]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/page_alloc.c
136a547262a0badb41bb7cce60ab4e7e91dcb301
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/oom.h>
34 #include <linux/notifier.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/mempolicy.h>
43 #include <linux/stop_machine.h>
44 #include <linux/sort.h>
45 #include <linux/pfn.h>
46 #include <linux/backing-dev.h>
47 #include <linux/fault-inject.h>
48 #include <linux/page-isolation.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/debugobjects.h>
51 #include <linux/kmemleak.h>
52 #include <linux/memory.h>
53 #include <linux/compaction.h>
54 #include <trace/events/kmem.h>
55 #include <linux/ftrace_event.h>
56
57 #include <asm/tlbflush.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60
61 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
62 DEFINE_PER_CPU(int, numa_node);
63 EXPORT_PER_CPU_SYMBOL(numa_node);
64 #endif
65
66 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
67 /*
68 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
69 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
70 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
71 * defined in <linux/topology.h>.
72 */
73 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
74 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
75 #endif
76
77 /*
78 * Array of node states.
79 */
80 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
81 [N_POSSIBLE] = NODE_MASK_ALL,
82 [N_ONLINE] = { { [0] = 1UL } },
83 #ifndef CONFIG_NUMA
84 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
85 #ifdef CONFIG_HIGHMEM
86 [N_HIGH_MEMORY] = { { [0] = 1UL } },
87 #endif
88 [N_CPU] = { { [0] = 1UL } },
89 #endif /* NUMA */
90 };
91 EXPORT_SYMBOL(node_states);
92
93 unsigned long totalram_pages __read_mostly;
94 unsigned long totalreserve_pages __read_mostly;
95 int percpu_pagelist_fraction;
96 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
97
98 #ifdef CONFIG_PM_SLEEP
99 /*
100 * The following functions are used by the suspend/hibernate code to temporarily
101 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
102 * while devices are suspended. To avoid races with the suspend/hibernate code,
103 * they should always be called with pm_mutex held (gfp_allowed_mask also should
104 * only be modified with pm_mutex held, unless the suspend/hibernate code is
105 * guaranteed not to run in parallel with that modification).
106 */
107
108 static gfp_t saved_gfp_mask;
109
110 void pm_restore_gfp_mask(void)
111 {
112 WARN_ON(!mutex_is_locked(&pm_mutex));
113 if (saved_gfp_mask) {
114 gfp_allowed_mask = saved_gfp_mask;
115 saved_gfp_mask = 0;
116 }
117 }
118
119 void pm_restrict_gfp_mask(void)
120 {
121 WARN_ON(!mutex_is_locked(&pm_mutex));
122 WARN_ON(saved_gfp_mask);
123 saved_gfp_mask = gfp_allowed_mask;
124 gfp_allowed_mask &= ~GFP_IOFS;
125 }
126 #endif /* CONFIG_PM_SLEEP */
127
128 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
129 int pageblock_order __read_mostly;
130 #endif
131
132 static void __free_pages_ok(struct page *page, unsigned int order);
133
134 /*
135 * results with 256, 32 in the lowmem_reserve sysctl:
136 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
137 * 1G machine -> (16M dma, 784M normal, 224M high)
138 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
139 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
140 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
141 *
142 * TBD: should special case ZONE_DMA32 machines here - in those we normally
143 * don't need any ZONE_NORMAL reservation
144 */
145 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
146 #ifdef CONFIG_ZONE_DMA
147 256,
148 #endif
149 #ifdef CONFIG_ZONE_DMA32
150 256,
151 #endif
152 #ifdef CONFIG_HIGHMEM
153 32,
154 #endif
155 32,
156 };
157
158 EXPORT_SYMBOL(totalram_pages);
159
160 static char * const zone_names[MAX_NR_ZONES] = {
161 #ifdef CONFIG_ZONE_DMA
162 "DMA",
163 #endif
164 #ifdef CONFIG_ZONE_DMA32
165 "DMA32",
166 #endif
167 "Normal",
168 #ifdef CONFIG_HIGHMEM
169 "HighMem",
170 #endif
171 "Movable",
172 };
173
174 int min_free_kbytes = 1024;
175
176 static unsigned long __meminitdata nr_kernel_pages;
177 static unsigned long __meminitdata nr_all_pages;
178 static unsigned long __meminitdata dma_reserve;
179
180 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
181 /*
182 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
183 * ranges of memory (RAM) that may be registered with add_active_range().
184 * Ranges passed to add_active_range() will be merged if possible
185 * so the number of times add_active_range() can be called is
186 * related to the number of nodes and the number of holes
187 */
188 #ifdef CONFIG_MAX_ACTIVE_REGIONS
189 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
190 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
191 #else
192 #if MAX_NUMNODES >= 32
193 /* If there can be many nodes, allow up to 50 holes per node */
194 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
195 #else
196 /* By default, allow up to 256 distinct regions */
197 #define MAX_ACTIVE_REGIONS 256
198 #endif
199 #endif
200
201 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
202 static int __meminitdata nr_nodemap_entries;
203 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
204 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
205 static unsigned long __initdata required_kernelcore;
206 static unsigned long __initdata required_movablecore;
207 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
208
209 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
210 int movable_zone;
211 EXPORT_SYMBOL(movable_zone);
212 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
213
214 #if MAX_NUMNODES > 1
215 int nr_node_ids __read_mostly = MAX_NUMNODES;
216 int nr_online_nodes __read_mostly = 1;
217 EXPORT_SYMBOL(nr_node_ids);
218 EXPORT_SYMBOL(nr_online_nodes);
219 #endif
220
221 int page_group_by_mobility_disabled __read_mostly;
222
223 static void set_pageblock_migratetype(struct page *page, int migratetype)
224 {
225
226 if (unlikely(page_group_by_mobility_disabled))
227 migratetype = MIGRATE_UNMOVABLE;
228
229 set_pageblock_flags_group(page, (unsigned long)migratetype,
230 PB_migrate, PB_migrate_end);
231 }
232
233 bool oom_killer_disabled __read_mostly;
234
235 #ifdef CONFIG_DEBUG_VM
236 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
237 {
238 int ret = 0;
239 unsigned seq;
240 unsigned long pfn = page_to_pfn(page);
241
242 do {
243 seq = zone_span_seqbegin(zone);
244 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
245 ret = 1;
246 else if (pfn < zone->zone_start_pfn)
247 ret = 1;
248 } while (zone_span_seqretry(zone, seq));
249
250 return ret;
251 }
252
253 static int page_is_consistent(struct zone *zone, struct page *page)
254 {
255 if (!pfn_valid_within(page_to_pfn(page)))
256 return 0;
257 if (zone != page_zone(page))
258 return 0;
259
260 return 1;
261 }
262 /*
263 * Temporary debugging check for pages not lying within a given zone.
264 */
265 static int bad_range(struct zone *zone, struct page *page)
266 {
267 if (page_outside_zone_boundaries(zone, page))
268 return 1;
269 if (!page_is_consistent(zone, page))
270 return 1;
271
272 return 0;
273 }
274 #else
275 static inline int bad_range(struct zone *zone, struct page *page)
276 {
277 return 0;
278 }
279 #endif
280
281 static void bad_page(struct page *page)
282 {
283 static unsigned long resume;
284 static unsigned long nr_shown;
285 static unsigned long nr_unshown;
286
287 /* Don't complain about poisoned pages */
288 if (PageHWPoison(page)) {
289 reset_page_mapcount(page); /* remove PageBuddy */
290 return;
291 }
292
293 /*
294 * Allow a burst of 60 reports, then keep quiet for that minute;
295 * or allow a steady drip of one report per second.
296 */
297 if (nr_shown == 60) {
298 if (time_before(jiffies, resume)) {
299 nr_unshown++;
300 goto out;
301 }
302 if (nr_unshown) {
303 printk(KERN_ALERT
304 "BUG: Bad page state: %lu messages suppressed\n",
305 nr_unshown);
306 nr_unshown = 0;
307 }
308 nr_shown = 0;
309 }
310 if (nr_shown++ == 0)
311 resume = jiffies + 60 * HZ;
312
313 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
314 current->comm, page_to_pfn(page));
315 dump_page(page);
316
317 dump_stack();
318 out:
319 /* Leave bad fields for debug, except PageBuddy could make trouble */
320 reset_page_mapcount(page); /* remove PageBuddy */
321 add_taint(TAINT_BAD_PAGE);
322 }
323
324 /*
325 * Higher-order pages are called "compound pages". They are structured thusly:
326 *
327 * The first PAGE_SIZE page is called the "head page".
328 *
329 * The remaining PAGE_SIZE pages are called "tail pages".
330 *
331 * All pages have PG_compound set. All pages have their ->private pointing at
332 * the head page (even the head page has this).
333 *
334 * The first tail page's ->lru.next holds the address of the compound page's
335 * put_page() function. Its ->lru.prev holds the order of allocation.
336 * This usage means that zero-order pages may not be compound.
337 */
338
339 static void free_compound_page(struct page *page)
340 {
341 __free_pages_ok(page, compound_order(page));
342 }
343
344 void prep_compound_page(struct page *page, unsigned long order)
345 {
346 int i;
347 int nr_pages = 1 << order;
348
349 set_compound_page_dtor(page, free_compound_page);
350 set_compound_order(page, order);
351 __SetPageHead(page);
352 for (i = 1; i < nr_pages; i++) {
353 struct page *p = page + i;
354
355 __SetPageTail(p);
356 p->first_page = page;
357 }
358 }
359
360 /* update __split_huge_page_refcount if you change this function */
361 static int destroy_compound_page(struct page *page, unsigned long order)
362 {
363 int i;
364 int nr_pages = 1 << order;
365 int bad = 0;
366
367 if (unlikely(compound_order(page) != order) ||
368 unlikely(!PageHead(page))) {
369 bad_page(page);
370 bad++;
371 }
372
373 __ClearPageHead(page);
374
375 for (i = 1; i < nr_pages; i++) {
376 struct page *p = page + i;
377
378 if (unlikely(!PageTail(p) || (p->first_page != page))) {
379 bad_page(page);
380 bad++;
381 }
382 __ClearPageTail(p);
383 }
384
385 return bad;
386 }
387
388 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
389 {
390 int i;
391
392 /*
393 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
394 * and __GFP_HIGHMEM from hard or soft interrupt context.
395 */
396 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
397 for (i = 0; i < (1 << order); i++)
398 clear_highpage(page + i);
399 }
400
401 static inline void set_page_order(struct page *page, int order)
402 {
403 set_page_private(page, order);
404 __SetPageBuddy(page);
405 }
406
407 static inline void rmv_page_order(struct page *page)
408 {
409 __ClearPageBuddy(page);
410 set_page_private(page, 0);
411 }
412
413 /*
414 * Locate the struct page for both the matching buddy in our
415 * pair (buddy1) and the combined O(n+1) page they form (page).
416 *
417 * 1) Any buddy B1 will have an order O twin B2 which satisfies
418 * the following equation:
419 * B2 = B1 ^ (1 << O)
420 * For example, if the starting buddy (buddy2) is #8 its order
421 * 1 buddy is #10:
422 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
423 *
424 * 2) Any buddy B will have an order O+1 parent P which
425 * satisfies the following equation:
426 * P = B & ~(1 << O)
427 *
428 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
429 */
430 static inline unsigned long
431 __find_buddy_index(unsigned long page_idx, unsigned int order)
432 {
433 return page_idx ^ (1 << order);
434 }
435
436 /*
437 * This function checks whether a page is free && is the buddy
438 * we can do coalesce a page and its buddy if
439 * (a) the buddy is not in a hole &&
440 * (b) the buddy is in the buddy system &&
441 * (c) a page and its buddy have the same order &&
442 * (d) a page and its buddy are in the same zone.
443 *
444 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
445 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
446 *
447 * For recording page's order, we use page_private(page).
448 */
449 static inline int page_is_buddy(struct page *page, struct page *buddy,
450 int order)
451 {
452 if (!pfn_valid_within(page_to_pfn(buddy)))
453 return 0;
454
455 if (page_zone_id(page) != page_zone_id(buddy))
456 return 0;
457
458 if (PageBuddy(buddy) && page_order(buddy) == order) {
459 VM_BUG_ON(page_count(buddy) != 0);
460 return 1;
461 }
462 return 0;
463 }
464
465 /*
466 * Freeing function for a buddy system allocator.
467 *
468 * The concept of a buddy system is to maintain direct-mapped table
469 * (containing bit values) for memory blocks of various "orders".
470 * The bottom level table contains the map for the smallest allocatable
471 * units of memory (here, pages), and each level above it describes
472 * pairs of units from the levels below, hence, "buddies".
473 * At a high level, all that happens here is marking the table entry
474 * at the bottom level available, and propagating the changes upward
475 * as necessary, plus some accounting needed to play nicely with other
476 * parts of the VM system.
477 * At each level, we keep a list of pages, which are heads of continuous
478 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
479 * order is recorded in page_private(page) field.
480 * So when we are allocating or freeing one, we can derive the state of the
481 * other. That is, if we allocate a small block, and both were
482 * free, the remainder of the region must be split into blocks.
483 * If a block is freed, and its buddy is also free, then this
484 * triggers coalescing into a block of larger size.
485 *
486 * -- wli
487 */
488
489 static inline void __free_one_page(struct page *page,
490 struct zone *zone, unsigned int order,
491 int migratetype)
492 {
493 unsigned long page_idx;
494 unsigned long combined_idx;
495 unsigned long uninitialized_var(buddy_idx);
496 struct page *buddy;
497
498 if (unlikely(PageCompound(page)))
499 if (unlikely(destroy_compound_page(page, order)))
500 return;
501
502 VM_BUG_ON(migratetype == -1);
503
504 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
505
506 VM_BUG_ON(page_idx & ((1 << order) - 1));
507 VM_BUG_ON(bad_range(zone, page));
508
509 while (order < MAX_ORDER-1) {
510 buddy_idx = __find_buddy_index(page_idx, order);
511 buddy = page + (buddy_idx - page_idx);
512 if (!page_is_buddy(page, buddy, order))
513 break;
514
515 /* Our buddy is free, merge with it and move up one order. */
516 list_del(&buddy->lru);
517 zone->free_area[order].nr_free--;
518 rmv_page_order(buddy);
519 combined_idx = buddy_idx & page_idx;
520 page = page + (combined_idx - page_idx);
521 page_idx = combined_idx;
522 order++;
523 }
524 set_page_order(page, order);
525
526 /*
527 * If this is not the largest possible page, check if the buddy
528 * of the next-highest order is free. If it is, it's possible
529 * that pages are being freed that will coalesce soon. In case,
530 * that is happening, add the free page to the tail of the list
531 * so it's less likely to be used soon and more likely to be merged
532 * as a higher order page
533 */
534 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
535 struct page *higher_page, *higher_buddy;
536 combined_idx = buddy_idx & page_idx;
537 higher_page = page + (combined_idx - page_idx);
538 buddy_idx = __find_buddy_index(combined_idx, order + 1);
539 higher_buddy = page + (buddy_idx - combined_idx);
540 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
541 list_add_tail(&page->lru,
542 &zone->free_area[order].free_list[migratetype]);
543 goto out;
544 }
545 }
546
547 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
548 out:
549 zone->free_area[order].nr_free++;
550 }
551
552 /*
553 * free_page_mlock() -- clean up attempts to free and mlocked() page.
554 * Page should not be on lru, so no need to fix that up.
555 * free_pages_check() will verify...
556 */
557 static inline void free_page_mlock(struct page *page)
558 {
559 __dec_zone_page_state(page, NR_MLOCK);
560 __count_vm_event(UNEVICTABLE_MLOCKFREED);
561 }
562
563 static inline int free_pages_check(struct page *page)
564 {
565 if (unlikely(page_mapcount(page) |
566 (page->mapping != NULL) |
567 (atomic_read(&page->_count) != 0) |
568 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
569 bad_page(page);
570 return 1;
571 }
572 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
573 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
574 return 0;
575 }
576
577 /*
578 * Frees a number of pages from the PCP lists
579 * Assumes all pages on list are in same zone, and of same order.
580 * count is the number of pages to free.
581 *
582 * If the zone was previously in an "all pages pinned" state then look to
583 * see if this freeing clears that state.
584 *
585 * And clear the zone's pages_scanned counter, to hold off the "all pages are
586 * pinned" detection logic.
587 */
588 static void free_pcppages_bulk(struct zone *zone, int count,
589 struct per_cpu_pages *pcp)
590 {
591 int migratetype = 0;
592 int batch_free = 0;
593 int to_free = count;
594
595 spin_lock(&zone->lock);
596 zone->all_unreclaimable = 0;
597 zone->pages_scanned = 0;
598
599 while (to_free) {
600 struct page *page;
601 struct list_head *list;
602
603 /*
604 * Remove pages from lists in a round-robin fashion. A
605 * batch_free count is maintained that is incremented when an
606 * empty list is encountered. This is so more pages are freed
607 * off fuller lists instead of spinning excessively around empty
608 * lists
609 */
610 do {
611 batch_free++;
612 if (++migratetype == MIGRATE_PCPTYPES)
613 migratetype = 0;
614 list = &pcp->lists[migratetype];
615 } while (list_empty(list));
616
617 /* This is the only non-empty list. Free them all. */
618 if (batch_free == MIGRATE_PCPTYPES)
619 batch_free = to_free;
620
621 do {
622 page = list_entry(list->prev, struct page, lru);
623 /* must delete as __free_one_page list manipulates */
624 list_del(&page->lru);
625 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
626 __free_one_page(page, zone, 0, page_private(page));
627 trace_mm_page_pcpu_drain(page, 0, page_private(page));
628 } while (--to_free && --batch_free && !list_empty(list));
629 }
630 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
631 spin_unlock(&zone->lock);
632 }
633
634 static void free_one_page(struct zone *zone, struct page *page, int order,
635 int migratetype)
636 {
637 spin_lock(&zone->lock);
638 zone->all_unreclaimable = 0;
639 zone->pages_scanned = 0;
640
641 __free_one_page(page, zone, order, migratetype);
642 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
643 spin_unlock(&zone->lock);
644 }
645
646 static bool free_pages_prepare(struct page *page, unsigned int order)
647 {
648 int i;
649 int bad = 0;
650
651 trace_mm_page_free_direct(page, order);
652 kmemcheck_free_shadow(page, order);
653
654 if (PageAnon(page))
655 page->mapping = NULL;
656 for (i = 0; i < (1 << order); i++)
657 bad += free_pages_check(page + i);
658 if (bad)
659 return false;
660
661 if (!PageHighMem(page)) {
662 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
663 debug_check_no_obj_freed(page_address(page),
664 PAGE_SIZE << order);
665 }
666 arch_free_page(page, order);
667 kernel_map_pages(page, 1 << order, 0);
668
669 return true;
670 }
671
672 static void __free_pages_ok(struct page *page, unsigned int order)
673 {
674 unsigned long flags;
675 int wasMlocked = __TestClearPageMlocked(page);
676
677 if (!free_pages_prepare(page, order))
678 return;
679
680 local_irq_save(flags);
681 if (unlikely(wasMlocked))
682 free_page_mlock(page);
683 __count_vm_events(PGFREE, 1 << order);
684 free_one_page(page_zone(page), page, order,
685 get_pageblock_migratetype(page));
686 local_irq_restore(flags);
687 }
688
689 /*
690 * permit the bootmem allocator to evade page validation on high-order frees
691 */
692 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
693 {
694 if (order == 0) {
695 __ClearPageReserved(page);
696 set_page_count(page, 0);
697 set_page_refcounted(page);
698 __free_page(page);
699 } else {
700 int loop;
701
702 prefetchw(page);
703 for (loop = 0; loop < BITS_PER_LONG; loop++) {
704 struct page *p = &page[loop];
705
706 if (loop + 1 < BITS_PER_LONG)
707 prefetchw(p + 1);
708 __ClearPageReserved(p);
709 set_page_count(p, 0);
710 }
711
712 set_page_refcounted(page);
713 __free_pages(page, order);
714 }
715 }
716
717
718 /*
719 * The order of subdivision here is critical for the IO subsystem.
720 * Please do not alter this order without good reasons and regression
721 * testing. Specifically, as large blocks of memory are subdivided,
722 * the order in which smaller blocks are delivered depends on the order
723 * they're subdivided in this function. This is the primary factor
724 * influencing the order in which pages are delivered to the IO
725 * subsystem according to empirical testing, and this is also justified
726 * by considering the behavior of a buddy system containing a single
727 * large block of memory acted on by a series of small allocations.
728 * This behavior is a critical factor in sglist merging's success.
729 *
730 * -- wli
731 */
732 static inline void expand(struct zone *zone, struct page *page,
733 int low, int high, struct free_area *area,
734 int migratetype)
735 {
736 unsigned long size = 1 << high;
737
738 while (high > low) {
739 area--;
740 high--;
741 size >>= 1;
742 VM_BUG_ON(bad_range(zone, &page[size]));
743 list_add(&page[size].lru, &area->free_list[migratetype]);
744 area->nr_free++;
745 set_page_order(&page[size], high);
746 }
747 }
748
749 /*
750 * This page is about to be returned from the page allocator
751 */
752 static inline int check_new_page(struct page *page)
753 {
754 if (unlikely(page_mapcount(page) |
755 (page->mapping != NULL) |
756 (atomic_read(&page->_count) != 0) |
757 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
758 bad_page(page);
759 return 1;
760 }
761 return 0;
762 }
763
764 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
765 {
766 int i;
767
768 for (i = 0; i < (1 << order); i++) {
769 struct page *p = page + i;
770 if (unlikely(check_new_page(p)))
771 return 1;
772 }
773
774 set_page_private(page, 0);
775 set_page_refcounted(page);
776
777 arch_alloc_page(page, order);
778 kernel_map_pages(page, 1 << order, 1);
779
780 if (gfp_flags & __GFP_ZERO)
781 prep_zero_page(page, order, gfp_flags);
782
783 if (order && (gfp_flags & __GFP_COMP))
784 prep_compound_page(page, order);
785
786 return 0;
787 }
788
789 /*
790 * Go through the free lists for the given migratetype and remove
791 * the smallest available page from the freelists
792 */
793 static inline
794 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
795 int migratetype)
796 {
797 unsigned int current_order;
798 struct free_area * area;
799 struct page *page;
800
801 /* Find a page of the appropriate size in the preferred list */
802 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
803 area = &(zone->free_area[current_order]);
804 if (list_empty(&area->free_list[migratetype]))
805 continue;
806
807 page = list_entry(area->free_list[migratetype].next,
808 struct page, lru);
809 list_del(&page->lru);
810 rmv_page_order(page);
811 area->nr_free--;
812 expand(zone, page, order, current_order, area, migratetype);
813 return page;
814 }
815
816 return NULL;
817 }
818
819
820 /*
821 * This array describes the order lists are fallen back to when
822 * the free lists for the desirable migrate type are depleted
823 */
824 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
825 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
826 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
827 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
828 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
829 };
830
831 /*
832 * Move the free pages in a range to the free lists of the requested type.
833 * Note that start_page and end_pages are not aligned on a pageblock
834 * boundary. If alignment is required, use move_freepages_block()
835 */
836 static int move_freepages(struct zone *zone,
837 struct page *start_page, struct page *end_page,
838 int migratetype)
839 {
840 struct page *page;
841 unsigned long order;
842 int pages_moved = 0;
843
844 #ifndef CONFIG_HOLES_IN_ZONE
845 /*
846 * page_zone is not safe to call in this context when
847 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
848 * anyway as we check zone boundaries in move_freepages_block().
849 * Remove at a later date when no bug reports exist related to
850 * grouping pages by mobility
851 */
852 BUG_ON(page_zone(start_page) != page_zone(end_page));
853 #endif
854
855 for (page = start_page; page <= end_page;) {
856 /* Make sure we are not inadvertently changing nodes */
857 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
858
859 if (!pfn_valid_within(page_to_pfn(page))) {
860 page++;
861 continue;
862 }
863
864 if (!PageBuddy(page)) {
865 page++;
866 continue;
867 }
868
869 order = page_order(page);
870 list_del(&page->lru);
871 list_add(&page->lru,
872 &zone->free_area[order].free_list[migratetype]);
873 page += 1 << order;
874 pages_moved += 1 << order;
875 }
876
877 return pages_moved;
878 }
879
880 static int move_freepages_block(struct zone *zone, struct page *page,
881 int migratetype)
882 {
883 unsigned long start_pfn, end_pfn;
884 struct page *start_page, *end_page;
885
886 start_pfn = page_to_pfn(page);
887 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
888 start_page = pfn_to_page(start_pfn);
889 end_page = start_page + pageblock_nr_pages - 1;
890 end_pfn = start_pfn + pageblock_nr_pages - 1;
891
892 /* Do not cross zone boundaries */
893 if (start_pfn < zone->zone_start_pfn)
894 start_page = page;
895 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
896 return 0;
897
898 return move_freepages(zone, start_page, end_page, migratetype);
899 }
900
901 static void change_pageblock_range(struct page *pageblock_page,
902 int start_order, int migratetype)
903 {
904 int nr_pageblocks = 1 << (start_order - pageblock_order);
905
906 while (nr_pageblocks--) {
907 set_pageblock_migratetype(pageblock_page, migratetype);
908 pageblock_page += pageblock_nr_pages;
909 }
910 }
911
912 /* Remove an element from the buddy allocator from the fallback list */
913 static inline struct page *
914 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
915 {
916 struct free_area * area;
917 int current_order;
918 struct page *page;
919 int migratetype, i;
920
921 /* Find the largest possible block of pages in the other list */
922 for (current_order = MAX_ORDER-1; current_order >= order;
923 --current_order) {
924 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
925 migratetype = fallbacks[start_migratetype][i];
926
927 /* MIGRATE_RESERVE handled later if necessary */
928 if (migratetype == MIGRATE_RESERVE)
929 continue;
930
931 area = &(zone->free_area[current_order]);
932 if (list_empty(&area->free_list[migratetype]))
933 continue;
934
935 page = list_entry(area->free_list[migratetype].next,
936 struct page, lru);
937 area->nr_free--;
938
939 /*
940 * If breaking a large block of pages, move all free
941 * pages to the preferred allocation list. If falling
942 * back for a reclaimable kernel allocation, be more
943 * agressive about taking ownership of free pages
944 */
945 if (unlikely(current_order >= (pageblock_order >> 1)) ||
946 start_migratetype == MIGRATE_RECLAIMABLE ||
947 page_group_by_mobility_disabled) {
948 unsigned long pages;
949 pages = move_freepages_block(zone, page,
950 start_migratetype);
951
952 /* Claim the whole block if over half of it is free */
953 if (pages >= (1 << (pageblock_order-1)) ||
954 page_group_by_mobility_disabled)
955 set_pageblock_migratetype(page,
956 start_migratetype);
957
958 migratetype = start_migratetype;
959 }
960
961 /* Remove the page from the freelists */
962 list_del(&page->lru);
963 rmv_page_order(page);
964
965 /* Take ownership for orders >= pageblock_order */
966 if (current_order >= pageblock_order)
967 change_pageblock_range(page, current_order,
968 start_migratetype);
969
970 expand(zone, page, order, current_order, area, migratetype);
971
972 trace_mm_page_alloc_extfrag(page, order, current_order,
973 start_migratetype, migratetype);
974
975 return page;
976 }
977 }
978
979 return NULL;
980 }
981
982 /*
983 * Do the hard work of removing an element from the buddy allocator.
984 * Call me with the zone->lock already held.
985 */
986 static struct page *__rmqueue(struct zone *zone, unsigned int order,
987 int migratetype)
988 {
989 struct page *page;
990
991 retry_reserve:
992 page = __rmqueue_smallest(zone, order, migratetype);
993
994 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
995 page = __rmqueue_fallback(zone, order, migratetype);
996
997 /*
998 * Use MIGRATE_RESERVE rather than fail an allocation. goto
999 * is used because __rmqueue_smallest is an inline function
1000 * and we want just one call site
1001 */
1002 if (!page) {
1003 migratetype = MIGRATE_RESERVE;
1004 goto retry_reserve;
1005 }
1006 }
1007
1008 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1009 return page;
1010 }
1011
1012 /*
1013 * Obtain a specified number of elements from the buddy allocator, all under
1014 * a single hold of the lock, for efficiency. Add them to the supplied list.
1015 * Returns the number of new pages which were placed at *list.
1016 */
1017 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1018 unsigned long count, struct list_head *list,
1019 int migratetype, int cold)
1020 {
1021 int i;
1022
1023 spin_lock(&zone->lock);
1024 for (i = 0; i < count; ++i) {
1025 struct page *page = __rmqueue(zone, order, migratetype);
1026 if (unlikely(page == NULL))
1027 break;
1028
1029 /*
1030 * Split buddy pages returned by expand() are received here
1031 * in physical page order. The page is added to the callers and
1032 * list and the list head then moves forward. From the callers
1033 * perspective, the linked list is ordered by page number in
1034 * some conditions. This is useful for IO devices that can
1035 * merge IO requests if the physical pages are ordered
1036 * properly.
1037 */
1038 if (likely(cold == 0))
1039 list_add(&page->lru, list);
1040 else
1041 list_add_tail(&page->lru, list);
1042 set_page_private(page, migratetype);
1043 list = &page->lru;
1044 }
1045 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1046 spin_unlock(&zone->lock);
1047 return i;
1048 }
1049
1050 #ifdef CONFIG_NUMA
1051 /*
1052 * Called from the vmstat counter updater to drain pagesets of this
1053 * currently executing processor on remote nodes after they have
1054 * expired.
1055 *
1056 * Note that this function must be called with the thread pinned to
1057 * a single processor.
1058 */
1059 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1060 {
1061 unsigned long flags;
1062 int to_drain;
1063
1064 local_irq_save(flags);
1065 if (pcp->count >= pcp->batch)
1066 to_drain = pcp->batch;
1067 else
1068 to_drain = pcp->count;
1069 free_pcppages_bulk(zone, to_drain, pcp);
1070 pcp->count -= to_drain;
1071 local_irq_restore(flags);
1072 }
1073 #endif
1074
1075 /*
1076 * Drain pages of the indicated processor.
1077 *
1078 * The processor must either be the current processor and the
1079 * thread pinned to the current processor or a processor that
1080 * is not online.
1081 */
1082 static void drain_pages(unsigned int cpu)
1083 {
1084 unsigned long flags;
1085 struct zone *zone;
1086
1087 for_each_populated_zone(zone) {
1088 struct per_cpu_pageset *pset;
1089 struct per_cpu_pages *pcp;
1090
1091 local_irq_save(flags);
1092 pset = per_cpu_ptr(zone->pageset, cpu);
1093
1094 pcp = &pset->pcp;
1095 if (pcp->count) {
1096 free_pcppages_bulk(zone, pcp->count, pcp);
1097 pcp->count = 0;
1098 }
1099 local_irq_restore(flags);
1100 }
1101 }
1102
1103 /*
1104 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1105 */
1106 void drain_local_pages(void *arg)
1107 {
1108 drain_pages(smp_processor_id());
1109 }
1110
1111 /*
1112 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1113 */
1114 void drain_all_pages(void)
1115 {
1116 on_each_cpu(drain_local_pages, NULL, 1);
1117 }
1118
1119 #ifdef CONFIG_HIBERNATION
1120
1121 void mark_free_pages(struct zone *zone)
1122 {
1123 unsigned long pfn, max_zone_pfn;
1124 unsigned long flags;
1125 int order, t;
1126 struct list_head *curr;
1127
1128 if (!zone->spanned_pages)
1129 return;
1130
1131 spin_lock_irqsave(&zone->lock, flags);
1132
1133 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1134 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1135 if (pfn_valid(pfn)) {
1136 struct page *page = pfn_to_page(pfn);
1137
1138 if (!swsusp_page_is_forbidden(page))
1139 swsusp_unset_page_free(page);
1140 }
1141
1142 for_each_migratetype_order(order, t) {
1143 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1144 unsigned long i;
1145
1146 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1147 for (i = 0; i < (1UL << order); i++)
1148 swsusp_set_page_free(pfn_to_page(pfn + i));
1149 }
1150 }
1151 spin_unlock_irqrestore(&zone->lock, flags);
1152 }
1153 #endif /* CONFIG_PM */
1154
1155 /*
1156 * Free a 0-order page
1157 * cold == 1 ? free a cold page : free a hot page
1158 */
1159 void free_hot_cold_page(struct page *page, int cold)
1160 {
1161 struct zone *zone = page_zone(page);
1162 struct per_cpu_pages *pcp;
1163 unsigned long flags;
1164 int migratetype;
1165 int wasMlocked = __TestClearPageMlocked(page);
1166
1167 if (!free_pages_prepare(page, 0))
1168 return;
1169
1170 migratetype = get_pageblock_migratetype(page);
1171 set_page_private(page, migratetype);
1172 local_irq_save(flags);
1173 if (unlikely(wasMlocked))
1174 free_page_mlock(page);
1175 __count_vm_event(PGFREE);
1176
1177 /*
1178 * We only track unmovable, reclaimable and movable on pcp lists.
1179 * Free ISOLATE pages back to the allocator because they are being
1180 * offlined but treat RESERVE as movable pages so we can get those
1181 * areas back if necessary. Otherwise, we may have to free
1182 * excessively into the page allocator
1183 */
1184 if (migratetype >= MIGRATE_PCPTYPES) {
1185 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1186 free_one_page(zone, page, 0, migratetype);
1187 goto out;
1188 }
1189 migratetype = MIGRATE_MOVABLE;
1190 }
1191
1192 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1193 if (cold)
1194 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1195 else
1196 list_add(&page->lru, &pcp->lists[migratetype]);
1197 pcp->count++;
1198 if (pcp->count >= pcp->high) {
1199 free_pcppages_bulk(zone, pcp->batch, pcp);
1200 pcp->count -= pcp->batch;
1201 }
1202
1203 out:
1204 local_irq_restore(flags);
1205 }
1206
1207 /*
1208 * split_page takes a non-compound higher-order page, and splits it into
1209 * n (1<<order) sub-pages: page[0..n]
1210 * Each sub-page must be freed individually.
1211 *
1212 * Note: this is probably too low level an operation for use in drivers.
1213 * Please consult with lkml before using this in your driver.
1214 */
1215 void split_page(struct page *page, unsigned int order)
1216 {
1217 int i;
1218
1219 VM_BUG_ON(PageCompound(page));
1220 VM_BUG_ON(!page_count(page));
1221
1222 #ifdef CONFIG_KMEMCHECK
1223 /*
1224 * Split shadow pages too, because free(page[0]) would
1225 * otherwise free the whole shadow.
1226 */
1227 if (kmemcheck_page_is_tracked(page))
1228 split_page(virt_to_page(page[0].shadow), order);
1229 #endif
1230
1231 for (i = 1; i < (1 << order); i++)
1232 set_page_refcounted(page + i);
1233 }
1234
1235 /*
1236 * Similar to split_page except the page is already free. As this is only
1237 * being used for migration, the migratetype of the block also changes.
1238 * As this is called with interrupts disabled, the caller is responsible
1239 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1240 * are enabled.
1241 *
1242 * Note: this is probably too low level an operation for use in drivers.
1243 * Please consult with lkml before using this in your driver.
1244 */
1245 int split_free_page(struct page *page)
1246 {
1247 unsigned int order;
1248 unsigned long watermark;
1249 struct zone *zone;
1250
1251 BUG_ON(!PageBuddy(page));
1252
1253 zone = page_zone(page);
1254 order = page_order(page);
1255
1256 /* Obey watermarks as if the page was being allocated */
1257 watermark = low_wmark_pages(zone) + (1 << order);
1258 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1259 return 0;
1260
1261 /* Remove page from free list */
1262 list_del(&page->lru);
1263 zone->free_area[order].nr_free--;
1264 rmv_page_order(page);
1265 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1266
1267 /* Split into individual pages */
1268 set_page_refcounted(page);
1269 split_page(page, order);
1270
1271 if (order >= pageblock_order - 1) {
1272 struct page *endpage = page + (1 << order) - 1;
1273 for (; page < endpage; page += pageblock_nr_pages)
1274 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1275 }
1276
1277 return 1 << order;
1278 }
1279
1280 /*
1281 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1282 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1283 * or two.
1284 */
1285 static inline
1286 struct page *buffered_rmqueue(struct zone *preferred_zone,
1287 struct zone *zone, int order, gfp_t gfp_flags,
1288 int migratetype)
1289 {
1290 unsigned long flags;
1291 struct page *page;
1292 int cold = !!(gfp_flags & __GFP_COLD);
1293
1294 again:
1295 if (likely(order == 0)) {
1296 struct per_cpu_pages *pcp;
1297 struct list_head *list;
1298
1299 local_irq_save(flags);
1300 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1301 list = &pcp->lists[migratetype];
1302 if (list_empty(list)) {
1303 pcp->count += rmqueue_bulk(zone, 0,
1304 pcp->batch, list,
1305 migratetype, cold);
1306 if (unlikely(list_empty(list)))
1307 goto failed;
1308 }
1309
1310 if (cold)
1311 page = list_entry(list->prev, struct page, lru);
1312 else
1313 page = list_entry(list->next, struct page, lru);
1314
1315 list_del(&page->lru);
1316 pcp->count--;
1317 } else {
1318 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1319 /*
1320 * __GFP_NOFAIL is not to be used in new code.
1321 *
1322 * All __GFP_NOFAIL callers should be fixed so that they
1323 * properly detect and handle allocation failures.
1324 *
1325 * We most definitely don't want callers attempting to
1326 * allocate greater than order-1 page units with
1327 * __GFP_NOFAIL.
1328 */
1329 WARN_ON_ONCE(order > 1);
1330 }
1331 spin_lock_irqsave(&zone->lock, flags);
1332 page = __rmqueue(zone, order, migratetype);
1333 spin_unlock(&zone->lock);
1334 if (!page)
1335 goto failed;
1336 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1337 }
1338
1339 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1340 zone_statistics(preferred_zone, zone, gfp_flags);
1341 local_irq_restore(flags);
1342
1343 VM_BUG_ON(bad_range(zone, page));
1344 if (prep_new_page(page, order, gfp_flags))
1345 goto again;
1346 return page;
1347
1348 failed:
1349 local_irq_restore(flags);
1350 return NULL;
1351 }
1352
1353 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1354 #define ALLOC_WMARK_MIN WMARK_MIN
1355 #define ALLOC_WMARK_LOW WMARK_LOW
1356 #define ALLOC_WMARK_HIGH WMARK_HIGH
1357 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1358
1359 /* Mask to get the watermark bits */
1360 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1361
1362 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1363 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1364 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1365
1366 #ifdef CONFIG_FAIL_PAGE_ALLOC
1367
1368 static struct fail_page_alloc_attr {
1369 struct fault_attr attr;
1370
1371 u32 ignore_gfp_highmem;
1372 u32 ignore_gfp_wait;
1373 u32 min_order;
1374
1375 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1376
1377 struct dentry *ignore_gfp_highmem_file;
1378 struct dentry *ignore_gfp_wait_file;
1379 struct dentry *min_order_file;
1380
1381 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1382
1383 } fail_page_alloc = {
1384 .attr = FAULT_ATTR_INITIALIZER,
1385 .ignore_gfp_wait = 1,
1386 .ignore_gfp_highmem = 1,
1387 .min_order = 1,
1388 };
1389
1390 static int __init setup_fail_page_alloc(char *str)
1391 {
1392 return setup_fault_attr(&fail_page_alloc.attr, str);
1393 }
1394 __setup("fail_page_alloc=", setup_fail_page_alloc);
1395
1396 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1397 {
1398 if (order < fail_page_alloc.min_order)
1399 return 0;
1400 if (gfp_mask & __GFP_NOFAIL)
1401 return 0;
1402 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1403 return 0;
1404 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1405 return 0;
1406
1407 return should_fail(&fail_page_alloc.attr, 1 << order);
1408 }
1409
1410 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1411
1412 static int __init fail_page_alloc_debugfs(void)
1413 {
1414 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1415 struct dentry *dir;
1416 int err;
1417
1418 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1419 "fail_page_alloc");
1420 if (err)
1421 return err;
1422 dir = fail_page_alloc.attr.dentries.dir;
1423
1424 fail_page_alloc.ignore_gfp_wait_file =
1425 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1426 &fail_page_alloc.ignore_gfp_wait);
1427
1428 fail_page_alloc.ignore_gfp_highmem_file =
1429 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1430 &fail_page_alloc.ignore_gfp_highmem);
1431 fail_page_alloc.min_order_file =
1432 debugfs_create_u32("min-order", mode, dir,
1433 &fail_page_alloc.min_order);
1434
1435 if (!fail_page_alloc.ignore_gfp_wait_file ||
1436 !fail_page_alloc.ignore_gfp_highmem_file ||
1437 !fail_page_alloc.min_order_file) {
1438 err = -ENOMEM;
1439 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1440 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1441 debugfs_remove(fail_page_alloc.min_order_file);
1442 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1443 }
1444
1445 return err;
1446 }
1447
1448 late_initcall(fail_page_alloc_debugfs);
1449
1450 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1451
1452 #else /* CONFIG_FAIL_PAGE_ALLOC */
1453
1454 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1455 {
1456 return 0;
1457 }
1458
1459 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1460
1461 /*
1462 * Return true if free pages are above 'mark'. This takes into account the order
1463 * of the allocation.
1464 */
1465 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1466 int classzone_idx, int alloc_flags, long free_pages)
1467 {
1468 /* free_pages my go negative - that's OK */
1469 long min = mark;
1470 int o;
1471
1472 free_pages -= (1 << order) + 1;
1473 if (alloc_flags & ALLOC_HIGH)
1474 min -= min / 2;
1475 if (alloc_flags & ALLOC_HARDER)
1476 min -= min / 4;
1477
1478 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1479 return false;
1480 for (o = 0; o < order; o++) {
1481 /* At the next order, this order's pages become unavailable */
1482 free_pages -= z->free_area[o].nr_free << o;
1483
1484 /* Require fewer higher order pages to be free */
1485 min >>= 1;
1486
1487 if (free_pages <= min)
1488 return false;
1489 }
1490 return true;
1491 }
1492
1493 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1494 int classzone_idx, int alloc_flags)
1495 {
1496 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1497 zone_page_state(z, NR_FREE_PAGES));
1498 }
1499
1500 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1501 int classzone_idx, int alloc_flags)
1502 {
1503 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1504
1505 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1506 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1507
1508 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1509 free_pages);
1510 }
1511
1512 #ifdef CONFIG_NUMA
1513 /*
1514 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1515 * skip over zones that are not allowed by the cpuset, or that have
1516 * been recently (in last second) found to be nearly full. See further
1517 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1518 * that have to skip over a lot of full or unallowed zones.
1519 *
1520 * If the zonelist cache is present in the passed in zonelist, then
1521 * returns a pointer to the allowed node mask (either the current
1522 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1523 *
1524 * If the zonelist cache is not available for this zonelist, does
1525 * nothing and returns NULL.
1526 *
1527 * If the fullzones BITMAP in the zonelist cache is stale (more than
1528 * a second since last zap'd) then we zap it out (clear its bits.)
1529 *
1530 * We hold off even calling zlc_setup, until after we've checked the
1531 * first zone in the zonelist, on the theory that most allocations will
1532 * be satisfied from that first zone, so best to examine that zone as
1533 * quickly as we can.
1534 */
1535 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1536 {
1537 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1538 nodemask_t *allowednodes; /* zonelist_cache approximation */
1539
1540 zlc = zonelist->zlcache_ptr;
1541 if (!zlc)
1542 return NULL;
1543
1544 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1545 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1546 zlc->last_full_zap = jiffies;
1547 }
1548
1549 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1550 &cpuset_current_mems_allowed :
1551 &node_states[N_HIGH_MEMORY];
1552 return allowednodes;
1553 }
1554
1555 /*
1556 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1557 * if it is worth looking at further for free memory:
1558 * 1) Check that the zone isn't thought to be full (doesn't have its
1559 * bit set in the zonelist_cache fullzones BITMAP).
1560 * 2) Check that the zones node (obtained from the zonelist_cache
1561 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1562 * Return true (non-zero) if zone is worth looking at further, or
1563 * else return false (zero) if it is not.
1564 *
1565 * This check -ignores- the distinction between various watermarks,
1566 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1567 * found to be full for any variation of these watermarks, it will
1568 * be considered full for up to one second by all requests, unless
1569 * we are so low on memory on all allowed nodes that we are forced
1570 * into the second scan of the zonelist.
1571 *
1572 * In the second scan we ignore this zonelist cache and exactly
1573 * apply the watermarks to all zones, even it is slower to do so.
1574 * We are low on memory in the second scan, and should leave no stone
1575 * unturned looking for a free page.
1576 */
1577 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1578 nodemask_t *allowednodes)
1579 {
1580 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1581 int i; /* index of *z in zonelist zones */
1582 int n; /* node that zone *z is on */
1583
1584 zlc = zonelist->zlcache_ptr;
1585 if (!zlc)
1586 return 1;
1587
1588 i = z - zonelist->_zonerefs;
1589 n = zlc->z_to_n[i];
1590
1591 /* This zone is worth trying if it is allowed but not full */
1592 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1593 }
1594
1595 /*
1596 * Given 'z' scanning a zonelist, set the corresponding bit in
1597 * zlc->fullzones, so that subsequent attempts to allocate a page
1598 * from that zone don't waste time re-examining it.
1599 */
1600 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1601 {
1602 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1603 int i; /* index of *z in zonelist zones */
1604
1605 zlc = zonelist->zlcache_ptr;
1606 if (!zlc)
1607 return;
1608
1609 i = z - zonelist->_zonerefs;
1610
1611 set_bit(i, zlc->fullzones);
1612 }
1613
1614 #else /* CONFIG_NUMA */
1615
1616 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1617 {
1618 return NULL;
1619 }
1620
1621 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1622 nodemask_t *allowednodes)
1623 {
1624 return 1;
1625 }
1626
1627 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1628 {
1629 }
1630 #endif /* CONFIG_NUMA */
1631
1632 /*
1633 * get_page_from_freelist goes through the zonelist trying to allocate
1634 * a page.
1635 */
1636 static struct page *
1637 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1638 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1639 struct zone *preferred_zone, int migratetype)
1640 {
1641 struct zoneref *z;
1642 struct page *page = NULL;
1643 int classzone_idx;
1644 struct zone *zone;
1645 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1646 int zlc_active = 0; /* set if using zonelist_cache */
1647 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1648
1649 classzone_idx = zone_idx(preferred_zone);
1650 zonelist_scan:
1651 /*
1652 * Scan zonelist, looking for a zone with enough free.
1653 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1654 */
1655 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1656 high_zoneidx, nodemask) {
1657 if (NUMA_BUILD && zlc_active &&
1658 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1659 continue;
1660 if ((alloc_flags & ALLOC_CPUSET) &&
1661 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1662 goto try_next_zone;
1663
1664 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1665 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1666 unsigned long mark;
1667 int ret;
1668
1669 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1670 if (zone_watermark_ok(zone, order, mark,
1671 classzone_idx, alloc_flags))
1672 goto try_this_zone;
1673
1674 if (zone_reclaim_mode == 0)
1675 goto this_zone_full;
1676
1677 ret = zone_reclaim(zone, gfp_mask, order);
1678 switch (ret) {
1679 case ZONE_RECLAIM_NOSCAN:
1680 /* did not scan */
1681 goto try_next_zone;
1682 case ZONE_RECLAIM_FULL:
1683 /* scanned but unreclaimable */
1684 goto this_zone_full;
1685 default:
1686 /* did we reclaim enough */
1687 if (!zone_watermark_ok(zone, order, mark,
1688 classzone_idx, alloc_flags))
1689 goto this_zone_full;
1690 }
1691 }
1692
1693 try_this_zone:
1694 page = buffered_rmqueue(preferred_zone, zone, order,
1695 gfp_mask, migratetype);
1696 if (page)
1697 break;
1698 this_zone_full:
1699 if (NUMA_BUILD)
1700 zlc_mark_zone_full(zonelist, z);
1701 try_next_zone:
1702 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1703 /*
1704 * we do zlc_setup after the first zone is tried but only
1705 * if there are multiple nodes make it worthwhile
1706 */
1707 allowednodes = zlc_setup(zonelist, alloc_flags);
1708 zlc_active = 1;
1709 did_zlc_setup = 1;
1710 }
1711 }
1712
1713 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1714 /* Disable zlc cache for second zonelist scan */
1715 zlc_active = 0;
1716 goto zonelist_scan;
1717 }
1718 return page;
1719 }
1720
1721 /*
1722 * Large machines with many possible nodes should not always dump per-node
1723 * meminfo in irq context.
1724 */
1725 static inline bool should_suppress_show_mem(void)
1726 {
1727 bool ret = false;
1728
1729 #if NODES_SHIFT > 8
1730 ret = in_interrupt();
1731 #endif
1732 return ret;
1733 }
1734
1735 static inline int
1736 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1737 unsigned long pages_reclaimed)
1738 {
1739 /* Do not loop if specifically requested */
1740 if (gfp_mask & __GFP_NORETRY)
1741 return 0;
1742
1743 /*
1744 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1745 * means __GFP_NOFAIL, but that may not be true in other
1746 * implementations.
1747 */
1748 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1749 return 1;
1750
1751 /*
1752 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1753 * specified, then we retry until we no longer reclaim any pages
1754 * (above), or we've reclaimed an order of pages at least as
1755 * large as the allocation's order. In both cases, if the
1756 * allocation still fails, we stop retrying.
1757 */
1758 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1759 return 1;
1760
1761 /*
1762 * Don't let big-order allocations loop unless the caller
1763 * explicitly requests that.
1764 */
1765 if (gfp_mask & __GFP_NOFAIL)
1766 return 1;
1767
1768 return 0;
1769 }
1770
1771 static inline struct page *
1772 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1773 struct zonelist *zonelist, enum zone_type high_zoneidx,
1774 nodemask_t *nodemask, struct zone *preferred_zone,
1775 int migratetype)
1776 {
1777 struct page *page;
1778
1779 /* Acquire the OOM killer lock for the zones in zonelist */
1780 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1781 schedule_timeout_uninterruptible(1);
1782 return NULL;
1783 }
1784
1785 /*
1786 * Go through the zonelist yet one more time, keep very high watermark
1787 * here, this is only to catch a parallel oom killing, we must fail if
1788 * we're still under heavy pressure.
1789 */
1790 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1791 order, zonelist, high_zoneidx,
1792 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1793 preferred_zone, migratetype);
1794 if (page)
1795 goto out;
1796
1797 if (!(gfp_mask & __GFP_NOFAIL)) {
1798 /* The OOM killer will not help higher order allocs */
1799 if (order > PAGE_ALLOC_COSTLY_ORDER)
1800 goto out;
1801 /* The OOM killer does not needlessly kill tasks for lowmem */
1802 if (high_zoneidx < ZONE_NORMAL)
1803 goto out;
1804 /*
1805 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1806 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1807 * The caller should handle page allocation failure by itself if
1808 * it specifies __GFP_THISNODE.
1809 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1810 */
1811 if (gfp_mask & __GFP_THISNODE)
1812 goto out;
1813 }
1814 /* Exhausted what can be done so it's blamo time */
1815 out_of_memory(zonelist, gfp_mask, order, nodemask);
1816
1817 out:
1818 clear_zonelist_oom(zonelist, gfp_mask);
1819 return page;
1820 }
1821
1822 #ifdef CONFIG_COMPACTION
1823 /* Try memory compaction for high-order allocations before reclaim */
1824 static struct page *
1825 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1826 struct zonelist *zonelist, enum zone_type high_zoneidx,
1827 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1828 int migratetype, unsigned long *did_some_progress,
1829 bool sync_migration)
1830 {
1831 struct page *page;
1832
1833 if (!order || compaction_deferred(preferred_zone))
1834 return NULL;
1835
1836 current->flags |= PF_MEMALLOC;
1837 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1838 nodemask, sync_migration);
1839 current->flags &= ~PF_MEMALLOC;
1840 if (*did_some_progress != COMPACT_SKIPPED) {
1841
1842 /* Page migration frees to the PCP lists but we want merging */
1843 drain_pages(get_cpu());
1844 put_cpu();
1845
1846 page = get_page_from_freelist(gfp_mask, nodemask,
1847 order, zonelist, high_zoneidx,
1848 alloc_flags, preferred_zone,
1849 migratetype);
1850 if (page) {
1851 preferred_zone->compact_considered = 0;
1852 preferred_zone->compact_defer_shift = 0;
1853 count_vm_event(COMPACTSUCCESS);
1854 return page;
1855 }
1856
1857 /*
1858 * It's bad if compaction run occurs and fails.
1859 * The most likely reason is that pages exist,
1860 * but not enough to satisfy watermarks.
1861 */
1862 count_vm_event(COMPACTFAIL);
1863 defer_compaction(preferred_zone);
1864
1865 cond_resched();
1866 }
1867
1868 return NULL;
1869 }
1870 #else
1871 static inline struct page *
1872 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1873 struct zonelist *zonelist, enum zone_type high_zoneidx,
1874 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1875 int migratetype, unsigned long *did_some_progress,
1876 bool sync_migration)
1877 {
1878 return NULL;
1879 }
1880 #endif /* CONFIG_COMPACTION */
1881
1882 /* The really slow allocator path where we enter direct reclaim */
1883 static inline struct page *
1884 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1885 struct zonelist *zonelist, enum zone_type high_zoneidx,
1886 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1887 int migratetype, unsigned long *did_some_progress)
1888 {
1889 struct page *page = NULL;
1890 struct reclaim_state reclaim_state;
1891 bool drained = false;
1892
1893 cond_resched();
1894
1895 /* We now go into synchronous reclaim */
1896 cpuset_memory_pressure_bump();
1897 current->flags |= PF_MEMALLOC;
1898 lockdep_set_current_reclaim_state(gfp_mask);
1899 reclaim_state.reclaimed_slab = 0;
1900 current->reclaim_state = &reclaim_state;
1901
1902 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1903
1904 current->reclaim_state = NULL;
1905 lockdep_clear_current_reclaim_state();
1906 current->flags &= ~PF_MEMALLOC;
1907
1908 cond_resched();
1909
1910 if (unlikely(!(*did_some_progress)))
1911 return NULL;
1912
1913 retry:
1914 page = get_page_from_freelist(gfp_mask, nodemask, order,
1915 zonelist, high_zoneidx,
1916 alloc_flags, preferred_zone,
1917 migratetype);
1918
1919 /*
1920 * If an allocation failed after direct reclaim, it could be because
1921 * pages are pinned on the per-cpu lists. Drain them and try again
1922 */
1923 if (!page && !drained) {
1924 drain_all_pages();
1925 drained = true;
1926 goto retry;
1927 }
1928
1929 return page;
1930 }
1931
1932 /*
1933 * This is called in the allocator slow-path if the allocation request is of
1934 * sufficient urgency to ignore watermarks and take other desperate measures
1935 */
1936 static inline struct page *
1937 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1938 struct zonelist *zonelist, enum zone_type high_zoneidx,
1939 nodemask_t *nodemask, struct zone *preferred_zone,
1940 int migratetype)
1941 {
1942 struct page *page;
1943
1944 do {
1945 page = get_page_from_freelist(gfp_mask, nodemask, order,
1946 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1947 preferred_zone, migratetype);
1948
1949 if (!page && gfp_mask & __GFP_NOFAIL)
1950 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1951 } while (!page && (gfp_mask & __GFP_NOFAIL));
1952
1953 return page;
1954 }
1955
1956 static inline
1957 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1958 enum zone_type high_zoneidx,
1959 enum zone_type classzone_idx)
1960 {
1961 struct zoneref *z;
1962 struct zone *zone;
1963
1964 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1965 wakeup_kswapd(zone, order, classzone_idx);
1966 }
1967
1968 static inline int
1969 gfp_to_alloc_flags(gfp_t gfp_mask)
1970 {
1971 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1972 const gfp_t wait = gfp_mask & __GFP_WAIT;
1973
1974 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1975 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
1976
1977 /*
1978 * The caller may dip into page reserves a bit more if the caller
1979 * cannot run direct reclaim, or if the caller has realtime scheduling
1980 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1981 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1982 */
1983 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1984
1985 if (!wait) {
1986 /*
1987 * Not worth trying to allocate harder for
1988 * __GFP_NOMEMALLOC even if it can't schedule.
1989 */
1990 if (!(gfp_mask & __GFP_NOMEMALLOC))
1991 alloc_flags |= ALLOC_HARDER;
1992 /*
1993 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1994 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1995 */
1996 alloc_flags &= ~ALLOC_CPUSET;
1997 } else if (unlikely(rt_task(current)) && !in_interrupt())
1998 alloc_flags |= ALLOC_HARDER;
1999
2000 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2001 if (!in_interrupt() &&
2002 ((current->flags & PF_MEMALLOC) ||
2003 unlikely(test_thread_flag(TIF_MEMDIE))))
2004 alloc_flags |= ALLOC_NO_WATERMARKS;
2005 }
2006
2007 return alloc_flags;
2008 }
2009
2010 static inline struct page *
2011 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2012 struct zonelist *zonelist, enum zone_type high_zoneidx,
2013 nodemask_t *nodemask, struct zone *preferred_zone,
2014 int migratetype)
2015 {
2016 const gfp_t wait = gfp_mask & __GFP_WAIT;
2017 struct page *page = NULL;
2018 int alloc_flags;
2019 unsigned long pages_reclaimed = 0;
2020 unsigned long did_some_progress;
2021 bool sync_migration = false;
2022
2023 /*
2024 * In the slowpath, we sanity check order to avoid ever trying to
2025 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2026 * be using allocators in order of preference for an area that is
2027 * too large.
2028 */
2029 if (order >= MAX_ORDER) {
2030 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2031 return NULL;
2032 }
2033
2034 /*
2035 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2036 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2037 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2038 * using a larger set of nodes after it has established that the
2039 * allowed per node queues are empty and that nodes are
2040 * over allocated.
2041 */
2042 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2043 goto nopage;
2044
2045 restart:
2046 if (!(gfp_mask & __GFP_NO_KSWAPD))
2047 wake_all_kswapd(order, zonelist, high_zoneidx,
2048 zone_idx(preferred_zone));
2049
2050 /*
2051 * OK, we're below the kswapd watermark and have kicked background
2052 * reclaim. Now things get more complex, so set up alloc_flags according
2053 * to how we want to proceed.
2054 */
2055 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2056
2057 /*
2058 * Find the true preferred zone if the allocation is unconstrained by
2059 * cpusets.
2060 */
2061 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2062 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2063 &preferred_zone);
2064
2065 /* This is the last chance, in general, before the goto nopage. */
2066 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2067 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2068 preferred_zone, migratetype);
2069 if (page)
2070 goto got_pg;
2071
2072 rebalance:
2073 /* Allocate without watermarks if the context allows */
2074 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2075 page = __alloc_pages_high_priority(gfp_mask, order,
2076 zonelist, high_zoneidx, nodemask,
2077 preferred_zone, migratetype);
2078 if (page)
2079 goto got_pg;
2080 }
2081
2082 /* Atomic allocations - we can't balance anything */
2083 if (!wait)
2084 goto nopage;
2085
2086 /* Avoid recursion of direct reclaim */
2087 if (current->flags & PF_MEMALLOC)
2088 goto nopage;
2089
2090 /* Avoid allocations with no watermarks from looping endlessly */
2091 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2092 goto nopage;
2093
2094 /*
2095 * Try direct compaction. The first pass is asynchronous. Subsequent
2096 * attempts after direct reclaim are synchronous
2097 */
2098 page = __alloc_pages_direct_compact(gfp_mask, order,
2099 zonelist, high_zoneidx,
2100 nodemask,
2101 alloc_flags, preferred_zone,
2102 migratetype, &did_some_progress,
2103 sync_migration);
2104 if (page)
2105 goto got_pg;
2106 sync_migration = !(gfp_mask & __GFP_NO_KSWAPD);
2107
2108 /* Try direct reclaim and then allocating */
2109 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2110 zonelist, high_zoneidx,
2111 nodemask,
2112 alloc_flags, preferred_zone,
2113 migratetype, &did_some_progress);
2114 if (page)
2115 goto got_pg;
2116
2117 /*
2118 * If we failed to make any progress reclaiming, then we are
2119 * running out of options and have to consider going OOM
2120 */
2121 if (!did_some_progress) {
2122 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2123 if (oom_killer_disabled)
2124 goto nopage;
2125 page = __alloc_pages_may_oom(gfp_mask, order,
2126 zonelist, high_zoneidx,
2127 nodemask, preferred_zone,
2128 migratetype);
2129 if (page)
2130 goto got_pg;
2131
2132 if (!(gfp_mask & __GFP_NOFAIL)) {
2133 /*
2134 * The oom killer is not called for high-order
2135 * allocations that may fail, so if no progress
2136 * is being made, there are no other options and
2137 * retrying is unlikely to help.
2138 */
2139 if (order > PAGE_ALLOC_COSTLY_ORDER)
2140 goto nopage;
2141 /*
2142 * The oom killer is not called for lowmem
2143 * allocations to prevent needlessly killing
2144 * innocent tasks.
2145 */
2146 if (high_zoneidx < ZONE_NORMAL)
2147 goto nopage;
2148 }
2149
2150 goto restart;
2151 }
2152 }
2153
2154 /* Check if we should retry the allocation */
2155 pages_reclaimed += did_some_progress;
2156 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2157 /* Wait for some write requests to complete then retry */
2158 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2159 goto rebalance;
2160 } else {
2161 /*
2162 * High-order allocations do not necessarily loop after
2163 * direct reclaim and reclaim/compaction depends on compaction
2164 * being called after reclaim so call directly if necessary
2165 */
2166 page = __alloc_pages_direct_compact(gfp_mask, order,
2167 zonelist, high_zoneidx,
2168 nodemask,
2169 alloc_flags, preferred_zone,
2170 migratetype, &did_some_progress,
2171 sync_migration);
2172 if (page)
2173 goto got_pg;
2174 }
2175
2176 nopage:
2177 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2178 unsigned int filter = SHOW_MEM_FILTER_NODES;
2179
2180 /*
2181 * This documents exceptions given to allocations in certain
2182 * contexts that are allowed to allocate outside current's set
2183 * of allowed nodes.
2184 */
2185 if (!(gfp_mask & __GFP_NOMEMALLOC))
2186 if (test_thread_flag(TIF_MEMDIE) ||
2187 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2188 filter &= ~SHOW_MEM_FILTER_NODES;
2189 if (in_interrupt() || !wait)
2190 filter &= ~SHOW_MEM_FILTER_NODES;
2191
2192 pr_warning("%s: page allocation failure. order:%d, mode:0x%x\n",
2193 current->comm, order, gfp_mask);
2194 dump_stack();
2195 if (!should_suppress_show_mem())
2196 __show_mem(filter);
2197 }
2198 return page;
2199 got_pg:
2200 if (kmemcheck_enabled)
2201 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2202 return page;
2203
2204 }
2205
2206 /*
2207 * This is the 'heart' of the zoned buddy allocator.
2208 */
2209 struct page *
2210 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2211 struct zonelist *zonelist, nodemask_t *nodemask)
2212 {
2213 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2214 struct zone *preferred_zone;
2215 struct page *page;
2216 int migratetype = allocflags_to_migratetype(gfp_mask);
2217
2218 gfp_mask &= gfp_allowed_mask;
2219
2220 lockdep_trace_alloc(gfp_mask);
2221
2222 might_sleep_if(gfp_mask & __GFP_WAIT);
2223
2224 if (should_fail_alloc_page(gfp_mask, order))
2225 return NULL;
2226
2227 /*
2228 * Check the zones suitable for the gfp_mask contain at least one
2229 * valid zone. It's possible to have an empty zonelist as a result
2230 * of GFP_THISNODE and a memoryless node
2231 */
2232 if (unlikely(!zonelist->_zonerefs->zone))
2233 return NULL;
2234
2235 get_mems_allowed();
2236 /* The preferred zone is used for statistics later */
2237 first_zones_zonelist(zonelist, high_zoneidx,
2238 nodemask ? : &cpuset_current_mems_allowed,
2239 &preferred_zone);
2240 if (!preferred_zone) {
2241 put_mems_allowed();
2242 return NULL;
2243 }
2244
2245 /* First allocation attempt */
2246 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2247 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2248 preferred_zone, migratetype);
2249 if (unlikely(!page))
2250 page = __alloc_pages_slowpath(gfp_mask, order,
2251 zonelist, high_zoneidx, nodemask,
2252 preferred_zone, migratetype);
2253 put_mems_allowed();
2254
2255 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2256 return page;
2257 }
2258 EXPORT_SYMBOL(__alloc_pages_nodemask);
2259
2260 /*
2261 * Common helper functions.
2262 */
2263 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2264 {
2265 struct page *page;
2266
2267 /*
2268 * __get_free_pages() returns a 32-bit address, which cannot represent
2269 * a highmem page
2270 */
2271 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2272
2273 page = alloc_pages(gfp_mask, order);
2274 if (!page)
2275 return 0;
2276 return (unsigned long) page_address(page);
2277 }
2278 EXPORT_SYMBOL(__get_free_pages);
2279
2280 unsigned long get_zeroed_page(gfp_t gfp_mask)
2281 {
2282 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2283 }
2284 EXPORT_SYMBOL(get_zeroed_page);
2285
2286 void __pagevec_free(struct pagevec *pvec)
2287 {
2288 int i = pagevec_count(pvec);
2289
2290 while (--i >= 0) {
2291 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2292 free_hot_cold_page(pvec->pages[i], pvec->cold);
2293 }
2294 }
2295
2296 void __free_pages(struct page *page, unsigned int order)
2297 {
2298 if (put_page_testzero(page)) {
2299 if (order == 0)
2300 free_hot_cold_page(page, 0);
2301 else
2302 __free_pages_ok(page, order);
2303 }
2304 }
2305
2306 EXPORT_SYMBOL(__free_pages);
2307
2308 void free_pages(unsigned long addr, unsigned int order)
2309 {
2310 if (addr != 0) {
2311 VM_BUG_ON(!virt_addr_valid((void *)addr));
2312 __free_pages(virt_to_page((void *)addr), order);
2313 }
2314 }
2315
2316 EXPORT_SYMBOL(free_pages);
2317
2318 /**
2319 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2320 * @size: the number of bytes to allocate
2321 * @gfp_mask: GFP flags for the allocation
2322 *
2323 * This function is similar to alloc_pages(), except that it allocates the
2324 * minimum number of pages to satisfy the request. alloc_pages() can only
2325 * allocate memory in power-of-two pages.
2326 *
2327 * This function is also limited by MAX_ORDER.
2328 *
2329 * Memory allocated by this function must be released by free_pages_exact().
2330 */
2331 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2332 {
2333 unsigned int order = get_order(size);
2334 unsigned long addr;
2335
2336 addr = __get_free_pages(gfp_mask, order);
2337 if (addr) {
2338 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2339 unsigned long used = addr + PAGE_ALIGN(size);
2340
2341 split_page(virt_to_page((void *)addr), order);
2342 while (used < alloc_end) {
2343 free_page(used);
2344 used += PAGE_SIZE;
2345 }
2346 }
2347
2348 return (void *)addr;
2349 }
2350 EXPORT_SYMBOL(alloc_pages_exact);
2351
2352 /**
2353 * free_pages_exact - release memory allocated via alloc_pages_exact()
2354 * @virt: the value returned by alloc_pages_exact.
2355 * @size: size of allocation, same value as passed to alloc_pages_exact().
2356 *
2357 * Release the memory allocated by a previous call to alloc_pages_exact.
2358 */
2359 void free_pages_exact(void *virt, size_t size)
2360 {
2361 unsigned long addr = (unsigned long)virt;
2362 unsigned long end = addr + PAGE_ALIGN(size);
2363
2364 while (addr < end) {
2365 free_page(addr);
2366 addr += PAGE_SIZE;
2367 }
2368 }
2369 EXPORT_SYMBOL(free_pages_exact);
2370
2371 static unsigned int nr_free_zone_pages(int offset)
2372 {
2373 struct zoneref *z;
2374 struct zone *zone;
2375
2376 /* Just pick one node, since fallback list is circular */
2377 unsigned int sum = 0;
2378
2379 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2380
2381 for_each_zone_zonelist(zone, z, zonelist, offset) {
2382 unsigned long size = zone->present_pages;
2383 unsigned long high = high_wmark_pages(zone);
2384 if (size > high)
2385 sum += size - high;
2386 }
2387
2388 return sum;
2389 }
2390
2391 /*
2392 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2393 */
2394 unsigned int nr_free_buffer_pages(void)
2395 {
2396 return nr_free_zone_pages(gfp_zone(GFP_USER));
2397 }
2398 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2399
2400 /*
2401 * Amount of free RAM allocatable within all zones
2402 */
2403 unsigned int nr_free_pagecache_pages(void)
2404 {
2405 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2406 }
2407
2408 static inline void show_node(struct zone *zone)
2409 {
2410 if (NUMA_BUILD)
2411 printk("Node %d ", zone_to_nid(zone));
2412 }
2413
2414 void si_meminfo(struct sysinfo *val)
2415 {
2416 val->totalram = totalram_pages;
2417 val->sharedram = 0;
2418 val->freeram = global_page_state(NR_FREE_PAGES);
2419 val->bufferram = nr_blockdev_pages();
2420 val->totalhigh = totalhigh_pages;
2421 val->freehigh = nr_free_highpages();
2422 val->mem_unit = PAGE_SIZE;
2423 }
2424
2425 EXPORT_SYMBOL(si_meminfo);
2426
2427 #ifdef CONFIG_NUMA
2428 void si_meminfo_node(struct sysinfo *val, int nid)
2429 {
2430 pg_data_t *pgdat = NODE_DATA(nid);
2431
2432 val->totalram = pgdat->node_present_pages;
2433 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2434 #ifdef CONFIG_HIGHMEM
2435 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2436 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2437 NR_FREE_PAGES);
2438 #else
2439 val->totalhigh = 0;
2440 val->freehigh = 0;
2441 #endif
2442 val->mem_unit = PAGE_SIZE;
2443 }
2444 #endif
2445
2446 /*
2447 * Determine whether the zone's node should be displayed or not, depending on
2448 * whether SHOW_MEM_FILTER_NODES was passed to __show_free_areas().
2449 */
2450 static bool skip_free_areas_zone(unsigned int flags, const struct zone *zone)
2451 {
2452 bool ret = false;
2453
2454 if (!(flags & SHOW_MEM_FILTER_NODES))
2455 goto out;
2456
2457 get_mems_allowed();
2458 ret = !node_isset(zone->zone_pgdat->node_id,
2459 cpuset_current_mems_allowed);
2460 put_mems_allowed();
2461 out:
2462 return ret;
2463 }
2464
2465 #define K(x) ((x) << (PAGE_SHIFT-10))
2466
2467 /*
2468 * Show free area list (used inside shift_scroll-lock stuff)
2469 * We also calculate the percentage fragmentation. We do this by counting the
2470 * memory on each free list with the exception of the first item on the list.
2471 * Suppresses nodes that are not allowed by current's cpuset if
2472 * SHOW_MEM_FILTER_NODES is passed.
2473 */
2474 void __show_free_areas(unsigned int filter)
2475 {
2476 int cpu;
2477 struct zone *zone;
2478
2479 for_each_populated_zone(zone) {
2480 if (skip_free_areas_zone(filter, zone))
2481 continue;
2482 show_node(zone);
2483 printk("%s per-cpu:\n", zone->name);
2484
2485 for_each_online_cpu(cpu) {
2486 struct per_cpu_pageset *pageset;
2487
2488 pageset = per_cpu_ptr(zone->pageset, cpu);
2489
2490 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2491 cpu, pageset->pcp.high,
2492 pageset->pcp.batch, pageset->pcp.count);
2493 }
2494 }
2495
2496 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2497 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2498 " unevictable:%lu"
2499 " dirty:%lu writeback:%lu unstable:%lu\n"
2500 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2501 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2502 global_page_state(NR_ACTIVE_ANON),
2503 global_page_state(NR_INACTIVE_ANON),
2504 global_page_state(NR_ISOLATED_ANON),
2505 global_page_state(NR_ACTIVE_FILE),
2506 global_page_state(NR_INACTIVE_FILE),
2507 global_page_state(NR_ISOLATED_FILE),
2508 global_page_state(NR_UNEVICTABLE),
2509 global_page_state(NR_FILE_DIRTY),
2510 global_page_state(NR_WRITEBACK),
2511 global_page_state(NR_UNSTABLE_NFS),
2512 global_page_state(NR_FREE_PAGES),
2513 global_page_state(NR_SLAB_RECLAIMABLE),
2514 global_page_state(NR_SLAB_UNRECLAIMABLE),
2515 global_page_state(NR_FILE_MAPPED),
2516 global_page_state(NR_SHMEM),
2517 global_page_state(NR_PAGETABLE),
2518 global_page_state(NR_BOUNCE));
2519
2520 for_each_populated_zone(zone) {
2521 int i;
2522
2523 if (skip_free_areas_zone(filter, zone))
2524 continue;
2525 show_node(zone);
2526 printk("%s"
2527 " free:%lukB"
2528 " min:%lukB"
2529 " low:%lukB"
2530 " high:%lukB"
2531 " active_anon:%lukB"
2532 " inactive_anon:%lukB"
2533 " active_file:%lukB"
2534 " inactive_file:%lukB"
2535 " unevictable:%lukB"
2536 " isolated(anon):%lukB"
2537 " isolated(file):%lukB"
2538 " present:%lukB"
2539 " mlocked:%lukB"
2540 " dirty:%lukB"
2541 " writeback:%lukB"
2542 " mapped:%lukB"
2543 " shmem:%lukB"
2544 " slab_reclaimable:%lukB"
2545 " slab_unreclaimable:%lukB"
2546 " kernel_stack:%lukB"
2547 " pagetables:%lukB"
2548 " unstable:%lukB"
2549 " bounce:%lukB"
2550 " writeback_tmp:%lukB"
2551 " pages_scanned:%lu"
2552 " all_unreclaimable? %s"
2553 "\n",
2554 zone->name,
2555 K(zone_page_state(zone, NR_FREE_PAGES)),
2556 K(min_wmark_pages(zone)),
2557 K(low_wmark_pages(zone)),
2558 K(high_wmark_pages(zone)),
2559 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2560 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2561 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2562 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2563 K(zone_page_state(zone, NR_UNEVICTABLE)),
2564 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2565 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2566 K(zone->present_pages),
2567 K(zone_page_state(zone, NR_MLOCK)),
2568 K(zone_page_state(zone, NR_FILE_DIRTY)),
2569 K(zone_page_state(zone, NR_WRITEBACK)),
2570 K(zone_page_state(zone, NR_FILE_MAPPED)),
2571 K(zone_page_state(zone, NR_SHMEM)),
2572 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2573 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2574 zone_page_state(zone, NR_KERNEL_STACK) *
2575 THREAD_SIZE / 1024,
2576 K(zone_page_state(zone, NR_PAGETABLE)),
2577 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2578 K(zone_page_state(zone, NR_BOUNCE)),
2579 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2580 zone->pages_scanned,
2581 (zone->all_unreclaimable ? "yes" : "no")
2582 );
2583 printk("lowmem_reserve[]:");
2584 for (i = 0; i < MAX_NR_ZONES; i++)
2585 printk(" %lu", zone->lowmem_reserve[i]);
2586 printk("\n");
2587 }
2588
2589 for_each_populated_zone(zone) {
2590 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2591
2592 if (skip_free_areas_zone(filter, zone))
2593 continue;
2594 show_node(zone);
2595 printk("%s: ", zone->name);
2596
2597 spin_lock_irqsave(&zone->lock, flags);
2598 for (order = 0; order < MAX_ORDER; order++) {
2599 nr[order] = zone->free_area[order].nr_free;
2600 total += nr[order] << order;
2601 }
2602 spin_unlock_irqrestore(&zone->lock, flags);
2603 for (order = 0; order < MAX_ORDER; order++)
2604 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2605 printk("= %lukB\n", K(total));
2606 }
2607
2608 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2609
2610 show_swap_cache_info();
2611 }
2612
2613 void show_free_areas(void)
2614 {
2615 __show_free_areas(0);
2616 }
2617
2618 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2619 {
2620 zoneref->zone = zone;
2621 zoneref->zone_idx = zone_idx(zone);
2622 }
2623
2624 /*
2625 * Builds allocation fallback zone lists.
2626 *
2627 * Add all populated zones of a node to the zonelist.
2628 */
2629 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2630 int nr_zones, enum zone_type zone_type)
2631 {
2632 struct zone *zone;
2633
2634 BUG_ON(zone_type >= MAX_NR_ZONES);
2635 zone_type++;
2636
2637 do {
2638 zone_type--;
2639 zone = pgdat->node_zones + zone_type;
2640 if (populated_zone(zone)) {
2641 zoneref_set_zone(zone,
2642 &zonelist->_zonerefs[nr_zones++]);
2643 check_highest_zone(zone_type);
2644 }
2645
2646 } while (zone_type);
2647 return nr_zones;
2648 }
2649
2650
2651 /*
2652 * zonelist_order:
2653 * 0 = automatic detection of better ordering.
2654 * 1 = order by ([node] distance, -zonetype)
2655 * 2 = order by (-zonetype, [node] distance)
2656 *
2657 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2658 * the same zonelist. So only NUMA can configure this param.
2659 */
2660 #define ZONELIST_ORDER_DEFAULT 0
2661 #define ZONELIST_ORDER_NODE 1
2662 #define ZONELIST_ORDER_ZONE 2
2663
2664 /* zonelist order in the kernel.
2665 * set_zonelist_order() will set this to NODE or ZONE.
2666 */
2667 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2668 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2669
2670
2671 #ifdef CONFIG_NUMA
2672 /* The value user specified ....changed by config */
2673 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2674 /* string for sysctl */
2675 #define NUMA_ZONELIST_ORDER_LEN 16
2676 char numa_zonelist_order[16] = "default";
2677
2678 /*
2679 * interface for configure zonelist ordering.
2680 * command line option "numa_zonelist_order"
2681 * = "[dD]efault - default, automatic configuration.
2682 * = "[nN]ode - order by node locality, then by zone within node
2683 * = "[zZ]one - order by zone, then by locality within zone
2684 */
2685
2686 static int __parse_numa_zonelist_order(char *s)
2687 {
2688 if (*s == 'd' || *s == 'D') {
2689 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2690 } else if (*s == 'n' || *s == 'N') {
2691 user_zonelist_order = ZONELIST_ORDER_NODE;
2692 } else if (*s == 'z' || *s == 'Z') {
2693 user_zonelist_order = ZONELIST_ORDER_ZONE;
2694 } else {
2695 printk(KERN_WARNING
2696 "Ignoring invalid numa_zonelist_order value: "
2697 "%s\n", s);
2698 return -EINVAL;
2699 }
2700 return 0;
2701 }
2702
2703 static __init int setup_numa_zonelist_order(char *s)
2704 {
2705 int ret;
2706
2707 if (!s)
2708 return 0;
2709
2710 ret = __parse_numa_zonelist_order(s);
2711 if (ret == 0)
2712 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2713
2714 return ret;
2715 }
2716 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2717
2718 /*
2719 * sysctl handler for numa_zonelist_order
2720 */
2721 int numa_zonelist_order_handler(ctl_table *table, int write,
2722 void __user *buffer, size_t *length,
2723 loff_t *ppos)
2724 {
2725 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2726 int ret;
2727 static DEFINE_MUTEX(zl_order_mutex);
2728
2729 mutex_lock(&zl_order_mutex);
2730 if (write)
2731 strcpy(saved_string, (char*)table->data);
2732 ret = proc_dostring(table, write, buffer, length, ppos);
2733 if (ret)
2734 goto out;
2735 if (write) {
2736 int oldval = user_zonelist_order;
2737 if (__parse_numa_zonelist_order((char*)table->data)) {
2738 /*
2739 * bogus value. restore saved string
2740 */
2741 strncpy((char*)table->data, saved_string,
2742 NUMA_ZONELIST_ORDER_LEN);
2743 user_zonelist_order = oldval;
2744 } else if (oldval != user_zonelist_order) {
2745 mutex_lock(&zonelists_mutex);
2746 build_all_zonelists(NULL);
2747 mutex_unlock(&zonelists_mutex);
2748 }
2749 }
2750 out:
2751 mutex_unlock(&zl_order_mutex);
2752 return ret;
2753 }
2754
2755
2756 #define MAX_NODE_LOAD (nr_online_nodes)
2757 static int node_load[MAX_NUMNODES];
2758
2759 /**
2760 * find_next_best_node - find the next node that should appear in a given node's fallback list
2761 * @node: node whose fallback list we're appending
2762 * @used_node_mask: nodemask_t of already used nodes
2763 *
2764 * We use a number of factors to determine which is the next node that should
2765 * appear on a given node's fallback list. The node should not have appeared
2766 * already in @node's fallback list, and it should be the next closest node
2767 * according to the distance array (which contains arbitrary distance values
2768 * from each node to each node in the system), and should also prefer nodes
2769 * with no CPUs, since presumably they'll have very little allocation pressure
2770 * on them otherwise.
2771 * It returns -1 if no node is found.
2772 */
2773 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2774 {
2775 int n, val;
2776 int min_val = INT_MAX;
2777 int best_node = -1;
2778 const struct cpumask *tmp = cpumask_of_node(0);
2779
2780 /* Use the local node if we haven't already */
2781 if (!node_isset(node, *used_node_mask)) {
2782 node_set(node, *used_node_mask);
2783 return node;
2784 }
2785
2786 for_each_node_state(n, N_HIGH_MEMORY) {
2787
2788 /* Don't want a node to appear more than once */
2789 if (node_isset(n, *used_node_mask))
2790 continue;
2791
2792 /* Use the distance array to find the distance */
2793 val = node_distance(node, n);
2794
2795 /* Penalize nodes under us ("prefer the next node") */
2796 val += (n < node);
2797
2798 /* Give preference to headless and unused nodes */
2799 tmp = cpumask_of_node(n);
2800 if (!cpumask_empty(tmp))
2801 val += PENALTY_FOR_NODE_WITH_CPUS;
2802
2803 /* Slight preference for less loaded node */
2804 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2805 val += node_load[n];
2806
2807 if (val < min_val) {
2808 min_val = val;
2809 best_node = n;
2810 }
2811 }
2812
2813 if (best_node >= 0)
2814 node_set(best_node, *used_node_mask);
2815
2816 return best_node;
2817 }
2818
2819
2820 /*
2821 * Build zonelists ordered by node and zones within node.
2822 * This results in maximum locality--normal zone overflows into local
2823 * DMA zone, if any--but risks exhausting DMA zone.
2824 */
2825 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2826 {
2827 int j;
2828 struct zonelist *zonelist;
2829
2830 zonelist = &pgdat->node_zonelists[0];
2831 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2832 ;
2833 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2834 MAX_NR_ZONES - 1);
2835 zonelist->_zonerefs[j].zone = NULL;
2836 zonelist->_zonerefs[j].zone_idx = 0;
2837 }
2838
2839 /*
2840 * Build gfp_thisnode zonelists
2841 */
2842 static void build_thisnode_zonelists(pg_data_t *pgdat)
2843 {
2844 int j;
2845 struct zonelist *zonelist;
2846
2847 zonelist = &pgdat->node_zonelists[1];
2848 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2849 zonelist->_zonerefs[j].zone = NULL;
2850 zonelist->_zonerefs[j].zone_idx = 0;
2851 }
2852
2853 /*
2854 * Build zonelists ordered by zone and nodes within zones.
2855 * This results in conserving DMA zone[s] until all Normal memory is
2856 * exhausted, but results in overflowing to remote node while memory
2857 * may still exist in local DMA zone.
2858 */
2859 static int node_order[MAX_NUMNODES];
2860
2861 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2862 {
2863 int pos, j, node;
2864 int zone_type; /* needs to be signed */
2865 struct zone *z;
2866 struct zonelist *zonelist;
2867
2868 zonelist = &pgdat->node_zonelists[0];
2869 pos = 0;
2870 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2871 for (j = 0; j < nr_nodes; j++) {
2872 node = node_order[j];
2873 z = &NODE_DATA(node)->node_zones[zone_type];
2874 if (populated_zone(z)) {
2875 zoneref_set_zone(z,
2876 &zonelist->_zonerefs[pos++]);
2877 check_highest_zone(zone_type);
2878 }
2879 }
2880 }
2881 zonelist->_zonerefs[pos].zone = NULL;
2882 zonelist->_zonerefs[pos].zone_idx = 0;
2883 }
2884
2885 static int default_zonelist_order(void)
2886 {
2887 int nid, zone_type;
2888 unsigned long low_kmem_size,total_size;
2889 struct zone *z;
2890 int average_size;
2891 /*
2892 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2893 * If they are really small and used heavily, the system can fall
2894 * into OOM very easily.
2895 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2896 */
2897 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2898 low_kmem_size = 0;
2899 total_size = 0;
2900 for_each_online_node(nid) {
2901 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2902 z = &NODE_DATA(nid)->node_zones[zone_type];
2903 if (populated_zone(z)) {
2904 if (zone_type < ZONE_NORMAL)
2905 low_kmem_size += z->present_pages;
2906 total_size += z->present_pages;
2907 } else if (zone_type == ZONE_NORMAL) {
2908 /*
2909 * If any node has only lowmem, then node order
2910 * is preferred to allow kernel allocations
2911 * locally; otherwise, they can easily infringe
2912 * on other nodes when there is an abundance of
2913 * lowmem available to allocate from.
2914 */
2915 return ZONELIST_ORDER_NODE;
2916 }
2917 }
2918 }
2919 if (!low_kmem_size || /* there are no DMA area. */
2920 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2921 return ZONELIST_ORDER_NODE;
2922 /*
2923 * look into each node's config.
2924 * If there is a node whose DMA/DMA32 memory is very big area on
2925 * local memory, NODE_ORDER may be suitable.
2926 */
2927 average_size = total_size /
2928 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2929 for_each_online_node(nid) {
2930 low_kmem_size = 0;
2931 total_size = 0;
2932 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2933 z = &NODE_DATA(nid)->node_zones[zone_type];
2934 if (populated_zone(z)) {
2935 if (zone_type < ZONE_NORMAL)
2936 low_kmem_size += z->present_pages;
2937 total_size += z->present_pages;
2938 }
2939 }
2940 if (low_kmem_size &&
2941 total_size > average_size && /* ignore small node */
2942 low_kmem_size > total_size * 70/100)
2943 return ZONELIST_ORDER_NODE;
2944 }
2945 return ZONELIST_ORDER_ZONE;
2946 }
2947
2948 static void set_zonelist_order(void)
2949 {
2950 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2951 current_zonelist_order = default_zonelist_order();
2952 else
2953 current_zonelist_order = user_zonelist_order;
2954 }
2955
2956 static void build_zonelists(pg_data_t *pgdat)
2957 {
2958 int j, node, load;
2959 enum zone_type i;
2960 nodemask_t used_mask;
2961 int local_node, prev_node;
2962 struct zonelist *zonelist;
2963 int order = current_zonelist_order;
2964
2965 /* initialize zonelists */
2966 for (i = 0; i < MAX_ZONELISTS; i++) {
2967 zonelist = pgdat->node_zonelists + i;
2968 zonelist->_zonerefs[0].zone = NULL;
2969 zonelist->_zonerefs[0].zone_idx = 0;
2970 }
2971
2972 /* NUMA-aware ordering of nodes */
2973 local_node = pgdat->node_id;
2974 load = nr_online_nodes;
2975 prev_node = local_node;
2976 nodes_clear(used_mask);
2977
2978 memset(node_order, 0, sizeof(node_order));
2979 j = 0;
2980
2981 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2982 int distance = node_distance(local_node, node);
2983
2984 /*
2985 * If another node is sufficiently far away then it is better
2986 * to reclaim pages in a zone before going off node.
2987 */
2988 if (distance > RECLAIM_DISTANCE)
2989 zone_reclaim_mode = 1;
2990
2991 /*
2992 * We don't want to pressure a particular node.
2993 * So adding penalty to the first node in same
2994 * distance group to make it round-robin.
2995 */
2996 if (distance != node_distance(local_node, prev_node))
2997 node_load[node] = load;
2998
2999 prev_node = node;
3000 load--;
3001 if (order == ZONELIST_ORDER_NODE)
3002 build_zonelists_in_node_order(pgdat, node);
3003 else
3004 node_order[j++] = node; /* remember order */
3005 }
3006
3007 if (order == ZONELIST_ORDER_ZONE) {
3008 /* calculate node order -- i.e., DMA last! */
3009 build_zonelists_in_zone_order(pgdat, j);
3010 }
3011
3012 build_thisnode_zonelists(pgdat);
3013 }
3014
3015 /* Construct the zonelist performance cache - see further mmzone.h */
3016 static void build_zonelist_cache(pg_data_t *pgdat)
3017 {
3018 struct zonelist *zonelist;
3019 struct zonelist_cache *zlc;
3020 struct zoneref *z;
3021
3022 zonelist = &pgdat->node_zonelists[0];
3023 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3024 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3025 for (z = zonelist->_zonerefs; z->zone; z++)
3026 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3027 }
3028
3029 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3030 /*
3031 * Return node id of node used for "local" allocations.
3032 * I.e., first node id of first zone in arg node's generic zonelist.
3033 * Used for initializing percpu 'numa_mem', which is used primarily
3034 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3035 */
3036 int local_memory_node(int node)
3037 {
3038 struct zone *zone;
3039
3040 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3041 gfp_zone(GFP_KERNEL),
3042 NULL,
3043 &zone);
3044 return zone->node;
3045 }
3046 #endif
3047
3048 #else /* CONFIG_NUMA */
3049
3050 static void set_zonelist_order(void)
3051 {
3052 current_zonelist_order = ZONELIST_ORDER_ZONE;
3053 }
3054
3055 static void build_zonelists(pg_data_t *pgdat)
3056 {
3057 int node, local_node;
3058 enum zone_type j;
3059 struct zonelist *zonelist;
3060
3061 local_node = pgdat->node_id;
3062
3063 zonelist = &pgdat->node_zonelists[0];
3064 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3065
3066 /*
3067 * Now we build the zonelist so that it contains the zones
3068 * of all the other nodes.
3069 * We don't want to pressure a particular node, so when
3070 * building the zones for node N, we make sure that the
3071 * zones coming right after the local ones are those from
3072 * node N+1 (modulo N)
3073 */
3074 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3075 if (!node_online(node))
3076 continue;
3077 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3078 MAX_NR_ZONES - 1);
3079 }
3080 for (node = 0; node < local_node; node++) {
3081 if (!node_online(node))
3082 continue;
3083 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3084 MAX_NR_ZONES - 1);
3085 }
3086
3087 zonelist->_zonerefs[j].zone = NULL;
3088 zonelist->_zonerefs[j].zone_idx = 0;
3089 }
3090
3091 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3092 static void build_zonelist_cache(pg_data_t *pgdat)
3093 {
3094 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3095 }
3096
3097 #endif /* CONFIG_NUMA */
3098
3099 /*
3100 * Boot pageset table. One per cpu which is going to be used for all
3101 * zones and all nodes. The parameters will be set in such a way
3102 * that an item put on a list will immediately be handed over to
3103 * the buddy list. This is safe since pageset manipulation is done
3104 * with interrupts disabled.
3105 *
3106 * The boot_pagesets must be kept even after bootup is complete for
3107 * unused processors and/or zones. They do play a role for bootstrapping
3108 * hotplugged processors.
3109 *
3110 * zoneinfo_show() and maybe other functions do
3111 * not check if the processor is online before following the pageset pointer.
3112 * Other parts of the kernel may not check if the zone is available.
3113 */
3114 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3115 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3116 static void setup_zone_pageset(struct zone *zone);
3117
3118 /*
3119 * Global mutex to protect against size modification of zonelists
3120 * as well as to serialize pageset setup for the new populated zone.
3121 */
3122 DEFINE_MUTEX(zonelists_mutex);
3123
3124 /* return values int ....just for stop_machine() */
3125 static __init_refok int __build_all_zonelists(void *data)
3126 {
3127 int nid;
3128 int cpu;
3129
3130 #ifdef CONFIG_NUMA
3131 memset(node_load, 0, sizeof(node_load));
3132 #endif
3133 for_each_online_node(nid) {
3134 pg_data_t *pgdat = NODE_DATA(nid);
3135
3136 build_zonelists(pgdat);
3137 build_zonelist_cache(pgdat);
3138 }
3139
3140 /*
3141 * Initialize the boot_pagesets that are going to be used
3142 * for bootstrapping processors. The real pagesets for
3143 * each zone will be allocated later when the per cpu
3144 * allocator is available.
3145 *
3146 * boot_pagesets are used also for bootstrapping offline
3147 * cpus if the system is already booted because the pagesets
3148 * are needed to initialize allocators on a specific cpu too.
3149 * F.e. the percpu allocator needs the page allocator which
3150 * needs the percpu allocator in order to allocate its pagesets
3151 * (a chicken-egg dilemma).
3152 */
3153 for_each_possible_cpu(cpu) {
3154 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3155
3156 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3157 /*
3158 * We now know the "local memory node" for each node--
3159 * i.e., the node of the first zone in the generic zonelist.
3160 * Set up numa_mem percpu variable for on-line cpus. During
3161 * boot, only the boot cpu should be on-line; we'll init the
3162 * secondary cpus' numa_mem as they come on-line. During
3163 * node/memory hotplug, we'll fixup all on-line cpus.
3164 */
3165 if (cpu_online(cpu))
3166 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3167 #endif
3168 }
3169
3170 return 0;
3171 }
3172
3173 /*
3174 * Called with zonelists_mutex held always
3175 * unless system_state == SYSTEM_BOOTING.
3176 */
3177 void build_all_zonelists(void *data)
3178 {
3179 set_zonelist_order();
3180
3181 if (system_state == SYSTEM_BOOTING) {
3182 __build_all_zonelists(NULL);
3183 mminit_verify_zonelist();
3184 cpuset_init_current_mems_allowed();
3185 } else {
3186 /* we have to stop all cpus to guarantee there is no user
3187 of zonelist */
3188 #ifdef CONFIG_MEMORY_HOTPLUG
3189 if (data)
3190 setup_zone_pageset((struct zone *)data);
3191 #endif
3192 stop_machine(__build_all_zonelists, NULL, NULL);
3193 /* cpuset refresh routine should be here */
3194 }
3195 vm_total_pages = nr_free_pagecache_pages();
3196 /*
3197 * Disable grouping by mobility if the number of pages in the
3198 * system is too low to allow the mechanism to work. It would be
3199 * more accurate, but expensive to check per-zone. This check is
3200 * made on memory-hotadd so a system can start with mobility
3201 * disabled and enable it later
3202 */
3203 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3204 page_group_by_mobility_disabled = 1;
3205 else
3206 page_group_by_mobility_disabled = 0;
3207
3208 printk("Built %i zonelists in %s order, mobility grouping %s. "
3209 "Total pages: %ld\n",
3210 nr_online_nodes,
3211 zonelist_order_name[current_zonelist_order],
3212 page_group_by_mobility_disabled ? "off" : "on",
3213 vm_total_pages);
3214 #ifdef CONFIG_NUMA
3215 printk("Policy zone: %s\n", zone_names[policy_zone]);
3216 #endif
3217 }
3218
3219 /*
3220 * Helper functions to size the waitqueue hash table.
3221 * Essentially these want to choose hash table sizes sufficiently
3222 * large so that collisions trying to wait on pages are rare.
3223 * But in fact, the number of active page waitqueues on typical
3224 * systems is ridiculously low, less than 200. So this is even
3225 * conservative, even though it seems large.
3226 *
3227 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3228 * waitqueues, i.e. the size of the waitq table given the number of pages.
3229 */
3230 #define PAGES_PER_WAITQUEUE 256
3231
3232 #ifndef CONFIG_MEMORY_HOTPLUG
3233 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3234 {
3235 unsigned long size = 1;
3236
3237 pages /= PAGES_PER_WAITQUEUE;
3238
3239 while (size < pages)
3240 size <<= 1;
3241
3242 /*
3243 * Once we have dozens or even hundreds of threads sleeping
3244 * on IO we've got bigger problems than wait queue collision.
3245 * Limit the size of the wait table to a reasonable size.
3246 */
3247 size = min(size, 4096UL);
3248
3249 return max(size, 4UL);
3250 }
3251 #else
3252 /*
3253 * A zone's size might be changed by hot-add, so it is not possible to determine
3254 * a suitable size for its wait_table. So we use the maximum size now.
3255 *
3256 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3257 *
3258 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3259 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3260 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3261 *
3262 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3263 * or more by the traditional way. (See above). It equals:
3264 *
3265 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3266 * ia64(16K page size) : = ( 8G + 4M)byte.
3267 * powerpc (64K page size) : = (32G +16M)byte.
3268 */
3269 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3270 {
3271 return 4096UL;
3272 }
3273 #endif
3274
3275 /*
3276 * This is an integer logarithm so that shifts can be used later
3277 * to extract the more random high bits from the multiplicative
3278 * hash function before the remainder is taken.
3279 */
3280 static inline unsigned long wait_table_bits(unsigned long size)
3281 {
3282 return ffz(~size);
3283 }
3284
3285 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3286
3287 /*
3288 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3289 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3290 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3291 * higher will lead to a bigger reserve which will get freed as contiguous
3292 * blocks as reclaim kicks in
3293 */
3294 static void setup_zone_migrate_reserve(struct zone *zone)
3295 {
3296 unsigned long start_pfn, pfn, end_pfn;
3297 struct page *page;
3298 unsigned long block_migratetype;
3299 int reserve;
3300
3301 /* Get the start pfn, end pfn and the number of blocks to reserve */
3302 start_pfn = zone->zone_start_pfn;
3303 end_pfn = start_pfn + zone->spanned_pages;
3304 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3305 pageblock_order;
3306
3307 /*
3308 * Reserve blocks are generally in place to help high-order atomic
3309 * allocations that are short-lived. A min_free_kbytes value that
3310 * would result in more than 2 reserve blocks for atomic allocations
3311 * is assumed to be in place to help anti-fragmentation for the
3312 * future allocation of hugepages at runtime.
3313 */
3314 reserve = min(2, reserve);
3315
3316 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3317 if (!pfn_valid(pfn))
3318 continue;
3319 page = pfn_to_page(pfn);
3320
3321 /* Watch out for overlapping nodes */
3322 if (page_to_nid(page) != zone_to_nid(zone))
3323 continue;
3324
3325 /* Blocks with reserved pages will never free, skip them. */
3326 if (PageReserved(page))
3327 continue;
3328
3329 block_migratetype = get_pageblock_migratetype(page);
3330
3331 /* If this block is reserved, account for it */
3332 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3333 reserve--;
3334 continue;
3335 }
3336
3337 /* Suitable for reserving if this block is movable */
3338 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3339 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3340 move_freepages_block(zone, page, MIGRATE_RESERVE);
3341 reserve--;
3342 continue;
3343 }
3344
3345 /*
3346 * If the reserve is met and this is a previous reserved block,
3347 * take it back
3348 */
3349 if (block_migratetype == MIGRATE_RESERVE) {
3350 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3351 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3352 }
3353 }
3354 }
3355
3356 /*
3357 * Initially all pages are reserved - free ones are freed
3358 * up by free_all_bootmem() once the early boot process is
3359 * done. Non-atomic initialization, single-pass.
3360 */
3361 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3362 unsigned long start_pfn, enum memmap_context context)
3363 {
3364 struct page *page;
3365 unsigned long end_pfn = start_pfn + size;
3366 unsigned long pfn;
3367 struct zone *z;
3368
3369 if (highest_memmap_pfn < end_pfn - 1)
3370 highest_memmap_pfn = end_pfn - 1;
3371
3372 z = &NODE_DATA(nid)->node_zones[zone];
3373 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3374 /*
3375 * There can be holes in boot-time mem_map[]s
3376 * handed to this function. They do not
3377 * exist on hotplugged memory.
3378 */
3379 if (context == MEMMAP_EARLY) {
3380 if (!early_pfn_valid(pfn))
3381 continue;
3382 if (!early_pfn_in_nid(pfn, nid))
3383 continue;
3384 }
3385 page = pfn_to_page(pfn);
3386 set_page_links(page, zone, nid, pfn);
3387 mminit_verify_page_links(page, zone, nid, pfn);
3388 init_page_count(page);
3389 reset_page_mapcount(page);
3390 SetPageReserved(page);
3391 /*
3392 * Mark the block movable so that blocks are reserved for
3393 * movable at startup. This will force kernel allocations
3394 * to reserve their blocks rather than leaking throughout
3395 * the address space during boot when many long-lived
3396 * kernel allocations are made. Later some blocks near
3397 * the start are marked MIGRATE_RESERVE by
3398 * setup_zone_migrate_reserve()
3399 *
3400 * bitmap is created for zone's valid pfn range. but memmap
3401 * can be created for invalid pages (for alignment)
3402 * check here not to call set_pageblock_migratetype() against
3403 * pfn out of zone.
3404 */
3405 if ((z->zone_start_pfn <= pfn)
3406 && (pfn < z->zone_start_pfn + z->spanned_pages)
3407 && !(pfn & (pageblock_nr_pages - 1)))
3408 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3409
3410 INIT_LIST_HEAD(&page->lru);
3411 #ifdef WANT_PAGE_VIRTUAL
3412 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3413 if (!is_highmem_idx(zone))
3414 set_page_address(page, __va(pfn << PAGE_SHIFT));
3415 #endif
3416 }
3417 }
3418
3419 static void __meminit zone_init_free_lists(struct zone *zone)
3420 {
3421 int order, t;
3422 for_each_migratetype_order(order, t) {
3423 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3424 zone->free_area[order].nr_free = 0;
3425 }
3426 }
3427
3428 #ifndef __HAVE_ARCH_MEMMAP_INIT
3429 #define memmap_init(size, nid, zone, start_pfn) \
3430 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3431 #endif
3432
3433 static int zone_batchsize(struct zone *zone)
3434 {
3435 #ifdef CONFIG_MMU
3436 int batch;
3437
3438 /*
3439 * The per-cpu-pages pools are set to around 1000th of the
3440 * size of the zone. But no more than 1/2 of a meg.
3441 *
3442 * OK, so we don't know how big the cache is. So guess.
3443 */
3444 batch = zone->present_pages / 1024;
3445 if (batch * PAGE_SIZE > 512 * 1024)
3446 batch = (512 * 1024) / PAGE_SIZE;
3447 batch /= 4; /* We effectively *= 4 below */
3448 if (batch < 1)
3449 batch = 1;
3450
3451 /*
3452 * Clamp the batch to a 2^n - 1 value. Having a power
3453 * of 2 value was found to be more likely to have
3454 * suboptimal cache aliasing properties in some cases.
3455 *
3456 * For example if 2 tasks are alternately allocating
3457 * batches of pages, one task can end up with a lot
3458 * of pages of one half of the possible page colors
3459 * and the other with pages of the other colors.
3460 */
3461 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3462
3463 return batch;
3464
3465 #else
3466 /* The deferral and batching of frees should be suppressed under NOMMU
3467 * conditions.
3468 *
3469 * The problem is that NOMMU needs to be able to allocate large chunks
3470 * of contiguous memory as there's no hardware page translation to
3471 * assemble apparent contiguous memory from discontiguous pages.
3472 *
3473 * Queueing large contiguous runs of pages for batching, however,
3474 * causes the pages to actually be freed in smaller chunks. As there
3475 * can be a significant delay between the individual batches being
3476 * recycled, this leads to the once large chunks of space being
3477 * fragmented and becoming unavailable for high-order allocations.
3478 */
3479 return 0;
3480 #endif
3481 }
3482
3483 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3484 {
3485 struct per_cpu_pages *pcp;
3486 int migratetype;
3487
3488 memset(p, 0, sizeof(*p));
3489
3490 pcp = &p->pcp;
3491 pcp->count = 0;
3492 pcp->high = 6 * batch;
3493 pcp->batch = max(1UL, 1 * batch);
3494 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3495 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3496 }
3497
3498 /*
3499 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3500 * to the value high for the pageset p.
3501 */
3502
3503 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3504 unsigned long high)
3505 {
3506 struct per_cpu_pages *pcp;
3507
3508 pcp = &p->pcp;
3509 pcp->high = high;
3510 pcp->batch = max(1UL, high/4);
3511 if ((high/4) > (PAGE_SHIFT * 8))
3512 pcp->batch = PAGE_SHIFT * 8;
3513 }
3514
3515 static __meminit void setup_zone_pageset(struct zone *zone)
3516 {
3517 int cpu;
3518
3519 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3520
3521 for_each_possible_cpu(cpu) {
3522 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3523
3524 setup_pageset(pcp, zone_batchsize(zone));
3525
3526 if (percpu_pagelist_fraction)
3527 setup_pagelist_highmark(pcp,
3528 (zone->present_pages /
3529 percpu_pagelist_fraction));
3530 }
3531 }
3532
3533 /*
3534 * Allocate per cpu pagesets and initialize them.
3535 * Before this call only boot pagesets were available.
3536 */
3537 void __init setup_per_cpu_pageset(void)
3538 {
3539 struct zone *zone;
3540
3541 for_each_populated_zone(zone)
3542 setup_zone_pageset(zone);
3543 }
3544
3545 static noinline __init_refok
3546 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3547 {
3548 int i;
3549 struct pglist_data *pgdat = zone->zone_pgdat;
3550 size_t alloc_size;
3551
3552 /*
3553 * The per-page waitqueue mechanism uses hashed waitqueues
3554 * per zone.
3555 */
3556 zone->wait_table_hash_nr_entries =
3557 wait_table_hash_nr_entries(zone_size_pages);
3558 zone->wait_table_bits =
3559 wait_table_bits(zone->wait_table_hash_nr_entries);
3560 alloc_size = zone->wait_table_hash_nr_entries
3561 * sizeof(wait_queue_head_t);
3562
3563 if (!slab_is_available()) {
3564 zone->wait_table = (wait_queue_head_t *)
3565 alloc_bootmem_node(pgdat, alloc_size);
3566 } else {
3567 /*
3568 * This case means that a zone whose size was 0 gets new memory
3569 * via memory hot-add.
3570 * But it may be the case that a new node was hot-added. In
3571 * this case vmalloc() will not be able to use this new node's
3572 * memory - this wait_table must be initialized to use this new
3573 * node itself as well.
3574 * To use this new node's memory, further consideration will be
3575 * necessary.
3576 */
3577 zone->wait_table = vmalloc(alloc_size);
3578 }
3579 if (!zone->wait_table)
3580 return -ENOMEM;
3581
3582 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3583 init_waitqueue_head(zone->wait_table + i);
3584
3585 return 0;
3586 }
3587
3588 static int __zone_pcp_update(void *data)
3589 {
3590 struct zone *zone = data;
3591 int cpu;
3592 unsigned long batch = zone_batchsize(zone), flags;
3593
3594 for_each_possible_cpu(cpu) {
3595 struct per_cpu_pageset *pset;
3596 struct per_cpu_pages *pcp;
3597
3598 pset = per_cpu_ptr(zone->pageset, cpu);
3599 pcp = &pset->pcp;
3600
3601 local_irq_save(flags);
3602 free_pcppages_bulk(zone, pcp->count, pcp);
3603 setup_pageset(pset, batch);
3604 local_irq_restore(flags);
3605 }
3606 return 0;
3607 }
3608
3609 void zone_pcp_update(struct zone *zone)
3610 {
3611 stop_machine(__zone_pcp_update, zone, NULL);
3612 }
3613
3614 static __meminit void zone_pcp_init(struct zone *zone)
3615 {
3616 /*
3617 * per cpu subsystem is not up at this point. The following code
3618 * relies on the ability of the linker to provide the
3619 * offset of a (static) per cpu variable into the per cpu area.
3620 */
3621 zone->pageset = &boot_pageset;
3622
3623 if (zone->present_pages)
3624 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3625 zone->name, zone->present_pages,
3626 zone_batchsize(zone));
3627 }
3628
3629 __meminit int init_currently_empty_zone(struct zone *zone,
3630 unsigned long zone_start_pfn,
3631 unsigned long size,
3632 enum memmap_context context)
3633 {
3634 struct pglist_data *pgdat = zone->zone_pgdat;
3635 int ret;
3636 ret = zone_wait_table_init(zone, size);
3637 if (ret)
3638 return ret;
3639 pgdat->nr_zones = zone_idx(zone) + 1;
3640
3641 zone->zone_start_pfn = zone_start_pfn;
3642
3643 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3644 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3645 pgdat->node_id,
3646 (unsigned long)zone_idx(zone),
3647 zone_start_pfn, (zone_start_pfn + size));
3648
3649 zone_init_free_lists(zone);
3650
3651 return 0;
3652 }
3653
3654 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3655 /*
3656 * Basic iterator support. Return the first range of PFNs for a node
3657 * Note: nid == MAX_NUMNODES returns first region regardless of node
3658 */
3659 static int __meminit first_active_region_index_in_nid(int nid)
3660 {
3661 int i;
3662
3663 for (i = 0; i < nr_nodemap_entries; i++)
3664 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3665 return i;
3666
3667 return -1;
3668 }
3669
3670 /*
3671 * Basic iterator support. Return the next active range of PFNs for a node
3672 * Note: nid == MAX_NUMNODES returns next region regardless of node
3673 */
3674 static int __meminit next_active_region_index_in_nid(int index, int nid)
3675 {
3676 for (index = index + 1; index < nr_nodemap_entries; index++)
3677 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3678 return index;
3679
3680 return -1;
3681 }
3682
3683 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3684 /*
3685 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3686 * Architectures may implement their own version but if add_active_range()
3687 * was used and there are no special requirements, this is a convenient
3688 * alternative
3689 */
3690 int __meminit __early_pfn_to_nid(unsigned long pfn)
3691 {
3692 int i;
3693
3694 for (i = 0; i < nr_nodemap_entries; i++) {
3695 unsigned long start_pfn = early_node_map[i].start_pfn;
3696 unsigned long end_pfn = early_node_map[i].end_pfn;
3697
3698 if (start_pfn <= pfn && pfn < end_pfn)
3699 return early_node_map[i].nid;
3700 }
3701 /* This is a memory hole */
3702 return -1;
3703 }
3704 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3705
3706 int __meminit early_pfn_to_nid(unsigned long pfn)
3707 {
3708 int nid;
3709
3710 nid = __early_pfn_to_nid(pfn);
3711 if (nid >= 0)
3712 return nid;
3713 /* just returns 0 */
3714 return 0;
3715 }
3716
3717 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3718 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3719 {
3720 int nid;
3721
3722 nid = __early_pfn_to_nid(pfn);
3723 if (nid >= 0 && nid != node)
3724 return false;
3725 return true;
3726 }
3727 #endif
3728
3729 /* Basic iterator support to walk early_node_map[] */
3730 #define for_each_active_range_index_in_nid(i, nid) \
3731 for (i = first_active_region_index_in_nid(nid); i != -1; \
3732 i = next_active_region_index_in_nid(i, nid))
3733
3734 /**
3735 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3736 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3737 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3738 *
3739 * If an architecture guarantees that all ranges registered with
3740 * add_active_ranges() contain no holes and may be freed, this
3741 * this function may be used instead of calling free_bootmem() manually.
3742 */
3743 void __init free_bootmem_with_active_regions(int nid,
3744 unsigned long max_low_pfn)
3745 {
3746 int i;
3747
3748 for_each_active_range_index_in_nid(i, nid) {
3749 unsigned long size_pages = 0;
3750 unsigned long end_pfn = early_node_map[i].end_pfn;
3751
3752 if (early_node_map[i].start_pfn >= max_low_pfn)
3753 continue;
3754
3755 if (end_pfn > max_low_pfn)
3756 end_pfn = max_low_pfn;
3757
3758 size_pages = end_pfn - early_node_map[i].start_pfn;
3759 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3760 PFN_PHYS(early_node_map[i].start_pfn),
3761 size_pages << PAGE_SHIFT);
3762 }
3763 }
3764
3765 #ifdef CONFIG_HAVE_MEMBLOCK
3766 /*
3767 * Basic iterator support. Return the last range of PFNs for a node
3768 * Note: nid == MAX_NUMNODES returns last region regardless of node
3769 */
3770 static int __meminit last_active_region_index_in_nid(int nid)
3771 {
3772 int i;
3773
3774 for (i = nr_nodemap_entries - 1; i >= 0; i--)
3775 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3776 return i;
3777
3778 return -1;
3779 }
3780
3781 /*
3782 * Basic iterator support. Return the previous active range of PFNs for a node
3783 * Note: nid == MAX_NUMNODES returns next region regardless of node
3784 */
3785 static int __meminit previous_active_region_index_in_nid(int index, int nid)
3786 {
3787 for (index = index - 1; index >= 0; index--)
3788 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3789 return index;
3790
3791 return -1;
3792 }
3793
3794 #define for_each_active_range_index_in_nid_reverse(i, nid) \
3795 for (i = last_active_region_index_in_nid(nid); i != -1; \
3796 i = previous_active_region_index_in_nid(i, nid))
3797
3798 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3799 u64 goal, u64 limit)
3800 {
3801 int i;
3802
3803 /* Need to go over early_node_map to find out good range for node */
3804 for_each_active_range_index_in_nid_reverse(i, nid) {
3805 u64 addr;
3806 u64 ei_start, ei_last;
3807 u64 final_start, final_end;
3808
3809 ei_last = early_node_map[i].end_pfn;
3810 ei_last <<= PAGE_SHIFT;
3811 ei_start = early_node_map[i].start_pfn;
3812 ei_start <<= PAGE_SHIFT;
3813
3814 final_start = max(ei_start, goal);
3815 final_end = min(ei_last, limit);
3816
3817 if (final_start >= final_end)
3818 continue;
3819
3820 addr = memblock_find_in_range(final_start, final_end, size, align);
3821
3822 if (addr == MEMBLOCK_ERROR)
3823 continue;
3824
3825 return addr;
3826 }
3827
3828 return MEMBLOCK_ERROR;
3829 }
3830 #endif
3831
3832 int __init add_from_early_node_map(struct range *range, int az,
3833 int nr_range, int nid)
3834 {
3835 int i;
3836 u64 start, end;
3837
3838 /* need to go over early_node_map to find out good range for node */
3839 for_each_active_range_index_in_nid(i, nid) {
3840 start = early_node_map[i].start_pfn;
3841 end = early_node_map[i].end_pfn;
3842 nr_range = add_range(range, az, nr_range, start, end);
3843 }
3844 return nr_range;
3845 }
3846
3847 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3848 {
3849 int i;
3850 int ret;
3851
3852 for_each_active_range_index_in_nid(i, nid) {
3853 ret = work_fn(early_node_map[i].start_pfn,
3854 early_node_map[i].end_pfn, data);
3855 if (ret)
3856 break;
3857 }
3858 }
3859 /**
3860 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3861 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3862 *
3863 * If an architecture guarantees that all ranges registered with
3864 * add_active_ranges() contain no holes and may be freed, this
3865 * function may be used instead of calling memory_present() manually.
3866 */
3867 void __init sparse_memory_present_with_active_regions(int nid)
3868 {
3869 int i;
3870
3871 for_each_active_range_index_in_nid(i, nid)
3872 memory_present(early_node_map[i].nid,
3873 early_node_map[i].start_pfn,
3874 early_node_map[i].end_pfn);
3875 }
3876
3877 /**
3878 * get_pfn_range_for_nid - Return the start and end page frames for a node
3879 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3880 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3881 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3882 *
3883 * It returns the start and end page frame of a node based on information
3884 * provided by an arch calling add_active_range(). If called for a node
3885 * with no available memory, a warning is printed and the start and end
3886 * PFNs will be 0.
3887 */
3888 void __meminit get_pfn_range_for_nid(unsigned int nid,
3889 unsigned long *start_pfn, unsigned long *end_pfn)
3890 {
3891 int i;
3892 *start_pfn = -1UL;
3893 *end_pfn = 0;
3894
3895 for_each_active_range_index_in_nid(i, nid) {
3896 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3897 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3898 }
3899
3900 if (*start_pfn == -1UL)
3901 *start_pfn = 0;
3902 }
3903
3904 /*
3905 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3906 * assumption is made that zones within a node are ordered in monotonic
3907 * increasing memory addresses so that the "highest" populated zone is used
3908 */
3909 static void __init find_usable_zone_for_movable(void)
3910 {
3911 int zone_index;
3912 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3913 if (zone_index == ZONE_MOVABLE)
3914 continue;
3915
3916 if (arch_zone_highest_possible_pfn[zone_index] >
3917 arch_zone_lowest_possible_pfn[zone_index])
3918 break;
3919 }
3920
3921 VM_BUG_ON(zone_index == -1);
3922 movable_zone = zone_index;
3923 }
3924
3925 /*
3926 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3927 * because it is sized independant of architecture. Unlike the other zones,
3928 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3929 * in each node depending on the size of each node and how evenly kernelcore
3930 * is distributed. This helper function adjusts the zone ranges
3931 * provided by the architecture for a given node by using the end of the
3932 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3933 * zones within a node are in order of monotonic increases memory addresses
3934 */
3935 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3936 unsigned long zone_type,
3937 unsigned long node_start_pfn,
3938 unsigned long node_end_pfn,
3939 unsigned long *zone_start_pfn,
3940 unsigned long *zone_end_pfn)
3941 {
3942 /* Only adjust if ZONE_MOVABLE is on this node */
3943 if (zone_movable_pfn[nid]) {
3944 /* Size ZONE_MOVABLE */
3945 if (zone_type == ZONE_MOVABLE) {
3946 *zone_start_pfn = zone_movable_pfn[nid];
3947 *zone_end_pfn = min(node_end_pfn,
3948 arch_zone_highest_possible_pfn[movable_zone]);
3949
3950 /* Adjust for ZONE_MOVABLE starting within this range */
3951 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3952 *zone_end_pfn > zone_movable_pfn[nid]) {
3953 *zone_end_pfn = zone_movable_pfn[nid];
3954
3955 /* Check if this whole range is within ZONE_MOVABLE */
3956 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3957 *zone_start_pfn = *zone_end_pfn;
3958 }
3959 }
3960
3961 /*
3962 * Return the number of pages a zone spans in a node, including holes
3963 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3964 */
3965 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3966 unsigned long zone_type,
3967 unsigned long *ignored)
3968 {
3969 unsigned long node_start_pfn, node_end_pfn;
3970 unsigned long zone_start_pfn, zone_end_pfn;
3971
3972 /* Get the start and end of the node and zone */
3973 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3974 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3975 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3976 adjust_zone_range_for_zone_movable(nid, zone_type,
3977 node_start_pfn, node_end_pfn,
3978 &zone_start_pfn, &zone_end_pfn);
3979
3980 /* Check that this node has pages within the zone's required range */
3981 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3982 return 0;
3983
3984 /* Move the zone boundaries inside the node if necessary */
3985 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3986 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3987
3988 /* Return the spanned pages */
3989 return zone_end_pfn - zone_start_pfn;
3990 }
3991
3992 /*
3993 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3994 * then all holes in the requested range will be accounted for.
3995 */
3996 unsigned long __meminit __absent_pages_in_range(int nid,
3997 unsigned long range_start_pfn,
3998 unsigned long range_end_pfn)
3999 {
4000 int i = 0;
4001 unsigned long prev_end_pfn = 0, hole_pages = 0;
4002 unsigned long start_pfn;
4003
4004 /* Find the end_pfn of the first active range of pfns in the node */
4005 i = first_active_region_index_in_nid(nid);
4006 if (i == -1)
4007 return 0;
4008
4009 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4010
4011 /* Account for ranges before physical memory on this node */
4012 if (early_node_map[i].start_pfn > range_start_pfn)
4013 hole_pages = prev_end_pfn - range_start_pfn;
4014
4015 /* Find all holes for the zone within the node */
4016 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
4017
4018 /* No need to continue if prev_end_pfn is outside the zone */
4019 if (prev_end_pfn >= range_end_pfn)
4020 break;
4021
4022 /* Make sure the end of the zone is not within the hole */
4023 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4024 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
4025
4026 /* Update the hole size cound and move on */
4027 if (start_pfn > range_start_pfn) {
4028 BUG_ON(prev_end_pfn > start_pfn);
4029 hole_pages += start_pfn - prev_end_pfn;
4030 }
4031 prev_end_pfn = early_node_map[i].end_pfn;
4032 }
4033
4034 /* Account for ranges past physical memory on this node */
4035 if (range_end_pfn > prev_end_pfn)
4036 hole_pages += range_end_pfn -
4037 max(range_start_pfn, prev_end_pfn);
4038
4039 return hole_pages;
4040 }
4041
4042 /**
4043 * absent_pages_in_range - Return number of page frames in holes within a range
4044 * @start_pfn: The start PFN to start searching for holes
4045 * @end_pfn: The end PFN to stop searching for holes
4046 *
4047 * It returns the number of pages frames in memory holes within a range.
4048 */
4049 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4050 unsigned long end_pfn)
4051 {
4052 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4053 }
4054
4055 /* Return the number of page frames in holes in a zone on a node */
4056 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4057 unsigned long zone_type,
4058 unsigned long *ignored)
4059 {
4060 unsigned long node_start_pfn, node_end_pfn;
4061 unsigned long zone_start_pfn, zone_end_pfn;
4062
4063 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4064 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
4065 node_start_pfn);
4066 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
4067 node_end_pfn);
4068
4069 adjust_zone_range_for_zone_movable(nid, zone_type,
4070 node_start_pfn, node_end_pfn,
4071 &zone_start_pfn, &zone_end_pfn);
4072 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4073 }
4074
4075 #else
4076 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4077 unsigned long zone_type,
4078 unsigned long *zones_size)
4079 {
4080 return zones_size[zone_type];
4081 }
4082
4083 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4084 unsigned long zone_type,
4085 unsigned long *zholes_size)
4086 {
4087 if (!zholes_size)
4088 return 0;
4089
4090 return zholes_size[zone_type];
4091 }
4092
4093 #endif
4094
4095 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4096 unsigned long *zones_size, unsigned long *zholes_size)
4097 {
4098 unsigned long realtotalpages, totalpages = 0;
4099 enum zone_type i;
4100
4101 for (i = 0; i < MAX_NR_ZONES; i++)
4102 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4103 zones_size);
4104 pgdat->node_spanned_pages = totalpages;
4105
4106 realtotalpages = totalpages;
4107 for (i = 0; i < MAX_NR_ZONES; i++)
4108 realtotalpages -=
4109 zone_absent_pages_in_node(pgdat->node_id, i,
4110 zholes_size);
4111 pgdat->node_present_pages = realtotalpages;
4112 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4113 realtotalpages);
4114 }
4115
4116 #ifndef CONFIG_SPARSEMEM
4117 /*
4118 * Calculate the size of the zone->blockflags rounded to an unsigned long
4119 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4120 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4121 * round what is now in bits to nearest long in bits, then return it in
4122 * bytes.
4123 */
4124 static unsigned long __init usemap_size(unsigned long zonesize)
4125 {
4126 unsigned long usemapsize;
4127
4128 usemapsize = roundup(zonesize, pageblock_nr_pages);
4129 usemapsize = usemapsize >> pageblock_order;
4130 usemapsize *= NR_PAGEBLOCK_BITS;
4131 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4132
4133 return usemapsize / 8;
4134 }
4135
4136 static void __init setup_usemap(struct pglist_data *pgdat,
4137 struct zone *zone, unsigned long zonesize)
4138 {
4139 unsigned long usemapsize = usemap_size(zonesize);
4140 zone->pageblock_flags = NULL;
4141 if (usemapsize)
4142 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
4143 }
4144 #else
4145 static inline void setup_usemap(struct pglist_data *pgdat,
4146 struct zone *zone, unsigned long zonesize) {}
4147 #endif /* CONFIG_SPARSEMEM */
4148
4149 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4150
4151 /* Return a sensible default order for the pageblock size. */
4152 static inline int pageblock_default_order(void)
4153 {
4154 if (HPAGE_SHIFT > PAGE_SHIFT)
4155 return HUGETLB_PAGE_ORDER;
4156
4157 return MAX_ORDER-1;
4158 }
4159
4160 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4161 static inline void __init set_pageblock_order(unsigned int order)
4162 {
4163 /* Check that pageblock_nr_pages has not already been setup */
4164 if (pageblock_order)
4165 return;
4166
4167 /*
4168 * Assume the largest contiguous order of interest is a huge page.
4169 * This value may be variable depending on boot parameters on IA64
4170 */
4171 pageblock_order = order;
4172 }
4173 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4174
4175 /*
4176 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4177 * and pageblock_default_order() are unused as pageblock_order is set
4178 * at compile-time. See include/linux/pageblock-flags.h for the values of
4179 * pageblock_order based on the kernel config
4180 */
4181 static inline int pageblock_default_order(unsigned int order)
4182 {
4183 return MAX_ORDER-1;
4184 }
4185 #define set_pageblock_order(x) do {} while (0)
4186
4187 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4188
4189 /*
4190 * Set up the zone data structures:
4191 * - mark all pages reserved
4192 * - mark all memory queues empty
4193 * - clear the memory bitmaps
4194 */
4195 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4196 unsigned long *zones_size, unsigned long *zholes_size)
4197 {
4198 enum zone_type j;
4199 int nid = pgdat->node_id;
4200 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4201 int ret;
4202
4203 pgdat_resize_init(pgdat);
4204 pgdat->nr_zones = 0;
4205 init_waitqueue_head(&pgdat->kswapd_wait);
4206 pgdat->kswapd_max_order = 0;
4207 pgdat_page_cgroup_init(pgdat);
4208
4209 for (j = 0; j < MAX_NR_ZONES; j++) {
4210 struct zone *zone = pgdat->node_zones + j;
4211 unsigned long size, realsize, memmap_pages;
4212 enum lru_list l;
4213
4214 size = zone_spanned_pages_in_node(nid, j, zones_size);
4215 realsize = size - zone_absent_pages_in_node(nid, j,
4216 zholes_size);
4217
4218 /*
4219 * Adjust realsize so that it accounts for how much memory
4220 * is used by this zone for memmap. This affects the watermark
4221 * and per-cpu initialisations
4222 */
4223 memmap_pages =
4224 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4225 if (realsize >= memmap_pages) {
4226 realsize -= memmap_pages;
4227 if (memmap_pages)
4228 printk(KERN_DEBUG
4229 " %s zone: %lu pages used for memmap\n",
4230 zone_names[j], memmap_pages);
4231 } else
4232 printk(KERN_WARNING
4233 " %s zone: %lu pages exceeds realsize %lu\n",
4234 zone_names[j], memmap_pages, realsize);
4235
4236 /* Account for reserved pages */
4237 if (j == 0 && realsize > dma_reserve) {
4238 realsize -= dma_reserve;
4239 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4240 zone_names[0], dma_reserve);
4241 }
4242
4243 if (!is_highmem_idx(j))
4244 nr_kernel_pages += realsize;
4245 nr_all_pages += realsize;
4246
4247 zone->spanned_pages = size;
4248 zone->present_pages = realsize;
4249 #ifdef CONFIG_NUMA
4250 zone->node = nid;
4251 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4252 / 100;
4253 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4254 #endif
4255 zone->name = zone_names[j];
4256 spin_lock_init(&zone->lock);
4257 spin_lock_init(&zone->lru_lock);
4258 zone_seqlock_init(zone);
4259 zone->zone_pgdat = pgdat;
4260
4261 zone_pcp_init(zone);
4262 for_each_lru(l) {
4263 INIT_LIST_HEAD(&zone->lru[l].list);
4264 zone->reclaim_stat.nr_saved_scan[l] = 0;
4265 }
4266 zone->reclaim_stat.recent_rotated[0] = 0;
4267 zone->reclaim_stat.recent_rotated[1] = 0;
4268 zone->reclaim_stat.recent_scanned[0] = 0;
4269 zone->reclaim_stat.recent_scanned[1] = 0;
4270 zap_zone_vm_stats(zone);
4271 zone->flags = 0;
4272 if (!size)
4273 continue;
4274
4275 set_pageblock_order(pageblock_default_order());
4276 setup_usemap(pgdat, zone, size);
4277 ret = init_currently_empty_zone(zone, zone_start_pfn,
4278 size, MEMMAP_EARLY);
4279 BUG_ON(ret);
4280 memmap_init(size, nid, j, zone_start_pfn);
4281 zone_start_pfn += size;
4282 }
4283 }
4284
4285 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4286 {
4287 /* Skip empty nodes */
4288 if (!pgdat->node_spanned_pages)
4289 return;
4290
4291 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4292 /* ia64 gets its own node_mem_map, before this, without bootmem */
4293 if (!pgdat->node_mem_map) {
4294 unsigned long size, start, end;
4295 struct page *map;
4296
4297 /*
4298 * The zone's endpoints aren't required to be MAX_ORDER
4299 * aligned but the node_mem_map endpoints must be in order
4300 * for the buddy allocator to function correctly.
4301 */
4302 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4303 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4304 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4305 size = (end - start) * sizeof(struct page);
4306 map = alloc_remap(pgdat->node_id, size);
4307 if (!map)
4308 map = alloc_bootmem_node(pgdat, size);
4309 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4310 }
4311 #ifndef CONFIG_NEED_MULTIPLE_NODES
4312 /*
4313 * With no DISCONTIG, the global mem_map is just set as node 0's
4314 */
4315 if (pgdat == NODE_DATA(0)) {
4316 mem_map = NODE_DATA(0)->node_mem_map;
4317 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4318 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4319 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4320 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4321 }
4322 #endif
4323 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4324 }
4325
4326 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4327 unsigned long node_start_pfn, unsigned long *zholes_size)
4328 {
4329 pg_data_t *pgdat = NODE_DATA(nid);
4330
4331 pgdat->node_id = nid;
4332 pgdat->node_start_pfn = node_start_pfn;
4333 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4334
4335 alloc_node_mem_map(pgdat);
4336 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4337 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4338 nid, (unsigned long)pgdat,
4339 (unsigned long)pgdat->node_mem_map);
4340 #endif
4341
4342 free_area_init_core(pgdat, zones_size, zholes_size);
4343 }
4344
4345 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4346
4347 #if MAX_NUMNODES > 1
4348 /*
4349 * Figure out the number of possible node ids.
4350 */
4351 static void __init setup_nr_node_ids(void)
4352 {
4353 unsigned int node;
4354 unsigned int highest = 0;
4355
4356 for_each_node_mask(node, node_possible_map)
4357 highest = node;
4358 nr_node_ids = highest + 1;
4359 }
4360 #else
4361 static inline void setup_nr_node_ids(void)
4362 {
4363 }
4364 #endif
4365
4366 /**
4367 * add_active_range - Register a range of PFNs backed by physical memory
4368 * @nid: The node ID the range resides on
4369 * @start_pfn: The start PFN of the available physical memory
4370 * @end_pfn: The end PFN of the available physical memory
4371 *
4372 * These ranges are stored in an early_node_map[] and later used by
4373 * free_area_init_nodes() to calculate zone sizes and holes. If the
4374 * range spans a memory hole, it is up to the architecture to ensure
4375 * the memory is not freed by the bootmem allocator. If possible
4376 * the range being registered will be merged with existing ranges.
4377 */
4378 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4379 unsigned long end_pfn)
4380 {
4381 int i;
4382
4383 mminit_dprintk(MMINIT_TRACE, "memory_register",
4384 "Entering add_active_range(%d, %#lx, %#lx) "
4385 "%d entries of %d used\n",
4386 nid, start_pfn, end_pfn,
4387 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4388
4389 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4390
4391 /* Merge with existing active regions if possible */
4392 for (i = 0; i < nr_nodemap_entries; i++) {
4393 if (early_node_map[i].nid != nid)
4394 continue;
4395
4396 /* Skip if an existing region covers this new one */
4397 if (start_pfn >= early_node_map[i].start_pfn &&
4398 end_pfn <= early_node_map[i].end_pfn)
4399 return;
4400
4401 /* Merge forward if suitable */
4402 if (start_pfn <= early_node_map[i].end_pfn &&
4403 end_pfn > early_node_map[i].end_pfn) {
4404 early_node_map[i].end_pfn = end_pfn;
4405 return;
4406 }
4407
4408 /* Merge backward if suitable */
4409 if (start_pfn < early_node_map[i].start_pfn &&
4410 end_pfn >= early_node_map[i].start_pfn) {
4411 early_node_map[i].start_pfn = start_pfn;
4412 return;
4413 }
4414 }
4415
4416 /* Check that early_node_map is large enough */
4417 if (i >= MAX_ACTIVE_REGIONS) {
4418 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4419 MAX_ACTIVE_REGIONS);
4420 return;
4421 }
4422
4423 early_node_map[i].nid = nid;
4424 early_node_map[i].start_pfn = start_pfn;
4425 early_node_map[i].end_pfn = end_pfn;
4426 nr_nodemap_entries = i + 1;
4427 }
4428
4429 /**
4430 * remove_active_range - Shrink an existing registered range of PFNs
4431 * @nid: The node id the range is on that should be shrunk
4432 * @start_pfn: The new PFN of the range
4433 * @end_pfn: The new PFN of the range
4434 *
4435 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4436 * The map is kept near the end physical page range that has already been
4437 * registered. This function allows an arch to shrink an existing registered
4438 * range.
4439 */
4440 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4441 unsigned long end_pfn)
4442 {
4443 int i, j;
4444 int removed = 0;
4445
4446 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4447 nid, start_pfn, end_pfn);
4448
4449 /* Find the old active region end and shrink */
4450 for_each_active_range_index_in_nid(i, nid) {
4451 if (early_node_map[i].start_pfn >= start_pfn &&
4452 early_node_map[i].end_pfn <= end_pfn) {
4453 /* clear it */
4454 early_node_map[i].start_pfn = 0;
4455 early_node_map[i].end_pfn = 0;
4456 removed = 1;
4457 continue;
4458 }
4459 if (early_node_map[i].start_pfn < start_pfn &&
4460 early_node_map[i].end_pfn > start_pfn) {
4461 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4462 early_node_map[i].end_pfn = start_pfn;
4463 if (temp_end_pfn > end_pfn)
4464 add_active_range(nid, end_pfn, temp_end_pfn);
4465 continue;
4466 }
4467 if (early_node_map[i].start_pfn >= start_pfn &&
4468 early_node_map[i].end_pfn > end_pfn &&
4469 early_node_map[i].start_pfn < end_pfn) {
4470 early_node_map[i].start_pfn = end_pfn;
4471 continue;
4472 }
4473 }
4474
4475 if (!removed)
4476 return;
4477
4478 /* remove the blank ones */
4479 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4480 if (early_node_map[i].nid != nid)
4481 continue;
4482 if (early_node_map[i].end_pfn)
4483 continue;
4484 /* we found it, get rid of it */
4485 for (j = i; j < nr_nodemap_entries - 1; j++)
4486 memcpy(&early_node_map[j], &early_node_map[j+1],
4487 sizeof(early_node_map[j]));
4488 j = nr_nodemap_entries - 1;
4489 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4490 nr_nodemap_entries--;
4491 }
4492 }
4493
4494 /**
4495 * remove_all_active_ranges - Remove all currently registered regions
4496 *
4497 * During discovery, it may be found that a table like SRAT is invalid
4498 * and an alternative discovery method must be used. This function removes
4499 * all currently registered regions.
4500 */
4501 void __init remove_all_active_ranges(void)
4502 {
4503 memset(early_node_map, 0, sizeof(early_node_map));
4504 nr_nodemap_entries = 0;
4505 }
4506
4507 /* Compare two active node_active_regions */
4508 static int __init cmp_node_active_region(const void *a, const void *b)
4509 {
4510 struct node_active_region *arange = (struct node_active_region *)a;
4511 struct node_active_region *brange = (struct node_active_region *)b;
4512
4513 /* Done this way to avoid overflows */
4514 if (arange->start_pfn > brange->start_pfn)
4515 return 1;
4516 if (arange->start_pfn < brange->start_pfn)
4517 return -1;
4518
4519 return 0;
4520 }
4521
4522 /* sort the node_map by start_pfn */
4523 void __init sort_node_map(void)
4524 {
4525 sort(early_node_map, (size_t)nr_nodemap_entries,
4526 sizeof(struct node_active_region),
4527 cmp_node_active_region, NULL);
4528 }
4529
4530 /* Find the lowest pfn for a node */
4531 static unsigned long __init find_min_pfn_for_node(int nid)
4532 {
4533 int i;
4534 unsigned long min_pfn = ULONG_MAX;
4535
4536 /* Assuming a sorted map, the first range found has the starting pfn */
4537 for_each_active_range_index_in_nid(i, nid)
4538 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4539
4540 if (min_pfn == ULONG_MAX) {
4541 printk(KERN_WARNING
4542 "Could not find start_pfn for node %d\n", nid);
4543 return 0;
4544 }
4545
4546 return min_pfn;
4547 }
4548
4549 /**
4550 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4551 *
4552 * It returns the minimum PFN based on information provided via
4553 * add_active_range().
4554 */
4555 unsigned long __init find_min_pfn_with_active_regions(void)
4556 {
4557 return find_min_pfn_for_node(MAX_NUMNODES);
4558 }
4559
4560 /*
4561 * early_calculate_totalpages()
4562 * Sum pages in active regions for movable zone.
4563 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4564 */
4565 static unsigned long __init early_calculate_totalpages(void)
4566 {
4567 int i;
4568 unsigned long totalpages = 0;
4569
4570 for (i = 0; i < nr_nodemap_entries; i++) {
4571 unsigned long pages = early_node_map[i].end_pfn -
4572 early_node_map[i].start_pfn;
4573 totalpages += pages;
4574 if (pages)
4575 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4576 }
4577 return totalpages;
4578 }
4579
4580 /*
4581 * Find the PFN the Movable zone begins in each node. Kernel memory
4582 * is spread evenly between nodes as long as the nodes have enough
4583 * memory. When they don't, some nodes will have more kernelcore than
4584 * others
4585 */
4586 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4587 {
4588 int i, nid;
4589 unsigned long usable_startpfn;
4590 unsigned long kernelcore_node, kernelcore_remaining;
4591 /* save the state before borrow the nodemask */
4592 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4593 unsigned long totalpages = early_calculate_totalpages();
4594 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4595
4596 /*
4597 * If movablecore was specified, calculate what size of
4598 * kernelcore that corresponds so that memory usable for
4599 * any allocation type is evenly spread. If both kernelcore
4600 * and movablecore are specified, then the value of kernelcore
4601 * will be used for required_kernelcore if it's greater than
4602 * what movablecore would have allowed.
4603 */
4604 if (required_movablecore) {
4605 unsigned long corepages;
4606
4607 /*
4608 * Round-up so that ZONE_MOVABLE is at least as large as what
4609 * was requested by the user
4610 */
4611 required_movablecore =
4612 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4613 corepages = totalpages - required_movablecore;
4614
4615 required_kernelcore = max(required_kernelcore, corepages);
4616 }
4617
4618 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4619 if (!required_kernelcore)
4620 goto out;
4621
4622 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4623 find_usable_zone_for_movable();
4624 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4625
4626 restart:
4627 /* Spread kernelcore memory as evenly as possible throughout nodes */
4628 kernelcore_node = required_kernelcore / usable_nodes;
4629 for_each_node_state(nid, N_HIGH_MEMORY) {
4630 /*
4631 * Recalculate kernelcore_node if the division per node
4632 * now exceeds what is necessary to satisfy the requested
4633 * amount of memory for the kernel
4634 */
4635 if (required_kernelcore < kernelcore_node)
4636 kernelcore_node = required_kernelcore / usable_nodes;
4637
4638 /*
4639 * As the map is walked, we track how much memory is usable
4640 * by the kernel using kernelcore_remaining. When it is
4641 * 0, the rest of the node is usable by ZONE_MOVABLE
4642 */
4643 kernelcore_remaining = kernelcore_node;
4644
4645 /* Go through each range of PFNs within this node */
4646 for_each_active_range_index_in_nid(i, nid) {
4647 unsigned long start_pfn, end_pfn;
4648 unsigned long size_pages;
4649
4650 start_pfn = max(early_node_map[i].start_pfn,
4651 zone_movable_pfn[nid]);
4652 end_pfn = early_node_map[i].end_pfn;
4653 if (start_pfn >= end_pfn)
4654 continue;
4655
4656 /* Account for what is only usable for kernelcore */
4657 if (start_pfn < usable_startpfn) {
4658 unsigned long kernel_pages;
4659 kernel_pages = min(end_pfn, usable_startpfn)
4660 - start_pfn;
4661
4662 kernelcore_remaining -= min(kernel_pages,
4663 kernelcore_remaining);
4664 required_kernelcore -= min(kernel_pages,
4665 required_kernelcore);
4666
4667 /* Continue if range is now fully accounted */
4668 if (end_pfn <= usable_startpfn) {
4669
4670 /*
4671 * Push zone_movable_pfn to the end so
4672 * that if we have to rebalance
4673 * kernelcore across nodes, we will
4674 * not double account here
4675 */
4676 zone_movable_pfn[nid] = end_pfn;
4677 continue;
4678 }
4679 start_pfn = usable_startpfn;
4680 }
4681
4682 /*
4683 * The usable PFN range for ZONE_MOVABLE is from
4684 * start_pfn->end_pfn. Calculate size_pages as the
4685 * number of pages used as kernelcore
4686 */
4687 size_pages = end_pfn - start_pfn;
4688 if (size_pages > kernelcore_remaining)
4689 size_pages = kernelcore_remaining;
4690 zone_movable_pfn[nid] = start_pfn + size_pages;
4691
4692 /*
4693 * Some kernelcore has been met, update counts and
4694 * break if the kernelcore for this node has been
4695 * satisified
4696 */
4697 required_kernelcore -= min(required_kernelcore,
4698 size_pages);
4699 kernelcore_remaining -= size_pages;
4700 if (!kernelcore_remaining)
4701 break;
4702 }
4703 }
4704
4705 /*
4706 * If there is still required_kernelcore, we do another pass with one
4707 * less node in the count. This will push zone_movable_pfn[nid] further
4708 * along on the nodes that still have memory until kernelcore is
4709 * satisified
4710 */
4711 usable_nodes--;
4712 if (usable_nodes && required_kernelcore > usable_nodes)
4713 goto restart;
4714
4715 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4716 for (nid = 0; nid < MAX_NUMNODES; nid++)
4717 zone_movable_pfn[nid] =
4718 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4719
4720 out:
4721 /* restore the node_state */
4722 node_states[N_HIGH_MEMORY] = saved_node_state;
4723 }
4724
4725 /* Any regular memory on that node ? */
4726 static void check_for_regular_memory(pg_data_t *pgdat)
4727 {
4728 #ifdef CONFIG_HIGHMEM
4729 enum zone_type zone_type;
4730
4731 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4732 struct zone *zone = &pgdat->node_zones[zone_type];
4733 if (zone->present_pages)
4734 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4735 }
4736 #endif
4737 }
4738
4739 /**
4740 * free_area_init_nodes - Initialise all pg_data_t and zone data
4741 * @max_zone_pfn: an array of max PFNs for each zone
4742 *
4743 * This will call free_area_init_node() for each active node in the system.
4744 * Using the page ranges provided by add_active_range(), the size of each
4745 * zone in each node and their holes is calculated. If the maximum PFN
4746 * between two adjacent zones match, it is assumed that the zone is empty.
4747 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4748 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4749 * starts where the previous one ended. For example, ZONE_DMA32 starts
4750 * at arch_max_dma_pfn.
4751 */
4752 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4753 {
4754 unsigned long nid;
4755 int i;
4756
4757 /* Sort early_node_map as initialisation assumes it is sorted */
4758 sort_node_map();
4759
4760 /* Record where the zone boundaries are */
4761 memset(arch_zone_lowest_possible_pfn, 0,
4762 sizeof(arch_zone_lowest_possible_pfn));
4763 memset(arch_zone_highest_possible_pfn, 0,
4764 sizeof(arch_zone_highest_possible_pfn));
4765 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4766 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4767 for (i = 1; i < MAX_NR_ZONES; i++) {
4768 if (i == ZONE_MOVABLE)
4769 continue;
4770 arch_zone_lowest_possible_pfn[i] =
4771 arch_zone_highest_possible_pfn[i-1];
4772 arch_zone_highest_possible_pfn[i] =
4773 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4774 }
4775 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4776 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4777
4778 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4779 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4780 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4781
4782 /* Print out the zone ranges */
4783 printk("Zone PFN ranges:\n");
4784 for (i = 0; i < MAX_NR_ZONES; i++) {
4785 if (i == ZONE_MOVABLE)
4786 continue;
4787 printk(" %-8s ", zone_names[i]);
4788 if (arch_zone_lowest_possible_pfn[i] ==
4789 arch_zone_highest_possible_pfn[i])
4790 printk("empty\n");
4791 else
4792 printk("%0#10lx -> %0#10lx\n",
4793 arch_zone_lowest_possible_pfn[i],
4794 arch_zone_highest_possible_pfn[i]);
4795 }
4796
4797 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4798 printk("Movable zone start PFN for each node\n");
4799 for (i = 0; i < MAX_NUMNODES; i++) {
4800 if (zone_movable_pfn[i])
4801 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4802 }
4803
4804 /* Print out the early_node_map[] */
4805 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4806 for (i = 0; i < nr_nodemap_entries; i++)
4807 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4808 early_node_map[i].start_pfn,
4809 early_node_map[i].end_pfn);
4810
4811 /* Initialise every node */
4812 mminit_verify_pageflags_layout();
4813 setup_nr_node_ids();
4814 for_each_online_node(nid) {
4815 pg_data_t *pgdat = NODE_DATA(nid);
4816 free_area_init_node(nid, NULL,
4817 find_min_pfn_for_node(nid), NULL);
4818
4819 /* Any memory on that node */
4820 if (pgdat->node_present_pages)
4821 node_set_state(nid, N_HIGH_MEMORY);
4822 check_for_regular_memory(pgdat);
4823 }
4824 }
4825
4826 static int __init cmdline_parse_core(char *p, unsigned long *core)
4827 {
4828 unsigned long long coremem;
4829 if (!p)
4830 return -EINVAL;
4831
4832 coremem = memparse(p, &p);
4833 *core = coremem >> PAGE_SHIFT;
4834
4835 /* Paranoid check that UL is enough for the coremem value */
4836 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4837
4838 return 0;
4839 }
4840
4841 /*
4842 * kernelcore=size sets the amount of memory for use for allocations that
4843 * cannot be reclaimed or migrated.
4844 */
4845 static int __init cmdline_parse_kernelcore(char *p)
4846 {
4847 return cmdline_parse_core(p, &required_kernelcore);
4848 }
4849
4850 /*
4851 * movablecore=size sets the amount of memory for use for allocations that
4852 * can be reclaimed or migrated.
4853 */
4854 static int __init cmdline_parse_movablecore(char *p)
4855 {
4856 return cmdline_parse_core(p, &required_movablecore);
4857 }
4858
4859 early_param("kernelcore", cmdline_parse_kernelcore);
4860 early_param("movablecore", cmdline_parse_movablecore);
4861
4862 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4863
4864 /**
4865 * set_dma_reserve - set the specified number of pages reserved in the first zone
4866 * @new_dma_reserve: The number of pages to mark reserved
4867 *
4868 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4869 * In the DMA zone, a significant percentage may be consumed by kernel image
4870 * and other unfreeable allocations which can skew the watermarks badly. This
4871 * function may optionally be used to account for unfreeable pages in the
4872 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4873 * smaller per-cpu batchsize.
4874 */
4875 void __init set_dma_reserve(unsigned long new_dma_reserve)
4876 {
4877 dma_reserve = new_dma_reserve;
4878 }
4879
4880 void __init free_area_init(unsigned long *zones_size)
4881 {
4882 free_area_init_node(0, zones_size,
4883 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4884 }
4885
4886 static int page_alloc_cpu_notify(struct notifier_block *self,
4887 unsigned long action, void *hcpu)
4888 {
4889 int cpu = (unsigned long)hcpu;
4890
4891 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4892 drain_pages(cpu);
4893
4894 /*
4895 * Spill the event counters of the dead processor
4896 * into the current processors event counters.
4897 * This artificially elevates the count of the current
4898 * processor.
4899 */
4900 vm_events_fold_cpu(cpu);
4901
4902 /*
4903 * Zero the differential counters of the dead processor
4904 * so that the vm statistics are consistent.
4905 *
4906 * This is only okay since the processor is dead and cannot
4907 * race with what we are doing.
4908 */
4909 refresh_cpu_vm_stats(cpu);
4910 }
4911 return NOTIFY_OK;
4912 }
4913
4914 void __init page_alloc_init(void)
4915 {
4916 hotcpu_notifier(page_alloc_cpu_notify, 0);
4917 }
4918
4919 /*
4920 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4921 * or min_free_kbytes changes.
4922 */
4923 static void calculate_totalreserve_pages(void)
4924 {
4925 struct pglist_data *pgdat;
4926 unsigned long reserve_pages = 0;
4927 enum zone_type i, j;
4928
4929 for_each_online_pgdat(pgdat) {
4930 for (i = 0; i < MAX_NR_ZONES; i++) {
4931 struct zone *zone = pgdat->node_zones + i;
4932 unsigned long max = 0;
4933
4934 /* Find valid and maximum lowmem_reserve in the zone */
4935 for (j = i; j < MAX_NR_ZONES; j++) {
4936 if (zone->lowmem_reserve[j] > max)
4937 max = zone->lowmem_reserve[j];
4938 }
4939
4940 /* we treat the high watermark as reserved pages. */
4941 max += high_wmark_pages(zone);
4942
4943 if (max > zone->present_pages)
4944 max = zone->present_pages;
4945 reserve_pages += max;
4946 }
4947 }
4948 totalreserve_pages = reserve_pages;
4949 }
4950
4951 /*
4952 * setup_per_zone_lowmem_reserve - called whenever
4953 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4954 * has a correct pages reserved value, so an adequate number of
4955 * pages are left in the zone after a successful __alloc_pages().
4956 */
4957 static void setup_per_zone_lowmem_reserve(void)
4958 {
4959 struct pglist_data *pgdat;
4960 enum zone_type j, idx;
4961
4962 for_each_online_pgdat(pgdat) {
4963 for (j = 0; j < MAX_NR_ZONES; j++) {
4964 struct zone *zone = pgdat->node_zones + j;
4965 unsigned long present_pages = zone->present_pages;
4966
4967 zone->lowmem_reserve[j] = 0;
4968
4969 idx = j;
4970 while (idx) {
4971 struct zone *lower_zone;
4972
4973 idx--;
4974
4975 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4976 sysctl_lowmem_reserve_ratio[idx] = 1;
4977
4978 lower_zone = pgdat->node_zones + idx;
4979 lower_zone->lowmem_reserve[j] = present_pages /
4980 sysctl_lowmem_reserve_ratio[idx];
4981 present_pages += lower_zone->present_pages;
4982 }
4983 }
4984 }
4985
4986 /* update totalreserve_pages */
4987 calculate_totalreserve_pages();
4988 }
4989
4990 /**
4991 * setup_per_zone_wmarks - called when min_free_kbytes changes
4992 * or when memory is hot-{added|removed}
4993 *
4994 * Ensures that the watermark[min,low,high] values for each zone are set
4995 * correctly with respect to min_free_kbytes.
4996 */
4997 void setup_per_zone_wmarks(void)
4998 {
4999 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5000 unsigned long lowmem_pages = 0;
5001 struct zone *zone;
5002 unsigned long flags;
5003
5004 /* Calculate total number of !ZONE_HIGHMEM pages */
5005 for_each_zone(zone) {
5006 if (!is_highmem(zone))
5007 lowmem_pages += zone->present_pages;
5008 }
5009
5010 for_each_zone(zone) {
5011 u64 tmp;
5012
5013 spin_lock_irqsave(&zone->lock, flags);
5014 tmp = (u64)pages_min * zone->present_pages;
5015 do_div(tmp, lowmem_pages);
5016 if (is_highmem(zone)) {
5017 /*
5018 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5019 * need highmem pages, so cap pages_min to a small
5020 * value here.
5021 *
5022 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5023 * deltas controls asynch page reclaim, and so should
5024 * not be capped for highmem.
5025 */
5026 int min_pages;
5027
5028 min_pages = zone->present_pages / 1024;
5029 if (min_pages < SWAP_CLUSTER_MAX)
5030 min_pages = SWAP_CLUSTER_MAX;
5031 if (min_pages > 128)
5032 min_pages = 128;
5033 zone->watermark[WMARK_MIN] = min_pages;
5034 } else {
5035 /*
5036 * If it's a lowmem zone, reserve a number of pages
5037 * proportionate to the zone's size.
5038 */
5039 zone->watermark[WMARK_MIN] = tmp;
5040 }
5041
5042 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5043 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5044 setup_zone_migrate_reserve(zone);
5045 spin_unlock_irqrestore(&zone->lock, flags);
5046 }
5047
5048 /* update totalreserve_pages */
5049 calculate_totalreserve_pages();
5050 }
5051
5052 /*
5053 * The inactive anon list should be small enough that the VM never has to
5054 * do too much work, but large enough that each inactive page has a chance
5055 * to be referenced again before it is swapped out.
5056 *
5057 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5058 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5059 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5060 * the anonymous pages are kept on the inactive list.
5061 *
5062 * total target max
5063 * memory ratio inactive anon
5064 * -------------------------------------
5065 * 10MB 1 5MB
5066 * 100MB 1 50MB
5067 * 1GB 3 250MB
5068 * 10GB 10 0.9GB
5069 * 100GB 31 3GB
5070 * 1TB 101 10GB
5071 * 10TB 320 32GB
5072 */
5073 void calculate_zone_inactive_ratio(struct zone *zone)
5074 {
5075 unsigned int gb, ratio;
5076
5077 /* Zone size in gigabytes */
5078 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5079 if (gb)
5080 ratio = int_sqrt(10 * gb);
5081 else
5082 ratio = 1;
5083
5084 zone->inactive_ratio = ratio;
5085 }
5086
5087 static void __init setup_per_zone_inactive_ratio(void)
5088 {
5089 struct zone *zone;
5090
5091 for_each_zone(zone)
5092 calculate_zone_inactive_ratio(zone);
5093 }
5094
5095 /*
5096 * Initialise min_free_kbytes.
5097 *
5098 * For small machines we want it small (128k min). For large machines
5099 * we want it large (64MB max). But it is not linear, because network
5100 * bandwidth does not increase linearly with machine size. We use
5101 *
5102 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5103 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5104 *
5105 * which yields
5106 *
5107 * 16MB: 512k
5108 * 32MB: 724k
5109 * 64MB: 1024k
5110 * 128MB: 1448k
5111 * 256MB: 2048k
5112 * 512MB: 2896k
5113 * 1024MB: 4096k
5114 * 2048MB: 5792k
5115 * 4096MB: 8192k
5116 * 8192MB: 11584k
5117 * 16384MB: 16384k
5118 */
5119 static int __init init_per_zone_wmark_min(void)
5120 {
5121 unsigned long lowmem_kbytes;
5122
5123 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5124
5125 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5126 if (min_free_kbytes < 128)
5127 min_free_kbytes = 128;
5128 if (min_free_kbytes > 65536)
5129 min_free_kbytes = 65536;
5130 setup_per_zone_wmarks();
5131 setup_per_zone_lowmem_reserve();
5132 setup_per_zone_inactive_ratio();
5133 return 0;
5134 }
5135 module_init(init_per_zone_wmark_min)
5136
5137 /*
5138 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5139 * that we can call two helper functions whenever min_free_kbytes
5140 * changes.
5141 */
5142 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5143 void __user *buffer, size_t *length, loff_t *ppos)
5144 {
5145 proc_dointvec(table, write, buffer, length, ppos);
5146 if (write)
5147 setup_per_zone_wmarks();
5148 return 0;
5149 }
5150
5151 #ifdef CONFIG_NUMA
5152 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5153 void __user *buffer, size_t *length, loff_t *ppos)
5154 {
5155 struct zone *zone;
5156 int rc;
5157
5158 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5159 if (rc)
5160 return rc;
5161
5162 for_each_zone(zone)
5163 zone->min_unmapped_pages = (zone->present_pages *
5164 sysctl_min_unmapped_ratio) / 100;
5165 return 0;
5166 }
5167
5168 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5169 void __user *buffer, size_t *length, loff_t *ppos)
5170 {
5171 struct zone *zone;
5172 int rc;
5173
5174 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5175 if (rc)
5176 return rc;
5177
5178 for_each_zone(zone)
5179 zone->min_slab_pages = (zone->present_pages *
5180 sysctl_min_slab_ratio) / 100;
5181 return 0;
5182 }
5183 #endif
5184
5185 /*
5186 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5187 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5188 * whenever sysctl_lowmem_reserve_ratio changes.
5189 *
5190 * The reserve ratio obviously has absolutely no relation with the
5191 * minimum watermarks. The lowmem reserve ratio can only make sense
5192 * if in function of the boot time zone sizes.
5193 */
5194 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5195 void __user *buffer, size_t *length, loff_t *ppos)
5196 {
5197 proc_dointvec_minmax(table, write, buffer, length, ppos);
5198 setup_per_zone_lowmem_reserve();
5199 return 0;
5200 }
5201
5202 /*
5203 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5204 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5205 * can have before it gets flushed back to buddy allocator.
5206 */
5207
5208 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5209 void __user *buffer, size_t *length, loff_t *ppos)
5210 {
5211 struct zone *zone;
5212 unsigned int cpu;
5213 int ret;
5214
5215 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5216 if (!write || (ret == -EINVAL))
5217 return ret;
5218 for_each_populated_zone(zone) {
5219 for_each_possible_cpu(cpu) {
5220 unsigned long high;
5221 high = zone->present_pages / percpu_pagelist_fraction;
5222 setup_pagelist_highmark(
5223 per_cpu_ptr(zone->pageset, cpu), high);
5224 }
5225 }
5226 return 0;
5227 }
5228
5229 int hashdist = HASHDIST_DEFAULT;
5230
5231 #ifdef CONFIG_NUMA
5232 static int __init set_hashdist(char *str)
5233 {
5234 if (!str)
5235 return 0;
5236 hashdist = simple_strtoul(str, &str, 0);
5237 return 1;
5238 }
5239 __setup("hashdist=", set_hashdist);
5240 #endif
5241
5242 /*
5243 * allocate a large system hash table from bootmem
5244 * - it is assumed that the hash table must contain an exact power-of-2
5245 * quantity of entries
5246 * - limit is the number of hash buckets, not the total allocation size
5247 */
5248 void *__init alloc_large_system_hash(const char *tablename,
5249 unsigned long bucketsize,
5250 unsigned long numentries,
5251 int scale,
5252 int flags,
5253 unsigned int *_hash_shift,
5254 unsigned int *_hash_mask,
5255 unsigned long limit)
5256 {
5257 unsigned long long max = limit;
5258 unsigned long log2qty, size;
5259 void *table = NULL;
5260
5261 /* allow the kernel cmdline to have a say */
5262 if (!numentries) {
5263 /* round applicable memory size up to nearest megabyte */
5264 numentries = nr_kernel_pages;
5265 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5266 numentries >>= 20 - PAGE_SHIFT;
5267 numentries <<= 20 - PAGE_SHIFT;
5268
5269 /* limit to 1 bucket per 2^scale bytes of low memory */
5270 if (scale > PAGE_SHIFT)
5271 numentries >>= (scale - PAGE_SHIFT);
5272 else
5273 numentries <<= (PAGE_SHIFT - scale);
5274
5275 /* Make sure we've got at least a 0-order allocation.. */
5276 if (unlikely(flags & HASH_SMALL)) {
5277 /* Makes no sense without HASH_EARLY */
5278 WARN_ON(!(flags & HASH_EARLY));
5279 if (!(numentries >> *_hash_shift)) {
5280 numentries = 1UL << *_hash_shift;
5281 BUG_ON(!numentries);
5282 }
5283 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5284 numentries = PAGE_SIZE / bucketsize;
5285 }
5286 numentries = roundup_pow_of_two(numentries);
5287
5288 /* limit allocation size to 1/16 total memory by default */
5289 if (max == 0) {
5290 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5291 do_div(max, bucketsize);
5292 }
5293
5294 if (numentries > max)
5295 numentries = max;
5296
5297 log2qty = ilog2(numentries);
5298
5299 do {
5300 size = bucketsize << log2qty;
5301 if (flags & HASH_EARLY)
5302 table = alloc_bootmem_nopanic(size);
5303 else if (hashdist)
5304 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5305 else {
5306 /*
5307 * If bucketsize is not a power-of-two, we may free
5308 * some pages at the end of hash table which
5309 * alloc_pages_exact() automatically does
5310 */
5311 if (get_order(size) < MAX_ORDER) {
5312 table = alloc_pages_exact(size, GFP_ATOMIC);
5313 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5314 }
5315 }
5316 } while (!table && size > PAGE_SIZE && --log2qty);
5317
5318 if (!table)
5319 panic("Failed to allocate %s hash table\n", tablename);
5320
5321 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5322 tablename,
5323 (1UL << log2qty),
5324 ilog2(size) - PAGE_SHIFT,
5325 size);
5326
5327 if (_hash_shift)
5328 *_hash_shift = log2qty;
5329 if (_hash_mask)
5330 *_hash_mask = (1 << log2qty) - 1;
5331
5332 return table;
5333 }
5334
5335 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5336 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5337 unsigned long pfn)
5338 {
5339 #ifdef CONFIG_SPARSEMEM
5340 return __pfn_to_section(pfn)->pageblock_flags;
5341 #else
5342 return zone->pageblock_flags;
5343 #endif /* CONFIG_SPARSEMEM */
5344 }
5345
5346 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5347 {
5348 #ifdef CONFIG_SPARSEMEM
5349 pfn &= (PAGES_PER_SECTION-1);
5350 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5351 #else
5352 pfn = pfn - zone->zone_start_pfn;
5353 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5354 #endif /* CONFIG_SPARSEMEM */
5355 }
5356
5357 /**
5358 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5359 * @page: The page within the block of interest
5360 * @start_bitidx: The first bit of interest to retrieve
5361 * @end_bitidx: The last bit of interest
5362 * returns pageblock_bits flags
5363 */
5364 unsigned long get_pageblock_flags_group(struct page *page,
5365 int start_bitidx, int end_bitidx)
5366 {
5367 struct zone *zone;
5368 unsigned long *bitmap;
5369 unsigned long pfn, bitidx;
5370 unsigned long flags = 0;
5371 unsigned long value = 1;
5372
5373 zone = page_zone(page);
5374 pfn = page_to_pfn(page);
5375 bitmap = get_pageblock_bitmap(zone, pfn);
5376 bitidx = pfn_to_bitidx(zone, pfn);
5377
5378 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5379 if (test_bit(bitidx + start_bitidx, bitmap))
5380 flags |= value;
5381
5382 return flags;
5383 }
5384
5385 /**
5386 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5387 * @page: The page within the block of interest
5388 * @start_bitidx: The first bit of interest
5389 * @end_bitidx: The last bit of interest
5390 * @flags: The flags to set
5391 */
5392 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5393 int start_bitidx, int end_bitidx)
5394 {
5395 struct zone *zone;
5396 unsigned long *bitmap;
5397 unsigned long pfn, bitidx;
5398 unsigned long value = 1;
5399
5400 zone = page_zone(page);
5401 pfn = page_to_pfn(page);
5402 bitmap = get_pageblock_bitmap(zone, pfn);
5403 bitidx = pfn_to_bitidx(zone, pfn);
5404 VM_BUG_ON(pfn < zone->zone_start_pfn);
5405 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5406
5407 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5408 if (flags & value)
5409 __set_bit(bitidx + start_bitidx, bitmap);
5410 else
5411 __clear_bit(bitidx + start_bitidx, bitmap);
5412 }
5413
5414 /*
5415 * This is designed as sub function...plz see page_isolation.c also.
5416 * set/clear page block's type to be ISOLATE.
5417 * page allocater never alloc memory from ISOLATE block.
5418 */
5419
5420 static int
5421 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5422 {
5423 unsigned long pfn, iter, found;
5424 /*
5425 * For avoiding noise data, lru_add_drain_all() should be called
5426 * If ZONE_MOVABLE, the zone never contains immobile pages
5427 */
5428 if (zone_idx(zone) == ZONE_MOVABLE)
5429 return true;
5430
5431 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5432 return true;
5433
5434 pfn = page_to_pfn(page);
5435 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5436 unsigned long check = pfn + iter;
5437
5438 if (!pfn_valid_within(check))
5439 continue;
5440
5441 page = pfn_to_page(check);
5442 if (!page_count(page)) {
5443 if (PageBuddy(page))
5444 iter += (1 << page_order(page)) - 1;
5445 continue;
5446 }
5447 if (!PageLRU(page))
5448 found++;
5449 /*
5450 * If there are RECLAIMABLE pages, we need to check it.
5451 * But now, memory offline itself doesn't call shrink_slab()
5452 * and it still to be fixed.
5453 */
5454 /*
5455 * If the page is not RAM, page_count()should be 0.
5456 * we don't need more check. This is an _used_ not-movable page.
5457 *
5458 * The problematic thing here is PG_reserved pages. PG_reserved
5459 * is set to both of a memory hole page and a _used_ kernel
5460 * page at boot.
5461 */
5462 if (found > count)
5463 return false;
5464 }
5465 return true;
5466 }
5467
5468 bool is_pageblock_removable_nolock(struct page *page)
5469 {
5470 struct zone *zone = page_zone(page);
5471 return __count_immobile_pages(zone, page, 0);
5472 }
5473
5474 int set_migratetype_isolate(struct page *page)
5475 {
5476 struct zone *zone;
5477 unsigned long flags, pfn;
5478 struct memory_isolate_notify arg;
5479 int notifier_ret;
5480 int ret = -EBUSY;
5481 int zone_idx;
5482
5483 zone = page_zone(page);
5484 zone_idx = zone_idx(zone);
5485
5486 spin_lock_irqsave(&zone->lock, flags);
5487
5488 pfn = page_to_pfn(page);
5489 arg.start_pfn = pfn;
5490 arg.nr_pages = pageblock_nr_pages;
5491 arg.pages_found = 0;
5492
5493 /*
5494 * It may be possible to isolate a pageblock even if the
5495 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5496 * notifier chain is used by balloon drivers to return the
5497 * number of pages in a range that are held by the balloon
5498 * driver to shrink memory. If all the pages are accounted for
5499 * by balloons, are free, or on the LRU, isolation can continue.
5500 * Later, for example, when memory hotplug notifier runs, these
5501 * pages reported as "can be isolated" should be isolated(freed)
5502 * by the balloon driver through the memory notifier chain.
5503 */
5504 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5505 notifier_ret = notifier_to_errno(notifier_ret);
5506 if (notifier_ret)
5507 goto out;
5508 /*
5509 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5510 * We just check MOVABLE pages.
5511 */
5512 if (__count_immobile_pages(zone, page, arg.pages_found))
5513 ret = 0;
5514
5515 /*
5516 * immobile means "not-on-lru" paes. If immobile is larger than
5517 * removable-by-driver pages reported by notifier, we'll fail.
5518 */
5519
5520 out:
5521 if (!ret) {
5522 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5523 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5524 }
5525
5526 spin_unlock_irqrestore(&zone->lock, flags);
5527 if (!ret)
5528 drain_all_pages();
5529 return ret;
5530 }
5531
5532 void unset_migratetype_isolate(struct page *page)
5533 {
5534 struct zone *zone;
5535 unsigned long flags;
5536 zone = page_zone(page);
5537 spin_lock_irqsave(&zone->lock, flags);
5538 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5539 goto out;
5540 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5541 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5542 out:
5543 spin_unlock_irqrestore(&zone->lock, flags);
5544 }
5545
5546 #ifdef CONFIG_MEMORY_HOTREMOVE
5547 /*
5548 * All pages in the range must be isolated before calling this.
5549 */
5550 void
5551 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5552 {
5553 struct page *page;
5554 struct zone *zone;
5555 int order, i;
5556 unsigned long pfn;
5557 unsigned long flags;
5558 /* find the first valid pfn */
5559 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5560 if (pfn_valid(pfn))
5561 break;
5562 if (pfn == end_pfn)
5563 return;
5564 zone = page_zone(pfn_to_page(pfn));
5565 spin_lock_irqsave(&zone->lock, flags);
5566 pfn = start_pfn;
5567 while (pfn < end_pfn) {
5568 if (!pfn_valid(pfn)) {
5569 pfn++;
5570 continue;
5571 }
5572 page = pfn_to_page(pfn);
5573 BUG_ON(page_count(page));
5574 BUG_ON(!PageBuddy(page));
5575 order = page_order(page);
5576 #ifdef CONFIG_DEBUG_VM
5577 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5578 pfn, 1 << order, end_pfn);
5579 #endif
5580 list_del(&page->lru);
5581 rmv_page_order(page);
5582 zone->free_area[order].nr_free--;
5583 __mod_zone_page_state(zone, NR_FREE_PAGES,
5584 - (1UL << order));
5585 for (i = 0; i < (1 << order); i++)
5586 SetPageReserved((page+i));
5587 pfn += (1 << order);
5588 }
5589 spin_unlock_irqrestore(&zone->lock, flags);
5590 }
5591 #endif
5592
5593 #ifdef CONFIG_MEMORY_FAILURE
5594 bool is_free_buddy_page(struct page *page)
5595 {
5596 struct zone *zone = page_zone(page);
5597 unsigned long pfn = page_to_pfn(page);
5598 unsigned long flags;
5599 int order;
5600
5601 spin_lock_irqsave(&zone->lock, flags);
5602 for (order = 0; order < MAX_ORDER; order++) {
5603 struct page *page_head = page - (pfn & ((1 << order) - 1));
5604
5605 if (PageBuddy(page_head) && page_order(page_head) >= order)
5606 break;
5607 }
5608 spin_unlock_irqrestore(&zone->lock, flags);
5609
5610 return order < MAX_ORDER;
5611 }
5612 #endif
5613
5614 static struct trace_print_flags pageflag_names[] = {
5615 {1UL << PG_locked, "locked" },
5616 {1UL << PG_error, "error" },
5617 {1UL << PG_referenced, "referenced" },
5618 {1UL << PG_uptodate, "uptodate" },
5619 {1UL << PG_dirty, "dirty" },
5620 {1UL << PG_lru, "lru" },
5621 {1UL << PG_active, "active" },
5622 {1UL << PG_slab, "slab" },
5623 {1UL << PG_owner_priv_1, "owner_priv_1" },
5624 {1UL << PG_arch_1, "arch_1" },
5625 {1UL << PG_reserved, "reserved" },
5626 {1UL << PG_private, "private" },
5627 {1UL << PG_private_2, "private_2" },
5628 {1UL << PG_writeback, "writeback" },
5629 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5630 {1UL << PG_head, "head" },
5631 {1UL << PG_tail, "tail" },
5632 #else
5633 {1UL << PG_compound, "compound" },
5634 #endif
5635 {1UL << PG_swapcache, "swapcache" },
5636 {1UL << PG_mappedtodisk, "mappedtodisk" },
5637 {1UL << PG_reclaim, "reclaim" },
5638 {1UL << PG_swapbacked, "swapbacked" },
5639 {1UL << PG_unevictable, "unevictable" },
5640 #ifdef CONFIG_MMU
5641 {1UL << PG_mlocked, "mlocked" },
5642 #endif
5643 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5644 {1UL << PG_uncached, "uncached" },
5645 #endif
5646 #ifdef CONFIG_MEMORY_FAILURE
5647 {1UL << PG_hwpoison, "hwpoison" },
5648 #endif
5649 {-1UL, NULL },
5650 };
5651
5652 static void dump_page_flags(unsigned long flags)
5653 {
5654 const char *delim = "";
5655 unsigned long mask;
5656 int i;
5657
5658 printk(KERN_ALERT "page flags: %#lx(", flags);
5659
5660 /* remove zone id */
5661 flags &= (1UL << NR_PAGEFLAGS) - 1;
5662
5663 for (i = 0; pageflag_names[i].name && flags; i++) {
5664
5665 mask = pageflag_names[i].mask;
5666 if ((flags & mask) != mask)
5667 continue;
5668
5669 flags &= ~mask;
5670 printk("%s%s", delim, pageflag_names[i].name);
5671 delim = "|";
5672 }
5673
5674 /* check for left over flags */
5675 if (flags)
5676 printk("%s%#lx", delim, flags);
5677
5678 printk(")\n");
5679 }
5680
5681 void dump_page(struct page *page)
5682 {
5683 printk(KERN_ALERT
5684 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5685 page, atomic_read(&page->_count), page_mapcount(page),
5686 page->mapping, page->index);
5687 dump_page_flags(page->flags);
5688 }