]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/page-writeback.c
mm: bdi: expose the BDI object in sysfs for FUSE
[mirror_ubuntu-jammy-kernel.git] / mm / page-writeback.c
1 /*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002 akpm@zip.com.au
11 * Initial version
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37
38 /*
39 * The maximum number of pages to writeout in a single bdflush/kupdate
40 * operation. We do this so we don't hold I_SYNC against an inode for
41 * enormous amounts of time, which would block a userspace task which has
42 * been forced to throttle against that inode. Also, the code reevaluates
43 * the dirty each time it has written this many pages.
44 */
45 #define MAX_WRITEBACK_PAGES 1024
46
47 /*
48 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
49 * will look to see if it needs to force writeback or throttling.
50 */
51 static long ratelimit_pages = 32;
52
53 /*
54 * When balance_dirty_pages decides that the caller needs to perform some
55 * non-background writeback, this is how many pages it will attempt to write.
56 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
57 * large amounts of I/O are submitted.
58 */
59 static inline long sync_writeback_pages(void)
60 {
61 return ratelimit_pages + ratelimit_pages / 2;
62 }
63
64 /* The following parameters are exported via /proc/sys/vm */
65
66 /*
67 * Start background writeback (via pdflush) at this percentage
68 */
69 int dirty_background_ratio = 5;
70
71 /*
72 * free highmem will not be subtracted from the total free memory
73 * for calculating free ratios if vm_highmem_is_dirtyable is true
74 */
75 int vm_highmem_is_dirtyable;
76
77 /*
78 * The generator of dirty data starts writeback at this percentage
79 */
80 int vm_dirty_ratio = 10;
81
82 /*
83 * The interval between `kupdate'-style writebacks, in jiffies
84 */
85 int dirty_writeback_interval = 5 * HZ;
86
87 /*
88 * The longest number of jiffies for which data is allowed to remain dirty
89 */
90 int dirty_expire_interval = 30 * HZ;
91
92 /*
93 * Flag that makes the machine dump writes/reads and block dirtyings.
94 */
95 int block_dump;
96
97 /*
98 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
99 * a full sync is triggered after this time elapses without any disk activity.
100 */
101 int laptop_mode;
102
103 EXPORT_SYMBOL(laptop_mode);
104
105 /* End of sysctl-exported parameters */
106
107
108 static void background_writeout(unsigned long _min_pages);
109
110 /*
111 * Scale the writeback cache size proportional to the relative writeout speeds.
112 *
113 * We do this by keeping a floating proportion between BDIs, based on page
114 * writeback completions [end_page_writeback()]. Those devices that write out
115 * pages fastest will get the larger share, while the slower will get a smaller
116 * share.
117 *
118 * We use page writeout completions because we are interested in getting rid of
119 * dirty pages. Having them written out is the primary goal.
120 *
121 * We introduce a concept of time, a period over which we measure these events,
122 * because demand can/will vary over time. The length of this period itself is
123 * measured in page writeback completions.
124 *
125 */
126 static struct prop_descriptor vm_completions;
127 static struct prop_descriptor vm_dirties;
128
129 static unsigned long determine_dirtyable_memory(void);
130
131 /*
132 * couple the period to the dirty_ratio:
133 *
134 * period/2 ~ roundup_pow_of_two(dirty limit)
135 */
136 static int calc_period_shift(void)
137 {
138 unsigned long dirty_total;
139
140 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 100;
141 return 2 + ilog2(dirty_total - 1);
142 }
143
144 /*
145 * update the period when the dirty ratio changes.
146 */
147 int dirty_ratio_handler(struct ctl_table *table, int write,
148 struct file *filp, void __user *buffer, size_t *lenp,
149 loff_t *ppos)
150 {
151 int old_ratio = vm_dirty_ratio;
152 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
153 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
154 int shift = calc_period_shift();
155 prop_change_shift(&vm_completions, shift);
156 prop_change_shift(&vm_dirties, shift);
157 }
158 return ret;
159 }
160
161 /*
162 * Increment the BDI's writeout completion count and the global writeout
163 * completion count. Called from test_clear_page_writeback().
164 */
165 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
166 {
167 __prop_inc_percpu(&vm_completions, &bdi->completions);
168 }
169
170 static inline void task_dirty_inc(struct task_struct *tsk)
171 {
172 prop_inc_single(&vm_dirties, &tsk->dirties);
173 }
174
175 /*
176 * Obtain an accurate fraction of the BDI's portion.
177 */
178 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
179 long *numerator, long *denominator)
180 {
181 if (bdi_cap_writeback_dirty(bdi)) {
182 prop_fraction_percpu(&vm_completions, &bdi->completions,
183 numerator, denominator);
184 } else {
185 *numerator = 0;
186 *denominator = 1;
187 }
188 }
189
190 /*
191 * Clip the earned share of dirty pages to that which is actually available.
192 * This avoids exceeding the total dirty_limit when the floating averages
193 * fluctuate too quickly.
194 */
195 static void
196 clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
197 {
198 long avail_dirty;
199
200 avail_dirty = dirty -
201 (global_page_state(NR_FILE_DIRTY) +
202 global_page_state(NR_WRITEBACK) +
203 global_page_state(NR_UNSTABLE_NFS));
204
205 if (avail_dirty < 0)
206 avail_dirty = 0;
207
208 avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
209 bdi_stat(bdi, BDI_WRITEBACK);
210
211 *pbdi_dirty = min(*pbdi_dirty, avail_dirty);
212 }
213
214 static inline void task_dirties_fraction(struct task_struct *tsk,
215 long *numerator, long *denominator)
216 {
217 prop_fraction_single(&vm_dirties, &tsk->dirties,
218 numerator, denominator);
219 }
220
221 /*
222 * scale the dirty limit
223 *
224 * task specific dirty limit:
225 *
226 * dirty -= (dirty/8) * p_{t}
227 */
228 static void task_dirty_limit(struct task_struct *tsk, long *pdirty)
229 {
230 long numerator, denominator;
231 long dirty = *pdirty;
232 u64 inv = dirty >> 3;
233
234 task_dirties_fraction(tsk, &numerator, &denominator);
235 inv *= numerator;
236 do_div(inv, denominator);
237
238 dirty -= inv;
239 if (dirty < *pdirty/2)
240 dirty = *pdirty/2;
241
242 *pdirty = dirty;
243 }
244
245 /*
246 * Work out the current dirty-memory clamping and background writeout
247 * thresholds.
248 *
249 * The main aim here is to lower them aggressively if there is a lot of mapped
250 * memory around. To avoid stressing page reclaim with lots of unreclaimable
251 * pages. It is better to clamp down on writers than to start swapping, and
252 * performing lots of scanning.
253 *
254 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
255 *
256 * We don't permit the clamping level to fall below 5% - that is getting rather
257 * excessive.
258 *
259 * We make sure that the background writeout level is below the adjusted
260 * clamping level.
261 */
262
263 static unsigned long highmem_dirtyable_memory(unsigned long total)
264 {
265 #ifdef CONFIG_HIGHMEM
266 int node;
267 unsigned long x = 0;
268
269 for_each_node_state(node, N_HIGH_MEMORY) {
270 struct zone *z =
271 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
272
273 x += zone_page_state(z, NR_FREE_PAGES)
274 + zone_page_state(z, NR_INACTIVE)
275 + zone_page_state(z, NR_ACTIVE);
276 }
277 /*
278 * Make sure that the number of highmem pages is never larger
279 * than the number of the total dirtyable memory. This can only
280 * occur in very strange VM situations but we want to make sure
281 * that this does not occur.
282 */
283 return min(x, total);
284 #else
285 return 0;
286 #endif
287 }
288
289 static unsigned long determine_dirtyable_memory(void)
290 {
291 unsigned long x;
292
293 x = global_page_state(NR_FREE_PAGES)
294 + global_page_state(NR_INACTIVE)
295 + global_page_state(NR_ACTIVE);
296
297 if (!vm_highmem_is_dirtyable)
298 x -= highmem_dirtyable_memory(x);
299
300 return x + 1; /* Ensure that we never return 0 */
301 }
302
303 void
304 get_dirty_limits(long *pbackground, long *pdirty, long *pbdi_dirty,
305 struct backing_dev_info *bdi)
306 {
307 int background_ratio; /* Percentages */
308 int dirty_ratio;
309 long background;
310 long dirty;
311 unsigned long available_memory = determine_dirtyable_memory();
312 struct task_struct *tsk;
313
314 dirty_ratio = vm_dirty_ratio;
315 if (dirty_ratio < 5)
316 dirty_ratio = 5;
317
318 background_ratio = dirty_background_ratio;
319 if (background_ratio >= dirty_ratio)
320 background_ratio = dirty_ratio / 2;
321
322 background = (background_ratio * available_memory) / 100;
323 dirty = (dirty_ratio * available_memory) / 100;
324 tsk = current;
325 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
326 background += background / 4;
327 dirty += dirty / 4;
328 }
329 *pbackground = background;
330 *pdirty = dirty;
331
332 if (bdi) {
333 u64 bdi_dirty = dirty;
334 long numerator, denominator;
335
336 /*
337 * Calculate this BDI's share of the dirty ratio.
338 */
339 bdi_writeout_fraction(bdi, &numerator, &denominator);
340
341 bdi_dirty *= numerator;
342 do_div(bdi_dirty, denominator);
343
344 *pbdi_dirty = bdi_dirty;
345 clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
346 task_dirty_limit(current, pbdi_dirty);
347 }
348 }
349
350 /*
351 * balance_dirty_pages() must be called by processes which are generating dirty
352 * data. It looks at the number of dirty pages in the machine and will force
353 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
354 * If we're over `background_thresh' then pdflush is woken to perform some
355 * writeout.
356 */
357 static void balance_dirty_pages(struct address_space *mapping)
358 {
359 long nr_reclaimable, bdi_nr_reclaimable;
360 long nr_writeback, bdi_nr_writeback;
361 long background_thresh;
362 long dirty_thresh;
363 long bdi_thresh;
364 unsigned long pages_written = 0;
365 unsigned long write_chunk = sync_writeback_pages();
366
367 struct backing_dev_info *bdi = mapping->backing_dev_info;
368
369 for (;;) {
370 struct writeback_control wbc = {
371 .bdi = bdi,
372 .sync_mode = WB_SYNC_NONE,
373 .older_than_this = NULL,
374 .nr_to_write = write_chunk,
375 .range_cyclic = 1,
376 };
377
378 get_dirty_limits(&background_thresh, &dirty_thresh,
379 &bdi_thresh, bdi);
380
381 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
382 global_page_state(NR_UNSTABLE_NFS);
383 nr_writeback = global_page_state(NR_WRITEBACK);
384
385 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
386 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
387
388 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
389 break;
390
391 /*
392 * Throttle it only when the background writeback cannot
393 * catch-up. This avoids (excessively) small writeouts
394 * when the bdi limits are ramping up.
395 */
396 if (nr_reclaimable + nr_writeback <
397 (background_thresh + dirty_thresh) / 2)
398 break;
399
400 if (!bdi->dirty_exceeded)
401 bdi->dirty_exceeded = 1;
402
403 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
404 * Unstable writes are a feature of certain networked
405 * filesystems (i.e. NFS) in which data may have been
406 * written to the server's write cache, but has not yet
407 * been flushed to permanent storage.
408 */
409 if (bdi_nr_reclaimable) {
410 writeback_inodes(&wbc);
411 pages_written += write_chunk - wbc.nr_to_write;
412 get_dirty_limits(&background_thresh, &dirty_thresh,
413 &bdi_thresh, bdi);
414 }
415
416 /*
417 * In order to avoid the stacked BDI deadlock we need
418 * to ensure we accurately count the 'dirty' pages when
419 * the threshold is low.
420 *
421 * Otherwise it would be possible to get thresh+n pages
422 * reported dirty, even though there are thresh-m pages
423 * actually dirty; with m+n sitting in the percpu
424 * deltas.
425 */
426 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
427 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
428 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
429 } else if (bdi_nr_reclaimable) {
430 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
431 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
432 }
433
434 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
435 break;
436 if (pages_written >= write_chunk)
437 break; /* We've done our duty */
438
439 congestion_wait(WRITE, HZ/10);
440 }
441
442 if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
443 bdi->dirty_exceeded)
444 bdi->dirty_exceeded = 0;
445
446 if (writeback_in_progress(bdi))
447 return; /* pdflush is already working this queue */
448
449 /*
450 * In laptop mode, we wait until hitting the higher threshold before
451 * starting background writeout, and then write out all the way down
452 * to the lower threshold. So slow writers cause minimal disk activity.
453 *
454 * In normal mode, we start background writeout at the lower
455 * background_thresh, to keep the amount of dirty memory low.
456 */
457 if ((laptop_mode && pages_written) ||
458 (!laptop_mode && (global_page_state(NR_FILE_DIRTY)
459 + global_page_state(NR_UNSTABLE_NFS)
460 > background_thresh)))
461 pdflush_operation(background_writeout, 0);
462 }
463
464 void set_page_dirty_balance(struct page *page, int page_mkwrite)
465 {
466 if (set_page_dirty(page) || page_mkwrite) {
467 struct address_space *mapping = page_mapping(page);
468
469 if (mapping)
470 balance_dirty_pages_ratelimited(mapping);
471 }
472 }
473
474 /**
475 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
476 * @mapping: address_space which was dirtied
477 * @nr_pages_dirtied: number of pages which the caller has just dirtied
478 *
479 * Processes which are dirtying memory should call in here once for each page
480 * which was newly dirtied. The function will periodically check the system's
481 * dirty state and will initiate writeback if needed.
482 *
483 * On really big machines, get_writeback_state is expensive, so try to avoid
484 * calling it too often (ratelimiting). But once we're over the dirty memory
485 * limit we decrease the ratelimiting by a lot, to prevent individual processes
486 * from overshooting the limit by (ratelimit_pages) each.
487 */
488 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
489 unsigned long nr_pages_dirtied)
490 {
491 static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
492 unsigned long ratelimit;
493 unsigned long *p;
494
495 ratelimit = ratelimit_pages;
496 if (mapping->backing_dev_info->dirty_exceeded)
497 ratelimit = 8;
498
499 /*
500 * Check the rate limiting. Also, we do not want to throttle real-time
501 * tasks in balance_dirty_pages(). Period.
502 */
503 preempt_disable();
504 p = &__get_cpu_var(ratelimits);
505 *p += nr_pages_dirtied;
506 if (unlikely(*p >= ratelimit)) {
507 *p = 0;
508 preempt_enable();
509 balance_dirty_pages(mapping);
510 return;
511 }
512 preempt_enable();
513 }
514 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
515
516 void throttle_vm_writeout(gfp_t gfp_mask)
517 {
518 long background_thresh;
519 long dirty_thresh;
520
521 for ( ; ; ) {
522 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
523
524 /*
525 * Boost the allowable dirty threshold a bit for page
526 * allocators so they don't get DoS'ed by heavy writers
527 */
528 dirty_thresh += dirty_thresh / 10; /* wheeee... */
529
530 if (global_page_state(NR_UNSTABLE_NFS) +
531 global_page_state(NR_WRITEBACK) <= dirty_thresh)
532 break;
533 congestion_wait(WRITE, HZ/10);
534
535 /*
536 * The caller might hold locks which can prevent IO completion
537 * or progress in the filesystem. So we cannot just sit here
538 * waiting for IO to complete.
539 */
540 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
541 break;
542 }
543 }
544
545 /*
546 * writeback at least _min_pages, and keep writing until the amount of dirty
547 * memory is less than the background threshold, or until we're all clean.
548 */
549 static void background_writeout(unsigned long _min_pages)
550 {
551 long min_pages = _min_pages;
552 struct writeback_control wbc = {
553 .bdi = NULL,
554 .sync_mode = WB_SYNC_NONE,
555 .older_than_this = NULL,
556 .nr_to_write = 0,
557 .nonblocking = 1,
558 .range_cyclic = 1,
559 };
560
561 for ( ; ; ) {
562 long background_thresh;
563 long dirty_thresh;
564
565 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
566 if (global_page_state(NR_FILE_DIRTY) +
567 global_page_state(NR_UNSTABLE_NFS) < background_thresh
568 && min_pages <= 0)
569 break;
570 wbc.more_io = 0;
571 wbc.encountered_congestion = 0;
572 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
573 wbc.pages_skipped = 0;
574 writeback_inodes(&wbc);
575 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
576 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
577 /* Wrote less than expected */
578 if (wbc.encountered_congestion || wbc.more_io)
579 congestion_wait(WRITE, HZ/10);
580 else
581 break;
582 }
583 }
584 }
585
586 /*
587 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
588 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
589 * -1 if all pdflush threads were busy.
590 */
591 int wakeup_pdflush(long nr_pages)
592 {
593 if (nr_pages == 0)
594 nr_pages = global_page_state(NR_FILE_DIRTY) +
595 global_page_state(NR_UNSTABLE_NFS);
596 return pdflush_operation(background_writeout, nr_pages);
597 }
598
599 static void wb_timer_fn(unsigned long unused);
600 static void laptop_timer_fn(unsigned long unused);
601
602 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
603 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
604
605 /*
606 * Periodic writeback of "old" data.
607 *
608 * Define "old": the first time one of an inode's pages is dirtied, we mark the
609 * dirtying-time in the inode's address_space. So this periodic writeback code
610 * just walks the superblock inode list, writing back any inodes which are
611 * older than a specific point in time.
612 *
613 * Try to run once per dirty_writeback_interval. But if a writeback event
614 * takes longer than a dirty_writeback_interval interval, then leave a
615 * one-second gap.
616 *
617 * older_than_this takes precedence over nr_to_write. So we'll only write back
618 * all dirty pages if they are all attached to "old" mappings.
619 */
620 static void wb_kupdate(unsigned long arg)
621 {
622 unsigned long oldest_jif;
623 unsigned long start_jif;
624 unsigned long next_jif;
625 long nr_to_write;
626 struct writeback_control wbc = {
627 .bdi = NULL,
628 .sync_mode = WB_SYNC_NONE,
629 .older_than_this = &oldest_jif,
630 .nr_to_write = 0,
631 .nonblocking = 1,
632 .for_kupdate = 1,
633 .range_cyclic = 1,
634 };
635
636 sync_supers();
637
638 oldest_jif = jiffies - dirty_expire_interval;
639 start_jif = jiffies;
640 next_jif = start_jif + dirty_writeback_interval;
641 nr_to_write = global_page_state(NR_FILE_DIRTY) +
642 global_page_state(NR_UNSTABLE_NFS) +
643 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
644 while (nr_to_write > 0) {
645 wbc.more_io = 0;
646 wbc.encountered_congestion = 0;
647 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
648 writeback_inodes(&wbc);
649 if (wbc.nr_to_write > 0) {
650 if (wbc.encountered_congestion || wbc.more_io)
651 congestion_wait(WRITE, HZ/10);
652 else
653 break; /* All the old data is written */
654 }
655 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
656 }
657 if (time_before(next_jif, jiffies + HZ))
658 next_jif = jiffies + HZ;
659 if (dirty_writeback_interval)
660 mod_timer(&wb_timer, next_jif);
661 }
662
663 /*
664 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
665 */
666 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
667 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
668 {
669 proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
670 if (dirty_writeback_interval)
671 mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
672 else
673 del_timer(&wb_timer);
674 return 0;
675 }
676
677 static void wb_timer_fn(unsigned long unused)
678 {
679 if (pdflush_operation(wb_kupdate, 0) < 0)
680 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
681 }
682
683 static void laptop_flush(unsigned long unused)
684 {
685 sys_sync();
686 }
687
688 static void laptop_timer_fn(unsigned long unused)
689 {
690 pdflush_operation(laptop_flush, 0);
691 }
692
693 /*
694 * We've spun up the disk and we're in laptop mode: schedule writeback
695 * of all dirty data a few seconds from now. If the flush is already scheduled
696 * then push it back - the user is still using the disk.
697 */
698 void laptop_io_completion(void)
699 {
700 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
701 }
702
703 /*
704 * We're in laptop mode and we've just synced. The sync's writes will have
705 * caused another writeback to be scheduled by laptop_io_completion.
706 * Nothing needs to be written back anymore, so we unschedule the writeback.
707 */
708 void laptop_sync_completion(void)
709 {
710 del_timer(&laptop_mode_wb_timer);
711 }
712
713 /*
714 * If ratelimit_pages is too high then we can get into dirty-data overload
715 * if a large number of processes all perform writes at the same time.
716 * If it is too low then SMP machines will call the (expensive)
717 * get_writeback_state too often.
718 *
719 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
720 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
721 * thresholds before writeback cuts in.
722 *
723 * But the limit should not be set too high. Because it also controls the
724 * amount of memory which the balance_dirty_pages() caller has to write back.
725 * If this is too large then the caller will block on the IO queue all the
726 * time. So limit it to four megabytes - the balance_dirty_pages() caller
727 * will write six megabyte chunks, max.
728 */
729
730 void writeback_set_ratelimit(void)
731 {
732 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
733 if (ratelimit_pages < 16)
734 ratelimit_pages = 16;
735 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
736 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
737 }
738
739 static int __cpuinit
740 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
741 {
742 writeback_set_ratelimit();
743 return NOTIFY_DONE;
744 }
745
746 static struct notifier_block __cpuinitdata ratelimit_nb = {
747 .notifier_call = ratelimit_handler,
748 .next = NULL,
749 };
750
751 /*
752 * Called early on to tune the page writeback dirty limits.
753 *
754 * We used to scale dirty pages according to how total memory
755 * related to pages that could be allocated for buffers (by
756 * comparing nr_free_buffer_pages() to vm_total_pages.
757 *
758 * However, that was when we used "dirty_ratio" to scale with
759 * all memory, and we don't do that any more. "dirty_ratio"
760 * is now applied to total non-HIGHPAGE memory (by subtracting
761 * totalhigh_pages from vm_total_pages), and as such we can't
762 * get into the old insane situation any more where we had
763 * large amounts of dirty pages compared to a small amount of
764 * non-HIGHMEM memory.
765 *
766 * But we might still want to scale the dirty_ratio by how
767 * much memory the box has..
768 */
769 void __init page_writeback_init(void)
770 {
771 int shift;
772
773 mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
774 writeback_set_ratelimit();
775 register_cpu_notifier(&ratelimit_nb);
776
777 shift = calc_period_shift();
778 prop_descriptor_init(&vm_completions, shift);
779 prop_descriptor_init(&vm_dirties, shift);
780 }
781
782 /**
783 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
784 * @mapping: address space structure to write
785 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
786 * @writepage: function called for each page
787 * @data: data passed to writepage function
788 *
789 * If a page is already under I/O, write_cache_pages() skips it, even
790 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
791 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
792 * and msync() need to guarantee that all the data which was dirty at the time
793 * the call was made get new I/O started against them. If wbc->sync_mode is
794 * WB_SYNC_ALL then we were called for data integrity and we must wait for
795 * existing IO to complete.
796 */
797 int write_cache_pages(struct address_space *mapping,
798 struct writeback_control *wbc, writepage_t writepage,
799 void *data)
800 {
801 struct backing_dev_info *bdi = mapping->backing_dev_info;
802 int ret = 0;
803 int done = 0;
804 struct pagevec pvec;
805 int nr_pages;
806 pgoff_t index;
807 pgoff_t end; /* Inclusive */
808 int scanned = 0;
809 int range_whole = 0;
810
811 if (wbc->nonblocking && bdi_write_congested(bdi)) {
812 wbc->encountered_congestion = 1;
813 return 0;
814 }
815
816 pagevec_init(&pvec, 0);
817 if (wbc->range_cyclic) {
818 index = mapping->writeback_index; /* Start from prev offset */
819 end = -1;
820 } else {
821 index = wbc->range_start >> PAGE_CACHE_SHIFT;
822 end = wbc->range_end >> PAGE_CACHE_SHIFT;
823 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
824 range_whole = 1;
825 scanned = 1;
826 }
827 retry:
828 while (!done && (index <= end) &&
829 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
830 PAGECACHE_TAG_DIRTY,
831 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
832 unsigned i;
833
834 scanned = 1;
835 for (i = 0; i < nr_pages; i++) {
836 struct page *page = pvec.pages[i];
837
838 /*
839 * At this point we hold neither mapping->tree_lock nor
840 * lock on the page itself: the page may be truncated or
841 * invalidated (changing page->mapping to NULL), or even
842 * swizzled back from swapper_space to tmpfs file
843 * mapping
844 */
845 lock_page(page);
846
847 if (unlikely(page->mapping != mapping)) {
848 unlock_page(page);
849 continue;
850 }
851
852 if (!wbc->range_cyclic && page->index > end) {
853 done = 1;
854 unlock_page(page);
855 continue;
856 }
857
858 if (wbc->sync_mode != WB_SYNC_NONE)
859 wait_on_page_writeback(page);
860
861 if (PageWriteback(page) ||
862 !clear_page_dirty_for_io(page)) {
863 unlock_page(page);
864 continue;
865 }
866
867 ret = (*writepage)(page, wbc, data);
868
869 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
870 unlock_page(page);
871 ret = 0;
872 }
873 if (ret || (--(wbc->nr_to_write) <= 0))
874 done = 1;
875 if (wbc->nonblocking && bdi_write_congested(bdi)) {
876 wbc->encountered_congestion = 1;
877 done = 1;
878 }
879 }
880 pagevec_release(&pvec);
881 cond_resched();
882 }
883 if (!scanned && !done) {
884 /*
885 * We hit the last page and there is more work to be done: wrap
886 * back to the start of the file
887 */
888 scanned = 1;
889 index = 0;
890 goto retry;
891 }
892 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
893 mapping->writeback_index = index;
894 return ret;
895 }
896 EXPORT_SYMBOL(write_cache_pages);
897
898 /*
899 * Function used by generic_writepages to call the real writepage
900 * function and set the mapping flags on error
901 */
902 static int __writepage(struct page *page, struct writeback_control *wbc,
903 void *data)
904 {
905 struct address_space *mapping = data;
906 int ret = mapping->a_ops->writepage(page, wbc);
907 mapping_set_error(mapping, ret);
908 return ret;
909 }
910
911 /**
912 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
913 * @mapping: address space structure to write
914 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
915 *
916 * This is a library function, which implements the writepages()
917 * address_space_operation.
918 */
919 int generic_writepages(struct address_space *mapping,
920 struct writeback_control *wbc)
921 {
922 /* deal with chardevs and other special file */
923 if (!mapping->a_ops->writepage)
924 return 0;
925
926 return write_cache_pages(mapping, wbc, __writepage, mapping);
927 }
928
929 EXPORT_SYMBOL(generic_writepages);
930
931 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
932 {
933 int ret;
934
935 if (wbc->nr_to_write <= 0)
936 return 0;
937 wbc->for_writepages = 1;
938 if (mapping->a_ops->writepages)
939 ret = mapping->a_ops->writepages(mapping, wbc);
940 else
941 ret = generic_writepages(mapping, wbc);
942 wbc->for_writepages = 0;
943 return ret;
944 }
945
946 /**
947 * write_one_page - write out a single page and optionally wait on I/O
948 * @page: the page to write
949 * @wait: if true, wait on writeout
950 *
951 * The page must be locked by the caller and will be unlocked upon return.
952 *
953 * write_one_page() returns a negative error code if I/O failed.
954 */
955 int write_one_page(struct page *page, int wait)
956 {
957 struct address_space *mapping = page->mapping;
958 int ret = 0;
959 struct writeback_control wbc = {
960 .sync_mode = WB_SYNC_ALL,
961 .nr_to_write = 1,
962 };
963
964 BUG_ON(!PageLocked(page));
965
966 if (wait)
967 wait_on_page_writeback(page);
968
969 if (clear_page_dirty_for_io(page)) {
970 page_cache_get(page);
971 ret = mapping->a_ops->writepage(page, &wbc);
972 if (ret == 0 && wait) {
973 wait_on_page_writeback(page);
974 if (PageError(page))
975 ret = -EIO;
976 }
977 page_cache_release(page);
978 } else {
979 unlock_page(page);
980 }
981 return ret;
982 }
983 EXPORT_SYMBOL(write_one_page);
984
985 /*
986 * For address_spaces which do not use buffers nor write back.
987 */
988 int __set_page_dirty_no_writeback(struct page *page)
989 {
990 if (!PageDirty(page))
991 SetPageDirty(page);
992 return 0;
993 }
994
995 /*
996 * For address_spaces which do not use buffers. Just tag the page as dirty in
997 * its radix tree.
998 *
999 * This is also used when a single buffer is being dirtied: we want to set the
1000 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1001 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1002 *
1003 * Most callers have locked the page, which pins the address_space in memory.
1004 * But zap_pte_range() does not lock the page, however in that case the
1005 * mapping is pinned by the vma's ->vm_file reference.
1006 *
1007 * We take care to handle the case where the page was truncated from the
1008 * mapping by re-checking page_mapping() inside tree_lock.
1009 */
1010 int __set_page_dirty_nobuffers(struct page *page)
1011 {
1012 if (!TestSetPageDirty(page)) {
1013 struct address_space *mapping = page_mapping(page);
1014 struct address_space *mapping2;
1015
1016 if (!mapping)
1017 return 1;
1018
1019 write_lock_irq(&mapping->tree_lock);
1020 mapping2 = page_mapping(page);
1021 if (mapping2) { /* Race with truncate? */
1022 BUG_ON(mapping2 != mapping);
1023 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1024 if (mapping_cap_account_dirty(mapping)) {
1025 __inc_zone_page_state(page, NR_FILE_DIRTY);
1026 __inc_bdi_stat(mapping->backing_dev_info,
1027 BDI_RECLAIMABLE);
1028 task_io_account_write(PAGE_CACHE_SIZE);
1029 }
1030 radix_tree_tag_set(&mapping->page_tree,
1031 page_index(page), PAGECACHE_TAG_DIRTY);
1032 }
1033 write_unlock_irq(&mapping->tree_lock);
1034 if (mapping->host) {
1035 /* !PageAnon && !swapper_space */
1036 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1037 }
1038 return 1;
1039 }
1040 return 0;
1041 }
1042 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1043
1044 /*
1045 * When a writepage implementation decides that it doesn't want to write this
1046 * page for some reason, it should redirty the locked page via
1047 * redirty_page_for_writepage() and it should then unlock the page and return 0
1048 */
1049 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1050 {
1051 wbc->pages_skipped++;
1052 return __set_page_dirty_nobuffers(page);
1053 }
1054 EXPORT_SYMBOL(redirty_page_for_writepage);
1055
1056 /*
1057 * If the mapping doesn't provide a set_page_dirty a_op, then
1058 * just fall through and assume that it wants buffer_heads.
1059 */
1060 static int __set_page_dirty(struct page *page)
1061 {
1062 struct address_space *mapping = page_mapping(page);
1063
1064 if (likely(mapping)) {
1065 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1066 #ifdef CONFIG_BLOCK
1067 if (!spd)
1068 spd = __set_page_dirty_buffers;
1069 #endif
1070 return (*spd)(page);
1071 }
1072 if (!PageDirty(page)) {
1073 if (!TestSetPageDirty(page))
1074 return 1;
1075 }
1076 return 0;
1077 }
1078
1079 int set_page_dirty(struct page *page)
1080 {
1081 int ret = __set_page_dirty(page);
1082 if (ret)
1083 task_dirty_inc(current);
1084 return ret;
1085 }
1086 EXPORT_SYMBOL(set_page_dirty);
1087
1088 /*
1089 * set_page_dirty() is racy if the caller has no reference against
1090 * page->mapping->host, and if the page is unlocked. This is because another
1091 * CPU could truncate the page off the mapping and then free the mapping.
1092 *
1093 * Usually, the page _is_ locked, or the caller is a user-space process which
1094 * holds a reference on the inode by having an open file.
1095 *
1096 * In other cases, the page should be locked before running set_page_dirty().
1097 */
1098 int set_page_dirty_lock(struct page *page)
1099 {
1100 int ret;
1101
1102 lock_page_nosync(page);
1103 ret = set_page_dirty(page);
1104 unlock_page(page);
1105 return ret;
1106 }
1107 EXPORT_SYMBOL(set_page_dirty_lock);
1108
1109 /*
1110 * Clear a page's dirty flag, while caring for dirty memory accounting.
1111 * Returns true if the page was previously dirty.
1112 *
1113 * This is for preparing to put the page under writeout. We leave the page
1114 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1115 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1116 * implementation will run either set_page_writeback() or set_page_dirty(),
1117 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1118 * back into sync.
1119 *
1120 * This incoherency between the page's dirty flag and radix-tree tag is
1121 * unfortunate, but it only exists while the page is locked.
1122 */
1123 int clear_page_dirty_for_io(struct page *page)
1124 {
1125 struct address_space *mapping = page_mapping(page);
1126
1127 BUG_ON(!PageLocked(page));
1128
1129 ClearPageReclaim(page);
1130 if (mapping && mapping_cap_account_dirty(mapping)) {
1131 /*
1132 * Yes, Virginia, this is indeed insane.
1133 *
1134 * We use this sequence to make sure that
1135 * (a) we account for dirty stats properly
1136 * (b) we tell the low-level filesystem to
1137 * mark the whole page dirty if it was
1138 * dirty in a pagetable. Only to then
1139 * (c) clean the page again and return 1 to
1140 * cause the writeback.
1141 *
1142 * This way we avoid all nasty races with the
1143 * dirty bit in multiple places and clearing
1144 * them concurrently from different threads.
1145 *
1146 * Note! Normally the "set_page_dirty(page)"
1147 * has no effect on the actual dirty bit - since
1148 * that will already usually be set. But we
1149 * need the side effects, and it can help us
1150 * avoid races.
1151 *
1152 * We basically use the page "master dirty bit"
1153 * as a serialization point for all the different
1154 * threads doing their things.
1155 */
1156 if (page_mkclean(page))
1157 set_page_dirty(page);
1158 /*
1159 * We carefully synchronise fault handlers against
1160 * installing a dirty pte and marking the page dirty
1161 * at this point. We do this by having them hold the
1162 * page lock at some point after installing their
1163 * pte, but before marking the page dirty.
1164 * Pages are always locked coming in here, so we get
1165 * the desired exclusion. See mm/memory.c:do_wp_page()
1166 * for more comments.
1167 */
1168 if (TestClearPageDirty(page)) {
1169 dec_zone_page_state(page, NR_FILE_DIRTY);
1170 dec_bdi_stat(mapping->backing_dev_info,
1171 BDI_RECLAIMABLE);
1172 return 1;
1173 }
1174 return 0;
1175 }
1176 return TestClearPageDirty(page);
1177 }
1178 EXPORT_SYMBOL(clear_page_dirty_for_io);
1179
1180 int test_clear_page_writeback(struct page *page)
1181 {
1182 struct address_space *mapping = page_mapping(page);
1183 int ret;
1184
1185 if (mapping) {
1186 struct backing_dev_info *bdi = mapping->backing_dev_info;
1187 unsigned long flags;
1188
1189 write_lock_irqsave(&mapping->tree_lock, flags);
1190 ret = TestClearPageWriteback(page);
1191 if (ret) {
1192 radix_tree_tag_clear(&mapping->page_tree,
1193 page_index(page),
1194 PAGECACHE_TAG_WRITEBACK);
1195 if (bdi_cap_writeback_dirty(bdi)) {
1196 __dec_bdi_stat(bdi, BDI_WRITEBACK);
1197 __bdi_writeout_inc(bdi);
1198 }
1199 }
1200 write_unlock_irqrestore(&mapping->tree_lock, flags);
1201 } else {
1202 ret = TestClearPageWriteback(page);
1203 }
1204 if (ret)
1205 dec_zone_page_state(page, NR_WRITEBACK);
1206 return ret;
1207 }
1208
1209 int test_set_page_writeback(struct page *page)
1210 {
1211 struct address_space *mapping = page_mapping(page);
1212 int ret;
1213
1214 if (mapping) {
1215 struct backing_dev_info *bdi = mapping->backing_dev_info;
1216 unsigned long flags;
1217
1218 write_lock_irqsave(&mapping->tree_lock, flags);
1219 ret = TestSetPageWriteback(page);
1220 if (!ret) {
1221 radix_tree_tag_set(&mapping->page_tree,
1222 page_index(page),
1223 PAGECACHE_TAG_WRITEBACK);
1224 if (bdi_cap_writeback_dirty(bdi))
1225 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1226 }
1227 if (!PageDirty(page))
1228 radix_tree_tag_clear(&mapping->page_tree,
1229 page_index(page),
1230 PAGECACHE_TAG_DIRTY);
1231 write_unlock_irqrestore(&mapping->tree_lock, flags);
1232 } else {
1233 ret = TestSetPageWriteback(page);
1234 }
1235 if (!ret)
1236 inc_zone_page_state(page, NR_WRITEBACK);
1237 return ret;
1238
1239 }
1240 EXPORT_SYMBOL(test_set_page_writeback);
1241
1242 /*
1243 * Return true if any of the pages in the mapping are marked with the
1244 * passed tag.
1245 */
1246 int mapping_tagged(struct address_space *mapping, int tag)
1247 {
1248 int ret;
1249 rcu_read_lock();
1250 ret = radix_tree_tagged(&mapping->page_tree, tag);
1251 rcu_read_unlock();
1252 return ret;
1253 }
1254 EXPORT_SYMBOL(mapping_tagged);