]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/page_alloc.c
0df3c089d3af606b3b676f4cf16bde85575de35a
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67
68 #include <asm/sections.h>
69 #include <asm/tlbflush.h>
70 #include <asm/div64.h>
71 #include "internal.h"
72
73 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74 static DEFINE_MUTEX(pcp_batch_high_lock);
75 #define MIN_PERCPU_PAGELIST_FRACTION (8)
76
77 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78 DEFINE_PER_CPU(int, numa_node);
79 EXPORT_PER_CPU_SYMBOL(numa_node);
80 #endif
81
82 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
83 /*
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
88 */
89 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
90 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
91 int _node_numa_mem_[MAX_NUMNODES];
92 #endif
93
94 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
95 volatile unsigned long latent_entropy __latent_entropy;
96 EXPORT_SYMBOL(latent_entropy);
97 #endif
98
99 /*
100 * Array of node states.
101 */
102 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
103 [N_POSSIBLE] = NODE_MASK_ALL,
104 [N_ONLINE] = { { [0] = 1UL } },
105 #ifndef CONFIG_NUMA
106 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
107 #ifdef CONFIG_HIGHMEM
108 [N_HIGH_MEMORY] = { { [0] = 1UL } },
109 #endif
110 #ifdef CONFIG_MOVABLE_NODE
111 [N_MEMORY] = { { [0] = 1UL } },
112 #endif
113 [N_CPU] = { { [0] = 1UL } },
114 #endif /* NUMA */
115 };
116 EXPORT_SYMBOL(node_states);
117
118 /* Protect totalram_pages and zone->managed_pages */
119 static DEFINE_SPINLOCK(managed_page_count_lock);
120
121 unsigned long totalram_pages __read_mostly;
122 unsigned long totalreserve_pages __read_mostly;
123 unsigned long totalcma_pages __read_mostly;
124
125 int percpu_pagelist_fraction;
126 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
127
128 /*
129 * A cached value of the page's pageblock's migratetype, used when the page is
130 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132 * Also the migratetype set in the page does not necessarily match the pcplist
133 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134 * other index - this ensures that it will be put on the correct CMA freelist.
135 */
136 static inline int get_pcppage_migratetype(struct page *page)
137 {
138 return page->index;
139 }
140
141 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
142 {
143 page->index = migratetype;
144 }
145
146 #ifdef CONFIG_PM_SLEEP
147 /*
148 * The following functions are used by the suspend/hibernate code to temporarily
149 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150 * while devices are suspended. To avoid races with the suspend/hibernate code,
151 * they should always be called with pm_mutex held (gfp_allowed_mask also should
152 * only be modified with pm_mutex held, unless the suspend/hibernate code is
153 * guaranteed not to run in parallel with that modification).
154 */
155
156 static gfp_t saved_gfp_mask;
157
158 void pm_restore_gfp_mask(void)
159 {
160 WARN_ON(!mutex_is_locked(&pm_mutex));
161 if (saved_gfp_mask) {
162 gfp_allowed_mask = saved_gfp_mask;
163 saved_gfp_mask = 0;
164 }
165 }
166
167 void pm_restrict_gfp_mask(void)
168 {
169 WARN_ON(!mutex_is_locked(&pm_mutex));
170 WARN_ON(saved_gfp_mask);
171 saved_gfp_mask = gfp_allowed_mask;
172 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
173 }
174
175 bool pm_suspended_storage(void)
176 {
177 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
178 return false;
179 return true;
180 }
181 #endif /* CONFIG_PM_SLEEP */
182
183 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
184 unsigned int pageblock_order __read_mostly;
185 #endif
186
187 static void __free_pages_ok(struct page *page, unsigned int order);
188
189 /*
190 * results with 256, 32 in the lowmem_reserve sysctl:
191 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192 * 1G machine -> (16M dma, 784M normal, 224M high)
193 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
195 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
196 *
197 * TBD: should special case ZONE_DMA32 machines here - in those we normally
198 * don't need any ZONE_NORMAL reservation
199 */
200 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
201 #ifdef CONFIG_ZONE_DMA
202 256,
203 #endif
204 #ifdef CONFIG_ZONE_DMA32
205 256,
206 #endif
207 #ifdef CONFIG_HIGHMEM
208 32,
209 #endif
210 32,
211 };
212
213 EXPORT_SYMBOL(totalram_pages);
214
215 static char * const zone_names[MAX_NR_ZONES] = {
216 #ifdef CONFIG_ZONE_DMA
217 "DMA",
218 #endif
219 #ifdef CONFIG_ZONE_DMA32
220 "DMA32",
221 #endif
222 "Normal",
223 #ifdef CONFIG_HIGHMEM
224 "HighMem",
225 #endif
226 "Movable",
227 #ifdef CONFIG_ZONE_DEVICE
228 "Device",
229 #endif
230 };
231
232 char * const migratetype_names[MIGRATE_TYPES] = {
233 "Unmovable",
234 "Movable",
235 "Reclaimable",
236 "HighAtomic",
237 #ifdef CONFIG_CMA
238 "CMA",
239 #endif
240 #ifdef CONFIG_MEMORY_ISOLATION
241 "Isolate",
242 #endif
243 };
244
245 compound_page_dtor * const compound_page_dtors[] = {
246 NULL,
247 free_compound_page,
248 #ifdef CONFIG_HUGETLB_PAGE
249 free_huge_page,
250 #endif
251 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
252 free_transhuge_page,
253 #endif
254 };
255
256 int min_free_kbytes = 1024;
257 int user_min_free_kbytes = -1;
258 int watermark_scale_factor = 10;
259
260 static unsigned long __meminitdata nr_kernel_pages;
261 static unsigned long __meminitdata nr_all_pages;
262 static unsigned long __meminitdata dma_reserve;
263
264 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
265 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
266 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
267 static unsigned long __initdata required_kernelcore;
268 static unsigned long __initdata required_movablecore;
269 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
270 static bool mirrored_kernelcore;
271
272 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
273 int movable_zone;
274 EXPORT_SYMBOL(movable_zone);
275 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
276
277 #if MAX_NUMNODES > 1
278 int nr_node_ids __read_mostly = MAX_NUMNODES;
279 int nr_online_nodes __read_mostly = 1;
280 EXPORT_SYMBOL(nr_node_ids);
281 EXPORT_SYMBOL(nr_online_nodes);
282 #endif
283
284 int page_group_by_mobility_disabled __read_mostly;
285
286 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
287 static inline void reset_deferred_meminit(pg_data_t *pgdat)
288 {
289 pgdat->first_deferred_pfn = ULONG_MAX;
290 }
291
292 /* Returns true if the struct page for the pfn is uninitialised */
293 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
294 {
295 int nid = early_pfn_to_nid(pfn);
296
297 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301 }
302
303 /*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307 static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310 {
311 unsigned long max_initialise;
312
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
322
323 (*nr_initialised)++;
324 if ((*nr_initialised > max_initialise) &&
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331 }
332 #else
333 static inline void reset_deferred_meminit(pg_data_t *pgdat)
334 {
335 }
336
337 static inline bool early_page_uninitialised(unsigned long pfn)
338 {
339 return false;
340 }
341
342 static inline bool update_defer_init(pg_data_t *pgdat,
343 unsigned long pfn, unsigned long zone_end,
344 unsigned long *nr_initialised)
345 {
346 return true;
347 }
348 #endif
349
350 /* Return a pointer to the bitmap storing bits affecting a block of pages */
351 static inline unsigned long *get_pageblock_bitmap(struct page *page,
352 unsigned long pfn)
353 {
354 #ifdef CONFIG_SPARSEMEM
355 return __pfn_to_section(pfn)->pageblock_flags;
356 #else
357 return page_zone(page)->pageblock_flags;
358 #endif /* CONFIG_SPARSEMEM */
359 }
360
361 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
362 {
363 #ifdef CONFIG_SPARSEMEM
364 pfn &= (PAGES_PER_SECTION-1);
365 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
366 #else
367 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
368 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
369 #endif /* CONFIG_SPARSEMEM */
370 }
371
372 /**
373 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
374 * @page: The page within the block of interest
375 * @pfn: The target page frame number
376 * @end_bitidx: The last bit of interest to retrieve
377 * @mask: mask of bits that the caller is interested in
378 *
379 * Return: pageblock_bits flags
380 */
381 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
382 unsigned long pfn,
383 unsigned long end_bitidx,
384 unsigned long mask)
385 {
386 unsigned long *bitmap;
387 unsigned long bitidx, word_bitidx;
388 unsigned long word;
389
390 bitmap = get_pageblock_bitmap(page, pfn);
391 bitidx = pfn_to_bitidx(page, pfn);
392 word_bitidx = bitidx / BITS_PER_LONG;
393 bitidx &= (BITS_PER_LONG-1);
394
395 word = bitmap[word_bitidx];
396 bitidx += end_bitidx;
397 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
398 }
399
400 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
401 unsigned long end_bitidx,
402 unsigned long mask)
403 {
404 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
405 }
406
407 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
408 {
409 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
410 }
411
412 /**
413 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
414 * @page: The page within the block of interest
415 * @flags: The flags to set
416 * @pfn: The target page frame number
417 * @end_bitidx: The last bit of interest
418 * @mask: mask of bits that the caller is interested in
419 */
420 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
421 unsigned long pfn,
422 unsigned long end_bitidx,
423 unsigned long mask)
424 {
425 unsigned long *bitmap;
426 unsigned long bitidx, word_bitidx;
427 unsigned long old_word, word;
428
429 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
430
431 bitmap = get_pageblock_bitmap(page, pfn);
432 bitidx = pfn_to_bitidx(page, pfn);
433 word_bitidx = bitidx / BITS_PER_LONG;
434 bitidx &= (BITS_PER_LONG-1);
435
436 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
437
438 bitidx += end_bitidx;
439 mask <<= (BITS_PER_LONG - bitidx - 1);
440 flags <<= (BITS_PER_LONG - bitidx - 1);
441
442 word = READ_ONCE(bitmap[word_bitidx]);
443 for (;;) {
444 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
445 if (word == old_word)
446 break;
447 word = old_word;
448 }
449 }
450
451 void set_pageblock_migratetype(struct page *page, int migratetype)
452 {
453 if (unlikely(page_group_by_mobility_disabled &&
454 migratetype < MIGRATE_PCPTYPES))
455 migratetype = MIGRATE_UNMOVABLE;
456
457 set_pageblock_flags_group(page, (unsigned long)migratetype,
458 PB_migrate, PB_migrate_end);
459 }
460
461 #ifdef CONFIG_DEBUG_VM
462 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
463 {
464 int ret = 0;
465 unsigned seq;
466 unsigned long pfn = page_to_pfn(page);
467 unsigned long sp, start_pfn;
468
469 do {
470 seq = zone_span_seqbegin(zone);
471 start_pfn = zone->zone_start_pfn;
472 sp = zone->spanned_pages;
473 if (!zone_spans_pfn(zone, pfn))
474 ret = 1;
475 } while (zone_span_seqretry(zone, seq));
476
477 if (ret)
478 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
479 pfn, zone_to_nid(zone), zone->name,
480 start_pfn, start_pfn + sp);
481
482 return ret;
483 }
484
485 static int page_is_consistent(struct zone *zone, struct page *page)
486 {
487 if (!pfn_valid_within(page_to_pfn(page)))
488 return 0;
489 if (zone != page_zone(page))
490 return 0;
491
492 return 1;
493 }
494 /*
495 * Temporary debugging check for pages not lying within a given zone.
496 */
497 static int bad_range(struct zone *zone, struct page *page)
498 {
499 if (page_outside_zone_boundaries(zone, page))
500 return 1;
501 if (!page_is_consistent(zone, page))
502 return 1;
503
504 return 0;
505 }
506 #else
507 static inline int bad_range(struct zone *zone, struct page *page)
508 {
509 return 0;
510 }
511 #endif
512
513 static void bad_page(struct page *page, const char *reason,
514 unsigned long bad_flags)
515 {
516 static unsigned long resume;
517 static unsigned long nr_shown;
518 static unsigned long nr_unshown;
519
520 /*
521 * Allow a burst of 60 reports, then keep quiet for that minute;
522 * or allow a steady drip of one report per second.
523 */
524 if (nr_shown == 60) {
525 if (time_before(jiffies, resume)) {
526 nr_unshown++;
527 goto out;
528 }
529 if (nr_unshown) {
530 pr_alert(
531 "BUG: Bad page state: %lu messages suppressed\n",
532 nr_unshown);
533 nr_unshown = 0;
534 }
535 nr_shown = 0;
536 }
537 if (nr_shown++ == 0)
538 resume = jiffies + 60 * HZ;
539
540 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
541 current->comm, page_to_pfn(page));
542 __dump_page(page, reason);
543 bad_flags &= page->flags;
544 if (bad_flags)
545 pr_alert("bad because of flags: %#lx(%pGp)\n",
546 bad_flags, &bad_flags);
547 dump_page_owner(page);
548
549 print_modules();
550 dump_stack();
551 out:
552 /* Leave bad fields for debug, except PageBuddy could make trouble */
553 page_mapcount_reset(page); /* remove PageBuddy */
554 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
555 }
556
557 /*
558 * Higher-order pages are called "compound pages". They are structured thusly:
559 *
560 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
561 *
562 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
563 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
564 *
565 * The first tail page's ->compound_dtor holds the offset in array of compound
566 * page destructors. See compound_page_dtors.
567 *
568 * The first tail page's ->compound_order holds the order of allocation.
569 * This usage means that zero-order pages may not be compound.
570 */
571
572 void free_compound_page(struct page *page)
573 {
574 __free_pages_ok(page, compound_order(page));
575 }
576
577 void prep_compound_page(struct page *page, unsigned int order)
578 {
579 int i;
580 int nr_pages = 1 << order;
581
582 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
583 set_compound_order(page, order);
584 __SetPageHead(page);
585 for (i = 1; i < nr_pages; i++) {
586 struct page *p = page + i;
587 set_page_count(p, 0);
588 p->mapping = TAIL_MAPPING;
589 set_compound_head(p, page);
590 }
591 atomic_set(compound_mapcount_ptr(page), -1);
592 }
593
594 #ifdef CONFIG_DEBUG_PAGEALLOC
595 unsigned int _debug_guardpage_minorder;
596 bool _debug_pagealloc_enabled __read_mostly
597 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
598 EXPORT_SYMBOL(_debug_pagealloc_enabled);
599 bool _debug_guardpage_enabled __read_mostly;
600
601 static int __init early_debug_pagealloc(char *buf)
602 {
603 if (!buf)
604 return -EINVAL;
605 return kstrtobool(buf, &_debug_pagealloc_enabled);
606 }
607 early_param("debug_pagealloc", early_debug_pagealloc);
608
609 static bool need_debug_guardpage(void)
610 {
611 /* If we don't use debug_pagealloc, we don't need guard page */
612 if (!debug_pagealloc_enabled())
613 return false;
614
615 if (!debug_guardpage_minorder())
616 return false;
617
618 return true;
619 }
620
621 static void init_debug_guardpage(void)
622 {
623 if (!debug_pagealloc_enabled())
624 return;
625
626 if (!debug_guardpage_minorder())
627 return;
628
629 _debug_guardpage_enabled = true;
630 }
631
632 struct page_ext_operations debug_guardpage_ops = {
633 .need = need_debug_guardpage,
634 .init = init_debug_guardpage,
635 };
636
637 static int __init debug_guardpage_minorder_setup(char *buf)
638 {
639 unsigned long res;
640
641 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
642 pr_err("Bad debug_guardpage_minorder value\n");
643 return 0;
644 }
645 _debug_guardpage_minorder = res;
646 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
647 return 0;
648 }
649 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
650
651 static inline bool set_page_guard(struct zone *zone, struct page *page,
652 unsigned int order, int migratetype)
653 {
654 struct page_ext *page_ext;
655
656 if (!debug_guardpage_enabled())
657 return false;
658
659 if (order >= debug_guardpage_minorder())
660 return false;
661
662 page_ext = lookup_page_ext(page);
663 if (unlikely(!page_ext))
664 return false;
665
666 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
667
668 INIT_LIST_HEAD(&page->lru);
669 set_page_private(page, order);
670 /* Guard pages are not available for any usage */
671 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
672
673 return true;
674 }
675
676 static inline void clear_page_guard(struct zone *zone, struct page *page,
677 unsigned int order, int migratetype)
678 {
679 struct page_ext *page_ext;
680
681 if (!debug_guardpage_enabled())
682 return;
683
684 page_ext = lookup_page_ext(page);
685 if (unlikely(!page_ext))
686 return;
687
688 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
689
690 set_page_private(page, 0);
691 if (!is_migrate_isolate(migratetype))
692 __mod_zone_freepage_state(zone, (1 << order), migratetype);
693 }
694 #else
695 struct page_ext_operations debug_guardpage_ops;
696 static inline bool set_page_guard(struct zone *zone, struct page *page,
697 unsigned int order, int migratetype) { return false; }
698 static inline void clear_page_guard(struct zone *zone, struct page *page,
699 unsigned int order, int migratetype) {}
700 #endif
701
702 static inline void set_page_order(struct page *page, unsigned int order)
703 {
704 set_page_private(page, order);
705 __SetPageBuddy(page);
706 }
707
708 static inline void rmv_page_order(struct page *page)
709 {
710 __ClearPageBuddy(page);
711 set_page_private(page, 0);
712 }
713
714 /*
715 * This function checks whether a page is free && is the buddy
716 * we can do coalesce a page and its buddy if
717 * (a) the buddy is not in a hole &&
718 * (b) the buddy is in the buddy system &&
719 * (c) a page and its buddy have the same order &&
720 * (d) a page and its buddy are in the same zone.
721 *
722 * For recording whether a page is in the buddy system, we set ->_mapcount
723 * PAGE_BUDDY_MAPCOUNT_VALUE.
724 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
725 * serialized by zone->lock.
726 *
727 * For recording page's order, we use page_private(page).
728 */
729 static inline int page_is_buddy(struct page *page, struct page *buddy,
730 unsigned int order)
731 {
732 if (!pfn_valid_within(page_to_pfn(buddy)))
733 return 0;
734
735 if (page_is_guard(buddy) && page_order(buddy) == order) {
736 if (page_zone_id(page) != page_zone_id(buddy))
737 return 0;
738
739 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
740
741 return 1;
742 }
743
744 if (PageBuddy(buddy) && page_order(buddy) == order) {
745 /*
746 * zone check is done late to avoid uselessly
747 * calculating zone/node ids for pages that could
748 * never merge.
749 */
750 if (page_zone_id(page) != page_zone_id(buddy))
751 return 0;
752
753 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
754
755 return 1;
756 }
757 return 0;
758 }
759
760 /*
761 * Freeing function for a buddy system allocator.
762 *
763 * The concept of a buddy system is to maintain direct-mapped table
764 * (containing bit values) for memory blocks of various "orders".
765 * The bottom level table contains the map for the smallest allocatable
766 * units of memory (here, pages), and each level above it describes
767 * pairs of units from the levels below, hence, "buddies".
768 * At a high level, all that happens here is marking the table entry
769 * at the bottom level available, and propagating the changes upward
770 * as necessary, plus some accounting needed to play nicely with other
771 * parts of the VM system.
772 * At each level, we keep a list of pages, which are heads of continuous
773 * free pages of length of (1 << order) and marked with _mapcount
774 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
775 * field.
776 * So when we are allocating or freeing one, we can derive the state of the
777 * other. That is, if we allocate a small block, and both were
778 * free, the remainder of the region must be split into blocks.
779 * If a block is freed, and its buddy is also free, then this
780 * triggers coalescing into a block of larger size.
781 *
782 * -- nyc
783 */
784
785 static inline void __free_one_page(struct page *page,
786 unsigned long pfn,
787 struct zone *zone, unsigned int order,
788 int migratetype)
789 {
790 unsigned long page_idx;
791 unsigned long combined_idx;
792 unsigned long uninitialized_var(buddy_idx);
793 struct page *buddy;
794 unsigned int max_order;
795
796 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
797
798 VM_BUG_ON(!zone_is_initialized(zone));
799 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
800
801 VM_BUG_ON(migratetype == -1);
802 if (likely(!is_migrate_isolate(migratetype)))
803 __mod_zone_freepage_state(zone, 1 << order, migratetype);
804
805 page_idx = pfn & ((1 << MAX_ORDER) - 1);
806
807 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
808 VM_BUG_ON_PAGE(bad_range(zone, page), page);
809
810 continue_merging:
811 while (order < max_order - 1) {
812 buddy_idx = __find_buddy_index(page_idx, order);
813 buddy = page + (buddy_idx - page_idx);
814 if (!page_is_buddy(page, buddy, order))
815 goto done_merging;
816 /*
817 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
818 * merge with it and move up one order.
819 */
820 if (page_is_guard(buddy)) {
821 clear_page_guard(zone, buddy, order, migratetype);
822 } else {
823 list_del(&buddy->lru);
824 zone->free_area[order].nr_free--;
825 rmv_page_order(buddy);
826 }
827 combined_idx = buddy_idx & page_idx;
828 page = page + (combined_idx - page_idx);
829 page_idx = combined_idx;
830 order++;
831 }
832 if (max_order < MAX_ORDER) {
833 /* If we are here, it means order is >= pageblock_order.
834 * We want to prevent merge between freepages on isolate
835 * pageblock and normal pageblock. Without this, pageblock
836 * isolation could cause incorrect freepage or CMA accounting.
837 *
838 * We don't want to hit this code for the more frequent
839 * low-order merging.
840 */
841 if (unlikely(has_isolate_pageblock(zone))) {
842 int buddy_mt;
843
844 buddy_idx = __find_buddy_index(page_idx, order);
845 buddy = page + (buddy_idx - page_idx);
846 buddy_mt = get_pageblock_migratetype(buddy);
847
848 if (migratetype != buddy_mt
849 && (is_migrate_isolate(migratetype) ||
850 is_migrate_isolate(buddy_mt)))
851 goto done_merging;
852 }
853 max_order++;
854 goto continue_merging;
855 }
856
857 done_merging:
858 set_page_order(page, order);
859
860 /*
861 * If this is not the largest possible page, check if the buddy
862 * of the next-highest order is free. If it is, it's possible
863 * that pages are being freed that will coalesce soon. In case,
864 * that is happening, add the free page to the tail of the list
865 * so it's less likely to be used soon and more likely to be merged
866 * as a higher order page
867 */
868 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
869 struct page *higher_page, *higher_buddy;
870 combined_idx = buddy_idx & page_idx;
871 higher_page = page + (combined_idx - page_idx);
872 buddy_idx = __find_buddy_index(combined_idx, order + 1);
873 higher_buddy = higher_page + (buddy_idx - combined_idx);
874 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
875 list_add_tail(&page->lru,
876 &zone->free_area[order].free_list[migratetype]);
877 goto out;
878 }
879 }
880
881 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
882 out:
883 zone->free_area[order].nr_free++;
884 }
885
886 /*
887 * A bad page could be due to a number of fields. Instead of multiple branches,
888 * try and check multiple fields with one check. The caller must do a detailed
889 * check if necessary.
890 */
891 static inline bool page_expected_state(struct page *page,
892 unsigned long check_flags)
893 {
894 if (unlikely(atomic_read(&page->_mapcount) != -1))
895 return false;
896
897 if (unlikely((unsigned long)page->mapping |
898 page_ref_count(page) |
899 #ifdef CONFIG_MEMCG
900 (unsigned long)page->mem_cgroup |
901 #endif
902 (page->flags & check_flags)))
903 return false;
904
905 return true;
906 }
907
908 static void free_pages_check_bad(struct page *page)
909 {
910 const char *bad_reason;
911 unsigned long bad_flags;
912
913 bad_reason = NULL;
914 bad_flags = 0;
915
916 if (unlikely(atomic_read(&page->_mapcount) != -1))
917 bad_reason = "nonzero mapcount";
918 if (unlikely(page->mapping != NULL))
919 bad_reason = "non-NULL mapping";
920 if (unlikely(page_ref_count(page) != 0))
921 bad_reason = "nonzero _refcount";
922 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
923 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
924 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
925 }
926 #ifdef CONFIG_MEMCG
927 if (unlikely(page->mem_cgroup))
928 bad_reason = "page still charged to cgroup";
929 #endif
930 bad_page(page, bad_reason, bad_flags);
931 }
932
933 static inline int free_pages_check(struct page *page)
934 {
935 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
936 return 0;
937
938 /* Something has gone sideways, find it */
939 free_pages_check_bad(page);
940 return 1;
941 }
942
943 static int free_tail_pages_check(struct page *head_page, struct page *page)
944 {
945 int ret = 1;
946
947 /*
948 * We rely page->lru.next never has bit 0 set, unless the page
949 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
950 */
951 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
952
953 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
954 ret = 0;
955 goto out;
956 }
957 switch (page - head_page) {
958 case 1:
959 /* the first tail page: ->mapping is compound_mapcount() */
960 if (unlikely(compound_mapcount(page))) {
961 bad_page(page, "nonzero compound_mapcount", 0);
962 goto out;
963 }
964 break;
965 case 2:
966 /*
967 * the second tail page: ->mapping is
968 * page_deferred_list().next -- ignore value.
969 */
970 break;
971 default:
972 if (page->mapping != TAIL_MAPPING) {
973 bad_page(page, "corrupted mapping in tail page", 0);
974 goto out;
975 }
976 break;
977 }
978 if (unlikely(!PageTail(page))) {
979 bad_page(page, "PageTail not set", 0);
980 goto out;
981 }
982 if (unlikely(compound_head(page) != head_page)) {
983 bad_page(page, "compound_head not consistent", 0);
984 goto out;
985 }
986 ret = 0;
987 out:
988 page->mapping = NULL;
989 clear_compound_head(page);
990 return ret;
991 }
992
993 static __always_inline bool free_pages_prepare(struct page *page,
994 unsigned int order, bool check_free)
995 {
996 int bad = 0;
997
998 VM_BUG_ON_PAGE(PageTail(page), page);
999
1000 trace_mm_page_free(page, order);
1001 kmemcheck_free_shadow(page, order);
1002
1003 /*
1004 * Check tail pages before head page information is cleared to
1005 * avoid checking PageCompound for order-0 pages.
1006 */
1007 if (unlikely(order)) {
1008 bool compound = PageCompound(page);
1009 int i;
1010
1011 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1012
1013 if (compound)
1014 ClearPageDoubleMap(page);
1015 for (i = 1; i < (1 << order); i++) {
1016 if (compound)
1017 bad += free_tail_pages_check(page, page + i);
1018 if (unlikely(free_pages_check(page + i))) {
1019 bad++;
1020 continue;
1021 }
1022 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1023 }
1024 }
1025 if (PageMappingFlags(page))
1026 page->mapping = NULL;
1027 if (memcg_kmem_enabled() && PageKmemcg(page))
1028 memcg_kmem_uncharge(page, order);
1029 if (check_free)
1030 bad += free_pages_check(page);
1031 if (bad)
1032 return false;
1033
1034 page_cpupid_reset_last(page);
1035 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1036 reset_page_owner(page, order);
1037
1038 if (!PageHighMem(page)) {
1039 debug_check_no_locks_freed(page_address(page),
1040 PAGE_SIZE << order);
1041 debug_check_no_obj_freed(page_address(page),
1042 PAGE_SIZE << order);
1043 }
1044 arch_free_page(page, order);
1045 kernel_poison_pages(page, 1 << order, 0);
1046 kernel_map_pages(page, 1 << order, 0);
1047 kasan_free_pages(page, order);
1048
1049 return true;
1050 }
1051
1052 #ifdef CONFIG_DEBUG_VM
1053 static inline bool free_pcp_prepare(struct page *page)
1054 {
1055 return free_pages_prepare(page, 0, true);
1056 }
1057
1058 static inline bool bulkfree_pcp_prepare(struct page *page)
1059 {
1060 return false;
1061 }
1062 #else
1063 static bool free_pcp_prepare(struct page *page)
1064 {
1065 return free_pages_prepare(page, 0, false);
1066 }
1067
1068 static bool bulkfree_pcp_prepare(struct page *page)
1069 {
1070 return free_pages_check(page);
1071 }
1072 #endif /* CONFIG_DEBUG_VM */
1073
1074 /*
1075 * Frees a number of pages from the PCP lists
1076 * Assumes all pages on list are in same zone, and of same order.
1077 * count is the number of pages to free.
1078 *
1079 * If the zone was previously in an "all pages pinned" state then look to
1080 * see if this freeing clears that state.
1081 *
1082 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1083 * pinned" detection logic.
1084 */
1085 static void free_pcppages_bulk(struct zone *zone, int count,
1086 struct per_cpu_pages *pcp)
1087 {
1088 int migratetype = 0;
1089 int batch_free = 0;
1090 unsigned long nr_scanned;
1091 bool isolated_pageblocks;
1092
1093 spin_lock(&zone->lock);
1094 isolated_pageblocks = has_isolate_pageblock(zone);
1095 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1096 if (nr_scanned)
1097 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1098
1099 while (count) {
1100 struct page *page;
1101 struct list_head *list;
1102
1103 /*
1104 * Remove pages from lists in a round-robin fashion. A
1105 * batch_free count is maintained that is incremented when an
1106 * empty list is encountered. This is so more pages are freed
1107 * off fuller lists instead of spinning excessively around empty
1108 * lists
1109 */
1110 do {
1111 batch_free++;
1112 if (++migratetype == MIGRATE_PCPTYPES)
1113 migratetype = 0;
1114 list = &pcp->lists[migratetype];
1115 } while (list_empty(list));
1116
1117 /* This is the only non-empty list. Free them all. */
1118 if (batch_free == MIGRATE_PCPTYPES)
1119 batch_free = count;
1120
1121 do {
1122 int mt; /* migratetype of the to-be-freed page */
1123
1124 page = list_last_entry(list, struct page, lru);
1125 /* must delete as __free_one_page list manipulates */
1126 list_del(&page->lru);
1127
1128 mt = get_pcppage_migratetype(page);
1129 /* MIGRATE_ISOLATE page should not go to pcplists */
1130 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1131 /* Pageblock could have been isolated meanwhile */
1132 if (unlikely(isolated_pageblocks))
1133 mt = get_pageblock_migratetype(page);
1134
1135 if (bulkfree_pcp_prepare(page))
1136 continue;
1137
1138 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1139 trace_mm_page_pcpu_drain(page, 0, mt);
1140 } while (--count && --batch_free && !list_empty(list));
1141 }
1142 spin_unlock(&zone->lock);
1143 }
1144
1145 static void free_one_page(struct zone *zone,
1146 struct page *page, unsigned long pfn,
1147 unsigned int order,
1148 int migratetype)
1149 {
1150 unsigned long nr_scanned;
1151 spin_lock(&zone->lock);
1152 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1153 if (nr_scanned)
1154 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1155
1156 if (unlikely(has_isolate_pageblock(zone) ||
1157 is_migrate_isolate(migratetype))) {
1158 migratetype = get_pfnblock_migratetype(page, pfn);
1159 }
1160 __free_one_page(page, pfn, zone, order, migratetype);
1161 spin_unlock(&zone->lock);
1162 }
1163
1164 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1165 unsigned long zone, int nid)
1166 {
1167 set_page_links(page, zone, nid, pfn);
1168 init_page_count(page);
1169 page_mapcount_reset(page);
1170 page_cpupid_reset_last(page);
1171
1172 INIT_LIST_HEAD(&page->lru);
1173 #ifdef WANT_PAGE_VIRTUAL
1174 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1175 if (!is_highmem_idx(zone))
1176 set_page_address(page, __va(pfn << PAGE_SHIFT));
1177 #endif
1178 }
1179
1180 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1181 int nid)
1182 {
1183 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1184 }
1185
1186 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1187 static void init_reserved_page(unsigned long pfn)
1188 {
1189 pg_data_t *pgdat;
1190 int nid, zid;
1191
1192 if (!early_page_uninitialised(pfn))
1193 return;
1194
1195 nid = early_pfn_to_nid(pfn);
1196 pgdat = NODE_DATA(nid);
1197
1198 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1199 struct zone *zone = &pgdat->node_zones[zid];
1200
1201 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1202 break;
1203 }
1204 __init_single_pfn(pfn, zid, nid);
1205 }
1206 #else
1207 static inline void init_reserved_page(unsigned long pfn)
1208 {
1209 }
1210 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1211
1212 /*
1213 * Initialised pages do not have PageReserved set. This function is
1214 * called for each range allocated by the bootmem allocator and
1215 * marks the pages PageReserved. The remaining valid pages are later
1216 * sent to the buddy page allocator.
1217 */
1218 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1219 {
1220 unsigned long start_pfn = PFN_DOWN(start);
1221 unsigned long end_pfn = PFN_UP(end);
1222
1223 for (; start_pfn < end_pfn; start_pfn++) {
1224 if (pfn_valid(start_pfn)) {
1225 struct page *page = pfn_to_page(start_pfn);
1226
1227 init_reserved_page(start_pfn);
1228
1229 /* Avoid false-positive PageTail() */
1230 INIT_LIST_HEAD(&page->lru);
1231
1232 SetPageReserved(page);
1233 }
1234 }
1235 }
1236
1237 static void __free_pages_ok(struct page *page, unsigned int order)
1238 {
1239 unsigned long flags;
1240 int migratetype;
1241 unsigned long pfn = page_to_pfn(page);
1242
1243 if (!free_pages_prepare(page, order, true))
1244 return;
1245
1246 migratetype = get_pfnblock_migratetype(page, pfn);
1247 local_irq_save(flags);
1248 __count_vm_events(PGFREE, 1 << order);
1249 free_one_page(page_zone(page), page, pfn, order, migratetype);
1250 local_irq_restore(flags);
1251 }
1252
1253 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1254 {
1255 unsigned int nr_pages = 1 << order;
1256 struct page *p = page;
1257 unsigned int loop;
1258
1259 prefetchw(p);
1260 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1261 prefetchw(p + 1);
1262 __ClearPageReserved(p);
1263 set_page_count(p, 0);
1264 }
1265 __ClearPageReserved(p);
1266 set_page_count(p, 0);
1267
1268 page_zone(page)->managed_pages += nr_pages;
1269 set_page_refcounted(page);
1270 __free_pages(page, order);
1271 }
1272
1273 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1274 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1275
1276 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1277
1278 int __meminit early_pfn_to_nid(unsigned long pfn)
1279 {
1280 static DEFINE_SPINLOCK(early_pfn_lock);
1281 int nid;
1282
1283 spin_lock(&early_pfn_lock);
1284 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1285 if (nid < 0)
1286 nid = first_online_node;
1287 spin_unlock(&early_pfn_lock);
1288
1289 return nid;
1290 }
1291 #endif
1292
1293 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1294 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1295 struct mminit_pfnnid_cache *state)
1296 {
1297 int nid;
1298
1299 nid = __early_pfn_to_nid(pfn, state);
1300 if (nid >= 0 && nid != node)
1301 return false;
1302 return true;
1303 }
1304
1305 /* Only safe to use early in boot when initialisation is single-threaded */
1306 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1307 {
1308 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1309 }
1310
1311 #else
1312
1313 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1314 {
1315 return true;
1316 }
1317 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1318 struct mminit_pfnnid_cache *state)
1319 {
1320 return true;
1321 }
1322 #endif
1323
1324
1325 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1326 unsigned int order)
1327 {
1328 if (early_page_uninitialised(pfn))
1329 return;
1330 return __free_pages_boot_core(page, order);
1331 }
1332
1333 /*
1334 * Check that the whole (or subset of) a pageblock given by the interval of
1335 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1336 * with the migration of free compaction scanner. The scanners then need to
1337 * use only pfn_valid_within() check for arches that allow holes within
1338 * pageblocks.
1339 *
1340 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1341 *
1342 * It's possible on some configurations to have a setup like node0 node1 node0
1343 * i.e. it's possible that all pages within a zones range of pages do not
1344 * belong to a single zone. We assume that a border between node0 and node1
1345 * can occur within a single pageblock, but not a node0 node1 node0
1346 * interleaving within a single pageblock. It is therefore sufficient to check
1347 * the first and last page of a pageblock and avoid checking each individual
1348 * page in a pageblock.
1349 */
1350 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1351 unsigned long end_pfn, struct zone *zone)
1352 {
1353 struct page *start_page;
1354 struct page *end_page;
1355
1356 /* end_pfn is one past the range we are checking */
1357 end_pfn--;
1358
1359 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1360 return NULL;
1361
1362 start_page = pfn_to_page(start_pfn);
1363
1364 if (page_zone(start_page) != zone)
1365 return NULL;
1366
1367 end_page = pfn_to_page(end_pfn);
1368
1369 /* This gives a shorter code than deriving page_zone(end_page) */
1370 if (page_zone_id(start_page) != page_zone_id(end_page))
1371 return NULL;
1372
1373 return start_page;
1374 }
1375
1376 void set_zone_contiguous(struct zone *zone)
1377 {
1378 unsigned long block_start_pfn = zone->zone_start_pfn;
1379 unsigned long block_end_pfn;
1380
1381 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1382 for (; block_start_pfn < zone_end_pfn(zone);
1383 block_start_pfn = block_end_pfn,
1384 block_end_pfn += pageblock_nr_pages) {
1385
1386 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1387
1388 if (!__pageblock_pfn_to_page(block_start_pfn,
1389 block_end_pfn, zone))
1390 return;
1391 }
1392
1393 /* We confirm that there is no hole */
1394 zone->contiguous = true;
1395 }
1396
1397 void clear_zone_contiguous(struct zone *zone)
1398 {
1399 zone->contiguous = false;
1400 }
1401
1402 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1403 static void __init deferred_free_range(struct page *page,
1404 unsigned long pfn, int nr_pages)
1405 {
1406 int i;
1407
1408 if (!page)
1409 return;
1410
1411 /* Free a large naturally-aligned chunk if possible */
1412 if (nr_pages == pageblock_nr_pages &&
1413 (pfn & (pageblock_nr_pages - 1)) == 0) {
1414 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1415 __free_pages_boot_core(page, pageblock_order);
1416 return;
1417 }
1418
1419 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1420 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1421 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1422 __free_pages_boot_core(page, 0);
1423 }
1424 }
1425
1426 /* Completion tracking for deferred_init_memmap() threads */
1427 static atomic_t pgdat_init_n_undone __initdata;
1428 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1429
1430 static inline void __init pgdat_init_report_one_done(void)
1431 {
1432 if (atomic_dec_and_test(&pgdat_init_n_undone))
1433 complete(&pgdat_init_all_done_comp);
1434 }
1435
1436 /* Initialise remaining memory on a node */
1437 static int __init deferred_init_memmap(void *data)
1438 {
1439 pg_data_t *pgdat = data;
1440 int nid = pgdat->node_id;
1441 struct mminit_pfnnid_cache nid_init_state = { };
1442 unsigned long start = jiffies;
1443 unsigned long nr_pages = 0;
1444 unsigned long walk_start, walk_end;
1445 int i, zid;
1446 struct zone *zone;
1447 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1448 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1449
1450 if (first_init_pfn == ULONG_MAX) {
1451 pgdat_init_report_one_done();
1452 return 0;
1453 }
1454
1455 /* Bind memory initialisation thread to a local node if possible */
1456 if (!cpumask_empty(cpumask))
1457 set_cpus_allowed_ptr(current, cpumask);
1458
1459 /* Sanity check boundaries */
1460 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1461 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1462 pgdat->first_deferred_pfn = ULONG_MAX;
1463
1464 /* Only the highest zone is deferred so find it */
1465 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1466 zone = pgdat->node_zones + zid;
1467 if (first_init_pfn < zone_end_pfn(zone))
1468 break;
1469 }
1470
1471 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1472 unsigned long pfn, end_pfn;
1473 struct page *page = NULL;
1474 struct page *free_base_page = NULL;
1475 unsigned long free_base_pfn = 0;
1476 int nr_to_free = 0;
1477
1478 end_pfn = min(walk_end, zone_end_pfn(zone));
1479 pfn = first_init_pfn;
1480 if (pfn < walk_start)
1481 pfn = walk_start;
1482 if (pfn < zone->zone_start_pfn)
1483 pfn = zone->zone_start_pfn;
1484
1485 for (; pfn < end_pfn; pfn++) {
1486 if (!pfn_valid_within(pfn))
1487 goto free_range;
1488
1489 /*
1490 * Ensure pfn_valid is checked every
1491 * pageblock_nr_pages for memory holes
1492 */
1493 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1494 if (!pfn_valid(pfn)) {
1495 page = NULL;
1496 goto free_range;
1497 }
1498 }
1499
1500 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1501 page = NULL;
1502 goto free_range;
1503 }
1504
1505 /* Minimise pfn page lookups and scheduler checks */
1506 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1507 page++;
1508 } else {
1509 nr_pages += nr_to_free;
1510 deferred_free_range(free_base_page,
1511 free_base_pfn, nr_to_free);
1512 free_base_page = NULL;
1513 free_base_pfn = nr_to_free = 0;
1514
1515 page = pfn_to_page(pfn);
1516 cond_resched();
1517 }
1518
1519 if (page->flags) {
1520 VM_BUG_ON(page_zone(page) != zone);
1521 goto free_range;
1522 }
1523
1524 __init_single_page(page, pfn, zid, nid);
1525 if (!free_base_page) {
1526 free_base_page = page;
1527 free_base_pfn = pfn;
1528 nr_to_free = 0;
1529 }
1530 nr_to_free++;
1531
1532 /* Where possible, batch up pages for a single free */
1533 continue;
1534 free_range:
1535 /* Free the current block of pages to allocator */
1536 nr_pages += nr_to_free;
1537 deferred_free_range(free_base_page, free_base_pfn,
1538 nr_to_free);
1539 free_base_page = NULL;
1540 free_base_pfn = nr_to_free = 0;
1541 }
1542 /* Free the last block of pages to allocator */
1543 nr_pages += nr_to_free;
1544 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1545
1546 first_init_pfn = max(end_pfn, first_init_pfn);
1547 }
1548
1549 /* Sanity check that the next zone really is unpopulated */
1550 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1551
1552 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1553 jiffies_to_msecs(jiffies - start));
1554
1555 pgdat_init_report_one_done();
1556 return 0;
1557 }
1558 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1559
1560 void __init page_alloc_init_late(void)
1561 {
1562 struct zone *zone;
1563
1564 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1565 int nid;
1566
1567 /* There will be num_node_state(N_MEMORY) threads */
1568 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1569 for_each_node_state(nid, N_MEMORY) {
1570 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1571 }
1572
1573 /* Block until all are initialised */
1574 wait_for_completion(&pgdat_init_all_done_comp);
1575
1576 /* Reinit limits that are based on free pages after the kernel is up */
1577 files_maxfiles_init();
1578 #endif
1579
1580 for_each_populated_zone(zone)
1581 set_zone_contiguous(zone);
1582 }
1583
1584 #ifdef CONFIG_CMA
1585 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1586 void __init init_cma_reserved_pageblock(struct page *page)
1587 {
1588 unsigned i = pageblock_nr_pages;
1589 struct page *p = page;
1590
1591 do {
1592 __ClearPageReserved(p);
1593 set_page_count(p, 0);
1594 } while (++p, --i);
1595
1596 set_pageblock_migratetype(page, MIGRATE_CMA);
1597
1598 if (pageblock_order >= MAX_ORDER) {
1599 i = pageblock_nr_pages;
1600 p = page;
1601 do {
1602 set_page_refcounted(p);
1603 __free_pages(p, MAX_ORDER - 1);
1604 p += MAX_ORDER_NR_PAGES;
1605 } while (i -= MAX_ORDER_NR_PAGES);
1606 } else {
1607 set_page_refcounted(page);
1608 __free_pages(page, pageblock_order);
1609 }
1610
1611 adjust_managed_page_count(page, pageblock_nr_pages);
1612 }
1613 #endif
1614
1615 /*
1616 * The order of subdivision here is critical for the IO subsystem.
1617 * Please do not alter this order without good reasons and regression
1618 * testing. Specifically, as large blocks of memory are subdivided,
1619 * the order in which smaller blocks are delivered depends on the order
1620 * they're subdivided in this function. This is the primary factor
1621 * influencing the order in which pages are delivered to the IO
1622 * subsystem according to empirical testing, and this is also justified
1623 * by considering the behavior of a buddy system containing a single
1624 * large block of memory acted on by a series of small allocations.
1625 * This behavior is a critical factor in sglist merging's success.
1626 *
1627 * -- nyc
1628 */
1629 static inline void expand(struct zone *zone, struct page *page,
1630 int low, int high, struct free_area *area,
1631 int migratetype)
1632 {
1633 unsigned long size = 1 << high;
1634
1635 while (high > low) {
1636 area--;
1637 high--;
1638 size >>= 1;
1639 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1640
1641 /*
1642 * Mark as guard pages (or page), that will allow to
1643 * merge back to allocator when buddy will be freed.
1644 * Corresponding page table entries will not be touched,
1645 * pages will stay not present in virtual address space
1646 */
1647 if (set_page_guard(zone, &page[size], high, migratetype))
1648 continue;
1649
1650 list_add(&page[size].lru, &area->free_list[migratetype]);
1651 area->nr_free++;
1652 set_page_order(&page[size], high);
1653 }
1654 }
1655
1656 static void check_new_page_bad(struct page *page)
1657 {
1658 const char *bad_reason = NULL;
1659 unsigned long bad_flags = 0;
1660
1661 if (unlikely(atomic_read(&page->_mapcount) != -1))
1662 bad_reason = "nonzero mapcount";
1663 if (unlikely(page->mapping != NULL))
1664 bad_reason = "non-NULL mapping";
1665 if (unlikely(page_ref_count(page) != 0))
1666 bad_reason = "nonzero _count";
1667 if (unlikely(page->flags & __PG_HWPOISON)) {
1668 bad_reason = "HWPoisoned (hardware-corrupted)";
1669 bad_flags = __PG_HWPOISON;
1670 /* Don't complain about hwpoisoned pages */
1671 page_mapcount_reset(page); /* remove PageBuddy */
1672 return;
1673 }
1674 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1675 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1676 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1677 }
1678 #ifdef CONFIG_MEMCG
1679 if (unlikely(page->mem_cgroup))
1680 bad_reason = "page still charged to cgroup";
1681 #endif
1682 bad_page(page, bad_reason, bad_flags);
1683 }
1684
1685 /*
1686 * This page is about to be returned from the page allocator
1687 */
1688 static inline int check_new_page(struct page *page)
1689 {
1690 if (likely(page_expected_state(page,
1691 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1692 return 0;
1693
1694 check_new_page_bad(page);
1695 return 1;
1696 }
1697
1698 static inline bool free_pages_prezeroed(bool poisoned)
1699 {
1700 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1701 page_poisoning_enabled() && poisoned;
1702 }
1703
1704 #ifdef CONFIG_DEBUG_VM
1705 static bool check_pcp_refill(struct page *page)
1706 {
1707 return false;
1708 }
1709
1710 static bool check_new_pcp(struct page *page)
1711 {
1712 return check_new_page(page);
1713 }
1714 #else
1715 static bool check_pcp_refill(struct page *page)
1716 {
1717 return check_new_page(page);
1718 }
1719 static bool check_new_pcp(struct page *page)
1720 {
1721 return false;
1722 }
1723 #endif /* CONFIG_DEBUG_VM */
1724
1725 static bool check_new_pages(struct page *page, unsigned int order)
1726 {
1727 int i;
1728 for (i = 0; i < (1 << order); i++) {
1729 struct page *p = page + i;
1730
1731 if (unlikely(check_new_page(p)))
1732 return true;
1733 }
1734
1735 return false;
1736 }
1737
1738 inline void post_alloc_hook(struct page *page, unsigned int order,
1739 gfp_t gfp_flags)
1740 {
1741 set_page_private(page, 0);
1742 set_page_refcounted(page);
1743
1744 arch_alloc_page(page, order);
1745 kernel_map_pages(page, 1 << order, 1);
1746 kernel_poison_pages(page, 1 << order, 1);
1747 kasan_alloc_pages(page, order);
1748 set_page_owner(page, order, gfp_flags);
1749 }
1750
1751 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1752 unsigned int alloc_flags)
1753 {
1754 int i;
1755 bool poisoned = true;
1756
1757 for (i = 0; i < (1 << order); i++) {
1758 struct page *p = page + i;
1759 if (poisoned)
1760 poisoned &= page_is_poisoned(p);
1761 }
1762
1763 post_alloc_hook(page, order, gfp_flags);
1764
1765 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1766 for (i = 0; i < (1 << order); i++)
1767 clear_highpage(page + i);
1768
1769 if (order && (gfp_flags & __GFP_COMP))
1770 prep_compound_page(page, order);
1771
1772 /*
1773 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1774 * allocate the page. The expectation is that the caller is taking
1775 * steps that will free more memory. The caller should avoid the page
1776 * being used for !PFMEMALLOC purposes.
1777 */
1778 if (alloc_flags & ALLOC_NO_WATERMARKS)
1779 set_page_pfmemalloc(page);
1780 else
1781 clear_page_pfmemalloc(page);
1782 }
1783
1784 /*
1785 * Go through the free lists for the given migratetype and remove
1786 * the smallest available page from the freelists
1787 */
1788 static inline
1789 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1790 int migratetype)
1791 {
1792 unsigned int current_order;
1793 struct free_area *area;
1794 struct page *page;
1795
1796 /* Find a page of the appropriate size in the preferred list */
1797 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1798 area = &(zone->free_area[current_order]);
1799 page = list_first_entry_or_null(&area->free_list[migratetype],
1800 struct page, lru);
1801 if (!page)
1802 continue;
1803 list_del(&page->lru);
1804 rmv_page_order(page);
1805 area->nr_free--;
1806 expand(zone, page, order, current_order, area, migratetype);
1807 set_pcppage_migratetype(page, migratetype);
1808 return page;
1809 }
1810
1811 return NULL;
1812 }
1813
1814
1815 /*
1816 * This array describes the order lists are fallen back to when
1817 * the free lists for the desirable migrate type are depleted
1818 */
1819 static int fallbacks[MIGRATE_TYPES][4] = {
1820 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1821 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1822 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1823 #ifdef CONFIG_CMA
1824 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1825 #endif
1826 #ifdef CONFIG_MEMORY_ISOLATION
1827 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1828 #endif
1829 };
1830
1831 #ifdef CONFIG_CMA
1832 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1833 unsigned int order)
1834 {
1835 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1836 }
1837 #else
1838 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1839 unsigned int order) { return NULL; }
1840 #endif
1841
1842 /*
1843 * Move the free pages in a range to the free lists of the requested type.
1844 * Note that start_page and end_pages are not aligned on a pageblock
1845 * boundary. If alignment is required, use move_freepages_block()
1846 */
1847 int move_freepages(struct zone *zone,
1848 struct page *start_page, struct page *end_page,
1849 int migratetype)
1850 {
1851 struct page *page;
1852 unsigned int order;
1853 int pages_moved = 0;
1854
1855 #ifndef CONFIG_HOLES_IN_ZONE
1856 /*
1857 * page_zone is not safe to call in this context when
1858 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1859 * anyway as we check zone boundaries in move_freepages_block().
1860 * Remove at a later date when no bug reports exist related to
1861 * grouping pages by mobility
1862 */
1863 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1864 #endif
1865
1866 for (page = start_page; page <= end_page;) {
1867 if (!pfn_valid_within(page_to_pfn(page))) {
1868 page++;
1869 continue;
1870 }
1871
1872 /* Make sure we are not inadvertently changing nodes */
1873 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1874
1875 if (!PageBuddy(page)) {
1876 page++;
1877 continue;
1878 }
1879
1880 order = page_order(page);
1881 list_move(&page->lru,
1882 &zone->free_area[order].free_list[migratetype]);
1883 page += 1 << order;
1884 pages_moved += 1 << order;
1885 }
1886
1887 return pages_moved;
1888 }
1889
1890 int move_freepages_block(struct zone *zone, struct page *page,
1891 int migratetype)
1892 {
1893 unsigned long start_pfn, end_pfn;
1894 struct page *start_page, *end_page;
1895
1896 start_pfn = page_to_pfn(page);
1897 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1898 start_page = pfn_to_page(start_pfn);
1899 end_page = start_page + pageblock_nr_pages - 1;
1900 end_pfn = start_pfn + pageblock_nr_pages - 1;
1901
1902 /* Do not cross zone boundaries */
1903 if (!zone_spans_pfn(zone, start_pfn))
1904 start_page = page;
1905 if (!zone_spans_pfn(zone, end_pfn))
1906 return 0;
1907
1908 return move_freepages(zone, start_page, end_page, migratetype);
1909 }
1910
1911 static void change_pageblock_range(struct page *pageblock_page,
1912 int start_order, int migratetype)
1913 {
1914 int nr_pageblocks = 1 << (start_order - pageblock_order);
1915
1916 while (nr_pageblocks--) {
1917 set_pageblock_migratetype(pageblock_page, migratetype);
1918 pageblock_page += pageblock_nr_pages;
1919 }
1920 }
1921
1922 /*
1923 * When we are falling back to another migratetype during allocation, try to
1924 * steal extra free pages from the same pageblocks to satisfy further
1925 * allocations, instead of polluting multiple pageblocks.
1926 *
1927 * If we are stealing a relatively large buddy page, it is likely there will
1928 * be more free pages in the pageblock, so try to steal them all. For
1929 * reclaimable and unmovable allocations, we steal regardless of page size,
1930 * as fragmentation caused by those allocations polluting movable pageblocks
1931 * is worse than movable allocations stealing from unmovable and reclaimable
1932 * pageblocks.
1933 */
1934 static bool can_steal_fallback(unsigned int order, int start_mt)
1935 {
1936 /*
1937 * Leaving this order check is intended, although there is
1938 * relaxed order check in next check. The reason is that
1939 * we can actually steal whole pageblock if this condition met,
1940 * but, below check doesn't guarantee it and that is just heuristic
1941 * so could be changed anytime.
1942 */
1943 if (order >= pageblock_order)
1944 return true;
1945
1946 if (order >= pageblock_order / 2 ||
1947 start_mt == MIGRATE_RECLAIMABLE ||
1948 start_mt == MIGRATE_UNMOVABLE ||
1949 page_group_by_mobility_disabled)
1950 return true;
1951
1952 return false;
1953 }
1954
1955 /*
1956 * This function implements actual steal behaviour. If order is large enough,
1957 * we can steal whole pageblock. If not, we first move freepages in this
1958 * pageblock and check whether half of pages are moved or not. If half of
1959 * pages are moved, we can change migratetype of pageblock and permanently
1960 * use it's pages as requested migratetype in the future.
1961 */
1962 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1963 int start_type)
1964 {
1965 unsigned int current_order = page_order(page);
1966 int pages;
1967
1968 /* Take ownership for orders >= pageblock_order */
1969 if (current_order >= pageblock_order) {
1970 change_pageblock_range(page, current_order, start_type);
1971 return;
1972 }
1973
1974 pages = move_freepages_block(zone, page, start_type);
1975
1976 /* Claim the whole block if over half of it is free */
1977 if (pages >= (1 << (pageblock_order-1)) ||
1978 page_group_by_mobility_disabled)
1979 set_pageblock_migratetype(page, start_type);
1980 }
1981
1982 /*
1983 * Check whether there is a suitable fallback freepage with requested order.
1984 * If only_stealable is true, this function returns fallback_mt only if
1985 * we can steal other freepages all together. This would help to reduce
1986 * fragmentation due to mixed migratetype pages in one pageblock.
1987 */
1988 int find_suitable_fallback(struct free_area *area, unsigned int order,
1989 int migratetype, bool only_stealable, bool *can_steal)
1990 {
1991 int i;
1992 int fallback_mt;
1993
1994 if (area->nr_free == 0)
1995 return -1;
1996
1997 *can_steal = false;
1998 for (i = 0;; i++) {
1999 fallback_mt = fallbacks[migratetype][i];
2000 if (fallback_mt == MIGRATE_TYPES)
2001 break;
2002
2003 if (list_empty(&area->free_list[fallback_mt]))
2004 continue;
2005
2006 if (can_steal_fallback(order, migratetype))
2007 *can_steal = true;
2008
2009 if (!only_stealable)
2010 return fallback_mt;
2011
2012 if (*can_steal)
2013 return fallback_mt;
2014 }
2015
2016 return -1;
2017 }
2018
2019 /*
2020 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2021 * there are no empty page blocks that contain a page with a suitable order
2022 */
2023 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2024 unsigned int alloc_order)
2025 {
2026 int mt;
2027 unsigned long max_managed, flags;
2028
2029 /*
2030 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2031 * Check is race-prone but harmless.
2032 */
2033 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2034 if (zone->nr_reserved_highatomic >= max_managed)
2035 return;
2036
2037 spin_lock_irqsave(&zone->lock, flags);
2038
2039 /* Recheck the nr_reserved_highatomic limit under the lock */
2040 if (zone->nr_reserved_highatomic >= max_managed)
2041 goto out_unlock;
2042
2043 /* Yoink! */
2044 mt = get_pageblock_migratetype(page);
2045 if (mt != MIGRATE_HIGHATOMIC &&
2046 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2047 zone->nr_reserved_highatomic += pageblock_nr_pages;
2048 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2049 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2050 }
2051
2052 out_unlock:
2053 spin_unlock_irqrestore(&zone->lock, flags);
2054 }
2055
2056 /*
2057 * Used when an allocation is about to fail under memory pressure. This
2058 * potentially hurts the reliability of high-order allocations when under
2059 * intense memory pressure but failed atomic allocations should be easier
2060 * to recover from than an OOM.
2061 *
2062 * If @force is true, try to unreserve a pageblock even though highatomic
2063 * pageblock is exhausted.
2064 */
2065 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2066 bool force)
2067 {
2068 struct zonelist *zonelist = ac->zonelist;
2069 unsigned long flags;
2070 struct zoneref *z;
2071 struct zone *zone;
2072 struct page *page;
2073 int order;
2074 bool ret;
2075
2076 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2077 ac->nodemask) {
2078 /*
2079 * Preserve at least one pageblock unless memory pressure
2080 * is really high.
2081 */
2082 if (!force && zone->nr_reserved_highatomic <=
2083 pageblock_nr_pages)
2084 continue;
2085
2086 spin_lock_irqsave(&zone->lock, flags);
2087 for (order = 0; order < MAX_ORDER; order++) {
2088 struct free_area *area = &(zone->free_area[order]);
2089
2090 page = list_first_entry_or_null(
2091 &area->free_list[MIGRATE_HIGHATOMIC],
2092 struct page, lru);
2093 if (!page)
2094 continue;
2095
2096 /*
2097 * In page freeing path, migratetype change is racy so
2098 * we can counter several free pages in a pageblock
2099 * in this loop althoug we changed the pageblock type
2100 * from highatomic to ac->migratetype. So we should
2101 * adjust the count once.
2102 */
2103 if (get_pageblock_migratetype(page) ==
2104 MIGRATE_HIGHATOMIC) {
2105 /*
2106 * It should never happen but changes to
2107 * locking could inadvertently allow a per-cpu
2108 * drain to add pages to MIGRATE_HIGHATOMIC
2109 * while unreserving so be safe and watch for
2110 * underflows.
2111 */
2112 zone->nr_reserved_highatomic -= min(
2113 pageblock_nr_pages,
2114 zone->nr_reserved_highatomic);
2115 }
2116
2117 /*
2118 * Convert to ac->migratetype and avoid the normal
2119 * pageblock stealing heuristics. Minimally, the caller
2120 * is doing the work and needs the pages. More
2121 * importantly, if the block was always converted to
2122 * MIGRATE_UNMOVABLE or another type then the number
2123 * of pageblocks that cannot be completely freed
2124 * may increase.
2125 */
2126 set_pageblock_migratetype(page, ac->migratetype);
2127 ret = move_freepages_block(zone, page, ac->migratetype);
2128 if (ret) {
2129 spin_unlock_irqrestore(&zone->lock, flags);
2130 return ret;
2131 }
2132 }
2133 spin_unlock_irqrestore(&zone->lock, flags);
2134 }
2135
2136 return false;
2137 }
2138
2139 /* Remove an element from the buddy allocator from the fallback list */
2140 static inline struct page *
2141 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2142 {
2143 struct free_area *area;
2144 unsigned int current_order;
2145 struct page *page;
2146 int fallback_mt;
2147 bool can_steal;
2148
2149 /* Find the largest possible block of pages in the other list */
2150 for (current_order = MAX_ORDER-1;
2151 current_order >= order && current_order <= MAX_ORDER-1;
2152 --current_order) {
2153 area = &(zone->free_area[current_order]);
2154 fallback_mt = find_suitable_fallback(area, current_order,
2155 start_migratetype, false, &can_steal);
2156 if (fallback_mt == -1)
2157 continue;
2158
2159 page = list_first_entry(&area->free_list[fallback_mt],
2160 struct page, lru);
2161 if (can_steal &&
2162 get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
2163 steal_suitable_fallback(zone, page, start_migratetype);
2164
2165 /* Remove the page from the freelists */
2166 area->nr_free--;
2167 list_del(&page->lru);
2168 rmv_page_order(page);
2169
2170 expand(zone, page, order, current_order, area,
2171 start_migratetype);
2172 /*
2173 * The pcppage_migratetype may differ from pageblock's
2174 * migratetype depending on the decisions in
2175 * find_suitable_fallback(). This is OK as long as it does not
2176 * differ for MIGRATE_CMA pageblocks. Those can be used as
2177 * fallback only via special __rmqueue_cma_fallback() function
2178 */
2179 set_pcppage_migratetype(page, start_migratetype);
2180
2181 trace_mm_page_alloc_extfrag(page, order, current_order,
2182 start_migratetype, fallback_mt);
2183
2184 return page;
2185 }
2186
2187 return NULL;
2188 }
2189
2190 /*
2191 * Do the hard work of removing an element from the buddy allocator.
2192 * Call me with the zone->lock already held.
2193 */
2194 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2195 int migratetype)
2196 {
2197 struct page *page;
2198
2199 page = __rmqueue_smallest(zone, order, migratetype);
2200 if (unlikely(!page)) {
2201 if (migratetype == MIGRATE_MOVABLE)
2202 page = __rmqueue_cma_fallback(zone, order);
2203
2204 if (!page)
2205 page = __rmqueue_fallback(zone, order, migratetype);
2206 }
2207
2208 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2209 return page;
2210 }
2211
2212 /*
2213 * Obtain a specified number of elements from the buddy allocator, all under
2214 * a single hold of the lock, for efficiency. Add them to the supplied list.
2215 * Returns the number of new pages which were placed at *list.
2216 */
2217 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2218 unsigned long count, struct list_head *list,
2219 int migratetype, bool cold)
2220 {
2221 int i, alloced = 0;
2222
2223 spin_lock(&zone->lock);
2224 for (i = 0; i < count; ++i) {
2225 struct page *page = __rmqueue(zone, order, migratetype);
2226 if (unlikely(page == NULL))
2227 break;
2228
2229 if (unlikely(check_pcp_refill(page)))
2230 continue;
2231
2232 /*
2233 * Split buddy pages returned by expand() are received here
2234 * in physical page order. The page is added to the callers and
2235 * list and the list head then moves forward. From the callers
2236 * perspective, the linked list is ordered by page number in
2237 * some conditions. This is useful for IO devices that can
2238 * merge IO requests if the physical pages are ordered
2239 * properly.
2240 */
2241 if (likely(!cold))
2242 list_add(&page->lru, list);
2243 else
2244 list_add_tail(&page->lru, list);
2245 list = &page->lru;
2246 alloced++;
2247 if (is_migrate_cma(get_pcppage_migratetype(page)))
2248 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2249 -(1 << order));
2250 }
2251
2252 /*
2253 * i pages were removed from the buddy list even if some leak due
2254 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2255 * on i. Do not confuse with 'alloced' which is the number of
2256 * pages added to the pcp list.
2257 */
2258 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2259 spin_unlock(&zone->lock);
2260 return alloced;
2261 }
2262
2263 #ifdef CONFIG_NUMA
2264 /*
2265 * Called from the vmstat counter updater to drain pagesets of this
2266 * currently executing processor on remote nodes after they have
2267 * expired.
2268 *
2269 * Note that this function must be called with the thread pinned to
2270 * a single processor.
2271 */
2272 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2273 {
2274 unsigned long flags;
2275 int to_drain, batch;
2276
2277 local_irq_save(flags);
2278 batch = READ_ONCE(pcp->batch);
2279 to_drain = min(pcp->count, batch);
2280 if (to_drain > 0) {
2281 free_pcppages_bulk(zone, to_drain, pcp);
2282 pcp->count -= to_drain;
2283 }
2284 local_irq_restore(flags);
2285 }
2286 #endif
2287
2288 /*
2289 * Drain pcplists of the indicated processor and zone.
2290 *
2291 * The processor must either be the current processor and the
2292 * thread pinned to the current processor or a processor that
2293 * is not online.
2294 */
2295 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2296 {
2297 unsigned long flags;
2298 struct per_cpu_pageset *pset;
2299 struct per_cpu_pages *pcp;
2300
2301 local_irq_save(flags);
2302 pset = per_cpu_ptr(zone->pageset, cpu);
2303
2304 pcp = &pset->pcp;
2305 if (pcp->count) {
2306 free_pcppages_bulk(zone, pcp->count, pcp);
2307 pcp->count = 0;
2308 }
2309 local_irq_restore(flags);
2310 }
2311
2312 /*
2313 * Drain pcplists of all zones on the indicated processor.
2314 *
2315 * The processor must either be the current processor and the
2316 * thread pinned to the current processor or a processor that
2317 * is not online.
2318 */
2319 static void drain_pages(unsigned int cpu)
2320 {
2321 struct zone *zone;
2322
2323 for_each_populated_zone(zone) {
2324 drain_pages_zone(cpu, zone);
2325 }
2326 }
2327
2328 /*
2329 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2330 *
2331 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2332 * the single zone's pages.
2333 */
2334 void drain_local_pages(struct zone *zone)
2335 {
2336 int cpu = smp_processor_id();
2337
2338 if (zone)
2339 drain_pages_zone(cpu, zone);
2340 else
2341 drain_pages(cpu);
2342 }
2343
2344 /*
2345 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2346 *
2347 * When zone parameter is non-NULL, spill just the single zone's pages.
2348 *
2349 * Note that this code is protected against sending an IPI to an offline
2350 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2351 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2352 * nothing keeps CPUs from showing up after we populated the cpumask and
2353 * before the call to on_each_cpu_mask().
2354 */
2355 void drain_all_pages(struct zone *zone)
2356 {
2357 int cpu;
2358
2359 /*
2360 * Allocate in the BSS so we wont require allocation in
2361 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2362 */
2363 static cpumask_t cpus_with_pcps;
2364
2365 /*
2366 * We don't care about racing with CPU hotplug event
2367 * as offline notification will cause the notified
2368 * cpu to drain that CPU pcps and on_each_cpu_mask
2369 * disables preemption as part of its processing
2370 */
2371 for_each_online_cpu(cpu) {
2372 struct per_cpu_pageset *pcp;
2373 struct zone *z;
2374 bool has_pcps = false;
2375
2376 if (zone) {
2377 pcp = per_cpu_ptr(zone->pageset, cpu);
2378 if (pcp->pcp.count)
2379 has_pcps = true;
2380 } else {
2381 for_each_populated_zone(z) {
2382 pcp = per_cpu_ptr(z->pageset, cpu);
2383 if (pcp->pcp.count) {
2384 has_pcps = true;
2385 break;
2386 }
2387 }
2388 }
2389
2390 if (has_pcps)
2391 cpumask_set_cpu(cpu, &cpus_with_pcps);
2392 else
2393 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2394 }
2395 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2396 zone, 1);
2397 }
2398
2399 #ifdef CONFIG_HIBERNATION
2400
2401 void mark_free_pages(struct zone *zone)
2402 {
2403 unsigned long pfn, max_zone_pfn;
2404 unsigned long flags;
2405 unsigned int order, t;
2406 struct page *page;
2407
2408 if (zone_is_empty(zone))
2409 return;
2410
2411 spin_lock_irqsave(&zone->lock, flags);
2412
2413 max_zone_pfn = zone_end_pfn(zone);
2414 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2415 if (pfn_valid(pfn)) {
2416 page = pfn_to_page(pfn);
2417
2418 if (page_zone(page) != zone)
2419 continue;
2420
2421 if (!swsusp_page_is_forbidden(page))
2422 swsusp_unset_page_free(page);
2423 }
2424
2425 for_each_migratetype_order(order, t) {
2426 list_for_each_entry(page,
2427 &zone->free_area[order].free_list[t], lru) {
2428 unsigned long i;
2429
2430 pfn = page_to_pfn(page);
2431 for (i = 0; i < (1UL << order); i++)
2432 swsusp_set_page_free(pfn_to_page(pfn + i));
2433 }
2434 }
2435 spin_unlock_irqrestore(&zone->lock, flags);
2436 }
2437 #endif /* CONFIG_PM */
2438
2439 /*
2440 * Free a 0-order page
2441 * cold == true ? free a cold page : free a hot page
2442 */
2443 void free_hot_cold_page(struct page *page, bool cold)
2444 {
2445 struct zone *zone = page_zone(page);
2446 struct per_cpu_pages *pcp;
2447 unsigned long flags;
2448 unsigned long pfn = page_to_pfn(page);
2449 int migratetype;
2450
2451 if (!free_pcp_prepare(page))
2452 return;
2453
2454 migratetype = get_pfnblock_migratetype(page, pfn);
2455 set_pcppage_migratetype(page, migratetype);
2456 local_irq_save(flags);
2457 __count_vm_event(PGFREE);
2458
2459 /*
2460 * We only track unmovable, reclaimable and movable on pcp lists.
2461 * Free ISOLATE pages back to the allocator because they are being
2462 * offlined but treat RESERVE as movable pages so we can get those
2463 * areas back if necessary. Otherwise, we may have to free
2464 * excessively into the page allocator
2465 */
2466 if (migratetype >= MIGRATE_PCPTYPES) {
2467 if (unlikely(is_migrate_isolate(migratetype))) {
2468 free_one_page(zone, page, pfn, 0, migratetype);
2469 goto out;
2470 }
2471 migratetype = MIGRATE_MOVABLE;
2472 }
2473
2474 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2475 if (!cold)
2476 list_add(&page->lru, &pcp->lists[migratetype]);
2477 else
2478 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2479 pcp->count++;
2480 if (pcp->count >= pcp->high) {
2481 unsigned long batch = READ_ONCE(pcp->batch);
2482 free_pcppages_bulk(zone, batch, pcp);
2483 pcp->count -= batch;
2484 }
2485
2486 out:
2487 local_irq_restore(flags);
2488 }
2489
2490 /*
2491 * Free a list of 0-order pages
2492 */
2493 void free_hot_cold_page_list(struct list_head *list, bool cold)
2494 {
2495 struct page *page, *next;
2496
2497 list_for_each_entry_safe(page, next, list, lru) {
2498 trace_mm_page_free_batched(page, cold);
2499 free_hot_cold_page(page, cold);
2500 }
2501 }
2502
2503 /*
2504 * split_page takes a non-compound higher-order page, and splits it into
2505 * n (1<<order) sub-pages: page[0..n]
2506 * Each sub-page must be freed individually.
2507 *
2508 * Note: this is probably too low level an operation for use in drivers.
2509 * Please consult with lkml before using this in your driver.
2510 */
2511 void split_page(struct page *page, unsigned int order)
2512 {
2513 int i;
2514
2515 VM_BUG_ON_PAGE(PageCompound(page), page);
2516 VM_BUG_ON_PAGE(!page_count(page), page);
2517
2518 #ifdef CONFIG_KMEMCHECK
2519 /*
2520 * Split shadow pages too, because free(page[0]) would
2521 * otherwise free the whole shadow.
2522 */
2523 if (kmemcheck_page_is_tracked(page))
2524 split_page(virt_to_page(page[0].shadow), order);
2525 #endif
2526
2527 for (i = 1; i < (1 << order); i++)
2528 set_page_refcounted(page + i);
2529 split_page_owner(page, order);
2530 }
2531 EXPORT_SYMBOL_GPL(split_page);
2532
2533 int __isolate_free_page(struct page *page, unsigned int order)
2534 {
2535 unsigned long watermark;
2536 struct zone *zone;
2537 int mt;
2538
2539 BUG_ON(!PageBuddy(page));
2540
2541 zone = page_zone(page);
2542 mt = get_pageblock_migratetype(page);
2543
2544 if (!is_migrate_isolate(mt)) {
2545 /*
2546 * Obey watermarks as if the page was being allocated. We can
2547 * emulate a high-order watermark check with a raised order-0
2548 * watermark, because we already know our high-order page
2549 * exists.
2550 */
2551 watermark = min_wmark_pages(zone) + (1UL << order);
2552 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2553 return 0;
2554
2555 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2556 }
2557
2558 /* Remove page from free list */
2559 list_del(&page->lru);
2560 zone->free_area[order].nr_free--;
2561 rmv_page_order(page);
2562
2563 /*
2564 * Set the pageblock if the isolated page is at least half of a
2565 * pageblock
2566 */
2567 if (order >= pageblock_order - 1) {
2568 struct page *endpage = page + (1 << order) - 1;
2569 for (; page < endpage; page += pageblock_nr_pages) {
2570 int mt = get_pageblock_migratetype(page);
2571 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2572 && mt != MIGRATE_HIGHATOMIC)
2573 set_pageblock_migratetype(page,
2574 MIGRATE_MOVABLE);
2575 }
2576 }
2577
2578
2579 return 1UL << order;
2580 }
2581
2582 /*
2583 * Update NUMA hit/miss statistics
2584 *
2585 * Must be called with interrupts disabled.
2586 */
2587 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2588 {
2589 #ifdef CONFIG_NUMA
2590 enum zone_stat_item local_stat = NUMA_LOCAL;
2591
2592 if (z->node != numa_node_id())
2593 local_stat = NUMA_OTHER;
2594
2595 if (z->node == preferred_zone->node)
2596 __inc_zone_state(z, NUMA_HIT);
2597 else {
2598 __inc_zone_state(z, NUMA_MISS);
2599 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2600 }
2601 __inc_zone_state(z, local_stat);
2602 #endif
2603 }
2604
2605 /*
2606 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2607 */
2608 static inline
2609 struct page *buffered_rmqueue(struct zone *preferred_zone,
2610 struct zone *zone, unsigned int order,
2611 gfp_t gfp_flags, unsigned int alloc_flags,
2612 int migratetype)
2613 {
2614 unsigned long flags;
2615 struct page *page;
2616 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2617
2618 if (likely(order == 0)) {
2619 struct per_cpu_pages *pcp;
2620 struct list_head *list;
2621
2622 local_irq_save(flags);
2623 do {
2624 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2625 list = &pcp->lists[migratetype];
2626 if (list_empty(list)) {
2627 pcp->count += rmqueue_bulk(zone, 0,
2628 pcp->batch, list,
2629 migratetype, cold);
2630 if (unlikely(list_empty(list)))
2631 goto failed;
2632 }
2633
2634 if (cold)
2635 page = list_last_entry(list, struct page, lru);
2636 else
2637 page = list_first_entry(list, struct page, lru);
2638
2639 list_del(&page->lru);
2640 pcp->count--;
2641
2642 } while (check_new_pcp(page));
2643 } else {
2644 /*
2645 * We most definitely don't want callers attempting to
2646 * allocate greater than order-1 page units with __GFP_NOFAIL.
2647 */
2648 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2649 spin_lock_irqsave(&zone->lock, flags);
2650
2651 do {
2652 page = NULL;
2653 if (alloc_flags & ALLOC_HARDER) {
2654 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2655 if (page)
2656 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2657 }
2658 if (!page)
2659 page = __rmqueue(zone, order, migratetype);
2660 } while (page && check_new_pages(page, order));
2661 spin_unlock(&zone->lock);
2662 if (!page)
2663 goto failed;
2664 __mod_zone_freepage_state(zone, -(1 << order),
2665 get_pcppage_migratetype(page));
2666 }
2667
2668 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2669 zone_statistics(preferred_zone, zone);
2670 local_irq_restore(flags);
2671
2672 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2673 return page;
2674
2675 failed:
2676 local_irq_restore(flags);
2677 return NULL;
2678 }
2679
2680 #ifdef CONFIG_FAIL_PAGE_ALLOC
2681
2682 static struct {
2683 struct fault_attr attr;
2684
2685 bool ignore_gfp_highmem;
2686 bool ignore_gfp_reclaim;
2687 u32 min_order;
2688 } fail_page_alloc = {
2689 .attr = FAULT_ATTR_INITIALIZER,
2690 .ignore_gfp_reclaim = true,
2691 .ignore_gfp_highmem = true,
2692 .min_order = 1,
2693 };
2694
2695 static int __init setup_fail_page_alloc(char *str)
2696 {
2697 return setup_fault_attr(&fail_page_alloc.attr, str);
2698 }
2699 __setup("fail_page_alloc=", setup_fail_page_alloc);
2700
2701 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2702 {
2703 if (order < fail_page_alloc.min_order)
2704 return false;
2705 if (gfp_mask & __GFP_NOFAIL)
2706 return false;
2707 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2708 return false;
2709 if (fail_page_alloc.ignore_gfp_reclaim &&
2710 (gfp_mask & __GFP_DIRECT_RECLAIM))
2711 return false;
2712
2713 return should_fail(&fail_page_alloc.attr, 1 << order);
2714 }
2715
2716 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2717
2718 static int __init fail_page_alloc_debugfs(void)
2719 {
2720 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2721 struct dentry *dir;
2722
2723 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2724 &fail_page_alloc.attr);
2725 if (IS_ERR(dir))
2726 return PTR_ERR(dir);
2727
2728 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2729 &fail_page_alloc.ignore_gfp_reclaim))
2730 goto fail;
2731 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2732 &fail_page_alloc.ignore_gfp_highmem))
2733 goto fail;
2734 if (!debugfs_create_u32("min-order", mode, dir,
2735 &fail_page_alloc.min_order))
2736 goto fail;
2737
2738 return 0;
2739 fail:
2740 debugfs_remove_recursive(dir);
2741
2742 return -ENOMEM;
2743 }
2744
2745 late_initcall(fail_page_alloc_debugfs);
2746
2747 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2748
2749 #else /* CONFIG_FAIL_PAGE_ALLOC */
2750
2751 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2752 {
2753 return false;
2754 }
2755
2756 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2757
2758 /*
2759 * Return true if free base pages are above 'mark'. For high-order checks it
2760 * will return true of the order-0 watermark is reached and there is at least
2761 * one free page of a suitable size. Checking now avoids taking the zone lock
2762 * to check in the allocation paths if no pages are free.
2763 */
2764 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2765 int classzone_idx, unsigned int alloc_flags,
2766 long free_pages)
2767 {
2768 long min = mark;
2769 int o;
2770 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2771
2772 /* free_pages may go negative - that's OK */
2773 free_pages -= (1 << order) - 1;
2774
2775 if (alloc_flags & ALLOC_HIGH)
2776 min -= min / 2;
2777
2778 /*
2779 * If the caller does not have rights to ALLOC_HARDER then subtract
2780 * the high-atomic reserves. This will over-estimate the size of the
2781 * atomic reserve but it avoids a search.
2782 */
2783 if (likely(!alloc_harder))
2784 free_pages -= z->nr_reserved_highatomic;
2785 else
2786 min -= min / 4;
2787
2788 #ifdef CONFIG_CMA
2789 /* If allocation can't use CMA areas don't use free CMA pages */
2790 if (!(alloc_flags & ALLOC_CMA))
2791 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2792 #endif
2793
2794 /*
2795 * Check watermarks for an order-0 allocation request. If these
2796 * are not met, then a high-order request also cannot go ahead
2797 * even if a suitable page happened to be free.
2798 */
2799 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2800 return false;
2801
2802 /* If this is an order-0 request then the watermark is fine */
2803 if (!order)
2804 return true;
2805
2806 /* For a high-order request, check at least one suitable page is free */
2807 for (o = order; o < MAX_ORDER; o++) {
2808 struct free_area *area = &z->free_area[o];
2809 int mt;
2810
2811 if (!area->nr_free)
2812 continue;
2813
2814 if (alloc_harder)
2815 return true;
2816
2817 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2818 if (!list_empty(&area->free_list[mt]))
2819 return true;
2820 }
2821
2822 #ifdef CONFIG_CMA
2823 if ((alloc_flags & ALLOC_CMA) &&
2824 !list_empty(&area->free_list[MIGRATE_CMA])) {
2825 return true;
2826 }
2827 #endif
2828 }
2829 return false;
2830 }
2831
2832 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2833 int classzone_idx, unsigned int alloc_flags)
2834 {
2835 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2836 zone_page_state(z, NR_FREE_PAGES));
2837 }
2838
2839 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2840 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2841 {
2842 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2843 long cma_pages = 0;
2844
2845 #ifdef CONFIG_CMA
2846 /* If allocation can't use CMA areas don't use free CMA pages */
2847 if (!(alloc_flags & ALLOC_CMA))
2848 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2849 #endif
2850
2851 /*
2852 * Fast check for order-0 only. If this fails then the reserves
2853 * need to be calculated. There is a corner case where the check
2854 * passes but only the high-order atomic reserve are free. If
2855 * the caller is !atomic then it'll uselessly search the free
2856 * list. That corner case is then slower but it is harmless.
2857 */
2858 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2859 return true;
2860
2861 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2862 free_pages);
2863 }
2864
2865 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2866 unsigned long mark, int classzone_idx)
2867 {
2868 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2869
2870 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2871 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2872
2873 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2874 free_pages);
2875 }
2876
2877 #ifdef CONFIG_NUMA
2878 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2879 {
2880 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2881 RECLAIM_DISTANCE;
2882 }
2883 #else /* CONFIG_NUMA */
2884 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2885 {
2886 return true;
2887 }
2888 #endif /* CONFIG_NUMA */
2889
2890 /*
2891 * get_page_from_freelist goes through the zonelist trying to allocate
2892 * a page.
2893 */
2894 static struct page *
2895 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2896 const struct alloc_context *ac)
2897 {
2898 struct zoneref *z = ac->preferred_zoneref;
2899 struct zone *zone;
2900 struct pglist_data *last_pgdat_dirty_limit = NULL;
2901
2902 /*
2903 * Scan zonelist, looking for a zone with enough free.
2904 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2905 */
2906 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2907 ac->nodemask) {
2908 struct page *page;
2909 unsigned long mark;
2910
2911 if (cpusets_enabled() &&
2912 (alloc_flags & ALLOC_CPUSET) &&
2913 !__cpuset_zone_allowed(zone, gfp_mask))
2914 continue;
2915 /*
2916 * When allocating a page cache page for writing, we
2917 * want to get it from a node that is within its dirty
2918 * limit, such that no single node holds more than its
2919 * proportional share of globally allowed dirty pages.
2920 * The dirty limits take into account the node's
2921 * lowmem reserves and high watermark so that kswapd
2922 * should be able to balance it without having to
2923 * write pages from its LRU list.
2924 *
2925 * XXX: For now, allow allocations to potentially
2926 * exceed the per-node dirty limit in the slowpath
2927 * (spread_dirty_pages unset) before going into reclaim,
2928 * which is important when on a NUMA setup the allowed
2929 * nodes are together not big enough to reach the
2930 * global limit. The proper fix for these situations
2931 * will require awareness of nodes in the
2932 * dirty-throttling and the flusher threads.
2933 */
2934 if (ac->spread_dirty_pages) {
2935 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2936 continue;
2937
2938 if (!node_dirty_ok(zone->zone_pgdat)) {
2939 last_pgdat_dirty_limit = zone->zone_pgdat;
2940 continue;
2941 }
2942 }
2943
2944 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2945 if (!zone_watermark_fast(zone, order, mark,
2946 ac_classzone_idx(ac), alloc_flags)) {
2947 int ret;
2948
2949 /* Checked here to keep the fast path fast */
2950 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2951 if (alloc_flags & ALLOC_NO_WATERMARKS)
2952 goto try_this_zone;
2953
2954 if (node_reclaim_mode == 0 ||
2955 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2956 continue;
2957
2958 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
2959 switch (ret) {
2960 case NODE_RECLAIM_NOSCAN:
2961 /* did not scan */
2962 continue;
2963 case NODE_RECLAIM_FULL:
2964 /* scanned but unreclaimable */
2965 continue;
2966 default:
2967 /* did we reclaim enough */
2968 if (zone_watermark_ok(zone, order, mark,
2969 ac_classzone_idx(ac), alloc_flags))
2970 goto try_this_zone;
2971
2972 continue;
2973 }
2974 }
2975
2976 try_this_zone:
2977 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
2978 gfp_mask, alloc_flags, ac->migratetype);
2979 if (page) {
2980 prep_new_page(page, order, gfp_mask, alloc_flags);
2981
2982 /*
2983 * If this is a high-order atomic allocation then check
2984 * if the pageblock should be reserved for the future
2985 */
2986 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2987 reserve_highatomic_pageblock(page, zone, order);
2988
2989 return page;
2990 }
2991 }
2992
2993 return NULL;
2994 }
2995
2996 /*
2997 * Large machines with many possible nodes should not always dump per-node
2998 * meminfo in irq context.
2999 */
3000 static inline bool should_suppress_show_mem(void)
3001 {
3002 bool ret = false;
3003
3004 #if NODES_SHIFT > 8
3005 ret = in_interrupt();
3006 #endif
3007 return ret;
3008 }
3009
3010 static DEFINE_RATELIMIT_STATE(nopage_rs,
3011 DEFAULT_RATELIMIT_INTERVAL,
3012 DEFAULT_RATELIMIT_BURST);
3013
3014 void warn_alloc(gfp_t gfp_mask, const char *fmt, ...)
3015 {
3016 unsigned int filter = SHOW_MEM_FILTER_NODES;
3017 struct va_format vaf;
3018 va_list args;
3019
3020 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3021 debug_guardpage_minorder() > 0)
3022 return;
3023
3024 /*
3025 * This documents exceptions given to allocations in certain
3026 * contexts that are allowed to allocate outside current's set
3027 * of allowed nodes.
3028 */
3029 if (!(gfp_mask & __GFP_NOMEMALLOC))
3030 if (test_thread_flag(TIF_MEMDIE) ||
3031 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3032 filter &= ~SHOW_MEM_FILTER_NODES;
3033 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3034 filter &= ~SHOW_MEM_FILTER_NODES;
3035
3036 pr_warn("%s: ", current->comm);
3037
3038 va_start(args, fmt);
3039 vaf.fmt = fmt;
3040 vaf.va = &args;
3041 pr_cont("%pV", &vaf);
3042 va_end(args);
3043
3044 pr_cont(", mode:%#x(%pGg)\n", gfp_mask, &gfp_mask);
3045
3046 dump_stack();
3047 if (!should_suppress_show_mem())
3048 show_mem(filter);
3049 }
3050
3051 static inline struct page *
3052 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3053 const struct alloc_context *ac, unsigned long *did_some_progress)
3054 {
3055 struct oom_control oc = {
3056 .zonelist = ac->zonelist,
3057 .nodemask = ac->nodemask,
3058 .memcg = NULL,
3059 .gfp_mask = gfp_mask,
3060 .order = order,
3061 };
3062 struct page *page;
3063
3064 *did_some_progress = 0;
3065
3066 /*
3067 * Acquire the oom lock. If that fails, somebody else is
3068 * making progress for us.
3069 */
3070 if (!mutex_trylock(&oom_lock)) {
3071 *did_some_progress = 1;
3072 schedule_timeout_uninterruptible(1);
3073 return NULL;
3074 }
3075
3076 /*
3077 * Go through the zonelist yet one more time, keep very high watermark
3078 * here, this is only to catch a parallel oom killing, we must fail if
3079 * we're still under heavy pressure.
3080 */
3081 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3082 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3083 if (page)
3084 goto out;
3085
3086 if (!(gfp_mask & __GFP_NOFAIL)) {
3087 /* Coredumps can quickly deplete all memory reserves */
3088 if (current->flags & PF_DUMPCORE)
3089 goto out;
3090 /* The OOM killer will not help higher order allocs */
3091 if (order > PAGE_ALLOC_COSTLY_ORDER)
3092 goto out;
3093 /* The OOM killer does not needlessly kill tasks for lowmem */
3094 if (ac->high_zoneidx < ZONE_NORMAL)
3095 goto out;
3096 if (pm_suspended_storage())
3097 goto out;
3098 /*
3099 * XXX: GFP_NOFS allocations should rather fail than rely on
3100 * other request to make a forward progress.
3101 * We are in an unfortunate situation where out_of_memory cannot
3102 * do much for this context but let's try it to at least get
3103 * access to memory reserved if the current task is killed (see
3104 * out_of_memory). Once filesystems are ready to handle allocation
3105 * failures more gracefully we should just bail out here.
3106 */
3107
3108 /* The OOM killer may not free memory on a specific node */
3109 if (gfp_mask & __GFP_THISNODE)
3110 goto out;
3111 }
3112 /* Exhausted what can be done so it's blamo time */
3113 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3114 *did_some_progress = 1;
3115
3116 if (gfp_mask & __GFP_NOFAIL) {
3117 page = get_page_from_freelist(gfp_mask, order,
3118 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3119 /*
3120 * fallback to ignore cpuset restriction if our nodes
3121 * are depleted
3122 */
3123 if (!page)
3124 page = get_page_from_freelist(gfp_mask, order,
3125 ALLOC_NO_WATERMARKS, ac);
3126 }
3127 }
3128 out:
3129 mutex_unlock(&oom_lock);
3130 return page;
3131 }
3132
3133 /*
3134 * Maximum number of compaction retries wit a progress before OOM
3135 * killer is consider as the only way to move forward.
3136 */
3137 #define MAX_COMPACT_RETRIES 16
3138
3139 #ifdef CONFIG_COMPACTION
3140 /* Try memory compaction for high-order allocations before reclaim */
3141 static struct page *
3142 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3143 unsigned int alloc_flags, const struct alloc_context *ac,
3144 enum compact_priority prio, enum compact_result *compact_result)
3145 {
3146 struct page *page;
3147
3148 if (!order)
3149 return NULL;
3150
3151 current->flags |= PF_MEMALLOC;
3152 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3153 prio);
3154 current->flags &= ~PF_MEMALLOC;
3155
3156 if (*compact_result <= COMPACT_INACTIVE)
3157 return NULL;
3158
3159 /*
3160 * At least in one zone compaction wasn't deferred or skipped, so let's
3161 * count a compaction stall
3162 */
3163 count_vm_event(COMPACTSTALL);
3164
3165 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3166
3167 if (page) {
3168 struct zone *zone = page_zone(page);
3169
3170 zone->compact_blockskip_flush = false;
3171 compaction_defer_reset(zone, order, true);
3172 count_vm_event(COMPACTSUCCESS);
3173 return page;
3174 }
3175
3176 /*
3177 * It's bad if compaction run occurs and fails. The most likely reason
3178 * is that pages exist, but not enough to satisfy watermarks.
3179 */
3180 count_vm_event(COMPACTFAIL);
3181
3182 cond_resched();
3183
3184 return NULL;
3185 }
3186
3187 static inline bool
3188 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3189 enum compact_result compact_result,
3190 enum compact_priority *compact_priority,
3191 int *compaction_retries)
3192 {
3193 int max_retries = MAX_COMPACT_RETRIES;
3194 int min_priority;
3195
3196 if (!order)
3197 return false;
3198
3199 if (compaction_made_progress(compact_result))
3200 (*compaction_retries)++;
3201
3202 /*
3203 * compaction considers all the zone as desperately out of memory
3204 * so it doesn't really make much sense to retry except when the
3205 * failure could be caused by insufficient priority
3206 */
3207 if (compaction_failed(compact_result))
3208 goto check_priority;
3209
3210 /*
3211 * make sure the compaction wasn't deferred or didn't bail out early
3212 * due to locks contention before we declare that we should give up.
3213 * But do not retry if the given zonelist is not suitable for
3214 * compaction.
3215 */
3216 if (compaction_withdrawn(compact_result))
3217 return compaction_zonelist_suitable(ac, order, alloc_flags);
3218
3219 /*
3220 * !costly requests are much more important than __GFP_REPEAT
3221 * costly ones because they are de facto nofail and invoke OOM
3222 * killer to move on while costly can fail and users are ready
3223 * to cope with that. 1/4 retries is rather arbitrary but we
3224 * would need much more detailed feedback from compaction to
3225 * make a better decision.
3226 */
3227 if (order > PAGE_ALLOC_COSTLY_ORDER)
3228 max_retries /= 4;
3229 if (*compaction_retries <= max_retries)
3230 return true;
3231
3232 /*
3233 * Make sure there are attempts at the highest priority if we exhausted
3234 * all retries or failed at the lower priorities.
3235 */
3236 check_priority:
3237 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3238 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3239 if (*compact_priority > min_priority) {
3240 (*compact_priority)--;
3241 *compaction_retries = 0;
3242 return true;
3243 }
3244 return false;
3245 }
3246 #else
3247 static inline struct page *
3248 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3249 unsigned int alloc_flags, const struct alloc_context *ac,
3250 enum compact_priority prio, enum compact_result *compact_result)
3251 {
3252 *compact_result = COMPACT_SKIPPED;
3253 return NULL;
3254 }
3255
3256 static inline bool
3257 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3258 enum compact_result compact_result,
3259 enum compact_priority *compact_priority,
3260 int *compaction_retries)
3261 {
3262 struct zone *zone;
3263 struct zoneref *z;
3264
3265 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3266 return false;
3267
3268 /*
3269 * There are setups with compaction disabled which would prefer to loop
3270 * inside the allocator rather than hit the oom killer prematurely.
3271 * Let's give them a good hope and keep retrying while the order-0
3272 * watermarks are OK.
3273 */
3274 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3275 ac->nodemask) {
3276 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3277 ac_classzone_idx(ac), alloc_flags))
3278 return true;
3279 }
3280 return false;
3281 }
3282 #endif /* CONFIG_COMPACTION */
3283
3284 /* Perform direct synchronous page reclaim */
3285 static int
3286 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3287 const struct alloc_context *ac)
3288 {
3289 struct reclaim_state reclaim_state;
3290 int progress;
3291
3292 cond_resched();
3293
3294 /* We now go into synchronous reclaim */
3295 cpuset_memory_pressure_bump();
3296 current->flags |= PF_MEMALLOC;
3297 lockdep_set_current_reclaim_state(gfp_mask);
3298 reclaim_state.reclaimed_slab = 0;
3299 current->reclaim_state = &reclaim_state;
3300
3301 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3302 ac->nodemask);
3303
3304 current->reclaim_state = NULL;
3305 lockdep_clear_current_reclaim_state();
3306 current->flags &= ~PF_MEMALLOC;
3307
3308 cond_resched();
3309
3310 return progress;
3311 }
3312
3313 /* The really slow allocator path where we enter direct reclaim */
3314 static inline struct page *
3315 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3316 unsigned int alloc_flags, const struct alloc_context *ac,
3317 unsigned long *did_some_progress)
3318 {
3319 struct page *page = NULL;
3320 bool drained = false;
3321
3322 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3323 if (unlikely(!(*did_some_progress)))
3324 return NULL;
3325
3326 retry:
3327 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3328
3329 /*
3330 * If an allocation failed after direct reclaim, it could be because
3331 * pages are pinned on the per-cpu lists or in high alloc reserves.
3332 * Shrink them them and try again
3333 */
3334 if (!page && !drained) {
3335 unreserve_highatomic_pageblock(ac, false);
3336 drain_all_pages(NULL);
3337 drained = true;
3338 goto retry;
3339 }
3340
3341 return page;
3342 }
3343
3344 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3345 {
3346 struct zoneref *z;
3347 struct zone *zone;
3348 pg_data_t *last_pgdat = NULL;
3349
3350 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3351 ac->high_zoneidx, ac->nodemask) {
3352 if (last_pgdat != zone->zone_pgdat)
3353 wakeup_kswapd(zone, order, ac->high_zoneidx);
3354 last_pgdat = zone->zone_pgdat;
3355 }
3356 }
3357
3358 static inline unsigned int
3359 gfp_to_alloc_flags(gfp_t gfp_mask)
3360 {
3361 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3362
3363 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3364 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3365
3366 /*
3367 * The caller may dip into page reserves a bit more if the caller
3368 * cannot run direct reclaim, or if the caller has realtime scheduling
3369 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3370 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3371 */
3372 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3373
3374 if (gfp_mask & __GFP_ATOMIC) {
3375 /*
3376 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3377 * if it can't schedule.
3378 */
3379 if (!(gfp_mask & __GFP_NOMEMALLOC))
3380 alloc_flags |= ALLOC_HARDER;
3381 /*
3382 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3383 * comment for __cpuset_node_allowed().
3384 */
3385 alloc_flags &= ~ALLOC_CPUSET;
3386 } else if (unlikely(rt_task(current)) && !in_interrupt())
3387 alloc_flags |= ALLOC_HARDER;
3388
3389 #ifdef CONFIG_CMA
3390 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3391 alloc_flags |= ALLOC_CMA;
3392 #endif
3393 return alloc_flags;
3394 }
3395
3396 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3397 {
3398 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3399 return false;
3400
3401 if (gfp_mask & __GFP_MEMALLOC)
3402 return true;
3403 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3404 return true;
3405 if (!in_interrupt() &&
3406 ((current->flags & PF_MEMALLOC) ||
3407 unlikely(test_thread_flag(TIF_MEMDIE))))
3408 return true;
3409
3410 return false;
3411 }
3412
3413 /*
3414 * Maximum number of reclaim retries without any progress before OOM killer
3415 * is consider as the only way to move forward.
3416 */
3417 #define MAX_RECLAIM_RETRIES 16
3418
3419 /*
3420 * Checks whether it makes sense to retry the reclaim to make a forward progress
3421 * for the given allocation request.
3422 * The reclaim feedback represented by did_some_progress (any progress during
3423 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3424 * any progress in a row) is considered as well as the reclaimable pages on the
3425 * applicable zone list (with a backoff mechanism which is a function of
3426 * no_progress_loops).
3427 *
3428 * Returns true if a retry is viable or false to enter the oom path.
3429 */
3430 static inline bool
3431 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3432 struct alloc_context *ac, int alloc_flags,
3433 bool did_some_progress, int *no_progress_loops)
3434 {
3435 struct zone *zone;
3436 struct zoneref *z;
3437
3438 /*
3439 * Costly allocations might have made a progress but this doesn't mean
3440 * their order will become available due to high fragmentation so
3441 * always increment the no progress counter for them
3442 */
3443 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3444 *no_progress_loops = 0;
3445 else
3446 (*no_progress_loops)++;
3447
3448 /*
3449 * Make sure we converge to OOM if we cannot make any progress
3450 * several times in the row.
3451 */
3452 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3453 /* Before OOM, exhaust highatomic_reserve */
3454 return unreserve_highatomic_pageblock(ac, true);
3455 }
3456
3457 /*
3458 * Keep reclaiming pages while there is a chance this will lead
3459 * somewhere. If none of the target zones can satisfy our allocation
3460 * request even if all reclaimable pages are considered then we are
3461 * screwed and have to go OOM.
3462 */
3463 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3464 ac->nodemask) {
3465 unsigned long available;
3466 unsigned long reclaimable;
3467
3468 available = reclaimable = zone_reclaimable_pages(zone);
3469 available -= DIV_ROUND_UP((*no_progress_loops) * available,
3470 MAX_RECLAIM_RETRIES);
3471 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3472
3473 /*
3474 * Would the allocation succeed if we reclaimed the whole
3475 * available?
3476 */
3477 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3478 ac_classzone_idx(ac), alloc_flags, available)) {
3479 /*
3480 * If we didn't make any progress and have a lot of
3481 * dirty + writeback pages then we should wait for
3482 * an IO to complete to slow down the reclaim and
3483 * prevent from pre mature OOM
3484 */
3485 if (!did_some_progress) {
3486 unsigned long write_pending;
3487
3488 write_pending = zone_page_state_snapshot(zone,
3489 NR_ZONE_WRITE_PENDING);
3490
3491 if (2 * write_pending > reclaimable) {
3492 congestion_wait(BLK_RW_ASYNC, HZ/10);
3493 return true;
3494 }
3495 }
3496
3497 /*
3498 * Memory allocation/reclaim might be called from a WQ
3499 * context and the current implementation of the WQ
3500 * concurrency control doesn't recognize that
3501 * a particular WQ is congested if the worker thread is
3502 * looping without ever sleeping. Therefore we have to
3503 * do a short sleep here rather than calling
3504 * cond_resched().
3505 */
3506 if (current->flags & PF_WQ_WORKER)
3507 schedule_timeout_uninterruptible(1);
3508 else
3509 cond_resched();
3510
3511 return true;
3512 }
3513 }
3514
3515 return false;
3516 }
3517
3518 static inline struct page *
3519 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3520 struct alloc_context *ac)
3521 {
3522 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3523 struct page *page = NULL;
3524 unsigned int alloc_flags;
3525 unsigned long did_some_progress;
3526 enum compact_priority compact_priority;
3527 enum compact_result compact_result;
3528 int compaction_retries;
3529 int no_progress_loops;
3530 unsigned long alloc_start = jiffies;
3531 unsigned int stall_timeout = 10 * HZ;
3532 unsigned int cpuset_mems_cookie;
3533
3534 /*
3535 * In the slowpath, we sanity check order to avoid ever trying to
3536 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3537 * be using allocators in order of preference for an area that is
3538 * too large.
3539 */
3540 if (order >= MAX_ORDER) {
3541 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3542 return NULL;
3543 }
3544
3545 /*
3546 * We also sanity check to catch abuse of atomic reserves being used by
3547 * callers that are not in atomic context.
3548 */
3549 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3550 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3551 gfp_mask &= ~__GFP_ATOMIC;
3552
3553 retry_cpuset:
3554 compaction_retries = 0;
3555 no_progress_loops = 0;
3556 compact_priority = DEF_COMPACT_PRIORITY;
3557 cpuset_mems_cookie = read_mems_allowed_begin();
3558
3559 /*
3560 * The fast path uses conservative alloc_flags to succeed only until
3561 * kswapd needs to be woken up, and to avoid the cost of setting up
3562 * alloc_flags precisely. So we do that now.
3563 */
3564 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3565
3566 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3567 wake_all_kswapds(order, ac);
3568
3569 /*
3570 * The adjusted alloc_flags might result in immediate success, so try
3571 * that first
3572 */
3573 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3574 if (page)
3575 goto got_pg;
3576
3577 /*
3578 * For costly allocations, try direct compaction first, as it's likely
3579 * that we have enough base pages and don't need to reclaim. Don't try
3580 * that for allocations that are allowed to ignore watermarks, as the
3581 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3582 */
3583 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3584 !gfp_pfmemalloc_allowed(gfp_mask)) {
3585 page = __alloc_pages_direct_compact(gfp_mask, order,
3586 alloc_flags, ac,
3587 INIT_COMPACT_PRIORITY,
3588 &compact_result);
3589 if (page)
3590 goto got_pg;
3591
3592 /*
3593 * Checks for costly allocations with __GFP_NORETRY, which
3594 * includes THP page fault allocations
3595 */
3596 if (gfp_mask & __GFP_NORETRY) {
3597 /*
3598 * If compaction is deferred for high-order allocations,
3599 * it is because sync compaction recently failed. If
3600 * this is the case and the caller requested a THP
3601 * allocation, we do not want to heavily disrupt the
3602 * system, so we fail the allocation instead of entering
3603 * direct reclaim.
3604 */
3605 if (compact_result == COMPACT_DEFERRED)
3606 goto nopage;
3607
3608 /*
3609 * Looks like reclaim/compaction is worth trying, but
3610 * sync compaction could be very expensive, so keep
3611 * using async compaction.
3612 */
3613 compact_priority = INIT_COMPACT_PRIORITY;
3614 }
3615 }
3616
3617 retry:
3618 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3619 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3620 wake_all_kswapds(order, ac);
3621
3622 if (gfp_pfmemalloc_allowed(gfp_mask))
3623 alloc_flags = ALLOC_NO_WATERMARKS;
3624
3625 /*
3626 * Reset the zonelist iterators if memory policies can be ignored.
3627 * These allocations are high priority and system rather than user
3628 * orientated.
3629 */
3630 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3631 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3632 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3633 ac->high_zoneidx, ac->nodemask);
3634 }
3635
3636 /* Attempt with potentially adjusted zonelist and alloc_flags */
3637 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3638 if (page)
3639 goto got_pg;
3640
3641 /* Caller is not willing to reclaim, we can't balance anything */
3642 if (!can_direct_reclaim) {
3643 /*
3644 * All existing users of the __GFP_NOFAIL are blockable, so warn
3645 * of any new users that actually allow this type of allocation
3646 * to fail.
3647 */
3648 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3649 goto nopage;
3650 }
3651
3652 /* Avoid recursion of direct reclaim */
3653 if (current->flags & PF_MEMALLOC) {
3654 /*
3655 * __GFP_NOFAIL request from this context is rather bizarre
3656 * because we cannot reclaim anything and only can loop waiting
3657 * for somebody to do a work for us.
3658 */
3659 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3660 cond_resched();
3661 goto retry;
3662 }
3663 goto nopage;
3664 }
3665
3666 /* Avoid allocations with no watermarks from looping endlessly */
3667 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3668 goto nopage;
3669
3670
3671 /* Try direct reclaim and then allocating */
3672 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3673 &did_some_progress);
3674 if (page)
3675 goto got_pg;
3676
3677 /* Try direct compaction and then allocating */
3678 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3679 compact_priority, &compact_result);
3680 if (page)
3681 goto got_pg;
3682
3683 /* Do not loop if specifically requested */
3684 if (gfp_mask & __GFP_NORETRY)
3685 goto nopage;
3686
3687 /*
3688 * Do not retry costly high order allocations unless they are
3689 * __GFP_REPEAT
3690 */
3691 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3692 goto nopage;
3693
3694 /* Make sure we know about allocations which stall for too long */
3695 if (time_after(jiffies, alloc_start + stall_timeout)) {
3696 warn_alloc(gfp_mask,
3697 "page allocation stalls for %ums, order:%u",
3698 jiffies_to_msecs(jiffies-alloc_start), order);
3699 stall_timeout += 10 * HZ;
3700 }
3701
3702 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3703 did_some_progress > 0, &no_progress_loops))
3704 goto retry;
3705
3706 /*
3707 * It doesn't make any sense to retry for the compaction if the order-0
3708 * reclaim is not able to make any progress because the current
3709 * implementation of the compaction depends on the sufficient amount
3710 * of free memory (see __compaction_suitable)
3711 */
3712 if (did_some_progress > 0 &&
3713 should_compact_retry(ac, order, alloc_flags,
3714 compact_result, &compact_priority,
3715 &compaction_retries))
3716 goto retry;
3717
3718 /* Reclaim has failed us, start killing things */
3719 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3720 if (page)
3721 goto got_pg;
3722
3723 /* Retry as long as the OOM killer is making progress */
3724 if (did_some_progress) {
3725 no_progress_loops = 0;
3726 goto retry;
3727 }
3728
3729 nopage:
3730 /*
3731 * When updating a task's mems_allowed, it is possible to race with
3732 * parallel threads in such a way that an allocation can fail while
3733 * the mask is being updated. If a page allocation is about to fail,
3734 * check if the cpuset changed during allocation and if so, retry.
3735 */
3736 if (read_mems_allowed_retry(cpuset_mems_cookie))
3737 goto retry_cpuset;
3738
3739 warn_alloc(gfp_mask,
3740 "page allocation failure: order:%u", order);
3741 got_pg:
3742 return page;
3743 }
3744
3745 /*
3746 * This is the 'heart' of the zoned buddy allocator.
3747 */
3748 struct page *
3749 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3750 struct zonelist *zonelist, nodemask_t *nodemask)
3751 {
3752 struct page *page;
3753 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3754 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3755 struct alloc_context ac = {
3756 .high_zoneidx = gfp_zone(gfp_mask),
3757 .zonelist = zonelist,
3758 .nodemask = nodemask,
3759 .migratetype = gfpflags_to_migratetype(gfp_mask),
3760 };
3761
3762 if (cpusets_enabled()) {
3763 alloc_mask |= __GFP_HARDWALL;
3764 alloc_flags |= ALLOC_CPUSET;
3765 if (!ac.nodemask)
3766 ac.nodemask = &cpuset_current_mems_allowed;
3767 }
3768
3769 gfp_mask &= gfp_allowed_mask;
3770
3771 lockdep_trace_alloc(gfp_mask);
3772
3773 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3774
3775 if (should_fail_alloc_page(gfp_mask, order))
3776 return NULL;
3777
3778 /*
3779 * Check the zones suitable for the gfp_mask contain at least one
3780 * valid zone. It's possible to have an empty zonelist as a result
3781 * of __GFP_THISNODE and a memoryless node
3782 */
3783 if (unlikely(!zonelist->_zonerefs->zone))
3784 return NULL;
3785
3786 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3787 alloc_flags |= ALLOC_CMA;
3788
3789 /* Dirty zone balancing only done in the fast path */
3790 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3791
3792 /*
3793 * The preferred zone is used for statistics but crucially it is
3794 * also used as the starting point for the zonelist iterator. It
3795 * may get reset for allocations that ignore memory policies.
3796 */
3797 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3798 ac.high_zoneidx, ac.nodemask);
3799 if (!ac.preferred_zoneref->zone) {
3800 page = NULL;
3801 /*
3802 * This might be due to race with cpuset_current_mems_allowed
3803 * update, so make sure we retry with original nodemask in the
3804 * slow path.
3805 */
3806 goto no_zone;
3807 }
3808
3809 /* First allocation attempt */
3810 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3811 if (likely(page))
3812 goto out;
3813
3814 no_zone:
3815 /*
3816 * Runtime PM, block IO and its error handling path can deadlock
3817 * because I/O on the device might not complete.
3818 */
3819 alloc_mask = memalloc_noio_flags(gfp_mask);
3820 ac.spread_dirty_pages = false;
3821
3822 /*
3823 * Restore the original nodemask if it was potentially replaced with
3824 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3825 * Also recalculate the starting point for the zonelist iterator or
3826 * we could end up iterating over non-eligible zones endlessly.
3827 */
3828 if (unlikely(ac.nodemask != nodemask)) {
3829 ac.nodemask = nodemask;
3830 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3831 ac.high_zoneidx, ac.nodemask);
3832 /* If we have NULL preferred zone, slowpath wll handle that */
3833 }
3834
3835 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3836
3837 out:
3838 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3839 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3840 __free_pages(page, order);
3841 page = NULL;
3842 }
3843
3844 if (kmemcheck_enabled && page)
3845 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3846
3847 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3848
3849 return page;
3850 }
3851 EXPORT_SYMBOL(__alloc_pages_nodemask);
3852
3853 /*
3854 * Common helper functions.
3855 */
3856 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3857 {
3858 struct page *page;
3859
3860 /*
3861 * __get_free_pages() returns a 32-bit address, which cannot represent
3862 * a highmem page
3863 */
3864 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3865
3866 page = alloc_pages(gfp_mask, order);
3867 if (!page)
3868 return 0;
3869 return (unsigned long) page_address(page);
3870 }
3871 EXPORT_SYMBOL(__get_free_pages);
3872
3873 unsigned long get_zeroed_page(gfp_t gfp_mask)
3874 {
3875 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3876 }
3877 EXPORT_SYMBOL(get_zeroed_page);
3878
3879 void __free_pages(struct page *page, unsigned int order)
3880 {
3881 if (put_page_testzero(page)) {
3882 if (order == 0)
3883 free_hot_cold_page(page, false);
3884 else
3885 __free_pages_ok(page, order);
3886 }
3887 }
3888
3889 EXPORT_SYMBOL(__free_pages);
3890
3891 void free_pages(unsigned long addr, unsigned int order)
3892 {
3893 if (addr != 0) {
3894 VM_BUG_ON(!virt_addr_valid((void *)addr));
3895 __free_pages(virt_to_page((void *)addr), order);
3896 }
3897 }
3898
3899 EXPORT_SYMBOL(free_pages);
3900
3901 /*
3902 * Page Fragment:
3903 * An arbitrary-length arbitrary-offset area of memory which resides
3904 * within a 0 or higher order page. Multiple fragments within that page
3905 * are individually refcounted, in the page's reference counter.
3906 *
3907 * The page_frag functions below provide a simple allocation framework for
3908 * page fragments. This is used by the network stack and network device
3909 * drivers to provide a backing region of memory for use as either an
3910 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3911 */
3912 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
3913 gfp_t gfp_mask)
3914 {
3915 struct page *page = NULL;
3916 gfp_t gfp = gfp_mask;
3917
3918 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3919 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3920 __GFP_NOMEMALLOC;
3921 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3922 PAGE_FRAG_CACHE_MAX_ORDER);
3923 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3924 #endif
3925 if (unlikely(!page))
3926 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3927
3928 nc->va = page ? page_address(page) : NULL;
3929
3930 return page;
3931 }
3932
3933 void __page_frag_cache_drain(struct page *page, unsigned int count)
3934 {
3935 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
3936
3937 if (page_ref_sub_and_test(page, count)) {
3938 unsigned int order = compound_order(page);
3939
3940 if (order == 0)
3941 free_hot_cold_page(page, false);
3942 else
3943 __free_pages_ok(page, order);
3944 }
3945 }
3946 EXPORT_SYMBOL(__page_frag_cache_drain);
3947
3948 void *page_frag_alloc(struct page_frag_cache *nc,
3949 unsigned int fragsz, gfp_t gfp_mask)
3950 {
3951 unsigned int size = PAGE_SIZE;
3952 struct page *page;
3953 int offset;
3954
3955 if (unlikely(!nc->va)) {
3956 refill:
3957 page = __page_frag_cache_refill(nc, gfp_mask);
3958 if (!page)
3959 return NULL;
3960
3961 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3962 /* if size can vary use size else just use PAGE_SIZE */
3963 size = nc->size;
3964 #endif
3965 /* Even if we own the page, we do not use atomic_set().
3966 * This would break get_page_unless_zero() users.
3967 */
3968 page_ref_add(page, size - 1);
3969
3970 /* reset page count bias and offset to start of new frag */
3971 nc->pfmemalloc = page_is_pfmemalloc(page);
3972 nc->pagecnt_bias = size;
3973 nc->offset = size;
3974 }
3975
3976 offset = nc->offset - fragsz;
3977 if (unlikely(offset < 0)) {
3978 page = virt_to_page(nc->va);
3979
3980 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3981 goto refill;
3982
3983 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3984 /* if size can vary use size else just use PAGE_SIZE */
3985 size = nc->size;
3986 #endif
3987 /* OK, page count is 0, we can safely set it */
3988 set_page_count(page, size);
3989
3990 /* reset page count bias and offset to start of new frag */
3991 nc->pagecnt_bias = size;
3992 offset = size - fragsz;
3993 }
3994
3995 nc->pagecnt_bias--;
3996 nc->offset = offset;
3997
3998 return nc->va + offset;
3999 }
4000 EXPORT_SYMBOL(page_frag_alloc);
4001
4002 /*
4003 * Frees a page fragment allocated out of either a compound or order 0 page.
4004 */
4005 void page_frag_free(void *addr)
4006 {
4007 struct page *page = virt_to_head_page(addr);
4008
4009 if (unlikely(put_page_testzero(page)))
4010 __free_pages_ok(page, compound_order(page));
4011 }
4012 EXPORT_SYMBOL(page_frag_free);
4013
4014 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4015 size_t size)
4016 {
4017 if (addr) {
4018 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4019 unsigned long used = addr + PAGE_ALIGN(size);
4020
4021 split_page(virt_to_page((void *)addr), order);
4022 while (used < alloc_end) {
4023 free_page(used);
4024 used += PAGE_SIZE;
4025 }
4026 }
4027 return (void *)addr;
4028 }
4029
4030 /**
4031 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4032 * @size: the number of bytes to allocate
4033 * @gfp_mask: GFP flags for the allocation
4034 *
4035 * This function is similar to alloc_pages(), except that it allocates the
4036 * minimum number of pages to satisfy the request. alloc_pages() can only
4037 * allocate memory in power-of-two pages.
4038 *
4039 * This function is also limited by MAX_ORDER.
4040 *
4041 * Memory allocated by this function must be released by free_pages_exact().
4042 */
4043 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4044 {
4045 unsigned int order = get_order(size);
4046 unsigned long addr;
4047
4048 addr = __get_free_pages(gfp_mask, order);
4049 return make_alloc_exact(addr, order, size);
4050 }
4051 EXPORT_SYMBOL(alloc_pages_exact);
4052
4053 /**
4054 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4055 * pages on a node.
4056 * @nid: the preferred node ID where memory should be allocated
4057 * @size: the number of bytes to allocate
4058 * @gfp_mask: GFP flags for the allocation
4059 *
4060 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4061 * back.
4062 */
4063 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4064 {
4065 unsigned int order = get_order(size);
4066 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4067 if (!p)
4068 return NULL;
4069 return make_alloc_exact((unsigned long)page_address(p), order, size);
4070 }
4071
4072 /**
4073 * free_pages_exact - release memory allocated via alloc_pages_exact()
4074 * @virt: the value returned by alloc_pages_exact.
4075 * @size: size of allocation, same value as passed to alloc_pages_exact().
4076 *
4077 * Release the memory allocated by a previous call to alloc_pages_exact.
4078 */
4079 void free_pages_exact(void *virt, size_t size)
4080 {
4081 unsigned long addr = (unsigned long)virt;
4082 unsigned long end = addr + PAGE_ALIGN(size);
4083
4084 while (addr < end) {
4085 free_page(addr);
4086 addr += PAGE_SIZE;
4087 }
4088 }
4089 EXPORT_SYMBOL(free_pages_exact);
4090
4091 /**
4092 * nr_free_zone_pages - count number of pages beyond high watermark
4093 * @offset: The zone index of the highest zone
4094 *
4095 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4096 * high watermark within all zones at or below a given zone index. For each
4097 * zone, the number of pages is calculated as:
4098 * managed_pages - high_pages
4099 */
4100 static unsigned long nr_free_zone_pages(int offset)
4101 {
4102 struct zoneref *z;
4103 struct zone *zone;
4104
4105 /* Just pick one node, since fallback list is circular */
4106 unsigned long sum = 0;
4107
4108 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4109
4110 for_each_zone_zonelist(zone, z, zonelist, offset) {
4111 unsigned long size = zone->managed_pages;
4112 unsigned long high = high_wmark_pages(zone);
4113 if (size > high)
4114 sum += size - high;
4115 }
4116
4117 return sum;
4118 }
4119
4120 /**
4121 * nr_free_buffer_pages - count number of pages beyond high watermark
4122 *
4123 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4124 * watermark within ZONE_DMA and ZONE_NORMAL.
4125 */
4126 unsigned long nr_free_buffer_pages(void)
4127 {
4128 return nr_free_zone_pages(gfp_zone(GFP_USER));
4129 }
4130 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4131
4132 /**
4133 * nr_free_pagecache_pages - count number of pages beyond high watermark
4134 *
4135 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4136 * high watermark within all zones.
4137 */
4138 unsigned long nr_free_pagecache_pages(void)
4139 {
4140 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4141 }
4142
4143 static inline void show_node(struct zone *zone)
4144 {
4145 if (IS_ENABLED(CONFIG_NUMA))
4146 printk("Node %d ", zone_to_nid(zone));
4147 }
4148
4149 long si_mem_available(void)
4150 {
4151 long available;
4152 unsigned long pagecache;
4153 unsigned long wmark_low = 0;
4154 unsigned long pages[NR_LRU_LISTS];
4155 struct zone *zone;
4156 int lru;
4157
4158 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4159 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4160
4161 for_each_zone(zone)
4162 wmark_low += zone->watermark[WMARK_LOW];
4163
4164 /*
4165 * Estimate the amount of memory available for userspace allocations,
4166 * without causing swapping.
4167 */
4168 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4169
4170 /*
4171 * Not all the page cache can be freed, otherwise the system will
4172 * start swapping. Assume at least half of the page cache, or the
4173 * low watermark worth of cache, needs to stay.
4174 */
4175 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4176 pagecache -= min(pagecache / 2, wmark_low);
4177 available += pagecache;
4178
4179 /*
4180 * Part of the reclaimable slab consists of items that are in use,
4181 * and cannot be freed. Cap this estimate at the low watermark.
4182 */
4183 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4184 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4185
4186 if (available < 0)
4187 available = 0;
4188 return available;
4189 }
4190 EXPORT_SYMBOL_GPL(si_mem_available);
4191
4192 void si_meminfo(struct sysinfo *val)
4193 {
4194 val->totalram = totalram_pages;
4195 val->sharedram = global_node_page_state(NR_SHMEM);
4196 val->freeram = global_page_state(NR_FREE_PAGES);
4197 val->bufferram = nr_blockdev_pages();
4198 val->totalhigh = totalhigh_pages;
4199 val->freehigh = nr_free_highpages();
4200 val->mem_unit = PAGE_SIZE;
4201 }
4202
4203 EXPORT_SYMBOL(si_meminfo);
4204
4205 #ifdef CONFIG_NUMA
4206 void si_meminfo_node(struct sysinfo *val, int nid)
4207 {
4208 int zone_type; /* needs to be signed */
4209 unsigned long managed_pages = 0;
4210 unsigned long managed_highpages = 0;
4211 unsigned long free_highpages = 0;
4212 pg_data_t *pgdat = NODE_DATA(nid);
4213
4214 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4215 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4216 val->totalram = managed_pages;
4217 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4218 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4219 #ifdef CONFIG_HIGHMEM
4220 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4221 struct zone *zone = &pgdat->node_zones[zone_type];
4222
4223 if (is_highmem(zone)) {
4224 managed_highpages += zone->managed_pages;
4225 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4226 }
4227 }
4228 val->totalhigh = managed_highpages;
4229 val->freehigh = free_highpages;
4230 #else
4231 val->totalhigh = managed_highpages;
4232 val->freehigh = free_highpages;
4233 #endif
4234 val->mem_unit = PAGE_SIZE;
4235 }
4236 #endif
4237
4238 /*
4239 * Determine whether the node should be displayed or not, depending on whether
4240 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4241 */
4242 bool skip_free_areas_node(unsigned int flags, int nid)
4243 {
4244 bool ret = false;
4245 unsigned int cpuset_mems_cookie;
4246
4247 if (!(flags & SHOW_MEM_FILTER_NODES))
4248 goto out;
4249
4250 do {
4251 cpuset_mems_cookie = read_mems_allowed_begin();
4252 ret = !node_isset(nid, cpuset_current_mems_allowed);
4253 } while (read_mems_allowed_retry(cpuset_mems_cookie));
4254 out:
4255 return ret;
4256 }
4257
4258 #define K(x) ((x) << (PAGE_SHIFT-10))
4259
4260 static void show_migration_types(unsigned char type)
4261 {
4262 static const char types[MIGRATE_TYPES] = {
4263 [MIGRATE_UNMOVABLE] = 'U',
4264 [MIGRATE_MOVABLE] = 'M',
4265 [MIGRATE_RECLAIMABLE] = 'E',
4266 [MIGRATE_HIGHATOMIC] = 'H',
4267 #ifdef CONFIG_CMA
4268 [MIGRATE_CMA] = 'C',
4269 #endif
4270 #ifdef CONFIG_MEMORY_ISOLATION
4271 [MIGRATE_ISOLATE] = 'I',
4272 #endif
4273 };
4274 char tmp[MIGRATE_TYPES + 1];
4275 char *p = tmp;
4276 int i;
4277
4278 for (i = 0; i < MIGRATE_TYPES; i++) {
4279 if (type & (1 << i))
4280 *p++ = types[i];
4281 }
4282
4283 *p = '\0';
4284 printk(KERN_CONT "(%s) ", tmp);
4285 }
4286
4287 /*
4288 * Show free area list (used inside shift_scroll-lock stuff)
4289 * We also calculate the percentage fragmentation. We do this by counting the
4290 * memory on each free list with the exception of the first item on the list.
4291 *
4292 * Bits in @filter:
4293 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4294 * cpuset.
4295 */
4296 void show_free_areas(unsigned int filter)
4297 {
4298 unsigned long free_pcp = 0;
4299 int cpu;
4300 struct zone *zone;
4301 pg_data_t *pgdat;
4302
4303 for_each_populated_zone(zone) {
4304 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4305 continue;
4306
4307 for_each_online_cpu(cpu)
4308 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4309 }
4310
4311 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4312 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4313 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4314 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4315 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4316 " free:%lu free_pcp:%lu free_cma:%lu\n",
4317 global_node_page_state(NR_ACTIVE_ANON),
4318 global_node_page_state(NR_INACTIVE_ANON),
4319 global_node_page_state(NR_ISOLATED_ANON),
4320 global_node_page_state(NR_ACTIVE_FILE),
4321 global_node_page_state(NR_INACTIVE_FILE),
4322 global_node_page_state(NR_ISOLATED_FILE),
4323 global_node_page_state(NR_UNEVICTABLE),
4324 global_node_page_state(NR_FILE_DIRTY),
4325 global_node_page_state(NR_WRITEBACK),
4326 global_node_page_state(NR_UNSTABLE_NFS),
4327 global_page_state(NR_SLAB_RECLAIMABLE),
4328 global_page_state(NR_SLAB_UNRECLAIMABLE),
4329 global_node_page_state(NR_FILE_MAPPED),
4330 global_node_page_state(NR_SHMEM),
4331 global_page_state(NR_PAGETABLE),
4332 global_page_state(NR_BOUNCE),
4333 global_page_state(NR_FREE_PAGES),
4334 free_pcp,
4335 global_page_state(NR_FREE_CMA_PAGES));
4336
4337 for_each_online_pgdat(pgdat) {
4338 printk("Node %d"
4339 " active_anon:%lukB"
4340 " inactive_anon:%lukB"
4341 " active_file:%lukB"
4342 " inactive_file:%lukB"
4343 " unevictable:%lukB"
4344 " isolated(anon):%lukB"
4345 " isolated(file):%lukB"
4346 " mapped:%lukB"
4347 " dirty:%lukB"
4348 " writeback:%lukB"
4349 " shmem:%lukB"
4350 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4351 " shmem_thp: %lukB"
4352 " shmem_pmdmapped: %lukB"
4353 " anon_thp: %lukB"
4354 #endif
4355 " writeback_tmp:%lukB"
4356 " unstable:%lukB"
4357 " pages_scanned:%lu"
4358 " all_unreclaimable? %s"
4359 "\n",
4360 pgdat->node_id,
4361 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4362 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4363 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4364 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4365 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4366 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4367 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4368 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4369 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4370 K(node_page_state(pgdat, NR_WRITEBACK)),
4371 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4372 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4373 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4374 * HPAGE_PMD_NR),
4375 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4376 #endif
4377 K(node_page_state(pgdat, NR_SHMEM)),
4378 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4379 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4380 node_page_state(pgdat, NR_PAGES_SCANNED),
4381 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4382 }
4383
4384 for_each_populated_zone(zone) {
4385 int i;
4386
4387 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4388 continue;
4389
4390 free_pcp = 0;
4391 for_each_online_cpu(cpu)
4392 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4393
4394 show_node(zone);
4395 printk(KERN_CONT
4396 "%s"
4397 " free:%lukB"
4398 " min:%lukB"
4399 " low:%lukB"
4400 " high:%lukB"
4401 " active_anon:%lukB"
4402 " inactive_anon:%lukB"
4403 " active_file:%lukB"
4404 " inactive_file:%lukB"
4405 " unevictable:%lukB"
4406 " writepending:%lukB"
4407 " present:%lukB"
4408 " managed:%lukB"
4409 " mlocked:%lukB"
4410 " slab_reclaimable:%lukB"
4411 " slab_unreclaimable:%lukB"
4412 " kernel_stack:%lukB"
4413 " pagetables:%lukB"
4414 " bounce:%lukB"
4415 " free_pcp:%lukB"
4416 " local_pcp:%ukB"
4417 " free_cma:%lukB"
4418 "\n",
4419 zone->name,
4420 K(zone_page_state(zone, NR_FREE_PAGES)),
4421 K(min_wmark_pages(zone)),
4422 K(low_wmark_pages(zone)),
4423 K(high_wmark_pages(zone)),
4424 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4425 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4426 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4427 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4428 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4429 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4430 K(zone->present_pages),
4431 K(zone->managed_pages),
4432 K(zone_page_state(zone, NR_MLOCK)),
4433 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4434 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4435 zone_page_state(zone, NR_KERNEL_STACK_KB),
4436 K(zone_page_state(zone, NR_PAGETABLE)),
4437 K(zone_page_state(zone, NR_BOUNCE)),
4438 K(free_pcp),
4439 K(this_cpu_read(zone->pageset->pcp.count)),
4440 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4441 printk("lowmem_reserve[]:");
4442 for (i = 0; i < MAX_NR_ZONES; i++)
4443 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4444 printk(KERN_CONT "\n");
4445 }
4446
4447 for_each_populated_zone(zone) {
4448 unsigned int order;
4449 unsigned long nr[MAX_ORDER], flags, total = 0;
4450 unsigned char types[MAX_ORDER];
4451
4452 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4453 continue;
4454 show_node(zone);
4455 printk(KERN_CONT "%s: ", zone->name);
4456
4457 spin_lock_irqsave(&zone->lock, flags);
4458 for (order = 0; order < MAX_ORDER; order++) {
4459 struct free_area *area = &zone->free_area[order];
4460 int type;
4461
4462 nr[order] = area->nr_free;
4463 total += nr[order] << order;
4464
4465 types[order] = 0;
4466 for (type = 0; type < MIGRATE_TYPES; type++) {
4467 if (!list_empty(&area->free_list[type]))
4468 types[order] |= 1 << type;
4469 }
4470 }
4471 spin_unlock_irqrestore(&zone->lock, flags);
4472 for (order = 0; order < MAX_ORDER; order++) {
4473 printk(KERN_CONT "%lu*%lukB ",
4474 nr[order], K(1UL) << order);
4475 if (nr[order])
4476 show_migration_types(types[order]);
4477 }
4478 printk(KERN_CONT "= %lukB\n", K(total));
4479 }
4480
4481 hugetlb_show_meminfo();
4482
4483 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4484
4485 show_swap_cache_info();
4486 }
4487
4488 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4489 {
4490 zoneref->zone = zone;
4491 zoneref->zone_idx = zone_idx(zone);
4492 }
4493
4494 /*
4495 * Builds allocation fallback zone lists.
4496 *
4497 * Add all populated zones of a node to the zonelist.
4498 */
4499 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4500 int nr_zones)
4501 {
4502 struct zone *zone;
4503 enum zone_type zone_type = MAX_NR_ZONES;
4504
4505 do {
4506 zone_type--;
4507 zone = pgdat->node_zones + zone_type;
4508 if (managed_zone(zone)) {
4509 zoneref_set_zone(zone,
4510 &zonelist->_zonerefs[nr_zones++]);
4511 check_highest_zone(zone_type);
4512 }
4513 } while (zone_type);
4514
4515 return nr_zones;
4516 }
4517
4518
4519 /*
4520 * zonelist_order:
4521 * 0 = automatic detection of better ordering.
4522 * 1 = order by ([node] distance, -zonetype)
4523 * 2 = order by (-zonetype, [node] distance)
4524 *
4525 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4526 * the same zonelist. So only NUMA can configure this param.
4527 */
4528 #define ZONELIST_ORDER_DEFAULT 0
4529 #define ZONELIST_ORDER_NODE 1
4530 #define ZONELIST_ORDER_ZONE 2
4531
4532 /* zonelist order in the kernel.
4533 * set_zonelist_order() will set this to NODE or ZONE.
4534 */
4535 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4536 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4537
4538
4539 #ifdef CONFIG_NUMA
4540 /* The value user specified ....changed by config */
4541 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4542 /* string for sysctl */
4543 #define NUMA_ZONELIST_ORDER_LEN 16
4544 char numa_zonelist_order[16] = "default";
4545
4546 /*
4547 * interface for configure zonelist ordering.
4548 * command line option "numa_zonelist_order"
4549 * = "[dD]efault - default, automatic configuration.
4550 * = "[nN]ode - order by node locality, then by zone within node
4551 * = "[zZ]one - order by zone, then by locality within zone
4552 */
4553
4554 static int __parse_numa_zonelist_order(char *s)
4555 {
4556 if (*s == 'd' || *s == 'D') {
4557 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4558 } else if (*s == 'n' || *s == 'N') {
4559 user_zonelist_order = ZONELIST_ORDER_NODE;
4560 } else if (*s == 'z' || *s == 'Z') {
4561 user_zonelist_order = ZONELIST_ORDER_ZONE;
4562 } else {
4563 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4564 return -EINVAL;
4565 }
4566 return 0;
4567 }
4568
4569 static __init int setup_numa_zonelist_order(char *s)
4570 {
4571 int ret;
4572
4573 if (!s)
4574 return 0;
4575
4576 ret = __parse_numa_zonelist_order(s);
4577 if (ret == 0)
4578 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4579
4580 return ret;
4581 }
4582 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4583
4584 /*
4585 * sysctl handler for numa_zonelist_order
4586 */
4587 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4588 void __user *buffer, size_t *length,
4589 loff_t *ppos)
4590 {
4591 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4592 int ret;
4593 static DEFINE_MUTEX(zl_order_mutex);
4594
4595 mutex_lock(&zl_order_mutex);
4596 if (write) {
4597 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4598 ret = -EINVAL;
4599 goto out;
4600 }
4601 strcpy(saved_string, (char *)table->data);
4602 }
4603 ret = proc_dostring(table, write, buffer, length, ppos);
4604 if (ret)
4605 goto out;
4606 if (write) {
4607 int oldval = user_zonelist_order;
4608
4609 ret = __parse_numa_zonelist_order((char *)table->data);
4610 if (ret) {
4611 /*
4612 * bogus value. restore saved string
4613 */
4614 strncpy((char *)table->data, saved_string,
4615 NUMA_ZONELIST_ORDER_LEN);
4616 user_zonelist_order = oldval;
4617 } else if (oldval != user_zonelist_order) {
4618 mutex_lock(&zonelists_mutex);
4619 build_all_zonelists(NULL, NULL);
4620 mutex_unlock(&zonelists_mutex);
4621 }
4622 }
4623 out:
4624 mutex_unlock(&zl_order_mutex);
4625 return ret;
4626 }
4627
4628
4629 #define MAX_NODE_LOAD (nr_online_nodes)
4630 static int node_load[MAX_NUMNODES];
4631
4632 /**
4633 * find_next_best_node - find the next node that should appear in a given node's fallback list
4634 * @node: node whose fallback list we're appending
4635 * @used_node_mask: nodemask_t of already used nodes
4636 *
4637 * We use a number of factors to determine which is the next node that should
4638 * appear on a given node's fallback list. The node should not have appeared
4639 * already in @node's fallback list, and it should be the next closest node
4640 * according to the distance array (which contains arbitrary distance values
4641 * from each node to each node in the system), and should also prefer nodes
4642 * with no CPUs, since presumably they'll have very little allocation pressure
4643 * on them otherwise.
4644 * It returns -1 if no node is found.
4645 */
4646 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4647 {
4648 int n, val;
4649 int min_val = INT_MAX;
4650 int best_node = NUMA_NO_NODE;
4651 const struct cpumask *tmp = cpumask_of_node(0);
4652
4653 /* Use the local node if we haven't already */
4654 if (!node_isset(node, *used_node_mask)) {
4655 node_set(node, *used_node_mask);
4656 return node;
4657 }
4658
4659 for_each_node_state(n, N_MEMORY) {
4660
4661 /* Don't want a node to appear more than once */
4662 if (node_isset(n, *used_node_mask))
4663 continue;
4664
4665 /* Use the distance array to find the distance */
4666 val = node_distance(node, n);
4667
4668 /* Penalize nodes under us ("prefer the next node") */
4669 val += (n < node);
4670
4671 /* Give preference to headless and unused nodes */
4672 tmp = cpumask_of_node(n);
4673 if (!cpumask_empty(tmp))
4674 val += PENALTY_FOR_NODE_WITH_CPUS;
4675
4676 /* Slight preference for less loaded node */
4677 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4678 val += node_load[n];
4679
4680 if (val < min_val) {
4681 min_val = val;
4682 best_node = n;
4683 }
4684 }
4685
4686 if (best_node >= 0)
4687 node_set(best_node, *used_node_mask);
4688
4689 return best_node;
4690 }
4691
4692
4693 /*
4694 * Build zonelists ordered by node and zones within node.
4695 * This results in maximum locality--normal zone overflows into local
4696 * DMA zone, if any--but risks exhausting DMA zone.
4697 */
4698 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4699 {
4700 int j;
4701 struct zonelist *zonelist;
4702
4703 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4704 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4705 ;
4706 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4707 zonelist->_zonerefs[j].zone = NULL;
4708 zonelist->_zonerefs[j].zone_idx = 0;
4709 }
4710
4711 /*
4712 * Build gfp_thisnode zonelists
4713 */
4714 static void build_thisnode_zonelists(pg_data_t *pgdat)
4715 {
4716 int j;
4717 struct zonelist *zonelist;
4718
4719 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4720 j = build_zonelists_node(pgdat, zonelist, 0);
4721 zonelist->_zonerefs[j].zone = NULL;
4722 zonelist->_zonerefs[j].zone_idx = 0;
4723 }
4724
4725 /*
4726 * Build zonelists ordered by zone and nodes within zones.
4727 * This results in conserving DMA zone[s] until all Normal memory is
4728 * exhausted, but results in overflowing to remote node while memory
4729 * may still exist in local DMA zone.
4730 */
4731 static int node_order[MAX_NUMNODES];
4732
4733 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4734 {
4735 int pos, j, node;
4736 int zone_type; /* needs to be signed */
4737 struct zone *z;
4738 struct zonelist *zonelist;
4739
4740 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4741 pos = 0;
4742 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4743 for (j = 0; j < nr_nodes; j++) {
4744 node = node_order[j];
4745 z = &NODE_DATA(node)->node_zones[zone_type];
4746 if (managed_zone(z)) {
4747 zoneref_set_zone(z,
4748 &zonelist->_zonerefs[pos++]);
4749 check_highest_zone(zone_type);
4750 }
4751 }
4752 }
4753 zonelist->_zonerefs[pos].zone = NULL;
4754 zonelist->_zonerefs[pos].zone_idx = 0;
4755 }
4756
4757 #if defined(CONFIG_64BIT)
4758 /*
4759 * Devices that require DMA32/DMA are relatively rare and do not justify a
4760 * penalty to every machine in case the specialised case applies. Default
4761 * to Node-ordering on 64-bit NUMA machines
4762 */
4763 static int default_zonelist_order(void)
4764 {
4765 return ZONELIST_ORDER_NODE;
4766 }
4767 #else
4768 /*
4769 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4770 * by the kernel. If processes running on node 0 deplete the low memory zone
4771 * then reclaim will occur more frequency increasing stalls and potentially
4772 * be easier to OOM if a large percentage of the zone is under writeback or
4773 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4774 * Hence, default to zone ordering on 32-bit.
4775 */
4776 static int default_zonelist_order(void)
4777 {
4778 return ZONELIST_ORDER_ZONE;
4779 }
4780 #endif /* CONFIG_64BIT */
4781
4782 static void set_zonelist_order(void)
4783 {
4784 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4785 current_zonelist_order = default_zonelist_order();
4786 else
4787 current_zonelist_order = user_zonelist_order;
4788 }
4789
4790 static void build_zonelists(pg_data_t *pgdat)
4791 {
4792 int i, node, load;
4793 nodemask_t used_mask;
4794 int local_node, prev_node;
4795 struct zonelist *zonelist;
4796 unsigned int order = current_zonelist_order;
4797
4798 /* initialize zonelists */
4799 for (i = 0; i < MAX_ZONELISTS; i++) {
4800 zonelist = pgdat->node_zonelists + i;
4801 zonelist->_zonerefs[0].zone = NULL;
4802 zonelist->_zonerefs[0].zone_idx = 0;
4803 }
4804
4805 /* NUMA-aware ordering of nodes */
4806 local_node = pgdat->node_id;
4807 load = nr_online_nodes;
4808 prev_node = local_node;
4809 nodes_clear(used_mask);
4810
4811 memset(node_order, 0, sizeof(node_order));
4812 i = 0;
4813
4814 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4815 /*
4816 * We don't want to pressure a particular node.
4817 * So adding penalty to the first node in same
4818 * distance group to make it round-robin.
4819 */
4820 if (node_distance(local_node, node) !=
4821 node_distance(local_node, prev_node))
4822 node_load[node] = load;
4823
4824 prev_node = node;
4825 load--;
4826 if (order == ZONELIST_ORDER_NODE)
4827 build_zonelists_in_node_order(pgdat, node);
4828 else
4829 node_order[i++] = node; /* remember order */
4830 }
4831
4832 if (order == ZONELIST_ORDER_ZONE) {
4833 /* calculate node order -- i.e., DMA last! */
4834 build_zonelists_in_zone_order(pgdat, i);
4835 }
4836
4837 build_thisnode_zonelists(pgdat);
4838 }
4839
4840 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4841 /*
4842 * Return node id of node used for "local" allocations.
4843 * I.e., first node id of first zone in arg node's generic zonelist.
4844 * Used for initializing percpu 'numa_mem', which is used primarily
4845 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4846 */
4847 int local_memory_node(int node)
4848 {
4849 struct zoneref *z;
4850
4851 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4852 gfp_zone(GFP_KERNEL),
4853 NULL);
4854 return z->zone->node;
4855 }
4856 #endif
4857
4858 static void setup_min_unmapped_ratio(void);
4859 static void setup_min_slab_ratio(void);
4860 #else /* CONFIG_NUMA */
4861
4862 static void set_zonelist_order(void)
4863 {
4864 current_zonelist_order = ZONELIST_ORDER_ZONE;
4865 }
4866
4867 static void build_zonelists(pg_data_t *pgdat)
4868 {
4869 int node, local_node;
4870 enum zone_type j;
4871 struct zonelist *zonelist;
4872
4873 local_node = pgdat->node_id;
4874
4875 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4876 j = build_zonelists_node(pgdat, zonelist, 0);
4877
4878 /*
4879 * Now we build the zonelist so that it contains the zones
4880 * of all the other nodes.
4881 * We don't want to pressure a particular node, so when
4882 * building the zones for node N, we make sure that the
4883 * zones coming right after the local ones are those from
4884 * node N+1 (modulo N)
4885 */
4886 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4887 if (!node_online(node))
4888 continue;
4889 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4890 }
4891 for (node = 0; node < local_node; node++) {
4892 if (!node_online(node))
4893 continue;
4894 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4895 }
4896
4897 zonelist->_zonerefs[j].zone = NULL;
4898 zonelist->_zonerefs[j].zone_idx = 0;
4899 }
4900
4901 #endif /* CONFIG_NUMA */
4902
4903 /*
4904 * Boot pageset table. One per cpu which is going to be used for all
4905 * zones and all nodes. The parameters will be set in such a way
4906 * that an item put on a list will immediately be handed over to
4907 * the buddy list. This is safe since pageset manipulation is done
4908 * with interrupts disabled.
4909 *
4910 * The boot_pagesets must be kept even after bootup is complete for
4911 * unused processors and/or zones. They do play a role for bootstrapping
4912 * hotplugged processors.
4913 *
4914 * zoneinfo_show() and maybe other functions do
4915 * not check if the processor is online before following the pageset pointer.
4916 * Other parts of the kernel may not check if the zone is available.
4917 */
4918 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4919 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4920 static void setup_zone_pageset(struct zone *zone);
4921
4922 /*
4923 * Global mutex to protect against size modification of zonelists
4924 * as well as to serialize pageset setup for the new populated zone.
4925 */
4926 DEFINE_MUTEX(zonelists_mutex);
4927
4928 /* return values int ....just for stop_machine() */
4929 static int __build_all_zonelists(void *data)
4930 {
4931 int nid;
4932 int cpu;
4933 pg_data_t *self = data;
4934
4935 #ifdef CONFIG_NUMA
4936 memset(node_load, 0, sizeof(node_load));
4937 #endif
4938
4939 if (self && !node_online(self->node_id)) {
4940 build_zonelists(self);
4941 }
4942
4943 for_each_online_node(nid) {
4944 pg_data_t *pgdat = NODE_DATA(nid);
4945
4946 build_zonelists(pgdat);
4947 }
4948
4949 /*
4950 * Initialize the boot_pagesets that are going to be used
4951 * for bootstrapping processors. The real pagesets for
4952 * each zone will be allocated later when the per cpu
4953 * allocator is available.
4954 *
4955 * boot_pagesets are used also for bootstrapping offline
4956 * cpus if the system is already booted because the pagesets
4957 * are needed to initialize allocators on a specific cpu too.
4958 * F.e. the percpu allocator needs the page allocator which
4959 * needs the percpu allocator in order to allocate its pagesets
4960 * (a chicken-egg dilemma).
4961 */
4962 for_each_possible_cpu(cpu) {
4963 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4964
4965 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4966 /*
4967 * We now know the "local memory node" for each node--
4968 * i.e., the node of the first zone in the generic zonelist.
4969 * Set up numa_mem percpu variable for on-line cpus. During
4970 * boot, only the boot cpu should be on-line; we'll init the
4971 * secondary cpus' numa_mem as they come on-line. During
4972 * node/memory hotplug, we'll fixup all on-line cpus.
4973 */
4974 if (cpu_online(cpu))
4975 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4976 #endif
4977 }
4978
4979 return 0;
4980 }
4981
4982 static noinline void __init
4983 build_all_zonelists_init(void)
4984 {
4985 __build_all_zonelists(NULL);
4986 mminit_verify_zonelist();
4987 cpuset_init_current_mems_allowed();
4988 }
4989
4990 /*
4991 * Called with zonelists_mutex held always
4992 * unless system_state == SYSTEM_BOOTING.
4993 *
4994 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4995 * [we're only called with non-NULL zone through __meminit paths] and
4996 * (2) call of __init annotated helper build_all_zonelists_init
4997 * [protected by SYSTEM_BOOTING].
4998 */
4999 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5000 {
5001 set_zonelist_order();
5002
5003 if (system_state == SYSTEM_BOOTING) {
5004 build_all_zonelists_init();
5005 } else {
5006 #ifdef CONFIG_MEMORY_HOTPLUG
5007 if (zone)
5008 setup_zone_pageset(zone);
5009 #endif
5010 /* we have to stop all cpus to guarantee there is no user
5011 of zonelist */
5012 stop_machine(__build_all_zonelists, pgdat, NULL);
5013 /* cpuset refresh routine should be here */
5014 }
5015 vm_total_pages = nr_free_pagecache_pages();
5016 /*
5017 * Disable grouping by mobility if the number of pages in the
5018 * system is too low to allow the mechanism to work. It would be
5019 * more accurate, but expensive to check per-zone. This check is
5020 * made on memory-hotadd so a system can start with mobility
5021 * disabled and enable it later
5022 */
5023 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5024 page_group_by_mobility_disabled = 1;
5025 else
5026 page_group_by_mobility_disabled = 0;
5027
5028 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5029 nr_online_nodes,
5030 zonelist_order_name[current_zonelist_order],
5031 page_group_by_mobility_disabled ? "off" : "on",
5032 vm_total_pages);
5033 #ifdef CONFIG_NUMA
5034 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5035 #endif
5036 }
5037
5038 /*
5039 * Initially all pages are reserved - free ones are freed
5040 * up by free_all_bootmem() once the early boot process is
5041 * done. Non-atomic initialization, single-pass.
5042 */
5043 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5044 unsigned long start_pfn, enum memmap_context context)
5045 {
5046 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5047 unsigned long end_pfn = start_pfn + size;
5048 pg_data_t *pgdat = NODE_DATA(nid);
5049 unsigned long pfn;
5050 unsigned long nr_initialised = 0;
5051 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5052 struct memblock_region *r = NULL, *tmp;
5053 #endif
5054
5055 if (highest_memmap_pfn < end_pfn - 1)
5056 highest_memmap_pfn = end_pfn - 1;
5057
5058 /*
5059 * Honor reservation requested by the driver for this ZONE_DEVICE
5060 * memory
5061 */
5062 if (altmap && start_pfn == altmap->base_pfn)
5063 start_pfn += altmap->reserve;
5064
5065 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5066 /*
5067 * There can be holes in boot-time mem_map[]s handed to this
5068 * function. They do not exist on hotplugged memory.
5069 */
5070 if (context != MEMMAP_EARLY)
5071 goto not_early;
5072
5073 if (!early_pfn_valid(pfn))
5074 continue;
5075 if (!early_pfn_in_nid(pfn, nid))
5076 continue;
5077 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5078 break;
5079
5080 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5081 /*
5082 * Check given memblock attribute by firmware which can affect
5083 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5084 * mirrored, it's an overlapped memmap init. skip it.
5085 */
5086 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5087 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5088 for_each_memblock(memory, tmp)
5089 if (pfn < memblock_region_memory_end_pfn(tmp))
5090 break;
5091 r = tmp;
5092 }
5093 if (pfn >= memblock_region_memory_base_pfn(r) &&
5094 memblock_is_mirror(r)) {
5095 /* already initialized as NORMAL */
5096 pfn = memblock_region_memory_end_pfn(r);
5097 continue;
5098 }
5099 }
5100 #endif
5101
5102 not_early:
5103 /*
5104 * Mark the block movable so that blocks are reserved for
5105 * movable at startup. This will force kernel allocations
5106 * to reserve their blocks rather than leaking throughout
5107 * the address space during boot when many long-lived
5108 * kernel allocations are made.
5109 *
5110 * bitmap is created for zone's valid pfn range. but memmap
5111 * can be created for invalid pages (for alignment)
5112 * check here not to call set_pageblock_migratetype() against
5113 * pfn out of zone.
5114 */
5115 if (!(pfn & (pageblock_nr_pages - 1))) {
5116 struct page *page = pfn_to_page(pfn);
5117
5118 __init_single_page(page, pfn, zone, nid);
5119 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5120 } else {
5121 __init_single_pfn(pfn, zone, nid);
5122 }
5123 }
5124 }
5125
5126 static void __meminit zone_init_free_lists(struct zone *zone)
5127 {
5128 unsigned int order, t;
5129 for_each_migratetype_order(order, t) {
5130 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5131 zone->free_area[order].nr_free = 0;
5132 }
5133 }
5134
5135 #ifndef __HAVE_ARCH_MEMMAP_INIT
5136 #define memmap_init(size, nid, zone, start_pfn) \
5137 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5138 #endif
5139
5140 static int zone_batchsize(struct zone *zone)
5141 {
5142 #ifdef CONFIG_MMU
5143 int batch;
5144
5145 /*
5146 * The per-cpu-pages pools are set to around 1000th of the
5147 * size of the zone. But no more than 1/2 of a meg.
5148 *
5149 * OK, so we don't know how big the cache is. So guess.
5150 */
5151 batch = zone->managed_pages / 1024;
5152 if (batch * PAGE_SIZE > 512 * 1024)
5153 batch = (512 * 1024) / PAGE_SIZE;
5154 batch /= 4; /* We effectively *= 4 below */
5155 if (batch < 1)
5156 batch = 1;
5157
5158 /*
5159 * Clamp the batch to a 2^n - 1 value. Having a power
5160 * of 2 value was found to be more likely to have
5161 * suboptimal cache aliasing properties in some cases.
5162 *
5163 * For example if 2 tasks are alternately allocating
5164 * batches of pages, one task can end up with a lot
5165 * of pages of one half of the possible page colors
5166 * and the other with pages of the other colors.
5167 */
5168 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5169
5170 return batch;
5171
5172 #else
5173 /* The deferral and batching of frees should be suppressed under NOMMU
5174 * conditions.
5175 *
5176 * The problem is that NOMMU needs to be able to allocate large chunks
5177 * of contiguous memory as there's no hardware page translation to
5178 * assemble apparent contiguous memory from discontiguous pages.
5179 *
5180 * Queueing large contiguous runs of pages for batching, however,
5181 * causes the pages to actually be freed in smaller chunks. As there
5182 * can be a significant delay between the individual batches being
5183 * recycled, this leads to the once large chunks of space being
5184 * fragmented and becoming unavailable for high-order allocations.
5185 */
5186 return 0;
5187 #endif
5188 }
5189
5190 /*
5191 * pcp->high and pcp->batch values are related and dependent on one another:
5192 * ->batch must never be higher then ->high.
5193 * The following function updates them in a safe manner without read side
5194 * locking.
5195 *
5196 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5197 * those fields changing asynchronously (acording the the above rule).
5198 *
5199 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5200 * outside of boot time (or some other assurance that no concurrent updaters
5201 * exist).
5202 */
5203 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5204 unsigned long batch)
5205 {
5206 /* start with a fail safe value for batch */
5207 pcp->batch = 1;
5208 smp_wmb();
5209
5210 /* Update high, then batch, in order */
5211 pcp->high = high;
5212 smp_wmb();
5213
5214 pcp->batch = batch;
5215 }
5216
5217 /* a companion to pageset_set_high() */
5218 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5219 {
5220 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5221 }
5222
5223 static void pageset_init(struct per_cpu_pageset *p)
5224 {
5225 struct per_cpu_pages *pcp;
5226 int migratetype;
5227
5228 memset(p, 0, sizeof(*p));
5229
5230 pcp = &p->pcp;
5231 pcp->count = 0;
5232 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5233 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5234 }
5235
5236 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5237 {
5238 pageset_init(p);
5239 pageset_set_batch(p, batch);
5240 }
5241
5242 /*
5243 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5244 * to the value high for the pageset p.
5245 */
5246 static void pageset_set_high(struct per_cpu_pageset *p,
5247 unsigned long high)
5248 {
5249 unsigned long batch = max(1UL, high / 4);
5250 if ((high / 4) > (PAGE_SHIFT * 8))
5251 batch = PAGE_SHIFT * 8;
5252
5253 pageset_update(&p->pcp, high, batch);
5254 }
5255
5256 static void pageset_set_high_and_batch(struct zone *zone,
5257 struct per_cpu_pageset *pcp)
5258 {
5259 if (percpu_pagelist_fraction)
5260 pageset_set_high(pcp,
5261 (zone->managed_pages /
5262 percpu_pagelist_fraction));
5263 else
5264 pageset_set_batch(pcp, zone_batchsize(zone));
5265 }
5266
5267 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5268 {
5269 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5270
5271 pageset_init(pcp);
5272 pageset_set_high_and_batch(zone, pcp);
5273 }
5274
5275 static void __meminit setup_zone_pageset(struct zone *zone)
5276 {
5277 int cpu;
5278 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5279 for_each_possible_cpu(cpu)
5280 zone_pageset_init(zone, cpu);
5281 }
5282
5283 /*
5284 * Allocate per cpu pagesets and initialize them.
5285 * Before this call only boot pagesets were available.
5286 */
5287 void __init setup_per_cpu_pageset(void)
5288 {
5289 struct pglist_data *pgdat;
5290 struct zone *zone;
5291
5292 for_each_populated_zone(zone)
5293 setup_zone_pageset(zone);
5294
5295 for_each_online_pgdat(pgdat)
5296 pgdat->per_cpu_nodestats =
5297 alloc_percpu(struct per_cpu_nodestat);
5298 }
5299
5300 static __meminit void zone_pcp_init(struct zone *zone)
5301 {
5302 /*
5303 * per cpu subsystem is not up at this point. The following code
5304 * relies on the ability of the linker to provide the
5305 * offset of a (static) per cpu variable into the per cpu area.
5306 */
5307 zone->pageset = &boot_pageset;
5308
5309 if (populated_zone(zone))
5310 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5311 zone->name, zone->present_pages,
5312 zone_batchsize(zone));
5313 }
5314
5315 int __meminit init_currently_empty_zone(struct zone *zone,
5316 unsigned long zone_start_pfn,
5317 unsigned long size)
5318 {
5319 struct pglist_data *pgdat = zone->zone_pgdat;
5320
5321 pgdat->nr_zones = zone_idx(zone) + 1;
5322
5323 zone->zone_start_pfn = zone_start_pfn;
5324
5325 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5326 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5327 pgdat->node_id,
5328 (unsigned long)zone_idx(zone),
5329 zone_start_pfn, (zone_start_pfn + size));
5330
5331 zone_init_free_lists(zone);
5332 zone->initialized = 1;
5333
5334 return 0;
5335 }
5336
5337 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5338 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5339
5340 /*
5341 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5342 */
5343 int __meminit __early_pfn_to_nid(unsigned long pfn,
5344 struct mminit_pfnnid_cache *state)
5345 {
5346 unsigned long start_pfn, end_pfn;
5347 int nid;
5348
5349 if (state->last_start <= pfn && pfn < state->last_end)
5350 return state->last_nid;
5351
5352 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5353 if (nid != -1) {
5354 state->last_start = start_pfn;
5355 state->last_end = end_pfn;
5356 state->last_nid = nid;
5357 }
5358
5359 return nid;
5360 }
5361 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5362
5363 /**
5364 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5365 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5366 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5367 *
5368 * If an architecture guarantees that all ranges registered contain no holes
5369 * and may be freed, this this function may be used instead of calling
5370 * memblock_free_early_nid() manually.
5371 */
5372 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5373 {
5374 unsigned long start_pfn, end_pfn;
5375 int i, this_nid;
5376
5377 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5378 start_pfn = min(start_pfn, max_low_pfn);
5379 end_pfn = min(end_pfn, max_low_pfn);
5380
5381 if (start_pfn < end_pfn)
5382 memblock_free_early_nid(PFN_PHYS(start_pfn),
5383 (end_pfn - start_pfn) << PAGE_SHIFT,
5384 this_nid);
5385 }
5386 }
5387
5388 /**
5389 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5390 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5391 *
5392 * If an architecture guarantees that all ranges registered contain no holes and may
5393 * be freed, this function may be used instead of calling memory_present() manually.
5394 */
5395 void __init sparse_memory_present_with_active_regions(int nid)
5396 {
5397 unsigned long start_pfn, end_pfn;
5398 int i, this_nid;
5399
5400 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5401 memory_present(this_nid, start_pfn, end_pfn);
5402 }
5403
5404 /**
5405 * get_pfn_range_for_nid - Return the start and end page frames for a node
5406 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5407 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5408 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5409 *
5410 * It returns the start and end page frame of a node based on information
5411 * provided by memblock_set_node(). If called for a node
5412 * with no available memory, a warning is printed and the start and end
5413 * PFNs will be 0.
5414 */
5415 void __meminit get_pfn_range_for_nid(unsigned int nid,
5416 unsigned long *start_pfn, unsigned long *end_pfn)
5417 {
5418 unsigned long this_start_pfn, this_end_pfn;
5419 int i;
5420
5421 *start_pfn = -1UL;
5422 *end_pfn = 0;
5423
5424 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5425 *start_pfn = min(*start_pfn, this_start_pfn);
5426 *end_pfn = max(*end_pfn, this_end_pfn);
5427 }
5428
5429 if (*start_pfn == -1UL)
5430 *start_pfn = 0;
5431 }
5432
5433 /*
5434 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5435 * assumption is made that zones within a node are ordered in monotonic
5436 * increasing memory addresses so that the "highest" populated zone is used
5437 */
5438 static void __init find_usable_zone_for_movable(void)
5439 {
5440 int zone_index;
5441 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5442 if (zone_index == ZONE_MOVABLE)
5443 continue;
5444
5445 if (arch_zone_highest_possible_pfn[zone_index] >
5446 arch_zone_lowest_possible_pfn[zone_index])
5447 break;
5448 }
5449
5450 VM_BUG_ON(zone_index == -1);
5451 movable_zone = zone_index;
5452 }
5453
5454 /*
5455 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5456 * because it is sized independent of architecture. Unlike the other zones,
5457 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5458 * in each node depending on the size of each node and how evenly kernelcore
5459 * is distributed. This helper function adjusts the zone ranges
5460 * provided by the architecture for a given node by using the end of the
5461 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5462 * zones within a node are in order of monotonic increases memory addresses
5463 */
5464 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5465 unsigned long zone_type,
5466 unsigned long node_start_pfn,
5467 unsigned long node_end_pfn,
5468 unsigned long *zone_start_pfn,
5469 unsigned long *zone_end_pfn)
5470 {
5471 /* Only adjust if ZONE_MOVABLE is on this node */
5472 if (zone_movable_pfn[nid]) {
5473 /* Size ZONE_MOVABLE */
5474 if (zone_type == ZONE_MOVABLE) {
5475 *zone_start_pfn = zone_movable_pfn[nid];
5476 *zone_end_pfn = min(node_end_pfn,
5477 arch_zone_highest_possible_pfn[movable_zone]);
5478
5479 /* Adjust for ZONE_MOVABLE starting within this range */
5480 } else if (!mirrored_kernelcore &&
5481 *zone_start_pfn < zone_movable_pfn[nid] &&
5482 *zone_end_pfn > zone_movable_pfn[nid]) {
5483 *zone_end_pfn = zone_movable_pfn[nid];
5484
5485 /* Check if this whole range is within ZONE_MOVABLE */
5486 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5487 *zone_start_pfn = *zone_end_pfn;
5488 }
5489 }
5490
5491 /*
5492 * Return the number of pages a zone spans in a node, including holes
5493 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5494 */
5495 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5496 unsigned long zone_type,
5497 unsigned long node_start_pfn,
5498 unsigned long node_end_pfn,
5499 unsigned long *zone_start_pfn,
5500 unsigned long *zone_end_pfn,
5501 unsigned long *ignored)
5502 {
5503 /* When hotadd a new node from cpu_up(), the node should be empty */
5504 if (!node_start_pfn && !node_end_pfn)
5505 return 0;
5506
5507 /* Get the start and end of the zone */
5508 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5509 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5510 adjust_zone_range_for_zone_movable(nid, zone_type,
5511 node_start_pfn, node_end_pfn,
5512 zone_start_pfn, zone_end_pfn);
5513
5514 /* Check that this node has pages within the zone's required range */
5515 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5516 return 0;
5517
5518 /* Move the zone boundaries inside the node if necessary */
5519 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5520 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5521
5522 /* Return the spanned pages */
5523 return *zone_end_pfn - *zone_start_pfn;
5524 }
5525
5526 /*
5527 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5528 * then all holes in the requested range will be accounted for.
5529 */
5530 unsigned long __meminit __absent_pages_in_range(int nid,
5531 unsigned long range_start_pfn,
5532 unsigned long range_end_pfn)
5533 {
5534 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5535 unsigned long start_pfn, end_pfn;
5536 int i;
5537
5538 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5539 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5540 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5541 nr_absent -= end_pfn - start_pfn;
5542 }
5543 return nr_absent;
5544 }
5545
5546 /**
5547 * absent_pages_in_range - Return number of page frames in holes within a range
5548 * @start_pfn: The start PFN to start searching for holes
5549 * @end_pfn: The end PFN to stop searching for holes
5550 *
5551 * It returns the number of pages frames in memory holes within a range.
5552 */
5553 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5554 unsigned long end_pfn)
5555 {
5556 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5557 }
5558
5559 /* Return the number of page frames in holes in a zone on a node */
5560 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5561 unsigned long zone_type,
5562 unsigned long node_start_pfn,
5563 unsigned long node_end_pfn,
5564 unsigned long *ignored)
5565 {
5566 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5567 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5568 unsigned long zone_start_pfn, zone_end_pfn;
5569 unsigned long nr_absent;
5570
5571 /* When hotadd a new node from cpu_up(), the node should be empty */
5572 if (!node_start_pfn && !node_end_pfn)
5573 return 0;
5574
5575 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5576 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5577
5578 adjust_zone_range_for_zone_movable(nid, zone_type,
5579 node_start_pfn, node_end_pfn,
5580 &zone_start_pfn, &zone_end_pfn);
5581 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5582
5583 /*
5584 * ZONE_MOVABLE handling.
5585 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5586 * and vice versa.
5587 */
5588 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5589 unsigned long start_pfn, end_pfn;
5590 struct memblock_region *r;
5591
5592 for_each_memblock(memory, r) {
5593 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5594 zone_start_pfn, zone_end_pfn);
5595 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5596 zone_start_pfn, zone_end_pfn);
5597
5598 if (zone_type == ZONE_MOVABLE &&
5599 memblock_is_mirror(r))
5600 nr_absent += end_pfn - start_pfn;
5601
5602 if (zone_type == ZONE_NORMAL &&
5603 !memblock_is_mirror(r))
5604 nr_absent += end_pfn - start_pfn;
5605 }
5606 }
5607
5608 return nr_absent;
5609 }
5610
5611 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5612 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5613 unsigned long zone_type,
5614 unsigned long node_start_pfn,
5615 unsigned long node_end_pfn,
5616 unsigned long *zone_start_pfn,
5617 unsigned long *zone_end_pfn,
5618 unsigned long *zones_size)
5619 {
5620 unsigned int zone;
5621
5622 *zone_start_pfn = node_start_pfn;
5623 for (zone = 0; zone < zone_type; zone++)
5624 *zone_start_pfn += zones_size[zone];
5625
5626 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5627
5628 return zones_size[zone_type];
5629 }
5630
5631 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5632 unsigned long zone_type,
5633 unsigned long node_start_pfn,
5634 unsigned long node_end_pfn,
5635 unsigned long *zholes_size)
5636 {
5637 if (!zholes_size)
5638 return 0;
5639
5640 return zholes_size[zone_type];
5641 }
5642
5643 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5644
5645 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5646 unsigned long node_start_pfn,
5647 unsigned long node_end_pfn,
5648 unsigned long *zones_size,
5649 unsigned long *zholes_size)
5650 {
5651 unsigned long realtotalpages = 0, totalpages = 0;
5652 enum zone_type i;
5653
5654 for (i = 0; i < MAX_NR_ZONES; i++) {
5655 struct zone *zone = pgdat->node_zones + i;
5656 unsigned long zone_start_pfn, zone_end_pfn;
5657 unsigned long size, real_size;
5658
5659 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5660 node_start_pfn,
5661 node_end_pfn,
5662 &zone_start_pfn,
5663 &zone_end_pfn,
5664 zones_size);
5665 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5666 node_start_pfn, node_end_pfn,
5667 zholes_size);
5668 if (size)
5669 zone->zone_start_pfn = zone_start_pfn;
5670 else
5671 zone->zone_start_pfn = 0;
5672 zone->spanned_pages = size;
5673 zone->present_pages = real_size;
5674
5675 totalpages += size;
5676 realtotalpages += real_size;
5677 }
5678
5679 pgdat->node_spanned_pages = totalpages;
5680 pgdat->node_present_pages = realtotalpages;
5681 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5682 realtotalpages);
5683 }
5684
5685 #ifndef CONFIG_SPARSEMEM
5686 /*
5687 * Calculate the size of the zone->blockflags rounded to an unsigned long
5688 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5689 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5690 * round what is now in bits to nearest long in bits, then return it in
5691 * bytes.
5692 */
5693 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5694 {
5695 unsigned long usemapsize;
5696
5697 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5698 usemapsize = roundup(zonesize, pageblock_nr_pages);
5699 usemapsize = usemapsize >> pageblock_order;
5700 usemapsize *= NR_PAGEBLOCK_BITS;
5701 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5702
5703 return usemapsize / 8;
5704 }
5705
5706 static void __init setup_usemap(struct pglist_data *pgdat,
5707 struct zone *zone,
5708 unsigned long zone_start_pfn,
5709 unsigned long zonesize)
5710 {
5711 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5712 zone->pageblock_flags = NULL;
5713 if (usemapsize)
5714 zone->pageblock_flags =
5715 memblock_virt_alloc_node_nopanic(usemapsize,
5716 pgdat->node_id);
5717 }
5718 #else
5719 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5720 unsigned long zone_start_pfn, unsigned long zonesize) {}
5721 #endif /* CONFIG_SPARSEMEM */
5722
5723 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5724
5725 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5726 void __paginginit set_pageblock_order(void)
5727 {
5728 unsigned int order;
5729
5730 /* Check that pageblock_nr_pages has not already been setup */
5731 if (pageblock_order)
5732 return;
5733
5734 if (HPAGE_SHIFT > PAGE_SHIFT)
5735 order = HUGETLB_PAGE_ORDER;
5736 else
5737 order = MAX_ORDER - 1;
5738
5739 /*
5740 * Assume the largest contiguous order of interest is a huge page.
5741 * This value may be variable depending on boot parameters on IA64 and
5742 * powerpc.
5743 */
5744 pageblock_order = order;
5745 }
5746 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5747
5748 /*
5749 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5750 * is unused as pageblock_order is set at compile-time. See
5751 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5752 * the kernel config
5753 */
5754 void __paginginit set_pageblock_order(void)
5755 {
5756 }
5757
5758 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5759
5760 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5761 unsigned long present_pages)
5762 {
5763 unsigned long pages = spanned_pages;
5764
5765 /*
5766 * Provide a more accurate estimation if there are holes within
5767 * the zone and SPARSEMEM is in use. If there are holes within the
5768 * zone, each populated memory region may cost us one or two extra
5769 * memmap pages due to alignment because memmap pages for each
5770 * populated regions may not naturally algined on page boundary.
5771 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5772 */
5773 if (spanned_pages > present_pages + (present_pages >> 4) &&
5774 IS_ENABLED(CONFIG_SPARSEMEM))
5775 pages = present_pages;
5776
5777 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5778 }
5779
5780 /*
5781 * Set up the zone data structures:
5782 * - mark all pages reserved
5783 * - mark all memory queues empty
5784 * - clear the memory bitmaps
5785 *
5786 * NOTE: pgdat should get zeroed by caller.
5787 */
5788 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5789 {
5790 enum zone_type j;
5791 int nid = pgdat->node_id;
5792 int ret;
5793
5794 pgdat_resize_init(pgdat);
5795 #ifdef CONFIG_NUMA_BALANCING
5796 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5797 pgdat->numabalancing_migrate_nr_pages = 0;
5798 pgdat->numabalancing_migrate_next_window = jiffies;
5799 #endif
5800 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5801 spin_lock_init(&pgdat->split_queue_lock);
5802 INIT_LIST_HEAD(&pgdat->split_queue);
5803 pgdat->split_queue_len = 0;
5804 #endif
5805 init_waitqueue_head(&pgdat->kswapd_wait);
5806 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5807 #ifdef CONFIG_COMPACTION
5808 init_waitqueue_head(&pgdat->kcompactd_wait);
5809 #endif
5810 pgdat_page_ext_init(pgdat);
5811 spin_lock_init(&pgdat->lru_lock);
5812 lruvec_init(node_lruvec(pgdat));
5813
5814 for (j = 0; j < MAX_NR_ZONES; j++) {
5815 struct zone *zone = pgdat->node_zones + j;
5816 unsigned long size, realsize, freesize, memmap_pages;
5817 unsigned long zone_start_pfn = zone->zone_start_pfn;
5818
5819 size = zone->spanned_pages;
5820 realsize = freesize = zone->present_pages;
5821
5822 /*
5823 * Adjust freesize so that it accounts for how much memory
5824 * is used by this zone for memmap. This affects the watermark
5825 * and per-cpu initialisations
5826 */
5827 memmap_pages = calc_memmap_size(size, realsize);
5828 if (!is_highmem_idx(j)) {
5829 if (freesize >= memmap_pages) {
5830 freesize -= memmap_pages;
5831 if (memmap_pages)
5832 printk(KERN_DEBUG
5833 " %s zone: %lu pages used for memmap\n",
5834 zone_names[j], memmap_pages);
5835 } else
5836 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5837 zone_names[j], memmap_pages, freesize);
5838 }
5839
5840 /* Account for reserved pages */
5841 if (j == 0 && freesize > dma_reserve) {
5842 freesize -= dma_reserve;
5843 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5844 zone_names[0], dma_reserve);
5845 }
5846
5847 if (!is_highmem_idx(j))
5848 nr_kernel_pages += freesize;
5849 /* Charge for highmem memmap if there are enough kernel pages */
5850 else if (nr_kernel_pages > memmap_pages * 2)
5851 nr_kernel_pages -= memmap_pages;
5852 nr_all_pages += freesize;
5853
5854 /*
5855 * Set an approximate value for lowmem here, it will be adjusted
5856 * when the bootmem allocator frees pages into the buddy system.
5857 * And all highmem pages will be managed by the buddy system.
5858 */
5859 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5860 #ifdef CONFIG_NUMA
5861 zone->node = nid;
5862 #endif
5863 zone->name = zone_names[j];
5864 zone->zone_pgdat = pgdat;
5865 spin_lock_init(&zone->lock);
5866 zone_seqlock_init(zone);
5867 zone_pcp_init(zone);
5868
5869 if (!size)
5870 continue;
5871
5872 set_pageblock_order();
5873 setup_usemap(pgdat, zone, zone_start_pfn, size);
5874 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5875 BUG_ON(ret);
5876 memmap_init(size, nid, j, zone_start_pfn);
5877 }
5878 }
5879
5880 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
5881 {
5882 unsigned long __maybe_unused start = 0;
5883 unsigned long __maybe_unused offset = 0;
5884
5885 /* Skip empty nodes */
5886 if (!pgdat->node_spanned_pages)
5887 return;
5888
5889 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5890 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5891 offset = pgdat->node_start_pfn - start;
5892 /* ia64 gets its own node_mem_map, before this, without bootmem */
5893 if (!pgdat->node_mem_map) {
5894 unsigned long size, end;
5895 struct page *map;
5896
5897 /*
5898 * The zone's endpoints aren't required to be MAX_ORDER
5899 * aligned but the node_mem_map endpoints must be in order
5900 * for the buddy allocator to function correctly.
5901 */
5902 end = pgdat_end_pfn(pgdat);
5903 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5904 size = (end - start) * sizeof(struct page);
5905 map = alloc_remap(pgdat->node_id, size);
5906 if (!map)
5907 map = memblock_virt_alloc_node_nopanic(size,
5908 pgdat->node_id);
5909 pgdat->node_mem_map = map + offset;
5910 }
5911 #ifndef CONFIG_NEED_MULTIPLE_NODES
5912 /*
5913 * With no DISCONTIG, the global mem_map is just set as node 0's
5914 */
5915 if (pgdat == NODE_DATA(0)) {
5916 mem_map = NODE_DATA(0)->node_mem_map;
5917 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5918 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5919 mem_map -= offset;
5920 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5921 }
5922 #endif
5923 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5924 }
5925
5926 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5927 unsigned long node_start_pfn, unsigned long *zholes_size)
5928 {
5929 pg_data_t *pgdat = NODE_DATA(nid);
5930 unsigned long start_pfn = 0;
5931 unsigned long end_pfn = 0;
5932
5933 /* pg_data_t should be reset to zero when it's allocated */
5934 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
5935
5936 reset_deferred_meminit(pgdat);
5937 pgdat->node_id = nid;
5938 pgdat->node_start_pfn = node_start_pfn;
5939 pgdat->per_cpu_nodestats = NULL;
5940 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5941 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5942 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5943 (u64)start_pfn << PAGE_SHIFT,
5944 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5945 #else
5946 start_pfn = node_start_pfn;
5947 #endif
5948 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5949 zones_size, zholes_size);
5950
5951 alloc_node_mem_map(pgdat);
5952 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5953 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5954 nid, (unsigned long)pgdat,
5955 (unsigned long)pgdat->node_mem_map);
5956 #endif
5957
5958 free_area_init_core(pgdat);
5959 }
5960
5961 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5962
5963 #if MAX_NUMNODES > 1
5964 /*
5965 * Figure out the number of possible node ids.
5966 */
5967 void __init setup_nr_node_ids(void)
5968 {
5969 unsigned int highest;
5970
5971 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5972 nr_node_ids = highest + 1;
5973 }
5974 #endif
5975
5976 /**
5977 * node_map_pfn_alignment - determine the maximum internode alignment
5978 *
5979 * This function should be called after node map is populated and sorted.
5980 * It calculates the maximum power of two alignment which can distinguish
5981 * all the nodes.
5982 *
5983 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5984 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5985 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5986 * shifted, 1GiB is enough and this function will indicate so.
5987 *
5988 * This is used to test whether pfn -> nid mapping of the chosen memory
5989 * model has fine enough granularity to avoid incorrect mapping for the
5990 * populated node map.
5991 *
5992 * Returns the determined alignment in pfn's. 0 if there is no alignment
5993 * requirement (single node).
5994 */
5995 unsigned long __init node_map_pfn_alignment(void)
5996 {
5997 unsigned long accl_mask = 0, last_end = 0;
5998 unsigned long start, end, mask;
5999 int last_nid = -1;
6000 int i, nid;
6001
6002 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6003 if (!start || last_nid < 0 || last_nid == nid) {
6004 last_nid = nid;
6005 last_end = end;
6006 continue;
6007 }
6008
6009 /*
6010 * Start with a mask granular enough to pin-point to the
6011 * start pfn and tick off bits one-by-one until it becomes
6012 * too coarse to separate the current node from the last.
6013 */
6014 mask = ~((1 << __ffs(start)) - 1);
6015 while (mask && last_end <= (start & (mask << 1)))
6016 mask <<= 1;
6017
6018 /* accumulate all internode masks */
6019 accl_mask |= mask;
6020 }
6021
6022 /* convert mask to number of pages */
6023 return ~accl_mask + 1;
6024 }
6025
6026 /* Find the lowest pfn for a node */
6027 static unsigned long __init find_min_pfn_for_node(int nid)
6028 {
6029 unsigned long min_pfn = ULONG_MAX;
6030 unsigned long start_pfn;
6031 int i;
6032
6033 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6034 min_pfn = min(min_pfn, start_pfn);
6035
6036 if (min_pfn == ULONG_MAX) {
6037 pr_warn("Could not find start_pfn for node %d\n", nid);
6038 return 0;
6039 }
6040
6041 return min_pfn;
6042 }
6043
6044 /**
6045 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6046 *
6047 * It returns the minimum PFN based on information provided via
6048 * memblock_set_node().
6049 */
6050 unsigned long __init find_min_pfn_with_active_regions(void)
6051 {
6052 return find_min_pfn_for_node(MAX_NUMNODES);
6053 }
6054
6055 /*
6056 * early_calculate_totalpages()
6057 * Sum pages in active regions for movable zone.
6058 * Populate N_MEMORY for calculating usable_nodes.
6059 */
6060 static unsigned long __init early_calculate_totalpages(void)
6061 {
6062 unsigned long totalpages = 0;
6063 unsigned long start_pfn, end_pfn;
6064 int i, nid;
6065
6066 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6067 unsigned long pages = end_pfn - start_pfn;
6068
6069 totalpages += pages;
6070 if (pages)
6071 node_set_state(nid, N_MEMORY);
6072 }
6073 return totalpages;
6074 }
6075
6076 /*
6077 * Find the PFN the Movable zone begins in each node. Kernel memory
6078 * is spread evenly between nodes as long as the nodes have enough
6079 * memory. When they don't, some nodes will have more kernelcore than
6080 * others
6081 */
6082 static void __init find_zone_movable_pfns_for_nodes(void)
6083 {
6084 int i, nid;
6085 unsigned long usable_startpfn;
6086 unsigned long kernelcore_node, kernelcore_remaining;
6087 /* save the state before borrow the nodemask */
6088 nodemask_t saved_node_state = node_states[N_MEMORY];
6089 unsigned long totalpages = early_calculate_totalpages();
6090 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6091 struct memblock_region *r;
6092
6093 /* Need to find movable_zone earlier when movable_node is specified. */
6094 find_usable_zone_for_movable();
6095
6096 /*
6097 * If movable_node is specified, ignore kernelcore and movablecore
6098 * options.
6099 */
6100 if (movable_node_is_enabled()) {
6101 for_each_memblock(memory, r) {
6102 if (!memblock_is_hotpluggable(r))
6103 continue;
6104
6105 nid = r->nid;
6106
6107 usable_startpfn = PFN_DOWN(r->base);
6108 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6109 min(usable_startpfn, zone_movable_pfn[nid]) :
6110 usable_startpfn;
6111 }
6112
6113 goto out2;
6114 }
6115
6116 /*
6117 * If kernelcore=mirror is specified, ignore movablecore option
6118 */
6119 if (mirrored_kernelcore) {
6120 bool mem_below_4gb_not_mirrored = false;
6121
6122 for_each_memblock(memory, r) {
6123 if (memblock_is_mirror(r))
6124 continue;
6125
6126 nid = r->nid;
6127
6128 usable_startpfn = memblock_region_memory_base_pfn(r);
6129
6130 if (usable_startpfn < 0x100000) {
6131 mem_below_4gb_not_mirrored = true;
6132 continue;
6133 }
6134
6135 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6136 min(usable_startpfn, zone_movable_pfn[nid]) :
6137 usable_startpfn;
6138 }
6139
6140 if (mem_below_4gb_not_mirrored)
6141 pr_warn("This configuration results in unmirrored kernel memory.");
6142
6143 goto out2;
6144 }
6145
6146 /*
6147 * If movablecore=nn[KMG] was specified, calculate what size of
6148 * kernelcore that corresponds so that memory usable for
6149 * any allocation type is evenly spread. If both kernelcore
6150 * and movablecore are specified, then the value of kernelcore
6151 * will be used for required_kernelcore if it's greater than
6152 * what movablecore would have allowed.
6153 */
6154 if (required_movablecore) {
6155 unsigned long corepages;
6156
6157 /*
6158 * Round-up so that ZONE_MOVABLE is at least as large as what
6159 * was requested by the user
6160 */
6161 required_movablecore =
6162 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6163 required_movablecore = min(totalpages, required_movablecore);
6164 corepages = totalpages - required_movablecore;
6165
6166 required_kernelcore = max(required_kernelcore, corepages);
6167 }
6168
6169 /*
6170 * If kernelcore was not specified or kernelcore size is larger
6171 * than totalpages, there is no ZONE_MOVABLE.
6172 */
6173 if (!required_kernelcore || required_kernelcore >= totalpages)
6174 goto out;
6175
6176 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6177 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6178
6179 restart:
6180 /* Spread kernelcore memory as evenly as possible throughout nodes */
6181 kernelcore_node = required_kernelcore / usable_nodes;
6182 for_each_node_state(nid, N_MEMORY) {
6183 unsigned long start_pfn, end_pfn;
6184
6185 /*
6186 * Recalculate kernelcore_node if the division per node
6187 * now exceeds what is necessary to satisfy the requested
6188 * amount of memory for the kernel
6189 */
6190 if (required_kernelcore < kernelcore_node)
6191 kernelcore_node = required_kernelcore / usable_nodes;
6192
6193 /*
6194 * As the map is walked, we track how much memory is usable
6195 * by the kernel using kernelcore_remaining. When it is
6196 * 0, the rest of the node is usable by ZONE_MOVABLE
6197 */
6198 kernelcore_remaining = kernelcore_node;
6199
6200 /* Go through each range of PFNs within this node */
6201 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6202 unsigned long size_pages;
6203
6204 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6205 if (start_pfn >= end_pfn)
6206 continue;
6207
6208 /* Account for what is only usable for kernelcore */
6209 if (start_pfn < usable_startpfn) {
6210 unsigned long kernel_pages;
6211 kernel_pages = min(end_pfn, usable_startpfn)
6212 - start_pfn;
6213
6214 kernelcore_remaining -= min(kernel_pages,
6215 kernelcore_remaining);
6216 required_kernelcore -= min(kernel_pages,
6217 required_kernelcore);
6218
6219 /* Continue if range is now fully accounted */
6220 if (end_pfn <= usable_startpfn) {
6221
6222 /*
6223 * Push zone_movable_pfn to the end so
6224 * that if we have to rebalance
6225 * kernelcore across nodes, we will
6226 * not double account here
6227 */
6228 zone_movable_pfn[nid] = end_pfn;
6229 continue;
6230 }
6231 start_pfn = usable_startpfn;
6232 }
6233
6234 /*
6235 * The usable PFN range for ZONE_MOVABLE is from
6236 * start_pfn->end_pfn. Calculate size_pages as the
6237 * number of pages used as kernelcore
6238 */
6239 size_pages = end_pfn - start_pfn;
6240 if (size_pages > kernelcore_remaining)
6241 size_pages = kernelcore_remaining;
6242 zone_movable_pfn[nid] = start_pfn + size_pages;
6243
6244 /*
6245 * Some kernelcore has been met, update counts and
6246 * break if the kernelcore for this node has been
6247 * satisfied
6248 */
6249 required_kernelcore -= min(required_kernelcore,
6250 size_pages);
6251 kernelcore_remaining -= size_pages;
6252 if (!kernelcore_remaining)
6253 break;
6254 }
6255 }
6256
6257 /*
6258 * If there is still required_kernelcore, we do another pass with one
6259 * less node in the count. This will push zone_movable_pfn[nid] further
6260 * along on the nodes that still have memory until kernelcore is
6261 * satisfied
6262 */
6263 usable_nodes--;
6264 if (usable_nodes && required_kernelcore > usable_nodes)
6265 goto restart;
6266
6267 out2:
6268 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6269 for (nid = 0; nid < MAX_NUMNODES; nid++)
6270 zone_movable_pfn[nid] =
6271 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6272
6273 out:
6274 /* restore the node_state */
6275 node_states[N_MEMORY] = saved_node_state;
6276 }
6277
6278 /* Any regular or high memory on that node ? */
6279 static void check_for_memory(pg_data_t *pgdat, int nid)
6280 {
6281 enum zone_type zone_type;
6282
6283 if (N_MEMORY == N_NORMAL_MEMORY)
6284 return;
6285
6286 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6287 struct zone *zone = &pgdat->node_zones[zone_type];
6288 if (populated_zone(zone)) {
6289 node_set_state(nid, N_HIGH_MEMORY);
6290 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6291 zone_type <= ZONE_NORMAL)
6292 node_set_state(nid, N_NORMAL_MEMORY);
6293 break;
6294 }
6295 }
6296 }
6297
6298 /**
6299 * free_area_init_nodes - Initialise all pg_data_t and zone data
6300 * @max_zone_pfn: an array of max PFNs for each zone
6301 *
6302 * This will call free_area_init_node() for each active node in the system.
6303 * Using the page ranges provided by memblock_set_node(), the size of each
6304 * zone in each node and their holes is calculated. If the maximum PFN
6305 * between two adjacent zones match, it is assumed that the zone is empty.
6306 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6307 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6308 * starts where the previous one ended. For example, ZONE_DMA32 starts
6309 * at arch_max_dma_pfn.
6310 */
6311 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6312 {
6313 unsigned long start_pfn, end_pfn;
6314 int i, nid;
6315
6316 /* Record where the zone boundaries are */
6317 memset(arch_zone_lowest_possible_pfn, 0,
6318 sizeof(arch_zone_lowest_possible_pfn));
6319 memset(arch_zone_highest_possible_pfn, 0,
6320 sizeof(arch_zone_highest_possible_pfn));
6321
6322 start_pfn = find_min_pfn_with_active_regions();
6323
6324 for (i = 0; i < MAX_NR_ZONES; i++) {
6325 if (i == ZONE_MOVABLE)
6326 continue;
6327
6328 end_pfn = max(max_zone_pfn[i], start_pfn);
6329 arch_zone_lowest_possible_pfn[i] = start_pfn;
6330 arch_zone_highest_possible_pfn[i] = end_pfn;
6331
6332 start_pfn = end_pfn;
6333 }
6334 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6335 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6336
6337 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6338 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6339 find_zone_movable_pfns_for_nodes();
6340
6341 /* Print out the zone ranges */
6342 pr_info("Zone ranges:\n");
6343 for (i = 0; i < MAX_NR_ZONES; i++) {
6344 if (i == ZONE_MOVABLE)
6345 continue;
6346 pr_info(" %-8s ", zone_names[i]);
6347 if (arch_zone_lowest_possible_pfn[i] ==
6348 arch_zone_highest_possible_pfn[i])
6349 pr_cont("empty\n");
6350 else
6351 pr_cont("[mem %#018Lx-%#018Lx]\n",
6352 (u64)arch_zone_lowest_possible_pfn[i]
6353 << PAGE_SHIFT,
6354 ((u64)arch_zone_highest_possible_pfn[i]
6355 << PAGE_SHIFT) - 1);
6356 }
6357
6358 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6359 pr_info("Movable zone start for each node\n");
6360 for (i = 0; i < MAX_NUMNODES; i++) {
6361 if (zone_movable_pfn[i])
6362 pr_info(" Node %d: %#018Lx\n", i,
6363 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6364 }
6365
6366 /* Print out the early node map */
6367 pr_info("Early memory node ranges\n");
6368 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6369 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6370 (u64)start_pfn << PAGE_SHIFT,
6371 ((u64)end_pfn << PAGE_SHIFT) - 1);
6372
6373 /* Initialise every node */
6374 mminit_verify_pageflags_layout();
6375 setup_nr_node_ids();
6376 for_each_online_node(nid) {
6377 pg_data_t *pgdat = NODE_DATA(nid);
6378 free_area_init_node(nid, NULL,
6379 find_min_pfn_for_node(nid), NULL);
6380
6381 /* Any memory on that node */
6382 if (pgdat->node_present_pages)
6383 node_set_state(nid, N_MEMORY);
6384 check_for_memory(pgdat, nid);
6385 }
6386 }
6387
6388 static int __init cmdline_parse_core(char *p, unsigned long *core)
6389 {
6390 unsigned long long coremem;
6391 if (!p)
6392 return -EINVAL;
6393
6394 coremem = memparse(p, &p);
6395 *core = coremem >> PAGE_SHIFT;
6396
6397 /* Paranoid check that UL is enough for the coremem value */
6398 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6399
6400 return 0;
6401 }
6402
6403 /*
6404 * kernelcore=size sets the amount of memory for use for allocations that
6405 * cannot be reclaimed or migrated.
6406 */
6407 static int __init cmdline_parse_kernelcore(char *p)
6408 {
6409 /* parse kernelcore=mirror */
6410 if (parse_option_str(p, "mirror")) {
6411 mirrored_kernelcore = true;
6412 return 0;
6413 }
6414
6415 return cmdline_parse_core(p, &required_kernelcore);
6416 }
6417
6418 /*
6419 * movablecore=size sets the amount of memory for use for allocations that
6420 * can be reclaimed or migrated.
6421 */
6422 static int __init cmdline_parse_movablecore(char *p)
6423 {
6424 return cmdline_parse_core(p, &required_movablecore);
6425 }
6426
6427 early_param("kernelcore", cmdline_parse_kernelcore);
6428 early_param("movablecore", cmdline_parse_movablecore);
6429
6430 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6431
6432 void adjust_managed_page_count(struct page *page, long count)
6433 {
6434 spin_lock(&managed_page_count_lock);
6435 page_zone(page)->managed_pages += count;
6436 totalram_pages += count;
6437 #ifdef CONFIG_HIGHMEM
6438 if (PageHighMem(page))
6439 totalhigh_pages += count;
6440 #endif
6441 spin_unlock(&managed_page_count_lock);
6442 }
6443 EXPORT_SYMBOL(adjust_managed_page_count);
6444
6445 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6446 {
6447 void *pos;
6448 unsigned long pages = 0;
6449
6450 start = (void *)PAGE_ALIGN((unsigned long)start);
6451 end = (void *)((unsigned long)end & PAGE_MASK);
6452 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6453 if ((unsigned int)poison <= 0xFF)
6454 memset(pos, poison, PAGE_SIZE);
6455 free_reserved_page(virt_to_page(pos));
6456 }
6457
6458 if (pages && s)
6459 pr_info("Freeing %s memory: %ldK\n",
6460 s, pages << (PAGE_SHIFT - 10));
6461
6462 return pages;
6463 }
6464 EXPORT_SYMBOL(free_reserved_area);
6465
6466 #ifdef CONFIG_HIGHMEM
6467 void free_highmem_page(struct page *page)
6468 {
6469 __free_reserved_page(page);
6470 totalram_pages++;
6471 page_zone(page)->managed_pages++;
6472 totalhigh_pages++;
6473 }
6474 #endif
6475
6476
6477 void __init mem_init_print_info(const char *str)
6478 {
6479 unsigned long physpages, codesize, datasize, rosize, bss_size;
6480 unsigned long init_code_size, init_data_size;
6481
6482 physpages = get_num_physpages();
6483 codesize = _etext - _stext;
6484 datasize = _edata - _sdata;
6485 rosize = __end_rodata - __start_rodata;
6486 bss_size = __bss_stop - __bss_start;
6487 init_data_size = __init_end - __init_begin;
6488 init_code_size = _einittext - _sinittext;
6489
6490 /*
6491 * Detect special cases and adjust section sizes accordingly:
6492 * 1) .init.* may be embedded into .data sections
6493 * 2) .init.text.* may be out of [__init_begin, __init_end],
6494 * please refer to arch/tile/kernel/vmlinux.lds.S.
6495 * 3) .rodata.* may be embedded into .text or .data sections.
6496 */
6497 #define adj_init_size(start, end, size, pos, adj) \
6498 do { \
6499 if (start <= pos && pos < end && size > adj) \
6500 size -= adj; \
6501 } while (0)
6502
6503 adj_init_size(__init_begin, __init_end, init_data_size,
6504 _sinittext, init_code_size);
6505 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6506 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6507 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6508 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6509
6510 #undef adj_init_size
6511
6512 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6513 #ifdef CONFIG_HIGHMEM
6514 ", %luK highmem"
6515 #endif
6516 "%s%s)\n",
6517 nr_free_pages() << (PAGE_SHIFT - 10),
6518 physpages << (PAGE_SHIFT - 10),
6519 codesize >> 10, datasize >> 10, rosize >> 10,
6520 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6521 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6522 totalcma_pages << (PAGE_SHIFT - 10),
6523 #ifdef CONFIG_HIGHMEM
6524 totalhigh_pages << (PAGE_SHIFT - 10),
6525 #endif
6526 str ? ", " : "", str ? str : "");
6527 }
6528
6529 /**
6530 * set_dma_reserve - set the specified number of pages reserved in the first zone
6531 * @new_dma_reserve: The number of pages to mark reserved
6532 *
6533 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6534 * In the DMA zone, a significant percentage may be consumed by kernel image
6535 * and other unfreeable allocations which can skew the watermarks badly. This
6536 * function may optionally be used to account for unfreeable pages in the
6537 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6538 * smaller per-cpu batchsize.
6539 */
6540 void __init set_dma_reserve(unsigned long new_dma_reserve)
6541 {
6542 dma_reserve = new_dma_reserve;
6543 }
6544
6545 void __init free_area_init(unsigned long *zones_size)
6546 {
6547 free_area_init_node(0, zones_size,
6548 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6549 }
6550
6551 static int page_alloc_cpu_dead(unsigned int cpu)
6552 {
6553
6554 lru_add_drain_cpu(cpu);
6555 drain_pages(cpu);
6556
6557 /*
6558 * Spill the event counters of the dead processor
6559 * into the current processors event counters.
6560 * This artificially elevates the count of the current
6561 * processor.
6562 */
6563 vm_events_fold_cpu(cpu);
6564
6565 /*
6566 * Zero the differential counters of the dead processor
6567 * so that the vm statistics are consistent.
6568 *
6569 * This is only okay since the processor is dead and cannot
6570 * race with what we are doing.
6571 */
6572 cpu_vm_stats_fold(cpu);
6573 return 0;
6574 }
6575
6576 void __init page_alloc_init(void)
6577 {
6578 int ret;
6579
6580 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6581 "mm/page_alloc:dead", NULL,
6582 page_alloc_cpu_dead);
6583 WARN_ON(ret < 0);
6584 }
6585
6586 /*
6587 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6588 * or min_free_kbytes changes.
6589 */
6590 static void calculate_totalreserve_pages(void)
6591 {
6592 struct pglist_data *pgdat;
6593 unsigned long reserve_pages = 0;
6594 enum zone_type i, j;
6595
6596 for_each_online_pgdat(pgdat) {
6597
6598 pgdat->totalreserve_pages = 0;
6599
6600 for (i = 0; i < MAX_NR_ZONES; i++) {
6601 struct zone *zone = pgdat->node_zones + i;
6602 long max = 0;
6603
6604 /* Find valid and maximum lowmem_reserve in the zone */
6605 for (j = i; j < MAX_NR_ZONES; j++) {
6606 if (zone->lowmem_reserve[j] > max)
6607 max = zone->lowmem_reserve[j];
6608 }
6609
6610 /* we treat the high watermark as reserved pages. */
6611 max += high_wmark_pages(zone);
6612
6613 if (max > zone->managed_pages)
6614 max = zone->managed_pages;
6615
6616 pgdat->totalreserve_pages += max;
6617
6618 reserve_pages += max;
6619 }
6620 }
6621 totalreserve_pages = reserve_pages;
6622 }
6623
6624 /*
6625 * setup_per_zone_lowmem_reserve - called whenever
6626 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6627 * has a correct pages reserved value, so an adequate number of
6628 * pages are left in the zone after a successful __alloc_pages().
6629 */
6630 static void setup_per_zone_lowmem_reserve(void)
6631 {
6632 struct pglist_data *pgdat;
6633 enum zone_type j, idx;
6634
6635 for_each_online_pgdat(pgdat) {
6636 for (j = 0; j < MAX_NR_ZONES; j++) {
6637 struct zone *zone = pgdat->node_zones + j;
6638 unsigned long managed_pages = zone->managed_pages;
6639
6640 zone->lowmem_reserve[j] = 0;
6641
6642 idx = j;
6643 while (idx) {
6644 struct zone *lower_zone;
6645
6646 idx--;
6647
6648 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6649 sysctl_lowmem_reserve_ratio[idx] = 1;
6650
6651 lower_zone = pgdat->node_zones + idx;
6652 lower_zone->lowmem_reserve[j] = managed_pages /
6653 sysctl_lowmem_reserve_ratio[idx];
6654 managed_pages += lower_zone->managed_pages;
6655 }
6656 }
6657 }
6658
6659 /* update totalreserve_pages */
6660 calculate_totalreserve_pages();
6661 }
6662
6663 static void __setup_per_zone_wmarks(void)
6664 {
6665 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6666 unsigned long lowmem_pages = 0;
6667 struct zone *zone;
6668 unsigned long flags;
6669
6670 /* Calculate total number of !ZONE_HIGHMEM pages */
6671 for_each_zone(zone) {
6672 if (!is_highmem(zone))
6673 lowmem_pages += zone->managed_pages;
6674 }
6675
6676 for_each_zone(zone) {
6677 u64 tmp;
6678
6679 spin_lock_irqsave(&zone->lock, flags);
6680 tmp = (u64)pages_min * zone->managed_pages;
6681 do_div(tmp, lowmem_pages);
6682 if (is_highmem(zone)) {
6683 /*
6684 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6685 * need highmem pages, so cap pages_min to a small
6686 * value here.
6687 *
6688 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6689 * deltas control asynch page reclaim, and so should
6690 * not be capped for highmem.
6691 */
6692 unsigned long min_pages;
6693
6694 min_pages = zone->managed_pages / 1024;
6695 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6696 zone->watermark[WMARK_MIN] = min_pages;
6697 } else {
6698 /*
6699 * If it's a lowmem zone, reserve a number of pages
6700 * proportionate to the zone's size.
6701 */
6702 zone->watermark[WMARK_MIN] = tmp;
6703 }
6704
6705 /*
6706 * Set the kswapd watermarks distance according to the
6707 * scale factor in proportion to available memory, but
6708 * ensure a minimum size on small systems.
6709 */
6710 tmp = max_t(u64, tmp >> 2,
6711 mult_frac(zone->managed_pages,
6712 watermark_scale_factor, 10000));
6713
6714 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6715 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6716
6717 spin_unlock_irqrestore(&zone->lock, flags);
6718 }
6719
6720 /* update totalreserve_pages */
6721 calculate_totalreserve_pages();
6722 }
6723
6724 /**
6725 * setup_per_zone_wmarks - called when min_free_kbytes changes
6726 * or when memory is hot-{added|removed}
6727 *
6728 * Ensures that the watermark[min,low,high] values for each zone are set
6729 * correctly with respect to min_free_kbytes.
6730 */
6731 void setup_per_zone_wmarks(void)
6732 {
6733 mutex_lock(&zonelists_mutex);
6734 __setup_per_zone_wmarks();
6735 mutex_unlock(&zonelists_mutex);
6736 }
6737
6738 /*
6739 * Initialise min_free_kbytes.
6740 *
6741 * For small machines we want it small (128k min). For large machines
6742 * we want it large (64MB max). But it is not linear, because network
6743 * bandwidth does not increase linearly with machine size. We use
6744 *
6745 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6746 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6747 *
6748 * which yields
6749 *
6750 * 16MB: 512k
6751 * 32MB: 724k
6752 * 64MB: 1024k
6753 * 128MB: 1448k
6754 * 256MB: 2048k
6755 * 512MB: 2896k
6756 * 1024MB: 4096k
6757 * 2048MB: 5792k
6758 * 4096MB: 8192k
6759 * 8192MB: 11584k
6760 * 16384MB: 16384k
6761 */
6762 int __meminit init_per_zone_wmark_min(void)
6763 {
6764 unsigned long lowmem_kbytes;
6765 int new_min_free_kbytes;
6766
6767 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6768 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6769
6770 if (new_min_free_kbytes > user_min_free_kbytes) {
6771 min_free_kbytes = new_min_free_kbytes;
6772 if (min_free_kbytes < 128)
6773 min_free_kbytes = 128;
6774 if (min_free_kbytes > 65536)
6775 min_free_kbytes = 65536;
6776 } else {
6777 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6778 new_min_free_kbytes, user_min_free_kbytes);
6779 }
6780 setup_per_zone_wmarks();
6781 refresh_zone_stat_thresholds();
6782 setup_per_zone_lowmem_reserve();
6783
6784 #ifdef CONFIG_NUMA
6785 setup_min_unmapped_ratio();
6786 setup_min_slab_ratio();
6787 #endif
6788
6789 return 0;
6790 }
6791 core_initcall(init_per_zone_wmark_min)
6792
6793 /*
6794 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6795 * that we can call two helper functions whenever min_free_kbytes
6796 * changes.
6797 */
6798 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6799 void __user *buffer, size_t *length, loff_t *ppos)
6800 {
6801 int rc;
6802
6803 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6804 if (rc)
6805 return rc;
6806
6807 if (write) {
6808 user_min_free_kbytes = min_free_kbytes;
6809 setup_per_zone_wmarks();
6810 }
6811 return 0;
6812 }
6813
6814 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6815 void __user *buffer, size_t *length, loff_t *ppos)
6816 {
6817 int rc;
6818
6819 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6820 if (rc)
6821 return rc;
6822
6823 if (write)
6824 setup_per_zone_wmarks();
6825
6826 return 0;
6827 }
6828
6829 #ifdef CONFIG_NUMA
6830 static void setup_min_unmapped_ratio(void)
6831 {
6832 pg_data_t *pgdat;
6833 struct zone *zone;
6834
6835 for_each_online_pgdat(pgdat)
6836 pgdat->min_unmapped_pages = 0;
6837
6838 for_each_zone(zone)
6839 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6840 sysctl_min_unmapped_ratio) / 100;
6841 }
6842
6843
6844 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6845 void __user *buffer, size_t *length, loff_t *ppos)
6846 {
6847 int rc;
6848
6849 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6850 if (rc)
6851 return rc;
6852
6853 setup_min_unmapped_ratio();
6854
6855 return 0;
6856 }
6857
6858 static void setup_min_slab_ratio(void)
6859 {
6860 pg_data_t *pgdat;
6861 struct zone *zone;
6862
6863 for_each_online_pgdat(pgdat)
6864 pgdat->min_slab_pages = 0;
6865
6866 for_each_zone(zone)
6867 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
6868 sysctl_min_slab_ratio) / 100;
6869 }
6870
6871 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6872 void __user *buffer, size_t *length, loff_t *ppos)
6873 {
6874 int rc;
6875
6876 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6877 if (rc)
6878 return rc;
6879
6880 setup_min_slab_ratio();
6881
6882 return 0;
6883 }
6884 #endif
6885
6886 /*
6887 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6888 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6889 * whenever sysctl_lowmem_reserve_ratio changes.
6890 *
6891 * The reserve ratio obviously has absolutely no relation with the
6892 * minimum watermarks. The lowmem reserve ratio can only make sense
6893 * if in function of the boot time zone sizes.
6894 */
6895 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6896 void __user *buffer, size_t *length, loff_t *ppos)
6897 {
6898 proc_dointvec_minmax(table, write, buffer, length, ppos);
6899 setup_per_zone_lowmem_reserve();
6900 return 0;
6901 }
6902
6903 /*
6904 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6905 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6906 * pagelist can have before it gets flushed back to buddy allocator.
6907 */
6908 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6909 void __user *buffer, size_t *length, loff_t *ppos)
6910 {
6911 struct zone *zone;
6912 int old_percpu_pagelist_fraction;
6913 int ret;
6914
6915 mutex_lock(&pcp_batch_high_lock);
6916 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6917
6918 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6919 if (!write || ret < 0)
6920 goto out;
6921
6922 /* Sanity checking to avoid pcp imbalance */
6923 if (percpu_pagelist_fraction &&
6924 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6925 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6926 ret = -EINVAL;
6927 goto out;
6928 }
6929
6930 /* No change? */
6931 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6932 goto out;
6933
6934 for_each_populated_zone(zone) {
6935 unsigned int cpu;
6936
6937 for_each_possible_cpu(cpu)
6938 pageset_set_high_and_batch(zone,
6939 per_cpu_ptr(zone->pageset, cpu));
6940 }
6941 out:
6942 mutex_unlock(&pcp_batch_high_lock);
6943 return ret;
6944 }
6945
6946 #ifdef CONFIG_NUMA
6947 int hashdist = HASHDIST_DEFAULT;
6948
6949 static int __init set_hashdist(char *str)
6950 {
6951 if (!str)
6952 return 0;
6953 hashdist = simple_strtoul(str, &str, 0);
6954 return 1;
6955 }
6956 __setup("hashdist=", set_hashdist);
6957 #endif
6958
6959 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
6960 /*
6961 * Returns the number of pages that arch has reserved but
6962 * is not known to alloc_large_system_hash().
6963 */
6964 static unsigned long __init arch_reserved_kernel_pages(void)
6965 {
6966 return 0;
6967 }
6968 #endif
6969
6970 /*
6971 * allocate a large system hash table from bootmem
6972 * - it is assumed that the hash table must contain an exact power-of-2
6973 * quantity of entries
6974 * - limit is the number of hash buckets, not the total allocation size
6975 */
6976 void *__init alloc_large_system_hash(const char *tablename,
6977 unsigned long bucketsize,
6978 unsigned long numentries,
6979 int scale,
6980 int flags,
6981 unsigned int *_hash_shift,
6982 unsigned int *_hash_mask,
6983 unsigned long low_limit,
6984 unsigned long high_limit)
6985 {
6986 unsigned long long max = high_limit;
6987 unsigned long log2qty, size;
6988 void *table = NULL;
6989
6990 /* allow the kernel cmdline to have a say */
6991 if (!numentries) {
6992 /* round applicable memory size up to nearest megabyte */
6993 numentries = nr_kernel_pages;
6994 numentries -= arch_reserved_kernel_pages();
6995
6996 /* It isn't necessary when PAGE_SIZE >= 1MB */
6997 if (PAGE_SHIFT < 20)
6998 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6999
7000 /* limit to 1 bucket per 2^scale bytes of low memory */
7001 if (scale > PAGE_SHIFT)
7002 numentries >>= (scale - PAGE_SHIFT);
7003 else
7004 numentries <<= (PAGE_SHIFT - scale);
7005
7006 /* Make sure we've got at least a 0-order allocation.. */
7007 if (unlikely(flags & HASH_SMALL)) {
7008 /* Makes no sense without HASH_EARLY */
7009 WARN_ON(!(flags & HASH_EARLY));
7010 if (!(numentries >> *_hash_shift)) {
7011 numentries = 1UL << *_hash_shift;
7012 BUG_ON(!numentries);
7013 }
7014 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7015 numentries = PAGE_SIZE / bucketsize;
7016 }
7017 numentries = roundup_pow_of_two(numentries);
7018
7019 /* limit allocation size to 1/16 total memory by default */
7020 if (max == 0) {
7021 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7022 do_div(max, bucketsize);
7023 }
7024 max = min(max, 0x80000000ULL);
7025
7026 if (numentries < low_limit)
7027 numentries = low_limit;
7028 if (numentries > max)
7029 numentries = max;
7030
7031 log2qty = ilog2(numentries);
7032
7033 do {
7034 size = bucketsize << log2qty;
7035 if (flags & HASH_EARLY)
7036 table = memblock_virt_alloc_nopanic(size, 0);
7037 else if (hashdist)
7038 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7039 else {
7040 /*
7041 * If bucketsize is not a power-of-two, we may free
7042 * some pages at the end of hash table which
7043 * alloc_pages_exact() automatically does
7044 */
7045 if (get_order(size) < MAX_ORDER) {
7046 table = alloc_pages_exact(size, GFP_ATOMIC);
7047 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7048 }
7049 }
7050 } while (!table && size > PAGE_SIZE && --log2qty);
7051
7052 if (!table)
7053 panic("Failed to allocate %s hash table\n", tablename);
7054
7055 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7056 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7057
7058 if (_hash_shift)
7059 *_hash_shift = log2qty;
7060 if (_hash_mask)
7061 *_hash_mask = (1 << log2qty) - 1;
7062
7063 return table;
7064 }
7065
7066 /*
7067 * This function checks whether pageblock includes unmovable pages or not.
7068 * If @count is not zero, it is okay to include less @count unmovable pages
7069 *
7070 * PageLRU check without isolation or lru_lock could race so that
7071 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7072 * expect this function should be exact.
7073 */
7074 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7075 bool skip_hwpoisoned_pages)
7076 {
7077 unsigned long pfn, iter, found;
7078 int mt;
7079
7080 /*
7081 * For avoiding noise data, lru_add_drain_all() should be called
7082 * If ZONE_MOVABLE, the zone never contains unmovable pages
7083 */
7084 if (zone_idx(zone) == ZONE_MOVABLE)
7085 return false;
7086 mt = get_pageblock_migratetype(page);
7087 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7088 return false;
7089
7090 pfn = page_to_pfn(page);
7091 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7092 unsigned long check = pfn + iter;
7093
7094 if (!pfn_valid_within(check))
7095 continue;
7096
7097 page = pfn_to_page(check);
7098
7099 /*
7100 * Hugepages are not in LRU lists, but they're movable.
7101 * We need not scan over tail pages bacause we don't
7102 * handle each tail page individually in migration.
7103 */
7104 if (PageHuge(page)) {
7105 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7106 continue;
7107 }
7108
7109 /*
7110 * We can't use page_count without pin a page
7111 * because another CPU can free compound page.
7112 * This check already skips compound tails of THP
7113 * because their page->_refcount is zero at all time.
7114 */
7115 if (!page_ref_count(page)) {
7116 if (PageBuddy(page))
7117 iter += (1 << page_order(page)) - 1;
7118 continue;
7119 }
7120
7121 /*
7122 * The HWPoisoned page may be not in buddy system, and
7123 * page_count() is not 0.
7124 */
7125 if (skip_hwpoisoned_pages && PageHWPoison(page))
7126 continue;
7127
7128 if (!PageLRU(page))
7129 found++;
7130 /*
7131 * If there are RECLAIMABLE pages, we need to check
7132 * it. But now, memory offline itself doesn't call
7133 * shrink_node_slabs() and it still to be fixed.
7134 */
7135 /*
7136 * If the page is not RAM, page_count()should be 0.
7137 * we don't need more check. This is an _used_ not-movable page.
7138 *
7139 * The problematic thing here is PG_reserved pages. PG_reserved
7140 * is set to both of a memory hole page and a _used_ kernel
7141 * page at boot.
7142 */
7143 if (found > count)
7144 return true;
7145 }
7146 return false;
7147 }
7148
7149 bool is_pageblock_removable_nolock(struct page *page)
7150 {
7151 struct zone *zone;
7152 unsigned long pfn;
7153
7154 /*
7155 * We have to be careful here because we are iterating over memory
7156 * sections which are not zone aware so we might end up outside of
7157 * the zone but still within the section.
7158 * We have to take care about the node as well. If the node is offline
7159 * its NODE_DATA will be NULL - see page_zone.
7160 */
7161 if (!node_online(page_to_nid(page)))
7162 return false;
7163
7164 zone = page_zone(page);
7165 pfn = page_to_pfn(page);
7166 if (!zone_spans_pfn(zone, pfn))
7167 return false;
7168
7169 return !has_unmovable_pages(zone, page, 0, true);
7170 }
7171
7172 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7173
7174 static unsigned long pfn_max_align_down(unsigned long pfn)
7175 {
7176 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7177 pageblock_nr_pages) - 1);
7178 }
7179
7180 static unsigned long pfn_max_align_up(unsigned long pfn)
7181 {
7182 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7183 pageblock_nr_pages));
7184 }
7185
7186 /* [start, end) must belong to a single zone. */
7187 static int __alloc_contig_migrate_range(struct compact_control *cc,
7188 unsigned long start, unsigned long end)
7189 {
7190 /* This function is based on compact_zone() from compaction.c. */
7191 unsigned long nr_reclaimed;
7192 unsigned long pfn = start;
7193 unsigned int tries = 0;
7194 int ret = 0;
7195
7196 migrate_prep();
7197
7198 while (pfn < end || !list_empty(&cc->migratepages)) {
7199 if (fatal_signal_pending(current)) {
7200 ret = -EINTR;
7201 break;
7202 }
7203
7204 if (list_empty(&cc->migratepages)) {
7205 cc->nr_migratepages = 0;
7206 pfn = isolate_migratepages_range(cc, pfn, end);
7207 if (!pfn) {
7208 ret = -EINTR;
7209 break;
7210 }
7211 tries = 0;
7212 } else if (++tries == 5) {
7213 ret = ret < 0 ? ret : -EBUSY;
7214 break;
7215 }
7216
7217 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7218 &cc->migratepages);
7219 cc->nr_migratepages -= nr_reclaimed;
7220
7221 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7222 NULL, 0, cc->mode, MR_CMA);
7223 }
7224 if (ret < 0) {
7225 putback_movable_pages(&cc->migratepages);
7226 return ret;
7227 }
7228 return 0;
7229 }
7230
7231 /**
7232 * alloc_contig_range() -- tries to allocate given range of pages
7233 * @start: start PFN to allocate
7234 * @end: one-past-the-last PFN to allocate
7235 * @migratetype: migratetype of the underlaying pageblocks (either
7236 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7237 * in range must have the same migratetype and it must
7238 * be either of the two.
7239 *
7240 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7241 * aligned, however it's the caller's responsibility to guarantee that
7242 * we are the only thread that changes migrate type of pageblocks the
7243 * pages fall in.
7244 *
7245 * The PFN range must belong to a single zone.
7246 *
7247 * Returns zero on success or negative error code. On success all
7248 * pages which PFN is in [start, end) are allocated for the caller and
7249 * need to be freed with free_contig_range().
7250 */
7251 int alloc_contig_range(unsigned long start, unsigned long end,
7252 unsigned migratetype)
7253 {
7254 unsigned long outer_start, outer_end;
7255 unsigned int order;
7256 int ret = 0;
7257
7258 struct compact_control cc = {
7259 .nr_migratepages = 0,
7260 .order = -1,
7261 .zone = page_zone(pfn_to_page(start)),
7262 .mode = MIGRATE_SYNC,
7263 .ignore_skip_hint = true,
7264 .gfp_mask = GFP_KERNEL,
7265 };
7266 INIT_LIST_HEAD(&cc.migratepages);
7267
7268 /*
7269 * What we do here is we mark all pageblocks in range as
7270 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7271 * have different sizes, and due to the way page allocator
7272 * work, we align the range to biggest of the two pages so
7273 * that page allocator won't try to merge buddies from
7274 * different pageblocks and change MIGRATE_ISOLATE to some
7275 * other migration type.
7276 *
7277 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7278 * migrate the pages from an unaligned range (ie. pages that
7279 * we are interested in). This will put all the pages in
7280 * range back to page allocator as MIGRATE_ISOLATE.
7281 *
7282 * When this is done, we take the pages in range from page
7283 * allocator removing them from the buddy system. This way
7284 * page allocator will never consider using them.
7285 *
7286 * This lets us mark the pageblocks back as
7287 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7288 * aligned range but not in the unaligned, original range are
7289 * put back to page allocator so that buddy can use them.
7290 */
7291
7292 ret = start_isolate_page_range(pfn_max_align_down(start),
7293 pfn_max_align_up(end), migratetype,
7294 false);
7295 if (ret)
7296 return ret;
7297
7298 /*
7299 * In case of -EBUSY, we'd like to know which page causes problem.
7300 * So, just fall through. We will check it in test_pages_isolated().
7301 */
7302 ret = __alloc_contig_migrate_range(&cc, start, end);
7303 if (ret && ret != -EBUSY)
7304 goto done;
7305
7306 /*
7307 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7308 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7309 * more, all pages in [start, end) are free in page allocator.
7310 * What we are going to do is to allocate all pages from
7311 * [start, end) (that is remove them from page allocator).
7312 *
7313 * The only problem is that pages at the beginning and at the
7314 * end of interesting range may be not aligned with pages that
7315 * page allocator holds, ie. they can be part of higher order
7316 * pages. Because of this, we reserve the bigger range and
7317 * once this is done free the pages we are not interested in.
7318 *
7319 * We don't have to hold zone->lock here because the pages are
7320 * isolated thus they won't get removed from buddy.
7321 */
7322
7323 lru_add_drain_all();
7324 drain_all_pages(cc.zone);
7325
7326 order = 0;
7327 outer_start = start;
7328 while (!PageBuddy(pfn_to_page(outer_start))) {
7329 if (++order >= MAX_ORDER) {
7330 outer_start = start;
7331 break;
7332 }
7333 outer_start &= ~0UL << order;
7334 }
7335
7336 if (outer_start != start) {
7337 order = page_order(pfn_to_page(outer_start));
7338
7339 /*
7340 * outer_start page could be small order buddy page and
7341 * it doesn't include start page. Adjust outer_start
7342 * in this case to report failed page properly
7343 * on tracepoint in test_pages_isolated()
7344 */
7345 if (outer_start + (1UL << order) <= start)
7346 outer_start = start;
7347 }
7348
7349 /* Make sure the range is really isolated. */
7350 if (test_pages_isolated(outer_start, end, false)) {
7351 pr_info("%s: [%lx, %lx) PFNs busy\n",
7352 __func__, outer_start, end);
7353 ret = -EBUSY;
7354 goto done;
7355 }
7356
7357 /* Grab isolated pages from freelists. */
7358 outer_end = isolate_freepages_range(&cc, outer_start, end);
7359 if (!outer_end) {
7360 ret = -EBUSY;
7361 goto done;
7362 }
7363
7364 /* Free head and tail (if any) */
7365 if (start != outer_start)
7366 free_contig_range(outer_start, start - outer_start);
7367 if (end != outer_end)
7368 free_contig_range(end, outer_end - end);
7369
7370 done:
7371 undo_isolate_page_range(pfn_max_align_down(start),
7372 pfn_max_align_up(end), migratetype);
7373 return ret;
7374 }
7375
7376 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7377 {
7378 unsigned int count = 0;
7379
7380 for (; nr_pages--; pfn++) {
7381 struct page *page = pfn_to_page(pfn);
7382
7383 count += page_count(page) != 1;
7384 __free_page(page);
7385 }
7386 WARN(count != 0, "%d pages are still in use!\n", count);
7387 }
7388 #endif
7389
7390 #ifdef CONFIG_MEMORY_HOTPLUG
7391 /*
7392 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7393 * page high values need to be recalulated.
7394 */
7395 void __meminit zone_pcp_update(struct zone *zone)
7396 {
7397 unsigned cpu;
7398 mutex_lock(&pcp_batch_high_lock);
7399 for_each_possible_cpu(cpu)
7400 pageset_set_high_and_batch(zone,
7401 per_cpu_ptr(zone->pageset, cpu));
7402 mutex_unlock(&pcp_batch_high_lock);
7403 }
7404 #endif
7405
7406 void zone_pcp_reset(struct zone *zone)
7407 {
7408 unsigned long flags;
7409 int cpu;
7410 struct per_cpu_pageset *pset;
7411
7412 /* avoid races with drain_pages() */
7413 local_irq_save(flags);
7414 if (zone->pageset != &boot_pageset) {
7415 for_each_online_cpu(cpu) {
7416 pset = per_cpu_ptr(zone->pageset, cpu);
7417 drain_zonestat(zone, pset);
7418 }
7419 free_percpu(zone->pageset);
7420 zone->pageset = &boot_pageset;
7421 }
7422 local_irq_restore(flags);
7423 }
7424
7425 #ifdef CONFIG_MEMORY_HOTREMOVE
7426 /*
7427 * All pages in the range must be in a single zone and isolated
7428 * before calling this.
7429 */
7430 void
7431 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7432 {
7433 struct page *page;
7434 struct zone *zone;
7435 unsigned int order, i;
7436 unsigned long pfn;
7437 unsigned long flags;
7438 /* find the first valid pfn */
7439 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7440 if (pfn_valid(pfn))
7441 break;
7442 if (pfn == end_pfn)
7443 return;
7444 zone = page_zone(pfn_to_page(pfn));
7445 spin_lock_irqsave(&zone->lock, flags);
7446 pfn = start_pfn;
7447 while (pfn < end_pfn) {
7448 if (!pfn_valid(pfn)) {
7449 pfn++;
7450 continue;
7451 }
7452 page = pfn_to_page(pfn);
7453 /*
7454 * The HWPoisoned page may be not in buddy system, and
7455 * page_count() is not 0.
7456 */
7457 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7458 pfn++;
7459 SetPageReserved(page);
7460 continue;
7461 }
7462
7463 BUG_ON(page_count(page));
7464 BUG_ON(!PageBuddy(page));
7465 order = page_order(page);
7466 #ifdef CONFIG_DEBUG_VM
7467 pr_info("remove from free list %lx %d %lx\n",
7468 pfn, 1 << order, end_pfn);
7469 #endif
7470 list_del(&page->lru);
7471 rmv_page_order(page);
7472 zone->free_area[order].nr_free--;
7473 for (i = 0; i < (1 << order); i++)
7474 SetPageReserved((page+i));
7475 pfn += (1 << order);
7476 }
7477 spin_unlock_irqrestore(&zone->lock, flags);
7478 }
7479 #endif
7480
7481 bool is_free_buddy_page(struct page *page)
7482 {
7483 struct zone *zone = page_zone(page);
7484 unsigned long pfn = page_to_pfn(page);
7485 unsigned long flags;
7486 unsigned int order;
7487
7488 spin_lock_irqsave(&zone->lock, flags);
7489 for (order = 0; order < MAX_ORDER; order++) {
7490 struct page *page_head = page - (pfn & ((1 << order) - 1));
7491
7492 if (PageBuddy(page_head) && page_order(page_head) >= order)
7493 break;
7494 }
7495 spin_unlock_irqrestore(&zone->lock, flags);
7496
7497 return order < MAX_ORDER;
7498 }