]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/page-writeback.c
Pull bugfix into test branch
[mirror_ubuntu-zesty-kernel.git] / mm / page-writeback.c
1 /*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains functions related to writing back dirty pages at the
7 * address_space level.
8 *
9 * 10Apr2002 akpm@zip.com.au
10 * Initial version
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/spinlock.h>
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/slab.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/init.h>
23 #include <linux/backing-dev.h>
24 #include <linux/task_io_accounting_ops.h>
25 #include <linux/blkdev.h>
26 #include <linux/mpage.h>
27 #include <linux/rmap.h>
28 #include <linux/percpu.h>
29 #include <linux/notifier.h>
30 #include <linux/smp.h>
31 #include <linux/sysctl.h>
32 #include <linux/cpu.h>
33 #include <linux/syscalls.h>
34 #include <linux/buffer_head.h>
35 #include <linux/pagevec.h>
36
37 /*
38 * The maximum number of pages to writeout in a single bdflush/kupdate
39 * operation. We do this so we don't hold I_LOCK against an inode for
40 * enormous amounts of time, which would block a userspace task which has
41 * been forced to throttle against that inode. Also, the code reevaluates
42 * the dirty each time it has written this many pages.
43 */
44 #define MAX_WRITEBACK_PAGES 1024
45
46 /*
47 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
48 * will look to see if it needs to force writeback or throttling.
49 */
50 static long ratelimit_pages = 32;
51
52 static int dirty_exceeded __cacheline_aligned_in_smp; /* Dirty mem may be over limit */
53
54 /*
55 * When balance_dirty_pages decides that the caller needs to perform some
56 * non-background writeback, this is how many pages it will attempt to write.
57 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
58 * large amounts of I/O are submitted.
59 */
60 static inline long sync_writeback_pages(void)
61 {
62 return ratelimit_pages + ratelimit_pages / 2;
63 }
64
65 /* The following parameters are exported via /proc/sys/vm */
66
67 /*
68 * Start background writeback (via pdflush) at this percentage
69 */
70 int dirty_background_ratio = 10;
71
72 /*
73 * The generator of dirty data starts writeback at this percentage
74 */
75 int vm_dirty_ratio = 40;
76
77 /*
78 * The interval between `kupdate'-style writebacks, in jiffies
79 */
80 int dirty_writeback_interval = 5 * HZ;
81
82 /*
83 * The longest number of jiffies for which data is allowed to remain dirty
84 */
85 int dirty_expire_interval = 30 * HZ;
86
87 /*
88 * Flag that makes the machine dump writes/reads and block dirtyings.
89 */
90 int block_dump;
91
92 /*
93 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
94 * a full sync is triggered after this time elapses without any disk activity.
95 */
96 int laptop_mode;
97
98 EXPORT_SYMBOL(laptop_mode);
99
100 /* End of sysctl-exported parameters */
101
102
103 static void background_writeout(unsigned long _min_pages);
104
105 /*
106 * Work out the current dirty-memory clamping and background writeout
107 * thresholds.
108 *
109 * The main aim here is to lower them aggressively if there is a lot of mapped
110 * memory around. To avoid stressing page reclaim with lots of unreclaimable
111 * pages. It is better to clamp down on writers than to start swapping, and
112 * performing lots of scanning.
113 *
114 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
115 *
116 * We don't permit the clamping level to fall below 5% - that is getting rather
117 * excessive.
118 *
119 * We make sure that the background writeout level is below the adjusted
120 * clamping level.
121 */
122 static void
123 get_dirty_limits(long *pbackground, long *pdirty,
124 struct address_space *mapping)
125 {
126 int background_ratio; /* Percentages */
127 int dirty_ratio;
128 int unmapped_ratio;
129 long background;
130 long dirty;
131 unsigned long available_memory = vm_total_pages;
132 struct task_struct *tsk;
133
134 #ifdef CONFIG_HIGHMEM
135 /*
136 * If this mapping can only allocate from low memory,
137 * we exclude high memory from our count.
138 */
139 if (mapping && !(mapping_gfp_mask(mapping) & __GFP_HIGHMEM))
140 available_memory -= totalhigh_pages;
141 #endif
142
143
144 unmapped_ratio = 100 - ((global_page_state(NR_FILE_MAPPED) +
145 global_page_state(NR_ANON_PAGES)) * 100) /
146 vm_total_pages;
147
148 dirty_ratio = vm_dirty_ratio;
149 if (dirty_ratio > unmapped_ratio / 2)
150 dirty_ratio = unmapped_ratio / 2;
151
152 if (dirty_ratio < 5)
153 dirty_ratio = 5;
154
155 background_ratio = dirty_background_ratio;
156 if (background_ratio >= dirty_ratio)
157 background_ratio = dirty_ratio / 2;
158
159 background = (background_ratio * available_memory) / 100;
160 dirty = (dirty_ratio * available_memory) / 100;
161 tsk = current;
162 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
163 background += background / 4;
164 dirty += dirty / 4;
165 }
166 *pbackground = background;
167 *pdirty = dirty;
168 }
169
170 /*
171 * balance_dirty_pages() must be called by processes which are generating dirty
172 * data. It looks at the number of dirty pages in the machine and will force
173 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
174 * If we're over `background_thresh' then pdflush is woken to perform some
175 * writeout.
176 */
177 static void balance_dirty_pages(struct address_space *mapping)
178 {
179 long nr_reclaimable;
180 long background_thresh;
181 long dirty_thresh;
182 unsigned long pages_written = 0;
183 unsigned long write_chunk = sync_writeback_pages();
184
185 struct backing_dev_info *bdi = mapping->backing_dev_info;
186
187 for (;;) {
188 struct writeback_control wbc = {
189 .bdi = bdi,
190 .sync_mode = WB_SYNC_NONE,
191 .older_than_this = NULL,
192 .nr_to_write = write_chunk,
193 .range_cyclic = 1,
194 };
195
196 get_dirty_limits(&background_thresh, &dirty_thresh, mapping);
197 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
198 global_page_state(NR_UNSTABLE_NFS);
199 if (nr_reclaimable + global_page_state(NR_WRITEBACK) <=
200 dirty_thresh)
201 break;
202
203 if (!dirty_exceeded)
204 dirty_exceeded = 1;
205
206 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
207 * Unstable writes are a feature of certain networked
208 * filesystems (i.e. NFS) in which data may have been
209 * written to the server's write cache, but has not yet
210 * been flushed to permanent storage.
211 */
212 if (nr_reclaimable) {
213 writeback_inodes(&wbc);
214 get_dirty_limits(&background_thresh,
215 &dirty_thresh, mapping);
216 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
217 global_page_state(NR_UNSTABLE_NFS);
218 if (nr_reclaimable +
219 global_page_state(NR_WRITEBACK)
220 <= dirty_thresh)
221 break;
222 pages_written += write_chunk - wbc.nr_to_write;
223 if (pages_written >= write_chunk)
224 break; /* We've done our duty */
225 }
226 congestion_wait(WRITE, HZ/10);
227 }
228
229 if (nr_reclaimable + global_page_state(NR_WRITEBACK)
230 <= dirty_thresh && dirty_exceeded)
231 dirty_exceeded = 0;
232
233 if (writeback_in_progress(bdi))
234 return; /* pdflush is already working this queue */
235
236 /*
237 * In laptop mode, we wait until hitting the higher threshold before
238 * starting background writeout, and then write out all the way down
239 * to the lower threshold. So slow writers cause minimal disk activity.
240 *
241 * In normal mode, we start background writeout at the lower
242 * background_thresh, to keep the amount of dirty memory low.
243 */
244 if ((laptop_mode && pages_written) ||
245 (!laptop_mode && (nr_reclaimable > background_thresh)))
246 pdflush_operation(background_writeout, 0);
247 }
248
249 void set_page_dirty_balance(struct page *page)
250 {
251 if (set_page_dirty(page)) {
252 struct address_space *mapping = page_mapping(page);
253
254 if (mapping)
255 balance_dirty_pages_ratelimited(mapping);
256 }
257 }
258
259 /**
260 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
261 * @mapping: address_space which was dirtied
262 * @nr_pages_dirtied: number of pages which the caller has just dirtied
263 *
264 * Processes which are dirtying memory should call in here once for each page
265 * which was newly dirtied. The function will periodically check the system's
266 * dirty state and will initiate writeback if needed.
267 *
268 * On really big machines, get_writeback_state is expensive, so try to avoid
269 * calling it too often (ratelimiting). But once we're over the dirty memory
270 * limit we decrease the ratelimiting by a lot, to prevent individual processes
271 * from overshooting the limit by (ratelimit_pages) each.
272 */
273 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
274 unsigned long nr_pages_dirtied)
275 {
276 static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
277 unsigned long ratelimit;
278 unsigned long *p;
279
280 ratelimit = ratelimit_pages;
281 if (dirty_exceeded)
282 ratelimit = 8;
283
284 /*
285 * Check the rate limiting. Also, we do not want to throttle real-time
286 * tasks in balance_dirty_pages(). Period.
287 */
288 preempt_disable();
289 p = &__get_cpu_var(ratelimits);
290 *p += nr_pages_dirtied;
291 if (unlikely(*p >= ratelimit)) {
292 *p = 0;
293 preempt_enable();
294 balance_dirty_pages(mapping);
295 return;
296 }
297 preempt_enable();
298 }
299 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
300
301 void throttle_vm_writeout(void)
302 {
303 long background_thresh;
304 long dirty_thresh;
305
306 for ( ; ; ) {
307 get_dirty_limits(&background_thresh, &dirty_thresh, NULL);
308
309 /*
310 * Boost the allowable dirty threshold a bit for page
311 * allocators so they don't get DoS'ed by heavy writers
312 */
313 dirty_thresh += dirty_thresh / 10; /* wheeee... */
314
315 if (global_page_state(NR_UNSTABLE_NFS) +
316 global_page_state(NR_WRITEBACK) <= dirty_thresh)
317 break;
318 congestion_wait(WRITE, HZ/10);
319 }
320 }
321
322
323 /*
324 * writeback at least _min_pages, and keep writing until the amount of dirty
325 * memory is less than the background threshold, or until we're all clean.
326 */
327 static void background_writeout(unsigned long _min_pages)
328 {
329 long min_pages = _min_pages;
330 struct writeback_control wbc = {
331 .bdi = NULL,
332 .sync_mode = WB_SYNC_NONE,
333 .older_than_this = NULL,
334 .nr_to_write = 0,
335 .nonblocking = 1,
336 .range_cyclic = 1,
337 };
338
339 for ( ; ; ) {
340 long background_thresh;
341 long dirty_thresh;
342
343 get_dirty_limits(&background_thresh, &dirty_thresh, NULL);
344 if (global_page_state(NR_FILE_DIRTY) +
345 global_page_state(NR_UNSTABLE_NFS) < background_thresh
346 && min_pages <= 0)
347 break;
348 wbc.encountered_congestion = 0;
349 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
350 wbc.pages_skipped = 0;
351 writeback_inodes(&wbc);
352 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
353 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
354 /* Wrote less than expected */
355 congestion_wait(WRITE, HZ/10);
356 if (!wbc.encountered_congestion)
357 break;
358 }
359 }
360 }
361
362 /*
363 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
364 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
365 * -1 if all pdflush threads were busy.
366 */
367 int wakeup_pdflush(long nr_pages)
368 {
369 if (nr_pages == 0)
370 nr_pages = global_page_state(NR_FILE_DIRTY) +
371 global_page_state(NR_UNSTABLE_NFS);
372 return pdflush_operation(background_writeout, nr_pages);
373 }
374
375 static void wb_timer_fn(unsigned long unused);
376 static void laptop_timer_fn(unsigned long unused);
377
378 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
379 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
380
381 /*
382 * Periodic writeback of "old" data.
383 *
384 * Define "old": the first time one of an inode's pages is dirtied, we mark the
385 * dirtying-time in the inode's address_space. So this periodic writeback code
386 * just walks the superblock inode list, writing back any inodes which are
387 * older than a specific point in time.
388 *
389 * Try to run once per dirty_writeback_interval. But if a writeback event
390 * takes longer than a dirty_writeback_interval interval, then leave a
391 * one-second gap.
392 *
393 * older_than_this takes precedence over nr_to_write. So we'll only write back
394 * all dirty pages if they are all attached to "old" mappings.
395 */
396 static void wb_kupdate(unsigned long arg)
397 {
398 unsigned long oldest_jif;
399 unsigned long start_jif;
400 unsigned long next_jif;
401 long nr_to_write;
402 struct writeback_control wbc = {
403 .bdi = NULL,
404 .sync_mode = WB_SYNC_NONE,
405 .older_than_this = &oldest_jif,
406 .nr_to_write = 0,
407 .nonblocking = 1,
408 .for_kupdate = 1,
409 .range_cyclic = 1,
410 };
411
412 sync_supers();
413
414 oldest_jif = jiffies - dirty_expire_interval;
415 start_jif = jiffies;
416 next_jif = start_jif + dirty_writeback_interval;
417 nr_to_write = global_page_state(NR_FILE_DIRTY) +
418 global_page_state(NR_UNSTABLE_NFS) +
419 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
420 while (nr_to_write > 0) {
421 wbc.encountered_congestion = 0;
422 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
423 writeback_inodes(&wbc);
424 if (wbc.nr_to_write > 0) {
425 if (wbc.encountered_congestion)
426 congestion_wait(WRITE, HZ/10);
427 else
428 break; /* All the old data is written */
429 }
430 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
431 }
432 if (time_before(next_jif, jiffies + HZ))
433 next_jif = jiffies + HZ;
434 if (dirty_writeback_interval)
435 mod_timer(&wb_timer, next_jif);
436 }
437
438 /*
439 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
440 */
441 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
442 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
443 {
444 proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
445 if (dirty_writeback_interval) {
446 mod_timer(&wb_timer,
447 jiffies + dirty_writeback_interval);
448 } else {
449 del_timer(&wb_timer);
450 }
451 return 0;
452 }
453
454 static void wb_timer_fn(unsigned long unused)
455 {
456 if (pdflush_operation(wb_kupdate, 0) < 0)
457 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
458 }
459
460 static void laptop_flush(unsigned long unused)
461 {
462 sys_sync();
463 }
464
465 static void laptop_timer_fn(unsigned long unused)
466 {
467 pdflush_operation(laptop_flush, 0);
468 }
469
470 /*
471 * We've spun up the disk and we're in laptop mode: schedule writeback
472 * of all dirty data a few seconds from now. If the flush is already scheduled
473 * then push it back - the user is still using the disk.
474 */
475 void laptop_io_completion(void)
476 {
477 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
478 }
479
480 /*
481 * We're in laptop mode and we've just synced. The sync's writes will have
482 * caused another writeback to be scheduled by laptop_io_completion.
483 * Nothing needs to be written back anymore, so we unschedule the writeback.
484 */
485 void laptop_sync_completion(void)
486 {
487 del_timer(&laptop_mode_wb_timer);
488 }
489
490 /*
491 * If ratelimit_pages is too high then we can get into dirty-data overload
492 * if a large number of processes all perform writes at the same time.
493 * If it is too low then SMP machines will call the (expensive)
494 * get_writeback_state too often.
495 *
496 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
497 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
498 * thresholds before writeback cuts in.
499 *
500 * But the limit should not be set too high. Because it also controls the
501 * amount of memory which the balance_dirty_pages() caller has to write back.
502 * If this is too large then the caller will block on the IO queue all the
503 * time. So limit it to four megabytes - the balance_dirty_pages() caller
504 * will write six megabyte chunks, max.
505 */
506
507 void writeback_set_ratelimit(void)
508 {
509 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
510 if (ratelimit_pages < 16)
511 ratelimit_pages = 16;
512 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
513 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
514 }
515
516 static int __cpuinit
517 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
518 {
519 writeback_set_ratelimit();
520 return 0;
521 }
522
523 static struct notifier_block __cpuinitdata ratelimit_nb = {
524 .notifier_call = ratelimit_handler,
525 .next = NULL,
526 };
527
528 /*
529 * If the machine has a large highmem:lowmem ratio then scale back the default
530 * dirty memory thresholds: allowing too much dirty highmem pins an excessive
531 * number of buffer_heads.
532 */
533 void __init page_writeback_init(void)
534 {
535 long buffer_pages = nr_free_buffer_pages();
536 long correction;
537
538 correction = (100 * 4 * buffer_pages) / vm_total_pages;
539
540 if (correction < 100) {
541 dirty_background_ratio *= correction;
542 dirty_background_ratio /= 100;
543 vm_dirty_ratio *= correction;
544 vm_dirty_ratio /= 100;
545
546 if (dirty_background_ratio <= 0)
547 dirty_background_ratio = 1;
548 if (vm_dirty_ratio <= 0)
549 vm_dirty_ratio = 1;
550 }
551 mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
552 writeback_set_ratelimit();
553 register_cpu_notifier(&ratelimit_nb);
554 }
555
556 /**
557 * generic_writepages - walk the list of dirty pages of the given
558 * address space and writepage() all of them.
559 *
560 * @mapping: address space structure to write
561 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
562 *
563 * This is a library function, which implements the writepages()
564 * address_space_operation.
565 *
566 * If a page is already under I/O, generic_writepages() skips it, even
567 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
568 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
569 * and msync() need to guarantee that all the data which was dirty at the time
570 * the call was made get new I/O started against them. If wbc->sync_mode is
571 * WB_SYNC_ALL then we were called for data integrity and we must wait for
572 * existing IO to complete.
573 *
574 * Derived from mpage_writepages() - if you fix this you should check that
575 * also!
576 */
577 int generic_writepages(struct address_space *mapping,
578 struct writeback_control *wbc)
579 {
580 struct backing_dev_info *bdi = mapping->backing_dev_info;
581 int ret = 0;
582 int done = 0;
583 int (*writepage)(struct page *page, struct writeback_control *wbc);
584 struct pagevec pvec;
585 int nr_pages;
586 pgoff_t index;
587 pgoff_t end; /* Inclusive */
588 int scanned = 0;
589 int range_whole = 0;
590
591 if (wbc->nonblocking && bdi_write_congested(bdi)) {
592 wbc->encountered_congestion = 1;
593 return 0;
594 }
595
596 writepage = mapping->a_ops->writepage;
597
598 /* deal with chardevs and other special file */
599 if (!writepage)
600 return 0;
601
602 pagevec_init(&pvec, 0);
603 if (wbc->range_cyclic) {
604 index = mapping->writeback_index; /* Start from prev offset */
605 end = -1;
606 } else {
607 index = wbc->range_start >> PAGE_CACHE_SHIFT;
608 end = wbc->range_end >> PAGE_CACHE_SHIFT;
609 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
610 range_whole = 1;
611 scanned = 1;
612 }
613 retry:
614 while (!done && (index <= end) &&
615 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
616 PAGECACHE_TAG_DIRTY,
617 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
618 unsigned i;
619
620 scanned = 1;
621 for (i = 0; i < nr_pages; i++) {
622 struct page *page = pvec.pages[i];
623
624 /*
625 * At this point we hold neither mapping->tree_lock nor
626 * lock on the page itself: the page may be truncated or
627 * invalidated (changing page->mapping to NULL), or even
628 * swizzled back from swapper_space to tmpfs file
629 * mapping
630 */
631 lock_page(page);
632
633 if (unlikely(page->mapping != mapping)) {
634 unlock_page(page);
635 continue;
636 }
637
638 if (!wbc->range_cyclic && page->index > end) {
639 done = 1;
640 unlock_page(page);
641 continue;
642 }
643
644 if (wbc->sync_mode != WB_SYNC_NONE)
645 wait_on_page_writeback(page);
646
647 if (PageWriteback(page) ||
648 !clear_page_dirty_for_io(page)) {
649 unlock_page(page);
650 continue;
651 }
652
653 ret = (*writepage)(page, wbc);
654 if (ret) {
655 if (ret == -ENOSPC)
656 set_bit(AS_ENOSPC, &mapping->flags);
657 else
658 set_bit(AS_EIO, &mapping->flags);
659 }
660
661 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE))
662 unlock_page(page);
663 if (ret || (--(wbc->nr_to_write) <= 0))
664 done = 1;
665 if (wbc->nonblocking && bdi_write_congested(bdi)) {
666 wbc->encountered_congestion = 1;
667 done = 1;
668 }
669 }
670 pagevec_release(&pvec);
671 cond_resched();
672 }
673 if (!scanned && !done) {
674 /*
675 * We hit the last page and there is more work to be done: wrap
676 * back to the start of the file
677 */
678 scanned = 1;
679 index = 0;
680 goto retry;
681 }
682 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
683 mapping->writeback_index = index;
684 return ret;
685 }
686
687 EXPORT_SYMBOL(generic_writepages);
688
689 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
690 {
691 int ret;
692
693 if (wbc->nr_to_write <= 0)
694 return 0;
695 wbc->for_writepages = 1;
696 if (mapping->a_ops->writepages)
697 ret = mapping->a_ops->writepages(mapping, wbc);
698 else
699 ret = generic_writepages(mapping, wbc);
700 wbc->for_writepages = 0;
701 return ret;
702 }
703
704 /**
705 * write_one_page - write out a single page and optionally wait on I/O
706 *
707 * @page: the page to write
708 * @wait: if true, wait on writeout
709 *
710 * The page must be locked by the caller and will be unlocked upon return.
711 *
712 * write_one_page() returns a negative error code if I/O failed.
713 */
714 int write_one_page(struct page *page, int wait)
715 {
716 struct address_space *mapping = page->mapping;
717 int ret = 0;
718 struct writeback_control wbc = {
719 .sync_mode = WB_SYNC_ALL,
720 .nr_to_write = 1,
721 };
722
723 BUG_ON(!PageLocked(page));
724
725 if (wait)
726 wait_on_page_writeback(page);
727
728 if (clear_page_dirty_for_io(page)) {
729 page_cache_get(page);
730 ret = mapping->a_ops->writepage(page, &wbc);
731 if (ret == 0 && wait) {
732 wait_on_page_writeback(page);
733 if (PageError(page))
734 ret = -EIO;
735 }
736 page_cache_release(page);
737 } else {
738 unlock_page(page);
739 }
740 return ret;
741 }
742 EXPORT_SYMBOL(write_one_page);
743
744 /*
745 * For address_spaces which do not use buffers. Just tag the page as dirty in
746 * its radix tree.
747 *
748 * This is also used when a single buffer is being dirtied: we want to set the
749 * page dirty in that case, but not all the buffers. This is a "bottom-up"
750 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
751 *
752 * Most callers have locked the page, which pins the address_space in memory.
753 * But zap_pte_range() does not lock the page, however in that case the
754 * mapping is pinned by the vma's ->vm_file reference.
755 *
756 * We take care to handle the case where the page was truncated from the
757 * mapping by re-checking page_mapping() insode tree_lock.
758 */
759 int __set_page_dirty_nobuffers(struct page *page)
760 {
761 if (!TestSetPageDirty(page)) {
762 struct address_space *mapping = page_mapping(page);
763 struct address_space *mapping2;
764
765 if (!mapping)
766 return 1;
767
768 write_lock_irq(&mapping->tree_lock);
769 mapping2 = page_mapping(page);
770 if (mapping2) { /* Race with truncate? */
771 BUG_ON(mapping2 != mapping);
772 if (mapping_cap_account_dirty(mapping)) {
773 __inc_zone_page_state(page, NR_FILE_DIRTY);
774 task_io_account_write(PAGE_CACHE_SIZE);
775 }
776 radix_tree_tag_set(&mapping->page_tree,
777 page_index(page), PAGECACHE_TAG_DIRTY);
778 }
779 write_unlock_irq(&mapping->tree_lock);
780 if (mapping->host) {
781 /* !PageAnon && !swapper_space */
782 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
783 }
784 return 1;
785 }
786 return 0;
787 }
788 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
789
790 /*
791 * When a writepage implementation decides that it doesn't want to write this
792 * page for some reason, it should redirty the locked page via
793 * redirty_page_for_writepage() and it should then unlock the page and return 0
794 */
795 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
796 {
797 wbc->pages_skipped++;
798 return __set_page_dirty_nobuffers(page);
799 }
800 EXPORT_SYMBOL(redirty_page_for_writepage);
801
802 /*
803 * If the mapping doesn't provide a set_page_dirty a_op, then
804 * just fall through and assume that it wants buffer_heads.
805 */
806 int fastcall set_page_dirty(struct page *page)
807 {
808 struct address_space *mapping = page_mapping(page);
809
810 if (likely(mapping)) {
811 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
812 #ifdef CONFIG_BLOCK
813 if (!spd)
814 spd = __set_page_dirty_buffers;
815 #endif
816 return (*spd)(page);
817 }
818 if (!PageDirty(page)) {
819 if (!TestSetPageDirty(page))
820 return 1;
821 }
822 return 0;
823 }
824 EXPORT_SYMBOL(set_page_dirty);
825
826 /*
827 * set_page_dirty() is racy if the caller has no reference against
828 * page->mapping->host, and if the page is unlocked. This is because another
829 * CPU could truncate the page off the mapping and then free the mapping.
830 *
831 * Usually, the page _is_ locked, or the caller is a user-space process which
832 * holds a reference on the inode by having an open file.
833 *
834 * In other cases, the page should be locked before running set_page_dirty().
835 */
836 int set_page_dirty_lock(struct page *page)
837 {
838 int ret;
839
840 lock_page_nosync(page);
841 ret = set_page_dirty(page);
842 unlock_page(page);
843 return ret;
844 }
845 EXPORT_SYMBOL(set_page_dirty_lock);
846
847 /*
848 * Clear a page's dirty flag, while caring for dirty memory accounting.
849 * Returns true if the page was previously dirty.
850 */
851 int test_clear_page_dirty(struct page *page)
852 {
853 struct address_space *mapping = page_mapping(page);
854 unsigned long flags;
855
856 if (!mapping)
857 return TestClearPageDirty(page);
858
859 write_lock_irqsave(&mapping->tree_lock, flags);
860 if (TestClearPageDirty(page)) {
861 radix_tree_tag_clear(&mapping->page_tree,
862 page_index(page), PAGECACHE_TAG_DIRTY);
863 write_unlock_irqrestore(&mapping->tree_lock, flags);
864 /*
865 * We can continue to use `mapping' here because the
866 * page is locked, which pins the address_space
867 */
868 if (mapping_cap_account_dirty(mapping)) {
869 page_mkclean(page);
870 dec_zone_page_state(page, NR_FILE_DIRTY);
871 }
872 return 1;
873 }
874 write_unlock_irqrestore(&mapping->tree_lock, flags);
875 return 0;
876 }
877 EXPORT_SYMBOL(test_clear_page_dirty);
878
879 /*
880 * Clear a page's dirty flag, while caring for dirty memory accounting.
881 * Returns true if the page was previously dirty.
882 *
883 * This is for preparing to put the page under writeout. We leave the page
884 * tagged as dirty in the radix tree so that a concurrent write-for-sync
885 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
886 * implementation will run either set_page_writeback() or set_page_dirty(),
887 * at which stage we bring the page's dirty flag and radix-tree dirty tag
888 * back into sync.
889 *
890 * This incoherency between the page's dirty flag and radix-tree tag is
891 * unfortunate, but it only exists while the page is locked.
892 */
893 int clear_page_dirty_for_io(struct page *page)
894 {
895 struct address_space *mapping = page_mapping(page);
896
897 if (!mapping)
898 return TestClearPageDirty(page);
899
900 if (TestClearPageDirty(page)) {
901 if (mapping_cap_account_dirty(mapping)) {
902 page_mkclean(page);
903 dec_zone_page_state(page, NR_FILE_DIRTY);
904 }
905 return 1;
906 }
907 return 0;
908 }
909 EXPORT_SYMBOL(clear_page_dirty_for_io);
910
911 int test_clear_page_writeback(struct page *page)
912 {
913 struct address_space *mapping = page_mapping(page);
914 int ret;
915
916 if (mapping) {
917 unsigned long flags;
918
919 write_lock_irqsave(&mapping->tree_lock, flags);
920 ret = TestClearPageWriteback(page);
921 if (ret)
922 radix_tree_tag_clear(&mapping->page_tree,
923 page_index(page),
924 PAGECACHE_TAG_WRITEBACK);
925 write_unlock_irqrestore(&mapping->tree_lock, flags);
926 } else {
927 ret = TestClearPageWriteback(page);
928 }
929 return ret;
930 }
931
932 int test_set_page_writeback(struct page *page)
933 {
934 struct address_space *mapping = page_mapping(page);
935 int ret;
936
937 if (mapping) {
938 unsigned long flags;
939
940 write_lock_irqsave(&mapping->tree_lock, flags);
941 ret = TestSetPageWriteback(page);
942 if (!ret)
943 radix_tree_tag_set(&mapping->page_tree,
944 page_index(page),
945 PAGECACHE_TAG_WRITEBACK);
946 if (!PageDirty(page))
947 radix_tree_tag_clear(&mapping->page_tree,
948 page_index(page),
949 PAGECACHE_TAG_DIRTY);
950 write_unlock_irqrestore(&mapping->tree_lock, flags);
951 } else {
952 ret = TestSetPageWriteback(page);
953 }
954 return ret;
955
956 }
957 EXPORT_SYMBOL(test_set_page_writeback);
958
959 /*
960 * Return true if any of the pages in the mapping are marged with the
961 * passed tag.
962 */
963 int mapping_tagged(struct address_space *mapping, int tag)
964 {
965 unsigned long flags;
966 int ret;
967
968 read_lock_irqsave(&mapping->tree_lock, flags);
969 ret = radix_tree_tagged(&mapping->page_tree, tag);
970 read_unlock_irqrestore(&mapping->tree_lock, flags);
971 return ret;
972 }
973 EXPORT_SYMBOL(mapping_tagged);