page)) {
1301 dec_zone_page_state(page, NR_FILE_DIRTY);
1302 dec_bdi_stat(mapping->backing_dev_info,
1303 BDI_RECLAIMABLE);
1304 return 1;
1305 }
1306 return 0;
1307 }
1308 return TestClearPageDirty(page);
1309 }
1310 EXPORT_SYMBOL(clear_page_dirty_for_io);
1311
1312 int test_clear_page_writeback(struct page *page)
1313 {
1314 struct address_space *mapping = page_mapping(page);
1315 int ret;
1316
1317 if (mapping) {
1318 struct backing_dev_info *bdi = mapping->backing_dev_info;
1319 unsigned long flags;
1320
1321 spin_lock_irqsave(&mapping->tree_lock, flags);
1322 ret = TestClearPageWriteback(page);
1323 if (ret) {
1324 radix_tree_tag_clear(&mapping->page_tree,
1325 page_index(page),
1326 PAGECACHE_TAG_WRITEBACK);
1327 if (bdi_cap_account_writeback(bdi)) {
1328 __dec_bdi_stat(bdi, BDI_WRITEBACK);
1329 __bdi_writeout_inc(bdi);
1330 }
1331 }
1332 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1333 } else {
1334 ret = TestClearPageWriteback(page);
1335 }
1336 if (ret)
1337 dec_zone_page_state(page, NR_WRITEBACK);
1338 return ret;
1339 }
1340
1341 int test_set_page_writeback(struct page *page)
1342 {
1343 struct address_space *mapping = page_mapping(page);
1344 int ret;
1345
1346 if (mapping) {
1347 struct backing_dev_info *bdi = mapping->backing_dev_info;
1348 unsigned long flags;
1349
1350 spin_lock_irqsave(&mapping->tree_lock, flags);
1351 ret = TestSetPageWriteback(page);
1352 if (!ret) {
1353 radix_tree_tag_set(&mapping->page_tree,
1354 page_index(page),
1355 PAGECACHE_TAG_WRITEBACK);
1356 if (bdi_cap_account_writeback(bdi))
1357 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1358 }
1359 if (!PageDirty(page))
1360 radix_tree_tag_clear(&mapping->page_tree,
1361 page_index(page),
1362 PAGECACHE_TAG_DIRTY);
1363 radix_tree_tag_clear(&mapping->page_tree,
1364 page_index(page),
1365 PAGECACHE_TAG_TOWRITE);
1366 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1367 } else {
1368 ret = TestSetPageWriteback(page);
1369 }
1370 if (!ret)
1371 inc_zone_page_state(page, NR_WRITEBACK);
1372 return ret;
1373
1374 }
1375 EXPORT_SYMBOL(test_set_page_writeback);
1376
1377 /*
1378 * Return true if any of the pages in the mapping are marked with the
1379 * passed tag.
1380 */
1381 int mapping_tagged(struct address_space *mapping, int tag)
1382 {
1383 int ret;
1384 rcu_read_lock();
1385 ret = radix_tree_tagged(&mapping->page_tree, tag);
1386 rcu_read_unlock();
1387 return ret;
1388 }
1389 EXPORT_SYMBOL(mapping_tagged);