]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/page_alloc.c
Merge branches 'for-4.4/upstream-fixes', 'for-4.5/async-suspend', 'for-4.5/container...
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
65
66 #include <asm/sections.h>
67 #include <asm/tlbflush.h>
68 #include <asm/div64.h>
69 #include "internal.h"
70
71 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72 static DEFINE_MUTEX(pcp_batch_high_lock);
73 #define MIN_PERCPU_PAGELIST_FRACTION (8)
74
75 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76 DEFINE_PER_CPU(int, numa_node);
77 EXPORT_PER_CPU_SYMBOL(numa_node);
78 #endif
79
80 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
81 /*
82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85 * defined in <linux/topology.h>.
86 */
87 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
88 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
89 int _node_numa_mem_[MAX_NUMNODES];
90 #endif
91
92 /*
93 * Array of node states.
94 */
95 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
96 [N_POSSIBLE] = NODE_MASK_ALL,
97 [N_ONLINE] = { { [0] = 1UL } },
98 #ifndef CONFIG_NUMA
99 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
100 #ifdef CONFIG_HIGHMEM
101 [N_HIGH_MEMORY] = { { [0] = 1UL } },
102 #endif
103 #ifdef CONFIG_MOVABLE_NODE
104 [N_MEMORY] = { { [0] = 1UL } },
105 #endif
106 [N_CPU] = { { [0] = 1UL } },
107 #endif /* NUMA */
108 };
109 EXPORT_SYMBOL(node_states);
110
111 /* Protect totalram_pages and zone->managed_pages */
112 static DEFINE_SPINLOCK(managed_page_count_lock);
113
114 unsigned long totalram_pages __read_mostly;
115 unsigned long totalreserve_pages __read_mostly;
116 unsigned long totalcma_pages __read_mostly;
117 /*
118 * When calculating the number of globally allowed dirty pages, there
119 * is a certain number of per-zone reserves that should not be
120 * considered dirtyable memory. This is the sum of those reserves
121 * over all existing zones that contribute dirtyable memory.
122 */
123 unsigned long dirty_balance_reserve __read_mostly;
124
125 int percpu_pagelist_fraction;
126 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
127
128 /*
129 * A cached value of the page's pageblock's migratetype, used when the page is
130 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132 * Also the migratetype set in the page does not necessarily match the pcplist
133 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134 * other index - this ensures that it will be put on the correct CMA freelist.
135 */
136 static inline int get_pcppage_migratetype(struct page *page)
137 {
138 return page->index;
139 }
140
141 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
142 {
143 page->index = migratetype;
144 }
145
146 #ifdef CONFIG_PM_SLEEP
147 /*
148 * The following functions are used by the suspend/hibernate code to temporarily
149 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150 * while devices are suspended. To avoid races with the suspend/hibernate code,
151 * they should always be called with pm_mutex held (gfp_allowed_mask also should
152 * only be modified with pm_mutex held, unless the suspend/hibernate code is
153 * guaranteed not to run in parallel with that modification).
154 */
155
156 static gfp_t saved_gfp_mask;
157
158 void pm_restore_gfp_mask(void)
159 {
160 WARN_ON(!mutex_is_locked(&pm_mutex));
161 if (saved_gfp_mask) {
162 gfp_allowed_mask = saved_gfp_mask;
163 saved_gfp_mask = 0;
164 }
165 }
166
167 void pm_restrict_gfp_mask(void)
168 {
169 WARN_ON(!mutex_is_locked(&pm_mutex));
170 WARN_ON(saved_gfp_mask);
171 saved_gfp_mask = gfp_allowed_mask;
172 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
173 }
174
175 bool pm_suspended_storage(void)
176 {
177 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
178 return false;
179 return true;
180 }
181 #endif /* CONFIG_PM_SLEEP */
182
183 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
184 unsigned int pageblock_order __read_mostly;
185 #endif
186
187 static void __free_pages_ok(struct page *page, unsigned int order);
188
189 /*
190 * results with 256, 32 in the lowmem_reserve sysctl:
191 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192 * 1G machine -> (16M dma, 784M normal, 224M high)
193 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
195 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
196 *
197 * TBD: should special case ZONE_DMA32 machines here - in those we normally
198 * don't need any ZONE_NORMAL reservation
199 */
200 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
201 #ifdef CONFIG_ZONE_DMA
202 256,
203 #endif
204 #ifdef CONFIG_ZONE_DMA32
205 256,
206 #endif
207 #ifdef CONFIG_HIGHMEM
208 32,
209 #endif
210 32,
211 };
212
213 EXPORT_SYMBOL(totalram_pages);
214
215 static char * const zone_names[MAX_NR_ZONES] = {
216 #ifdef CONFIG_ZONE_DMA
217 "DMA",
218 #endif
219 #ifdef CONFIG_ZONE_DMA32
220 "DMA32",
221 #endif
222 "Normal",
223 #ifdef CONFIG_HIGHMEM
224 "HighMem",
225 #endif
226 "Movable",
227 #ifdef CONFIG_ZONE_DEVICE
228 "Device",
229 #endif
230 };
231
232 static void free_compound_page(struct page *page);
233 compound_page_dtor * const compound_page_dtors[] = {
234 NULL,
235 free_compound_page,
236 #ifdef CONFIG_HUGETLB_PAGE
237 free_huge_page,
238 #endif
239 };
240
241 int min_free_kbytes = 1024;
242 int user_min_free_kbytes = -1;
243
244 static unsigned long __meminitdata nr_kernel_pages;
245 static unsigned long __meminitdata nr_all_pages;
246 static unsigned long __meminitdata dma_reserve;
247
248 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
249 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
250 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
251 static unsigned long __initdata required_kernelcore;
252 static unsigned long __initdata required_movablecore;
253 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
254
255 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
256 int movable_zone;
257 EXPORT_SYMBOL(movable_zone);
258 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
259
260 #if MAX_NUMNODES > 1
261 int nr_node_ids __read_mostly = MAX_NUMNODES;
262 int nr_online_nodes __read_mostly = 1;
263 EXPORT_SYMBOL(nr_node_ids);
264 EXPORT_SYMBOL(nr_online_nodes);
265 #endif
266
267 int page_group_by_mobility_disabled __read_mostly;
268
269 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
270 static inline void reset_deferred_meminit(pg_data_t *pgdat)
271 {
272 pgdat->first_deferred_pfn = ULONG_MAX;
273 }
274
275 /* Returns true if the struct page for the pfn is uninitialised */
276 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
277 {
278 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
279 return true;
280
281 return false;
282 }
283
284 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
285 {
286 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
287 return true;
288
289 return false;
290 }
291
292 /*
293 * Returns false when the remaining initialisation should be deferred until
294 * later in the boot cycle when it can be parallelised.
295 */
296 static inline bool update_defer_init(pg_data_t *pgdat,
297 unsigned long pfn, unsigned long zone_end,
298 unsigned long *nr_initialised)
299 {
300 /* Always populate low zones for address-contrained allocations */
301 if (zone_end < pgdat_end_pfn(pgdat))
302 return true;
303
304 /* Initialise at least 2G of the highest zone */
305 (*nr_initialised)++;
306 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
307 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
308 pgdat->first_deferred_pfn = pfn;
309 return false;
310 }
311
312 return true;
313 }
314 #else
315 static inline void reset_deferred_meminit(pg_data_t *pgdat)
316 {
317 }
318
319 static inline bool early_page_uninitialised(unsigned long pfn)
320 {
321 return false;
322 }
323
324 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
325 {
326 return false;
327 }
328
329 static inline bool update_defer_init(pg_data_t *pgdat,
330 unsigned long pfn, unsigned long zone_end,
331 unsigned long *nr_initialised)
332 {
333 return true;
334 }
335 #endif
336
337
338 void set_pageblock_migratetype(struct page *page, int migratetype)
339 {
340 if (unlikely(page_group_by_mobility_disabled &&
341 migratetype < MIGRATE_PCPTYPES))
342 migratetype = MIGRATE_UNMOVABLE;
343
344 set_pageblock_flags_group(page, (unsigned long)migratetype,
345 PB_migrate, PB_migrate_end);
346 }
347
348 #ifdef CONFIG_DEBUG_VM
349 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
350 {
351 int ret = 0;
352 unsigned seq;
353 unsigned long pfn = page_to_pfn(page);
354 unsigned long sp, start_pfn;
355
356 do {
357 seq = zone_span_seqbegin(zone);
358 start_pfn = zone->zone_start_pfn;
359 sp = zone->spanned_pages;
360 if (!zone_spans_pfn(zone, pfn))
361 ret = 1;
362 } while (zone_span_seqretry(zone, seq));
363
364 if (ret)
365 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
366 pfn, zone_to_nid(zone), zone->name,
367 start_pfn, start_pfn + sp);
368
369 return ret;
370 }
371
372 static int page_is_consistent(struct zone *zone, struct page *page)
373 {
374 if (!pfn_valid_within(page_to_pfn(page)))
375 return 0;
376 if (zone != page_zone(page))
377 return 0;
378
379 return 1;
380 }
381 /*
382 * Temporary debugging check for pages not lying within a given zone.
383 */
384 static int bad_range(struct zone *zone, struct page *page)
385 {
386 if (page_outside_zone_boundaries(zone, page))
387 return 1;
388 if (!page_is_consistent(zone, page))
389 return 1;
390
391 return 0;
392 }
393 #else
394 static inline int bad_range(struct zone *zone, struct page *page)
395 {
396 return 0;
397 }
398 #endif
399
400 static void bad_page(struct page *page, const char *reason,
401 unsigned long bad_flags)
402 {
403 static unsigned long resume;
404 static unsigned long nr_shown;
405 static unsigned long nr_unshown;
406
407 /* Don't complain about poisoned pages */
408 if (PageHWPoison(page)) {
409 page_mapcount_reset(page); /* remove PageBuddy */
410 return;
411 }
412
413 /*
414 * Allow a burst of 60 reports, then keep quiet for that minute;
415 * or allow a steady drip of one report per second.
416 */
417 if (nr_shown == 60) {
418 if (time_before(jiffies, resume)) {
419 nr_unshown++;
420 goto out;
421 }
422 if (nr_unshown) {
423 printk(KERN_ALERT
424 "BUG: Bad page state: %lu messages suppressed\n",
425 nr_unshown);
426 nr_unshown = 0;
427 }
428 nr_shown = 0;
429 }
430 if (nr_shown++ == 0)
431 resume = jiffies + 60 * HZ;
432
433 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
434 current->comm, page_to_pfn(page));
435 dump_page_badflags(page, reason, bad_flags);
436
437 print_modules();
438 dump_stack();
439 out:
440 /* Leave bad fields for debug, except PageBuddy could make trouble */
441 page_mapcount_reset(page); /* remove PageBuddy */
442 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
443 }
444
445 /*
446 * Higher-order pages are called "compound pages". They are structured thusly:
447 *
448 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
449 *
450 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
451 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
452 *
453 * The first tail page's ->compound_dtor holds the offset in array of compound
454 * page destructors. See compound_page_dtors.
455 *
456 * The first tail page's ->compound_order holds the order of allocation.
457 * This usage means that zero-order pages may not be compound.
458 */
459
460 static void free_compound_page(struct page *page)
461 {
462 __free_pages_ok(page, compound_order(page));
463 }
464
465 void prep_compound_page(struct page *page, unsigned int order)
466 {
467 int i;
468 int nr_pages = 1 << order;
469
470 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
471 set_compound_order(page, order);
472 __SetPageHead(page);
473 for (i = 1; i < nr_pages; i++) {
474 struct page *p = page + i;
475 set_page_count(p, 0);
476 set_compound_head(p, page);
477 }
478 }
479
480 #ifdef CONFIG_DEBUG_PAGEALLOC
481 unsigned int _debug_guardpage_minorder;
482 bool _debug_pagealloc_enabled __read_mostly;
483 bool _debug_guardpage_enabled __read_mostly;
484
485 static int __init early_debug_pagealloc(char *buf)
486 {
487 if (!buf)
488 return -EINVAL;
489
490 if (strcmp(buf, "on") == 0)
491 _debug_pagealloc_enabled = true;
492
493 return 0;
494 }
495 early_param("debug_pagealloc", early_debug_pagealloc);
496
497 static bool need_debug_guardpage(void)
498 {
499 /* If we don't use debug_pagealloc, we don't need guard page */
500 if (!debug_pagealloc_enabled())
501 return false;
502
503 return true;
504 }
505
506 static void init_debug_guardpage(void)
507 {
508 if (!debug_pagealloc_enabled())
509 return;
510
511 _debug_guardpage_enabled = true;
512 }
513
514 struct page_ext_operations debug_guardpage_ops = {
515 .need = need_debug_guardpage,
516 .init = init_debug_guardpage,
517 };
518
519 static int __init debug_guardpage_minorder_setup(char *buf)
520 {
521 unsigned long res;
522
523 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
524 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
525 return 0;
526 }
527 _debug_guardpage_minorder = res;
528 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
529 return 0;
530 }
531 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
532
533 static inline void set_page_guard(struct zone *zone, struct page *page,
534 unsigned int order, int migratetype)
535 {
536 struct page_ext *page_ext;
537
538 if (!debug_guardpage_enabled())
539 return;
540
541 page_ext = lookup_page_ext(page);
542 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
543
544 INIT_LIST_HEAD(&page->lru);
545 set_page_private(page, order);
546 /* Guard pages are not available for any usage */
547 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
548 }
549
550 static inline void clear_page_guard(struct zone *zone, struct page *page,
551 unsigned int order, int migratetype)
552 {
553 struct page_ext *page_ext;
554
555 if (!debug_guardpage_enabled())
556 return;
557
558 page_ext = lookup_page_ext(page);
559 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
560
561 set_page_private(page, 0);
562 if (!is_migrate_isolate(migratetype))
563 __mod_zone_freepage_state(zone, (1 << order), migratetype);
564 }
565 #else
566 struct page_ext_operations debug_guardpage_ops = { NULL, };
567 static inline void set_page_guard(struct zone *zone, struct page *page,
568 unsigned int order, int migratetype) {}
569 static inline void clear_page_guard(struct zone *zone, struct page *page,
570 unsigned int order, int migratetype) {}
571 #endif
572
573 static inline void set_page_order(struct page *page, unsigned int order)
574 {
575 set_page_private(page, order);
576 __SetPageBuddy(page);
577 }
578
579 static inline void rmv_page_order(struct page *page)
580 {
581 __ClearPageBuddy(page);
582 set_page_private(page, 0);
583 }
584
585 /*
586 * This function checks whether a page is free && is the buddy
587 * we can do coalesce a page and its buddy if
588 * (a) the buddy is not in a hole &&
589 * (b) the buddy is in the buddy system &&
590 * (c) a page and its buddy have the same order &&
591 * (d) a page and its buddy are in the same zone.
592 *
593 * For recording whether a page is in the buddy system, we set ->_mapcount
594 * PAGE_BUDDY_MAPCOUNT_VALUE.
595 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
596 * serialized by zone->lock.
597 *
598 * For recording page's order, we use page_private(page).
599 */
600 static inline int page_is_buddy(struct page *page, struct page *buddy,
601 unsigned int order)
602 {
603 if (!pfn_valid_within(page_to_pfn(buddy)))
604 return 0;
605
606 if (page_is_guard(buddy) && page_order(buddy) == order) {
607 if (page_zone_id(page) != page_zone_id(buddy))
608 return 0;
609
610 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
611
612 return 1;
613 }
614
615 if (PageBuddy(buddy) && page_order(buddy) == order) {
616 /*
617 * zone check is done late to avoid uselessly
618 * calculating zone/node ids for pages that could
619 * never merge.
620 */
621 if (page_zone_id(page) != page_zone_id(buddy))
622 return 0;
623
624 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
625
626 return 1;
627 }
628 return 0;
629 }
630
631 /*
632 * Freeing function for a buddy system allocator.
633 *
634 * The concept of a buddy system is to maintain direct-mapped table
635 * (containing bit values) for memory blocks of various "orders".
636 * The bottom level table contains the map for the smallest allocatable
637 * units of memory (here, pages), and each level above it describes
638 * pairs of units from the levels below, hence, "buddies".
639 * At a high level, all that happens here is marking the table entry
640 * at the bottom level available, and propagating the changes upward
641 * as necessary, plus some accounting needed to play nicely with other
642 * parts of the VM system.
643 * At each level, we keep a list of pages, which are heads of continuous
644 * free pages of length of (1 << order) and marked with _mapcount
645 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
646 * field.
647 * So when we are allocating or freeing one, we can derive the state of the
648 * other. That is, if we allocate a small block, and both were
649 * free, the remainder of the region must be split into blocks.
650 * If a block is freed, and its buddy is also free, then this
651 * triggers coalescing into a block of larger size.
652 *
653 * -- nyc
654 */
655
656 static inline void __free_one_page(struct page *page,
657 unsigned long pfn,
658 struct zone *zone, unsigned int order,
659 int migratetype)
660 {
661 unsigned long page_idx;
662 unsigned long combined_idx;
663 unsigned long uninitialized_var(buddy_idx);
664 struct page *buddy;
665 unsigned int max_order = MAX_ORDER;
666
667 VM_BUG_ON(!zone_is_initialized(zone));
668 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
669
670 VM_BUG_ON(migratetype == -1);
671 if (is_migrate_isolate(migratetype)) {
672 /*
673 * We restrict max order of merging to prevent merge
674 * between freepages on isolate pageblock and normal
675 * pageblock. Without this, pageblock isolation
676 * could cause incorrect freepage accounting.
677 */
678 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
679 } else {
680 __mod_zone_freepage_state(zone, 1 << order, migratetype);
681 }
682
683 page_idx = pfn & ((1 << max_order) - 1);
684
685 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
686 VM_BUG_ON_PAGE(bad_range(zone, page), page);
687
688 while (order < max_order - 1) {
689 buddy_idx = __find_buddy_index(page_idx, order);
690 buddy = page + (buddy_idx - page_idx);
691 if (!page_is_buddy(page, buddy, order))
692 break;
693 /*
694 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
695 * merge with it and move up one order.
696 */
697 if (page_is_guard(buddy)) {
698 clear_page_guard(zone, buddy, order, migratetype);
699 } else {
700 list_del(&buddy->lru);
701 zone->free_area[order].nr_free--;
702 rmv_page_order(buddy);
703 }
704 combined_idx = buddy_idx & page_idx;
705 page = page + (combined_idx - page_idx);
706 page_idx = combined_idx;
707 order++;
708 }
709 set_page_order(page, order);
710
711 /*
712 * If this is not the largest possible page, check if the buddy
713 * of the next-highest order is free. If it is, it's possible
714 * that pages are being freed that will coalesce soon. In case,
715 * that is happening, add the free page to the tail of the list
716 * so it's less likely to be used soon and more likely to be merged
717 * as a higher order page
718 */
719 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
720 struct page *higher_page, *higher_buddy;
721 combined_idx = buddy_idx & page_idx;
722 higher_page = page + (combined_idx - page_idx);
723 buddy_idx = __find_buddy_index(combined_idx, order + 1);
724 higher_buddy = higher_page + (buddy_idx - combined_idx);
725 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
726 list_add_tail(&page->lru,
727 &zone->free_area[order].free_list[migratetype]);
728 goto out;
729 }
730 }
731
732 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
733 out:
734 zone->free_area[order].nr_free++;
735 }
736
737 static inline int free_pages_check(struct page *page)
738 {
739 const char *bad_reason = NULL;
740 unsigned long bad_flags = 0;
741
742 if (unlikely(page_mapcount(page)))
743 bad_reason = "nonzero mapcount";
744 if (unlikely(page->mapping != NULL))
745 bad_reason = "non-NULL mapping";
746 if (unlikely(atomic_read(&page->_count) != 0))
747 bad_reason = "nonzero _count";
748 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
749 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
750 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
751 }
752 #ifdef CONFIG_MEMCG
753 if (unlikely(page->mem_cgroup))
754 bad_reason = "page still charged to cgroup";
755 #endif
756 if (unlikely(bad_reason)) {
757 bad_page(page, bad_reason, bad_flags);
758 return 1;
759 }
760 page_cpupid_reset_last(page);
761 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
762 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
763 return 0;
764 }
765
766 /*
767 * Frees a number of pages from the PCP lists
768 * Assumes all pages on list are in same zone, and of same order.
769 * count is the number of pages to free.
770 *
771 * If the zone was previously in an "all pages pinned" state then look to
772 * see if this freeing clears that state.
773 *
774 * And clear the zone's pages_scanned counter, to hold off the "all pages are
775 * pinned" detection logic.
776 */
777 static void free_pcppages_bulk(struct zone *zone, int count,
778 struct per_cpu_pages *pcp)
779 {
780 int migratetype = 0;
781 int batch_free = 0;
782 int to_free = count;
783 unsigned long nr_scanned;
784
785 spin_lock(&zone->lock);
786 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
787 if (nr_scanned)
788 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
789
790 while (to_free) {
791 struct page *page;
792 struct list_head *list;
793
794 /*
795 * Remove pages from lists in a round-robin fashion. A
796 * batch_free count is maintained that is incremented when an
797 * empty list is encountered. This is so more pages are freed
798 * off fuller lists instead of spinning excessively around empty
799 * lists
800 */
801 do {
802 batch_free++;
803 if (++migratetype == MIGRATE_PCPTYPES)
804 migratetype = 0;
805 list = &pcp->lists[migratetype];
806 } while (list_empty(list));
807
808 /* This is the only non-empty list. Free them all. */
809 if (batch_free == MIGRATE_PCPTYPES)
810 batch_free = to_free;
811
812 do {
813 int mt; /* migratetype of the to-be-freed page */
814
815 page = list_entry(list->prev, struct page, lru);
816 /* must delete as __free_one_page list manipulates */
817 list_del(&page->lru);
818
819 mt = get_pcppage_migratetype(page);
820 /* MIGRATE_ISOLATE page should not go to pcplists */
821 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
822 /* Pageblock could have been isolated meanwhile */
823 if (unlikely(has_isolate_pageblock(zone)))
824 mt = get_pageblock_migratetype(page);
825
826 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
827 trace_mm_page_pcpu_drain(page, 0, mt);
828 } while (--to_free && --batch_free && !list_empty(list));
829 }
830 spin_unlock(&zone->lock);
831 }
832
833 static void free_one_page(struct zone *zone,
834 struct page *page, unsigned long pfn,
835 unsigned int order,
836 int migratetype)
837 {
838 unsigned long nr_scanned;
839 spin_lock(&zone->lock);
840 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
841 if (nr_scanned)
842 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
843
844 if (unlikely(has_isolate_pageblock(zone) ||
845 is_migrate_isolate(migratetype))) {
846 migratetype = get_pfnblock_migratetype(page, pfn);
847 }
848 __free_one_page(page, pfn, zone, order, migratetype);
849 spin_unlock(&zone->lock);
850 }
851
852 static int free_tail_pages_check(struct page *head_page, struct page *page)
853 {
854 int ret = 1;
855
856 /*
857 * We rely page->lru.next never has bit 0 set, unless the page
858 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
859 */
860 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
861
862 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
863 ret = 0;
864 goto out;
865 }
866 if (unlikely(!PageTail(page))) {
867 bad_page(page, "PageTail not set", 0);
868 goto out;
869 }
870 if (unlikely(compound_head(page) != head_page)) {
871 bad_page(page, "compound_head not consistent", 0);
872 goto out;
873 }
874 ret = 0;
875 out:
876 clear_compound_head(page);
877 return ret;
878 }
879
880 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
881 unsigned long zone, int nid)
882 {
883 set_page_links(page, zone, nid, pfn);
884 init_page_count(page);
885 page_mapcount_reset(page);
886 page_cpupid_reset_last(page);
887
888 INIT_LIST_HEAD(&page->lru);
889 #ifdef WANT_PAGE_VIRTUAL
890 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
891 if (!is_highmem_idx(zone))
892 set_page_address(page, __va(pfn << PAGE_SHIFT));
893 #endif
894 }
895
896 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
897 int nid)
898 {
899 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
900 }
901
902 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
903 static void init_reserved_page(unsigned long pfn)
904 {
905 pg_data_t *pgdat;
906 int nid, zid;
907
908 if (!early_page_uninitialised(pfn))
909 return;
910
911 nid = early_pfn_to_nid(pfn);
912 pgdat = NODE_DATA(nid);
913
914 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
915 struct zone *zone = &pgdat->node_zones[zid];
916
917 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
918 break;
919 }
920 __init_single_pfn(pfn, zid, nid);
921 }
922 #else
923 static inline void init_reserved_page(unsigned long pfn)
924 {
925 }
926 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
927
928 /*
929 * Initialised pages do not have PageReserved set. This function is
930 * called for each range allocated by the bootmem allocator and
931 * marks the pages PageReserved. The remaining valid pages are later
932 * sent to the buddy page allocator.
933 */
934 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
935 {
936 unsigned long start_pfn = PFN_DOWN(start);
937 unsigned long end_pfn = PFN_UP(end);
938
939 for (; start_pfn < end_pfn; start_pfn++) {
940 if (pfn_valid(start_pfn)) {
941 struct page *page = pfn_to_page(start_pfn);
942
943 init_reserved_page(start_pfn);
944
945 /* Avoid false-positive PageTail() */
946 INIT_LIST_HEAD(&page->lru);
947
948 SetPageReserved(page);
949 }
950 }
951 }
952
953 static bool free_pages_prepare(struct page *page, unsigned int order)
954 {
955 bool compound = PageCompound(page);
956 int i, bad = 0;
957
958 VM_BUG_ON_PAGE(PageTail(page), page);
959 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
960
961 trace_mm_page_free(page, order);
962 kmemcheck_free_shadow(page, order);
963 kasan_free_pages(page, order);
964
965 if (PageAnon(page))
966 page->mapping = NULL;
967 bad += free_pages_check(page);
968 for (i = 1; i < (1 << order); i++) {
969 if (compound)
970 bad += free_tail_pages_check(page, page + i);
971 bad += free_pages_check(page + i);
972 }
973 if (bad)
974 return false;
975
976 reset_page_owner(page, order);
977
978 if (!PageHighMem(page)) {
979 debug_check_no_locks_freed(page_address(page),
980 PAGE_SIZE << order);
981 debug_check_no_obj_freed(page_address(page),
982 PAGE_SIZE << order);
983 }
984 arch_free_page(page, order);
985 kernel_map_pages(page, 1 << order, 0);
986
987 return true;
988 }
989
990 static void __free_pages_ok(struct page *page, unsigned int order)
991 {
992 unsigned long flags;
993 int migratetype;
994 unsigned long pfn = page_to_pfn(page);
995
996 if (!free_pages_prepare(page, order))
997 return;
998
999 migratetype = get_pfnblock_migratetype(page, pfn);
1000 local_irq_save(flags);
1001 __count_vm_events(PGFREE, 1 << order);
1002 free_one_page(page_zone(page), page, pfn, order, migratetype);
1003 local_irq_restore(flags);
1004 }
1005
1006 static void __init __free_pages_boot_core(struct page *page,
1007 unsigned long pfn, unsigned int order)
1008 {
1009 unsigned int nr_pages = 1 << order;
1010 struct page *p = page;
1011 unsigned int loop;
1012
1013 prefetchw(p);
1014 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1015 prefetchw(p + 1);
1016 __ClearPageReserved(p);
1017 set_page_count(p, 0);
1018 }
1019 __ClearPageReserved(p);
1020 set_page_count(p, 0);
1021
1022 page_zone(page)->managed_pages += nr_pages;
1023 set_page_refcounted(page);
1024 __free_pages(page, order);
1025 }
1026
1027 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1028 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1029
1030 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1031
1032 int __meminit early_pfn_to_nid(unsigned long pfn)
1033 {
1034 static DEFINE_SPINLOCK(early_pfn_lock);
1035 int nid;
1036
1037 spin_lock(&early_pfn_lock);
1038 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1039 if (nid < 0)
1040 nid = 0;
1041 spin_unlock(&early_pfn_lock);
1042
1043 return nid;
1044 }
1045 #endif
1046
1047 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1048 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1049 struct mminit_pfnnid_cache *state)
1050 {
1051 int nid;
1052
1053 nid = __early_pfn_to_nid(pfn, state);
1054 if (nid >= 0 && nid != node)
1055 return false;
1056 return true;
1057 }
1058
1059 /* Only safe to use early in boot when initialisation is single-threaded */
1060 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1061 {
1062 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1063 }
1064
1065 #else
1066
1067 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1068 {
1069 return true;
1070 }
1071 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1072 struct mminit_pfnnid_cache *state)
1073 {
1074 return true;
1075 }
1076 #endif
1077
1078
1079 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1080 unsigned int order)
1081 {
1082 if (early_page_uninitialised(pfn))
1083 return;
1084 return __free_pages_boot_core(page, pfn, order);
1085 }
1086
1087 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1088 static void __init deferred_free_range(struct page *page,
1089 unsigned long pfn, int nr_pages)
1090 {
1091 int i;
1092
1093 if (!page)
1094 return;
1095
1096 /* Free a large naturally-aligned chunk if possible */
1097 if (nr_pages == MAX_ORDER_NR_PAGES &&
1098 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1099 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1100 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1101 return;
1102 }
1103
1104 for (i = 0; i < nr_pages; i++, page++, pfn++)
1105 __free_pages_boot_core(page, pfn, 0);
1106 }
1107
1108 /* Completion tracking for deferred_init_memmap() threads */
1109 static atomic_t pgdat_init_n_undone __initdata;
1110 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1111
1112 static inline void __init pgdat_init_report_one_done(void)
1113 {
1114 if (atomic_dec_and_test(&pgdat_init_n_undone))
1115 complete(&pgdat_init_all_done_comp);
1116 }
1117
1118 /* Initialise remaining memory on a node */
1119 static int __init deferred_init_memmap(void *data)
1120 {
1121 pg_data_t *pgdat = data;
1122 int nid = pgdat->node_id;
1123 struct mminit_pfnnid_cache nid_init_state = { };
1124 unsigned long start = jiffies;
1125 unsigned long nr_pages = 0;
1126 unsigned long walk_start, walk_end;
1127 int i, zid;
1128 struct zone *zone;
1129 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1130 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1131
1132 if (first_init_pfn == ULONG_MAX) {
1133 pgdat_init_report_one_done();
1134 return 0;
1135 }
1136
1137 /* Bind memory initialisation thread to a local node if possible */
1138 if (!cpumask_empty(cpumask))
1139 set_cpus_allowed_ptr(current, cpumask);
1140
1141 /* Sanity check boundaries */
1142 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1143 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1144 pgdat->first_deferred_pfn = ULONG_MAX;
1145
1146 /* Only the highest zone is deferred so find it */
1147 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1148 zone = pgdat->node_zones + zid;
1149 if (first_init_pfn < zone_end_pfn(zone))
1150 break;
1151 }
1152
1153 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1154 unsigned long pfn, end_pfn;
1155 struct page *page = NULL;
1156 struct page *free_base_page = NULL;
1157 unsigned long free_base_pfn = 0;
1158 int nr_to_free = 0;
1159
1160 end_pfn = min(walk_end, zone_end_pfn(zone));
1161 pfn = first_init_pfn;
1162 if (pfn < walk_start)
1163 pfn = walk_start;
1164 if (pfn < zone->zone_start_pfn)
1165 pfn = zone->zone_start_pfn;
1166
1167 for (; pfn < end_pfn; pfn++) {
1168 if (!pfn_valid_within(pfn))
1169 goto free_range;
1170
1171 /*
1172 * Ensure pfn_valid is checked every
1173 * MAX_ORDER_NR_PAGES for memory holes
1174 */
1175 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1176 if (!pfn_valid(pfn)) {
1177 page = NULL;
1178 goto free_range;
1179 }
1180 }
1181
1182 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1183 page = NULL;
1184 goto free_range;
1185 }
1186
1187 /* Minimise pfn page lookups and scheduler checks */
1188 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1189 page++;
1190 } else {
1191 nr_pages += nr_to_free;
1192 deferred_free_range(free_base_page,
1193 free_base_pfn, nr_to_free);
1194 free_base_page = NULL;
1195 free_base_pfn = nr_to_free = 0;
1196
1197 page = pfn_to_page(pfn);
1198 cond_resched();
1199 }
1200
1201 if (page->flags) {
1202 VM_BUG_ON(page_zone(page) != zone);
1203 goto free_range;
1204 }
1205
1206 __init_single_page(page, pfn, zid, nid);
1207 if (!free_base_page) {
1208 free_base_page = page;
1209 free_base_pfn = pfn;
1210 nr_to_free = 0;
1211 }
1212 nr_to_free++;
1213
1214 /* Where possible, batch up pages for a single free */
1215 continue;
1216 free_range:
1217 /* Free the current block of pages to allocator */
1218 nr_pages += nr_to_free;
1219 deferred_free_range(free_base_page, free_base_pfn,
1220 nr_to_free);
1221 free_base_page = NULL;
1222 free_base_pfn = nr_to_free = 0;
1223 }
1224
1225 first_init_pfn = max(end_pfn, first_init_pfn);
1226 }
1227
1228 /* Sanity check that the next zone really is unpopulated */
1229 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1230
1231 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1232 jiffies_to_msecs(jiffies - start));
1233
1234 pgdat_init_report_one_done();
1235 return 0;
1236 }
1237
1238 void __init page_alloc_init_late(void)
1239 {
1240 int nid;
1241
1242 /* There will be num_node_state(N_MEMORY) threads */
1243 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1244 for_each_node_state(nid, N_MEMORY) {
1245 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1246 }
1247
1248 /* Block until all are initialised */
1249 wait_for_completion(&pgdat_init_all_done_comp);
1250
1251 /* Reinit limits that are based on free pages after the kernel is up */
1252 files_maxfiles_init();
1253 }
1254 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1255
1256 #ifdef CONFIG_CMA
1257 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1258 void __init init_cma_reserved_pageblock(struct page *page)
1259 {
1260 unsigned i = pageblock_nr_pages;
1261 struct page *p = page;
1262
1263 do {
1264 __ClearPageReserved(p);
1265 set_page_count(p, 0);
1266 } while (++p, --i);
1267
1268 set_pageblock_migratetype(page, MIGRATE_CMA);
1269
1270 if (pageblock_order >= MAX_ORDER) {
1271 i = pageblock_nr_pages;
1272 p = page;
1273 do {
1274 set_page_refcounted(p);
1275 __free_pages(p, MAX_ORDER - 1);
1276 p += MAX_ORDER_NR_PAGES;
1277 } while (i -= MAX_ORDER_NR_PAGES);
1278 } else {
1279 set_page_refcounted(page);
1280 __free_pages(page, pageblock_order);
1281 }
1282
1283 adjust_managed_page_count(page, pageblock_nr_pages);
1284 }
1285 #endif
1286
1287 /*
1288 * The order of subdivision here is critical for the IO subsystem.
1289 * Please do not alter this order without good reasons and regression
1290 * testing. Specifically, as large blocks of memory are subdivided,
1291 * the order in which smaller blocks are delivered depends on the order
1292 * they're subdivided in this function. This is the primary factor
1293 * influencing the order in which pages are delivered to the IO
1294 * subsystem according to empirical testing, and this is also justified
1295 * by considering the behavior of a buddy system containing a single
1296 * large block of memory acted on by a series of small allocations.
1297 * This behavior is a critical factor in sglist merging's success.
1298 *
1299 * -- nyc
1300 */
1301 static inline void expand(struct zone *zone, struct page *page,
1302 int low, int high, struct free_area *area,
1303 int migratetype)
1304 {
1305 unsigned long size = 1 << high;
1306
1307 while (high > low) {
1308 area--;
1309 high--;
1310 size >>= 1;
1311 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1312
1313 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1314 debug_guardpage_enabled() &&
1315 high < debug_guardpage_minorder()) {
1316 /*
1317 * Mark as guard pages (or page), that will allow to
1318 * merge back to allocator when buddy will be freed.
1319 * Corresponding page table entries will not be touched,
1320 * pages will stay not present in virtual address space
1321 */
1322 set_page_guard(zone, &page[size], high, migratetype);
1323 continue;
1324 }
1325 list_add(&page[size].lru, &area->free_list[migratetype]);
1326 area->nr_free++;
1327 set_page_order(&page[size], high);
1328 }
1329 }
1330
1331 /*
1332 * This page is about to be returned from the page allocator
1333 */
1334 static inline int check_new_page(struct page *page)
1335 {
1336 const char *bad_reason = NULL;
1337 unsigned long bad_flags = 0;
1338
1339 if (unlikely(page_mapcount(page)))
1340 bad_reason = "nonzero mapcount";
1341 if (unlikely(page->mapping != NULL))
1342 bad_reason = "non-NULL mapping";
1343 if (unlikely(atomic_read(&page->_count) != 0))
1344 bad_reason = "nonzero _count";
1345 if (unlikely(page->flags & __PG_HWPOISON)) {
1346 bad_reason = "HWPoisoned (hardware-corrupted)";
1347 bad_flags = __PG_HWPOISON;
1348 }
1349 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1350 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1351 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1352 }
1353 #ifdef CONFIG_MEMCG
1354 if (unlikely(page->mem_cgroup))
1355 bad_reason = "page still charged to cgroup";
1356 #endif
1357 if (unlikely(bad_reason)) {
1358 bad_page(page, bad_reason, bad_flags);
1359 return 1;
1360 }
1361 return 0;
1362 }
1363
1364 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1365 int alloc_flags)
1366 {
1367 int i;
1368
1369 for (i = 0; i < (1 << order); i++) {
1370 struct page *p = page + i;
1371 if (unlikely(check_new_page(p)))
1372 return 1;
1373 }
1374
1375 set_page_private(page, 0);
1376 set_page_refcounted(page);
1377
1378 arch_alloc_page(page, order);
1379 kernel_map_pages(page, 1 << order, 1);
1380 kasan_alloc_pages(page, order);
1381
1382 if (gfp_flags & __GFP_ZERO)
1383 for (i = 0; i < (1 << order); i++)
1384 clear_highpage(page + i);
1385
1386 if (order && (gfp_flags & __GFP_COMP))
1387 prep_compound_page(page, order);
1388
1389 set_page_owner(page, order, gfp_flags);
1390
1391 /*
1392 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1393 * allocate the page. The expectation is that the caller is taking
1394 * steps that will free more memory. The caller should avoid the page
1395 * being used for !PFMEMALLOC purposes.
1396 */
1397 if (alloc_flags & ALLOC_NO_WATERMARKS)
1398 set_page_pfmemalloc(page);
1399 else
1400 clear_page_pfmemalloc(page);
1401
1402 return 0;
1403 }
1404
1405 /*
1406 * Go through the free lists for the given migratetype and remove
1407 * the smallest available page from the freelists
1408 */
1409 static inline
1410 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1411 int migratetype)
1412 {
1413 unsigned int current_order;
1414 struct free_area *area;
1415 struct page *page;
1416
1417 /* Find a page of the appropriate size in the preferred list */
1418 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1419 area = &(zone->free_area[current_order]);
1420 if (list_empty(&area->free_list[migratetype]))
1421 continue;
1422
1423 page = list_entry(area->free_list[migratetype].next,
1424 struct page, lru);
1425 list_del(&page->lru);
1426 rmv_page_order(page);
1427 area->nr_free--;
1428 expand(zone, page, order, current_order, area, migratetype);
1429 set_pcppage_migratetype(page, migratetype);
1430 return page;
1431 }
1432
1433 return NULL;
1434 }
1435
1436
1437 /*
1438 * This array describes the order lists are fallen back to when
1439 * the free lists for the desirable migrate type are depleted
1440 */
1441 static int fallbacks[MIGRATE_TYPES][4] = {
1442 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1443 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1444 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1445 #ifdef CONFIG_CMA
1446 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1447 #endif
1448 #ifdef CONFIG_MEMORY_ISOLATION
1449 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1450 #endif
1451 };
1452
1453 #ifdef CONFIG_CMA
1454 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1455 unsigned int order)
1456 {
1457 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1458 }
1459 #else
1460 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1461 unsigned int order) { return NULL; }
1462 #endif
1463
1464 /*
1465 * Move the free pages in a range to the free lists of the requested type.
1466 * Note that start_page and end_pages are not aligned on a pageblock
1467 * boundary. If alignment is required, use move_freepages_block()
1468 */
1469 int move_freepages(struct zone *zone,
1470 struct page *start_page, struct page *end_page,
1471 int migratetype)
1472 {
1473 struct page *page;
1474 unsigned int order;
1475 int pages_moved = 0;
1476
1477 #ifndef CONFIG_HOLES_IN_ZONE
1478 /*
1479 * page_zone is not safe to call in this context when
1480 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1481 * anyway as we check zone boundaries in move_freepages_block().
1482 * Remove at a later date when no bug reports exist related to
1483 * grouping pages by mobility
1484 */
1485 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1486 #endif
1487
1488 for (page = start_page; page <= end_page;) {
1489 /* Make sure we are not inadvertently changing nodes */
1490 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1491
1492 if (!pfn_valid_within(page_to_pfn(page))) {
1493 page++;
1494 continue;
1495 }
1496
1497 if (!PageBuddy(page)) {
1498 page++;
1499 continue;
1500 }
1501
1502 order = page_order(page);
1503 list_move(&page->lru,
1504 &zone->free_area[order].free_list[migratetype]);
1505 page += 1 << order;
1506 pages_moved += 1 << order;
1507 }
1508
1509 return pages_moved;
1510 }
1511
1512 int move_freepages_block(struct zone *zone, struct page *page,
1513 int migratetype)
1514 {
1515 unsigned long start_pfn, end_pfn;
1516 struct page *start_page, *end_page;
1517
1518 start_pfn = page_to_pfn(page);
1519 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1520 start_page = pfn_to_page(start_pfn);
1521 end_page = start_page + pageblock_nr_pages - 1;
1522 end_pfn = start_pfn + pageblock_nr_pages - 1;
1523
1524 /* Do not cross zone boundaries */
1525 if (!zone_spans_pfn(zone, start_pfn))
1526 start_page = page;
1527 if (!zone_spans_pfn(zone, end_pfn))
1528 return 0;
1529
1530 return move_freepages(zone, start_page, end_page, migratetype);
1531 }
1532
1533 static void change_pageblock_range(struct page *pageblock_page,
1534 int start_order, int migratetype)
1535 {
1536 int nr_pageblocks = 1 << (start_order - pageblock_order);
1537
1538 while (nr_pageblocks--) {
1539 set_pageblock_migratetype(pageblock_page, migratetype);
1540 pageblock_page += pageblock_nr_pages;
1541 }
1542 }
1543
1544 /*
1545 * When we are falling back to another migratetype during allocation, try to
1546 * steal extra free pages from the same pageblocks to satisfy further
1547 * allocations, instead of polluting multiple pageblocks.
1548 *
1549 * If we are stealing a relatively large buddy page, it is likely there will
1550 * be more free pages in the pageblock, so try to steal them all. For
1551 * reclaimable and unmovable allocations, we steal regardless of page size,
1552 * as fragmentation caused by those allocations polluting movable pageblocks
1553 * is worse than movable allocations stealing from unmovable and reclaimable
1554 * pageblocks.
1555 */
1556 static bool can_steal_fallback(unsigned int order, int start_mt)
1557 {
1558 /*
1559 * Leaving this order check is intended, although there is
1560 * relaxed order check in next check. The reason is that
1561 * we can actually steal whole pageblock if this condition met,
1562 * but, below check doesn't guarantee it and that is just heuristic
1563 * so could be changed anytime.
1564 */
1565 if (order >= pageblock_order)
1566 return true;
1567
1568 if (order >= pageblock_order / 2 ||
1569 start_mt == MIGRATE_RECLAIMABLE ||
1570 start_mt == MIGRATE_UNMOVABLE ||
1571 page_group_by_mobility_disabled)
1572 return true;
1573
1574 return false;
1575 }
1576
1577 /*
1578 * This function implements actual steal behaviour. If order is large enough,
1579 * we can steal whole pageblock. If not, we first move freepages in this
1580 * pageblock and check whether half of pages are moved or not. If half of
1581 * pages are moved, we can change migratetype of pageblock and permanently
1582 * use it's pages as requested migratetype in the future.
1583 */
1584 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1585 int start_type)
1586 {
1587 unsigned int current_order = page_order(page);
1588 int pages;
1589
1590 /* Take ownership for orders >= pageblock_order */
1591 if (current_order >= pageblock_order) {
1592 change_pageblock_range(page, current_order, start_type);
1593 return;
1594 }
1595
1596 pages = move_freepages_block(zone, page, start_type);
1597
1598 /* Claim the whole block if over half of it is free */
1599 if (pages >= (1 << (pageblock_order-1)) ||
1600 page_group_by_mobility_disabled)
1601 set_pageblock_migratetype(page, start_type);
1602 }
1603
1604 /*
1605 * Check whether there is a suitable fallback freepage with requested order.
1606 * If only_stealable is true, this function returns fallback_mt only if
1607 * we can steal other freepages all together. This would help to reduce
1608 * fragmentation due to mixed migratetype pages in one pageblock.
1609 */
1610 int find_suitable_fallback(struct free_area *area, unsigned int order,
1611 int migratetype, bool only_stealable, bool *can_steal)
1612 {
1613 int i;
1614 int fallback_mt;
1615
1616 if (area->nr_free == 0)
1617 return -1;
1618
1619 *can_steal = false;
1620 for (i = 0;; i++) {
1621 fallback_mt = fallbacks[migratetype][i];
1622 if (fallback_mt == MIGRATE_TYPES)
1623 break;
1624
1625 if (list_empty(&area->free_list[fallback_mt]))
1626 continue;
1627
1628 if (can_steal_fallback(order, migratetype))
1629 *can_steal = true;
1630
1631 if (!only_stealable)
1632 return fallback_mt;
1633
1634 if (*can_steal)
1635 return fallback_mt;
1636 }
1637
1638 return -1;
1639 }
1640
1641 /*
1642 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1643 * there are no empty page blocks that contain a page with a suitable order
1644 */
1645 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1646 unsigned int alloc_order)
1647 {
1648 int mt;
1649 unsigned long max_managed, flags;
1650
1651 /*
1652 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1653 * Check is race-prone but harmless.
1654 */
1655 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1656 if (zone->nr_reserved_highatomic >= max_managed)
1657 return;
1658
1659 spin_lock_irqsave(&zone->lock, flags);
1660
1661 /* Recheck the nr_reserved_highatomic limit under the lock */
1662 if (zone->nr_reserved_highatomic >= max_managed)
1663 goto out_unlock;
1664
1665 /* Yoink! */
1666 mt = get_pageblock_migratetype(page);
1667 if (mt != MIGRATE_HIGHATOMIC &&
1668 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1669 zone->nr_reserved_highatomic += pageblock_nr_pages;
1670 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1671 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1672 }
1673
1674 out_unlock:
1675 spin_unlock_irqrestore(&zone->lock, flags);
1676 }
1677
1678 /*
1679 * Used when an allocation is about to fail under memory pressure. This
1680 * potentially hurts the reliability of high-order allocations when under
1681 * intense memory pressure but failed atomic allocations should be easier
1682 * to recover from than an OOM.
1683 */
1684 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1685 {
1686 struct zonelist *zonelist = ac->zonelist;
1687 unsigned long flags;
1688 struct zoneref *z;
1689 struct zone *zone;
1690 struct page *page;
1691 int order;
1692
1693 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1694 ac->nodemask) {
1695 /* Preserve at least one pageblock */
1696 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1697 continue;
1698
1699 spin_lock_irqsave(&zone->lock, flags);
1700 for (order = 0; order < MAX_ORDER; order++) {
1701 struct free_area *area = &(zone->free_area[order]);
1702
1703 if (list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
1704 continue;
1705
1706 page = list_entry(area->free_list[MIGRATE_HIGHATOMIC].next,
1707 struct page, lru);
1708
1709 /*
1710 * It should never happen but changes to locking could
1711 * inadvertently allow a per-cpu drain to add pages
1712 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1713 * and watch for underflows.
1714 */
1715 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1716 zone->nr_reserved_highatomic);
1717
1718 /*
1719 * Convert to ac->migratetype and avoid the normal
1720 * pageblock stealing heuristics. Minimally, the caller
1721 * is doing the work and needs the pages. More
1722 * importantly, if the block was always converted to
1723 * MIGRATE_UNMOVABLE or another type then the number
1724 * of pageblocks that cannot be completely freed
1725 * may increase.
1726 */
1727 set_pageblock_migratetype(page, ac->migratetype);
1728 move_freepages_block(zone, page, ac->migratetype);
1729 spin_unlock_irqrestore(&zone->lock, flags);
1730 return;
1731 }
1732 spin_unlock_irqrestore(&zone->lock, flags);
1733 }
1734 }
1735
1736 /* Remove an element from the buddy allocator from the fallback list */
1737 static inline struct page *
1738 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1739 {
1740 struct free_area *area;
1741 unsigned int current_order;
1742 struct page *page;
1743 int fallback_mt;
1744 bool can_steal;
1745
1746 /* Find the largest possible block of pages in the other list */
1747 for (current_order = MAX_ORDER-1;
1748 current_order >= order && current_order <= MAX_ORDER-1;
1749 --current_order) {
1750 area = &(zone->free_area[current_order]);
1751 fallback_mt = find_suitable_fallback(area, current_order,
1752 start_migratetype, false, &can_steal);
1753 if (fallback_mt == -1)
1754 continue;
1755
1756 page = list_entry(area->free_list[fallback_mt].next,
1757 struct page, lru);
1758 if (can_steal)
1759 steal_suitable_fallback(zone, page, start_migratetype);
1760
1761 /* Remove the page from the freelists */
1762 area->nr_free--;
1763 list_del(&page->lru);
1764 rmv_page_order(page);
1765
1766 expand(zone, page, order, current_order, area,
1767 start_migratetype);
1768 /*
1769 * The pcppage_migratetype may differ from pageblock's
1770 * migratetype depending on the decisions in
1771 * find_suitable_fallback(). This is OK as long as it does not
1772 * differ for MIGRATE_CMA pageblocks. Those can be used as
1773 * fallback only via special __rmqueue_cma_fallback() function
1774 */
1775 set_pcppage_migratetype(page, start_migratetype);
1776
1777 trace_mm_page_alloc_extfrag(page, order, current_order,
1778 start_migratetype, fallback_mt);
1779
1780 return page;
1781 }
1782
1783 return NULL;
1784 }
1785
1786 /*
1787 * Do the hard work of removing an element from the buddy allocator.
1788 * Call me with the zone->lock already held.
1789 */
1790 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1791 int migratetype, gfp_t gfp_flags)
1792 {
1793 struct page *page;
1794
1795 page = __rmqueue_smallest(zone, order, migratetype);
1796 if (unlikely(!page)) {
1797 if (migratetype == MIGRATE_MOVABLE)
1798 page = __rmqueue_cma_fallback(zone, order);
1799
1800 if (!page)
1801 page = __rmqueue_fallback(zone, order, migratetype);
1802 }
1803
1804 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1805 return page;
1806 }
1807
1808 /*
1809 * Obtain a specified number of elements from the buddy allocator, all under
1810 * a single hold of the lock, for efficiency. Add them to the supplied list.
1811 * Returns the number of new pages which were placed at *list.
1812 */
1813 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1814 unsigned long count, struct list_head *list,
1815 int migratetype, bool cold)
1816 {
1817 int i;
1818
1819 spin_lock(&zone->lock);
1820 for (i = 0; i < count; ++i) {
1821 struct page *page = __rmqueue(zone, order, migratetype, 0);
1822 if (unlikely(page == NULL))
1823 break;
1824
1825 /*
1826 * Split buddy pages returned by expand() are received here
1827 * in physical page order. The page is added to the callers and
1828 * list and the list head then moves forward. From the callers
1829 * perspective, the linked list is ordered by page number in
1830 * some conditions. This is useful for IO devices that can
1831 * merge IO requests if the physical pages are ordered
1832 * properly.
1833 */
1834 if (likely(!cold))
1835 list_add(&page->lru, list);
1836 else
1837 list_add_tail(&page->lru, list);
1838 list = &page->lru;
1839 if (is_migrate_cma(get_pcppage_migratetype(page)))
1840 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1841 -(1 << order));
1842 }
1843 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1844 spin_unlock(&zone->lock);
1845 return i;
1846 }
1847
1848 #ifdef CONFIG_NUMA
1849 /*
1850 * Called from the vmstat counter updater to drain pagesets of this
1851 * currently executing processor on remote nodes after they have
1852 * expired.
1853 *
1854 * Note that this function must be called with the thread pinned to
1855 * a single processor.
1856 */
1857 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1858 {
1859 unsigned long flags;
1860 int to_drain, batch;
1861
1862 local_irq_save(flags);
1863 batch = READ_ONCE(pcp->batch);
1864 to_drain = min(pcp->count, batch);
1865 if (to_drain > 0) {
1866 free_pcppages_bulk(zone, to_drain, pcp);
1867 pcp->count -= to_drain;
1868 }
1869 local_irq_restore(flags);
1870 }
1871 #endif
1872
1873 /*
1874 * Drain pcplists of the indicated processor and zone.
1875 *
1876 * The processor must either be the current processor and the
1877 * thread pinned to the current processor or a processor that
1878 * is not online.
1879 */
1880 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1881 {
1882 unsigned long flags;
1883 struct per_cpu_pageset *pset;
1884 struct per_cpu_pages *pcp;
1885
1886 local_irq_save(flags);
1887 pset = per_cpu_ptr(zone->pageset, cpu);
1888
1889 pcp = &pset->pcp;
1890 if (pcp->count) {
1891 free_pcppages_bulk(zone, pcp->count, pcp);
1892 pcp->count = 0;
1893 }
1894 local_irq_restore(flags);
1895 }
1896
1897 /*
1898 * Drain pcplists of all zones on the indicated processor.
1899 *
1900 * The processor must either be the current processor and the
1901 * thread pinned to the current processor or a processor that
1902 * is not online.
1903 */
1904 static void drain_pages(unsigned int cpu)
1905 {
1906 struct zone *zone;
1907
1908 for_each_populated_zone(zone) {
1909 drain_pages_zone(cpu, zone);
1910 }
1911 }
1912
1913 /*
1914 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1915 *
1916 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1917 * the single zone's pages.
1918 */
1919 void drain_local_pages(struct zone *zone)
1920 {
1921 int cpu = smp_processor_id();
1922
1923 if (zone)
1924 drain_pages_zone(cpu, zone);
1925 else
1926 drain_pages(cpu);
1927 }
1928
1929 /*
1930 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1931 *
1932 * When zone parameter is non-NULL, spill just the single zone's pages.
1933 *
1934 * Note that this code is protected against sending an IPI to an offline
1935 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1936 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1937 * nothing keeps CPUs from showing up after we populated the cpumask and
1938 * before the call to on_each_cpu_mask().
1939 */
1940 void drain_all_pages(struct zone *zone)
1941 {
1942 int cpu;
1943
1944 /*
1945 * Allocate in the BSS so we wont require allocation in
1946 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1947 */
1948 static cpumask_t cpus_with_pcps;
1949
1950 /*
1951 * We don't care about racing with CPU hotplug event
1952 * as offline notification will cause the notified
1953 * cpu to drain that CPU pcps and on_each_cpu_mask
1954 * disables preemption as part of its processing
1955 */
1956 for_each_online_cpu(cpu) {
1957 struct per_cpu_pageset *pcp;
1958 struct zone *z;
1959 bool has_pcps = false;
1960
1961 if (zone) {
1962 pcp = per_cpu_ptr(zone->pageset, cpu);
1963 if (pcp->pcp.count)
1964 has_pcps = true;
1965 } else {
1966 for_each_populated_zone(z) {
1967 pcp = per_cpu_ptr(z->pageset, cpu);
1968 if (pcp->pcp.count) {
1969 has_pcps = true;
1970 break;
1971 }
1972 }
1973 }
1974
1975 if (has_pcps)
1976 cpumask_set_cpu(cpu, &cpus_with_pcps);
1977 else
1978 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1979 }
1980 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1981 zone, 1);
1982 }
1983
1984 #ifdef CONFIG_HIBERNATION
1985
1986 void mark_free_pages(struct zone *zone)
1987 {
1988 unsigned long pfn, max_zone_pfn;
1989 unsigned long flags;
1990 unsigned int order, t;
1991 struct list_head *curr;
1992
1993 if (zone_is_empty(zone))
1994 return;
1995
1996 spin_lock_irqsave(&zone->lock, flags);
1997
1998 max_zone_pfn = zone_end_pfn(zone);
1999 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2000 if (pfn_valid(pfn)) {
2001 struct page *page = pfn_to_page(pfn);
2002
2003 if (!swsusp_page_is_forbidden(page))
2004 swsusp_unset_page_free(page);
2005 }
2006
2007 for_each_migratetype_order(order, t) {
2008 list_for_each(curr, &zone->free_area[order].free_list[t]) {
2009 unsigned long i;
2010
2011 pfn = page_to_pfn(list_entry(curr, struct page, lru));
2012 for (i = 0; i < (1UL << order); i++)
2013 swsusp_set_page_free(pfn_to_page(pfn + i));
2014 }
2015 }
2016 spin_unlock_irqrestore(&zone->lock, flags);
2017 }
2018 #endif /* CONFIG_PM */
2019
2020 /*
2021 * Free a 0-order page
2022 * cold == true ? free a cold page : free a hot page
2023 */
2024 void free_hot_cold_page(struct page *page, bool cold)
2025 {
2026 struct zone *zone = page_zone(page);
2027 struct per_cpu_pages *pcp;
2028 unsigned long flags;
2029 unsigned long pfn = page_to_pfn(page);
2030 int migratetype;
2031
2032 if (!free_pages_prepare(page, 0))
2033 return;
2034
2035 migratetype = get_pfnblock_migratetype(page, pfn);
2036 set_pcppage_migratetype(page, migratetype);
2037 local_irq_save(flags);
2038 __count_vm_event(PGFREE);
2039
2040 /*
2041 * We only track unmovable, reclaimable and movable on pcp lists.
2042 * Free ISOLATE pages back to the allocator because they are being
2043 * offlined but treat RESERVE as movable pages so we can get those
2044 * areas back if necessary. Otherwise, we may have to free
2045 * excessively into the page allocator
2046 */
2047 if (migratetype >= MIGRATE_PCPTYPES) {
2048 if (unlikely(is_migrate_isolate(migratetype))) {
2049 free_one_page(zone, page, pfn, 0, migratetype);
2050 goto out;
2051 }
2052 migratetype = MIGRATE_MOVABLE;
2053 }
2054
2055 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2056 if (!cold)
2057 list_add(&page->lru, &pcp->lists[migratetype]);
2058 else
2059 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2060 pcp->count++;
2061 if (pcp->count >= pcp->high) {
2062 unsigned long batch = READ_ONCE(pcp->batch);
2063 free_pcppages_bulk(zone, batch, pcp);
2064 pcp->count -= batch;
2065 }
2066
2067 out:
2068 local_irq_restore(flags);
2069 }
2070
2071 /*
2072 * Free a list of 0-order pages
2073 */
2074 void free_hot_cold_page_list(struct list_head *list, bool cold)
2075 {
2076 struct page *page, *next;
2077
2078 list_for_each_entry_safe(page, next, list, lru) {
2079 trace_mm_page_free_batched(page, cold);
2080 free_hot_cold_page(page, cold);
2081 }
2082 }
2083
2084 /*
2085 * split_page takes a non-compound higher-order page, and splits it into
2086 * n (1<<order) sub-pages: page[0..n]
2087 * Each sub-page must be freed individually.
2088 *
2089 * Note: this is probably too low level an operation for use in drivers.
2090 * Please consult with lkml before using this in your driver.
2091 */
2092 void split_page(struct page *page, unsigned int order)
2093 {
2094 int i;
2095 gfp_t gfp_mask;
2096
2097 VM_BUG_ON_PAGE(PageCompound(page), page);
2098 VM_BUG_ON_PAGE(!page_count(page), page);
2099
2100 #ifdef CONFIG_KMEMCHECK
2101 /*
2102 * Split shadow pages too, because free(page[0]) would
2103 * otherwise free the whole shadow.
2104 */
2105 if (kmemcheck_page_is_tracked(page))
2106 split_page(virt_to_page(page[0].shadow), order);
2107 #endif
2108
2109 gfp_mask = get_page_owner_gfp(page);
2110 set_page_owner(page, 0, gfp_mask);
2111 for (i = 1; i < (1 << order); i++) {
2112 set_page_refcounted(page + i);
2113 set_page_owner(page + i, 0, gfp_mask);
2114 }
2115 }
2116 EXPORT_SYMBOL_GPL(split_page);
2117
2118 int __isolate_free_page(struct page *page, unsigned int order)
2119 {
2120 unsigned long watermark;
2121 struct zone *zone;
2122 int mt;
2123
2124 BUG_ON(!PageBuddy(page));
2125
2126 zone = page_zone(page);
2127 mt = get_pageblock_migratetype(page);
2128
2129 if (!is_migrate_isolate(mt)) {
2130 /* Obey watermarks as if the page was being allocated */
2131 watermark = low_wmark_pages(zone) + (1 << order);
2132 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2133 return 0;
2134
2135 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2136 }
2137
2138 /* Remove page from free list */
2139 list_del(&page->lru);
2140 zone->free_area[order].nr_free--;
2141 rmv_page_order(page);
2142
2143 set_page_owner(page, order, __GFP_MOVABLE);
2144
2145 /* Set the pageblock if the isolated page is at least a pageblock */
2146 if (order >= pageblock_order - 1) {
2147 struct page *endpage = page + (1 << order) - 1;
2148 for (; page < endpage; page += pageblock_nr_pages) {
2149 int mt = get_pageblock_migratetype(page);
2150 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2151 set_pageblock_migratetype(page,
2152 MIGRATE_MOVABLE);
2153 }
2154 }
2155
2156
2157 return 1UL << order;
2158 }
2159
2160 /*
2161 * Similar to split_page except the page is already free. As this is only
2162 * being used for migration, the migratetype of the block also changes.
2163 * As this is called with interrupts disabled, the caller is responsible
2164 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2165 * are enabled.
2166 *
2167 * Note: this is probably too low level an operation for use in drivers.
2168 * Please consult with lkml before using this in your driver.
2169 */
2170 int split_free_page(struct page *page)
2171 {
2172 unsigned int order;
2173 int nr_pages;
2174
2175 order = page_order(page);
2176
2177 nr_pages = __isolate_free_page(page, order);
2178 if (!nr_pages)
2179 return 0;
2180
2181 /* Split into individual pages */
2182 set_page_refcounted(page);
2183 split_page(page, order);
2184 return nr_pages;
2185 }
2186
2187 /*
2188 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2189 */
2190 static inline
2191 struct page *buffered_rmqueue(struct zone *preferred_zone,
2192 struct zone *zone, unsigned int order,
2193 gfp_t gfp_flags, int alloc_flags, int migratetype)
2194 {
2195 unsigned long flags;
2196 struct page *page;
2197 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2198
2199 if (likely(order == 0)) {
2200 struct per_cpu_pages *pcp;
2201 struct list_head *list;
2202
2203 local_irq_save(flags);
2204 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2205 list = &pcp->lists[migratetype];
2206 if (list_empty(list)) {
2207 pcp->count += rmqueue_bulk(zone, 0,
2208 pcp->batch, list,
2209 migratetype, cold);
2210 if (unlikely(list_empty(list)))
2211 goto failed;
2212 }
2213
2214 if (cold)
2215 page = list_entry(list->prev, struct page, lru);
2216 else
2217 page = list_entry(list->next, struct page, lru);
2218
2219 list_del(&page->lru);
2220 pcp->count--;
2221 } else {
2222 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2223 /*
2224 * __GFP_NOFAIL is not to be used in new code.
2225 *
2226 * All __GFP_NOFAIL callers should be fixed so that they
2227 * properly detect and handle allocation failures.
2228 *
2229 * We most definitely don't want callers attempting to
2230 * allocate greater than order-1 page units with
2231 * __GFP_NOFAIL.
2232 */
2233 WARN_ON_ONCE(order > 1);
2234 }
2235 spin_lock_irqsave(&zone->lock, flags);
2236
2237 page = NULL;
2238 if (alloc_flags & ALLOC_HARDER) {
2239 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2240 if (page)
2241 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2242 }
2243 if (!page)
2244 page = __rmqueue(zone, order, migratetype, gfp_flags);
2245 spin_unlock(&zone->lock);
2246 if (!page)
2247 goto failed;
2248 __mod_zone_freepage_state(zone, -(1 << order),
2249 get_pcppage_migratetype(page));
2250 }
2251
2252 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2253 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2254 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2255 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2256
2257 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2258 zone_statistics(preferred_zone, zone, gfp_flags);
2259 local_irq_restore(flags);
2260
2261 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2262 return page;
2263
2264 failed:
2265 local_irq_restore(flags);
2266 return NULL;
2267 }
2268
2269 #ifdef CONFIG_FAIL_PAGE_ALLOC
2270
2271 static struct {
2272 struct fault_attr attr;
2273
2274 bool ignore_gfp_highmem;
2275 bool ignore_gfp_reclaim;
2276 u32 min_order;
2277 } fail_page_alloc = {
2278 .attr = FAULT_ATTR_INITIALIZER,
2279 .ignore_gfp_reclaim = true,
2280 .ignore_gfp_highmem = true,
2281 .min_order = 1,
2282 };
2283
2284 static int __init setup_fail_page_alloc(char *str)
2285 {
2286 return setup_fault_attr(&fail_page_alloc.attr, str);
2287 }
2288 __setup("fail_page_alloc=", setup_fail_page_alloc);
2289
2290 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2291 {
2292 if (order < fail_page_alloc.min_order)
2293 return false;
2294 if (gfp_mask & __GFP_NOFAIL)
2295 return false;
2296 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2297 return false;
2298 if (fail_page_alloc.ignore_gfp_reclaim &&
2299 (gfp_mask & __GFP_DIRECT_RECLAIM))
2300 return false;
2301
2302 return should_fail(&fail_page_alloc.attr, 1 << order);
2303 }
2304
2305 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2306
2307 static int __init fail_page_alloc_debugfs(void)
2308 {
2309 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2310 struct dentry *dir;
2311
2312 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2313 &fail_page_alloc.attr);
2314 if (IS_ERR(dir))
2315 return PTR_ERR(dir);
2316
2317 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2318 &fail_page_alloc.ignore_gfp_reclaim))
2319 goto fail;
2320 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2321 &fail_page_alloc.ignore_gfp_highmem))
2322 goto fail;
2323 if (!debugfs_create_u32("min-order", mode, dir,
2324 &fail_page_alloc.min_order))
2325 goto fail;
2326
2327 return 0;
2328 fail:
2329 debugfs_remove_recursive(dir);
2330
2331 return -ENOMEM;
2332 }
2333
2334 late_initcall(fail_page_alloc_debugfs);
2335
2336 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2337
2338 #else /* CONFIG_FAIL_PAGE_ALLOC */
2339
2340 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2341 {
2342 return false;
2343 }
2344
2345 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2346
2347 /*
2348 * Return true if free base pages are above 'mark'. For high-order checks it
2349 * will return true of the order-0 watermark is reached and there is at least
2350 * one free page of a suitable size. Checking now avoids taking the zone lock
2351 * to check in the allocation paths if no pages are free.
2352 */
2353 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2354 unsigned long mark, int classzone_idx, int alloc_flags,
2355 long free_pages)
2356 {
2357 long min = mark;
2358 int o;
2359 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
2360
2361 /* free_pages may go negative - that's OK */
2362 free_pages -= (1 << order) - 1;
2363
2364 if (alloc_flags & ALLOC_HIGH)
2365 min -= min / 2;
2366
2367 /*
2368 * If the caller does not have rights to ALLOC_HARDER then subtract
2369 * the high-atomic reserves. This will over-estimate the size of the
2370 * atomic reserve but it avoids a search.
2371 */
2372 if (likely(!alloc_harder))
2373 free_pages -= z->nr_reserved_highatomic;
2374 else
2375 min -= min / 4;
2376
2377 #ifdef CONFIG_CMA
2378 /* If allocation can't use CMA areas don't use free CMA pages */
2379 if (!(alloc_flags & ALLOC_CMA))
2380 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2381 #endif
2382
2383 /*
2384 * Check watermarks for an order-0 allocation request. If these
2385 * are not met, then a high-order request also cannot go ahead
2386 * even if a suitable page happened to be free.
2387 */
2388 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2389 return false;
2390
2391 /* If this is an order-0 request then the watermark is fine */
2392 if (!order)
2393 return true;
2394
2395 /* For a high-order request, check at least one suitable page is free */
2396 for (o = order; o < MAX_ORDER; o++) {
2397 struct free_area *area = &z->free_area[o];
2398 int mt;
2399
2400 if (!area->nr_free)
2401 continue;
2402
2403 if (alloc_harder)
2404 return true;
2405
2406 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2407 if (!list_empty(&area->free_list[mt]))
2408 return true;
2409 }
2410
2411 #ifdef CONFIG_CMA
2412 if ((alloc_flags & ALLOC_CMA) &&
2413 !list_empty(&area->free_list[MIGRATE_CMA])) {
2414 return true;
2415 }
2416 #endif
2417 }
2418 return false;
2419 }
2420
2421 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2422 int classzone_idx, int alloc_flags)
2423 {
2424 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2425 zone_page_state(z, NR_FREE_PAGES));
2426 }
2427
2428 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2429 unsigned long mark, int classzone_idx)
2430 {
2431 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2432
2433 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2434 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2435
2436 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2437 free_pages);
2438 }
2439
2440 #ifdef CONFIG_NUMA
2441 static bool zone_local(struct zone *local_zone, struct zone *zone)
2442 {
2443 return local_zone->node == zone->node;
2444 }
2445
2446 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2447 {
2448 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2449 RECLAIM_DISTANCE;
2450 }
2451 #else /* CONFIG_NUMA */
2452 static bool zone_local(struct zone *local_zone, struct zone *zone)
2453 {
2454 return true;
2455 }
2456
2457 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2458 {
2459 return true;
2460 }
2461 #endif /* CONFIG_NUMA */
2462
2463 static void reset_alloc_batches(struct zone *preferred_zone)
2464 {
2465 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2466
2467 do {
2468 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2469 high_wmark_pages(zone) - low_wmark_pages(zone) -
2470 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2471 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2472 } while (zone++ != preferred_zone);
2473 }
2474
2475 /*
2476 * get_page_from_freelist goes through the zonelist trying to allocate
2477 * a page.
2478 */
2479 static struct page *
2480 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2481 const struct alloc_context *ac)
2482 {
2483 struct zonelist *zonelist = ac->zonelist;
2484 struct zoneref *z;
2485 struct page *page = NULL;
2486 struct zone *zone;
2487 int nr_fair_skipped = 0;
2488 bool zonelist_rescan;
2489
2490 zonelist_scan:
2491 zonelist_rescan = false;
2492
2493 /*
2494 * Scan zonelist, looking for a zone with enough free.
2495 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2496 */
2497 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2498 ac->nodemask) {
2499 unsigned long mark;
2500
2501 if (cpusets_enabled() &&
2502 (alloc_flags & ALLOC_CPUSET) &&
2503 !cpuset_zone_allowed(zone, gfp_mask))
2504 continue;
2505 /*
2506 * Distribute pages in proportion to the individual
2507 * zone size to ensure fair page aging. The zone a
2508 * page was allocated in should have no effect on the
2509 * time the page has in memory before being reclaimed.
2510 */
2511 if (alloc_flags & ALLOC_FAIR) {
2512 if (!zone_local(ac->preferred_zone, zone))
2513 break;
2514 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2515 nr_fair_skipped++;
2516 continue;
2517 }
2518 }
2519 /*
2520 * When allocating a page cache page for writing, we
2521 * want to get it from a zone that is within its dirty
2522 * limit, such that no single zone holds more than its
2523 * proportional share of globally allowed dirty pages.
2524 * The dirty limits take into account the zone's
2525 * lowmem reserves and high watermark so that kswapd
2526 * should be able to balance it without having to
2527 * write pages from its LRU list.
2528 *
2529 * This may look like it could increase pressure on
2530 * lower zones by failing allocations in higher zones
2531 * before they are full. But the pages that do spill
2532 * over are limited as the lower zones are protected
2533 * by this very same mechanism. It should not become
2534 * a practical burden to them.
2535 *
2536 * XXX: For now, allow allocations to potentially
2537 * exceed the per-zone dirty limit in the slowpath
2538 * (spread_dirty_pages unset) before going into reclaim,
2539 * which is important when on a NUMA setup the allowed
2540 * zones are together not big enough to reach the
2541 * global limit. The proper fix for these situations
2542 * will require awareness of zones in the
2543 * dirty-throttling and the flusher threads.
2544 */
2545 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2546 continue;
2547
2548 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2549 if (!zone_watermark_ok(zone, order, mark,
2550 ac->classzone_idx, alloc_flags)) {
2551 int ret;
2552
2553 /* Checked here to keep the fast path fast */
2554 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2555 if (alloc_flags & ALLOC_NO_WATERMARKS)
2556 goto try_this_zone;
2557
2558 if (zone_reclaim_mode == 0 ||
2559 !zone_allows_reclaim(ac->preferred_zone, zone))
2560 continue;
2561
2562 ret = zone_reclaim(zone, gfp_mask, order);
2563 switch (ret) {
2564 case ZONE_RECLAIM_NOSCAN:
2565 /* did not scan */
2566 continue;
2567 case ZONE_RECLAIM_FULL:
2568 /* scanned but unreclaimable */
2569 continue;
2570 default:
2571 /* did we reclaim enough */
2572 if (zone_watermark_ok(zone, order, mark,
2573 ac->classzone_idx, alloc_flags))
2574 goto try_this_zone;
2575
2576 continue;
2577 }
2578 }
2579
2580 try_this_zone:
2581 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2582 gfp_mask, alloc_flags, ac->migratetype);
2583 if (page) {
2584 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2585 goto try_this_zone;
2586
2587 /*
2588 * If this is a high-order atomic allocation then check
2589 * if the pageblock should be reserved for the future
2590 */
2591 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2592 reserve_highatomic_pageblock(page, zone, order);
2593
2594 return page;
2595 }
2596 }
2597
2598 /*
2599 * The first pass makes sure allocations are spread fairly within the
2600 * local node. However, the local node might have free pages left
2601 * after the fairness batches are exhausted, and remote zones haven't
2602 * even been considered yet. Try once more without fairness, and
2603 * include remote zones now, before entering the slowpath and waking
2604 * kswapd: prefer spilling to a remote zone over swapping locally.
2605 */
2606 if (alloc_flags & ALLOC_FAIR) {
2607 alloc_flags &= ~ALLOC_FAIR;
2608 if (nr_fair_skipped) {
2609 zonelist_rescan = true;
2610 reset_alloc_batches(ac->preferred_zone);
2611 }
2612 if (nr_online_nodes > 1)
2613 zonelist_rescan = true;
2614 }
2615
2616 if (zonelist_rescan)
2617 goto zonelist_scan;
2618
2619 return NULL;
2620 }
2621
2622 /*
2623 * Large machines with many possible nodes should not always dump per-node
2624 * meminfo in irq context.
2625 */
2626 static inline bool should_suppress_show_mem(void)
2627 {
2628 bool ret = false;
2629
2630 #if NODES_SHIFT > 8
2631 ret = in_interrupt();
2632 #endif
2633 return ret;
2634 }
2635
2636 static DEFINE_RATELIMIT_STATE(nopage_rs,
2637 DEFAULT_RATELIMIT_INTERVAL,
2638 DEFAULT_RATELIMIT_BURST);
2639
2640 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2641 {
2642 unsigned int filter = SHOW_MEM_FILTER_NODES;
2643
2644 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2645 debug_guardpage_minorder() > 0)
2646 return;
2647
2648 /*
2649 * This documents exceptions given to allocations in certain
2650 * contexts that are allowed to allocate outside current's set
2651 * of allowed nodes.
2652 */
2653 if (!(gfp_mask & __GFP_NOMEMALLOC))
2654 if (test_thread_flag(TIF_MEMDIE) ||
2655 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2656 filter &= ~SHOW_MEM_FILTER_NODES;
2657 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2658 filter &= ~SHOW_MEM_FILTER_NODES;
2659
2660 if (fmt) {
2661 struct va_format vaf;
2662 va_list args;
2663
2664 va_start(args, fmt);
2665
2666 vaf.fmt = fmt;
2667 vaf.va = &args;
2668
2669 pr_warn("%pV", &vaf);
2670
2671 va_end(args);
2672 }
2673
2674 pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n",
2675 current->comm, order, gfp_mask);
2676
2677 dump_stack();
2678 if (!should_suppress_show_mem())
2679 show_mem(filter);
2680 }
2681
2682 static inline struct page *
2683 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2684 const struct alloc_context *ac, unsigned long *did_some_progress)
2685 {
2686 struct oom_control oc = {
2687 .zonelist = ac->zonelist,
2688 .nodemask = ac->nodemask,
2689 .gfp_mask = gfp_mask,
2690 .order = order,
2691 };
2692 struct page *page;
2693
2694 *did_some_progress = 0;
2695
2696 /*
2697 * Acquire the oom lock. If that fails, somebody else is
2698 * making progress for us.
2699 */
2700 if (!mutex_trylock(&oom_lock)) {
2701 *did_some_progress = 1;
2702 schedule_timeout_uninterruptible(1);
2703 return NULL;
2704 }
2705
2706 /*
2707 * Go through the zonelist yet one more time, keep very high watermark
2708 * here, this is only to catch a parallel oom killing, we must fail if
2709 * we're still under heavy pressure.
2710 */
2711 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2712 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2713 if (page)
2714 goto out;
2715
2716 if (!(gfp_mask & __GFP_NOFAIL)) {
2717 /* Coredumps can quickly deplete all memory reserves */
2718 if (current->flags & PF_DUMPCORE)
2719 goto out;
2720 /* The OOM killer will not help higher order allocs */
2721 if (order > PAGE_ALLOC_COSTLY_ORDER)
2722 goto out;
2723 /* The OOM killer does not needlessly kill tasks for lowmem */
2724 if (ac->high_zoneidx < ZONE_NORMAL)
2725 goto out;
2726 /* The OOM killer does not compensate for IO-less reclaim */
2727 if (!(gfp_mask & __GFP_FS)) {
2728 /*
2729 * XXX: Page reclaim didn't yield anything,
2730 * and the OOM killer can't be invoked, but
2731 * keep looping as per tradition.
2732 */
2733 *did_some_progress = 1;
2734 goto out;
2735 }
2736 if (pm_suspended_storage())
2737 goto out;
2738 /* The OOM killer may not free memory on a specific node */
2739 if (gfp_mask & __GFP_THISNODE)
2740 goto out;
2741 }
2742 /* Exhausted what can be done so it's blamo time */
2743 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2744 *did_some_progress = 1;
2745 out:
2746 mutex_unlock(&oom_lock);
2747 return page;
2748 }
2749
2750 #ifdef CONFIG_COMPACTION
2751 /* Try memory compaction for high-order allocations before reclaim */
2752 static struct page *
2753 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2754 int alloc_flags, const struct alloc_context *ac,
2755 enum migrate_mode mode, int *contended_compaction,
2756 bool *deferred_compaction)
2757 {
2758 unsigned long compact_result;
2759 struct page *page;
2760
2761 if (!order)
2762 return NULL;
2763
2764 current->flags |= PF_MEMALLOC;
2765 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2766 mode, contended_compaction);
2767 current->flags &= ~PF_MEMALLOC;
2768
2769 switch (compact_result) {
2770 case COMPACT_DEFERRED:
2771 *deferred_compaction = true;
2772 /* fall-through */
2773 case COMPACT_SKIPPED:
2774 return NULL;
2775 default:
2776 break;
2777 }
2778
2779 /*
2780 * At least in one zone compaction wasn't deferred or skipped, so let's
2781 * count a compaction stall
2782 */
2783 count_vm_event(COMPACTSTALL);
2784
2785 page = get_page_from_freelist(gfp_mask, order,
2786 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2787
2788 if (page) {
2789 struct zone *zone = page_zone(page);
2790
2791 zone->compact_blockskip_flush = false;
2792 compaction_defer_reset(zone, order, true);
2793 count_vm_event(COMPACTSUCCESS);
2794 return page;
2795 }
2796
2797 /*
2798 * It's bad if compaction run occurs and fails. The most likely reason
2799 * is that pages exist, but not enough to satisfy watermarks.
2800 */
2801 count_vm_event(COMPACTFAIL);
2802
2803 cond_resched();
2804
2805 return NULL;
2806 }
2807 #else
2808 static inline struct page *
2809 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2810 int alloc_flags, const struct alloc_context *ac,
2811 enum migrate_mode mode, int *contended_compaction,
2812 bool *deferred_compaction)
2813 {
2814 return NULL;
2815 }
2816 #endif /* CONFIG_COMPACTION */
2817
2818 /* Perform direct synchronous page reclaim */
2819 static int
2820 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2821 const struct alloc_context *ac)
2822 {
2823 struct reclaim_state reclaim_state;
2824 int progress;
2825
2826 cond_resched();
2827
2828 /* We now go into synchronous reclaim */
2829 cpuset_memory_pressure_bump();
2830 current->flags |= PF_MEMALLOC;
2831 lockdep_set_current_reclaim_state(gfp_mask);
2832 reclaim_state.reclaimed_slab = 0;
2833 current->reclaim_state = &reclaim_state;
2834
2835 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2836 ac->nodemask);
2837
2838 current->reclaim_state = NULL;
2839 lockdep_clear_current_reclaim_state();
2840 current->flags &= ~PF_MEMALLOC;
2841
2842 cond_resched();
2843
2844 return progress;
2845 }
2846
2847 /* The really slow allocator path where we enter direct reclaim */
2848 static inline struct page *
2849 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2850 int alloc_flags, const struct alloc_context *ac,
2851 unsigned long *did_some_progress)
2852 {
2853 struct page *page = NULL;
2854 bool drained = false;
2855
2856 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2857 if (unlikely(!(*did_some_progress)))
2858 return NULL;
2859
2860 retry:
2861 page = get_page_from_freelist(gfp_mask, order,
2862 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2863
2864 /*
2865 * If an allocation failed after direct reclaim, it could be because
2866 * pages are pinned on the per-cpu lists or in high alloc reserves.
2867 * Shrink them them and try again
2868 */
2869 if (!page && !drained) {
2870 unreserve_highatomic_pageblock(ac);
2871 drain_all_pages(NULL);
2872 drained = true;
2873 goto retry;
2874 }
2875
2876 return page;
2877 }
2878
2879 /*
2880 * This is called in the allocator slow-path if the allocation request is of
2881 * sufficient urgency to ignore watermarks and take other desperate measures
2882 */
2883 static inline struct page *
2884 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2885 const struct alloc_context *ac)
2886 {
2887 struct page *page;
2888
2889 do {
2890 page = get_page_from_freelist(gfp_mask, order,
2891 ALLOC_NO_WATERMARKS, ac);
2892
2893 if (!page && gfp_mask & __GFP_NOFAIL)
2894 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2895 HZ/50);
2896 } while (!page && (gfp_mask & __GFP_NOFAIL));
2897
2898 return page;
2899 }
2900
2901 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2902 {
2903 struct zoneref *z;
2904 struct zone *zone;
2905
2906 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2907 ac->high_zoneidx, ac->nodemask)
2908 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2909 }
2910
2911 static inline int
2912 gfp_to_alloc_flags(gfp_t gfp_mask)
2913 {
2914 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2915
2916 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2917 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2918
2919 /*
2920 * The caller may dip into page reserves a bit more if the caller
2921 * cannot run direct reclaim, or if the caller has realtime scheduling
2922 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2923 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
2924 */
2925 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2926
2927 if (gfp_mask & __GFP_ATOMIC) {
2928 /*
2929 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2930 * if it can't schedule.
2931 */
2932 if (!(gfp_mask & __GFP_NOMEMALLOC))
2933 alloc_flags |= ALLOC_HARDER;
2934 /*
2935 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2936 * comment for __cpuset_node_allowed().
2937 */
2938 alloc_flags &= ~ALLOC_CPUSET;
2939 } else if (unlikely(rt_task(current)) && !in_interrupt())
2940 alloc_flags |= ALLOC_HARDER;
2941
2942 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2943 if (gfp_mask & __GFP_MEMALLOC)
2944 alloc_flags |= ALLOC_NO_WATERMARKS;
2945 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2946 alloc_flags |= ALLOC_NO_WATERMARKS;
2947 else if (!in_interrupt() &&
2948 ((current->flags & PF_MEMALLOC) ||
2949 unlikely(test_thread_flag(TIF_MEMDIE))))
2950 alloc_flags |= ALLOC_NO_WATERMARKS;
2951 }
2952 #ifdef CONFIG_CMA
2953 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2954 alloc_flags |= ALLOC_CMA;
2955 #endif
2956 return alloc_flags;
2957 }
2958
2959 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2960 {
2961 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2962 }
2963
2964 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
2965 {
2966 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
2967 }
2968
2969 static inline struct page *
2970 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2971 struct alloc_context *ac)
2972 {
2973 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
2974 struct page *page = NULL;
2975 int alloc_flags;
2976 unsigned long pages_reclaimed = 0;
2977 unsigned long did_some_progress;
2978 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2979 bool deferred_compaction = false;
2980 int contended_compaction = COMPACT_CONTENDED_NONE;
2981
2982 /*
2983 * In the slowpath, we sanity check order to avoid ever trying to
2984 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2985 * be using allocators in order of preference for an area that is
2986 * too large.
2987 */
2988 if (order >= MAX_ORDER) {
2989 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2990 return NULL;
2991 }
2992
2993 /*
2994 * We also sanity check to catch abuse of atomic reserves being used by
2995 * callers that are not in atomic context.
2996 */
2997 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
2998 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
2999 gfp_mask &= ~__GFP_ATOMIC;
3000
3001 /*
3002 * If this allocation cannot block and it is for a specific node, then
3003 * fail early. There's no need to wakeup kswapd or retry for a
3004 * speculative node-specific allocation.
3005 */
3006 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
3007 goto nopage;
3008
3009 retry:
3010 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3011 wake_all_kswapds(order, ac);
3012
3013 /*
3014 * OK, we're below the kswapd watermark and have kicked background
3015 * reclaim. Now things get more complex, so set up alloc_flags according
3016 * to how we want to proceed.
3017 */
3018 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3019
3020 /*
3021 * Find the true preferred zone if the allocation is unconstrained by
3022 * cpusets.
3023 */
3024 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3025 struct zoneref *preferred_zoneref;
3026 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3027 ac->high_zoneidx, NULL, &ac->preferred_zone);
3028 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3029 }
3030
3031 /* This is the last chance, in general, before the goto nopage. */
3032 page = get_page_from_freelist(gfp_mask, order,
3033 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3034 if (page)
3035 goto got_pg;
3036
3037 /* Allocate without watermarks if the context allows */
3038 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3039 /*
3040 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3041 * the allocation is high priority and these type of
3042 * allocations are system rather than user orientated
3043 */
3044 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3045
3046 page = __alloc_pages_high_priority(gfp_mask, order, ac);
3047
3048 if (page) {
3049 goto got_pg;
3050 }
3051 }
3052
3053 /* Caller is not willing to reclaim, we can't balance anything */
3054 if (!can_direct_reclaim) {
3055 /*
3056 * All existing users of the deprecated __GFP_NOFAIL are
3057 * blockable, so warn of any new users that actually allow this
3058 * type of allocation to fail.
3059 */
3060 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3061 goto nopage;
3062 }
3063
3064 /* Avoid recursion of direct reclaim */
3065 if (current->flags & PF_MEMALLOC)
3066 goto nopage;
3067
3068 /* Avoid allocations with no watermarks from looping endlessly */
3069 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3070 goto nopage;
3071
3072 /*
3073 * Try direct compaction. The first pass is asynchronous. Subsequent
3074 * attempts after direct reclaim are synchronous
3075 */
3076 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3077 migration_mode,
3078 &contended_compaction,
3079 &deferred_compaction);
3080 if (page)
3081 goto got_pg;
3082
3083 /* Checks for THP-specific high-order allocations */
3084 if (is_thp_gfp_mask(gfp_mask)) {
3085 /*
3086 * If compaction is deferred for high-order allocations, it is
3087 * because sync compaction recently failed. If this is the case
3088 * and the caller requested a THP allocation, we do not want
3089 * to heavily disrupt the system, so we fail the allocation
3090 * instead of entering direct reclaim.
3091 */
3092 if (deferred_compaction)
3093 goto nopage;
3094
3095 /*
3096 * In all zones where compaction was attempted (and not
3097 * deferred or skipped), lock contention has been detected.
3098 * For THP allocation we do not want to disrupt the others
3099 * so we fallback to base pages instead.
3100 */
3101 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3102 goto nopage;
3103
3104 /*
3105 * If compaction was aborted due to need_resched(), we do not
3106 * want to further increase allocation latency, unless it is
3107 * khugepaged trying to collapse.
3108 */
3109 if (contended_compaction == COMPACT_CONTENDED_SCHED
3110 && !(current->flags & PF_KTHREAD))
3111 goto nopage;
3112 }
3113
3114 /*
3115 * It can become very expensive to allocate transparent hugepages at
3116 * fault, so use asynchronous memory compaction for THP unless it is
3117 * khugepaged trying to collapse.
3118 */
3119 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3120 migration_mode = MIGRATE_SYNC_LIGHT;
3121
3122 /* Try direct reclaim and then allocating */
3123 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3124 &did_some_progress);
3125 if (page)
3126 goto got_pg;
3127
3128 /* Do not loop if specifically requested */
3129 if (gfp_mask & __GFP_NORETRY)
3130 goto noretry;
3131
3132 /* Keep reclaiming pages as long as there is reasonable progress */
3133 pages_reclaimed += did_some_progress;
3134 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3135 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3136 /* Wait for some write requests to complete then retry */
3137 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3138 goto retry;
3139 }
3140
3141 /* Reclaim has failed us, start killing things */
3142 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3143 if (page)
3144 goto got_pg;
3145
3146 /* Retry as long as the OOM killer is making progress */
3147 if (did_some_progress)
3148 goto retry;
3149
3150 noretry:
3151 /*
3152 * High-order allocations do not necessarily loop after
3153 * direct reclaim and reclaim/compaction depends on compaction
3154 * being called after reclaim so call directly if necessary
3155 */
3156 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3157 ac, migration_mode,
3158 &contended_compaction,
3159 &deferred_compaction);
3160 if (page)
3161 goto got_pg;
3162 nopage:
3163 warn_alloc_failed(gfp_mask, order, NULL);
3164 got_pg:
3165 return page;
3166 }
3167
3168 /*
3169 * This is the 'heart' of the zoned buddy allocator.
3170 */
3171 struct page *
3172 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3173 struct zonelist *zonelist, nodemask_t *nodemask)
3174 {
3175 struct zoneref *preferred_zoneref;
3176 struct page *page = NULL;
3177 unsigned int cpuset_mems_cookie;
3178 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3179 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3180 struct alloc_context ac = {
3181 .high_zoneidx = gfp_zone(gfp_mask),
3182 .nodemask = nodemask,
3183 .migratetype = gfpflags_to_migratetype(gfp_mask),
3184 };
3185
3186 gfp_mask &= gfp_allowed_mask;
3187
3188 lockdep_trace_alloc(gfp_mask);
3189
3190 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3191
3192 if (should_fail_alloc_page(gfp_mask, order))
3193 return NULL;
3194
3195 /*
3196 * Check the zones suitable for the gfp_mask contain at least one
3197 * valid zone. It's possible to have an empty zonelist as a result
3198 * of __GFP_THISNODE and a memoryless node
3199 */
3200 if (unlikely(!zonelist->_zonerefs->zone))
3201 return NULL;
3202
3203 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3204 alloc_flags |= ALLOC_CMA;
3205
3206 retry_cpuset:
3207 cpuset_mems_cookie = read_mems_allowed_begin();
3208
3209 /* We set it here, as __alloc_pages_slowpath might have changed it */
3210 ac.zonelist = zonelist;
3211
3212 /* Dirty zone balancing only done in the fast path */
3213 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3214
3215 /* The preferred zone is used for statistics later */
3216 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3217 ac.nodemask ? : &cpuset_current_mems_allowed,
3218 &ac.preferred_zone);
3219 if (!ac.preferred_zone)
3220 goto out;
3221 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3222
3223 /* First allocation attempt */
3224 alloc_mask = gfp_mask|__GFP_HARDWALL;
3225 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3226 if (unlikely(!page)) {
3227 /*
3228 * Runtime PM, block IO and its error handling path
3229 * can deadlock because I/O on the device might not
3230 * complete.
3231 */
3232 alloc_mask = memalloc_noio_flags(gfp_mask);
3233 ac.spread_dirty_pages = false;
3234
3235 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3236 }
3237
3238 if (kmemcheck_enabled && page)
3239 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3240
3241 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3242
3243 out:
3244 /*
3245 * When updating a task's mems_allowed, it is possible to race with
3246 * parallel threads in such a way that an allocation can fail while
3247 * the mask is being updated. If a page allocation is about to fail,
3248 * check if the cpuset changed during allocation and if so, retry.
3249 */
3250 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3251 goto retry_cpuset;
3252
3253 return page;
3254 }
3255 EXPORT_SYMBOL(__alloc_pages_nodemask);
3256
3257 /*
3258 * Common helper functions.
3259 */
3260 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3261 {
3262 struct page *page;
3263
3264 /*
3265 * __get_free_pages() returns a 32-bit address, which cannot represent
3266 * a highmem page
3267 */
3268 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3269
3270 page = alloc_pages(gfp_mask, order);
3271 if (!page)
3272 return 0;
3273 return (unsigned long) page_address(page);
3274 }
3275 EXPORT_SYMBOL(__get_free_pages);
3276
3277 unsigned long get_zeroed_page(gfp_t gfp_mask)
3278 {
3279 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3280 }
3281 EXPORT_SYMBOL(get_zeroed_page);
3282
3283 void __free_pages(struct page *page, unsigned int order)
3284 {
3285 if (put_page_testzero(page)) {
3286 if (order == 0)
3287 free_hot_cold_page(page, false);
3288 else
3289 __free_pages_ok(page, order);
3290 }
3291 }
3292
3293 EXPORT_SYMBOL(__free_pages);
3294
3295 void free_pages(unsigned long addr, unsigned int order)
3296 {
3297 if (addr != 0) {
3298 VM_BUG_ON(!virt_addr_valid((void *)addr));
3299 __free_pages(virt_to_page((void *)addr), order);
3300 }
3301 }
3302
3303 EXPORT_SYMBOL(free_pages);
3304
3305 /*
3306 * Page Fragment:
3307 * An arbitrary-length arbitrary-offset area of memory which resides
3308 * within a 0 or higher order page. Multiple fragments within that page
3309 * are individually refcounted, in the page's reference counter.
3310 *
3311 * The page_frag functions below provide a simple allocation framework for
3312 * page fragments. This is used by the network stack and network device
3313 * drivers to provide a backing region of memory for use as either an
3314 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3315 */
3316 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3317 gfp_t gfp_mask)
3318 {
3319 struct page *page = NULL;
3320 gfp_t gfp = gfp_mask;
3321
3322 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3323 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3324 __GFP_NOMEMALLOC;
3325 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3326 PAGE_FRAG_CACHE_MAX_ORDER);
3327 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3328 #endif
3329 if (unlikely(!page))
3330 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3331
3332 nc->va = page ? page_address(page) : NULL;
3333
3334 return page;
3335 }
3336
3337 void *__alloc_page_frag(struct page_frag_cache *nc,
3338 unsigned int fragsz, gfp_t gfp_mask)
3339 {
3340 unsigned int size = PAGE_SIZE;
3341 struct page *page;
3342 int offset;
3343
3344 if (unlikely(!nc->va)) {
3345 refill:
3346 page = __page_frag_refill(nc, gfp_mask);
3347 if (!page)
3348 return NULL;
3349
3350 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3351 /* if size can vary use size else just use PAGE_SIZE */
3352 size = nc->size;
3353 #endif
3354 /* Even if we own the page, we do not use atomic_set().
3355 * This would break get_page_unless_zero() users.
3356 */
3357 atomic_add(size - 1, &page->_count);
3358
3359 /* reset page count bias and offset to start of new frag */
3360 nc->pfmemalloc = page_is_pfmemalloc(page);
3361 nc->pagecnt_bias = size;
3362 nc->offset = size;
3363 }
3364
3365 offset = nc->offset - fragsz;
3366 if (unlikely(offset < 0)) {
3367 page = virt_to_page(nc->va);
3368
3369 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3370 goto refill;
3371
3372 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3373 /* if size can vary use size else just use PAGE_SIZE */
3374 size = nc->size;
3375 #endif
3376 /* OK, page count is 0, we can safely set it */
3377 atomic_set(&page->_count, size);
3378
3379 /* reset page count bias and offset to start of new frag */
3380 nc->pagecnt_bias = size;
3381 offset = size - fragsz;
3382 }
3383
3384 nc->pagecnt_bias--;
3385 nc->offset = offset;
3386
3387 return nc->va + offset;
3388 }
3389 EXPORT_SYMBOL(__alloc_page_frag);
3390
3391 /*
3392 * Frees a page fragment allocated out of either a compound or order 0 page.
3393 */
3394 void __free_page_frag(void *addr)
3395 {
3396 struct page *page = virt_to_head_page(addr);
3397
3398 if (unlikely(put_page_testzero(page)))
3399 __free_pages_ok(page, compound_order(page));
3400 }
3401 EXPORT_SYMBOL(__free_page_frag);
3402
3403 /*
3404 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3405 * of the current memory cgroup.
3406 *
3407 * It should be used when the caller would like to use kmalloc, but since the
3408 * allocation is large, it has to fall back to the page allocator.
3409 */
3410 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3411 {
3412 struct page *page;
3413
3414 page = alloc_pages(gfp_mask, order);
3415 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3416 __free_pages(page, order);
3417 page = NULL;
3418 }
3419 return page;
3420 }
3421
3422 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3423 {
3424 struct page *page;
3425
3426 page = alloc_pages_node(nid, gfp_mask, order);
3427 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3428 __free_pages(page, order);
3429 page = NULL;
3430 }
3431 return page;
3432 }
3433
3434 /*
3435 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3436 * alloc_kmem_pages.
3437 */
3438 void __free_kmem_pages(struct page *page, unsigned int order)
3439 {
3440 memcg_kmem_uncharge(page, order);
3441 __free_pages(page, order);
3442 }
3443
3444 void free_kmem_pages(unsigned long addr, unsigned int order)
3445 {
3446 if (addr != 0) {
3447 VM_BUG_ON(!virt_addr_valid((void *)addr));
3448 __free_kmem_pages(virt_to_page((void *)addr), order);
3449 }
3450 }
3451
3452 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3453 size_t size)
3454 {
3455 if (addr) {
3456 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3457 unsigned long used = addr + PAGE_ALIGN(size);
3458
3459 split_page(virt_to_page((void *)addr), order);
3460 while (used < alloc_end) {
3461 free_page(used);
3462 used += PAGE_SIZE;
3463 }
3464 }
3465 return (void *)addr;
3466 }
3467
3468 /**
3469 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3470 * @size: the number of bytes to allocate
3471 * @gfp_mask: GFP flags for the allocation
3472 *
3473 * This function is similar to alloc_pages(), except that it allocates the
3474 * minimum number of pages to satisfy the request. alloc_pages() can only
3475 * allocate memory in power-of-two pages.
3476 *
3477 * This function is also limited by MAX_ORDER.
3478 *
3479 * Memory allocated by this function must be released by free_pages_exact().
3480 */
3481 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3482 {
3483 unsigned int order = get_order(size);
3484 unsigned long addr;
3485
3486 addr = __get_free_pages(gfp_mask, order);
3487 return make_alloc_exact(addr, order, size);
3488 }
3489 EXPORT_SYMBOL(alloc_pages_exact);
3490
3491 /**
3492 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3493 * pages on a node.
3494 * @nid: the preferred node ID where memory should be allocated
3495 * @size: the number of bytes to allocate
3496 * @gfp_mask: GFP flags for the allocation
3497 *
3498 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3499 * back.
3500 */
3501 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3502 {
3503 unsigned int order = get_order(size);
3504 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3505 if (!p)
3506 return NULL;
3507 return make_alloc_exact((unsigned long)page_address(p), order, size);
3508 }
3509
3510 /**
3511 * free_pages_exact - release memory allocated via alloc_pages_exact()
3512 * @virt: the value returned by alloc_pages_exact.
3513 * @size: size of allocation, same value as passed to alloc_pages_exact().
3514 *
3515 * Release the memory allocated by a previous call to alloc_pages_exact.
3516 */
3517 void free_pages_exact(void *virt, size_t size)
3518 {
3519 unsigned long addr = (unsigned long)virt;
3520 unsigned long end = addr + PAGE_ALIGN(size);
3521
3522 while (addr < end) {
3523 free_page(addr);
3524 addr += PAGE_SIZE;
3525 }
3526 }
3527 EXPORT_SYMBOL(free_pages_exact);
3528
3529 /**
3530 * nr_free_zone_pages - count number of pages beyond high watermark
3531 * @offset: The zone index of the highest zone
3532 *
3533 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3534 * high watermark within all zones at or below a given zone index. For each
3535 * zone, the number of pages is calculated as:
3536 * managed_pages - high_pages
3537 */
3538 static unsigned long nr_free_zone_pages(int offset)
3539 {
3540 struct zoneref *z;
3541 struct zone *zone;
3542
3543 /* Just pick one node, since fallback list is circular */
3544 unsigned long sum = 0;
3545
3546 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3547
3548 for_each_zone_zonelist(zone, z, zonelist, offset) {
3549 unsigned long size = zone->managed_pages;
3550 unsigned long high = high_wmark_pages(zone);
3551 if (size > high)
3552 sum += size - high;
3553 }
3554
3555 return sum;
3556 }
3557
3558 /**
3559 * nr_free_buffer_pages - count number of pages beyond high watermark
3560 *
3561 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3562 * watermark within ZONE_DMA and ZONE_NORMAL.
3563 */
3564 unsigned long nr_free_buffer_pages(void)
3565 {
3566 return nr_free_zone_pages(gfp_zone(GFP_USER));
3567 }
3568 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3569
3570 /**
3571 * nr_free_pagecache_pages - count number of pages beyond high watermark
3572 *
3573 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3574 * high watermark within all zones.
3575 */
3576 unsigned long nr_free_pagecache_pages(void)
3577 {
3578 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3579 }
3580
3581 static inline void show_node(struct zone *zone)
3582 {
3583 if (IS_ENABLED(CONFIG_NUMA))
3584 printk("Node %d ", zone_to_nid(zone));
3585 }
3586
3587 void si_meminfo(struct sysinfo *val)
3588 {
3589 val->totalram = totalram_pages;
3590 val->sharedram = global_page_state(NR_SHMEM);
3591 val->freeram = global_page_state(NR_FREE_PAGES);
3592 val->bufferram = nr_blockdev_pages();
3593 val->totalhigh = totalhigh_pages;
3594 val->freehigh = nr_free_highpages();
3595 val->mem_unit = PAGE_SIZE;
3596 }
3597
3598 EXPORT_SYMBOL(si_meminfo);
3599
3600 #ifdef CONFIG_NUMA
3601 void si_meminfo_node(struct sysinfo *val, int nid)
3602 {
3603 int zone_type; /* needs to be signed */
3604 unsigned long managed_pages = 0;
3605 pg_data_t *pgdat = NODE_DATA(nid);
3606
3607 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3608 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3609 val->totalram = managed_pages;
3610 val->sharedram = node_page_state(nid, NR_SHMEM);
3611 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3612 #ifdef CONFIG_HIGHMEM
3613 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3614 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3615 NR_FREE_PAGES);
3616 #else
3617 val->totalhigh = 0;
3618 val->freehigh = 0;
3619 #endif
3620 val->mem_unit = PAGE_SIZE;
3621 }
3622 #endif
3623
3624 /*
3625 * Determine whether the node should be displayed or not, depending on whether
3626 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3627 */
3628 bool skip_free_areas_node(unsigned int flags, int nid)
3629 {
3630 bool ret = false;
3631 unsigned int cpuset_mems_cookie;
3632
3633 if (!(flags & SHOW_MEM_FILTER_NODES))
3634 goto out;
3635
3636 do {
3637 cpuset_mems_cookie = read_mems_allowed_begin();
3638 ret = !node_isset(nid, cpuset_current_mems_allowed);
3639 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3640 out:
3641 return ret;
3642 }
3643
3644 #define K(x) ((x) << (PAGE_SHIFT-10))
3645
3646 static void show_migration_types(unsigned char type)
3647 {
3648 static const char types[MIGRATE_TYPES] = {
3649 [MIGRATE_UNMOVABLE] = 'U',
3650 [MIGRATE_RECLAIMABLE] = 'E',
3651 [MIGRATE_MOVABLE] = 'M',
3652 #ifdef CONFIG_CMA
3653 [MIGRATE_CMA] = 'C',
3654 #endif
3655 #ifdef CONFIG_MEMORY_ISOLATION
3656 [MIGRATE_ISOLATE] = 'I',
3657 #endif
3658 };
3659 char tmp[MIGRATE_TYPES + 1];
3660 char *p = tmp;
3661 int i;
3662
3663 for (i = 0; i < MIGRATE_TYPES; i++) {
3664 if (type & (1 << i))
3665 *p++ = types[i];
3666 }
3667
3668 *p = '\0';
3669 printk("(%s) ", tmp);
3670 }
3671
3672 /*
3673 * Show free area list (used inside shift_scroll-lock stuff)
3674 * We also calculate the percentage fragmentation. We do this by counting the
3675 * memory on each free list with the exception of the first item on the list.
3676 *
3677 * Bits in @filter:
3678 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3679 * cpuset.
3680 */
3681 void show_free_areas(unsigned int filter)
3682 {
3683 unsigned long free_pcp = 0;
3684 int cpu;
3685 struct zone *zone;
3686
3687 for_each_populated_zone(zone) {
3688 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3689 continue;
3690
3691 for_each_online_cpu(cpu)
3692 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3693 }
3694
3695 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3696 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3697 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3698 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3699 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3700 " free:%lu free_pcp:%lu free_cma:%lu\n",
3701 global_page_state(NR_ACTIVE_ANON),
3702 global_page_state(NR_INACTIVE_ANON),
3703 global_page_state(NR_ISOLATED_ANON),
3704 global_page_state(NR_ACTIVE_FILE),
3705 global_page_state(NR_INACTIVE_FILE),
3706 global_page_state(NR_ISOLATED_FILE),
3707 global_page_state(NR_UNEVICTABLE),
3708 global_page_state(NR_FILE_DIRTY),
3709 global_page_state(NR_WRITEBACK),
3710 global_page_state(NR_UNSTABLE_NFS),
3711 global_page_state(NR_SLAB_RECLAIMABLE),
3712 global_page_state(NR_SLAB_UNRECLAIMABLE),
3713 global_page_state(NR_FILE_MAPPED),
3714 global_page_state(NR_SHMEM),
3715 global_page_state(NR_PAGETABLE),
3716 global_page_state(NR_BOUNCE),
3717 global_page_state(NR_FREE_PAGES),
3718 free_pcp,
3719 global_page_state(NR_FREE_CMA_PAGES));
3720
3721 for_each_populated_zone(zone) {
3722 int i;
3723
3724 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3725 continue;
3726
3727 free_pcp = 0;
3728 for_each_online_cpu(cpu)
3729 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3730
3731 show_node(zone);
3732 printk("%s"
3733 " free:%lukB"
3734 " min:%lukB"
3735 " low:%lukB"
3736 " high:%lukB"
3737 " active_anon:%lukB"
3738 " inactive_anon:%lukB"
3739 " active_file:%lukB"
3740 " inactive_file:%lukB"
3741 " unevictable:%lukB"
3742 " isolated(anon):%lukB"
3743 " isolated(file):%lukB"
3744 " present:%lukB"
3745 " managed:%lukB"
3746 " mlocked:%lukB"
3747 " dirty:%lukB"
3748 " writeback:%lukB"
3749 " mapped:%lukB"
3750 " shmem:%lukB"
3751 " slab_reclaimable:%lukB"
3752 " slab_unreclaimable:%lukB"
3753 " kernel_stack:%lukB"
3754 " pagetables:%lukB"
3755 " unstable:%lukB"
3756 " bounce:%lukB"
3757 " free_pcp:%lukB"
3758 " local_pcp:%ukB"
3759 " free_cma:%lukB"
3760 " writeback_tmp:%lukB"
3761 " pages_scanned:%lu"
3762 " all_unreclaimable? %s"
3763 "\n",
3764 zone->name,
3765 K(zone_page_state(zone, NR_FREE_PAGES)),
3766 K(min_wmark_pages(zone)),
3767 K(low_wmark_pages(zone)),
3768 K(high_wmark_pages(zone)),
3769 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3770 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3771 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3772 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3773 K(zone_page_state(zone, NR_UNEVICTABLE)),
3774 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3775 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3776 K(zone->present_pages),
3777 K(zone->managed_pages),
3778 K(zone_page_state(zone, NR_MLOCK)),
3779 K(zone_page_state(zone, NR_FILE_DIRTY)),
3780 K(zone_page_state(zone, NR_WRITEBACK)),
3781 K(zone_page_state(zone, NR_FILE_MAPPED)),
3782 K(zone_page_state(zone, NR_SHMEM)),
3783 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3784 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3785 zone_page_state(zone, NR_KERNEL_STACK) *
3786 THREAD_SIZE / 1024,
3787 K(zone_page_state(zone, NR_PAGETABLE)),
3788 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3789 K(zone_page_state(zone, NR_BOUNCE)),
3790 K(free_pcp),
3791 K(this_cpu_read(zone->pageset->pcp.count)),
3792 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3793 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3794 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3795 (!zone_reclaimable(zone) ? "yes" : "no")
3796 );
3797 printk("lowmem_reserve[]:");
3798 for (i = 0; i < MAX_NR_ZONES; i++)
3799 printk(" %ld", zone->lowmem_reserve[i]);
3800 printk("\n");
3801 }
3802
3803 for_each_populated_zone(zone) {
3804 unsigned int order;
3805 unsigned long nr[MAX_ORDER], flags, total = 0;
3806 unsigned char types[MAX_ORDER];
3807
3808 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3809 continue;
3810 show_node(zone);
3811 printk("%s: ", zone->name);
3812
3813 spin_lock_irqsave(&zone->lock, flags);
3814 for (order = 0; order < MAX_ORDER; order++) {
3815 struct free_area *area = &zone->free_area[order];
3816 int type;
3817
3818 nr[order] = area->nr_free;
3819 total += nr[order] << order;
3820
3821 types[order] = 0;
3822 for (type = 0; type < MIGRATE_TYPES; type++) {
3823 if (!list_empty(&area->free_list[type]))
3824 types[order] |= 1 << type;
3825 }
3826 }
3827 spin_unlock_irqrestore(&zone->lock, flags);
3828 for (order = 0; order < MAX_ORDER; order++) {
3829 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3830 if (nr[order])
3831 show_migration_types(types[order]);
3832 }
3833 printk("= %lukB\n", K(total));
3834 }
3835
3836 hugetlb_show_meminfo();
3837
3838 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3839
3840 show_swap_cache_info();
3841 }
3842
3843 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3844 {
3845 zoneref->zone = zone;
3846 zoneref->zone_idx = zone_idx(zone);
3847 }
3848
3849 /*
3850 * Builds allocation fallback zone lists.
3851 *
3852 * Add all populated zones of a node to the zonelist.
3853 */
3854 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3855 int nr_zones)
3856 {
3857 struct zone *zone;
3858 enum zone_type zone_type = MAX_NR_ZONES;
3859
3860 do {
3861 zone_type--;
3862 zone = pgdat->node_zones + zone_type;
3863 if (populated_zone(zone)) {
3864 zoneref_set_zone(zone,
3865 &zonelist->_zonerefs[nr_zones++]);
3866 check_highest_zone(zone_type);
3867 }
3868 } while (zone_type);
3869
3870 return nr_zones;
3871 }
3872
3873
3874 /*
3875 * zonelist_order:
3876 * 0 = automatic detection of better ordering.
3877 * 1 = order by ([node] distance, -zonetype)
3878 * 2 = order by (-zonetype, [node] distance)
3879 *
3880 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3881 * the same zonelist. So only NUMA can configure this param.
3882 */
3883 #define ZONELIST_ORDER_DEFAULT 0
3884 #define ZONELIST_ORDER_NODE 1
3885 #define ZONELIST_ORDER_ZONE 2
3886
3887 /* zonelist order in the kernel.
3888 * set_zonelist_order() will set this to NODE or ZONE.
3889 */
3890 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3891 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3892
3893
3894 #ifdef CONFIG_NUMA
3895 /* The value user specified ....changed by config */
3896 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3897 /* string for sysctl */
3898 #define NUMA_ZONELIST_ORDER_LEN 16
3899 char numa_zonelist_order[16] = "default";
3900
3901 /*
3902 * interface for configure zonelist ordering.
3903 * command line option "numa_zonelist_order"
3904 * = "[dD]efault - default, automatic configuration.
3905 * = "[nN]ode - order by node locality, then by zone within node
3906 * = "[zZ]one - order by zone, then by locality within zone
3907 */
3908
3909 static int __parse_numa_zonelist_order(char *s)
3910 {
3911 if (*s == 'd' || *s == 'D') {
3912 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3913 } else if (*s == 'n' || *s == 'N') {
3914 user_zonelist_order = ZONELIST_ORDER_NODE;
3915 } else if (*s == 'z' || *s == 'Z') {
3916 user_zonelist_order = ZONELIST_ORDER_ZONE;
3917 } else {
3918 printk(KERN_WARNING
3919 "Ignoring invalid numa_zonelist_order value: "
3920 "%s\n", s);
3921 return -EINVAL;
3922 }
3923 return 0;
3924 }
3925
3926 static __init int setup_numa_zonelist_order(char *s)
3927 {
3928 int ret;
3929
3930 if (!s)
3931 return 0;
3932
3933 ret = __parse_numa_zonelist_order(s);
3934 if (ret == 0)
3935 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3936
3937 return ret;
3938 }
3939 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3940
3941 /*
3942 * sysctl handler for numa_zonelist_order
3943 */
3944 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3945 void __user *buffer, size_t *length,
3946 loff_t *ppos)
3947 {
3948 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3949 int ret;
3950 static DEFINE_MUTEX(zl_order_mutex);
3951
3952 mutex_lock(&zl_order_mutex);
3953 if (write) {
3954 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3955 ret = -EINVAL;
3956 goto out;
3957 }
3958 strcpy(saved_string, (char *)table->data);
3959 }
3960 ret = proc_dostring(table, write, buffer, length, ppos);
3961 if (ret)
3962 goto out;
3963 if (write) {
3964 int oldval = user_zonelist_order;
3965
3966 ret = __parse_numa_zonelist_order((char *)table->data);
3967 if (ret) {
3968 /*
3969 * bogus value. restore saved string
3970 */
3971 strncpy((char *)table->data, saved_string,
3972 NUMA_ZONELIST_ORDER_LEN);
3973 user_zonelist_order = oldval;
3974 } else if (oldval != user_zonelist_order) {
3975 mutex_lock(&zonelists_mutex);
3976 build_all_zonelists(NULL, NULL);
3977 mutex_unlock(&zonelists_mutex);
3978 }
3979 }
3980 out:
3981 mutex_unlock(&zl_order_mutex);
3982 return ret;
3983 }
3984
3985
3986 #define MAX_NODE_LOAD (nr_online_nodes)
3987 static int node_load[MAX_NUMNODES];
3988
3989 /**
3990 * find_next_best_node - find the next node that should appear in a given node's fallback list
3991 * @node: node whose fallback list we're appending
3992 * @used_node_mask: nodemask_t of already used nodes
3993 *
3994 * We use a number of factors to determine which is the next node that should
3995 * appear on a given node's fallback list. The node should not have appeared
3996 * already in @node's fallback list, and it should be the next closest node
3997 * according to the distance array (which contains arbitrary distance values
3998 * from each node to each node in the system), and should also prefer nodes
3999 * with no CPUs, since presumably they'll have very little allocation pressure
4000 * on them otherwise.
4001 * It returns -1 if no node is found.
4002 */
4003 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4004 {
4005 int n, val;
4006 int min_val = INT_MAX;
4007 int best_node = NUMA_NO_NODE;
4008 const struct cpumask *tmp = cpumask_of_node(0);
4009
4010 /* Use the local node if we haven't already */
4011 if (!node_isset(node, *used_node_mask)) {
4012 node_set(node, *used_node_mask);
4013 return node;
4014 }
4015
4016 for_each_node_state(n, N_MEMORY) {
4017
4018 /* Don't want a node to appear more than once */
4019 if (node_isset(n, *used_node_mask))
4020 continue;
4021
4022 /* Use the distance array to find the distance */
4023 val = node_distance(node, n);
4024
4025 /* Penalize nodes under us ("prefer the next node") */
4026 val += (n < node);
4027
4028 /* Give preference to headless and unused nodes */
4029 tmp = cpumask_of_node(n);
4030 if (!cpumask_empty(tmp))
4031 val += PENALTY_FOR_NODE_WITH_CPUS;
4032
4033 /* Slight preference for less loaded node */
4034 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4035 val += node_load[n];
4036
4037 if (val < min_val) {
4038 min_val = val;
4039 best_node = n;
4040 }
4041 }
4042
4043 if (best_node >= 0)
4044 node_set(best_node, *used_node_mask);
4045
4046 return best_node;
4047 }
4048
4049
4050 /*
4051 * Build zonelists ordered by node and zones within node.
4052 * This results in maximum locality--normal zone overflows into local
4053 * DMA zone, if any--but risks exhausting DMA zone.
4054 */
4055 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4056 {
4057 int j;
4058 struct zonelist *zonelist;
4059
4060 zonelist = &pgdat->node_zonelists[0];
4061 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4062 ;
4063 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4064 zonelist->_zonerefs[j].zone = NULL;
4065 zonelist->_zonerefs[j].zone_idx = 0;
4066 }
4067
4068 /*
4069 * Build gfp_thisnode zonelists
4070 */
4071 static void build_thisnode_zonelists(pg_data_t *pgdat)
4072 {
4073 int j;
4074 struct zonelist *zonelist;
4075
4076 zonelist = &pgdat->node_zonelists[1];
4077 j = build_zonelists_node(pgdat, zonelist, 0);
4078 zonelist->_zonerefs[j].zone = NULL;
4079 zonelist->_zonerefs[j].zone_idx = 0;
4080 }
4081
4082 /*
4083 * Build zonelists ordered by zone and nodes within zones.
4084 * This results in conserving DMA zone[s] until all Normal memory is
4085 * exhausted, but results in overflowing to remote node while memory
4086 * may still exist in local DMA zone.
4087 */
4088 static int node_order[MAX_NUMNODES];
4089
4090 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4091 {
4092 int pos, j, node;
4093 int zone_type; /* needs to be signed */
4094 struct zone *z;
4095 struct zonelist *zonelist;
4096
4097 zonelist = &pgdat->node_zonelists[0];
4098 pos = 0;
4099 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4100 for (j = 0; j < nr_nodes; j++) {
4101 node = node_order[j];
4102 z = &NODE_DATA(node)->node_zones[zone_type];
4103 if (populated_zone(z)) {
4104 zoneref_set_zone(z,
4105 &zonelist->_zonerefs[pos++]);
4106 check_highest_zone(zone_type);
4107 }
4108 }
4109 }
4110 zonelist->_zonerefs[pos].zone = NULL;
4111 zonelist->_zonerefs[pos].zone_idx = 0;
4112 }
4113
4114 #if defined(CONFIG_64BIT)
4115 /*
4116 * Devices that require DMA32/DMA are relatively rare and do not justify a
4117 * penalty to every machine in case the specialised case applies. Default
4118 * to Node-ordering on 64-bit NUMA machines
4119 */
4120 static int default_zonelist_order(void)
4121 {
4122 return ZONELIST_ORDER_NODE;
4123 }
4124 #else
4125 /*
4126 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4127 * by the kernel. If processes running on node 0 deplete the low memory zone
4128 * then reclaim will occur more frequency increasing stalls and potentially
4129 * be easier to OOM if a large percentage of the zone is under writeback or
4130 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4131 * Hence, default to zone ordering on 32-bit.
4132 */
4133 static int default_zonelist_order(void)
4134 {
4135 return ZONELIST_ORDER_ZONE;
4136 }
4137 #endif /* CONFIG_64BIT */
4138
4139 static void set_zonelist_order(void)
4140 {
4141 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4142 current_zonelist_order = default_zonelist_order();
4143 else
4144 current_zonelist_order = user_zonelist_order;
4145 }
4146
4147 static void build_zonelists(pg_data_t *pgdat)
4148 {
4149 int j, node, load;
4150 enum zone_type i;
4151 nodemask_t used_mask;
4152 int local_node, prev_node;
4153 struct zonelist *zonelist;
4154 unsigned int order = current_zonelist_order;
4155
4156 /* initialize zonelists */
4157 for (i = 0; i < MAX_ZONELISTS; i++) {
4158 zonelist = pgdat->node_zonelists + i;
4159 zonelist->_zonerefs[0].zone = NULL;
4160 zonelist->_zonerefs[0].zone_idx = 0;
4161 }
4162
4163 /* NUMA-aware ordering of nodes */
4164 local_node = pgdat->node_id;
4165 load = nr_online_nodes;
4166 prev_node = local_node;
4167 nodes_clear(used_mask);
4168
4169 memset(node_order, 0, sizeof(node_order));
4170 j = 0;
4171
4172 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4173 /*
4174 * We don't want to pressure a particular node.
4175 * So adding penalty to the first node in same
4176 * distance group to make it round-robin.
4177 */
4178 if (node_distance(local_node, node) !=
4179 node_distance(local_node, prev_node))
4180 node_load[node] = load;
4181
4182 prev_node = node;
4183 load--;
4184 if (order == ZONELIST_ORDER_NODE)
4185 build_zonelists_in_node_order(pgdat, node);
4186 else
4187 node_order[j++] = node; /* remember order */
4188 }
4189
4190 if (order == ZONELIST_ORDER_ZONE) {
4191 /* calculate node order -- i.e., DMA last! */
4192 build_zonelists_in_zone_order(pgdat, j);
4193 }
4194
4195 build_thisnode_zonelists(pgdat);
4196 }
4197
4198 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4199 /*
4200 * Return node id of node used for "local" allocations.
4201 * I.e., first node id of first zone in arg node's generic zonelist.
4202 * Used for initializing percpu 'numa_mem', which is used primarily
4203 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4204 */
4205 int local_memory_node(int node)
4206 {
4207 struct zone *zone;
4208
4209 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4210 gfp_zone(GFP_KERNEL),
4211 NULL,
4212 &zone);
4213 return zone->node;
4214 }
4215 #endif
4216
4217 #else /* CONFIG_NUMA */
4218
4219 static void set_zonelist_order(void)
4220 {
4221 current_zonelist_order = ZONELIST_ORDER_ZONE;
4222 }
4223
4224 static void build_zonelists(pg_data_t *pgdat)
4225 {
4226 int node, local_node;
4227 enum zone_type j;
4228 struct zonelist *zonelist;
4229
4230 local_node = pgdat->node_id;
4231
4232 zonelist = &pgdat->node_zonelists[0];
4233 j = build_zonelists_node(pgdat, zonelist, 0);
4234
4235 /*
4236 * Now we build the zonelist so that it contains the zones
4237 * of all the other nodes.
4238 * We don't want to pressure a particular node, so when
4239 * building the zones for node N, we make sure that the
4240 * zones coming right after the local ones are those from
4241 * node N+1 (modulo N)
4242 */
4243 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4244 if (!node_online(node))
4245 continue;
4246 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4247 }
4248 for (node = 0; node < local_node; node++) {
4249 if (!node_online(node))
4250 continue;
4251 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4252 }
4253
4254 zonelist->_zonerefs[j].zone = NULL;
4255 zonelist->_zonerefs[j].zone_idx = 0;
4256 }
4257
4258 #endif /* CONFIG_NUMA */
4259
4260 /*
4261 * Boot pageset table. One per cpu which is going to be used for all
4262 * zones and all nodes. The parameters will be set in such a way
4263 * that an item put on a list will immediately be handed over to
4264 * the buddy list. This is safe since pageset manipulation is done
4265 * with interrupts disabled.
4266 *
4267 * The boot_pagesets must be kept even after bootup is complete for
4268 * unused processors and/or zones. They do play a role for bootstrapping
4269 * hotplugged processors.
4270 *
4271 * zoneinfo_show() and maybe other functions do
4272 * not check if the processor is online before following the pageset pointer.
4273 * Other parts of the kernel may not check if the zone is available.
4274 */
4275 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4276 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4277 static void setup_zone_pageset(struct zone *zone);
4278
4279 /*
4280 * Global mutex to protect against size modification of zonelists
4281 * as well as to serialize pageset setup for the new populated zone.
4282 */
4283 DEFINE_MUTEX(zonelists_mutex);
4284
4285 /* return values int ....just for stop_machine() */
4286 static int __build_all_zonelists(void *data)
4287 {
4288 int nid;
4289 int cpu;
4290 pg_data_t *self = data;
4291
4292 #ifdef CONFIG_NUMA
4293 memset(node_load, 0, sizeof(node_load));
4294 #endif
4295
4296 if (self && !node_online(self->node_id)) {
4297 build_zonelists(self);
4298 }
4299
4300 for_each_online_node(nid) {
4301 pg_data_t *pgdat = NODE_DATA(nid);
4302
4303 build_zonelists(pgdat);
4304 }
4305
4306 /*
4307 * Initialize the boot_pagesets that are going to be used
4308 * for bootstrapping processors. The real pagesets for
4309 * each zone will be allocated later when the per cpu
4310 * allocator is available.
4311 *
4312 * boot_pagesets are used also for bootstrapping offline
4313 * cpus if the system is already booted because the pagesets
4314 * are needed to initialize allocators on a specific cpu too.
4315 * F.e. the percpu allocator needs the page allocator which
4316 * needs the percpu allocator in order to allocate its pagesets
4317 * (a chicken-egg dilemma).
4318 */
4319 for_each_possible_cpu(cpu) {
4320 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4321
4322 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4323 /*
4324 * We now know the "local memory node" for each node--
4325 * i.e., the node of the first zone in the generic zonelist.
4326 * Set up numa_mem percpu variable for on-line cpus. During
4327 * boot, only the boot cpu should be on-line; we'll init the
4328 * secondary cpus' numa_mem as they come on-line. During
4329 * node/memory hotplug, we'll fixup all on-line cpus.
4330 */
4331 if (cpu_online(cpu))
4332 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4333 #endif
4334 }
4335
4336 return 0;
4337 }
4338
4339 static noinline void __init
4340 build_all_zonelists_init(void)
4341 {
4342 __build_all_zonelists(NULL);
4343 mminit_verify_zonelist();
4344 cpuset_init_current_mems_allowed();
4345 }
4346
4347 /*
4348 * Called with zonelists_mutex held always
4349 * unless system_state == SYSTEM_BOOTING.
4350 *
4351 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4352 * [we're only called with non-NULL zone through __meminit paths] and
4353 * (2) call of __init annotated helper build_all_zonelists_init
4354 * [protected by SYSTEM_BOOTING].
4355 */
4356 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4357 {
4358 set_zonelist_order();
4359
4360 if (system_state == SYSTEM_BOOTING) {
4361 build_all_zonelists_init();
4362 } else {
4363 #ifdef CONFIG_MEMORY_HOTPLUG
4364 if (zone)
4365 setup_zone_pageset(zone);
4366 #endif
4367 /* we have to stop all cpus to guarantee there is no user
4368 of zonelist */
4369 stop_machine(__build_all_zonelists, pgdat, NULL);
4370 /* cpuset refresh routine should be here */
4371 }
4372 vm_total_pages = nr_free_pagecache_pages();
4373 /*
4374 * Disable grouping by mobility if the number of pages in the
4375 * system is too low to allow the mechanism to work. It would be
4376 * more accurate, but expensive to check per-zone. This check is
4377 * made on memory-hotadd so a system can start with mobility
4378 * disabled and enable it later
4379 */
4380 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4381 page_group_by_mobility_disabled = 1;
4382 else
4383 page_group_by_mobility_disabled = 0;
4384
4385 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
4386 "Total pages: %ld\n",
4387 nr_online_nodes,
4388 zonelist_order_name[current_zonelist_order],
4389 page_group_by_mobility_disabled ? "off" : "on",
4390 vm_total_pages);
4391 #ifdef CONFIG_NUMA
4392 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4393 #endif
4394 }
4395
4396 /*
4397 * Helper functions to size the waitqueue hash table.
4398 * Essentially these want to choose hash table sizes sufficiently
4399 * large so that collisions trying to wait on pages are rare.
4400 * But in fact, the number of active page waitqueues on typical
4401 * systems is ridiculously low, less than 200. So this is even
4402 * conservative, even though it seems large.
4403 *
4404 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4405 * waitqueues, i.e. the size of the waitq table given the number of pages.
4406 */
4407 #define PAGES_PER_WAITQUEUE 256
4408
4409 #ifndef CONFIG_MEMORY_HOTPLUG
4410 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4411 {
4412 unsigned long size = 1;
4413
4414 pages /= PAGES_PER_WAITQUEUE;
4415
4416 while (size < pages)
4417 size <<= 1;
4418
4419 /*
4420 * Once we have dozens or even hundreds of threads sleeping
4421 * on IO we've got bigger problems than wait queue collision.
4422 * Limit the size of the wait table to a reasonable size.
4423 */
4424 size = min(size, 4096UL);
4425
4426 return max(size, 4UL);
4427 }
4428 #else
4429 /*
4430 * A zone's size might be changed by hot-add, so it is not possible to determine
4431 * a suitable size for its wait_table. So we use the maximum size now.
4432 *
4433 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4434 *
4435 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4436 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4437 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4438 *
4439 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4440 * or more by the traditional way. (See above). It equals:
4441 *
4442 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4443 * ia64(16K page size) : = ( 8G + 4M)byte.
4444 * powerpc (64K page size) : = (32G +16M)byte.
4445 */
4446 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4447 {
4448 return 4096UL;
4449 }
4450 #endif
4451
4452 /*
4453 * This is an integer logarithm so that shifts can be used later
4454 * to extract the more random high bits from the multiplicative
4455 * hash function before the remainder is taken.
4456 */
4457 static inline unsigned long wait_table_bits(unsigned long size)
4458 {
4459 return ffz(~size);
4460 }
4461
4462 /*
4463 * Initially all pages are reserved - free ones are freed
4464 * up by free_all_bootmem() once the early boot process is
4465 * done. Non-atomic initialization, single-pass.
4466 */
4467 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4468 unsigned long start_pfn, enum memmap_context context)
4469 {
4470 pg_data_t *pgdat = NODE_DATA(nid);
4471 unsigned long end_pfn = start_pfn + size;
4472 unsigned long pfn;
4473 struct zone *z;
4474 unsigned long nr_initialised = 0;
4475
4476 if (highest_memmap_pfn < end_pfn - 1)
4477 highest_memmap_pfn = end_pfn - 1;
4478
4479 z = &pgdat->node_zones[zone];
4480 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4481 /*
4482 * There can be holes in boot-time mem_map[]s
4483 * handed to this function. They do not
4484 * exist on hotplugged memory.
4485 */
4486 if (context == MEMMAP_EARLY) {
4487 if (!early_pfn_valid(pfn))
4488 continue;
4489 if (!early_pfn_in_nid(pfn, nid))
4490 continue;
4491 if (!update_defer_init(pgdat, pfn, end_pfn,
4492 &nr_initialised))
4493 break;
4494 }
4495
4496 /*
4497 * Mark the block movable so that blocks are reserved for
4498 * movable at startup. This will force kernel allocations
4499 * to reserve their blocks rather than leaking throughout
4500 * the address space during boot when many long-lived
4501 * kernel allocations are made.
4502 *
4503 * bitmap is created for zone's valid pfn range. but memmap
4504 * can be created for invalid pages (for alignment)
4505 * check here not to call set_pageblock_migratetype() against
4506 * pfn out of zone.
4507 */
4508 if (!(pfn & (pageblock_nr_pages - 1))) {
4509 struct page *page = pfn_to_page(pfn);
4510
4511 __init_single_page(page, pfn, zone, nid);
4512 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4513 } else {
4514 __init_single_pfn(pfn, zone, nid);
4515 }
4516 }
4517 }
4518
4519 static void __meminit zone_init_free_lists(struct zone *zone)
4520 {
4521 unsigned int order, t;
4522 for_each_migratetype_order(order, t) {
4523 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4524 zone->free_area[order].nr_free = 0;
4525 }
4526 }
4527
4528 #ifndef __HAVE_ARCH_MEMMAP_INIT
4529 #define memmap_init(size, nid, zone, start_pfn) \
4530 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4531 #endif
4532
4533 static int zone_batchsize(struct zone *zone)
4534 {
4535 #ifdef CONFIG_MMU
4536 int batch;
4537
4538 /*
4539 * The per-cpu-pages pools are set to around 1000th of the
4540 * size of the zone. But no more than 1/2 of a meg.
4541 *
4542 * OK, so we don't know how big the cache is. So guess.
4543 */
4544 batch = zone->managed_pages / 1024;
4545 if (batch * PAGE_SIZE > 512 * 1024)
4546 batch = (512 * 1024) / PAGE_SIZE;
4547 batch /= 4; /* We effectively *= 4 below */
4548 if (batch < 1)
4549 batch = 1;
4550
4551 /*
4552 * Clamp the batch to a 2^n - 1 value. Having a power
4553 * of 2 value was found to be more likely to have
4554 * suboptimal cache aliasing properties in some cases.
4555 *
4556 * For example if 2 tasks are alternately allocating
4557 * batches of pages, one task can end up with a lot
4558 * of pages of one half of the possible page colors
4559 * and the other with pages of the other colors.
4560 */
4561 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4562
4563 return batch;
4564
4565 #else
4566 /* The deferral and batching of frees should be suppressed under NOMMU
4567 * conditions.
4568 *
4569 * The problem is that NOMMU needs to be able to allocate large chunks
4570 * of contiguous memory as there's no hardware page translation to
4571 * assemble apparent contiguous memory from discontiguous pages.
4572 *
4573 * Queueing large contiguous runs of pages for batching, however,
4574 * causes the pages to actually be freed in smaller chunks. As there
4575 * can be a significant delay between the individual batches being
4576 * recycled, this leads to the once large chunks of space being
4577 * fragmented and becoming unavailable for high-order allocations.
4578 */
4579 return 0;
4580 #endif
4581 }
4582
4583 /*
4584 * pcp->high and pcp->batch values are related and dependent on one another:
4585 * ->batch must never be higher then ->high.
4586 * The following function updates them in a safe manner without read side
4587 * locking.
4588 *
4589 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4590 * those fields changing asynchronously (acording the the above rule).
4591 *
4592 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4593 * outside of boot time (or some other assurance that no concurrent updaters
4594 * exist).
4595 */
4596 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4597 unsigned long batch)
4598 {
4599 /* start with a fail safe value for batch */
4600 pcp->batch = 1;
4601 smp_wmb();
4602
4603 /* Update high, then batch, in order */
4604 pcp->high = high;
4605 smp_wmb();
4606
4607 pcp->batch = batch;
4608 }
4609
4610 /* a companion to pageset_set_high() */
4611 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4612 {
4613 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4614 }
4615
4616 static void pageset_init(struct per_cpu_pageset *p)
4617 {
4618 struct per_cpu_pages *pcp;
4619 int migratetype;
4620
4621 memset(p, 0, sizeof(*p));
4622
4623 pcp = &p->pcp;
4624 pcp->count = 0;
4625 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4626 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4627 }
4628
4629 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4630 {
4631 pageset_init(p);
4632 pageset_set_batch(p, batch);
4633 }
4634
4635 /*
4636 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4637 * to the value high for the pageset p.
4638 */
4639 static void pageset_set_high(struct per_cpu_pageset *p,
4640 unsigned long high)
4641 {
4642 unsigned long batch = max(1UL, high / 4);
4643 if ((high / 4) > (PAGE_SHIFT * 8))
4644 batch = PAGE_SHIFT * 8;
4645
4646 pageset_update(&p->pcp, high, batch);
4647 }
4648
4649 static void pageset_set_high_and_batch(struct zone *zone,
4650 struct per_cpu_pageset *pcp)
4651 {
4652 if (percpu_pagelist_fraction)
4653 pageset_set_high(pcp,
4654 (zone->managed_pages /
4655 percpu_pagelist_fraction));
4656 else
4657 pageset_set_batch(pcp, zone_batchsize(zone));
4658 }
4659
4660 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4661 {
4662 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4663
4664 pageset_init(pcp);
4665 pageset_set_high_and_batch(zone, pcp);
4666 }
4667
4668 static void __meminit setup_zone_pageset(struct zone *zone)
4669 {
4670 int cpu;
4671 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4672 for_each_possible_cpu(cpu)
4673 zone_pageset_init(zone, cpu);
4674 }
4675
4676 /*
4677 * Allocate per cpu pagesets and initialize them.
4678 * Before this call only boot pagesets were available.
4679 */
4680 void __init setup_per_cpu_pageset(void)
4681 {
4682 struct zone *zone;
4683
4684 for_each_populated_zone(zone)
4685 setup_zone_pageset(zone);
4686 }
4687
4688 static noinline __init_refok
4689 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4690 {
4691 int i;
4692 size_t alloc_size;
4693
4694 /*
4695 * The per-page waitqueue mechanism uses hashed waitqueues
4696 * per zone.
4697 */
4698 zone->wait_table_hash_nr_entries =
4699 wait_table_hash_nr_entries(zone_size_pages);
4700 zone->wait_table_bits =
4701 wait_table_bits(zone->wait_table_hash_nr_entries);
4702 alloc_size = zone->wait_table_hash_nr_entries
4703 * sizeof(wait_queue_head_t);
4704
4705 if (!slab_is_available()) {
4706 zone->wait_table = (wait_queue_head_t *)
4707 memblock_virt_alloc_node_nopanic(
4708 alloc_size, zone->zone_pgdat->node_id);
4709 } else {
4710 /*
4711 * This case means that a zone whose size was 0 gets new memory
4712 * via memory hot-add.
4713 * But it may be the case that a new node was hot-added. In
4714 * this case vmalloc() will not be able to use this new node's
4715 * memory - this wait_table must be initialized to use this new
4716 * node itself as well.
4717 * To use this new node's memory, further consideration will be
4718 * necessary.
4719 */
4720 zone->wait_table = vmalloc(alloc_size);
4721 }
4722 if (!zone->wait_table)
4723 return -ENOMEM;
4724
4725 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4726 init_waitqueue_head(zone->wait_table + i);
4727
4728 return 0;
4729 }
4730
4731 static __meminit void zone_pcp_init(struct zone *zone)
4732 {
4733 /*
4734 * per cpu subsystem is not up at this point. The following code
4735 * relies on the ability of the linker to provide the
4736 * offset of a (static) per cpu variable into the per cpu area.
4737 */
4738 zone->pageset = &boot_pageset;
4739
4740 if (populated_zone(zone))
4741 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4742 zone->name, zone->present_pages,
4743 zone_batchsize(zone));
4744 }
4745
4746 int __meminit init_currently_empty_zone(struct zone *zone,
4747 unsigned long zone_start_pfn,
4748 unsigned long size)
4749 {
4750 struct pglist_data *pgdat = zone->zone_pgdat;
4751 int ret;
4752 ret = zone_wait_table_init(zone, size);
4753 if (ret)
4754 return ret;
4755 pgdat->nr_zones = zone_idx(zone) + 1;
4756
4757 zone->zone_start_pfn = zone_start_pfn;
4758
4759 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4760 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4761 pgdat->node_id,
4762 (unsigned long)zone_idx(zone),
4763 zone_start_pfn, (zone_start_pfn + size));
4764
4765 zone_init_free_lists(zone);
4766
4767 return 0;
4768 }
4769
4770 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4771 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4772
4773 /*
4774 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4775 */
4776 int __meminit __early_pfn_to_nid(unsigned long pfn,
4777 struct mminit_pfnnid_cache *state)
4778 {
4779 unsigned long start_pfn, end_pfn;
4780 int nid;
4781
4782 if (state->last_start <= pfn && pfn < state->last_end)
4783 return state->last_nid;
4784
4785 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4786 if (nid != -1) {
4787 state->last_start = start_pfn;
4788 state->last_end = end_pfn;
4789 state->last_nid = nid;
4790 }
4791
4792 return nid;
4793 }
4794 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4795
4796 /**
4797 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4798 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4799 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4800 *
4801 * If an architecture guarantees that all ranges registered contain no holes
4802 * and may be freed, this this function may be used instead of calling
4803 * memblock_free_early_nid() manually.
4804 */
4805 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4806 {
4807 unsigned long start_pfn, end_pfn;
4808 int i, this_nid;
4809
4810 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4811 start_pfn = min(start_pfn, max_low_pfn);
4812 end_pfn = min(end_pfn, max_low_pfn);
4813
4814 if (start_pfn < end_pfn)
4815 memblock_free_early_nid(PFN_PHYS(start_pfn),
4816 (end_pfn - start_pfn) << PAGE_SHIFT,
4817 this_nid);
4818 }
4819 }
4820
4821 /**
4822 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4823 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4824 *
4825 * If an architecture guarantees that all ranges registered contain no holes and may
4826 * be freed, this function may be used instead of calling memory_present() manually.
4827 */
4828 void __init sparse_memory_present_with_active_regions(int nid)
4829 {
4830 unsigned long start_pfn, end_pfn;
4831 int i, this_nid;
4832
4833 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4834 memory_present(this_nid, start_pfn, end_pfn);
4835 }
4836
4837 /**
4838 * get_pfn_range_for_nid - Return the start and end page frames for a node
4839 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4840 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4841 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4842 *
4843 * It returns the start and end page frame of a node based on information
4844 * provided by memblock_set_node(). If called for a node
4845 * with no available memory, a warning is printed and the start and end
4846 * PFNs will be 0.
4847 */
4848 void __meminit get_pfn_range_for_nid(unsigned int nid,
4849 unsigned long *start_pfn, unsigned long *end_pfn)
4850 {
4851 unsigned long this_start_pfn, this_end_pfn;
4852 int i;
4853
4854 *start_pfn = -1UL;
4855 *end_pfn = 0;
4856
4857 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4858 *start_pfn = min(*start_pfn, this_start_pfn);
4859 *end_pfn = max(*end_pfn, this_end_pfn);
4860 }
4861
4862 if (*start_pfn == -1UL)
4863 *start_pfn = 0;
4864 }
4865
4866 /*
4867 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4868 * assumption is made that zones within a node are ordered in monotonic
4869 * increasing memory addresses so that the "highest" populated zone is used
4870 */
4871 static void __init find_usable_zone_for_movable(void)
4872 {
4873 int zone_index;
4874 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4875 if (zone_index == ZONE_MOVABLE)
4876 continue;
4877
4878 if (arch_zone_highest_possible_pfn[zone_index] >
4879 arch_zone_lowest_possible_pfn[zone_index])
4880 break;
4881 }
4882
4883 VM_BUG_ON(zone_index == -1);
4884 movable_zone = zone_index;
4885 }
4886
4887 /*
4888 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4889 * because it is sized independent of architecture. Unlike the other zones,
4890 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4891 * in each node depending on the size of each node and how evenly kernelcore
4892 * is distributed. This helper function adjusts the zone ranges
4893 * provided by the architecture for a given node by using the end of the
4894 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4895 * zones within a node are in order of monotonic increases memory addresses
4896 */
4897 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4898 unsigned long zone_type,
4899 unsigned long node_start_pfn,
4900 unsigned long node_end_pfn,
4901 unsigned long *zone_start_pfn,
4902 unsigned long *zone_end_pfn)
4903 {
4904 /* Only adjust if ZONE_MOVABLE is on this node */
4905 if (zone_movable_pfn[nid]) {
4906 /* Size ZONE_MOVABLE */
4907 if (zone_type == ZONE_MOVABLE) {
4908 *zone_start_pfn = zone_movable_pfn[nid];
4909 *zone_end_pfn = min(node_end_pfn,
4910 arch_zone_highest_possible_pfn[movable_zone]);
4911
4912 /* Adjust for ZONE_MOVABLE starting within this range */
4913 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4914 *zone_end_pfn > zone_movable_pfn[nid]) {
4915 *zone_end_pfn = zone_movable_pfn[nid];
4916
4917 /* Check if this whole range is within ZONE_MOVABLE */
4918 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4919 *zone_start_pfn = *zone_end_pfn;
4920 }
4921 }
4922
4923 /*
4924 * Return the number of pages a zone spans in a node, including holes
4925 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4926 */
4927 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4928 unsigned long zone_type,
4929 unsigned long node_start_pfn,
4930 unsigned long node_end_pfn,
4931 unsigned long *ignored)
4932 {
4933 unsigned long zone_start_pfn, zone_end_pfn;
4934
4935 /* When hotadd a new node from cpu_up(), the node should be empty */
4936 if (!node_start_pfn && !node_end_pfn)
4937 return 0;
4938
4939 /* Get the start and end of the zone */
4940 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4941 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4942 adjust_zone_range_for_zone_movable(nid, zone_type,
4943 node_start_pfn, node_end_pfn,
4944 &zone_start_pfn, &zone_end_pfn);
4945
4946 /* Check that this node has pages within the zone's required range */
4947 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4948 return 0;
4949
4950 /* Move the zone boundaries inside the node if necessary */
4951 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4952 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4953
4954 /* Return the spanned pages */
4955 return zone_end_pfn - zone_start_pfn;
4956 }
4957
4958 /*
4959 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4960 * then all holes in the requested range will be accounted for.
4961 */
4962 unsigned long __meminit __absent_pages_in_range(int nid,
4963 unsigned long range_start_pfn,
4964 unsigned long range_end_pfn)
4965 {
4966 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4967 unsigned long start_pfn, end_pfn;
4968 int i;
4969
4970 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4971 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4972 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4973 nr_absent -= end_pfn - start_pfn;
4974 }
4975 return nr_absent;
4976 }
4977
4978 /**
4979 * absent_pages_in_range - Return number of page frames in holes within a range
4980 * @start_pfn: The start PFN to start searching for holes
4981 * @end_pfn: The end PFN to stop searching for holes
4982 *
4983 * It returns the number of pages frames in memory holes within a range.
4984 */
4985 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4986 unsigned long end_pfn)
4987 {
4988 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4989 }
4990
4991 /* Return the number of page frames in holes in a zone on a node */
4992 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4993 unsigned long zone_type,
4994 unsigned long node_start_pfn,
4995 unsigned long node_end_pfn,
4996 unsigned long *ignored)
4997 {
4998 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4999 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5000 unsigned long zone_start_pfn, zone_end_pfn;
5001
5002 /* When hotadd a new node from cpu_up(), the node should be empty */
5003 if (!node_start_pfn && !node_end_pfn)
5004 return 0;
5005
5006 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5007 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5008
5009 adjust_zone_range_for_zone_movable(nid, zone_type,
5010 node_start_pfn, node_end_pfn,
5011 &zone_start_pfn, &zone_end_pfn);
5012 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5013 }
5014
5015 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5016 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5017 unsigned long zone_type,
5018 unsigned long node_start_pfn,
5019 unsigned long node_end_pfn,
5020 unsigned long *zones_size)
5021 {
5022 return zones_size[zone_type];
5023 }
5024
5025 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5026 unsigned long zone_type,
5027 unsigned long node_start_pfn,
5028 unsigned long node_end_pfn,
5029 unsigned long *zholes_size)
5030 {
5031 if (!zholes_size)
5032 return 0;
5033
5034 return zholes_size[zone_type];
5035 }
5036
5037 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5038
5039 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5040 unsigned long node_start_pfn,
5041 unsigned long node_end_pfn,
5042 unsigned long *zones_size,
5043 unsigned long *zholes_size)
5044 {
5045 unsigned long realtotalpages = 0, totalpages = 0;
5046 enum zone_type i;
5047
5048 for (i = 0; i < MAX_NR_ZONES; i++) {
5049 struct zone *zone = pgdat->node_zones + i;
5050 unsigned long size, real_size;
5051
5052 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5053 node_start_pfn,
5054 node_end_pfn,
5055 zones_size);
5056 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5057 node_start_pfn, node_end_pfn,
5058 zholes_size);
5059 zone->spanned_pages = size;
5060 zone->present_pages = real_size;
5061
5062 totalpages += size;
5063 realtotalpages += real_size;
5064 }
5065
5066 pgdat->node_spanned_pages = totalpages;
5067 pgdat->node_present_pages = realtotalpages;
5068 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5069 realtotalpages);
5070 }
5071
5072 #ifndef CONFIG_SPARSEMEM
5073 /*
5074 * Calculate the size of the zone->blockflags rounded to an unsigned long
5075 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5076 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5077 * round what is now in bits to nearest long in bits, then return it in
5078 * bytes.
5079 */
5080 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5081 {
5082 unsigned long usemapsize;
5083
5084 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5085 usemapsize = roundup(zonesize, pageblock_nr_pages);
5086 usemapsize = usemapsize >> pageblock_order;
5087 usemapsize *= NR_PAGEBLOCK_BITS;
5088 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5089
5090 return usemapsize / 8;
5091 }
5092
5093 static void __init setup_usemap(struct pglist_data *pgdat,
5094 struct zone *zone,
5095 unsigned long zone_start_pfn,
5096 unsigned long zonesize)
5097 {
5098 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5099 zone->pageblock_flags = NULL;
5100 if (usemapsize)
5101 zone->pageblock_flags =
5102 memblock_virt_alloc_node_nopanic(usemapsize,
5103 pgdat->node_id);
5104 }
5105 #else
5106 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5107 unsigned long zone_start_pfn, unsigned long zonesize) {}
5108 #endif /* CONFIG_SPARSEMEM */
5109
5110 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5111
5112 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5113 void __paginginit set_pageblock_order(void)
5114 {
5115 unsigned int order;
5116
5117 /* Check that pageblock_nr_pages has not already been setup */
5118 if (pageblock_order)
5119 return;
5120
5121 if (HPAGE_SHIFT > PAGE_SHIFT)
5122 order = HUGETLB_PAGE_ORDER;
5123 else
5124 order = MAX_ORDER - 1;
5125
5126 /*
5127 * Assume the largest contiguous order of interest is a huge page.
5128 * This value may be variable depending on boot parameters on IA64 and
5129 * powerpc.
5130 */
5131 pageblock_order = order;
5132 }
5133 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5134
5135 /*
5136 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5137 * is unused as pageblock_order is set at compile-time. See
5138 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5139 * the kernel config
5140 */
5141 void __paginginit set_pageblock_order(void)
5142 {
5143 }
5144
5145 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5146
5147 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5148 unsigned long present_pages)
5149 {
5150 unsigned long pages = spanned_pages;
5151
5152 /*
5153 * Provide a more accurate estimation if there are holes within
5154 * the zone and SPARSEMEM is in use. If there are holes within the
5155 * zone, each populated memory region may cost us one or two extra
5156 * memmap pages due to alignment because memmap pages for each
5157 * populated regions may not naturally algined on page boundary.
5158 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5159 */
5160 if (spanned_pages > present_pages + (present_pages >> 4) &&
5161 IS_ENABLED(CONFIG_SPARSEMEM))
5162 pages = present_pages;
5163
5164 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5165 }
5166
5167 /*
5168 * Set up the zone data structures:
5169 * - mark all pages reserved
5170 * - mark all memory queues empty
5171 * - clear the memory bitmaps
5172 *
5173 * NOTE: pgdat should get zeroed by caller.
5174 */
5175 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5176 {
5177 enum zone_type j;
5178 int nid = pgdat->node_id;
5179 unsigned long zone_start_pfn = pgdat->node_start_pfn;
5180 int ret;
5181
5182 pgdat_resize_init(pgdat);
5183 #ifdef CONFIG_NUMA_BALANCING
5184 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5185 pgdat->numabalancing_migrate_nr_pages = 0;
5186 pgdat->numabalancing_migrate_next_window = jiffies;
5187 #endif
5188 init_waitqueue_head(&pgdat->kswapd_wait);
5189 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5190 pgdat_page_ext_init(pgdat);
5191
5192 for (j = 0; j < MAX_NR_ZONES; j++) {
5193 struct zone *zone = pgdat->node_zones + j;
5194 unsigned long size, realsize, freesize, memmap_pages;
5195
5196 size = zone->spanned_pages;
5197 realsize = freesize = zone->present_pages;
5198
5199 /*
5200 * Adjust freesize so that it accounts for how much memory
5201 * is used by this zone for memmap. This affects the watermark
5202 * and per-cpu initialisations
5203 */
5204 memmap_pages = calc_memmap_size(size, realsize);
5205 if (!is_highmem_idx(j)) {
5206 if (freesize >= memmap_pages) {
5207 freesize -= memmap_pages;
5208 if (memmap_pages)
5209 printk(KERN_DEBUG
5210 " %s zone: %lu pages used for memmap\n",
5211 zone_names[j], memmap_pages);
5212 } else
5213 printk(KERN_WARNING
5214 " %s zone: %lu pages exceeds freesize %lu\n",
5215 zone_names[j], memmap_pages, freesize);
5216 }
5217
5218 /* Account for reserved pages */
5219 if (j == 0 && freesize > dma_reserve) {
5220 freesize -= dma_reserve;
5221 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5222 zone_names[0], dma_reserve);
5223 }
5224
5225 if (!is_highmem_idx(j))
5226 nr_kernel_pages += freesize;
5227 /* Charge for highmem memmap if there are enough kernel pages */
5228 else if (nr_kernel_pages > memmap_pages * 2)
5229 nr_kernel_pages -= memmap_pages;
5230 nr_all_pages += freesize;
5231
5232 /*
5233 * Set an approximate value for lowmem here, it will be adjusted
5234 * when the bootmem allocator frees pages into the buddy system.
5235 * And all highmem pages will be managed by the buddy system.
5236 */
5237 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5238 #ifdef CONFIG_NUMA
5239 zone->node = nid;
5240 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5241 / 100;
5242 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5243 #endif
5244 zone->name = zone_names[j];
5245 spin_lock_init(&zone->lock);
5246 spin_lock_init(&zone->lru_lock);
5247 zone_seqlock_init(zone);
5248 zone->zone_pgdat = pgdat;
5249 zone_pcp_init(zone);
5250
5251 /* For bootup, initialized properly in watermark setup */
5252 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5253
5254 lruvec_init(&zone->lruvec);
5255 if (!size)
5256 continue;
5257
5258 set_pageblock_order();
5259 setup_usemap(pgdat, zone, zone_start_pfn, size);
5260 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5261 BUG_ON(ret);
5262 memmap_init(size, nid, j, zone_start_pfn);
5263 zone_start_pfn += size;
5264 }
5265 }
5266
5267 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5268 {
5269 unsigned long __maybe_unused start = 0;
5270 unsigned long __maybe_unused offset = 0;
5271
5272 /* Skip empty nodes */
5273 if (!pgdat->node_spanned_pages)
5274 return;
5275
5276 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5277 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5278 offset = pgdat->node_start_pfn - start;
5279 /* ia64 gets its own node_mem_map, before this, without bootmem */
5280 if (!pgdat->node_mem_map) {
5281 unsigned long size, end;
5282 struct page *map;
5283
5284 /*
5285 * The zone's endpoints aren't required to be MAX_ORDER
5286 * aligned but the node_mem_map endpoints must be in order
5287 * for the buddy allocator to function correctly.
5288 */
5289 end = pgdat_end_pfn(pgdat);
5290 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5291 size = (end - start) * sizeof(struct page);
5292 map = alloc_remap(pgdat->node_id, size);
5293 if (!map)
5294 map = memblock_virt_alloc_node_nopanic(size,
5295 pgdat->node_id);
5296 pgdat->node_mem_map = map + offset;
5297 }
5298 #ifndef CONFIG_NEED_MULTIPLE_NODES
5299 /*
5300 * With no DISCONTIG, the global mem_map is just set as node 0's
5301 */
5302 if (pgdat == NODE_DATA(0)) {
5303 mem_map = NODE_DATA(0)->node_mem_map;
5304 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5305 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5306 mem_map -= offset;
5307 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5308 }
5309 #endif
5310 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5311 }
5312
5313 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5314 unsigned long node_start_pfn, unsigned long *zholes_size)
5315 {
5316 pg_data_t *pgdat = NODE_DATA(nid);
5317 unsigned long start_pfn = 0;
5318 unsigned long end_pfn = 0;
5319
5320 /* pg_data_t should be reset to zero when it's allocated */
5321 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5322
5323 reset_deferred_meminit(pgdat);
5324 pgdat->node_id = nid;
5325 pgdat->node_start_pfn = node_start_pfn;
5326 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5327 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5328 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5329 (u64)start_pfn << PAGE_SHIFT,
5330 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5331 #endif
5332 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5333 zones_size, zholes_size);
5334
5335 alloc_node_mem_map(pgdat);
5336 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5337 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5338 nid, (unsigned long)pgdat,
5339 (unsigned long)pgdat->node_mem_map);
5340 #endif
5341
5342 free_area_init_core(pgdat);
5343 }
5344
5345 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5346
5347 #if MAX_NUMNODES > 1
5348 /*
5349 * Figure out the number of possible node ids.
5350 */
5351 void __init setup_nr_node_ids(void)
5352 {
5353 unsigned int highest;
5354
5355 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5356 nr_node_ids = highest + 1;
5357 }
5358 #endif
5359
5360 /**
5361 * node_map_pfn_alignment - determine the maximum internode alignment
5362 *
5363 * This function should be called after node map is populated and sorted.
5364 * It calculates the maximum power of two alignment which can distinguish
5365 * all the nodes.
5366 *
5367 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5368 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5369 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5370 * shifted, 1GiB is enough and this function will indicate so.
5371 *
5372 * This is used to test whether pfn -> nid mapping of the chosen memory
5373 * model has fine enough granularity to avoid incorrect mapping for the
5374 * populated node map.
5375 *
5376 * Returns the determined alignment in pfn's. 0 if there is no alignment
5377 * requirement (single node).
5378 */
5379 unsigned long __init node_map_pfn_alignment(void)
5380 {
5381 unsigned long accl_mask = 0, last_end = 0;
5382 unsigned long start, end, mask;
5383 int last_nid = -1;
5384 int i, nid;
5385
5386 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5387 if (!start || last_nid < 0 || last_nid == nid) {
5388 last_nid = nid;
5389 last_end = end;
5390 continue;
5391 }
5392
5393 /*
5394 * Start with a mask granular enough to pin-point to the
5395 * start pfn and tick off bits one-by-one until it becomes
5396 * too coarse to separate the current node from the last.
5397 */
5398 mask = ~((1 << __ffs(start)) - 1);
5399 while (mask && last_end <= (start & (mask << 1)))
5400 mask <<= 1;
5401
5402 /* accumulate all internode masks */
5403 accl_mask |= mask;
5404 }
5405
5406 /* convert mask to number of pages */
5407 return ~accl_mask + 1;
5408 }
5409
5410 /* Find the lowest pfn for a node */
5411 static unsigned long __init find_min_pfn_for_node(int nid)
5412 {
5413 unsigned long min_pfn = ULONG_MAX;
5414 unsigned long start_pfn;
5415 int i;
5416
5417 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5418 min_pfn = min(min_pfn, start_pfn);
5419
5420 if (min_pfn == ULONG_MAX) {
5421 printk(KERN_WARNING
5422 "Could not find start_pfn for node %d\n", nid);
5423 return 0;
5424 }
5425
5426 return min_pfn;
5427 }
5428
5429 /**
5430 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5431 *
5432 * It returns the minimum PFN based on information provided via
5433 * memblock_set_node().
5434 */
5435 unsigned long __init find_min_pfn_with_active_regions(void)
5436 {
5437 return find_min_pfn_for_node(MAX_NUMNODES);
5438 }
5439
5440 /*
5441 * early_calculate_totalpages()
5442 * Sum pages in active regions for movable zone.
5443 * Populate N_MEMORY for calculating usable_nodes.
5444 */
5445 static unsigned long __init early_calculate_totalpages(void)
5446 {
5447 unsigned long totalpages = 0;
5448 unsigned long start_pfn, end_pfn;
5449 int i, nid;
5450
5451 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5452 unsigned long pages = end_pfn - start_pfn;
5453
5454 totalpages += pages;
5455 if (pages)
5456 node_set_state(nid, N_MEMORY);
5457 }
5458 return totalpages;
5459 }
5460
5461 /*
5462 * Find the PFN the Movable zone begins in each node. Kernel memory
5463 * is spread evenly between nodes as long as the nodes have enough
5464 * memory. When they don't, some nodes will have more kernelcore than
5465 * others
5466 */
5467 static void __init find_zone_movable_pfns_for_nodes(void)
5468 {
5469 int i, nid;
5470 unsigned long usable_startpfn;
5471 unsigned long kernelcore_node, kernelcore_remaining;
5472 /* save the state before borrow the nodemask */
5473 nodemask_t saved_node_state = node_states[N_MEMORY];
5474 unsigned long totalpages = early_calculate_totalpages();
5475 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5476 struct memblock_region *r;
5477
5478 /* Need to find movable_zone earlier when movable_node is specified. */
5479 find_usable_zone_for_movable();
5480
5481 /*
5482 * If movable_node is specified, ignore kernelcore and movablecore
5483 * options.
5484 */
5485 if (movable_node_is_enabled()) {
5486 for_each_memblock(memory, r) {
5487 if (!memblock_is_hotpluggable(r))
5488 continue;
5489
5490 nid = r->nid;
5491
5492 usable_startpfn = PFN_DOWN(r->base);
5493 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5494 min(usable_startpfn, zone_movable_pfn[nid]) :
5495 usable_startpfn;
5496 }
5497
5498 goto out2;
5499 }
5500
5501 /*
5502 * If movablecore=nn[KMG] was specified, calculate what size of
5503 * kernelcore that corresponds so that memory usable for
5504 * any allocation type is evenly spread. If both kernelcore
5505 * and movablecore are specified, then the value of kernelcore
5506 * will be used for required_kernelcore if it's greater than
5507 * what movablecore would have allowed.
5508 */
5509 if (required_movablecore) {
5510 unsigned long corepages;
5511
5512 /*
5513 * Round-up so that ZONE_MOVABLE is at least as large as what
5514 * was requested by the user
5515 */
5516 required_movablecore =
5517 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5518 required_movablecore = min(totalpages, required_movablecore);
5519 corepages = totalpages - required_movablecore;
5520
5521 required_kernelcore = max(required_kernelcore, corepages);
5522 }
5523
5524 /*
5525 * If kernelcore was not specified or kernelcore size is larger
5526 * than totalpages, there is no ZONE_MOVABLE.
5527 */
5528 if (!required_kernelcore || required_kernelcore >= totalpages)
5529 goto out;
5530
5531 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5532 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5533
5534 restart:
5535 /* Spread kernelcore memory as evenly as possible throughout nodes */
5536 kernelcore_node = required_kernelcore / usable_nodes;
5537 for_each_node_state(nid, N_MEMORY) {
5538 unsigned long start_pfn, end_pfn;
5539
5540 /*
5541 * Recalculate kernelcore_node if the division per node
5542 * now exceeds what is necessary to satisfy the requested
5543 * amount of memory for the kernel
5544 */
5545 if (required_kernelcore < kernelcore_node)
5546 kernelcore_node = required_kernelcore / usable_nodes;
5547
5548 /*
5549 * As the map is walked, we track how much memory is usable
5550 * by the kernel using kernelcore_remaining. When it is
5551 * 0, the rest of the node is usable by ZONE_MOVABLE
5552 */
5553 kernelcore_remaining = kernelcore_node;
5554
5555 /* Go through each range of PFNs within this node */
5556 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5557 unsigned long size_pages;
5558
5559 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5560 if (start_pfn >= end_pfn)
5561 continue;
5562
5563 /* Account for what is only usable for kernelcore */
5564 if (start_pfn < usable_startpfn) {
5565 unsigned long kernel_pages;
5566 kernel_pages = min(end_pfn, usable_startpfn)
5567 - start_pfn;
5568
5569 kernelcore_remaining -= min(kernel_pages,
5570 kernelcore_remaining);
5571 required_kernelcore -= min(kernel_pages,
5572 required_kernelcore);
5573
5574 /* Continue if range is now fully accounted */
5575 if (end_pfn <= usable_startpfn) {
5576
5577 /*
5578 * Push zone_movable_pfn to the end so
5579 * that if we have to rebalance
5580 * kernelcore across nodes, we will
5581 * not double account here
5582 */
5583 zone_movable_pfn[nid] = end_pfn;
5584 continue;
5585 }
5586 start_pfn = usable_startpfn;
5587 }
5588
5589 /*
5590 * The usable PFN range for ZONE_MOVABLE is from
5591 * start_pfn->end_pfn. Calculate size_pages as the
5592 * number of pages used as kernelcore
5593 */
5594 size_pages = end_pfn - start_pfn;
5595 if (size_pages > kernelcore_remaining)
5596 size_pages = kernelcore_remaining;
5597 zone_movable_pfn[nid] = start_pfn + size_pages;
5598
5599 /*
5600 * Some kernelcore has been met, update counts and
5601 * break if the kernelcore for this node has been
5602 * satisfied
5603 */
5604 required_kernelcore -= min(required_kernelcore,
5605 size_pages);
5606 kernelcore_remaining -= size_pages;
5607 if (!kernelcore_remaining)
5608 break;
5609 }
5610 }
5611
5612 /*
5613 * If there is still required_kernelcore, we do another pass with one
5614 * less node in the count. This will push zone_movable_pfn[nid] further
5615 * along on the nodes that still have memory until kernelcore is
5616 * satisfied
5617 */
5618 usable_nodes--;
5619 if (usable_nodes && required_kernelcore > usable_nodes)
5620 goto restart;
5621
5622 out2:
5623 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5624 for (nid = 0; nid < MAX_NUMNODES; nid++)
5625 zone_movable_pfn[nid] =
5626 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5627
5628 out:
5629 /* restore the node_state */
5630 node_states[N_MEMORY] = saved_node_state;
5631 }
5632
5633 /* Any regular or high memory on that node ? */
5634 static void check_for_memory(pg_data_t *pgdat, int nid)
5635 {
5636 enum zone_type zone_type;
5637
5638 if (N_MEMORY == N_NORMAL_MEMORY)
5639 return;
5640
5641 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5642 struct zone *zone = &pgdat->node_zones[zone_type];
5643 if (populated_zone(zone)) {
5644 node_set_state(nid, N_HIGH_MEMORY);
5645 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5646 zone_type <= ZONE_NORMAL)
5647 node_set_state(nid, N_NORMAL_MEMORY);
5648 break;
5649 }
5650 }
5651 }
5652
5653 /**
5654 * free_area_init_nodes - Initialise all pg_data_t and zone data
5655 * @max_zone_pfn: an array of max PFNs for each zone
5656 *
5657 * This will call free_area_init_node() for each active node in the system.
5658 * Using the page ranges provided by memblock_set_node(), the size of each
5659 * zone in each node and their holes is calculated. If the maximum PFN
5660 * between two adjacent zones match, it is assumed that the zone is empty.
5661 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5662 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5663 * starts where the previous one ended. For example, ZONE_DMA32 starts
5664 * at arch_max_dma_pfn.
5665 */
5666 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5667 {
5668 unsigned long start_pfn, end_pfn;
5669 int i, nid;
5670
5671 /* Record where the zone boundaries are */
5672 memset(arch_zone_lowest_possible_pfn, 0,
5673 sizeof(arch_zone_lowest_possible_pfn));
5674 memset(arch_zone_highest_possible_pfn, 0,
5675 sizeof(arch_zone_highest_possible_pfn));
5676 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5677 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5678 for (i = 1; i < MAX_NR_ZONES; i++) {
5679 if (i == ZONE_MOVABLE)
5680 continue;
5681 arch_zone_lowest_possible_pfn[i] =
5682 arch_zone_highest_possible_pfn[i-1];
5683 arch_zone_highest_possible_pfn[i] =
5684 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5685 }
5686 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5687 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5688
5689 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5690 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5691 find_zone_movable_pfns_for_nodes();
5692
5693 /* Print out the zone ranges */
5694 pr_info("Zone ranges:\n");
5695 for (i = 0; i < MAX_NR_ZONES; i++) {
5696 if (i == ZONE_MOVABLE)
5697 continue;
5698 pr_info(" %-8s ", zone_names[i]);
5699 if (arch_zone_lowest_possible_pfn[i] ==
5700 arch_zone_highest_possible_pfn[i])
5701 pr_cont("empty\n");
5702 else
5703 pr_cont("[mem %#018Lx-%#018Lx]\n",
5704 (u64)arch_zone_lowest_possible_pfn[i]
5705 << PAGE_SHIFT,
5706 ((u64)arch_zone_highest_possible_pfn[i]
5707 << PAGE_SHIFT) - 1);
5708 }
5709
5710 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5711 pr_info("Movable zone start for each node\n");
5712 for (i = 0; i < MAX_NUMNODES; i++) {
5713 if (zone_movable_pfn[i])
5714 pr_info(" Node %d: %#018Lx\n", i,
5715 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5716 }
5717
5718 /* Print out the early node map */
5719 pr_info("Early memory node ranges\n");
5720 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5721 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5722 (u64)start_pfn << PAGE_SHIFT,
5723 ((u64)end_pfn << PAGE_SHIFT) - 1);
5724
5725 /* Initialise every node */
5726 mminit_verify_pageflags_layout();
5727 setup_nr_node_ids();
5728 for_each_online_node(nid) {
5729 pg_data_t *pgdat = NODE_DATA(nid);
5730 free_area_init_node(nid, NULL,
5731 find_min_pfn_for_node(nid), NULL);
5732
5733 /* Any memory on that node */
5734 if (pgdat->node_present_pages)
5735 node_set_state(nid, N_MEMORY);
5736 check_for_memory(pgdat, nid);
5737 }
5738 }
5739
5740 static int __init cmdline_parse_core(char *p, unsigned long *core)
5741 {
5742 unsigned long long coremem;
5743 if (!p)
5744 return -EINVAL;
5745
5746 coremem = memparse(p, &p);
5747 *core = coremem >> PAGE_SHIFT;
5748
5749 /* Paranoid check that UL is enough for the coremem value */
5750 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5751
5752 return 0;
5753 }
5754
5755 /*
5756 * kernelcore=size sets the amount of memory for use for allocations that
5757 * cannot be reclaimed or migrated.
5758 */
5759 static int __init cmdline_parse_kernelcore(char *p)
5760 {
5761 return cmdline_parse_core(p, &required_kernelcore);
5762 }
5763
5764 /*
5765 * movablecore=size sets the amount of memory for use for allocations that
5766 * can be reclaimed or migrated.
5767 */
5768 static int __init cmdline_parse_movablecore(char *p)
5769 {
5770 return cmdline_parse_core(p, &required_movablecore);
5771 }
5772
5773 early_param("kernelcore", cmdline_parse_kernelcore);
5774 early_param("movablecore", cmdline_parse_movablecore);
5775
5776 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5777
5778 void adjust_managed_page_count(struct page *page, long count)
5779 {
5780 spin_lock(&managed_page_count_lock);
5781 page_zone(page)->managed_pages += count;
5782 totalram_pages += count;
5783 #ifdef CONFIG_HIGHMEM
5784 if (PageHighMem(page))
5785 totalhigh_pages += count;
5786 #endif
5787 spin_unlock(&managed_page_count_lock);
5788 }
5789 EXPORT_SYMBOL(adjust_managed_page_count);
5790
5791 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5792 {
5793 void *pos;
5794 unsigned long pages = 0;
5795
5796 start = (void *)PAGE_ALIGN((unsigned long)start);
5797 end = (void *)((unsigned long)end & PAGE_MASK);
5798 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5799 if ((unsigned int)poison <= 0xFF)
5800 memset(pos, poison, PAGE_SIZE);
5801 free_reserved_page(virt_to_page(pos));
5802 }
5803
5804 if (pages && s)
5805 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5806 s, pages << (PAGE_SHIFT - 10), start, end);
5807
5808 return pages;
5809 }
5810 EXPORT_SYMBOL(free_reserved_area);
5811
5812 #ifdef CONFIG_HIGHMEM
5813 void free_highmem_page(struct page *page)
5814 {
5815 __free_reserved_page(page);
5816 totalram_pages++;
5817 page_zone(page)->managed_pages++;
5818 totalhigh_pages++;
5819 }
5820 #endif
5821
5822
5823 void __init mem_init_print_info(const char *str)
5824 {
5825 unsigned long physpages, codesize, datasize, rosize, bss_size;
5826 unsigned long init_code_size, init_data_size;
5827
5828 physpages = get_num_physpages();
5829 codesize = _etext - _stext;
5830 datasize = _edata - _sdata;
5831 rosize = __end_rodata - __start_rodata;
5832 bss_size = __bss_stop - __bss_start;
5833 init_data_size = __init_end - __init_begin;
5834 init_code_size = _einittext - _sinittext;
5835
5836 /*
5837 * Detect special cases and adjust section sizes accordingly:
5838 * 1) .init.* may be embedded into .data sections
5839 * 2) .init.text.* may be out of [__init_begin, __init_end],
5840 * please refer to arch/tile/kernel/vmlinux.lds.S.
5841 * 3) .rodata.* may be embedded into .text or .data sections.
5842 */
5843 #define adj_init_size(start, end, size, pos, adj) \
5844 do { \
5845 if (start <= pos && pos < end && size > adj) \
5846 size -= adj; \
5847 } while (0)
5848
5849 adj_init_size(__init_begin, __init_end, init_data_size,
5850 _sinittext, init_code_size);
5851 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5852 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5853 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5854 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5855
5856 #undef adj_init_size
5857
5858 pr_info("Memory: %luK/%luK available "
5859 "(%luK kernel code, %luK rwdata, %luK rodata, "
5860 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5861 #ifdef CONFIG_HIGHMEM
5862 ", %luK highmem"
5863 #endif
5864 "%s%s)\n",
5865 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5866 codesize >> 10, datasize >> 10, rosize >> 10,
5867 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5868 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5869 totalcma_pages << (PAGE_SHIFT-10),
5870 #ifdef CONFIG_HIGHMEM
5871 totalhigh_pages << (PAGE_SHIFT-10),
5872 #endif
5873 str ? ", " : "", str ? str : "");
5874 }
5875
5876 /**
5877 * set_dma_reserve - set the specified number of pages reserved in the first zone
5878 * @new_dma_reserve: The number of pages to mark reserved
5879 *
5880 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
5881 * In the DMA zone, a significant percentage may be consumed by kernel image
5882 * and other unfreeable allocations which can skew the watermarks badly. This
5883 * function may optionally be used to account for unfreeable pages in the
5884 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5885 * smaller per-cpu batchsize.
5886 */
5887 void __init set_dma_reserve(unsigned long new_dma_reserve)
5888 {
5889 dma_reserve = new_dma_reserve;
5890 }
5891
5892 void __init free_area_init(unsigned long *zones_size)
5893 {
5894 free_area_init_node(0, zones_size,
5895 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5896 }
5897
5898 static int page_alloc_cpu_notify(struct notifier_block *self,
5899 unsigned long action, void *hcpu)
5900 {
5901 int cpu = (unsigned long)hcpu;
5902
5903 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5904 lru_add_drain_cpu(cpu);
5905 drain_pages(cpu);
5906
5907 /*
5908 * Spill the event counters of the dead processor
5909 * into the current processors event counters.
5910 * This artificially elevates the count of the current
5911 * processor.
5912 */
5913 vm_events_fold_cpu(cpu);
5914
5915 /*
5916 * Zero the differential counters of the dead processor
5917 * so that the vm statistics are consistent.
5918 *
5919 * This is only okay since the processor is dead and cannot
5920 * race with what we are doing.
5921 */
5922 cpu_vm_stats_fold(cpu);
5923 }
5924 return NOTIFY_OK;
5925 }
5926
5927 void __init page_alloc_init(void)
5928 {
5929 hotcpu_notifier(page_alloc_cpu_notify, 0);
5930 }
5931
5932 /*
5933 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5934 * or min_free_kbytes changes.
5935 */
5936 static void calculate_totalreserve_pages(void)
5937 {
5938 struct pglist_data *pgdat;
5939 unsigned long reserve_pages = 0;
5940 enum zone_type i, j;
5941
5942 for_each_online_pgdat(pgdat) {
5943 for (i = 0; i < MAX_NR_ZONES; i++) {
5944 struct zone *zone = pgdat->node_zones + i;
5945 long max = 0;
5946
5947 /* Find valid and maximum lowmem_reserve in the zone */
5948 for (j = i; j < MAX_NR_ZONES; j++) {
5949 if (zone->lowmem_reserve[j] > max)
5950 max = zone->lowmem_reserve[j];
5951 }
5952
5953 /* we treat the high watermark as reserved pages. */
5954 max += high_wmark_pages(zone);
5955
5956 if (max > zone->managed_pages)
5957 max = zone->managed_pages;
5958 reserve_pages += max;
5959 /*
5960 * Lowmem reserves are not available to
5961 * GFP_HIGHUSER page cache allocations and
5962 * kswapd tries to balance zones to their high
5963 * watermark. As a result, neither should be
5964 * regarded as dirtyable memory, to prevent a
5965 * situation where reclaim has to clean pages
5966 * in order to balance the zones.
5967 */
5968 zone->dirty_balance_reserve = max;
5969 }
5970 }
5971 dirty_balance_reserve = reserve_pages;
5972 totalreserve_pages = reserve_pages;
5973 }
5974
5975 /*
5976 * setup_per_zone_lowmem_reserve - called whenever
5977 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
5978 * has a correct pages reserved value, so an adequate number of
5979 * pages are left in the zone after a successful __alloc_pages().
5980 */
5981 static void setup_per_zone_lowmem_reserve(void)
5982 {
5983 struct pglist_data *pgdat;
5984 enum zone_type j, idx;
5985
5986 for_each_online_pgdat(pgdat) {
5987 for (j = 0; j < MAX_NR_ZONES; j++) {
5988 struct zone *zone = pgdat->node_zones + j;
5989 unsigned long managed_pages = zone->managed_pages;
5990
5991 zone->lowmem_reserve[j] = 0;
5992
5993 idx = j;
5994 while (idx) {
5995 struct zone *lower_zone;
5996
5997 idx--;
5998
5999 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6000 sysctl_lowmem_reserve_ratio[idx] = 1;
6001
6002 lower_zone = pgdat->node_zones + idx;
6003 lower_zone->lowmem_reserve[j] = managed_pages /
6004 sysctl_lowmem_reserve_ratio[idx];
6005 managed_pages += lower_zone->managed_pages;
6006 }
6007 }
6008 }
6009
6010 /* update totalreserve_pages */
6011 calculate_totalreserve_pages();
6012 }
6013
6014 static void __setup_per_zone_wmarks(void)
6015 {
6016 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6017 unsigned long lowmem_pages = 0;
6018 struct zone *zone;
6019 unsigned long flags;
6020
6021 /* Calculate total number of !ZONE_HIGHMEM pages */
6022 for_each_zone(zone) {
6023 if (!is_highmem(zone))
6024 lowmem_pages += zone->managed_pages;
6025 }
6026
6027 for_each_zone(zone) {
6028 u64 tmp;
6029
6030 spin_lock_irqsave(&zone->lock, flags);
6031 tmp = (u64)pages_min * zone->managed_pages;
6032 do_div(tmp, lowmem_pages);
6033 if (is_highmem(zone)) {
6034 /*
6035 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6036 * need highmem pages, so cap pages_min to a small
6037 * value here.
6038 *
6039 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6040 * deltas control asynch page reclaim, and so should
6041 * not be capped for highmem.
6042 */
6043 unsigned long min_pages;
6044
6045 min_pages = zone->managed_pages / 1024;
6046 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6047 zone->watermark[WMARK_MIN] = min_pages;
6048 } else {
6049 /*
6050 * If it's a lowmem zone, reserve a number of pages
6051 * proportionate to the zone's size.
6052 */
6053 zone->watermark[WMARK_MIN] = tmp;
6054 }
6055
6056 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6057 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
6058
6059 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6060 high_wmark_pages(zone) - low_wmark_pages(zone) -
6061 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6062
6063 spin_unlock_irqrestore(&zone->lock, flags);
6064 }
6065
6066 /* update totalreserve_pages */
6067 calculate_totalreserve_pages();
6068 }
6069
6070 /**
6071 * setup_per_zone_wmarks - called when min_free_kbytes changes
6072 * or when memory is hot-{added|removed}
6073 *
6074 * Ensures that the watermark[min,low,high] values for each zone are set
6075 * correctly with respect to min_free_kbytes.
6076 */
6077 void setup_per_zone_wmarks(void)
6078 {
6079 mutex_lock(&zonelists_mutex);
6080 __setup_per_zone_wmarks();
6081 mutex_unlock(&zonelists_mutex);
6082 }
6083
6084 /*
6085 * The inactive anon list should be small enough that the VM never has to
6086 * do too much work, but large enough that each inactive page has a chance
6087 * to be referenced again before it is swapped out.
6088 *
6089 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6090 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6091 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6092 * the anonymous pages are kept on the inactive list.
6093 *
6094 * total target max
6095 * memory ratio inactive anon
6096 * -------------------------------------
6097 * 10MB 1 5MB
6098 * 100MB 1 50MB
6099 * 1GB 3 250MB
6100 * 10GB 10 0.9GB
6101 * 100GB 31 3GB
6102 * 1TB 101 10GB
6103 * 10TB 320 32GB
6104 */
6105 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6106 {
6107 unsigned int gb, ratio;
6108
6109 /* Zone size in gigabytes */
6110 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6111 if (gb)
6112 ratio = int_sqrt(10 * gb);
6113 else
6114 ratio = 1;
6115
6116 zone->inactive_ratio = ratio;
6117 }
6118
6119 static void __meminit setup_per_zone_inactive_ratio(void)
6120 {
6121 struct zone *zone;
6122
6123 for_each_zone(zone)
6124 calculate_zone_inactive_ratio(zone);
6125 }
6126
6127 /*
6128 * Initialise min_free_kbytes.
6129 *
6130 * For small machines we want it small (128k min). For large machines
6131 * we want it large (64MB max). But it is not linear, because network
6132 * bandwidth does not increase linearly with machine size. We use
6133 *
6134 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6135 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6136 *
6137 * which yields
6138 *
6139 * 16MB: 512k
6140 * 32MB: 724k
6141 * 64MB: 1024k
6142 * 128MB: 1448k
6143 * 256MB: 2048k
6144 * 512MB: 2896k
6145 * 1024MB: 4096k
6146 * 2048MB: 5792k
6147 * 4096MB: 8192k
6148 * 8192MB: 11584k
6149 * 16384MB: 16384k
6150 */
6151 int __meminit init_per_zone_wmark_min(void)
6152 {
6153 unsigned long lowmem_kbytes;
6154 int new_min_free_kbytes;
6155
6156 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6157 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6158
6159 if (new_min_free_kbytes > user_min_free_kbytes) {
6160 min_free_kbytes = new_min_free_kbytes;
6161 if (min_free_kbytes < 128)
6162 min_free_kbytes = 128;
6163 if (min_free_kbytes > 65536)
6164 min_free_kbytes = 65536;
6165 } else {
6166 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6167 new_min_free_kbytes, user_min_free_kbytes);
6168 }
6169 setup_per_zone_wmarks();
6170 refresh_zone_stat_thresholds();
6171 setup_per_zone_lowmem_reserve();
6172 setup_per_zone_inactive_ratio();
6173 return 0;
6174 }
6175 module_init(init_per_zone_wmark_min)
6176
6177 /*
6178 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6179 * that we can call two helper functions whenever min_free_kbytes
6180 * changes.
6181 */
6182 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6183 void __user *buffer, size_t *length, loff_t *ppos)
6184 {
6185 int rc;
6186
6187 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6188 if (rc)
6189 return rc;
6190
6191 if (write) {
6192 user_min_free_kbytes = min_free_kbytes;
6193 setup_per_zone_wmarks();
6194 }
6195 return 0;
6196 }
6197
6198 #ifdef CONFIG_NUMA
6199 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6200 void __user *buffer, size_t *length, loff_t *ppos)
6201 {
6202 struct zone *zone;
6203 int rc;
6204
6205 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6206 if (rc)
6207 return rc;
6208
6209 for_each_zone(zone)
6210 zone->min_unmapped_pages = (zone->managed_pages *
6211 sysctl_min_unmapped_ratio) / 100;
6212 return 0;
6213 }
6214
6215 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6216 void __user *buffer, size_t *length, loff_t *ppos)
6217 {
6218 struct zone *zone;
6219 int rc;
6220
6221 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6222 if (rc)
6223 return rc;
6224
6225 for_each_zone(zone)
6226 zone->min_slab_pages = (zone->managed_pages *
6227 sysctl_min_slab_ratio) / 100;
6228 return 0;
6229 }
6230 #endif
6231
6232 /*
6233 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6234 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6235 * whenever sysctl_lowmem_reserve_ratio changes.
6236 *
6237 * The reserve ratio obviously has absolutely no relation with the
6238 * minimum watermarks. The lowmem reserve ratio can only make sense
6239 * if in function of the boot time zone sizes.
6240 */
6241 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6242 void __user *buffer, size_t *length, loff_t *ppos)
6243 {
6244 proc_dointvec_minmax(table, write, buffer, length, ppos);
6245 setup_per_zone_lowmem_reserve();
6246 return 0;
6247 }
6248
6249 /*
6250 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6251 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6252 * pagelist can have before it gets flushed back to buddy allocator.
6253 */
6254 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6255 void __user *buffer, size_t *length, loff_t *ppos)
6256 {
6257 struct zone *zone;
6258 int old_percpu_pagelist_fraction;
6259 int ret;
6260
6261 mutex_lock(&pcp_batch_high_lock);
6262 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6263
6264 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6265 if (!write || ret < 0)
6266 goto out;
6267
6268 /* Sanity checking to avoid pcp imbalance */
6269 if (percpu_pagelist_fraction &&
6270 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6271 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6272 ret = -EINVAL;
6273 goto out;
6274 }
6275
6276 /* No change? */
6277 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6278 goto out;
6279
6280 for_each_populated_zone(zone) {
6281 unsigned int cpu;
6282
6283 for_each_possible_cpu(cpu)
6284 pageset_set_high_and_batch(zone,
6285 per_cpu_ptr(zone->pageset, cpu));
6286 }
6287 out:
6288 mutex_unlock(&pcp_batch_high_lock);
6289 return ret;
6290 }
6291
6292 #ifdef CONFIG_NUMA
6293 int hashdist = HASHDIST_DEFAULT;
6294
6295 static int __init set_hashdist(char *str)
6296 {
6297 if (!str)
6298 return 0;
6299 hashdist = simple_strtoul(str, &str, 0);
6300 return 1;
6301 }
6302 __setup("hashdist=", set_hashdist);
6303 #endif
6304
6305 /*
6306 * allocate a large system hash table from bootmem
6307 * - it is assumed that the hash table must contain an exact power-of-2
6308 * quantity of entries
6309 * - limit is the number of hash buckets, not the total allocation size
6310 */
6311 void *__init alloc_large_system_hash(const char *tablename,
6312 unsigned long bucketsize,
6313 unsigned long numentries,
6314 int scale,
6315 int flags,
6316 unsigned int *_hash_shift,
6317 unsigned int *_hash_mask,
6318 unsigned long low_limit,
6319 unsigned long high_limit)
6320 {
6321 unsigned long long max = high_limit;
6322 unsigned long log2qty, size;
6323 void *table = NULL;
6324
6325 /* allow the kernel cmdline to have a say */
6326 if (!numentries) {
6327 /* round applicable memory size up to nearest megabyte */
6328 numentries = nr_kernel_pages;
6329
6330 /* It isn't necessary when PAGE_SIZE >= 1MB */
6331 if (PAGE_SHIFT < 20)
6332 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6333
6334 /* limit to 1 bucket per 2^scale bytes of low memory */
6335 if (scale > PAGE_SHIFT)
6336 numentries >>= (scale - PAGE_SHIFT);
6337 else
6338 numentries <<= (PAGE_SHIFT - scale);
6339
6340 /* Make sure we've got at least a 0-order allocation.. */
6341 if (unlikely(flags & HASH_SMALL)) {
6342 /* Makes no sense without HASH_EARLY */
6343 WARN_ON(!(flags & HASH_EARLY));
6344 if (!(numentries >> *_hash_shift)) {
6345 numentries = 1UL << *_hash_shift;
6346 BUG_ON(!numentries);
6347 }
6348 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6349 numentries = PAGE_SIZE / bucketsize;
6350 }
6351 numentries = roundup_pow_of_two(numentries);
6352
6353 /* limit allocation size to 1/16 total memory by default */
6354 if (max == 0) {
6355 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6356 do_div(max, bucketsize);
6357 }
6358 max = min(max, 0x80000000ULL);
6359
6360 if (numentries < low_limit)
6361 numentries = low_limit;
6362 if (numentries > max)
6363 numentries = max;
6364
6365 log2qty = ilog2(numentries);
6366
6367 do {
6368 size = bucketsize << log2qty;
6369 if (flags & HASH_EARLY)
6370 table = memblock_virt_alloc_nopanic(size, 0);
6371 else if (hashdist)
6372 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6373 else {
6374 /*
6375 * If bucketsize is not a power-of-two, we may free
6376 * some pages at the end of hash table which
6377 * alloc_pages_exact() automatically does
6378 */
6379 if (get_order(size) < MAX_ORDER) {
6380 table = alloc_pages_exact(size, GFP_ATOMIC);
6381 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6382 }
6383 }
6384 } while (!table && size > PAGE_SIZE && --log2qty);
6385
6386 if (!table)
6387 panic("Failed to allocate %s hash table\n", tablename);
6388
6389 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6390 tablename,
6391 (1UL << log2qty),
6392 ilog2(size) - PAGE_SHIFT,
6393 size);
6394
6395 if (_hash_shift)
6396 *_hash_shift = log2qty;
6397 if (_hash_mask)
6398 *_hash_mask = (1 << log2qty) - 1;
6399
6400 return table;
6401 }
6402
6403 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6404 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6405 unsigned long pfn)
6406 {
6407 #ifdef CONFIG_SPARSEMEM
6408 return __pfn_to_section(pfn)->pageblock_flags;
6409 #else
6410 return zone->pageblock_flags;
6411 #endif /* CONFIG_SPARSEMEM */
6412 }
6413
6414 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6415 {
6416 #ifdef CONFIG_SPARSEMEM
6417 pfn &= (PAGES_PER_SECTION-1);
6418 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6419 #else
6420 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6421 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6422 #endif /* CONFIG_SPARSEMEM */
6423 }
6424
6425 /**
6426 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6427 * @page: The page within the block of interest
6428 * @pfn: The target page frame number
6429 * @end_bitidx: The last bit of interest to retrieve
6430 * @mask: mask of bits that the caller is interested in
6431 *
6432 * Return: pageblock_bits flags
6433 */
6434 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6435 unsigned long end_bitidx,
6436 unsigned long mask)
6437 {
6438 struct zone *zone;
6439 unsigned long *bitmap;
6440 unsigned long bitidx, word_bitidx;
6441 unsigned long word;
6442
6443 zone = page_zone(page);
6444 bitmap = get_pageblock_bitmap(zone, pfn);
6445 bitidx = pfn_to_bitidx(zone, pfn);
6446 word_bitidx = bitidx / BITS_PER_LONG;
6447 bitidx &= (BITS_PER_LONG-1);
6448
6449 word = bitmap[word_bitidx];
6450 bitidx += end_bitidx;
6451 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6452 }
6453
6454 /**
6455 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6456 * @page: The page within the block of interest
6457 * @flags: The flags to set
6458 * @pfn: The target page frame number
6459 * @end_bitidx: The last bit of interest
6460 * @mask: mask of bits that the caller is interested in
6461 */
6462 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6463 unsigned long pfn,
6464 unsigned long end_bitidx,
6465 unsigned long mask)
6466 {
6467 struct zone *zone;
6468 unsigned long *bitmap;
6469 unsigned long bitidx, word_bitidx;
6470 unsigned long old_word, word;
6471
6472 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6473
6474 zone = page_zone(page);
6475 bitmap = get_pageblock_bitmap(zone, pfn);
6476 bitidx = pfn_to_bitidx(zone, pfn);
6477 word_bitidx = bitidx / BITS_PER_LONG;
6478 bitidx &= (BITS_PER_LONG-1);
6479
6480 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6481
6482 bitidx += end_bitidx;
6483 mask <<= (BITS_PER_LONG - bitidx - 1);
6484 flags <<= (BITS_PER_LONG - bitidx - 1);
6485
6486 word = READ_ONCE(bitmap[word_bitidx]);
6487 for (;;) {
6488 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6489 if (word == old_word)
6490 break;
6491 word = old_word;
6492 }
6493 }
6494
6495 /*
6496 * This function checks whether pageblock includes unmovable pages or not.
6497 * If @count is not zero, it is okay to include less @count unmovable pages
6498 *
6499 * PageLRU check without isolation or lru_lock could race so that
6500 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6501 * expect this function should be exact.
6502 */
6503 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6504 bool skip_hwpoisoned_pages)
6505 {
6506 unsigned long pfn, iter, found;
6507 int mt;
6508
6509 /*
6510 * For avoiding noise data, lru_add_drain_all() should be called
6511 * If ZONE_MOVABLE, the zone never contains unmovable pages
6512 */
6513 if (zone_idx(zone) == ZONE_MOVABLE)
6514 return false;
6515 mt = get_pageblock_migratetype(page);
6516 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6517 return false;
6518
6519 pfn = page_to_pfn(page);
6520 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6521 unsigned long check = pfn + iter;
6522
6523 if (!pfn_valid_within(check))
6524 continue;
6525
6526 page = pfn_to_page(check);
6527
6528 /*
6529 * Hugepages are not in LRU lists, but they're movable.
6530 * We need not scan over tail pages bacause we don't
6531 * handle each tail page individually in migration.
6532 */
6533 if (PageHuge(page)) {
6534 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6535 continue;
6536 }
6537
6538 /*
6539 * We can't use page_count without pin a page
6540 * because another CPU can free compound page.
6541 * This check already skips compound tails of THP
6542 * because their page->_count is zero at all time.
6543 */
6544 if (!atomic_read(&page->_count)) {
6545 if (PageBuddy(page))
6546 iter += (1 << page_order(page)) - 1;
6547 continue;
6548 }
6549
6550 /*
6551 * The HWPoisoned page may be not in buddy system, and
6552 * page_count() is not 0.
6553 */
6554 if (skip_hwpoisoned_pages && PageHWPoison(page))
6555 continue;
6556
6557 if (!PageLRU(page))
6558 found++;
6559 /*
6560 * If there are RECLAIMABLE pages, we need to check
6561 * it. But now, memory offline itself doesn't call
6562 * shrink_node_slabs() and it still to be fixed.
6563 */
6564 /*
6565 * If the page is not RAM, page_count()should be 0.
6566 * we don't need more check. This is an _used_ not-movable page.
6567 *
6568 * The problematic thing here is PG_reserved pages. PG_reserved
6569 * is set to both of a memory hole page and a _used_ kernel
6570 * page at boot.
6571 */
6572 if (found > count)
6573 return true;
6574 }
6575 return false;
6576 }
6577
6578 bool is_pageblock_removable_nolock(struct page *page)
6579 {
6580 struct zone *zone;
6581 unsigned long pfn;
6582
6583 /*
6584 * We have to be careful here because we are iterating over memory
6585 * sections which are not zone aware so we might end up outside of
6586 * the zone but still within the section.
6587 * We have to take care about the node as well. If the node is offline
6588 * its NODE_DATA will be NULL - see page_zone.
6589 */
6590 if (!node_online(page_to_nid(page)))
6591 return false;
6592
6593 zone = page_zone(page);
6594 pfn = page_to_pfn(page);
6595 if (!zone_spans_pfn(zone, pfn))
6596 return false;
6597
6598 return !has_unmovable_pages(zone, page, 0, true);
6599 }
6600
6601 #ifdef CONFIG_CMA
6602
6603 static unsigned long pfn_max_align_down(unsigned long pfn)
6604 {
6605 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6606 pageblock_nr_pages) - 1);
6607 }
6608
6609 static unsigned long pfn_max_align_up(unsigned long pfn)
6610 {
6611 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6612 pageblock_nr_pages));
6613 }
6614
6615 /* [start, end) must belong to a single zone. */
6616 static int __alloc_contig_migrate_range(struct compact_control *cc,
6617 unsigned long start, unsigned long end)
6618 {
6619 /* This function is based on compact_zone() from compaction.c. */
6620 unsigned long nr_reclaimed;
6621 unsigned long pfn = start;
6622 unsigned int tries = 0;
6623 int ret = 0;
6624
6625 migrate_prep();
6626
6627 while (pfn < end || !list_empty(&cc->migratepages)) {
6628 if (fatal_signal_pending(current)) {
6629 ret = -EINTR;
6630 break;
6631 }
6632
6633 if (list_empty(&cc->migratepages)) {
6634 cc->nr_migratepages = 0;
6635 pfn = isolate_migratepages_range(cc, pfn, end);
6636 if (!pfn) {
6637 ret = -EINTR;
6638 break;
6639 }
6640 tries = 0;
6641 } else if (++tries == 5) {
6642 ret = ret < 0 ? ret : -EBUSY;
6643 break;
6644 }
6645
6646 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6647 &cc->migratepages);
6648 cc->nr_migratepages -= nr_reclaimed;
6649
6650 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6651 NULL, 0, cc->mode, MR_CMA);
6652 }
6653 if (ret < 0) {
6654 putback_movable_pages(&cc->migratepages);
6655 return ret;
6656 }
6657 return 0;
6658 }
6659
6660 /**
6661 * alloc_contig_range() -- tries to allocate given range of pages
6662 * @start: start PFN to allocate
6663 * @end: one-past-the-last PFN to allocate
6664 * @migratetype: migratetype of the underlaying pageblocks (either
6665 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6666 * in range must have the same migratetype and it must
6667 * be either of the two.
6668 *
6669 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6670 * aligned, however it's the caller's responsibility to guarantee that
6671 * we are the only thread that changes migrate type of pageblocks the
6672 * pages fall in.
6673 *
6674 * The PFN range must belong to a single zone.
6675 *
6676 * Returns zero on success or negative error code. On success all
6677 * pages which PFN is in [start, end) are allocated for the caller and
6678 * need to be freed with free_contig_range().
6679 */
6680 int alloc_contig_range(unsigned long start, unsigned long end,
6681 unsigned migratetype)
6682 {
6683 unsigned long outer_start, outer_end;
6684 unsigned int order;
6685 int ret = 0;
6686
6687 struct compact_control cc = {
6688 .nr_migratepages = 0,
6689 .order = -1,
6690 .zone = page_zone(pfn_to_page(start)),
6691 .mode = MIGRATE_SYNC,
6692 .ignore_skip_hint = true,
6693 };
6694 INIT_LIST_HEAD(&cc.migratepages);
6695
6696 /*
6697 * What we do here is we mark all pageblocks in range as
6698 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6699 * have different sizes, and due to the way page allocator
6700 * work, we align the range to biggest of the two pages so
6701 * that page allocator won't try to merge buddies from
6702 * different pageblocks and change MIGRATE_ISOLATE to some
6703 * other migration type.
6704 *
6705 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6706 * migrate the pages from an unaligned range (ie. pages that
6707 * we are interested in). This will put all the pages in
6708 * range back to page allocator as MIGRATE_ISOLATE.
6709 *
6710 * When this is done, we take the pages in range from page
6711 * allocator removing them from the buddy system. This way
6712 * page allocator will never consider using them.
6713 *
6714 * This lets us mark the pageblocks back as
6715 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6716 * aligned range but not in the unaligned, original range are
6717 * put back to page allocator so that buddy can use them.
6718 */
6719
6720 ret = start_isolate_page_range(pfn_max_align_down(start),
6721 pfn_max_align_up(end), migratetype,
6722 false);
6723 if (ret)
6724 return ret;
6725
6726 ret = __alloc_contig_migrate_range(&cc, start, end);
6727 if (ret)
6728 goto done;
6729
6730 /*
6731 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6732 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6733 * more, all pages in [start, end) are free in page allocator.
6734 * What we are going to do is to allocate all pages from
6735 * [start, end) (that is remove them from page allocator).
6736 *
6737 * The only problem is that pages at the beginning and at the
6738 * end of interesting range may be not aligned with pages that
6739 * page allocator holds, ie. they can be part of higher order
6740 * pages. Because of this, we reserve the bigger range and
6741 * once this is done free the pages we are not interested in.
6742 *
6743 * We don't have to hold zone->lock here because the pages are
6744 * isolated thus they won't get removed from buddy.
6745 */
6746
6747 lru_add_drain_all();
6748 drain_all_pages(cc.zone);
6749
6750 order = 0;
6751 outer_start = start;
6752 while (!PageBuddy(pfn_to_page(outer_start))) {
6753 if (++order >= MAX_ORDER) {
6754 ret = -EBUSY;
6755 goto done;
6756 }
6757 outer_start &= ~0UL << order;
6758 }
6759
6760 /* Make sure the range is really isolated. */
6761 if (test_pages_isolated(outer_start, end, false)) {
6762 pr_info("%s: [%lx, %lx) PFNs busy\n",
6763 __func__, outer_start, end);
6764 ret = -EBUSY;
6765 goto done;
6766 }
6767
6768 /* Grab isolated pages from freelists. */
6769 outer_end = isolate_freepages_range(&cc, outer_start, end);
6770 if (!outer_end) {
6771 ret = -EBUSY;
6772 goto done;
6773 }
6774
6775 /* Free head and tail (if any) */
6776 if (start != outer_start)
6777 free_contig_range(outer_start, start - outer_start);
6778 if (end != outer_end)
6779 free_contig_range(end, outer_end - end);
6780
6781 done:
6782 undo_isolate_page_range(pfn_max_align_down(start),
6783 pfn_max_align_up(end), migratetype);
6784 return ret;
6785 }
6786
6787 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6788 {
6789 unsigned int count = 0;
6790
6791 for (; nr_pages--; pfn++) {
6792 struct page *page = pfn_to_page(pfn);
6793
6794 count += page_count(page) != 1;
6795 __free_page(page);
6796 }
6797 WARN(count != 0, "%d pages are still in use!\n", count);
6798 }
6799 #endif
6800
6801 #ifdef CONFIG_MEMORY_HOTPLUG
6802 /*
6803 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6804 * page high values need to be recalulated.
6805 */
6806 void __meminit zone_pcp_update(struct zone *zone)
6807 {
6808 unsigned cpu;
6809 mutex_lock(&pcp_batch_high_lock);
6810 for_each_possible_cpu(cpu)
6811 pageset_set_high_and_batch(zone,
6812 per_cpu_ptr(zone->pageset, cpu));
6813 mutex_unlock(&pcp_batch_high_lock);
6814 }
6815 #endif
6816
6817 void zone_pcp_reset(struct zone *zone)
6818 {
6819 unsigned long flags;
6820 int cpu;
6821 struct per_cpu_pageset *pset;
6822
6823 /* avoid races with drain_pages() */
6824 local_irq_save(flags);
6825 if (zone->pageset != &boot_pageset) {
6826 for_each_online_cpu(cpu) {
6827 pset = per_cpu_ptr(zone->pageset, cpu);
6828 drain_zonestat(zone, pset);
6829 }
6830 free_percpu(zone->pageset);
6831 zone->pageset = &boot_pageset;
6832 }
6833 local_irq_restore(flags);
6834 }
6835
6836 #ifdef CONFIG_MEMORY_HOTREMOVE
6837 /*
6838 * All pages in the range must be isolated before calling this.
6839 */
6840 void
6841 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6842 {
6843 struct page *page;
6844 struct zone *zone;
6845 unsigned int order, i;
6846 unsigned long pfn;
6847 unsigned long flags;
6848 /* find the first valid pfn */
6849 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6850 if (pfn_valid(pfn))
6851 break;
6852 if (pfn == end_pfn)
6853 return;
6854 zone = page_zone(pfn_to_page(pfn));
6855 spin_lock_irqsave(&zone->lock, flags);
6856 pfn = start_pfn;
6857 while (pfn < end_pfn) {
6858 if (!pfn_valid(pfn)) {
6859 pfn++;
6860 continue;
6861 }
6862 page = pfn_to_page(pfn);
6863 /*
6864 * The HWPoisoned page may be not in buddy system, and
6865 * page_count() is not 0.
6866 */
6867 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6868 pfn++;
6869 SetPageReserved(page);
6870 continue;
6871 }
6872
6873 BUG_ON(page_count(page));
6874 BUG_ON(!PageBuddy(page));
6875 order = page_order(page);
6876 #ifdef CONFIG_DEBUG_VM
6877 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6878 pfn, 1 << order, end_pfn);
6879 #endif
6880 list_del(&page->lru);
6881 rmv_page_order(page);
6882 zone->free_area[order].nr_free--;
6883 for (i = 0; i < (1 << order); i++)
6884 SetPageReserved((page+i));
6885 pfn += (1 << order);
6886 }
6887 spin_unlock_irqrestore(&zone->lock, flags);
6888 }
6889 #endif
6890
6891 #ifdef CONFIG_MEMORY_FAILURE
6892 bool is_free_buddy_page(struct page *page)
6893 {
6894 struct zone *zone = page_zone(page);
6895 unsigned long pfn = page_to_pfn(page);
6896 unsigned long flags;
6897 unsigned int order;
6898
6899 spin_lock_irqsave(&zone->lock, flags);
6900 for (order = 0; order < MAX_ORDER; order++) {
6901 struct page *page_head = page - (pfn & ((1 << order) - 1));
6902
6903 if (PageBuddy(page_head) && page_order(page_head) >= order)
6904 break;
6905 }
6906 spin_unlock_irqrestore(&zone->lock, flags);
6907
6908 return order < MAX_ORDER;
6909 }
6910 #endif