]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/page_alloc.c
mm, page_alloc: rename __GFP_WAIT to __GFP_RECLAIM
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
65
66 #include <asm/sections.h>
67 #include <asm/tlbflush.h>
68 #include <asm/div64.h>
69 #include "internal.h"
70
71 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72 static DEFINE_MUTEX(pcp_batch_high_lock);
73 #define MIN_PERCPU_PAGELIST_FRACTION (8)
74
75 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76 DEFINE_PER_CPU(int, numa_node);
77 EXPORT_PER_CPU_SYMBOL(numa_node);
78 #endif
79
80 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
81 /*
82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85 * defined in <linux/topology.h>.
86 */
87 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
88 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
89 int _node_numa_mem_[MAX_NUMNODES];
90 #endif
91
92 /*
93 * Array of node states.
94 */
95 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
96 [N_POSSIBLE] = NODE_MASK_ALL,
97 [N_ONLINE] = { { [0] = 1UL } },
98 #ifndef CONFIG_NUMA
99 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
100 #ifdef CONFIG_HIGHMEM
101 [N_HIGH_MEMORY] = { { [0] = 1UL } },
102 #endif
103 #ifdef CONFIG_MOVABLE_NODE
104 [N_MEMORY] = { { [0] = 1UL } },
105 #endif
106 [N_CPU] = { { [0] = 1UL } },
107 #endif /* NUMA */
108 };
109 EXPORT_SYMBOL(node_states);
110
111 /* Protect totalram_pages and zone->managed_pages */
112 static DEFINE_SPINLOCK(managed_page_count_lock);
113
114 unsigned long totalram_pages __read_mostly;
115 unsigned long totalreserve_pages __read_mostly;
116 unsigned long totalcma_pages __read_mostly;
117 /*
118 * When calculating the number of globally allowed dirty pages, there
119 * is a certain number of per-zone reserves that should not be
120 * considered dirtyable memory. This is the sum of those reserves
121 * over all existing zones that contribute dirtyable memory.
122 */
123 unsigned long dirty_balance_reserve __read_mostly;
124
125 int percpu_pagelist_fraction;
126 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
127
128 /*
129 * A cached value of the page's pageblock's migratetype, used when the page is
130 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132 * Also the migratetype set in the page does not necessarily match the pcplist
133 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134 * other index - this ensures that it will be put on the correct CMA freelist.
135 */
136 static inline int get_pcppage_migratetype(struct page *page)
137 {
138 return page->index;
139 }
140
141 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
142 {
143 page->index = migratetype;
144 }
145
146 #ifdef CONFIG_PM_SLEEP
147 /*
148 * The following functions are used by the suspend/hibernate code to temporarily
149 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150 * while devices are suspended. To avoid races with the suspend/hibernate code,
151 * they should always be called with pm_mutex held (gfp_allowed_mask also should
152 * only be modified with pm_mutex held, unless the suspend/hibernate code is
153 * guaranteed not to run in parallel with that modification).
154 */
155
156 static gfp_t saved_gfp_mask;
157
158 void pm_restore_gfp_mask(void)
159 {
160 WARN_ON(!mutex_is_locked(&pm_mutex));
161 if (saved_gfp_mask) {
162 gfp_allowed_mask = saved_gfp_mask;
163 saved_gfp_mask = 0;
164 }
165 }
166
167 void pm_restrict_gfp_mask(void)
168 {
169 WARN_ON(!mutex_is_locked(&pm_mutex));
170 WARN_ON(saved_gfp_mask);
171 saved_gfp_mask = gfp_allowed_mask;
172 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
173 }
174
175 bool pm_suspended_storage(void)
176 {
177 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
178 return false;
179 return true;
180 }
181 #endif /* CONFIG_PM_SLEEP */
182
183 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
184 int pageblock_order __read_mostly;
185 #endif
186
187 static void __free_pages_ok(struct page *page, unsigned int order);
188
189 /*
190 * results with 256, 32 in the lowmem_reserve sysctl:
191 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192 * 1G machine -> (16M dma, 784M normal, 224M high)
193 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
195 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
196 *
197 * TBD: should special case ZONE_DMA32 machines here - in those we normally
198 * don't need any ZONE_NORMAL reservation
199 */
200 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
201 #ifdef CONFIG_ZONE_DMA
202 256,
203 #endif
204 #ifdef CONFIG_ZONE_DMA32
205 256,
206 #endif
207 #ifdef CONFIG_HIGHMEM
208 32,
209 #endif
210 32,
211 };
212
213 EXPORT_SYMBOL(totalram_pages);
214
215 static char * const zone_names[MAX_NR_ZONES] = {
216 #ifdef CONFIG_ZONE_DMA
217 "DMA",
218 #endif
219 #ifdef CONFIG_ZONE_DMA32
220 "DMA32",
221 #endif
222 "Normal",
223 #ifdef CONFIG_HIGHMEM
224 "HighMem",
225 #endif
226 "Movable",
227 #ifdef CONFIG_ZONE_DEVICE
228 "Device",
229 #endif
230 };
231
232 int min_free_kbytes = 1024;
233 int user_min_free_kbytes = -1;
234
235 static unsigned long __meminitdata nr_kernel_pages;
236 static unsigned long __meminitdata nr_all_pages;
237 static unsigned long __meminitdata dma_reserve;
238
239 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
240 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
241 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
242 static unsigned long __initdata required_kernelcore;
243 static unsigned long __initdata required_movablecore;
244 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
245
246 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
247 int movable_zone;
248 EXPORT_SYMBOL(movable_zone);
249 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
250
251 #if MAX_NUMNODES > 1
252 int nr_node_ids __read_mostly = MAX_NUMNODES;
253 int nr_online_nodes __read_mostly = 1;
254 EXPORT_SYMBOL(nr_node_ids);
255 EXPORT_SYMBOL(nr_online_nodes);
256 #endif
257
258 int page_group_by_mobility_disabled __read_mostly;
259
260 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
261 static inline void reset_deferred_meminit(pg_data_t *pgdat)
262 {
263 pgdat->first_deferred_pfn = ULONG_MAX;
264 }
265
266 /* Returns true if the struct page for the pfn is uninitialised */
267 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
268 {
269 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
270 return true;
271
272 return false;
273 }
274
275 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
276 {
277 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
278 return true;
279
280 return false;
281 }
282
283 /*
284 * Returns false when the remaining initialisation should be deferred until
285 * later in the boot cycle when it can be parallelised.
286 */
287 static inline bool update_defer_init(pg_data_t *pgdat,
288 unsigned long pfn, unsigned long zone_end,
289 unsigned long *nr_initialised)
290 {
291 /* Always populate low zones for address-contrained allocations */
292 if (zone_end < pgdat_end_pfn(pgdat))
293 return true;
294
295 /* Initialise at least 2G of the highest zone */
296 (*nr_initialised)++;
297 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
298 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
299 pgdat->first_deferred_pfn = pfn;
300 return false;
301 }
302
303 return true;
304 }
305 #else
306 static inline void reset_deferred_meminit(pg_data_t *pgdat)
307 {
308 }
309
310 static inline bool early_page_uninitialised(unsigned long pfn)
311 {
312 return false;
313 }
314
315 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
316 {
317 return false;
318 }
319
320 static inline bool update_defer_init(pg_data_t *pgdat,
321 unsigned long pfn, unsigned long zone_end,
322 unsigned long *nr_initialised)
323 {
324 return true;
325 }
326 #endif
327
328
329 void set_pageblock_migratetype(struct page *page, int migratetype)
330 {
331 if (unlikely(page_group_by_mobility_disabled &&
332 migratetype < MIGRATE_PCPTYPES))
333 migratetype = MIGRATE_UNMOVABLE;
334
335 set_pageblock_flags_group(page, (unsigned long)migratetype,
336 PB_migrate, PB_migrate_end);
337 }
338
339 #ifdef CONFIG_DEBUG_VM
340 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
341 {
342 int ret = 0;
343 unsigned seq;
344 unsigned long pfn = page_to_pfn(page);
345 unsigned long sp, start_pfn;
346
347 do {
348 seq = zone_span_seqbegin(zone);
349 start_pfn = zone->zone_start_pfn;
350 sp = zone->spanned_pages;
351 if (!zone_spans_pfn(zone, pfn))
352 ret = 1;
353 } while (zone_span_seqretry(zone, seq));
354
355 if (ret)
356 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
357 pfn, zone_to_nid(zone), zone->name,
358 start_pfn, start_pfn + sp);
359
360 return ret;
361 }
362
363 static int page_is_consistent(struct zone *zone, struct page *page)
364 {
365 if (!pfn_valid_within(page_to_pfn(page)))
366 return 0;
367 if (zone != page_zone(page))
368 return 0;
369
370 return 1;
371 }
372 /*
373 * Temporary debugging check for pages not lying within a given zone.
374 */
375 static int bad_range(struct zone *zone, struct page *page)
376 {
377 if (page_outside_zone_boundaries(zone, page))
378 return 1;
379 if (!page_is_consistent(zone, page))
380 return 1;
381
382 return 0;
383 }
384 #else
385 static inline int bad_range(struct zone *zone, struct page *page)
386 {
387 return 0;
388 }
389 #endif
390
391 static void bad_page(struct page *page, const char *reason,
392 unsigned long bad_flags)
393 {
394 static unsigned long resume;
395 static unsigned long nr_shown;
396 static unsigned long nr_unshown;
397
398 /* Don't complain about poisoned pages */
399 if (PageHWPoison(page)) {
400 page_mapcount_reset(page); /* remove PageBuddy */
401 return;
402 }
403
404 /*
405 * Allow a burst of 60 reports, then keep quiet for that minute;
406 * or allow a steady drip of one report per second.
407 */
408 if (nr_shown == 60) {
409 if (time_before(jiffies, resume)) {
410 nr_unshown++;
411 goto out;
412 }
413 if (nr_unshown) {
414 printk(KERN_ALERT
415 "BUG: Bad page state: %lu messages suppressed\n",
416 nr_unshown);
417 nr_unshown = 0;
418 }
419 nr_shown = 0;
420 }
421 if (nr_shown++ == 0)
422 resume = jiffies + 60 * HZ;
423
424 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
425 current->comm, page_to_pfn(page));
426 dump_page_badflags(page, reason, bad_flags);
427
428 print_modules();
429 dump_stack();
430 out:
431 /* Leave bad fields for debug, except PageBuddy could make trouble */
432 page_mapcount_reset(page); /* remove PageBuddy */
433 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
434 }
435
436 /*
437 * Higher-order pages are called "compound pages". They are structured thusly:
438 *
439 * The first PAGE_SIZE page is called the "head page".
440 *
441 * The remaining PAGE_SIZE pages are called "tail pages".
442 *
443 * All pages have PG_compound set. All tail pages have their ->first_page
444 * pointing at the head page.
445 *
446 * The first tail page's ->lru.next holds the address of the compound page's
447 * put_page() function. Its ->lru.prev holds the order of allocation.
448 * This usage means that zero-order pages may not be compound.
449 */
450
451 static void free_compound_page(struct page *page)
452 {
453 __free_pages_ok(page, compound_order(page));
454 }
455
456 void prep_compound_page(struct page *page, unsigned long order)
457 {
458 int i;
459 int nr_pages = 1 << order;
460
461 set_compound_page_dtor(page, free_compound_page);
462 set_compound_order(page, order);
463 __SetPageHead(page);
464 for (i = 1; i < nr_pages; i++) {
465 struct page *p = page + i;
466 set_page_count(p, 0);
467 p->first_page = page;
468 /* Make sure p->first_page is always valid for PageTail() */
469 smp_wmb();
470 __SetPageTail(p);
471 }
472 }
473
474 #ifdef CONFIG_DEBUG_PAGEALLOC
475 unsigned int _debug_guardpage_minorder;
476 bool _debug_pagealloc_enabled __read_mostly;
477 bool _debug_guardpage_enabled __read_mostly;
478
479 static int __init early_debug_pagealloc(char *buf)
480 {
481 if (!buf)
482 return -EINVAL;
483
484 if (strcmp(buf, "on") == 0)
485 _debug_pagealloc_enabled = true;
486
487 return 0;
488 }
489 early_param("debug_pagealloc", early_debug_pagealloc);
490
491 static bool need_debug_guardpage(void)
492 {
493 /* If we don't use debug_pagealloc, we don't need guard page */
494 if (!debug_pagealloc_enabled())
495 return false;
496
497 return true;
498 }
499
500 static void init_debug_guardpage(void)
501 {
502 if (!debug_pagealloc_enabled())
503 return;
504
505 _debug_guardpage_enabled = true;
506 }
507
508 struct page_ext_operations debug_guardpage_ops = {
509 .need = need_debug_guardpage,
510 .init = init_debug_guardpage,
511 };
512
513 static int __init debug_guardpage_minorder_setup(char *buf)
514 {
515 unsigned long res;
516
517 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
518 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
519 return 0;
520 }
521 _debug_guardpage_minorder = res;
522 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
523 return 0;
524 }
525 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
526
527 static inline void set_page_guard(struct zone *zone, struct page *page,
528 unsigned int order, int migratetype)
529 {
530 struct page_ext *page_ext;
531
532 if (!debug_guardpage_enabled())
533 return;
534
535 page_ext = lookup_page_ext(page);
536 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
537
538 INIT_LIST_HEAD(&page->lru);
539 set_page_private(page, order);
540 /* Guard pages are not available for any usage */
541 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
542 }
543
544 static inline void clear_page_guard(struct zone *zone, struct page *page,
545 unsigned int order, int migratetype)
546 {
547 struct page_ext *page_ext;
548
549 if (!debug_guardpage_enabled())
550 return;
551
552 page_ext = lookup_page_ext(page);
553 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
554
555 set_page_private(page, 0);
556 if (!is_migrate_isolate(migratetype))
557 __mod_zone_freepage_state(zone, (1 << order), migratetype);
558 }
559 #else
560 struct page_ext_operations debug_guardpage_ops = { NULL, };
561 static inline void set_page_guard(struct zone *zone, struct page *page,
562 unsigned int order, int migratetype) {}
563 static inline void clear_page_guard(struct zone *zone, struct page *page,
564 unsigned int order, int migratetype) {}
565 #endif
566
567 static inline void set_page_order(struct page *page, unsigned int order)
568 {
569 set_page_private(page, order);
570 __SetPageBuddy(page);
571 }
572
573 static inline void rmv_page_order(struct page *page)
574 {
575 __ClearPageBuddy(page);
576 set_page_private(page, 0);
577 }
578
579 /*
580 * This function checks whether a page is free && is the buddy
581 * we can do coalesce a page and its buddy if
582 * (a) the buddy is not in a hole &&
583 * (b) the buddy is in the buddy system &&
584 * (c) a page and its buddy have the same order &&
585 * (d) a page and its buddy are in the same zone.
586 *
587 * For recording whether a page is in the buddy system, we set ->_mapcount
588 * PAGE_BUDDY_MAPCOUNT_VALUE.
589 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
590 * serialized by zone->lock.
591 *
592 * For recording page's order, we use page_private(page).
593 */
594 static inline int page_is_buddy(struct page *page, struct page *buddy,
595 unsigned int order)
596 {
597 if (!pfn_valid_within(page_to_pfn(buddy)))
598 return 0;
599
600 if (page_is_guard(buddy) && page_order(buddy) == order) {
601 if (page_zone_id(page) != page_zone_id(buddy))
602 return 0;
603
604 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
605
606 return 1;
607 }
608
609 if (PageBuddy(buddy) && page_order(buddy) == order) {
610 /*
611 * zone check is done late to avoid uselessly
612 * calculating zone/node ids for pages that could
613 * never merge.
614 */
615 if (page_zone_id(page) != page_zone_id(buddy))
616 return 0;
617
618 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
619
620 return 1;
621 }
622 return 0;
623 }
624
625 /*
626 * Freeing function for a buddy system allocator.
627 *
628 * The concept of a buddy system is to maintain direct-mapped table
629 * (containing bit values) for memory blocks of various "orders".
630 * The bottom level table contains the map for the smallest allocatable
631 * units of memory (here, pages), and each level above it describes
632 * pairs of units from the levels below, hence, "buddies".
633 * At a high level, all that happens here is marking the table entry
634 * at the bottom level available, and propagating the changes upward
635 * as necessary, plus some accounting needed to play nicely with other
636 * parts of the VM system.
637 * At each level, we keep a list of pages, which are heads of continuous
638 * free pages of length of (1 << order) and marked with _mapcount
639 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
640 * field.
641 * So when we are allocating or freeing one, we can derive the state of the
642 * other. That is, if we allocate a small block, and both were
643 * free, the remainder of the region must be split into blocks.
644 * If a block is freed, and its buddy is also free, then this
645 * triggers coalescing into a block of larger size.
646 *
647 * -- nyc
648 */
649
650 static inline void __free_one_page(struct page *page,
651 unsigned long pfn,
652 struct zone *zone, unsigned int order,
653 int migratetype)
654 {
655 unsigned long page_idx;
656 unsigned long combined_idx;
657 unsigned long uninitialized_var(buddy_idx);
658 struct page *buddy;
659 int max_order = MAX_ORDER;
660
661 VM_BUG_ON(!zone_is_initialized(zone));
662 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
663
664 VM_BUG_ON(migratetype == -1);
665 if (is_migrate_isolate(migratetype)) {
666 /*
667 * We restrict max order of merging to prevent merge
668 * between freepages on isolate pageblock and normal
669 * pageblock. Without this, pageblock isolation
670 * could cause incorrect freepage accounting.
671 */
672 max_order = min(MAX_ORDER, pageblock_order + 1);
673 } else {
674 __mod_zone_freepage_state(zone, 1 << order, migratetype);
675 }
676
677 page_idx = pfn & ((1 << max_order) - 1);
678
679 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
680 VM_BUG_ON_PAGE(bad_range(zone, page), page);
681
682 while (order < max_order - 1) {
683 buddy_idx = __find_buddy_index(page_idx, order);
684 buddy = page + (buddy_idx - page_idx);
685 if (!page_is_buddy(page, buddy, order))
686 break;
687 /*
688 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
689 * merge with it and move up one order.
690 */
691 if (page_is_guard(buddy)) {
692 clear_page_guard(zone, buddy, order, migratetype);
693 } else {
694 list_del(&buddy->lru);
695 zone->free_area[order].nr_free--;
696 rmv_page_order(buddy);
697 }
698 combined_idx = buddy_idx & page_idx;
699 page = page + (combined_idx - page_idx);
700 page_idx = combined_idx;
701 order++;
702 }
703 set_page_order(page, order);
704
705 /*
706 * If this is not the largest possible page, check if the buddy
707 * of the next-highest order is free. If it is, it's possible
708 * that pages are being freed that will coalesce soon. In case,
709 * that is happening, add the free page to the tail of the list
710 * so it's less likely to be used soon and more likely to be merged
711 * as a higher order page
712 */
713 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
714 struct page *higher_page, *higher_buddy;
715 combined_idx = buddy_idx & page_idx;
716 higher_page = page + (combined_idx - page_idx);
717 buddy_idx = __find_buddy_index(combined_idx, order + 1);
718 higher_buddy = higher_page + (buddy_idx - combined_idx);
719 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
720 list_add_tail(&page->lru,
721 &zone->free_area[order].free_list[migratetype]);
722 goto out;
723 }
724 }
725
726 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
727 out:
728 zone->free_area[order].nr_free++;
729 }
730
731 static inline int free_pages_check(struct page *page)
732 {
733 const char *bad_reason = NULL;
734 unsigned long bad_flags = 0;
735
736 if (unlikely(page_mapcount(page)))
737 bad_reason = "nonzero mapcount";
738 if (unlikely(page->mapping != NULL))
739 bad_reason = "non-NULL mapping";
740 if (unlikely(atomic_read(&page->_count) != 0))
741 bad_reason = "nonzero _count";
742 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
743 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
744 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
745 }
746 #ifdef CONFIG_MEMCG
747 if (unlikely(page->mem_cgroup))
748 bad_reason = "page still charged to cgroup";
749 #endif
750 if (unlikely(bad_reason)) {
751 bad_page(page, bad_reason, bad_flags);
752 return 1;
753 }
754 page_cpupid_reset_last(page);
755 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
756 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
757 return 0;
758 }
759
760 /*
761 * Frees a number of pages from the PCP lists
762 * Assumes all pages on list are in same zone, and of same order.
763 * count is the number of pages to free.
764 *
765 * If the zone was previously in an "all pages pinned" state then look to
766 * see if this freeing clears that state.
767 *
768 * And clear the zone's pages_scanned counter, to hold off the "all pages are
769 * pinned" detection logic.
770 */
771 static void free_pcppages_bulk(struct zone *zone, int count,
772 struct per_cpu_pages *pcp)
773 {
774 int migratetype = 0;
775 int batch_free = 0;
776 int to_free = count;
777 unsigned long nr_scanned;
778
779 spin_lock(&zone->lock);
780 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
781 if (nr_scanned)
782 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
783
784 while (to_free) {
785 struct page *page;
786 struct list_head *list;
787
788 /*
789 * Remove pages from lists in a round-robin fashion. A
790 * batch_free count is maintained that is incremented when an
791 * empty list is encountered. This is so more pages are freed
792 * off fuller lists instead of spinning excessively around empty
793 * lists
794 */
795 do {
796 batch_free++;
797 if (++migratetype == MIGRATE_PCPTYPES)
798 migratetype = 0;
799 list = &pcp->lists[migratetype];
800 } while (list_empty(list));
801
802 /* This is the only non-empty list. Free them all. */
803 if (batch_free == MIGRATE_PCPTYPES)
804 batch_free = to_free;
805
806 do {
807 int mt; /* migratetype of the to-be-freed page */
808
809 page = list_entry(list->prev, struct page, lru);
810 /* must delete as __free_one_page list manipulates */
811 list_del(&page->lru);
812
813 mt = get_pcppage_migratetype(page);
814 /* MIGRATE_ISOLATE page should not go to pcplists */
815 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
816 /* Pageblock could have been isolated meanwhile */
817 if (unlikely(has_isolate_pageblock(zone)))
818 mt = get_pageblock_migratetype(page);
819
820 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
821 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
822 trace_mm_page_pcpu_drain(page, 0, mt);
823 } while (--to_free && --batch_free && !list_empty(list));
824 }
825 spin_unlock(&zone->lock);
826 }
827
828 static void free_one_page(struct zone *zone,
829 struct page *page, unsigned long pfn,
830 unsigned int order,
831 int migratetype)
832 {
833 unsigned long nr_scanned;
834 spin_lock(&zone->lock);
835 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
836 if (nr_scanned)
837 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
838
839 if (unlikely(has_isolate_pageblock(zone) ||
840 is_migrate_isolate(migratetype))) {
841 migratetype = get_pfnblock_migratetype(page, pfn);
842 }
843 __free_one_page(page, pfn, zone, order, migratetype);
844 spin_unlock(&zone->lock);
845 }
846
847 static int free_tail_pages_check(struct page *head_page, struct page *page)
848 {
849 if (!IS_ENABLED(CONFIG_DEBUG_VM))
850 return 0;
851 if (unlikely(!PageTail(page))) {
852 bad_page(page, "PageTail not set", 0);
853 return 1;
854 }
855 if (unlikely(page->first_page != head_page)) {
856 bad_page(page, "first_page not consistent", 0);
857 return 1;
858 }
859 return 0;
860 }
861
862 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
863 unsigned long zone, int nid)
864 {
865 set_page_links(page, zone, nid, pfn);
866 init_page_count(page);
867 page_mapcount_reset(page);
868 page_cpupid_reset_last(page);
869
870 INIT_LIST_HEAD(&page->lru);
871 #ifdef WANT_PAGE_VIRTUAL
872 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
873 if (!is_highmem_idx(zone))
874 set_page_address(page, __va(pfn << PAGE_SHIFT));
875 #endif
876 }
877
878 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
879 int nid)
880 {
881 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
882 }
883
884 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
885 static void init_reserved_page(unsigned long pfn)
886 {
887 pg_data_t *pgdat;
888 int nid, zid;
889
890 if (!early_page_uninitialised(pfn))
891 return;
892
893 nid = early_pfn_to_nid(pfn);
894 pgdat = NODE_DATA(nid);
895
896 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
897 struct zone *zone = &pgdat->node_zones[zid];
898
899 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
900 break;
901 }
902 __init_single_pfn(pfn, zid, nid);
903 }
904 #else
905 static inline void init_reserved_page(unsigned long pfn)
906 {
907 }
908 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
909
910 /*
911 * Initialised pages do not have PageReserved set. This function is
912 * called for each range allocated by the bootmem allocator and
913 * marks the pages PageReserved. The remaining valid pages are later
914 * sent to the buddy page allocator.
915 */
916 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
917 {
918 unsigned long start_pfn = PFN_DOWN(start);
919 unsigned long end_pfn = PFN_UP(end);
920
921 for (; start_pfn < end_pfn; start_pfn++) {
922 if (pfn_valid(start_pfn)) {
923 struct page *page = pfn_to_page(start_pfn);
924
925 init_reserved_page(start_pfn);
926 SetPageReserved(page);
927 }
928 }
929 }
930
931 static bool free_pages_prepare(struct page *page, unsigned int order)
932 {
933 bool compound = PageCompound(page);
934 int i, bad = 0;
935
936 VM_BUG_ON_PAGE(PageTail(page), page);
937 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
938
939 trace_mm_page_free(page, order);
940 kmemcheck_free_shadow(page, order);
941 kasan_free_pages(page, order);
942
943 if (PageAnon(page))
944 page->mapping = NULL;
945 bad += free_pages_check(page);
946 for (i = 1; i < (1 << order); i++) {
947 if (compound)
948 bad += free_tail_pages_check(page, page + i);
949 bad += free_pages_check(page + i);
950 }
951 if (bad)
952 return false;
953
954 reset_page_owner(page, order);
955
956 if (!PageHighMem(page)) {
957 debug_check_no_locks_freed(page_address(page),
958 PAGE_SIZE << order);
959 debug_check_no_obj_freed(page_address(page),
960 PAGE_SIZE << order);
961 }
962 arch_free_page(page, order);
963 kernel_map_pages(page, 1 << order, 0);
964
965 return true;
966 }
967
968 static void __free_pages_ok(struct page *page, unsigned int order)
969 {
970 unsigned long flags;
971 int migratetype;
972 unsigned long pfn = page_to_pfn(page);
973
974 if (!free_pages_prepare(page, order))
975 return;
976
977 migratetype = get_pfnblock_migratetype(page, pfn);
978 local_irq_save(flags);
979 __count_vm_events(PGFREE, 1 << order);
980 free_one_page(page_zone(page), page, pfn, order, migratetype);
981 local_irq_restore(flags);
982 }
983
984 static void __init __free_pages_boot_core(struct page *page,
985 unsigned long pfn, unsigned int order)
986 {
987 unsigned int nr_pages = 1 << order;
988 struct page *p = page;
989 unsigned int loop;
990
991 prefetchw(p);
992 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
993 prefetchw(p + 1);
994 __ClearPageReserved(p);
995 set_page_count(p, 0);
996 }
997 __ClearPageReserved(p);
998 set_page_count(p, 0);
999
1000 page_zone(page)->managed_pages += nr_pages;
1001 set_page_refcounted(page);
1002 __free_pages(page, order);
1003 }
1004
1005 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1006 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1007
1008 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1009
1010 int __meminit early_pfn_to_nid(unsigned long pfn)
1011 {
1012 static DEFINE_SPINLOCK(early_pfn_lock);
1013 int nid;
1014
1015 spin_lock(&early_pfn_lock);
1016 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1017 if (nid < 0)
1018 nid = 0;
1019 spin_unlock(&early_pfn_lock);
1020
1021 return nid;
1022 }
1023 #endif
1024
1025 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1026 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1027 struct mminit_pfnnid_cache *state)
1028 {
1029 int nid;
1030
1031 nid = __early_pfn_to_nid(pfn, state);
1032 if (nid >= 0 && nid != node)
1033 return false;
1034 return true;
1035 }
1036
1037 /* Only safe to use early in boot when initialisation is single-threaded */
1038 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1039 {
1040 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1041 }
1042
1043 #else
1044
1045 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1046 {
1047 return true;
1048 }
1049 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1050 struct mminit_pfnnid_cache *state)
1051 {
1052 return true;
1053 }
1054 #endif
1055
1056
1057 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1058 unsigned int order)
1059 {
1060 if (early_page_uninitialised(pfn))
1061 return;
1062 return __free_pages_boot_core(page, pfn, order);
1063 }
1064
1065 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1066 static void __init deferred_free_range(struct page *page,
1067 unsigned long pfn, int nr_pages)
1068 {
1069 int i;
1070
1071 if (!page)
1072 return;
1073
1074 /* Free a large naturally-aligned chunk if possible */
1075 if (nr_pages == MAX_ORDER_NR_PAGES &&
1076 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1077 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1078 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1079 return;
1080 }
1081
1082 for (i = 0; i < nr_pages; i++, page++, pfn++)
1083 __free_pages_boot_core(page, pfn, 0);
1084 }
1085
1086 /* Completion tracking for deferred_init_memmap() threads */
1087 static atomic_t pgdat_init_n_undone __initdata;
1088 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1089
1090 static inline void __init pgdat_init_report_one_done(void)
1091 {
1092 if (atomic_dec_and_test(&pgdat_init_n_undone))
1093 complete(&pgdat_init_all_done_comp);
1094 }
1095
1096 /* Initialise remaining memory on a node */
1097 static int __init deferred_init_memmap(void *data)
1098 {
1099 pg_data_t *pgdat = data;
1100 int nid = pgdat->node_id;
1101 struct mminit_pfnnid_cache nid_init_state = { };
1102 unsigned long start = jiffies;
1103 unsigned long nr_pages = 0;
1104 unsigned long walk_start, walk_end;
1105 int i, zid;
1106 struct zone *zone;
1107 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1108 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1109
1110 if (first_init_pfn == ULONG_MAX) {
1111 pgdat_init_report_one_done();
1112 return 0;
1113 }
1114
1115 /* Bind memory initialisation thread to a local node if possible */
1116 if (!cpumask_empty(cpumask))
1117 set_cpus_allowed_ptr(current, cpumask);
1118
1119 /* Sanity check boundaries */
1120 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1121 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1122 pgdat->first_deferred_pfn = ULONG_MAX;
1123
1124 /* Only the highest zone is deferred so find it */
1125 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1126 zone = pgdat->node_zones + zid;
1127 if (first_init_pfn < zone_end_pfn(zone))
1128 break;
1129 }
1130
1131 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1132 unsigned long pfn, end_pfn;
1133 struct page *page = NULL;
1134 struct page *free_base_page = NULL;
1135 unsigned long free_base_pfn = 0;
1136 int nr_to_free = 0;
1137
1138 end_pfn = min(walk_end, zone_end_pfn(zone));
1139 pfn = first_init_pfn;
1140 if (pfn < walk_start)
1141 pfn = walk_start;
1142 if (pfn < zone->zone_start_pfn)
1143 pfn = zone->zone_start_pfn;
1144
1145 for (; pfn < end_pfn; pfn++) {
1146 if (!pfn_valid_within(pfn))
1147 goto free_range;
1148
1149 /*
1150 * Ensure pfn_valid is checked every
1151 * MAX_ORDER_NR_PAGES for memory holes
1152 */
1153 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1154 if (!pfn_valid(pfn)) {
1155 page = NULL;
1156 goto free_range;
1157 }
1158 }
1159
1160 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1161 page = NULL;
1162 goto free_range;
1163 }
1164
1165 /* Minimise pfn page lookups and scheduler checks */
1166 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1167 page++;
1168 } else {
1169 nr_pages += nr_to_free;
1170 deferred_free_range(free_base_page,
1171 free_base_pfn, nr_to_free);
1172 free_base_page = NULL;
1173 free_base_pfn = nr_to_free = 0;
1174
1175 page = pfn_to_page(pfn);
1176 cond_resched();
1177 }
1178
1179 if (page->flags) {
1180 VM_BUG_ON(page_zone(page) != zone);
1181 goto free_range;
1182 }
1183
1184 __init_single_page(page, pfn, zid, nid);
1185 if (!free_base_page) {
1186 free_base_page = page;
1187 free_base_pfn = pfn;
1188 nr_to_free = 0;
1189 }
1190 nr_to_free++;
1191
1192 /* Where possible, batch up pages for a single free */
1193 continue;
1194 free_range:
1195 /* Free the current block of pages to allocator */
1196 nr_pages += nr_to_free;
1197 deferred_free_range(free_base_page, free_base_pfn,
1198 nr_to_free);
1199 free_base_page = NULL;
1200 free_base_pfn = nr_to_free = 0;
1201 }
1202
1203 first_init_pfn = max(end_pfn, first_init_pfn);
1204 }
1205
1206 /* Sanity check that the next zone really is unpopulated */
1207 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1208
1209 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1210 jiffies_to_msecs(jiffies - start));
1211
1212 pgdat_init_report_one_done();
1213 return 0;
1214 }
1215
1216 void __init page_alloc_init_late(void)
1217 {
1218 int nid;
1219
1220 /* There will be num_node_state(N_MEMORY) threads */
1221 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1222 for_each_node_state(nid, N_MEMORY) {
1223 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1224 }
1225
1226 /* Block until all are initialised */
1227 wait_for_completion(&pgdat_init_all_done_comp);
1228
1229 /* Reinit limits that are based on free pages after the kernel is up */
1230 files_maxfiles_init();
1231 }
1232 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1233
1234 #ifdef CONFIG_CMA
1235 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1236 void __init init_cma_reserved_pageblock(struct page *page)
1237 {
1238 unsigned i = pageblock_nr_pages;
1239 struct page *p = page;
1240
1241 do {
1242 __ClearPageReserved(p);
1243 set_page_count(p, 0);
1244 } while (++p, --i);
1245
1246 set_pageblock_migratetype(page, MIGRATE_CMA);
1247
1248 if (pageblock_order >= MAX_ORDER) {
1249 i = pageblock_nr_pages;
1250 p = page;
1251 do {
1252 set_page_refcounted(p);
1253 __free_pages(p, MAX_ORDER - 1);
1254 p += MAX_ORDER_NR_PAGES;
1255 } while (i -= MAX_ORDER_NR_PAGES);
1256 } else {
1257 set_page_refcounted(page);
1258 __free_pages(page, pageblock_order);
1259 }
1260
1261 adjust_managed_page_count(page, pageblock_nr_pages);
1262 }
1263 #endif
1264
1265 /*
1266 * The order of subdivision here is critical for the IO subsystem.
1267 * Please do not alter this order without good reasons and regression
1268 * testing. Specifically, as large blocks of memory are subdivided,
1269 * the order in which smaller blocks are delivered depends on the order
1270 * they're subdivided in this function. This is the primary factor
1271 * influencing the order in which pages are delivered to the IO
1272 * subsystem according to empirical testing, and this is also justified
1273 * by considering the behavior of a buddy system containing a single
1274 * large block of memory acted on by a series of small allocations.
1275 * This behavior is a critical factor in sglist merging's success.
1276 *
1277 * -- nyc
1278 */
1279 static inline void expand(struct zone *zone, struct page *page,
1280 int low, int high, struct free_area *area,
1281 int migratetype)
1282 {
1283 unsigned long size = 1 << high;
1284
1285 while (high > low) {
1286 area--;
1287 high--;
1288 size >>= 1;
1289 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1290
1291 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1292 debug_guardpage_enabled() &&
1293 high < debug_guardpage_minorder()) {
1294 /*
1295 * Mark as guard pages (or page), that will allow to
1296 * merge back to allocator when buddy will be freed.
1297 * Corresponding page table entries will not be touched,
1298 * pages will stay not present in virtual address space
1299 */
1300 set_page_guard(zone, &page[size], high, migratetype);
1301 continue;
1302 }
1303 list_add(&page[size].lru, &area->free_list[migratetype]);
1304 area->nr_free++;
1305 set_page_order(&page[size], high);
1306 }
1307 }
1308
1309 /*
1310 * This page is about to be returned from the page allocator
1311 */
1312 static inline int check_new_page(struct page *page)
1313 {
1314 const char *bad_reason = NULL;
1315 unsigned long bad_flags = 0;
1316
1317 if (unlikely(page_mapcount(page)))
1318 bad_reason = "nonzero mapcount";
1319 if (unlikely(page->mapping != NULL))
1320 bad_reason = "non-NULL mapping";
1321 if (unlikely(atomic_read(&page->_count) != 0))
1322 bad_reason = "nonzero _count";
1323 if (unlikely(page->flags & __PG_HWPOISON)) {
1324 bad_reason = "HWPoisoned (hardware-corrupted)";
1325 bad_flags = __PG_HWPOISON;
1326 }
1327 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1328 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1329 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1330 }
1331 #ifdef CONFIG_MEMCG
1332 if (unlikely(page->mem_cgroup))
1333 bad_reason = "page still charged to cgroup";
1334 #endif
1335 if (unlikely(bad_reason)) {
1336 bad_page(page, bad_reason, bad_flags);
1337 return 1;
1338 }
1339 return 0;
1340 }
1341
1342 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1343 int alloc_flags)
1344 {
1345 int i;
1346
1347 for (i = 0; i < (1 << order); i++) {
1348 struct page *p = page + i;
1349 if (unlikely(check_new_page(p)))
1350 return 1;
1351 }
1352
1353 set_page_private(page, 0);
1354 set_page_refcounted(page);
1355
1356 arch_alloc_page(page, order);
1357 kernel_map_pages(page, 1 << order, 1);
1358 kasan_alloc_pages(page, order);
1359
1360 if (gfp_flags & __GFP_ZERO)
1361 for (i = 0; i < (1 << order); i++)
1362 clear_highpage(page + i);
1363
1364 if (order && (gfp_flags & __GFP_COMP))
1365 prep_compound_page(page, order);
1366
1367 set_page_owner(page, order, gfp_flags);
1368
1369 /*
1370 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1371 * allocate the page. The expectation is that the caller is taking
1372 * steps that will free more memory. The caller should avoid the page
1373 * being used for !PFMEMALLOC purposes.
1374 */
1375 if (alloc_flags & ALLOC_NO_WATERMARKS)
1376 set_page_pfmemalloc(page);
1377 else
1378 clear_page_pfmemalloc(page);
1379
1380 return 0;
1381 }
1382
1383 /*
1384 * Go through the free lists for the given migratetype and remove
1385 * the smallest available page from the freelists
1386 */
1387 static inline
1388 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1389 int migratetype)
1390 {
1391 unsigned int current_order;
1392 struct free_area *area;
1393 struct page *page;
1394
1395 /* Find a page of the appropriate size in the preferred list */
1396 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1397 area = &(zone->free_area[current_order]);
1398 if (list_empty(&area->free_list[migratetype]))
1399 continue;
1400
1401 page = list_entry(area->free_list[migratetype].next,
1402 struct page, lru);
1403 list_del(&page->lru);
1404 rmv_page_order(page);
1405 area->nr_free--;
1406 expand(zone, page, order, current_order, area, migratetype);
1407 set_pcppage_migratetype(page, migratetype);
1408 return page;
1409 }
1410
1411 return NULL;
1412 }
1413
1414
1415 /*
1416 * This array describes the order lists are fallen back to when
1417 * the free lists for the desirable migrate type are depleted
1418 */
1419 static int fallbacks[MIGRATE_TYPES][4] = {
1420 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1421 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1422 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1423 #ifdef CONFIG_CMA
1424 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
1425 #endif
1426 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
1427 #ifdef CONFIG_MEMORY_ISOLATION
1428 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
1429 #endif
1430 };
1431
1432 #ifdef CONFIG_CMA
1433 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1434 unsigned int order)
1435 {
1436 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1437 }
1438 #else
1439 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1440 unsigned int order) { return NULL; }
1441 #endif
1442
1443 /*
1444 * Move the free pages in a range to the free lists of the requested type.
1445 * Note that start_page and end_pages are not aligned on a pageblock
1446 * boundary. If alignment is required, use move_freepages_block()
1447 */
1448 int move_freepages(struct zone *zone,
1449 struct page *start_page, struct page *end_page,
1450 int migratetype)
1451 {
1452 struct page *page;
1453 unsigned long order;
1454 int pages_moved = 0;
1455
1456 #ifndef CONFIG_HOLES_IN_ZONE
1457 /*
1458 * page_zone is not safe to call in this context when
1459 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1460 * anyway as we check zone boundaries in move_freepages_block().
1461 * Remove at a later date when no bug reports exist related to
1462 * grouping pages by mobility
1463 */
1464 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1465 #endif
1466
1467 for (page = start_page; page <= end_page;) {
1468 /* Make sure we are not inadvertently changing nodes */
1469 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1470
1471 if (!pfn_valid_within(page_to_pfn(page))) {
1472 page++;
1473 continue;
1474 }
1475
1476 if (!PageBuddy(page)) {
1477 page++;
1478 continue;
1479 }
1480
1481 order = page_order(page);
1482 list_move(&page->lru,
1483 &zone->free_area[order].free_list[migratetype]);
1484 page += 1 << order;
1485 pages_moved += 1 << order;
1486 }
1487
1488 return pages_moved;
1489 }
1490
1491 int move_freepages_block(struct zone *zone, struct page *page,
1492 int migratetype)
1493 {
1494 unsigned long start_pfn, end_pfn;
1495 struct page *start_page, *end_page;
1496
1497 start_pfn = page_to_pfn(page);
1498 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1499 start_page = pfn_to_page(start_pfn);
1500 end_page = start_page + pageblock_nr_pages - 1;
1501 end_pfn = start_pfn + pageblock_nr_pages - 1;
1502
1503 /* Do not cross zone boundaries */
1504 if (!zone_spans_pfn(zone, start_pfn))
1505 start_page = page;
1506 if (!zone_spans_pfn(zone, end_pfn))
1507 return 0;
1508
1509 return move_freepages(zone, start_page, end_page, migratetype);
1510 }
1511
1512 static void change_pageblock_range(struct page *pageblock_page,
1513 int start_order, int migratetype)
1514 {
1515 int nr_pageblocks = 1 << (start_order - pageblock_order);
1516
1517 while (nr_pageblocks--) {
1518 set_pageblock_migratetype(pageblock_page, migratetype);
1519 pageblock_page += pageblock_nr_pages;
1520 }
1521 }
1522
1523 /*
1524 * When we are falling back to another migratetype during allocation, try to
1525 * steal extra free pages from the same pageblocks to satisfy further
1526 * allocations, instead of polluting multiple pageblocks.
1527 *
1528 * If we are stealing a relatively large buddy page, it is likely there will
1529 * be more free pages in the pageblock, so try to steal them all. For
1530 * reclaimable and unmovable allocations, we steal regardless of page size,
1531 * as fragmentation caused by those allocations polluting movable pageblocks
1532 * is worse than movable allocations stealing from unmovable and reclaimable
1533 * pageblocks.
1534 */
1535 static bool can_steal_fallback(unsigned int order, int start_mt)
1536 {
1537 /*
1538 * Leaving this order check is intended, although there is
1539 * relaxed order check in next check. The reason is that
1540 * we can actually steal whole pageblock if this condition met,
1541 * but, below check doesn't guarantee it and that is just heuristic
1542 * so could be changed anytime.
1543 */
1544 if (order >= pageblock_order)
1545 return true;
1546
1547 if (order >= pageblock_order / 2 ||
1548 start_mt == MIGRATE_RECLAIMABLE ||
1549 start_mt == MIGRATE_UNMOVABLE ||
1550 page_group_by_mobility_disabled)
1551 return true;
1552
1553 return false;
1554 }
1555
1556 /*
1557 * This function implements actual steal behaviour. If order is large enough,
1558 * we can steal whole pageblock. If not, we first move freepages in this
1559 * pageblock and check whether half of pages are moved or not. If half of
1560 * pages are moved, we can change migratetype of pageblock and permanently
1561 * use it's pages as requested migratetype in the future.
1562 */
1563 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1564 int start_type)
1565 {
1566 int current_order = page_order(page);
1567 int pages;
1568
1569 /* Take ownership for orders >= pageblock_order */
1570 if (current_order >= pageblock_order) {
1571 change_pageblock_range(page, current_order, start_type);
1572 return;
1573 }
1574
1575 pages = move_freepages_block(zone, page, start_type);
1576
1577 /* Claim the whole block if over half of it is free */
1578 if (pages >= (1 << (pageblock_order-1)) ||
1579 page_group_by_mobility_disabled)
1580 set_pageblock_migratetype(page, start_type);
1581 }
1582
1583 /*
1584 * Check whether there is a suitable fallback freepage with requested order.
1585 * If only_stealable is true, this function returns fallback_mt only if
1586 * we can steal other freepages all together. This would help to reduce
1587 * fragmentation due to mixed migratetype pages in one pageblock.
1588 */
1589 int find_suitable_fallback(struct free_area *area, unsigned int order,
1590 int migratetype, bool only_stealable, bool *can_steal)
1591 {
1592 int i;
1593 int fallback_mt;
1594
1595 if (area->nr_free == 0)
1596 return -1;
1597
1598 *can_steal = false;
1599 for (i = 0;; i++) {
1600 fallback_mt = fallbacks[migratetype][i];
1601 if (fallback_mt == MIGRATE_RESERVE)
1602 break;
1603
1604 if (list_empty(&area->free_list[fallback_mt]))
1605 continue;
1606
1607 if (can_steal_fallback(order, migratetype))
1608 *can_steal = true;
1609
1610 if (!only_stealable)
1611 return fallback_mt;
1612
1613 if (*can_steal)
1614 return fallback_mt;
1615 }
1616
1617 return -1;
1618 }
1619
1620 /* Remove an element from the buddy allocator from the fallback list */
1621 static inline struct page *
1622 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1623 {
1624 struct free_area *area;
1625 unsigned int current_order;
1626 struct page *page;
1627 int fallback_mt;
1628 bool can_steal;
1629
1630 /* Find the largest possible block of pages in the other list */
1631 for (current_order = MAX_ORDER-1;
1632 current_order >= order && current_order <= MAX_ORDER-1;
1633 --current_order) {
1634 area = &(zone->free_area[current_order]);
1635 fallback_mt = find_suitable_fallback(area, current_order,
1636 start_migratetype, false, &can_steal);
1637 if (fallback_mt == -1)
1638 continue;
1639
1640 page = list_entry(area->free_list[fallback_mt].next,
1641 struct page, lru);
1642 if (can_steal)
1643 steal_suitable_fallback(zone, page, start_migratetype);
1644
1645 /* Remove the page from the freelists */
1646 area->nr_free--;
1647 list_del(&page->lru);
1648 rmv_page_order(page);
1649
1650 expand(zone, page, order, current_order, area,
1651 start_migratetype);
1652 /*
1653 * The pcppage_migratetype may differ from pageblock's
1654 * migratetype depending on the decisions in
1655 * find_suitable_fallback(). This is OK as long as it does not
1656 * differ for MIGRATE_CMA pageblocks. Those can be used as
1657 * fallback only via special __rmqueue_cma_fallback() function
1658 */
1659 set_pcppage_migratetype(page, start_migratetype);
1660
1661 trace_mm_page_alloc_extfrag(page, order, current_order,
1662 start_migratetype, fallback_mt);
1663
1664 return page;
1665 }
1666
1667 return NULL;
1668 }
1669
1670 /*
1671 * Do the hard work of removing an element from the buddy allocator.
1672 * Call me with the zone->lock already held.
1673 */
1674 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1675 int migratetype)
1676 {
1677 struct page *page;
1678
1679 retry_reserve:
1680 page = __rmqueue_smallest(zone, order, migratetype);
1681
1682 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1683 if (migratetype == MIGRATE_MOVABLE)
1684 page = __rmqueue_cma_fallback(zone, order);
1685
1686 if (!page)
1687 page = __rmqueue_fallback(zone, order, migratetype);
1688
1689 /*
1690 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1691 * is used because __rmqueue_smallest is an inline function
1692 * and we want just one call site
1693 */
1694 if (!page) {
1695 migratetype = MIGRATE_RESERVE;
1696 goto retry_reserve;
1697 }
1698 }
1699
1700 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1701 return page;
1702 }
1703
1704 /*
1705 * Obtain a specified number of elements from the buddy allocator, all under
1706 * a single hold of the lock, for efficiency. Add them to the supplied list.
1707 * Returns the number of new pages which were placed at *list.
1708 */
1709 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1710 unsigned long count, struct list_head *list,
1711 int migratetype, bool cold)
1712 {
1713 int i;
1714
1715 spin_lock(&zone->lock);
1716 for (i = 0; i < count; ++i) {
1717 struct page *page = __rmqueue(zone, order, migratetype);
1718 if (unlikely(page == NULL))
1719 break;
1720
1721 /*
1722 * Split buddy pages returned by expand() are received here
1723 * in physical page order. The page is added to the callers and
1724 * list and the list head then moves forward. From the callers
1725 * perspective, the linked list is ordered by page number in
1726 * some conditions. This is useful for IO devices that can
1727 * merge IO requests if the physical pages are ordered
1728 * properly.
1729 */
1730 if (likely(!cold))
1731 list_add(&page->lru, list);
1732 else
1733 list_add_tail(&page->lru, list);
1734 list = &page->lru;
1735 if (is_migrate_cma(get_pcppage_migratetype(page)))
1736 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1737 -(1 << order));
1738 }
1739 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1740 spin_unlock(&zone->lock);
1741 return i;
1742 }
1743
1744 #ifdef CONFIG_NUMA
1745 /*
1746 * Called from the vmstat counter updater to drain pagesets of this
1747 * currently executing processor on remote nodes after they have
1748 * expired.
1749 *
1750 * Note that this function must be called with the thread pinned to
1751 * a single processor.
1752 */
1753 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1754 {
1755 unsigned long flags;
1756 int to_drain, batch;
1757
1758 local_irq_save(flags);
1759 batch = READ_ONCE(pcp->batch);
1760 to_drain = min(pcp->count, batch);
1761 if (to_drain > 0) {
1762 free_pcppages_bulk(zone, to_drain, pcp);
1763 pcp->count -= to_drain;
1764 }
1765 local_irq_restore(flags);
1766 }
1767 #endif
1768
1769 /*
1770 * Drain pcplists of the indicated processor and zone.
1771 *
1772 * The processor must either be the current processor and the
1773 * thread pinned to the current processor or a processor that
1774 * is not online.
1775 */
1776 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1777 {
1778 unsigned long flags;
1779 struct per_cpu_pageset *pset;
1780 struct per_cpu_pages *pcp;
1781
1782 local_irq_save(flags);
1783 pset = per_cpu_ptr(zone->pageset, cpu);
1784
1785 pcp = &pset->pcp;
1786 if (pcp->count) {
1787 free_pcppages_bulk(zone, pcp->count, pcp);
1788 pcp->count = 0;
1789 }
1790 local_irq_restore(flags);
1791 }
1792
1793 /*
1794 * Drain pcplists of all zones on the indicated processor.
1795 *
1796 * The processor must either be the current processor and the
1797 * thread pinned to the current processor or a processor that
1798 * is not online.
1799 */
1800 static void drain_pages(unsigned int cpu)
1801 {
1802 struct zone *zone;
1803
1804 for_each_populated_zone(zone) {
1805 drain_pages_zone(cpu, zone);
1806 }
1807 }
1808
1809 /*
1810 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1811 *
1812 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1813 * the single zone's pages.
1814 */
1815 void drain_local_pages(struct zone *zone)
1816 {
1817 int cpu = smp_processor_id();
1818
1819 if (zone)
1820 drain_pages_zone(cpu, zone);
1821 else
1822 drain_pages(cpu);
1823 }
1824
1825 /*
1826 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1827 *
1828 * When zone parameter is non-NULL, spill just the single zone's pages.
1829 *
1830 * Note that this code is protected against sending an IPI to an offline
1831 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1832 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1833 * nothing keeps CPUs from showing up after we populated the cpumask and
1834 * before the call to on_each_cpu_mask().
1835 */
1836 void drain_all_pages(struct zone *zone)
1837 {
1838 int cpu;
1839
1840 /*
1841 * Allocate in the BSS so we wont require allocation in
1842 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1843 */
1844 static cpumask_t cpus_with_pcps;
1845
1846 /*
1847 * We don't care about racing with CPU hotplug event
1848 * as offline notification will cause the notified
1849 * cpu to drain that CPU pcps and on_each_cpu_mask
1850 * disables preemption as part of its processing
1851 */
1852 for_each_online_cpu(cpu) {
1853 struct per_cpu_pageset *pcp;
1854 struct zone *z;
1855 bool has_pcps = false;
1856
1857 if (zone) {
1858 pcp = per_cpu_ptr(zone->pageset, cpu);
1859 if (pcp->pcp.count)
1860 has_pcps = true;
1861 } else {
1862 for_each_populated_zone(z) {
1863 pcp = per_cpu_ptr(z->pageset, cpu);
1864 if (pcp->pcp.count) {
1865 has_pcps = true;
1866 break;
1867 }
1868 }
1869 }
1870
1871 if (has_pcps)
1872 cpumask_set_cpu(cpu, &cpus_with_pcps);
1873 else
1874 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1875 }
1876 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1877 zone, 1);
1878 }
1879
1880 #ifdef CONFIG_HIBERNATION
1881
1882 void mark_free_pages(struct zone *zone)
1883 {
1884 unsigned long pfn, max_zone_pfn;
1885 unsigned long flags;
1886 unsigned int order, t;
1887 struct list_head *curr;
1888
1889 if (zone_is_empty(zone))
1890 return;
1891
1892 spin_lock_irqsave(&zone->lock, flags);
1893
1894 max_zone_pfn = zone_end_pfn(zone);
1895 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1896 if (pfn_valid(pfn)) {
1897 struct page *page = pfn_to_page(pfn);
1898
1899 if (!swsusp_page_is_forbidden(page))
1900 swsusp_unset_page_free(page);
1901 }
1902
1903 for_each_migratetype_order(order, t) {
1904 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1905 unsigned long i;
1906
1907 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1908 for (i = 0; i < (1UL << order); i++)
1909 swsusp_set_page_free(pfn_to_page(pfn + i));
1910 }
1911 }
1912 spin_unlock_irqrestore(&zone->lock, flags);
1913 }
1914 #endif /* CONFIG_PM */
1915
1916 /*
1917 * Free a 0-order page
1918 * cold == true ? free a cold page : free a hot page
1919 */
1920 void free_hot_cold_page(struct page *page, bool cold)
1921 {
1922 struct zone *zone = page_zone(page);
1923 struct per_cpu_pages *pcp;
1924 unsigned long flags;
1925 unsigned long pfn = page_to_pfn(page);
1926 int migratetype;
1927
1928 if (!free_pages_prepare(page, 0))
1929 return;
1930
1931 migratetype = get_pfnblock_migratetype(page, pfn);
1932 set_pcppage_migratetype(page, migratetype);
1933 local_irq_save(flags);
1934 __count_vm_event(PGFREE);
1935
1936 /*
1937 * We only track unmovable, reclaimable and movable on pcp lists.
1938 * Free ISOLATE pages back to the allocator because they are being
1939 * offlined but treat RESERVE as movable pages so we can get those
1940 * areas back if necessary. Otherwise, we may have to free
1941 * excessively into the page allocator
1942 */
1943 if (migratetype >= MIGRATE_PCPTYPES) {
1944 if (unlikely(is_migrate_isolate(migratetype))) {
1945 free_one_page(zone, page, pfn, 0, migratetype);
1946 goto out;
1947 }
1948 migratetype = MIGRATE_MOVABLE;
1949 }
1950
1951 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1952 if (!cold)
1953 list_add(&page->lru, &pcp->lists[migratetype]);
1954 else
1955 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1956 pcp->count++;
1957 if (pcp->count >= pcp->high) {
1958 unsigned long batch = READ_ONCE(pcp->batch);
1959 free_pcppages_bulk(zone, batch, pcp);
1960 pcp->count -= batch;
1961 }
1962
1963 out:
1964 local_irq_restore(flags);
1965 }
1966
1967 /*
1968 * Free a list of 0-order pages
1969 */
1970 void free_hot_cold_page_list(struct list_head *list, bool cold)
1971 {
1972 struct page *page, *next;
1973
1974 list_for_each_entry_safe(page, next, list, lru) {
1975 trace_mm_page_free_batched(page, cold);
1976 free_hot_cold_page(page, cold);
1977 }
1978 }
1979
1980 /*
1981 * split_page takes a non-compound higher-order page, and splits it into
1982 * n (1<<order) sub-pages: page[0..n]
1983 * Each sub-page must be freed individually.
1984 *
1985 * Note: this is probably too low level an operation for use in drivers.
1986 * Please consult with lkml before using this in your driver.
1987 */
1988 void split_page(struct page *page, unsigned int order)
1989 {
1990 int i;
1991 gfp_t gfp_mask;
1992
1993 VM_BUG_ON_PAGE(PageCompound(page), page);
1994 VM_BUG_ON_PAGE(!page_count(page), page);
1995
1996 #ifdef CONFIG_KMEMCHECK
1997 /*
1998 * Split shadow pages too, because free(page[0]) would
1999 * otherwise free the whole shadow.
2000 */
2001 if (kmemcheck_page_is_tracked(page))
2002 split_page(virt_to_page(page[0].shadow), order);
2003 #endif
2004
2005 gfp_mask = get_page_owner_gfp(page);
2006 set_page_owner(page, 0, gfp_mask);
2007 for (i = 1; i < (1 << order); i++) {
2008 set_page_refcounted(page + i);
2009 set_page_owner(page + i, 0, gfp_mask);
2010 }
2011 }
2012 EXPORT_SYMBOL_GPL(split_page);
2013
2014 int __isolate_free_page(struct page *page, unsigned int order)
2015 {
2016 unsigned long watermark;
2017 struct zone *zone;
2018 int mt;
2019
2020 BUG_ON(!PageBuddy(page));
2021
2022 zone = page_zone(page);
2023 mt = get_pageblock_migratetype(page);
2024
2025 if (!is_migrate_isolate(mt)) {
2026 /* Obey watermarks as if the page was being allocated */
2027 watermark = low_wmark_pages(zone) + (1 << order);
2028 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2029 return 0;
2030
2031 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2032 }
2033
2034 /* Remove page from free list */
2035 list_del(&page->lru);
2036 zone->free_area[order].nr_free--;
2037 rmv_page_order(page);
2038
2039 set_page_owner(page, order, __GFP_MOVABLE);
2040
2041 /* Set the pageblock if the isolated page is at least a pageblock */
2042 if (order >= pageblock_order - 1) {
2043 struct page *endpage = page + (1 << order) - 1;
2044 for (; page < endpage; page += pageblock_nr_pages) {
2045 int mt = get_pageblock_migratetype(page);
2046 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2047 set_pageblock_migratetype(page,
2048 MIGRATE_MOVABLE);
2049 }
2050 }
2051
2052
2053 return 1UL << order;
2054 }
2055
2056 /*
2057 * Similar to split_page except the page is already free. As this is only
2058 * being used for migration, the migratetype of the block also changes.
2059 * As this is called with interrupts disabled, the caller is responsible
2060 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2061 * are enabled.
2062 *
2063 * Note: this is probably too low level an operation for use in drivers.
2064 * Please consult with lkml before using this in your driver.
2065 */
2066 int split_free_page(struct page *page)
2067 {
2068 unsigned int order;
2069 int nr_pages;
2070
2071 order = page_order(page);
2072
2073 nr_pages = __isolate_free_page(page, order);
2074 if (!nr_pages)
2075 return 0;
2076
2077 /* Split into individual pages */
2078 set_page_refcounted(page);
2079 split_page(page, order);
2080 return nr_pages;
2081 }
2082
2083 /*
2084 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2085 */
2086 static inline
2087 struct page *buffered_rmqueue(struct zone *preferred_zone,
2088 struct zone *zone, unsigned int order,
2089 gfp_t gfp_flags, int migratetype)
2090 {
2091 unsigned long flags;
2092 struct page *page;
2093 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2094
2095 if (likely(order == 0)) {
2096 struct per_cpu_pages *pcp;
2097 struct list_head *list;
2098
2099 local_irq_save(flags);
2100 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2101 list = &pcp->lists[migratetype];
2102 if (list_empty(list)) {
2103 pcp->count += rmqueue_bulk(zone, 0,
2104 pcp->batch, list,
2105 migratetype, cold);
2106 if (unlikely(list_empty(list)))
2107 goto failed;
2108 }
2109
2110 if (cold)
2111 page = list_entry(list->prev, struct page, lru);
2112 else
2113 page = list_entry(list->next, struct page, lru);
2114
2115 list_del(&page->lru);
2116 pcp->count--;
2117 } else {
2118 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2119 /*
2120 * __GFP_NOFAIL is not to be used in new code.
2121 *
2122 * All __GFP_NOFAIL callers should be fixed so that they
2123 * properly detect and handle allocation failures.
2124 *
2125 * We most definitely don't want callers attempting to
2126 * allocate greater than order-1 page units with
2127 * __GFP_NOFAIL.
2128 */
2129 WARN_ON_ONCE(order > 1);
2130 }
2131 spin_lock_irqsave(&zone->lock, flags);
2132 page = __rmqueue(zone, order, migratetype);
2133 spin_unlock(&zone->lock);
2134 if (!page)
2135 goto failed;
2136 __mod_zone_freepage_state(zone, -(1 << order),
2137 get_pcppage_migratetype(page));
2138 }
2139
2140 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2141 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2142 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2143 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2144
2145 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2146 zone_statistics(preferred_zone, zone, gfp_flags);
2147 local_irq_restore(flags);
2148
2149 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2150 return page;
2151
2152 failed:
2153 local_irq_restore(flags);
2154 return NULL;
2155 }
2156
2157 #ifdef CONFIG_FAIL_PAGE_ALLOC
2158
2159 static struct {
2160 struct fault_attr attr;
2161
2162 bool ignore_gfp_highmem;
2163 bool ignore_gfp_reclaim;
2164 u32 min_order;
2165 } fail_page_alloc = {
2166 .attr = FAULT_ATTR_INITIALIZER,
2167 .ignore_gfp_reclaim = true,
2168 .ignore_gfp_highmem = true,
2169 .min_order = 1,
2170 };
2171
2172 static int __init setup_fail_page_alloc(char *str)
2173 {
2174 return setup_fault_attr(&fail_page_alloc.attr, str);
2175 }
2176 __setup("fail_page_alloc=", setup_fail_page_alloc);
2177
2178 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2179 {
2180 if (order < fail_page_alloc.min_order)
2181 return false;
2182 if (gfp_mask & __GFP_NOFAIL)
2183 return false;
2184 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2185 return false;
2186 if (fail_page_alloc.ignore_gfp_reclaim &&
2187 (gfp_mask & __GFP_DIRECT_RECLAIM))
2188 return false;
2189
2190 return should_fail(&fail_page_alloc.attr, 1 << order);
2191 }
2192
2193 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2194
2195 static int __init fail_page_alloc_debugfs(void)
2196 {
2197 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2198 struct dentry *dir;
2199
2200 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2201 &fail_page_alloc.attr);
2202 if (IS_ERR(dir))
2203 return PTR_ERR(dir);
2204
2205 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2206 &fail_page_alloc.ignore_gfp_reclaim))
2207 goto fail;
2208 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2209 &fail_page_alloc.ignore_gfp_highmem))
2210 goto fail;
2211 if (!debugfs_create_u32("min-order", mode, dir,
2212 &fail_page_alloc.min_order))
2213 goto fail;
2214
2215 return 0;
2216 fail:
2217 debugfs_remove_recursive(dir);
2218
2219 return -ENOMEM;
2220 }
2221
2222 late_initcall(fail_page_alloc_debugfs);
2223
2224 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2225
2226 #else /* CONFIG_FAIL_PAGE_ALLOC */
2227
2228 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2229 {
2230 return false;
2231 }
2232
2233 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2234
2235 /*
2236 * Return true if free pages are above 'mark'. This takes into account the order
2237 * of the allocation.
2238 */
2239 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2240 unsigned long mark, int classzone_idx, int alloc_flags,
2241 long free_pages)
2242 {
2243 /* free_pages may go negative - that's OK */
2244 long min = mark;
2245 int o;
2246 long free_cma = 0;
2247
2248 free_pages -= (1 << order) - 1;
2249 if (alloc_flags & ALLOC_HIGH)
2250 min -= min / 2;
2251 if (alloc_flags & ALLOC_HARDER)
2252 min -= min / 4;
2253
2254 #ifdef CONFIG_CMA
2255 /* If allocation can't use CMA areas don't use free CMA pages */
2256 if (!(alloc_flags & ALLOC_CMA))
2257 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
2258 #endif
2259
2260 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
2261 return false;
2262 for (o = 0; o < order; o++) {
2263 /* At the next order, this order's pages become unavailable */
2264 free_pages -= z->free_area[o].nr_free << o;
2265
2266 /* Require fewer higher order pages to be free */
2267 min >>= 1;
2268
2269 if (free_pages <= min)
2270 return false;
2271 }
2272 return true;
2273 }
2274
2275 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2276 int classzone_idx, int alloc_flags)
2277 {
2278 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2279 zone_page_state(z, NR_FREE_PAGES));
2280 }
2281
2282 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2283 unsigned long mark, int classzone_idx)
2284 {
2285 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2286
2287 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2288 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2289
2290 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2291 free_pages);
2292 }
2293
2294 #ifdef CONFIG_NUMA
2295 /*
2296 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
2297 * skip over zones that are not allowed by the cpuset, or that have
2298 * been recently (in last second) found to be nearly full. See further
2299 * comments in mmzone.h. Reduces cache footprint of zonelist scans
2300 * that have to skip over a lot of full or unallowed zones.
2301 *
2302 * If the zonelist cache is present in the passed zonelist, then
2303 * returns a pointer to the allowed node mask (either the current
2304 * tasks mems_allowed, or node_states[N_MEMORY].)
2305 *
2306 * If the zonelist cache is not available for this zonelist, does
2307 * nothing and returns NULL.
2308 *
2309 * If the fullzones BITMAP in the zonelist cache is stale (more than
2310 * a second since last zap'd) then we zap it out (clear its bits.)
2311 *
2312 * We hold off even calling zlc_setup, until after we've checked the
2313 * first zone in the zonelist, on the theory that most allocations will
2314 * be satisfied from that first zone, so best to examine that zone as
2315 * quickly as we can.
2316 */
2317 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2318 {
2319 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2320 nodemask_t *allowednodes; /* zonelist_cache approximation */
2321
2322 zlc = zonelist->zlcache_ptr;
2323 if (!zlc)
2324 return NULL;
2325
2326 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
2327 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2328 zlc->last_full_zap = jiffies;
2329 }
2330
2331 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
2332 &cpuset_current_mems_allowed :
2333 &node_states[N_MEMORY];
2334 return allowednodes;
2335 }
2336
2337 /*
2338 * Given 'z' scanning a zonelist, run a couple of quick checks to see
2339 * if it is worth looking at further for free memory:
2340 * 1) Check that the zone isn't thought to be full (doesn't have its
2341 * bit set in the zonelist_cache fullzones BITMAP).
2342 * 2) Check that the zones node (obtained from the zonelist_cache
2343 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
2344 * Return true (non-zero) if zone is worth looking at further, or
2345 * else return false (zero) if it is not.
2346 *
2347 * This check -ignores- the distinction between various watermarks,
2348 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
2349 * found to be full for any variation of these watermarks, it will
2350 * be considered full for up to one second by all requests, unless
2351 * we are so low on memory on all allowed nodes that we are forced
2352 * into the second scan of the zonelist.
2353 *
2354 * In the second scan we ignore this zonelist cache and exactly
2355 * apply the watermarks to all zones, even it is slower to do so.
2356 * We are low on memory in the second scan, and should leave no stone
2357 * unturned looking for a free page.
2358 */
2359 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
2360 nodemask_t *allowednodes)
2361 {
2362 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2363 int i; /* index of *z in zonelist zones */
2364 int n; /* node that zone *z is on */
2365
2366 zlc = zonelist->zlcache_ptr;
2367 if (!zlc)
2368 return 1;
2369
2370 i = z - zonelist->_zonerefs;
2371 n = zlc->z_to_n[i];
2372
2373 /* This zone is worth trying if it is allowed but not full */
2374 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
2375 }
2376
2377 /*
2378 * Given 'z' scanning a zonelist, set the corresponding bit in
2379 * zlc->fullzones, so that subsequent attempts to allocate a page
2380 * from that zone don't waste time re-examining it.
2381 */
2382 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2383 {
2384 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2385 int i; /* index of *z in zonelist zones */
2386
2387 zlc = zonelist->zlcache_ptr;
2388 if (!zlc)
2389 return;
2390
2391 i = z - zonelist->_zonerefs;
2392
2393 set_bit(i, zlc->fullzones);
2394 }
2395
2396 /*
2397 * clear all zones full, called after direct reclaim makes progress so that
2398 * a zone that was recently full is not skipped over for up to a second
2399 */
2400 static void zlc_clear_zones_full(struct zonelist *zonelist)
2401 {
2402 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2403
2404 zlc = zonelist->zlcache_ptr;
2405 if (!zlc)
2406 return;
2407
2408 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2409 }
2410
2411 static bool zone_local(struct zone *local_zone, struct zone *zone)
2412 {
2413 return local_zone->node == zone->node;
2414 }
2415
2416 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2417 {
2418 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2419 RECLAIM_DISTANCE;
2420 }
2421
2422 #else /* CONFIG_NUMA */
2423
2424 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2425 {
2426 return NULL;
2427 }
2428
2429 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
2430 nodemask_t *allowednodes)
2431 {
2432 return 1;
2433 }
2434
2435 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2436 {
2437 }
2438
2439 static void zlc_clear_zones_full(struct zonelist *zonelist)
2440 {
2441 }
2442
2443 static bool zone_local(struct zone *local_zone, struct zone *zone)
2444 {
2445 return true;
2446 }
2447
2448 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2449 {
2450 return true;
2451 }
2452
2453 #endif /* CONFIG_NUMA */
2454
2455 static void reset_alloc_batches(struct zone *preferred_zone)
2456 {
2457 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2458
2459 do {
2460 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2461 high_wmark_pages(zone) - low_wmark_pages(zone) -
2462 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2463 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2464 } while (zone++ != preferred_zone);
2465 }
2466
2467 /*
2468 * get_page_from_freelist goes through the zonelist trying to allocate
2469 * a page.
2470 */
2471 static struct page *
2472 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2473 const struct alloc_context *ac)
2474 {
2475 struct zonelist *zonelist = ac->zonelist;
2476 struct zoneref *z;
2477 struct page *page = NULL;
2478 struct zone *zone;
2479 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2480 int zlc_active = 0; /* set if using zonelist_cache */
2481 int did_zlc_setup = 0; /* just call zlc_setup() one time */
2482 int nr_fair_skipped = 0;
2483 bool zonelist_rescan;
2484
2485 zonelist_scan:
2486 zonelist_rescan = false;
2487
2488 /*
2489 * Scan zonelist, looking for a zone with enough free.
2490 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2491 */
2492 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2493 ac->nodemask) {
2494 unsigned long mark;
2495
2496 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2497 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2498 continue;
2499 if (cpusets_enabled() &&
2500 (alloc_flags & ALLOC_CPUSET) &&
2501 !cpuset_zone_allowed(zone, gfp_mask))
2502 continue;
2503 /*
2504 * Distribute pages in proportion to the individual
2505 * zone size to ensure fair page aging. The zone a
2506 * page was allocated in should have no effect on the
2507 * time the page has in memory before being reclaimed.
2508 */
2509 if (alloc_flags & ALLOC_FAIR) {
2510 if (!zone_local(ac->preferred_zone, zone))
2511 break;
2512 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2513 nr_fair_skipped++;
2514 continue;
2515 }
2516 }
2517 /*
2518 * When allocating a page cache page for writing, we
2519 * want to get it from a zone that is within its dirty
2520 * limit, such that no single zone holds more than its
2521 * proportional share of globally allowed dirty pages.
2522 * The dirty limits take into account the zone's
2523 * lowmem reserves and high watermark so that kswapd
2524 * should be able to balance it without having to
2525 * write pages from its LRU list.
2526 *
2527 * This may look like it could increase pressure on
2528 * lower zones by failing allocations in higher zones
2529 * before they are full. But the pages that do spill
2530 * over are limited as the lower zones are protected
2531 * by this very same mechanism. It should not become
2532 * a practical burden to them.
2533 *
2534 * XXX: For now, allow allocations to potentially
2535 * exceed the per-zone dirty limit in the slowpath
2536 * (spread_dirty_pages unset) before going into reclaim,
2537 * which is important when on a NUMA setup the allowed
2538 * zones are together not big enough to reach the
2539 * global limit. The proper fix for these situations
2540 * will require awareness of zones in the
2541 * dirty-throttling and the flusher threads.
2542 */
2543 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2544 continue;
2545
2546 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2547 if (!zone_watermark_ok(zone, order, mark,
2548 ac->classzone_idx, alloc_flags)) {
2549 int ret;
2550
2551 /* Checked here to keep the fast path fast */
2552 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2553 if (alloc_flags & ALLOC_NO_WATERMARKS)
2554 goto try_this_zone;
2555
2556 if (IS_ENABLED(CONFIG_NUMA) &&
2557 !did_zlc_setup && nr_online_nodes > 1) {
2558 /*
2559 * we do zlc_setup if there are multiple nodes
2560 * and before considering the first zone allowed
2561 * by the cpuset.
2562 */
2563 allowednodes = zlc_setup(zonelist, alloc_flags);
2564 zlc_active = 1;
2565 did_zlc_setup = 1;
2566 }
2567
2568 if (zone_reclaim_mode == 0 ||
2569 !zone_allows_reclaim(ac->preferred_zone, zone))
2570 goto this_zone_full;
2571
2572 /*
2573 * As we may have just activated ZLC, check if the first
2574 * eligible zone has failed zone_reclaim recently.
2575 */
2576 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2577 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2578 continue;
2579
2580 ret = zone_reclaim(zone, gfp_mask, order);
2581 switch (ret) {
2582 case ZONE_RECLAIM_NOSCAN:
2583 /* did not scan */
2584 continue;
2585 case ZONE_RECLAIM_FULL:
2586 /* scanned but unreclaimable */
2587 continue;
2588 default:
2589 /* did we reclaim enough */
2590 if (zone_watermark_ok(zone, order, mark,
2591 ac->classzone_idx, alloc_flags))
2592 goto try_this_zone;
2593
2594 /*
2595 * Failed to reclaim enough to meet watermark.
2596 * Only mark the zone full if checking the min
2597 * watermark or if we failed to reclaim just
2598 * 1<<order pages or else the page allocator
2599 * fastpath will prematurely mark zones full
2600 * when the watermark is between the low and
2601 * min watermarks.
2602 */
2603 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2604 ret == ZONE_RECLAIM_SOME)
2605 goto this_zone_full;
2606
2607 continue;
2608 }
2609 }
2610
2611 try_this_zone:
2612 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2613 gfp_mask, ac->migratetype);
2614 if (page) {
2615 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2616 goto try_this_zone;
2617 return page;
2618 }
2619 this_zone_full:
2620 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2621 zlc_mark_zone_full(zonelist, z);
2622 }
2623
2624 /*
2625 * The first pass makes sure allocations are spread fairly within the
2626 * local node. However, the local node might have free pages left
2627 * after the fairness batches are exhausted, and remote zones haven't
2628 * even been considered yet. Try once more without fairness, and
2629 * include remote zones now, before entering the slowpath and waking
2630 * kswapd: prefer spilling to a remote zone over swapping locally.
2631 */
2632 if (alloc_flags & ALLOC_FAIR) {
2633 alloc_flags &= ~ALLOC_FAIR;
2634 if (nr_fair_skipped) {
2635 zonelist_rescan = true;
2636 reset_alloc_batches(ac->preferred_zone);
2637 }
2638 if (nr_online_nodes > 1)
2639 zonelist_rescan = true;
2640 }
2641
2642 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2643 /* Disable zlc cache for second zonelist scan */
2644 zlc_active = 0;
2645 zonelist_rescan = true;
2646 }
2647
2648 if (zonelist_rescan)
2649 goto zonelist_scan;
2650
2651 return NULL;
2652 }
2653
2654 /*
2655 * Large machines with many possible nodes should not always dump per-node
2656 * meminfo in irq context.
2657 */
2658 static inline bool should_suppress_show_mem(void)
2659 {
2660 bool ret = false;
2661
2662 #if NODES_SHIFT > 8
2663 ret = in_interrupt();
2664 #endif
2665 return ret;
2666 }
2667
2668 static DEFINE_RATELIMIT_STATE(nopage_rs,
2669 DEFAULT_RATELIMIT_INTERVAL,
2670 DEFAULT_RATELIMIT_BURST);
2671
2672 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2673 {
2674 unsigned int filter = SHOW_MEM_FILTER_NODES;
2675
2676 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2677 debug_guardpage_minorder() > 0)
2678 return;
2679
2680 /*
2681 * This documents exceptions given to allocations in certain
2682 * contexts that are allowed to allocate outside current's set
2683 * of allowed nodes.
2684 */
2685 if (!(gfp_mask & __GFP_NOMEMALLOC))
2686 if (test_thread_flag(TIF_MEMDIE) ||
2687 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2688 filter &= ~SHOW_MEM_FILTER_NODES;
2689 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2690 filter &= ~SHOW_MEM_FILTER_NODES;
2691
2692 if (fmt) {
2693 struct va_format vaf;
2694 va_list args;
2695
2696 va_start(args, fmt);
2697
2698 vaf.fmt = fmt;
2699 vaf.va = &args;
2700
2701 pr_warn("%pV", &vaf);
2702
2703 va_end(args);
2704 }
2705
2706 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2707 current->comm, order, gfp_mask);
2708
2709 dump_stack();
2710 if (!should_suppress_show_mem())
2711 show_mem(filter);
2712 }
2713
2714 static inline struct page *
2715 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2716 const struct alloc_context *ac, unsigned long *did_some_progress)
2717 {
2718 struct oom_control oc = {
2719 .zonelist = ac->zonelist,
2720 .nodemask = ac->nodemask,
2721 .gfp_mask = gfp_mask,
2722 .order = order,
2723 };
2724 struct page *page;
2725
2726 *did_some_progress = 0;
2727
2728 /*
2729 * Acquire the oom lock. If that fails, somebody else is
2730 * making progress for us.
2731 */
2732 if (!mutex_trylock(&oom_lock)) {
2733 *did_some_progress = 1;
2734 schedule_timeout_uninterruptible(1);
2735 return NULL;
2736 }
2737
2738 /*
2739 * Go through the zonelist yet one more time, keep very high watermark
2740 * here, this is only to catch a parallel oom killing, we must fail if
2741 * we're still under heavy pressure.
2742 */
2743 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2744 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2745 if (page)
2746 goto out;
2747
2748 if (!(gfp_mask & __GFP_NOFAIL)) {
2749 /* Coredumps can quickly deplete all memory reserves */
2750 if (current->flags & PF_DUMPCORE)
2751 goto out;
2752 /* The OOM killer will not help higher order allocs */
2753 if (order > PAGE_ALLOC_COSTLY_ORDER)
2754 goto out;
2755 /* The OOM killer does not needlessly kill tasks for lowmem */
2756 if (ac->high_zoneidx < ZONE_NORMAL)
2757 goto out;
2758 /* The OOM killer does not compensate for IO-less reclaim */
2759 if (!(gfp_mask & __GFP_FS)) {
2760 /*
2761 * XXX: Page reclaim didn't yield anything,
2762 * and the OOM killer can't be invoked, but
2763 * keep looping as per tradition.
2764 */
2765 *did_some_progress = 1;
2766 goto out;
2767 }
2768 if (pm_suspended_storage())
2769 goto out;
2770 /* The OOM killer may not free memory on a specific node */
2771 if (gfp_mask & __GFP_THISNODE)
2772 goto out;
2773 }
2774 /* Exhausted what can be done so it's blamo time */
2775 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2776 *did_some_progress = 1;
2777 out:
2778 mutex_unlock(&oom_lock);
2779 return page;
2780 }
2781
2782 #ifdef CONFIG_COMPACTION
2783 /* Try memory compaction for high-order allocations before reclaim */
2784 static struct page *
2785 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2786 int alloc_flags, const struct alloc_context *ac,
2787 enum migrate_mode mode, int *contended_compaction,
2788 bool *deferred_compaction)
2789 {
2790 unsigned long compact_result;
2791 struct page *page;
2792
2793 if (!order)
2794 return NULL;
2795
2796 current->flags |= PF_MEMALLOC;
2797 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2798 mode, contended_compaction);
2799 current->flags &= ~PF_MEMALLOC;
2800
2801 switch (compact_result) {
2802 case COMPACT_DEFERRED:
2803 *deferred_compaction = true;
2804 /* fall-through */
2805 case COMPACT_SKIPPED:
2806 return NULL;
2807 default:
2808 break;
2809 }
2810
2811 /*
2812 * At least in one zone compaction wasn't deferred or skipped, so let's
2813 * count a compaction stall
2814 */
2815 count_vm_event(COMPACTSTALL);
2816
2817 page = get_page_from_freelist(gfp_mask, order,
2818 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2819
2820 if (page) {
2821 struct zone *zone = page_zone(page);
2822
2823 zone->compact_blockskip_flush = false;
2824 compaction_defer_reset(zone, order, true);
2825 count_vm_event(COMPACTSUCCESS);
2826 return page;
2827 }
2828
2829 /*
2830 * It's bad if compaction run occurs and fails. The most likely reason
2831 * is that pages exist, but not enough to satisfy watermarks.
2832 */
2833 count_vm_event(COMPACTFAIL);
2834
2835 cond_resched();
2836
2837 return NULL;
2838 }
2839 #else
2840 static inline struct page *
2841 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2842 int alloc_flags, const struct alloc_context *ac,
2843 enum migrate_mode mode, int *contended_compaction,
2844 bool *deferred_compaction)
2845 {
2846 return NULL;
2847 }
2848 #endif /* CONFIG_COMPACTION */
2849
2850 /* Perform direct synchronous page reclaim */
2851 static int
2852 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2853 const struct alloc_context *ac)
2854 {
2855 struct reclaim_state reclaim_state;
2856 int progress;
2857
2858 cond_resched();
2859
2860 /* We now go into synchronous reclaim */
2861 cpuset_memory_pressure_bump();
2862 current->flags |= PF_MEMALLOC;
2863 lockdep_set_current_reclaim_state(gfp_mask);
2864 reclaim_state.reclaimed_slab = 0;
2865 current->reclaim_state = &reclaim_state;
2866
2867 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2868 ac->nodemask);
2869
2870 current->reclaim_state = NULL;
2871 lockdep_clear_current_reclaim_state();
2872 current->flags &= ~PF_MEMALLOC;
2873
2874 cond_resched();
2875
2876 return progress;
2877 }
2878
2879 /* The really slow allocator path where we enter direct reclaim */
2880 static inline struct page *
2881 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2882 int alloc_flags, const struct alloc_context *ac,
2883 unsigned long *did_some_progress)
2884 {
2885 struct page *page = NULL;
2886 bool drained = false;
2887
2888 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2889 if (unlikely(!(*did_some_progress)))
2890 return NULL;
2891
2892 /* After successful reclaim, reconsider all zones for allocation */
2893 if (IS_ENABLED(CONFIG_NUMA))
2894 zlc_clear_zones_full(ac->zonelist);
2895
2896 retry:
2897 page = get_page_from_freelist(gfp_mask, order,
2898 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2899
2900 /*
2901 * If an allocation failed after direct reclaim, it could be because
2902 * pages are pinned on the per-cpu lists. Drain them and try again
2903 */
2904 if (!page && !drained) {
2905 drain_all_pages(NULL);
2906 drained = true;
2907 goto retry;
2908 }
2909
2910 return page;
2911 }
2912
2913 /*
2914 * This is called in the allocator slow-path if the allocation request is of
2915 * sufficient urgency to ignore watermarks and take other desperate measures
2916 */
2917 static inline struct page *
2918 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2919 const struct alloc_context *ac)
2920 {
2921 struct page *page;
2922
2923 do {
2924 page = get_page_from_freelist(gfp_mask, order,
2925 ALLOC_NO_WATERMARKS, ac);
2926
2927 if (!page && gfp_mask & __GFP_NOFAIL)
2928 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2929 HZ/50);
2930 } while (!page && (gfp_mask & __GFP_NOFAIL));
2931
2932 return page;
2933 }
2934
2935 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2936 {
2937 struct zoneref *z;
2938 struct zone *zone;
2939
2940 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2941 ac->high_zoneidx, ac->nodemask)
2942 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2943 }
2944
2945 static inline int
2946 gfp_to_alloc_flags(gfp_t gfp_mask)
2947 {
2948 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2949
2950 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2951 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2952
2953 /*
2954 * The caller may dip into page reserves a bit more if the caller
2955 * cannot run direct reclaim, or if the caller has realtime scheduling
2956 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2957 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
2958 */
2959 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2960
2961 if (gfp_mask & __GFP_ATOMIC) {
2962 /*
2963 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2964 * if it can't schedule.
2965 */
2966 if (!(gfp_mask & __GFP_NOMEMALLOC))
2967 alloc_flags |= ALLOC_HARDER;
2968 /*
2969 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2970 * comment for __cpuset_node_allowed().
2971 */
2972 alloc_flags &= ~ALLOC_CPUSET;
2973 } else if (unlikely(rt_task(current)) && !in_interrupt())
2974 alloc_flags |= ALLOC_HARDER;
2975
2976 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2977 if (gfp_mask & __GFP_MEMALLOC)
2978 alloc_flags |= ALLOC_NO_WATERMARKS;
2979 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2980 alloc_flags |= ALLOC_NO_WATERMARKS;
2981 else if (!in_interrupt() &&
2982 ((current->flags & PF_MEMALLOC) ||
2983 unlikely(test_thread_flag(TIF_MEMDIE))))
2984 alloc_flags |= ALLOC_NO_WATERMARKS;
2985 }
2986 #ifdef CONFIG_CMA
2987 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2988 alloc_flags |= ALLOC_CMA;
2989 #endif
2990 return alloc_flags;
2991 }
2992
2993 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2994 {
2995 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2996 }
2997
2998 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
2999 {
3000 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3001 }
3002
3003 static inline struct page *
3004 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3005 struct alloc_context *ac)
3006 {
3007 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3008 struct page *page = NULL;
3009 int alloc_flags;
3010 unsigned long pages_reclaimed = 0;
3011 unsigned long did_some_progress;
3012 enum migrate_mode migration_mode = MIGRATE_ASYNC;
3013 bool deferred_compaction = false;
3014 int contended_compaction = COMPACT_CONTENDED_NONE;
3015
3016 /*
3017 * In the slowpath, we sanity check order to avoid ever trying to
3018 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3019 * be using allocators in order of preference for an area that is
3020 * too large.
3021 */
3022 if (order >= MAX_ORDER) {
3023 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3024 return NULL;
3025 }
3026
3027 /*
3028 * We also sanity check to catch abuse of atomic reserves being used by
3029 * callers that are not in atomic context.
3030 */
3031 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3032 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3033 gfp_mask &= ~__GFP_ATOMIC;
3034
3035 /*
3036 * If this allocation cannot block and it is for a specific node, then
3037 * fail early. There's no need to wakeup kswapd or retry for a
3038 * speculative node-specific allocation.
3039 */
3040 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
3041 goto nopage;
3042
3043 retry:
3044 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3045 wake_all_kswapds(order, ac);
3046
3047 /*
3048 * OK, we're below the kswapd watermark and have kicked background
3049 * reclaim. Now things get more complex, so set up alloc_flags according
3050 * to how we want to proceed.
3051 */
3052 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3053
3054 /*
3055 * Find the true preferred zone if the allocation is unconstrained by
3056 * cpusets.
3057 */
3058 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3059 struct zoneref *preferred_zoneref;
3060 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3061 ac->high_zoneidx, NULL, &ac->preferred_zone);
3062 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3063 }
3064
3065 /* This is the last chance, in general, before the goto nopage. */
3066 page = get_page_from_freelist(gfp_mask, order,
3067 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3068 if (page)
3069 goto got_pg;
3070
3071 /* Allocate without watermarks if the context allows */
3072 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3073 /*
3074 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3075 * the allocation is high priority and these type of
3076 * allocations are system rather than user orientated
3077 */
3078 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3079
3080 page = __alloc_pages_high_priority(gfp_mask, order, ac);
3081
3082 if (page) {
3083 goto got_pg;
3084 }
3085 }
3086
3087 /* Caller is not willing to reclaim, we can't balance anything */
3088 if (!can_direct_reclaim) {
3089 /*
3090 * All existing users of the deprecated __GFP_NOFAIL are
3091 * blockable, so warn of any new users that actually allow this
3092 * type of allocation to fail.
3093 */
3094 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3095 goto nopage;
3096 }
3097
3098 /* Avoid recursion of direct reclaim */
3099 if (current->flags & PF_MEMALLOC)
3100 goto nopage;
3101
3102 /* Avoid allocations with no watermarks from looping endlessly */
3103 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3104 goto nopage;
3105
3106 /*
3107 * Try direct compaction. The first pass is asynchronous. Subsequent
3108 * attempts after direct reclaim are synchronous
3109 */
3110 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3111 migration_mode,
3112 &contended_compaction,
3113 &deferred_compaction);
3114 if (page)
3115 goto got_pg;
3116
3117 /* Checks for THP-specific high-order allocations */
3118 if (is_thp_gfp_mask(gfp_mask)) {
3119 /*
3120 * If compaction is deferred for high-order allocations, it is
3121 * because sync compaction recently failed. If this is the case
3122 * and the caller requested a THP allocation, we do not want
3123 * to heavily disrupt the system, so we fail the allocation
3124 * instead of entering direct reclaim.
3125 */
3126 if (deferred_compaction)
3127 goto nopage;
3128
3129 /*
3130 * In all zones where compaction was attempted (and not
3131 * deferred or skipped), lock contention has been detected.
3132 * For THP allocation we do not want to disrupt the others
3133 * so we fallback to base pages instead.
3134 */
3135 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3136 goto nopage;
3137
3138 /*
3139 * If compaction was aborted due to need_resched(), we do not
3140 * want to further increase allocation latency, unless it is
3141 * khugepaged trying to collapse.
3142 */
3143 if (contended_compaction == COMPACT_CONTENDED_SCHED
3144 && !(current->flags & PF_KTHREAD))
3145 goto nopage;
3146 }
3147
3148 /*
3149 * It can become very expensive to allocate transparent hugepages at
3150 * fault, so use asynchronous memory compaction for THP unless it is
3151 * khugepaged trying to collapse.
3152 */
3153 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3154 migration_mode = MIGRATE_SYNC_LIGHT;
3155
3156 /* Try direct reclaim and then allocating */
3157 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3158 &did_some_progress);
3159 if (page)
3160 goto got_pg;
3161
3162 /* Do not loop if specifically requested */
3163 if (gfp_mask & __GFP_NORETRY)
3164 goto noretry;
3165
3166 /* Keep reclaiming pages as long as there is reasonable progress */
3167 pages_reclaimed += did_some_progress;
3168 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3169 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3170 /* Wait for some write requests to complete then retry */
3171 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3172 goto retry;
3173 }
3174
3175 /* Reclaim has failed us, start killing things */
3176 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3177 if (page)
3178 goto got_pg;
3179
3180 /* Retry as long as the OOM killer is making progress */
3181 if (did_some_progress)
3182 goto retry;
3183
3184 noretry:
3185 /*
3186 * High-order allocations do not necessarily loop after
3187 * direct reclaim and reclaim/compaction depends on compaction
3188 * being called after reclaim so call directly if necessary
3189 */
3190 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3191 ac, migration_mode,
3192 &contended_compaction,
3193 &deferred_compaction);
3194 if (page)
3195 goto got_pg;
3196 nopage:
3197 warn_alloc_failed(gfp_mask, order, NULL);
3198 got_pg:
3199 return page;
3200 }
3201
3202 /*
3203 * This is the 'heart' of the zoned buddy allocator.
3204 */
3205 struct page *
3206 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3207 struct zonelist *zonelist, nodemask_t *nodemask)
3208 {
3209 struct zoneref *preferred_zoneref;
3210 struct page *page = NULL;
3211 unsigned int cpuset_mems_cookie;
3212 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3213 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3214 struct alloc_context ac = {
3215 .high_zoneidx = gfp_zone(gfp_mask),
3216 .nodemask = nodemask,
3217 .migratetype = gfpflags_to_migratetype(gfp_mask),
3218 };
3219
3220 gfp_mask &= gfp_allowed_mask;
3221
3222 lockdep_trace_alloc(gfp_mask);
3223
3224 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3225
3226 if (should_fail_alloc_page(gfp_mask, order))
3227 return NULL;
3228
3229 /*
3230 * Check the zones suitable for the gfp_mask contain at least one
3231 * valid zone. It's possible to have an empty zonelist as a result
3232 * of __GFP_THISNODE and a memoryless node
3233 */
3234 if (unlikely(!zonelist->_zonerefs->zone))
3235 return NULL;
3236
3237 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3238 alloc_flags |= ALLOC_CMA;
3239
3240 retry_cpuset:
3241 cpuset_mems_cookie = read_mems_allowed_begin();
3242
3243 /* We set it here, as __alloc_pages_slowpath might have changed it */
3244 ac.zonelist = zonelist;
3245
3246 /* Dirty zone balancing only done in the fast path */
3247 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3248
3249 /* The preferred zone is used for statistics later */
3250 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3251 ac.nodemask ? : &cpuset_current_mems_allowed,
3252 &ac.preferred_zone);
3253 if (!ac.preferred_zone)
3254 goto out;
3255 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3256
3257 /* First allocation attempt */
3258 alloc_mask = gfp_mask|__GFP_HARDWALL;
3259 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3260 if (unlikely(!page)) {
3261 /*
3262 * Runtime PM, block IO and its error handling path
3263 * can deadlock because I/O on the device might not
3264 * complete.
3265 */
3266 alloc_mask = memalloc_noio_flags(gfp_mask);
3267 ac.spread_dirty_pages = false;
3268
3269 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3270 }
3271
3272 if (kmemcheck_enabled && page)
3273 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3274
3275 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3276
3277 out:
3278 /*
3279 * When updating a task's mems_allowed, it is possible to race with
3280 * parallel threads in such a way that an allocation can fail while
3281 * the mask is being updated. If a page allocation is about to fail,
3282 * check if the cpuset changed during allocation and if so, retry.
3283 */
3284 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3285 goto retry_cpuset;
3286
3287 return page;
3288 }
3289 EXPORT_SYMBOL(__alloc_pages_nodemask);
3290
3291 /*
3292 * Common helper functions.
3293 */
3294 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3295 {
3296 struct page *page;
3297
3298 /*
3299 * __get_free_pages() returns a 32-bit address, which cannot represent
3300 * a highmem page
3301 */
3302 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3303
3304 page = alloc_pages(gfp_mask, order);
3305 if (!page)
3306 return 0;
3307 return (unsigned long) page_address(page);
3308 }
3309 EXPORT_SYMBOL(__get_free_pages);
3310
3311 unsigned long get_zeroed_page(gfp_t gfp_mask)
3312 {
3313 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3314 }
3315 EXPORT_SYMBOL(get_zeroed_page);
3316
3317 void __free_pages(struct page *page, unsigned int order)
3318 {
3319 if (put_page_testzero(page)) {
3320 if (order == 0)
3321 free_hot_cold_page(page, false);
3322 else
3323 __free_pages_ok(page, order);
3324 }
3325 }
3326
3327 EXPORT_SYMBOL(__free_pages);
3328
3329 void free_pages(unsigned long addr, unsigned int order)
3330 {
3331 if (addr != 0) {
3332 VM_BUG_ON(!virt_addr_valid((void *)addr));
3333 __free_pages(virt_to_page((void *)addr), order);
3334 }
3335 }
3336
3337 EXPORT_SYMBOL(free_pages);
3338
3339 /*
3340 * Page Fragment:
3341 * An arbitrary-length arbitrary-offset area of memory which resides
3342 * within a 0 or higher order page. Multiple fragments within that page
3343 * are individually refcounted, in the page's reference counter.
3344 *
3345 * The page_frag functions below provide a simple allocation framework for
3346 * page fragments. This is used by the network stack and network device
3347 * drivers to provide a backing region of memory for use as either an
3348 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3349 */
3350 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3351 gfp_t gfp_mask)
3352 {
3353 struct page *page = NULL;
3354 gfp_t gfp = gfp_mask;
3355
3356 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3357 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3358 __GFP_NOMEMALLOC;
3359 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3360 PAGE_FRAG_CACHE_MAX_ORDER);
3361 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3362 #endif
3363 if (unlikely(!page))
3364 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3365
3366 nc->va = page ? page_address(page) : NULL;
3367
3368 return page;
3369 }
3370
3371 void *__alloc_page_frag(struct page_frag_cache *nc,
3372 unsigned int fragsz, gfp_t gfp_mask)
3373 {
3374 unsigned int size = PAGE_SIZE;
3375 struct page *page;
3376 int offset;
3377
3378 if (unlikely(!nc->va)) {
3379 refill:
3380 page = __page_frag_refill(nc, gfp_mask);
3381 if (!page)
3382 return NULL;
3383
3384 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3385 /* if size can vary use size else just use PAGE_SIZE */
3386 size = nc->size;
3387 #endif
3388 /* Even if we own the page, we do not use atomic_set().
3389 * This would break get_page_unless_zero() users.
3390 */
3391 atomic_add(size - 1, &page->_count);
3392
3393 /* reset page count bias and offset to start of new frag */
3394 nc->pfmemalloc = page_is_pfmemalloc(page);
3395 nc->pagecnt_bias = size;
3396 nc->offset = size;
3397 }
3398
3399 offset = nc->offset - fragsz;
3400 if (unlikely(offset < 0)) {
3401 page = virt_to_page(nc->va);
3402
3403 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3404 goto refill;
3405
3406 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3407 /* if size can vary use size else just use PAGE_SIZE */
3408 size = nc->size;
3409 #endif
3410 /* OK, page count is 0, we can safely set it */
3411 atomic_set(&page->_count, size);
3412
3413 /* reset page count bias and offset to start of new frag */
3414 nc->pagecnt_bias = size;
3415 offset = size - fragsz;
3416 }
3417
3418 nc->pagecnt_bias--;
3419 nc->offset = offset;
3420
3421 return nc->va + offset;
3422 }
3423 EXPORT_SYMBOL(__alloc_page_frag);
3424
3425 /*
3426 * Frees a page fragment allocated out of either a compound or order 0 page.
3427 */
3428 void __free_page_frag(void *addr)
3429 {
3430 struct page *page = virt_to_head_page(addr);
3431
3432 if (unlikely(put_page_testzero(page)))
3433 __free_pages_ok(page, compound_order(page));
3434 }
3435 EXPORT_SYMBOL(__free_page_frag);
3436
3437 /*
3438 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3439 * of the current memory cgroup.
3440 *
3441 * It should be used when the caller would like to use kmalloc, but since the
3442 * allocation is large, it has to fall back to the page allocator.
3443 */
3444 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3445 {
3446 struct page *page;
3447
3448 page = alloc_pages(gfp_mask, order);
3449 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3450 __free_pages(page, order);
3451 page = NULL;
3452 }
3453 return page;
3454 }
3455
3456 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3457 {
3458 struct page *page;
3459
3460 page = alloc_pages_node(nid, gfp_mask, order);
3461 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3462 __free_pages(page, order);
3463 page = NULL;
3464 }
3465 return page;
3466 }
3467
3468 /*
3469 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3470 * alloc_kmem_pages.
3471 */
3472 void __free_kmem_pages(struct page *page, unsigned int order)
3473 {
3474 memcg_kmem_uncharge(page, order);
3475 __free_pages(page, order);
3476 }
3477
3478 void free_kmem_pages(unsigned long addr, unsigned int order)
3479 {
3480 if (addr != 0) {
3481 VM_BUG_ON(!virt_addr_valid((void *)addr));
3482 __free_kmem_pages(virt_to_page((void *)addr), order);
3483 }
3484 }
3485
3486 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3487 {
3488 if (addr) {
3489 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3490 unsigned long used = addr + PAGE_ALIGN(size);
3491
3492 split_page(virt_to_page((void *)addr), order);
3493 while (used < alloc_end) {
3494 free_page(used);
3495 used += PAGE_SIZE;
3496 }
3497 }
3498 return (void *)addr;
3499 }
3500
3501 /**
3502 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3503 * @size: the number of bytes to allocate
3504 * @gfp_mask: GFP flags for the allocation
3505 *
3506 * This function is similar to alloc_pages(), except that it allocates the
3507 * minimum number of pages to satisfy the request. alloc_pages() can only
3508 * allocate memory in power-of-two pages.
3509 *
3510 * This function is also limited by MAX_ORDER.
3511 *
3512 * Memory allocated by this function must be released by free_pages_exact().
3513 */
3514 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3515 {
3516 unsigned int order = get_order(size);
3517 unsigned long addr;
3518
3519 addr = __get_free_pages(gfp_mask, order);
3520 return make_alloc_exact(addr, order, size);
3521 }
3522 EXPORT_SYMBOL(alloc_pages_exact);
3523
3524 /**
3525 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3526 * pages on a node.
3527 * @nid: the preferred node ID where memory should be allocated
3528 * @size: the number of bytes to allocate
3529 * @gfp_mask: GFP flags for the allocation
3530 *
3531 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3532 * back.
3533 */
3534 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3535 {
3536 unsigned order = get_order(size);
3537 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3538 if (!p)
3539 return NULL;
3540 return make_alloc_exact((unsigned long)page_address(p), order, size);
3541 }
3542
3543 /**
3544 * free_pages_exact - release memory allocated via alloc_pages_exact()
3545 * @virt: the value returned by alloc_pages_exact.
3546 * @size: size of allocation, same value as passed to alloc_pages_exact().
3547 *
3548 * Release the memory allocated by a previous call to alloc_pages_exact.
3549 */
3550 void free_pages_exact(void *virt, size_t size)
3551 {
3552 unsigned long addr = (unsigned long)virt;
3553 unsigned long end = addr + PAGE_ALIGN(size);
3554
3555 while (addr < end) {
3556 free_page(addr);
3557 addr += PAGE_SIZE;
3558 }
3559 }
3560 EXPORT_SYMBOL(free_pages_exact);
3561
3562 /**
3563 * nr_free_zone_pages - count number of pages beyond high watermark
3564 * @offset: The zone index of the highest zone
3565 *
3566 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3567 * high watermark within all zones at or below a given zone index. For each
3568 * zone, the number of pages is calculated as:
3569 * managed_pages - high_pages
3570 */
3571 static unsigned long nr_free_zone_pages(int offset)
3572 {
3573 struct zoneref *z;
3574 struct zone *zone;
3575
3576 /* Just pick one node, since fallback list is circular */
3577 unsigned long sum = 0;
3578
3579 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3580
3581 for_each_zone_zonelist(zone, z, zonelist, offset) {
3582 unsigned long size = zone->managed_pages;
3583 unsigned long high = high_wmark_pages(zone);
3584 if (size > high)
3585 sum += size - high;
3586 }
3587
3588 return sum;
3589 }
3590
3591 /**
3592 * nr_free_buffer_pages - count number of pages beyond high watermark
3593 *
3594 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3595 * watermark within ZONE_DMA and ZONE_NORMAL.
3596 */
3597 unsigned long nr_free_buffer_pages(void)
3598 {
3599 return nr_free_zone_pages(gfp_zone(GFP_USER));
3600 }
3601 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3602
3603 /**
3604 * nr_free_pagecache_pages - count number of pages beyond high watermark
3605 *
3606 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3607 * high watermark within all zones.
3608 */
3609 unsigned long nr_free_pagecache_pages(void)
3610 {
3611 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3612 }
3613
3614 static inline void show_node(struct zone *zone)
3615 {
3616 if (IS_ENABLED(CONFIG_NUMA))
3617 printk("Node %d ", zone_to_nid(zone));
3618 }
3619
3620 void si_meminfo(struct sysinfo *val)
3621 {
3622 val->totalram = totalram_pages;
3623 val->sharedram = global_page_state(NR_SHMEM);
3624 val->freeram = global_page_state(NR_FREE_PAGES);
3625 val->bufferram = nr_blockdev_pages();
3626 val->totalhigh = totalhigh_pages;
3627 val->freehigh = nr_free_highpages();
3628 val->mem_unit = PAGE_SIZE;
3629 }
3630
3631 EXPORT_SYMBOL(si_meminfo);
3632
3633 #ifdef CONFIG_NUMA
3634 void si_meminfo_node(struct sysinfo *val, int nid)
3635 {
3636 int zone_type; /* needs to be signed */
3637 unsigned long managed_pages = 0;
3638 pg_data_t *pgdat = NODE_DATA(nid);
3639
3640 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3641 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3642 val->totalram = managed_pages;
3643 val->sharedram = node_page_state(nid, NR_SHMEM);
3644 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3645 #ifdef CONFIG_HIGHMEM
3646 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3647 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3648 NR_FREE_PAGES);
3649 #else
3650 val->totalhigh = 0;
3651 val->freehigh = 0;
3652 #endif
3653 val->mem_unit = PAGE_SIZE;
3654 }
3655 #endif
3656
3657 /*
3658 * Determine whether the node should be displayed or not, depending on whether
3659 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3660 */
3661 bool skip_free_areas_node(unsigned int flags, int nid)
3662 {
3663 bool ret = false;
3664 unsigned int cpuset_mems_cookie;
3665
3666 if (!(flags & SHOW_MEM_FILTER_NODES))
3667 goto out;
3668
3669 do {
3670 cpuset_mems_cookie = read_mems_allowed_begin();
3671 ret = !node_isset(nid, cpuset_current_mems_allowed);
3672 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3673 out:
3674 return ret;
3675 }
3676
3677 #define K(x) ((x) << (PAGE_SHIFT-10))
3678
3679 static void show_migration_types(unsigned char type)
3680 {
3681 static const char types[MIGRATE_TYPES] = {
3682 [MIGRATE_UNMOVABLE] = 'U',
3683 [MIGRATE_RECLAIMABLE] = 'E',
3684 [MIGRATE_MOVABLE] = 'M',
3685 [MIGRATE_RESERVE] = 'R',
3686 #ifdef CONFIG_CMA
3687 [MIGRATE_CMA] = 'C',
3688 #endif
3689 #ifdef CONFIG_MEMORY_ISOLATION
3690 [MIGRATE_ISOLATE] = 'I',
3691 #endif
3692 };
3693 char tmp[MIGRATE_TYPES + 1];
3694 char *p = tmp;
3695 int i;
3696
3697 for (i = 0; i < MIGRATE_TYPES; i++) {
3698 if (type & (1 << i))
3699 *p++ = types[i];
3700 }
3701
3702 *p = '\0';
3703 printk("(%s) ", tmp);
3704 }
3705
3706 /*
3707 * Show free area list (used inside shift_scroll-lock stuff)
3708 * We also calculate the percentage fragmentation. We do this by counting the
3709 * memory on each free list with the exception of the first item on the list.
3710 *
3711 * Bits in @filter:
3712 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3713 * cpuset.
3714 */
3715 void show_free_areas(unsigned int filter)
3716 {
3717 unsigned long free_pcp = 0;
3718 int cpu;
3719 struct zone *zone;
3720
3721 for_each_populated_zone(zone) {
3722 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3723 continue;
3724
3725 for_each_online_cpu(cpu)
3726 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3727 }
3728
3729 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3730 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3731 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3732 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3733 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3734 " free:%lu free_pcp:%lu free_cma:%lu\n",
3735 global_page_state(NR_ACTIVE_ANON),
3736 global_page_state(NR_INACTIVE_ANON),
3737 global_page_state(NR_ISOLATED_ANON),
3738 global_page_state(NR_ACTIVE_FILE),
3739 global_page_state(NR_INACTIVE_FILE),
3740 global_page_state(NR_ISOLATED_FILE),
3741 global_page_state(NR_UNEVICTABLE),
3742 global_page_state(NR_FILE_DIRTY),
3743 global_page_state(NR_WRITEBACK),
3744 global_page_state(NR_UNSTABLE_NFS),
3745 global_page_state(NR_SLAB_RECLAIMABLE),
3746 global_page_state(NR_SLAB_UNRECLAIMABLE),
3747 global_page_state(NR_FILE_MAPPED),
3748 global_page_state(NR_SHMEM),
3749 global_page_state(NR_PAGETABLE),
3750 global_page_state(NR_BOUNCE),
3751 global_page_state(NR_FREE_PAGES),
3752 free_pcp,
3753 global_page_state(NR_FREE_CMA_PAGES));
3754
3755 for_each_populated_zone(zone) {
3756 int i;
3757
3758 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3759 continue;
3760
3761 free_pcp = 0;
3762 for_each_online_cpu(cpu)
3763 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3764
3765 show_node(zone);
3766 printk("%s"
3767 " free:%lukB"
3768 " min:%lukB"
3769 " low:%lukB"
3770 " high:%lukB"
3771 " active_anon:%lukB"
3772 " inactive_anon:%lukB"
3773 " active_file:%lukB"
3774 " inactive_file:%lukB"
3775 " unevictable:%lukB"
3776 " isolated(anon):%lukB"
3777 " isolated(file):%lukB"
3778 " present:%lukB"
3779 " managed:%lukB"
3780 " mlocked:%lukB"
3781 " dirty:%lukB"
3782 " writeback:%lukB"
3783 " mapped:%lukB"
3784 " shmem:%lukB"
3785 " slab_reclaimable:%lukB"
3786 " slab_unreclaimable:%lukB"
3787 " kernel_stack:%lukB"
3788 " pagetables:%lukB"
3789 " unstable:%lukB"
3790 " bounce:%lukB"
3791 " free_pcp:%lukB"
3792 " local_pcp:%ukB"
3793 " free_cma:%lukB"
3794 " writeback_tmp:%lukB"
3795 " pages_scanned:%lu"
3796 " all_unreclaimable? %s"
3797 "\n",
3798 zone->name,
3799 K(zone_page_state(zone, NR_FREE_PAGES)),
3800 K(min_wmark_pages(zone)),
3801 K(low_wmark_pages(zone)),
3802 K(high_wmark_pages(zone)),
3803 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3804 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3805 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3806 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3807 K(zone_page_state(zone, NR_UNEVICTABLE)),
3808 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3809 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3810 K(zone->present_pages),
3811 K(zone->managed_pages),
3812 K(zone_page_state(zone, NR_MLOCK)),
3813 K(zone_page_state(zone, NR_FILE_DIRTY)),
3814 K(zone_page_state(zone, NR_WRITEBACK)),
3815 K(zone_page_state(zone, NR_FILE_MAPPED)),
3816 K(zone_page_state(zone, NR_SHMEM)),
3817 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3818 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3819 zone_page_state(zone, NR_KERNEL_STACK) *
3820 THREAD_SIZE / 1024,
3821 K(zone_page_state(zone, NR_PAGETABLE)),
3822 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3823 K(zone_page_state(zone, NR_BOUNCE)),
3824 K(free_pcp),
3825 K(this_cpu_read(zone->pageset->pcp.count)),
3826 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3827 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3828 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3829 (!zone_reclaimable(zone) ? "yes" : "no")
3830 );
3831 printk("lowmem_reserve[]:");
3832 for (i = 0; i < MAX_NR_ZONES; i++)
3833 printk(" %ld", zone->lowmem_reserve[i]);
3834 printk("\n");
3835 }
3836
3837 for_each_populated_zone(zone) {
3838 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3839 unsigned char types[MAX_ORDER];
3840
3841 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3842 continue;
3843 show_node(zone);
3844 printk("%s: ", zone->name);
3845
3846 spin_lock_irqsave(&zone->lock, flags);
3847 for (order = 0; order < MAX_ORDER; order++) {
3848 struct free_area *area = &zone->free_area[order];
3849 int type;
3850
3851 nr[order] = area->nr_free;
3852 total += nr[order] << order;
3853
3854 types[order] = 0;
3855 for (type = 0; type < MIGRATE_TYPES; type++) {
3856 if (!list_empty(&area->free_list[type]))
3857 types[order] |= 1 << type;
3858 }
3859 }
3860 spin_unlock_irqrestore(&zone->lock, flags);
3861 for (order = 0; order < MAX_ORDER; order++) {
3862 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3863 if (nr[order])
3864 show_migration_types(types[order]);
3865 }
3866 printk("= %lukB\n", K(total));
3867 }
3868
3869 hugetlb_show_meminfo();
3870
3871 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3872
3873 show_swap_cache_info();
3874 }
3875
3876 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3877 {
3878 zoneref->zone = zone;
3879 zoneref->zone_idx = zone_idx(zone);
3880 }
3881
3882 /*
3883 * Builds allocation fallback zone lists.
3884 *
3885 * Add all populated zones of a node to the zonelist.
3886 */
3887 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3888 int nr_zones)
3889 {
3890 struct zone *zone;
3891 enum zone_type zone_type = MAX_NR_ZONES;
3892
3893 do {
3894 zone_type--;
3895 zone = pgdat->node_zones + zone_type;
3896 if (populated_zone(zone)) {
3897 zoneref_set_zone(zone,
3898 &zonelist->_zonerefs[nr_zones++]);
3899 check_highest_zone(zone_type);
3900 }
3901 } while (zone_type);
3902
3903 return nr_zones;
3904 }
3905
3906
3907 /*
3908 * zonelist_order:
3909 * 0 = automatic detection of better ordering.
3910 * 1 = order by ([node] distance, -zonetype)
3911 * 2 = order by (-zonetype, [node] distance)
3912 *
3913 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3914 * the same zonelist. So only NUMA can configure this param.
3915 */
3916 #define ZONELIST_ORDER_DEFAULT 0
3917 #define ZONELIST_ORDER_NODE 1
3918 #define ZONELIST_ORDER_ZONE 2
3919
3920 /* zonelist order in the kernel.
3921 * set_zonelist_order() will set this to NODE or ZONE.
3922 */
3923 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3924 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3925
3926
3927 #ifdef CONFIG_NUMA
3928 /* The value user specified ....changed by config */
3929 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3930 /* string for sysctl */
3931 #define NUMA_ZONELIST_ORDER_LEN 16
3932 char numa_zonelist_order[16] = "default";
3933
3934 /*
3935 * interface for configure zonelist ordering.
3936 * command line option "numa_zonelist_order"
3937 * = "[dD]efault - default, automatic configuration.
3938 * = "[nN]ode - order by node locality, then by zone within node
3939 * = "[zZ]one - order by zone, then by locality within zone
3940 */
3941
3942 static int __parse_numa_zonelist_order(char *s)
3943 {
3944 if (*s == 'd' || *s == 'D') {
3945 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3946 } else if (*s == 'n' || *s == 'N') {
3947 user_zonelist_order = ZONELIST_ORDER_NODE;
3948 } else if (*s == 'z' || *s == 'Z') {
3949 user_zonelist_order = ZONELIST_ORDER_ZONE;
3950 } else {
3951 printk(KERN_WARNING
3952 "Ignoring invalid numa_zonelist_order value: "
3953 "%s\n", s);
3954 return -EINVAL;
3955 }
3956 return 0;
3957 }
3958
3959 static __init int setup_numa_zonelist_order(char *s)
3960 {
3961 int ret;
3962
3963 if (!s)
3964 return 0;
3965
3966 ret = __parse_numa_zonelist_order(s);
3967 if (ret == 0)
3968 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3969
3970 return ret;
3971 }
3972 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3973
3974 /*
3975 * sysctl handler for numa_zonelist_order
3976 */
3977 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3978 void __user *buffer, size_t *length,
3979 loff_t *ppos)
3980 {
3981 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3982 int ret;
3983 static DEFINE_MUTEX(zl_order_mutex);
3984
3985 mutex_lock(&zl_order_mutex);
3986 if (write) {
3987 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3988 ret = -EINVAL;
3989 goto out;
3990 }
3991 strcpy(saved_string, (char *)table->data);
3992 }
3993 ret = proc_dostring(table, write, buffer, length, ppos);
3994 if (ret)
3995 goto out;
3996 if (write) {
3997 int oldval = user_zonelist_order;
3998
3999 ret = __parse_numa_zonelist_order((char *)table->data);
4000 if (ret) {
4001 /*
4002 * bogus value. restore saved string
4003 */
4004 strncpy((char *)table->data, saved_string,
4005 NUMA_ZONELIST_ORDER_LEN);
4006 user_zonelist_order = oldval;
4007 } else if (oldval != user_zonelist_order) {
4008 mutex_lock(&zonelists_mutex);
4009 build_all_zonelists(NULL, NULL);
4010 mutex_unlock(&zonelists_mutex);
4011 }
4012 }
4013 out:
4014 mutex_unlock(&zl_order_mutex);
4015 return ret;
4016 }
4017
4018
4019 #define MAX_NODE_LOAD (nr_online_nodes)
4020 static int node_load[MAX_NUMNODES];
4021
4022 /**
4023 * find_next_best_node - find the next node that should appear in a given node's fallback list
4024 * @node: node whose fallback list we're appending
4025 * @used_node_mask: nodemask_t of already used nodes
4026 *
4027 * We use a number of factors to determine which is the next node that should
4028 * appear on a given node's fallback list. The node should not have appeared
4029 * already in @node's fallback list, and it should be the next closest node
4030 * according to the distance array (which contains arbitrary distance values
4031 * from each node to each node in the system), and should also prefer nodes
4032 * with no CPUs, since presumably they'll have very little allocation pressure
4033 * on them otherwise.
4034 * It returns -1 if no node is found.
4035 */
4036 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4037 {
4038 int n, val;
4039 int min_val = INT_MAX;
4040 int best_node = NUMA_NO_NODE;
4041 const struct cpumask *tmp = cpumask_of_node(0);
4042
4043 /* Use the local node if we haven't already */
4044 if (!node_isset(node, *used_node_mask)) {
4045 node_set(node, *used_node_mask);
4046 return node;
4047 }
4048
4049 for_each_node_state(n, N_MEMORY) {
4050
4051 /* Don't want a node to appear more than once */
4052 if (node_isset(n, *used_node_mask))
4053 continue;
4054
4055 /* Use the distance array to find the distance */
4056 val = node_distance(node, n);
4057
4058 /* Penalize nodes under us ("prefer the next node") */
4059 val += (n < node);
4060
4061 /* Give preference to headless and unused nodes */
4062 tmp = cpumask_of_node(n);
4063 if (!cpumask_empty(tmp))
4064 val += PENALTY_FOR_NODE_WITH_CPUS;
4065
4066 /* Slight preference for less loaded node */
4067 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4068 val += node_load[n];
4069
4070 if (val < min_val) {
4071 min_val = val;
4072 best_node = n;
4073 }
4074 }
4075
4076 if (best_node >= 0)
4077 node_set(best_node, *used_node_mask);
4078
4079 return best_node;
4080 }
4081
4082
4083 /*
4084 * Build zonelists ordered by node and zones within node.
4085 * This results in maximum locality--normal zone overflows into local
4086 * DMA zone, if any--but risks exhausting DMA zone.
4087 */
4088 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4089 {
4090 int j;
4091 struct zonelist *zonelist;
4092
4093 zonelist = &pgdat->node_zonelists[0];
4094 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4095 ;
4096 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4097 zonelist->_zonerefs[j].zone = NULL;
4098 zonelist->_zonerefs[j].zone_idx = 0;
4099 }
4100
4101 /*
4102 * Build gfp_thisnode zonelists
4103 */
4104 static void build_thisnode_zonelists(pg_data_t *pgdat)
4105 {
4106 int j;
4107 struct zonelist *zonelist;
4108
4109 zonelist = &pgdat->node_zonelists[1];
4110 j = build_zonelists_node(pgdat, zonelist, 0);
4111 zonelist->_zonerefs[j].zone = NULL;
4112 zonelist->_zonerefs[j].zone_idx = 0;
4113 }
4114
4115 /*
4116 * Build zonelists ordered by zone and nodes within zones.
4117 * This results in conserving DMA zone[s] until all Normal memory is
4118 * exhausted, but results in overflowing to remote node while memory
4119 * may still exist in local DMA zone.
4120 */
4121 static int node_order[MAX_NUMNODES];
4122
4123 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4124 {
4125 int pos, j, node;
4126 int zone_type; /* needs to be signed */
4127 struct zone *z;
4128 struct zonelist *zonelist;
4129
4130 zonelist = &pgdat->node_zonelists[0];
4131 pos = 0;
4132 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4133 for (j = 0; j < nr_nodes; j++) {
4134 node = node_order[j];
4135 z = &NODE_DATA(node)->node_zones[zone_type];
4136 if (populated_zone(z)) {
4137 zoneref_set_zone(z,
4138 &zonelist->_zonerefs[pos++]);
4139 check_highest_zone(zone_type);
4140 }
4141 }
4142 }
4143 zonelist->_zonerefs[pos].zone = NULL;
4144 zonelist->_zonerefs[pos].zone_idx = 0;
4145 }
4146
4147 #if defined(CONFIG_64BIT)
4148 /*
4149 * Devices that require DMA32/DMA are relatively rare and do not justify a
4150 * penalty to every machine in case the specialised case applies. Default
4151 * to Node-ordering on 64-bit NUMA machines
4152 */
4153 static int default_zonelist_order(void)
4154 {
4155 return ZONELIST_ORDER_NODE;
4156 }
4157 #else
4158 /*
4159 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4160 * by the kernel. If processes running on node 0 deplete the low memory zone
4161 * then reclaim will occur more frequency increasing stalls and potentially
4162 * be easier to OOM if a large percentage of the zone is under writeback or
4163 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4164 * Hence, default to zone ordering on 32-bit.
4165 */
4166 static int default_zonelist_order(void)
4167 {
4168 return ZONELIST_ORDER_ZONE;
4169 }
4170 #endif /* CONFIG_64BIT */
4171
4172 static void set_zonelist_order(void)
4173 {
4174 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4175 current_zonelist_order = default_zonelist_order();
4176 else
4177 current_zonelist_order = user_zonelist_order;
4178 }
4179
4180 static void build_zonelists(pg_data_t *pgdat)
4181 {
4182 int j, node, load;
4183 enum zone_type i;
4184 nodemask_t used_mask;
4185 int local_node, prev_node;
4186 struct zonelist *zonelist;
4187 int order = current_zonelist_order;
4188
4189 /* initialize zonelists */
4190 for (i = 0; i < MAX_ZONELISTS; i++) {
4191 zonelist = pgdat->node_zonelists + i;
4192 zonelist->_zonerefs[0].zone = NULL;
4193 zonelist->_zonerefs[0].zone_idx = 0;
4194 }
4195
4196 /* NUMA-aware ordering of nodes */
4197 local_node = pgdat->node_id;
4198 load = nr_online_nodes;
4199 prev_node = local_node;
4200 nodes_clear(used_mask);
4201
4202 memset(node_order, 0, sizeof(node_order));
4203 j = 0;
4204
4205 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4206 /*
4207 * We don't want to pressure a particular node.
4208 * So adding penalty to the first node in same
4209 * distance group to make it round-robin.
4210 */
4211 if (node_distance(local_node, node) !=
4212 node_distance(local_node, prev_node))
4213 node_load[node] = load;
4214
4215 prev_node = node;
4216 load--;
4217 if (order == ZONELIST_ORDER_NODE)
4218 build_zonelists_in_node_order(pgdat, node);
4219 else
4220 node_order[j++] = node; /* remember order */
4221 }
4222
4223 if (order == ZONELIST_ORDER_ZONE) {
4224 /* calculate node order -- i.e., DMA last! */
4225 build_zonelists_in_zone_order(pgdat, j);
4226 }
4227
4228 build_thisnode_zonelists(pgdat);
4229 }
4230
4231 /* Construct the zonelist performance cache - see further mmzone.h */
4232 static void build_zonelist_cache(pg_data_t *pgdat)
4233 {
4234 struct zonelist *zonelist;
4235 struct zonelist_cache *zlc;
4236 struct zoneref *z;
4237
4238 zonelist = &pgdat->node_zonelists[0];
4239 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
4240 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
4241 for (z = zonelist->_zonerefs; z->zone; z++)
4242 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
4243 }
4244
4245 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4246 /*
4247 * Return node id of node used for "local" allocations.
4248 * I.e., first node id of first zone in arg node's generic zonelist.
4249 * Used for initializing percpu 'numa_mem', which is used primarily
4250 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4251 */
4252 int local_memory_node(int node)
4253 {
4254 struct zone *zone;
4255
4256 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4257 gfp_zone(GFP_KERNEL),
4258 NULL,
4259 &zone);
4260 return zone->node;
4261 }
4262 #endif
4263
4264 #else /* CONFIG_NUMA */
4265
4266 static void set_zonelist_order(void)
4267 {
4268 current_zonelist_order = ZONELIST_ORDER_ZONE;
4269 }
4270
4271 static void build_zonelists(pg_data_t *pgdat)
4272 {
4273 int node, local_node;
4274 enum zone_type j;
4275 struct zonelist *zonelist;
4276
4277 local_node = pgdat->node_id;
4278
4279 zonelist = &pgdat->node_zonelists[0];
4280 j = build_zonelists_node(pgdat, zonelist, 0);
4281
4282 /*
4283 * Now we build the zonelist so that it contains the zones
4284 * of all the other nodes.
4285 * We don't want to pressure a particular node, so when
4286 * building the zones for node N, we make sure that the
4287 * zones coming right after the local ones are those from
4288 * node N+1 (modulo N)
4289 */
4290 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4291 if (!node_online(node))
4292 continue;
4293 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4294 }
4295 for (node = 0; node < local_node; node++) {
4296 if (!node_online(node))
4297 continue;
4298 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4299 }
4300
4301 zonelist->_zonerefs[j].zone = NULL;
4302 zonelist->_zonerefs[j].zone_idx = 0;
4303 }
4304
4305 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
4306 static void build_zonelist_cache(pg_data_t *pgdat)
4307 {
4308 pgdat->node_zonelists[0].zlcache_ptr = NULL;
4309 }
4310
4311 #endif /* CONFIG_NUMA */
4312
4313 /*
4314 * Boot pageset table. One per cpu which is going to be used for all
4315 * zones and all nodes. The parameters will be set in such a way
4316 * that an item put on a list will immediately be handed over to
4317 * the buddy list. This is safe since pageset manipulation is done
4318 * with interrupts disabled.
4319 *
4320 * The boot_pagesets must be kept even after bootup is complete for
4321 * unused processors and/or zones. They do play a role for bootstrapping
4322 * hotplugged processors.
4323 *
4324 * zoneinfo_show() and maybe other functions do
4325 * not check if the processor is online before following the pageset pointer.
4326 * Other parts of the kernel may not check if the zone is available.
4327 */
4328 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4329 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4330 static void setup_zone_pageset(struct zone *zone);
4331
4332 /*
4333 * Global mutex to protect against size modification of zonelists
4334 * as well as to serialize pageset setup for the new populated zone.
4335 */
4336 DEFINE_MUTEX(zonelists_mutex);
4337
4338 /* return values int ....just for stop_machine() */
4339 static int __build_all_zonelists(void *data)
4340 {
4341 int nid;
4342 int cpu;
4343 pg_data_t *self = data;
4344
4345 #ifdef CONFIG_NUMA
4346 memset(node_load, 0, sizeof(node_load));
4347 #endif
4348
4349 if (self && !node_online(self->node_id)) {
4350 build_zonelists(self);
4351 build_zonelist_cache(self);
4352 }
4353
4354 for_each_online_node(nid) {
4355 pg_data_t *pgdat = NODE_DATA(nid);
4356
4357 build_zonelists(pgdat);
4358 build_zonelist_cache(pgdat);
4359 }
4360
4361 /*
4362 * Initialize the boot_pagesets that are going to be used
4363 * for bootstrapping processors. The real pagesets for
4364 * each zone will be allocated later when the per cpu
4365 * allocator is available.
4366 *
4367 * boot_pagesets are used also for bootstrapping offline
4368 * cpus if the system is already booted because the pagesets
4369 * are needed to initialize allocators on a specific cpu too.
4370 * F.e. the percpu allocator needs the page allocator which
4371 * needs the percpu allocator in order to allocate its pagesets
4372 * (a chicken-egg dilemma).
4373 */
4374 for_each_possible_cpu(cpu) {
4375 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4376
4377 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4378 /*
4379 * We now know the "local memory node" for each node--
4380 * i.e., the node of the first zone in the generic zonelist.
4381 * Set up numa_mem percpu variable for on-line cpus. During
4382 * boot, only the boot cpu should be on-line; we'll init the
4383 * secondary cpus' numa_mem as they come on-line. During
4384 * node/memory hotplug, we'll fixup all on-line cpus.
4385 */
4386 if (cpu_online(cpu))
4387 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4388 #endif
4389 }
4390
4391 return 0;
4392 }
4393
4394 static noinline void __init
4395 build_all_zonelists_init(void)
4396 {
4397 __build_all_zonelists(NULL);
4398 mminit_verify_zonelist();
4399 cpuset_init_current_mems_allowed();
4400 }
4401
4402 /*
4403 * Called with zonelists_mutex held always
4404 * unless system_state == SYSTEM_BOOTING.
4405 *
4406 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4407 * [we're only called with non-NULL zone through __meminit paths] and
4408 * (2) call of __init annotated helper build_all_zonelists_init
4409 * [protected by SYSTEM_BOOTING].
4410 */
4411 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4412 {
4413 set_zonelist_order();
4414
4415 if (system_state == SYSTEM_BOOTING) {
4416 build_all_zonelists_init();
4417 } else {
4418 #ifdef CONFIG_MEMORY_HOTPLUG
4419 if (zone)
4420 setup_zone_pageset(zone);
4421 #endif
4422 /* we have to stop all cpus to guarantee there is no user
4423 of zonelist */
4424 stop_machine(__build_all_zonelists, pgdat, NULL);
4425 /* cpuset refresh routine should be here */
4426 }
4427 vm_total_pages = nr_free_pagecache_pages();
4428 /*
4429 * Disable grouping by mobility if the number of pages in the
4430 * system is too low to allow the mechanism to work. It would be
4431 * more accurate, but expensive to check per-zone. This check is
4432 * made on memory-hotadd so a system can start with mobility
4433 * disabled and enable it later
4434 */
4435 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4436 page_group_by_mobility_disabled = 1;
4437 else
4438 page_group_by_mobility_disabled = 0;
4439
4440 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
4441 "Total pages: %ld\n",
4442 nr_online_nodes,
4443 zonelist_order_name[current_zonelist_order],
4444 page_group_by_mobility_disabled ? "off" : "on",
4445 vm_total_pages);
4446 #ifdef CONFIG_NUMA
4447 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4448 #endif
4449 }
4450
4451 /*
4452 * Helper functions to size the waitqueue hash table.
4453 * Essentially these want to choose hash table sizes sufficiently
4454 * large so that collisions trying to wait on pages are rare.
4455 * But in fact, the number of active page waitqueues on typical
4456 * systems is ridiculously low, less than 200. So this is even
4457 * conservative, even though it seems large.
4458 *
4459 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4460 * waitqueues, i.e. the size of the waitq table given the number of pages.
4461 */
4462 #define PAGES_PER_WAITQUEUE 256
4463
4464 #ifndef CONFIG_MEMORY_HOTPLUG
4465 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4466 {
4467 unsigned long size = 1;
4468
4469 pages /= PAGES_PER_WAITQUEUE;
4470
4471 while (size < pages)
4472 size <<= 1;
4473
4474 /*
4475 * Once we have dozens or even hundreds of threads sleeping
4476 * on IO we've got bigger problems than wait queue collision.
4477 * Limit the size of the wait table to a reasonable size.
4478 */
4479 size = min(size, 4096UL);
4480
4481 return max(size, 4UL);
4482 }
4483 #else
4484 /*
4485 * A zone's size might be changed by hot-add, so it is not possible to determine
4486 * a suitable size for its wait_table. So we use the maximum size now.
4487 *
4488 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4489 *
4490 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4491 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4492 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4493 *
4494 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4495 * or more by the traditional way. (See above). It equals:
4496 *
4497 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4498 * ia64(16K page size) : = ( 8G + 4M)byte.
4499 * powerpc (64K page size) : = (32G +16M)byte.
4500 */
4501 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4502 {
4503 return 4096UL;
4504 }
4505 #endif
4506
4507 /*
4508 * This is an integer logarithm so that shifts can be used later
4509 * to extract the more random high bits from the multiplicative
4510 * hash function before the remainder is taken.
4511 */
4512 static inline unsigned long wait_table_bits(unsigned long size)
4513 {
4514 return ffz(~size);
4515 }
4516
4517 /*
4518 * Check if a pageblock contains reserved pages
4519 */
4520 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4521 {
4522 unsigned long pfn;
4523
4524 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4525 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4526 return 1;
4527 }
4528 return 0;
4529 }
4530
4531 /*
4532 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4533 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4534 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4535 * higher will lead to a bigger reserve which will get freed as contiguous
4536 * blocks as reclaim kicks in
4537 */
4538 static void setup_zone_migrate_reserve(struct zone *zone)
4539 {
4540 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4541 struct page *page;
4542 unsigned long block_migratetype;
4543 int reserve;
4544 int old_reserve;
4545
4546 /*
4547 * Get the start pfn, end pfn and the number of blocks to reserve
4548 * We have to be careful to be aligned to pageblock_nr_pages to
4549 * make sure that we always check pfn_valid for the first page in
4550 * the block.
4551 */
4552 start_pfn = zone->zone_start_pfn;
4553 end_pfn = zone_end_pfn(zone);
4554 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4555 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4556 pageblock_order;
4557
4558 /*
4559 * Reserve blocks are generally in place to help high-order atomic
4560 * allocations that are short-lived. A min_free_kbytes value that
4561 * would result in more than 2 reserve blocks for atomic allocations
4562 * is assumed to be in place to help anti-fragmentation for the
4563 * future allocation of hugepages at runtime.
4564 */
4565 reserve = min(2, reserve);
4566 old_reserve = zone->nr_migrate_reserve_block;
4567
4568 /* When memory hot-add, we almost always need to do nothing */
4569 if (reserve == old_reserve)
4570 return;
4571 zone->nr_migrate_reserve_block = reserve;
4572
4573 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4574 if (!early_page_nid_uninitialised(pfn, zone_to_nid(zone)))
4575 return;
4576
4577 if (!pfn_valid(pfn))
4578 continue;
4579 page = pfn_to_page(pfn);
4580
4581 /* Watch out for overlapping nodes */
4582 if (page_to_nid(page) != zone_to_nid(zone))
4583 continue;
4584
4585 block_migratetype = get_pageblock_migratetype(page);
4586
4587 /* Only test what is necessary when the reserves are not met */
4588 if (reserve > 0) {
4589 /*
4590 * Blocks with reserved pages will never free, skip
4591 * them.
4592 */
4593 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4594 if (pageblock_is_reserved(pfn, block_end_pfn))
4595 continue;
4596
4597 /* If this block is reserved, account for it */
4598 if (block_migratetype == MIGRATE_RESERVE) {
4599 reserve--;
4600 continue;
4601 }
4602
4603 /* Suitable for reserving if this block is movable */
4604 if (block_migratetype == MIGRATE_MOVABLE) {
4605 set_pageblock_migratetype(page,
4606 MIGRATE_RESERVE);
4607 move_freepages_block(zone, page,
4608 MIGRATE_RESERVE);
4609 reserve--;
4610 continue;
4611 }
4612 } else if (!old_reserve) {
4613 /*
4614 * At boot time we don't need to scan the whole zone
4615 * for turning off MIGRATE_RESERVE.
4616 */
4617 break;
4618 }
4619
4620 /*
4621 * If the reserve is met and this is a previous reserved block,
4622 * take it back
4623 */
4624 if (block_migratetype == MIGRATE_RESERVE) {
4625 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4626 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4627 }
4628 }
4629 }
4630
4631 /*
4632 * Initially all pages are reserved - free ones are freed
4633 * up by free_all_bootmem() once the early boot process is
4634 * done. Non-atomic initialization, single-pass.
4635 */
4636 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4637 unsigned long start_pfn, enum memmap_context context)
4638 {
4639 pg_data_t *pgdat = NODE_DATA(nid);
4640 unsigned long end_pfn = start_pfn + size;
4641 unsigned long pfn;
4642 struct zone *z;
4643 unsigned long nr_initialised = 0;
4644
4645 if (highest_memmap_pfn < end_pfn - 1)
4646 highest_memmap_pfn = end_pfn - 1;
4647
4648 z = &pgdat->node_zones[zone];
4649 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4650 /*
4651 * There can be holes in boot-time mem_map[]s
4652 * handed to this function. They do not
4653 * exist on hotplugged memory.
4654 */
4655 if (context == MEMMAP_EARLY) {
4656 if (!early_pfn_valid(pfn))
4657 continue;
4658 if (!early_pfn_in_nid(pfn, nid))
4659 continue;
4660 if (!update_defer_init(pgdat, pfn, end_pfn,
4661 &nr_initialised))
4662 break;
4663 }
4664
4665 /*
4666 * Mark the block movable so that blocks are reserved for
4667 * movable at startup. This will force kernel allocations
4668 * to reserve their blocks rather than leaking throughout
4669 * the address space during boot when many long-lived
4670 * kernel allocations are made. Later some blocks near
4671 * the start are marked MIGRATE_RESERVE by
4672 * setup_zone_migrate_reserve()
4673 *
4674 * bitmap is created for zone's valid pfn range. but memmap
4675 * can be created for invalid pages (for alignment)
4676 * check here not to call set_pageblock_migratetype() against
4677 * pfn out of zone.
4678 */
4679 if (!(pfn & (pageblock_nr_pages - 1))) {
4680 struct page *page = pfn_to_page(pfn);
4681
4682 __init_single_page(page, pfn, zone, nid);
4683 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4684 } else {
4685 __init_single_pfn(pfn, zone, nid);
4686 }
4687 }
4688 }
4689
4690 static void __meminit zone_init_free_lists(struct zone *zone)
4691 {
4692 unsigned int order, t;
4693 for_each_migratetype_order(order, t) {
4694 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4695 zone->free_area[order].nr_free = 0;
4696 }
4697 }
4698
4699 #ifndef __HAVE_ARCH_MEMMAP_INIT
4700 #define memmap_init(size, nid, zone, start_pfn) \
4701 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4702 #endif
4703
4704 static int zone_batchsize(struct zone *zone)
4705 {
4706 #ifdef CONFIG_MMU
4707 int batch;
4708
4709 /*
4710 * The per-cpu-pages pools are set to around 1000th of the
4711 * size of the zone. But no more than 1/2 of a meg.
4712 *
4713 * OK, so we don't know how big the cache is. So guess.
4714 */
4715 batch = zone->managed_pages / 1024;
4716 if (batch * PAGE_SIZE > 512 * 1024)
4717 batch = (512 * 1024) / PAGE_SIZE;
4718 batch /= 4; /* We effectively *= 4 below */
4719 if (batch < 1)
4720 batch = 1;
4721
4722 /*
4723 * Clamp the batch to a 2^n - 1 value. Having a power
4724 * of 2 value was found to be more likely to have
4725 * suboptimal cache aliasing properties in some cases.
4726 *
4727 * For example if 2 tasks are alternately allocating
4728 * batches of pages, one task can end up with a lot
4729 * of pages of one half of the possible page colors
4730 * and the other with pages of the other colors.
4731 */
4732 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4733
4734 return batch;
4735
4736 #else
4737 /* The deferral and batching of frees should be suppressed under NOMMU
4738 * conditions.
4739 *
4740 * The problem is that NOMMU needs to be able to allocate large chunks
4741 * of contiguous memory as there's no hardware page translation to
4742 * assemble apparent contiguous memory from discontiguous pages.
4743 *
4744 * Queueing large contiguous runs of pages for batching, however,
4745 * causes the pages to actually be freed in smaller chunks. As there
4746 * can be a significant delay between the individual batches being
4747 * recycled, this leads to the once large chunks of space being
4748 * fragmented and becoming unavailable for high-order allocations.
4749 */
4750 return 0;
4751 #endif
4752 }
4753
4754 /*
4755 * pcp->high and pcp->batch values are related and dependent on one another:
4756 * ->batch must never be higher then ->high.
4757 * The following function updates them in a safe manner without read side
4758 * locking.
4759 *
4760 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4761 * those fields changing asynchronously (acording the the above rule).
4762 *
4763 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4764 * outside of boot time (or some other assurance that no concurrent updaters
4765 * exist).
4766 */
4767 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4768 unsigned long batch)
4769 {
4770 /* start with a fail safe value for batch */
4771 pcp->batch = 1;
4772 smp_wmb();
4773
4774 /* Update high, then batch, in order */
4775 pcp->high = high;
4776 smp_wmb();
4777
4778 pcp->batch = batch;
4779 }
4780
4781 /* a companion to pageset_set_high() */
4782 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4783 {
4784 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4785 }
4786
4787 static void pageset_init(struct per_cpu_pageset *p)
4788 {
4789 struct per_cpu_pages *pcp;
4790 int migratetype;
4791
4792 memset(p, 0, sizeof(*p));
4793
4794 pcp = &p->pcp;
4795 pcp->count = 0;
4796 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4797 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4798 }
4799
4800 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4801 {
4802 pageset_init(p);
4803 pageset_set_batch(p, batch);
4804 }
4805
4806 /*
4807 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4808 * to the value high for the pageset p.
4809 */
4810 static void pageset_set_high(struct per_cpu_pageset *p,
4811 unsigned long high)
4812 {
4813 unsigned long batch = max(1UL, high / 4);
4814 if ((high / 4) > (PAGE_SHIFT * 8))
4815 batch = PAGE_SHIFT * 8;
4816
4817 pageset_update(&p->pcp, high, batch);
4818 }
4819
4820 static void pageset_set_high_and_batch(struct zone *zone,
4821 struct per_cpu_pageset *pcp)
4822 {
4823 if (percpu_pagelist_fraction)
4824 pageset_set_high(pcp,
4825 (zone->managed_pages /
4826 percpu_pagelist_fraction));
4827 else
4828 pageset_set_batch(pcp, zone_batchsize(zone));
4829 }
4830
4831 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4832 {
4833 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4834
4835 pageset_init(pcp);
4836 pageset_set_high_and_batch(zone, pcp);
4837 }
4838
4839 static void __meminit setup_zone_pageset(struct zone *zone)
4840 {
4841 int cpu;
4842 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4843 for_each_possible_cpu(cpu)
4844 zone_pageset_init(zone, cpu);
4845 }
4846
4847 /*
4848 * Allocate per cpu pagesets and initialize them.
4849 * Before this call only boot pagesets were available.
4850 */
4851 void __init setup_per_cpu_pageset(void)
4852 {
4853 struct zone *zone;
4854
4855 for_each_populated_zone(zone)
4856 setup_zone_pageset(zone);
4857 }
4858
4859 static noinline __init_refok
4860 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4861 {
4862 int i;
4863 size_t alloc_size;
4864
4865 /*
4866 * The per-page waitqueue mechanism uses hashed waitqueues
4867 * per zone.
4868 */
4869 zone->wait_table_hash_nr_entries =
4870 wait_table_hash_nr_entries(zone_size_pages);
4871 zone->wait_table_bits =
4872 wait_table_bits(zone->wait_table_hash_nr_entries);
4873 alloc_size = zone->wait_table_hash_nr_entries
4874 * sizeof(wait_queue_head_t);
4875
4876 if (!slab_is_available()) {
4877 zone->wait_table = (wait_queue_head_t *)
4878 memblock_virt_alloc_node_nopanic(
4879 alloc_size, zone->zone_pgdat->node_id);
4880 } else {
4881 /*
4882 * This case means that a zone whose size was 0 gets new memory
4883 * via memory hot-add.
4884 * But it may be the case that a new node was hot-added. In
4885 * this case vmalloc() will not be able to use this new node's
4886 * memory - this wait_table must be initialized to use this new
4887 * node itself as well.
4888 * To use this new node's memory, further consideration will be
4889 * necessary.
4890 */
4891 zone->wait_table = vmalloc(alloc_size);
4892 }
4893 if (!zone->wait_table)
4894 return -ENOMEM;
4895
4896 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4897 init_waitqueue_head(zone->wait_table + i);
4898
4899 return 0;
4900 }
4901
4902 static __meminit void zone_pcp_init(struct zone *zone)
4903 {
4904 /*
4905 * per cpu subsystem is not up at this point. The following code
4906 * relies on the ability of the linker to provide the
4907 * offset of a (static) per cpu variable into the per cpu area.
4908 */
4909 zone->pageset = &boot_pageset;
4910
4911 if (populated_zone(zone))
4912 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4913 zone->name, zone->present_pages,
4914 zone_batchsize(zone));
4915 }
4916
4917 int __meminit init_currently_empty_zone(struct zone *zone,
4918 unsigned long zone_start_pfn,
4919 unsigned long size)
4920 {
4921 struct pglist_data *pgdat = zone->zone_pgdat;
4922 int ret;
4923 ret = zone_wait_table_init(zone, size);
4924 if (ret)
4925 return ret;
4926 pgdat->nr_zones = zone_idx(zone) + 1;
4927
4928 zone->zone_start_pfn = zone_start_pfn;
4929
4930 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4931 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4932 pgdat->node_id,
4933 (unsigned long)zone_idx(zone),
4934 zone_start_pfn, (zone_start_pfn + size));
4935
4936 zone_init_free_lists(zone);
4937
4938 return 0;
4939 }
4940
4941 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4942 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4943
4944 /*
4945 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4946 */
4947 int __meminit __early_pfn_to_nid(unsigned long pfn,
4948 struct mminit_pfnnid_cache *state)
4949 {
4950 unsigned long start_pfn, end_pfn;
4951 int nid;
4952
4953 if (state->last_start <= pfn && pfn < state->last_end)
4954 return state->last_nid;
4955
4956 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4957 if (nid != -1) {
4958 state->last_start = start_pfn;
4959 state->last_end = end_pfn;
4960 state->last_nid = nid;
4961 }
4962
4963 return nid;
4964 }
4965 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4966
4967 /**
4968 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4969 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4970 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4971 *
4972 * If an architecture guarantees that all ranges registered contain no holes
4973 * and may be freed, this this function may be used instead of calling
4974 * memblock_free_early_nid() manually.
4975 */
4976 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4977 {
4978 unsigned long start_pfn, end_pfn;
4979 int i, this_nid;
4980
4981 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4982 start_pfn = min(start_pfn, max_low_pfn);
4983 end_pfn = min(end_pfn, max_low_pfn);
4984
4985 if (start_pfn < end_pfn)
4986 memblock_free_early_nid(PFN_PHYS(start_pfn),
4987 (end_pfn - start_pfn) << PAGE_SHIFT,
4988 this_nid);
4989 }
4990 }
4991
4992 /**
4993 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4994 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4995 *
4996 * If an architecture guarantees that all ranges registered contain no holes and may
4997 * be freed, this function may be used instead of calling memory_present() manually.
4998 */
4999 void __init sparse_memory_present_with_active_regions(int nid)
5000 {
5001 unsigned long start_pfn, end_pfn;
5002 int i, this_nid;
5003
5004 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5005 memory_present(this_nid, start_pfn, end_pfn);
5006 }
5007
5008 /**
5009 * get_pfn_range_for_nid - Return the start and end page frames for a node
5010 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5011 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5012 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5013 *
5014 * It returns the start and end page frame of a node based on information
5015 * provided by memblock_set_node(). If called for a node
5016 * with no available memory, a warning is printed and the start and end
5017 * PFNs will be 0.
5018 */
5019 void __meminit get_pfn_range_for_nid(unsigned int nid,
5020 unsigned long *start_pfn, unsigned long *end_pfn)
5021 {
5022 unsigned long this_start_pfn, this_end_pfn;
5023 int i;
5024
5025 *start_pfn = -1UL;
5026 *end_pfn = 0;
5027
5028 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5029 *start_pfn = min(*start_pfn, this_start_pfn);
5030 *end_pfn = max(*end_pfn, this_end_pfn);
5031 }
5032
5033 if (*start_pfn == -1UL)
5034 *start_pfn = 0;
5035 }
5036
5037 /*
5038 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5039 * assumption is made that zones within a node are ordered in monotonic
5040 * increasing memory addresses so that the "highest" populated zone is used
5041 */
5042 static void __init find_usable_zone_for_movable(void)
5043 {
5044 int zone_index;
5045 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5046 if (zone_index == ZONE_MOVABLE)
5047 continue;
5048
5049 if (arch_zone_highest_possible_pfn[zone_index] >
5050 arch_zone_lowest_possible_pfn[zone_index])
5051 break;
5052 }
5053
5054 VM_BUG_ON(zone_index == -1);
5055 movable_zone = zone_index;
5056 }
5057
5058 /*
5059 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5060 * because it is sized independent of architecture. Unlike the other zones,
5061 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5062 * in each node depending on the size of each node and how evenly kernelcore
5063 * is distributed. This helper function adjusts the zone ranges
5064 * provided by the architecture for a given node by using the end of the
5065 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5066 * zones within a node are in order of monotonic increases memory addresses
5067 */
5068 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5069 unsigned long zone_type,
5070 unsigned long node_start_pfn,
5071 unsigned long node_end_pfn,
5072 unsigned long *zone_start_pfn,
5073 unsigned long *zone_end_pfn)
5074 {
5075 /* Only adjust if ZONE_MOVABLE is on this node */
5076 if (zone_movable_pfn[nid]) {
5077 /* Size ZONE_MOVABLE */
5078 if (zone_type == ZONE_MOVABLE) {
5079 *zone_start_pfn = zone_movable_pfn[nid];
5080 *zone_end_pfn = min(node_end_pfn,
5081 arch_zone_highest_possible_pfn[movable_zone]);
5082
5083 /* Adjust for ZONE_MOVABLE starting within this range */
5084 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
5085 *zone_end_pfn > zone_movable_pfn[nid]) {
5086 *zone_end_pfn = zone_movable_pfn[nid];
5087
5088 /* Check if this whole range is within ZONE_MOVABLE */
5089 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5090 *zone_start_pfn = *zone_end_pfn;
5091 }
5092 }
5093
5094 /*
5095 * Return the number of pages a zone spans in a node, including holes
5096 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5097 */
5098 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5099 unsigned long zone_type,
5100 unsigned long node_start_pfn,
5101 unsigned long node_end_pfn,
5102 unsigned long *ignored)
5103 {
5104 unsigned long zone_start_pfn, zone_end_pfn;
5105
5106 /* When hotadd a new node from cpu_up(), the node should be empty */
5107 if (!node_start_pfn && !node_end_pfn)
5108 return 0;
5109
5110 /* Get the start and end of the zone */
5111 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5112 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5113 adjust_zone_range_for_zone_movable(nid, zone_type,
5114 node_start_pfn, node_end_pfn,
5115 &zone_start_pfn, &zone_end_pfn);
5116
5117 /* Check that this node has pages within the zone's required range */
5118 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
5119 return 0;
5120
5121 /* Move the zone boundaries inside the node if necessary */
5122 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
5123 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
5124
5125 /* Return the spanned pages */
5126 return zone_end_pfn - zone_start_pfn;
5127 }
5128
5129 /*
5130 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5131 * then all holes in the requested range will be accounted for.
5132 */
5133 unsigned long __meminit __absent_pages_in_range(int nid,
5134 unsigned long range_start_pfn,
5135 unsigned long range_end_pfn)
5136 {
5137 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5138 unsigned long start_pfn, end_pfn;
5139 int i;
5140
5141 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5142 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5143 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5144 nr_absent -= end_pfn - start_pfn;
5145 }
5146 return nr_absent;
5147 }
5148
5149 /**
5150 * absent_pages_in_range - Return number of page frames in holes within a range
5151 * @start_pfn: The start PFN to start searching for holes
5152 * @end_pfn: The end PFN to stop searching for holes
5153 *
5154 * It returns the number of pages frames in memory holes within a range.
5155 */
5156 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5157 unsigned long end_pfn)
5158 {
5159 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5160 }
5161
5162 /* Return the number of page frames in holes in a zone on a node */
5163 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5164 unsigned long zone_type,
5165 unsigned long node_start_pfn,
5166 unsigned long node_end_pfn,
5167 unsigned long *ignored)
5168 {
5169 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5170 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5171 unsigned long zone_start_pfn, zone_end_pfn;
5172
5173 /* When hotadd a new node from cpu_up(), the node should be empty */
5174 if (!node_start_pfn && !node_end_pfn)
5175 return 0;
5176
5177 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5178 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5179
5180 adjust_zone_range_for_zone_movable(nid, zone_type,
5181 node_start_pfn, node_end_pfn,
5182 &zone_start_pfn, &zone_end_pfn);
5183 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5184 }
5185
5186 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5187 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5188 unsigned long zone_type,
5189 unsigned long node_start_pfn,
5190 unsigned long node_end_pfn,
5191 unsigned long *zones_size)
5192 {
5193 return zones_size[zone_type];
5194 }
5195
5196 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5197 unsigned long zone_type,
5198 unsigned long node_start_pfn,
5199 unsigned long node_end_pfn,
5200 unsigned long *zholes_size)
5201 {
5202 if (!zholes_size)
5203 return 0;
5204
5205 return zholes_size[zone_type];
5206 }
5207
5208 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5209
5210 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5211 unsigned long node_start_pfn,
5212 unsigned long node_end_pfn,
5213 unsigned long *zones_size,
5214 unsigned long *zholes_size)
5215 {
5216 unsigned long realtotalpages = 0, totalpages = 0;
5217 enum zone_type i;
5218
5219 for (i = 0; i < MAX_NR_ZONES; i++) {
5220 struct zone *zone = pgdat->node_zones + i;
5221 unsigned long size, real_size;
5222
5223 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5224 node_start_pfn,
5225 node_end_pfn,
5226 zones_size);
5227 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5228 node_start_pfn, node_end_pfn,
5229 zholes_size);
5230 zone->spanned_pages = size;
5231 zone->present_pages = real_size;
5232
5233 totalpages += size;
5234 realtotalpages += real_size;
5235 }
5236
5237 pgdat->node_spanned_pages = totalpages;
5238 pgdat->node_present_pages = realtotalpages;
5239 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5240 realtotalpages);
5241 }
5242
5243 #ifndef CONFIG_SPARSEMEM
5244 /*
5245 * Calculate the size of the zone->blockflags rounded to an unsigned long
5246 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5247 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5248 * round what is now in bits to nearest long in bits, then return it in
5249 * bytes.
5250 */
5251 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5252 {
5253 unsigned long usemapsize;
5254
5255 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5256 usemapsize = roundup(zonesize, pageblock_nr_pages);
5257 usemapsize = usemapsize >> pageblock_order;
5258 usemapsize *= NR_PAGEBLOCK_BITS;
5259 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5260
5261 return usemapsize / 8;
5262 }
5263
5264 static void __init setup_usemap(struct pglist_data *pgdat,
5265 struct zone *zone,
5266 unsigned long zone_start_pfn,
5267 unsigned long zonesize)
5268 {
5269 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5270 zone->pageblock_flags = NULL;
5271 if (usemapsize)
5272 zone->pageblock_flags =
5273 memblock_virt_alloc_node_nopanic(usemapsize,
5274 pgdat->node_id);
5275 }
5276 #else
5277 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5278 unsigned long zone_start_pfn, unsigned long zonesize) {}
5279 #endif /* CONFIG_SPARSEMEM */
5280
5281 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5282
5283 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5284 void __paginginit set_pageblock_order(void)
5285 {
5286 unsigned int order;
5287
5288 /* Check that pageblock_nr_pages has not already been setup */
5289 if (pageblock_order)
5290 return;
5291
5292 if (HPAGE_SHIFT > PAGE_SHIFT)
5293 order = HUGETLB_PAGE_ORDER;
5294 else
5295 order = MAX_ORDER - 1;
5296
5297 /*
5298 * Assume the largest contiguous order of interest is a huge page.
5299 * This value may be variable depending on boot parameters on IA64 and
5300 * powerpc.
5301 */
5302 pageblock_order = order;
5303 }
5304 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5305
5306 /*
5307 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5308 * is unused as pageblock_order is set at compile-time. See
5309 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5310 * the kernel config
5311 */
5312 void __paginginit set_pageblock_order(void)
5313 {
5314 }
5315
5316 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5317
5318 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5319 unsigned long present_pages)
5320 {
5321 unsigned long pages = spanned_pages;
5322
5323 /*
5324 * Provide a more accurate estimation if there are holes within
5325 * the zone and SPARSEMEM is in use. If there are holes within the
5326 * zone, each populated memory region may cost us one or two extra
5327 * memmap pages due to alignment because memmap pages for each
5328 * populated regions may not naturally algined on page boundary.
5329 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5330 */
5331 if (spanned_pages > present_pages + (present_pages >> 4) &&
5332 IS_ENABLED(CONFIG_SPARSEMEM))
5333 pages = present_pages;
5334
5335 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5336 }
5337
5338 /*
5339 * Set up the zone data structures:
5340 * - mark all pages reserved
5341 * - mark all memory queues empty
5342 * - clear the memory bitmaps
5343 *
5344 * NOTE: pgdat should get zeroed by caller.
5345 */
5346 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5347 {
5348 enum zone_type j;
5349 int nid = pgdat->node_id;
5350 unsigned long zone_start_pfn = pgdat->node_start_pfn;
5351 int ret;
5352
5353 pgdat_resize_init(pgdat);
5354 #ifdef CONFIG_NUMA_BALANCING
5355 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5356 pgdat->numabalancing_migrate_nr_pages = 0;
5357 pgdat->numabalancing_migrate_next_window = jiffies;
5358 #endif
5359 init_waitqueue_head(&pgdat->kswapd_wait);
5360 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5361 pgdat_page_ext_init(pgdat);
5362
5363 for (j = 0; j < MAX_NR_ZONES; j++) {
5364 struct zone *zone = pgdat->node_zones + j;
5365 unsigned long size, realsize, freesize, memmap_pages;
5366
5367 size = zone->spanned_pages;
5368 realsize = freesize = zone->present_pages;
5369
5370 /*
5371 * Adjust freesize so that it accounts for how much memory
5372 * is used by this zone for memmap. This affects the watermark
5373 * and per-cpu initialisations
5374 */
5375 memmap_pages = calc_memmap_size(size, realsize);
5376 if (!is_highmem_idx(j)) {
5377 if (freesize >= memmap_pages) {
5378 freesize -= memmap_pages;
5379 if (memmap_pages)
5380 printk(KERN_DEBUG
5381 " %s zone: %lu pages used for memmap\n",
5382 zone_names[j], memmap_pages);
5383 } else
5384 printk(KERN_WARNING
5385 " %s zone: %lu pages exceeds freesize %lu\n",
5386 zone_names[j], memmap_pages, freesize);
5387 }
5388
5389 /* Account for reserved pages */
5390 if (j == 0 && freesize > dma_reserve) {
5391 freesize -= dma_reserve;
5392 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5393 zone_names[0], dma_reserve);
5394 }
5395
5396 if (!is_highmem_idx(j))
5397 nr_kernel_pages += freesize;
5398 /* Charge for highmem memmap if there are enough kernel pages */
5399 else if (nr_kernel_pages > memmap_pages * 2)
5400 nr_kernel_pages -= memmap_pages;
5401 nr_all_pages += freesize;
5402
5403 /*
5404 * Set an approximate value for lowmem here, it will be adjusted
5405 * when the bootmem allocator frees pages into the buddy system.
5406 * And all highmem pages will be managed by the buddy system.
5407 */
5408 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5409 #ifdef CONFIG_NUMA
5410 zone->node = nid;
5411 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5412 / 100;
5413 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5414 #endif
5415 zone->name = zone_names[j];
5416 spin_lock_init(&zone->lock);
5417 spin_lock_init(&zone->lru_lock);
5418 zone_seqlock_init(zone);
5419 zone->zone_pgdat = pgdat;
5420 zone_pcp_init(zone);
5421
5422 /* For bootup, initialized properly in watermark setup */
5423 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5424
5425 lruvec_init(&zone->lruvec);
5426 if (!size)
5427 continue;
5428
5429 set_pageblock_order();
5430 setup_usemap(pgdat, zone, zone_start_pfn, size);
5431 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5432 BUG_ON(ret);
5433 memmap_init(size, nid, j, zone_start_pfn);
5434 zone_start_pfn += size;
5435 }
5436 }
5437
5438 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5439 {
5440 unsigned long __maybe_unused offset = 0;
5441
5442 /* Skip empty nodes */
5443 if (!pgdat->node_spanned_pages)
5444 return;
5445
5446 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5447 /* ia64 gets its own node_mem_map, before this, without bootmem */
5448 if (!pgdat->node_mem_map) {
5449 unsigned long size, start, end;
5450 struct page *map;
5451
5452 /*
5453 * The zone's endpoints aren't required to be MAX_ORDER
5454 * aligned but the node_mem_map endpoints must be in order
5455 * for the buddy allocator to function correctly.
5456 */
5457 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5458 offset = pgdat->node_start_pfn - start;
5459 end = pgdat_end_pfn(pgdat);
5460 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5461 size = (end - start) * sizeof(struct page);
5462 map = alloc_remap(pgdat->node_id, size);
5463 if (!map)
5464 map = memblock_virt_alloc_node_nopanic(size,
5465 pgdat->node_id);
5466 pgdat->node_mem_map = map + offset;
5467 }
5468 #ifndef CONFIG_NEED_MULTIPLE_NODES
5469 /*
5470 * With no DISCONTIG, the global mem_map is just set as node 0's
5471 */
5472 if (pgdat == NODE_DATA(0)) {
5473 mem_map = NODE_DATA(0)->node_mem_map;
5474 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5475 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5476 mem_map -= offset;
5477 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5478 }
5479 #endif
5480 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5481 }
5482
5483 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5484 unsigned long node_start_pfn, unsigned long *zholes_size)
5485 {
5486 pg_data_t *pgdat = NODE_DATA(nid);
5487 unsigned long start_pfn = 0;
5488 unsigned long end_pfn = 0;
5489
5490 /* pg_data_t should be reset to zero when it's allocated */
5491 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5492
5493 reset_deferred_meminit(pgdat);
5494 pgdat->node_id = nid;
5495 pgdat->node_start_pfn = node_start_pfn;
5496 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5497 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5498 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5499 (u64)start_pfn << PAGE_SHIFT,
5500 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5501 #endif
5502 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5503 zones_size, zholes_size);
5504
5505 alloc_node_mem_map(pgdat);
5506 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5507 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5508 nid, (unsigned long)pgdat,
5509 (unsigned long)pgdat->node_mem_map);
5510 #endif
5511
5512 free_area_init_core(pgdat);
5513 }
5514
5515 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5516
5517 #if MAX_NUMNODES > 1
5518 /*
5519 * Figure out the number of possible node ids.
5520 */
5521 void __init setup_nr_node_ids(void)
5522 {
5523 unsigned int highest;
5524
5525 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5526 nr_node_ids = highest + 1;
5527 }
5528 #endif
5529
5530 /**
5531 * node_map_pfn_alignment - determine the maximum internode alignment
5532 *
5533 * This function should be called after node map is populated and sorted.
5534 * It calculates the maximum power of two alignment which can distinguish
5535 * all the nodes.
5536 *
5537 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5538 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5539 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5540 * shifted, 1GiB is enough and this function will indicate so.
5541 *
5542 * This is used to test whether pfn -> nid mapping of the chosen memory
5543 * model has fine enough granularity to avoid incorrect mapping for the
5544 * populated node map.
5545 *
5546 * Returns the determined alignment in pfn's. 0 if there is no alignment
5547 * requirement (single node).
5548 */
5549 unsigned long __init node_map_pfn_alignment(void)
5550 {
5551 unsigned long accl_mask = 0, last_end = 0;
5552 unsigned long start, end, mask;
5553 int last_nid = -1;
5554 int i, nid;
5555
5556 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5557 if (!start || last_nid < 0 || last_nid == nid) {
5558 last_nid = nid;
5559 last_end = end;
5560 continue;
5561 }
5562
5563 /*
5564 * Start with a mask granular enough to pin-point to the
5565 * start pfn and tick off bits one-by-one until it becomes
5566 * too coarse to separate the current node from the last.
5567 */
5568 mask = ~((1 << __ffs(start)) - 1);
5569 while (mask && last_end <= (start & (mask << 1)))
5570 mask <<= 1;
5571
5572 /* accumulate all internode masks */
5573 accl_mask |= mask;
5574 }
5575
5576 /* convert mask to number of pages */
5577 return ~accl_mask + 1;
5578 }
5579
5580 /* Find the lowest pfn for a node */
5581 static unsigned long __init find_min_pfn_for_node(int nid)
5582 {
5583 unsigned long min_pfn = ULONG_MAX;
5584 unsigned long start_pfn;
5585 int i;
5586
5587 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5588 min_pfn = min(min_pfn, start_pfn);
5589
5590 if (min_pfn == ULONG_MAX) {
5591 printk(KERN_WARNING
5592 "Could not find start_pfn for node %d\n", nid);
5593 return 0;
5594 }
5595
5596 return min_pfn;
5597 }
5598
5599 /**
5600 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5601 *
5602 * It returns the minimum PFN based on information provided via
5603 * memblock_set_node().
5604 */
5605 unsigned long __init find_min_pfn_with_active_regions(void)
5606 {
5607 return find_min_pfn_for_node(MAX_NUMNODES);
5608 }
5609
5610 /*
5611 * early_calculate_totalpages()
5612 * Sum pages in active regions for movable zone.
5613 * Populate N_MEMORY for calculating usable_nodes.
5614 */
5615 static unsigned long __init early_calculate_totalpages(void)
5616 {
5617 unsigned long totalpages = 0;
5618 unsigned long start_pfn, end_pfn;
5619 int i, nid;
5620
5621 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5622 unsigned long pages = end_pfn - start_pfn;
5623
5624 totalpages += pages;
5625 if (pages)
5626 node_set_state(nid, N_MEMORY);
5627 }
5628 return totalpages;
5629 }
5630
5631 /*
5632 * Find the PFN the Movable zone begins in each node. Kernel memory
5633 * is spread evenly between nodes as long as the nodes have enough
5634 * memory. When they don't, some nodes will have more kernelcore than
5635 * others
5636 */
5637 static void __init find_zone_movable_pfns_for_nodes(void)
5638 {
5639 int i, nid;
5640 unsigned long usable_startpfn;
5641 unsigned long kernelcore_node, kernelcore_remaining;
5642 /* save the state before borrow the nodemask */
5643 nodemask_t saved_node_state = node_states[N_MEMORY];
5644 unsigned long totalpages = early_calculate_totalpages();
5645 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5646 struct memblock_region *r;
5647
5648 /* Need to find movable_zone earlier when movable_node is specified. */
5649 find_usable_zone_for_movable();
5650
5651 /*
5652 * If movable_node is specified, ignore kernelcore and movablecore
5653 * options.
5654 */
5655 if (movable_node_is_enabled()) {
5656 for_each_memblock(memory, r) {
5657 if (!memblock_is_hotpluggable(r))
5658 continue;
5659
5660 nid = r->nid;
5661
5662 usable_startpfn = PFN_DOWN(r->base);
5663 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5664 min(usable_startpfn, zone_movable_pfn[nid]) :
5665 usable_startpfn;
5666 }
5667
5668 goto out2;
5669 }
5670
5671 /*
5672 * If movablecore=nn[KMG] was specified, calculate what size of
5673 * kernelcore that corresponds so that memory usable for
5674 * any allocation type is evenly spread. If both kernelcore
5675 * and movablecore are specified, then the value of kernelcore
5676 * will be used for required_kernelcore if it's greater than
5677 * what movablecore would have allowed.
5678 */
5679 if (required_movablecore) {
5680 unsigned long corepages;
5681
5682 /*
5683 * Round-up so that ZONE_MOVABLE is at least as large as what
5684 * was requested by the user
5685 */
5686 required_movablecore =
5687 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5688 required_movablecore = min(totalpages, required_movablecore);
5689 corepages = totalpages - required_movablecore;
5690
5691 required_kernelcore = max(required_kernelcore, corepages);
5692 }
5693
5694 /*
5695 * If kernelcore was not specified or kernelcore size is larger
5696 * than totalpages, there is no ZONE_MOVABLE.
5697 */
5698 if (!required_kernelcore || required_kernelcore >= totalpages)
5699 goto out;
5700
5701 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5702 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5703
5704 restart:
5705 /* Spread kernelcore memory as evenly as possible throughout nodes */
5706 kernelcore_node = required_kernelcore / usable_nodes;
5707 for_each_node_state(nid, N_MEMORY) {
5708 unsigned long start_pfn, end_pfn;
5709
5710 /*
5711 * Recalculate kernelcore_node if the division per node
5712 * now exceeds what is necessary to satisfy the requested
5713 * amount of memory for the kernel
5714 */
5715 if (required_kernelcore < kernelcore_node)
5716 kernelcore_node = required_kernelcore / usable_nodes;
5717
5718 /*
5719 * As the map is walked, we track how much memory is usable
5720 * by the kernel using kernelcore_remaining. When it is
5721 * 0, the rest of the node is usable by ZONE_MOVABLE
5722 */
5723 kernelcore_remaining = kernelcore_node;
5724
5725 /* Go through each range of PFNs within this node */
5726 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5727 unsigned long size_pages;
5728
5729 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5730 if (start_pfn >= end_pfn)
5731 continue;
5732
5733 /* Account for what is only usable for kernelcore */
5734 if (start_pfn < usable_startpfn) {
5735 unsigned long kernel_pages;
5736 kernel_pages = min(end_pfn, usable_startpfn)
5737 - start_pfn;
5738
5739 kernelcore_remaining -= min(kernel_pages,
5740 kernelcore_remaining);
5741 required_kernelcore -= min(kernel_pages,
5742 required_kernelcore);
5743
5744 /* Continue if range is now fully accounted */
5745 if (end_pfn <= usable_startpfn) {
5746
5747 /*
5748 * Push zone_movable_pfn to the end so
5749 * that if we have to rebalance
5750 * kernelcore across nodes, we will
5751 * not double account here
5752 */
5753 zone_movable_pfn[nid] = end_pfn;
5754 continue;
5755 }
5756 start_pfn = usable_startpfn;
5757 }
5758
5759 /*
5760 * The usable PFN range for ZONE_MOVABLE is from
5761 * start_pfn->end_pfn. Calculate size_pages as the
5762 * number of pages used as kernelcore
5763 */
5764 size_pages = end_pfn - start_pfn;
5765 if (size_pages > kernelcore_remaining)
5766 size_pages = kernelcore_remaining;
5767 zone_movable_pfn[nid] = start_pfn + size_pages;
5768
5769 /*
5770 * Some kernelcore has been met, update counts and
5771 * break if the kernelcore for this node has been
5772 * satisfied
5773 */
5774 required_kernelcore -= min(required_kernelcore,
5775 size_pages);
5776 kernelcore_remaining -= size_pages;
5777 if (!kernelcore_remaining)
5778 break;
5779 }
5780 }
5781
5782 /*
5783 * If there is still required_kernelcore, we do another pass with one
5784 * less node in the count. This will push zone_movable_pfn[nid] further
5785 * along on the nodes that still have memory until kernelcore is
5786 * satisfied
5787 */
5788 usable_nodes--;
5789 if (usable_nodes && required_kernelcore > usable_nodes)
5790 goto restart;
5791
5792 out2:
5793 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5794 for (nid = 0; nid < MAX_NUMNODES; nid++)
5795 zone_movable_pfn[nid] =
5796 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5797
5798 out:
5799 /* restore the node_state */
5800 node_states[N_MEMORY] = saved_node_state;
5801 }
5802
5803 /* Any regular or high memory on that node ? */
5804 static void check_for_memory(pg_data_t *pgdat, int nid)
5805 {
5806 enum zone_type zone_type;
5807
5808 if (N_MEMORY == N_NORMAL_MEMORY)
5809 return;
5810
5811 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5812 struct zone *zone = &pgdat->node_zones[zone_type];
5813 if (populated_zone(zone)) {
5814 node_set_state(nid, N_HIGH_MEMORY);
5815 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5816 zone_type <= ZONE_NORMAL)
5817 node_set_state(nid, N_NORMAL_MEMORY);
5818 break;
5819 }
5820 }
5821 }
5822
5823 /**
5824 * free_area_init_nodes - Initialise all pg_data_t and zone data
5825 * @max_zone_pfn: an array of max PFNs for each zone
5826 *
5827 * This will call free_area_init_node() for each active node in the system.
5828 * Using the page ranges provided by memblock_set_node(), the size of each
5829 * zone in each node and their holes is calculated. If the maximum PFN
5830 * between two adjacent zones match, it is assumed that the zone is empty.
5831 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5832 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5833 * starts where the previous one ended. For example, ZONE_DMA32 starts
5834 * at arch_max_dma_pfn.
5835 */
5836 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5837 {
5838 unsigned long start_pfn, end_pfn;
5839 int i, nid;
5840
5841 /* Record where the zone boundaries are */
5842 memset(arch_zone_lowest_possible_pfn, 0,
5843 sizeof(arch_zone_lowest_possible_pfn));
5844 memset(arch_zone_highest_possible_pfn, 0,
5845 sizeof(arch_zone_highest_possible_pfn));
5846 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5847 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5848 for (i = 1; i < MAX_NR_ZONES; i++) {
5849 if (i == ZONE_MOVABLE)
5850 continue;
5851 arch_zone_lowest_possible_pfn[i] =
5852 arch_zone_highest_possible_pfn[i-1];
5853 arch_zone_highest_possible_pfn[i] =
5854 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5855 }
5856 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5857 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5858
5859 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5860 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5861 find_zone_movable_pfns_for_nodes();
5862
5863 /* Print out the zone ranges */
5864 pr_info("Zone ranges:\n");
5865 for (i = 0; i < MAX_NR_ZONES; i++) {
5866 if (i == ZONE_MOVABLE)
5867 continue;
5868 pr_info(" %-8s ", zone_names[i]);
5869 if (arch_zone_lowest_possible_pfn[i] ==
5870 arch_zone_highest_possible_pfn[i])
5871 pr_cont("empty\n");
5872 else
5873 pr_cont("[mem %#018Lx-%#018Lx]\n",
5874 (u64)arch_zone_lowest_possible_pfn[i]
5875 << PAGE_SHIFT,
5876 ((u64)arch_zone_highest_possible_pfn[i]
5877 << PAGE_SHIFT) - 1);
5878 }
5879
5880 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5881 pr_info("Movable zone start for each node\n");
5882 for (i = 0; i < MAX_NUMNODES; i++) {
5883 if (zone_movable_pfn[i])
5884 pr_info(" Node %d: %#018Lx\n", i,
5885 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5886 }
5887
5888 /* Print out the early node map */
5889 pr_info("Early memory node ranges\n");
5890 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5891 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5892 (u64)start_pfn << PAGE_SHIFT,
5893 ((u64)end_pfn << PAGE_SHIFT) - 1);
5894
5895 /* Initialise every node */
5896 mminit_verify_pageflags_layout();
5897 setup_nr_node_ids();
5898 for_each_online_node(nid) {
5899 pg_data_t *pgdat = NODE_DATA(nid);
5900 free_area_init_node(nid, NULL,
5901 find_min_pfn_for_node(nid), NULL);
5902
5903 /* Any memory on that node */
5904 if (pgdat->node_present_pages)
5905 node_set_state(nid, N_MEMORY);
5906 check_for_memory(pgdat, nid);
5907 }
5908 }
5909
5910 static int __init cmdline_parse_core(char *p, unsigned long *core)
5911 {
5912 unsigned long long coremem;
5913 if (!p)
5914 return -EINVAL;
5915
5916 coremem = memparse(p, &p);
5917 *core = coremem >> PAGE_SHIFT;
5918
5919 /* Paranoid check that UL is enough for the coremem value */
5920 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5921
5922 return 0;
5923 }
5924
5925 /*
5926 * kernelcore=size sets the amount of memory for use for allocations that
5927 * cannot be reclaimed or migrated.
5928 */
5929 static int __init cmdline_parse_kernelcore(char *p)
5930 {
5931 return cmdline_parse_core(p, &required_kernelcore);
5932 }
5933
5934 /*
5935 * movablecore=size sets the amount of memory for use for allocations that
5936 * can be reclaimed or migrated.
5937 */
5938 static int __init cmdline_parse_movablecore(char *p)
5939 {
5940 return cmdline_parse_core(p, &required_movablecore);
5941 }
5942
5943 early_param("kernelcore", cmdline_parse_kernelcore);
5944 early_param("movablecore", cmdline_parse_movablecore);
5945
5946 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5947
5948 void adjust_managed_page_count(struct page *page, long count)
5949 {
5950 spin_lock(&managed_page_count_lock);
5951 page_zone(page)->managed_pages += count;
5952 totalram_pages += count;
5953 #ifdef CONFIG_HIGHMEM
5954 if (PageHighMem(page))
5955 totalhigh_pages += count;
5956 #endif
5957 spin_unlock(&managed_page_count_lock);
5958 }
5959 EXPORT_SYMBOL(adjust_managed_page_count);
5960
5961 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5962 {
5963 void *pos;
5964 unsigned long pages = 0;
5965
5966 start = (void *)PAGE_ALIGN((unsigned long)start);
5967 end = (void *)((unsigned long)end & PAGE_MASK);
5968 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5969 if ((unsigned int)poison <= 0xFF)
5970 memset(pos, poison, PAGE_SIZE);
5971 free_reserved_page(virt_to_page(pos));
5972 }
5973
5974 if (pages && s)
5975 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5976 s, pages << (PAGE_SHIFT - 10), start, end);
5977
5978 return pages;
5979 }
5980 EXPORT_SYMBOL(free_reserved_area);
5981
5982 #ifdef CONFIG_HIGHMEM
5983 void free_highmem_page(struct page *page)
5984 {
5985 __free_reserved_page(page);
5986 totalram_pages++;
5987 page_zone(page)->managed_pages++;
5988 totalhigh_pages++;
5989 }
5990 #endif
5991
5992
5993 void __init mem_init_print_info(const char *str)
5994 {
5995 unsigned long physpages, codesize, datasize, rosize, bss_size;
5996 unsigned long init_code_size, init_data_size;
5997
5998 physpages = get_num_physpages();
5999 codesize = _etext - _stext;
6000 datasize = _edata - _sdata;
6001 rosize = __end_rodata - __start_rodata;
6002 bss_size = __bss_stop - __bss_start;
6003 init_data_size = __init_end - __init_begin;
6004 init_code_size = _einittext - _sinittext;
6005
6006 /*
6007 * Detect special cases and adjust section sizes accordingly:
6008 * 1) .init.* may be embedded into .data sections
6009 * 2) .init.text.* may be out of [__init_begin, __init_end],
6010 * please refer to arch/tile/kernel/vmlinux.lds.S.
6011 * 3) .rodata.* may be embedded into .text or .data sections.
6012 */
6013 #define adj_init_size(start, end, size, pos, adj) \
6014 do { \
6015 if (start <= pos && pos < end && size > adj) \
6016 size -= adj; \
6017 } while (0)
6018
6019 adj_init_size(__init_begin, __init_end, init_data_size,
6020 _sinittext, init_code_size);
6021 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6022 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6023 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6024 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6025
6026 #undef adj_init_size
6027
6028 pr_info("Memory: %luK/%luK available "
6029 "(%luK kernel code, %luK rwdata, %luK rodata, "
6030 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
6031 #ifdef CONFIG_HIGHMEM
6032 ", %luK highmem"
6033 #endif
6034 "%s%s)\n",
6035 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
6036 codesize >> 10, datasize >> 10, rosize >> 10,
6037 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6038 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
6039 totalcma_pages << (PAGE_SHIFT-10),
6040 #ifdef CONFIG_HIGHMEM
6041 totalhigh_pages << (PAGE_SHIFT-10),
6042 #endif
6043 str ? ", " : "", str ? str : "");
6044 }
6045
6046 /**
6047 * set_dma_reserve - set the specified number of pages reserved in the first zone
6048 * @new_dma_reserve: The number of pages to mark reserved
6049 *
6050 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6051 * In the DMA zone, a significant percentage may be consumed by kernel image
6052 * and other unfreeable allocations which can skew the watermarks badly. This
6053 * function may optionally be used to account for unfreeable pages in the
6054 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6055 * smaller per-cpu batchsize.
6056 */
6057 void __init set_dma_reserve(unsigned long new_dma_reserve)
6058 {
6059 dma_reserve = new_dma_reserve;
6060 }
6061
6062 void __init free_area_init(unsigned long *zones_size)
6063 {
6064 free_area_init_node(0, zones_size,
6065 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6066 }
6067
6068 static int page_alloc_cpu_notify(struct notifier_block *self,
6069 unsigned long action, void *hcpu)
6070 {
6071 int cpu = (unsigned long)hcpu;
6072
6073 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6074 lru_add_drain_cpu(cpu);
6075 drain_pages(cpu);
6076
6077 /*
6078 * Spill the event counters of the dead processor
6079 * into the current processors event counters.
6080 * This artificially elevates the count of the current
6081 * processor.
6082 */
6083 vm_events_fold_cpu(cpu);
6084
6085 /*
6086 * Zero the differential counters of the dead processor
6087 * so that the vm statistics are consistent.
6088 *
6089 * This is only okay since the processor is dead and cannot
6090 * race with what we are doing.
6091 */
6092 cpu_vm_stats_fold(cpu);
6093 }
6094 return NOTIFY_OK;
6095 }
6096
6097 void __init page_alloc_init(void)
6098 {
6099 hotcpu_notifier(page_alloc_cpu_notify, 0);
6100 }
6101
6102 /*
6103 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6104 * or min_free_kbytes changes.
6105 */
6106 static void calculate_totalreserve_pages(void)
6107 {
6108 struct pglist_data *pgdat;
6109 unsigned long reserve_pages = 0;
6110 enum zone_type i, j;
6111
6112 for_each_online_pgdat(pgdat) {
6113 for (i = 0; i < MAX_NR_ZONES; i++) {
6114 struct zone *zone = pgdat->node_zones + i;
6115 long max = 0;
6116
6117 /* Find valid and maximum lowmem_reserve in the zone */
6118 for (j = i; j < MAX_NR_ZONES; j++) {
6119 if (zone->lowmem_reserve[j] > max)
6120 max = zone->lowmem_reserve[j];
6121 }
6122
6123 /* we treat the high watermark as reserved pages. */
6124 max += high_wmark_pages(zone);
6125
6126 if (max > zone->managed_pages)
6127 max = zone->managed_pages;
6128 reserve_pages += max;
6129 /*
6130 * Lowmem reserves are not available to
6131 * GFP_HIGHUSER page cache allocations and
6132 * kswapd tries to balance zones to their high
6133 * watermark. As a result, neither should be
6134 * regarded as dirtyable memory, to prevent a
6135 * situation where reclaim has to clean pages
6136 * in order to balance the zones.
6137 */
6138 zone->dirty_balance_reserve = max;
6139 }
6140 }
6141 dirty_balance_reserve = reserve_pages;
6142 totalreserve_pages = reserve_pages;
6143 }
6144
6145 /*
6146 * setup_per_zone_lowmem_reserve - called whenever
6147 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6148 * has a correct pages reserved value, so an adequate number of
6149 * pages are left in the zone after a successful __alloc_pages().
6150 */
6151 static void setup_per_zone_lowmem_reserve(void)
6152 {
6153 struct pglist_data *pgdat;
6154 enum zone_type j, idx;
6155
6156 for_each_online_pgdat(pgdat) {
6157 for (j = 0; j < MAX_NR_ZONES; j++) {
6158 struct zone *zone = pgdat->node_zones + j;
6159 unsigned long managed_pages = zone->managed_pages;
6160
6161 zone->lowmem_reserve[j] = 0;
6162
6163 idx = j;
6164 while (idx) {
6165 struct zone *lower_zone;
6166
6167 idx--;
6168
6169 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6170 sysctl_lowmem_reserve_ratio[idx] = 1;
6171
6172 lower_zone = pgdat->node_zones + idx;
6173 lower_zone->lowmem_reserve[j] = managed_pages /
6174 sysctl_lowmem_reserve_ratio[idx];
6175 managed_pages += lower_zone->managed_pages;
6176 }
6177 }
6178 }
6179
6180 /* update totalreserve_pages */
6181 calculate_totalreserve_pages();
6182 }
6183
6184 static void __setup_per_zone_wmarks(void)
6185 {
6186 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6187 unsigned long lowmem_pages = 0;
6188 struct zone *zone;
6189 unsigned long flags;
6190
6191 /* Calculate total number of !ZONE_HIGHMEM pages */
6192 for_each_zone(zone) {
6193 if (!is_highmem(zone))
6194 lowmem_pages += zone->managed_pages;
6195 }
6196
6197 for_each_zone(zone) {
6198 u64 tmp;
6199
6200 spin_lock_irqsave(&zone->lock, flags);
6201 tmp = (u64)pages_min * zone->managed_pages;
6202 do_div(tmp, lowmem_pages);
6203 if (is_highmem(zone)) {
6204 /*
6205 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6206 * need highmem pages, so cap pages_min to a small
6207 * value here.
6208 *
6209 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6210 * deltas control asynch page reclaim, and so should
6211 * not be capped for highmem.
6212 */
6213 unsigned long min_pages;
6214
6215 min_pages = zone->managed_pages / 1024;
6216 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6217 zone->watermark[WMARK_MIN] = min_pages;
6218 } else {
6219 /*
6220 * If it's a lowmem zone, reserve a number of pages
6221 * proportionate to the zone's size.
6222 */
6223 zone->watermark[WMARK_MIN] = tmp;
6224 }
6225
6226 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6227 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
6228
6229 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6230 high_wmark_pages(zone) - low_wmark_pages(zone) -
6231 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6232
6233 setup_zone_migrate_reserve(zone);
6234 spin_unlock_irqrestore(&zone->lock, flags);
6235 }
6236
6237 /* update totalreserve_pages */
6238 calculate_totalreserve_pages();
6239 }
6240
6241 /**
6242 * setup_per_zone_wmarks - called when min_free_kbytes changes
6243 * or when memory is hot-{added|removed}
6244 *
6245 * Ensures that the watermark[min,low,high] values for each zone are set
6246 * correctly with respect to min_free_kbytes.
6247 */
6248 void setup_per_zone_wmarks(void)
6249 {
6250 mutex_lock(&zonelists_mutex);
6251 __setup_per_zone_wmarks();
6252 mutex_unlock(&zonelists_mutex);
6253 }
6254
6255 /*
6256 * The inactive anon list should be small enough that the VM never has to
6257 * do too much work, but large enough that each inactive page has a chance
6258 * to be referenced again before it is swapped out.
6259 *
6260 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6261 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6262 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6263 * the anonymous pages are kept on the inactive list.
6264 *
6265 * total target max
6266 * memory ratio inactive anon
6267 * -------------------------------------
6268 * 10MB 1 5MB
6269 * 100MB 1 50MB
6270 * 1GB 3 250MB
6271 * 10GB 10 0.9GB
6272 * 100GB 31 3GB
6273 * 1TB 101 10GB
6274 * 10TB 320 32GB
6275 */
6276 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6277 {
6278 unsigned int gb, ratio;
6279
6280 /* Zone size in gigabytes */
6281 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6282 if (gb)
6283 ratio = int_sqrt(10 * gb);
6284 else
6285 ratio = 1;
6286
6287 zone->inactive_ratio = ratio;
6288 }
6289
6290 static void __meminit setup_per_zone_inactive_ratio(void)
6291 {
6292 struct zone *zone;
6293
6294 for_each_zone(zone)
6295 calculate_zone_inactive_ratio(zone);
6296 }
6297
6298 /*
6299 * Initialise min_free_kbytes.
6300 *
6301 * For small machines we want it small (128k min). For large machines
6302 * we want it large (64MB max). But it is not linear, because network
6303 * bandwidth does not increase linearly with machine size. We use
6304 *
6305 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6306 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6307 *
6308 * which yields
6309 *
6310 * 16MB: 512k
6311 * 32MB: 724k
6312 * 64MB: 1024k
6313 * 128MB: 1448k
6314 * 256MB: 2048k
6315 * 512MB: 2896k
6316 * 1024MB: 4096k
6317 * 2048MB: 5792k
6318 * 4096MB: 8192k
6319 * 8192MB: 11584k
6320 * 16384MB: 16384k
6321 */
6322 int __meminit init_per_zone_wmark_min(void)
6323 {
6324 unsigned long lowmem_kbytes;
6325 int new_min_free_kbytes;
6326
6327 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6328 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6329
6330 if (new_min_free_kbytes > user_min_free_kbytes) {
6331 min_free_kbytes = new_min_free_kbytes;
6332 if (min_free_kbytes < 128)
6333 min_free_kbytes = 128;
6334 if (min_free_kbytes > 65536)
6335 min_free_kbytes = 65536;
6336 } else {
6337 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6338 new_min_free_kbytes, user_min_free_kbytes);
6339 }
6340 setup_per_zone_wmarks();
6341 refresh_zone_stat_thresholds();
6342 setup_per_zone_lowmem_reserve();
6343 setup_per_zone_inactive_ratio();
6344 return 0;
6345 }
6346 module_init(init_per_zone_wmark_min)
6347
6348 /*
6349 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6350 * that we can call two helper functions whenever min_free_kbytes
6351 * changes.
6352 */
6353 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6354 void __user *buffer, size_t *length, loff_t *ppos)
6355 {
6356 int rc;
6357
6358 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6359 if (rc)
6360 return rc;
6361
6362 if (write) {
6363 user_min_free_kbytes = min_free_kbytes;
6364 setup_per_zone_wmarks();
6365 }
6366 return 0;
6367 }
6368
6369 #ifdef CONFIG_NUMA
6370 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6371 void __user *buffer, size_t *length, loff_t *ppos)
6372 {
6373 struct zone *zone;
6374 int rc;
6375
6376 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6377 if (rc)
6378 return rc;
6379
6380 for_each_zone(zone)
6381 zone->min_unmapped_pages = (zone->managed_pages *
6382 sysctl_min_unmapped_ratio) / 100;
6383 return 0;
6384 }
6385
6386 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6387 void __user *buffer, size_t *length, loff_t *ppos)
6388 {
6389 struct zone *zone;
6390 int rc;
6391
6392 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6393 if (rc)
6394 return rc;
6395
6396 for_each_zone(zone)
6397 zone->min_slab_pages = (zone->managed_pages *
6398 sysctl_min_slab_ratio) / 100;
6399 return 0;
6400 }
6401 #endif
6402
6403 /*
6404 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6405 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6406 * whenever sysctl_lowmem_reserve_ratio changes.
6407 *
6408 * The reserve ratio obviously has absolutely no relation with the
6409 * minimum watermarks. The lowmem reserve ratio can only make sense
6410 * if in function of the boot time zone sizes.
6411 */
6412 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6413 void __user *buffer, size_t *length, loff_t *ppos)
6414 {
6415 proc_dointvec_minmax(table, write, buffer, length, ppos);
6416 setup_per_zone_lowmem_reserve();
6417 return 0;
6418 }
6419
6420 /*
6421 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6422 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6423 * pagelist can have before it gets flushed back to buddy allocator.
6424 */
6425 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6426 void __user *buffer, size_t *length, loff_t *ppos)
6427 {
6428 struct zone *zone;
6429 int old_percpu_pagelist_fraction;
6430 int ret;
6431
6432 mutex_lock(&pcp_batch_high_lock);
6433 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6434
6435 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6436 if (!write || ret < 0)
6437 goto out;
6438
6439 /* Sanity checking to avoid pcp imbalance */
6440 if (percpu_pagelist_fraction &&
6441 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6442 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6443 ret = -EINVAL;
6444 goto out;
6445 }
6446
6447 /* No change? */
6448 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6449 goto out;
6450
6451 for_each_populated_zone(zone) {
6452 unsigned int cpu;
6453
6454 for_each_possible_cpu(cpu)
6455 pageset_set_high_and_batch(zone,
6456 per_cpu_ptr(zone->pageset, cpu));
6457 }
6458 out:
6459 mutex_unlock(&pcp_batch_high_lock);
6460 return ret;
6461 }
6462
6463 #ifdef CONFIG_NUMA
6464 int hashdist = HASHDIST_DEFAULT;
6465
6466 static int __init set_hashdist(char *str)
6467 {
6468 if (!str)
6469 return 0;
6470 hashdist = simple_strtoul(str, &str, 0);
6471 return 1;
6472 }
6473 __setup("hashdist=", set_hashdist);
6474 #endif
6475
6476 /*
6477 * allocate a large system hash table from bootmem
6478 * - it is assumed that the hash table must contain an exact power-of-2
6479 * quantity of entries
6480 * - limit is the number of hash buckets, not the total allocation size
6481 */
6482 void *__init alloc_large_system_hash(const char *tablename,
6483 unsigned long bucketsize,
6484 unsigned long numentries,
6485 int scale,
6486 int flags,
6487 unsigned int *_hash_shift,
6488 unsigned int *_hash_mask,
6489 unsigned long low_limit,
6490 unsigned long high_limit)
6491 {
6492 unsigned long long max = high_limit;
6493 unsigned long log2qty, size;
6494 void *table = NULL;
6495
6496 /* allow the kernel cmdline to have a say */
6497 if (!numentries) {
6498 /* round applicable memory size up to nearest megabyte */
6499 numentries = nr_kernel_pages;
6500
6501 /* It isn't necessary when PAGE_SIZE >= 1MB */
6502 if (PAGE_SHIFT < 20)
6503 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6504
6505 /* limit to 1 bucket per 2^scale bytes of low memory */
6506 if (scale > PAGE_SHIFT)
6507 numentries >>= (scale - PAGE_SHIFT);
6508 else
6509 numentries <<= (PAGE_SHIFT - scale);
6510
6511 /* Make sure we've got at least a 0-order allocation.. */
6512 if (unlikely(flags & HASH_SMALL)) {
6513 /* Makes no sense without HASH_EARLY */
6514 WARN_ON(!(flags & HASH_EARLY));
6515 if (!(numentries >> *_hash_shift)) {
6516 numentries = 1UL << *_hash_shift;
6517 BUG_ON(!numentries);
6518 }
6519 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6520 numentries = PAGE_SIZE / bucketsize;
6521 }
6522 numentries = roundup_pow_of_two(numentries);
6523
6524 /* limit allocation size to 1/16 total memory by default */
6525 if (max == 0) {
6526 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6527 do_div(max, bucketsize);
6528 }
6529 max = min(max, 0x80000000ULL);
6530
6531 if (numentries < low_limit)
6532 numentries = low_limit;
6533 if (numentries > max)
6534 numentries = max;
6535
6536 log2qty = ilog2(numentries);
6537
6538 do {
6539 size = bucketsize << log2qty;
6540 if (flags & HASH_EARLY)
6541 table = memblock_virt_alloc_nopanic(size, 0);
6542 else if (hashdist)
6543 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6544 else {
6545 /*
6546 * If bucketsize is not a power-of-two, we may free
6547 * some pages at the end of hash table which
6548 * alloc_pages_exact() automatically does
6549 */
6550 if (get_order(size) < MAX_ORDER) {
6551 table = alloc_pages_exact(size, GFP_ATOMIC);
6552 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6553 }
6554 }
6555 } while (!table && size > PAGE_SIZE && --log2qty);
6556
6557 if (!table)
6558 panic("Failed to allocate %s hash table\n", tablename);
6559
6560 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6561 tablename,
6562 (1UL << log2qty),
6563 ilog2(size) - PAGE_SHIFT,
6564 size);
6565
6566 if (_hash_shift)
6567 *_hash_shift = log2qty;
6568 if (_hash_mask)
6569 *_hash_mask = (1 << log2qty) - 1;
6570
6571 return table;
6572 }
6573
6574 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6575 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6576 unsigned long pfn)
6577 {
6578 #ifdef CONFIG_SPARSEMEM
6579 return __pfn_to_section(pfn)->pageblock_flags;
6580 #else
6581 return zone->pageblock_flags;
6582 #endif /* CONFIG_SPARSEMEM */
6583 }
6584
6585 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6586 {
6587 #ifdef CONFIG_SPARSEMEM
6588 pfn &= (PAGES_PER_SECTION-1);
6589 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6590 #else
6591 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6592 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6593 #endif /* CONFIG_SPARSEMEM */
6594 }
6595
6596 /**
6597 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6598 * @page: The page within the block of interest
6599 * @pfn: The target page frame number
6600 * @end_bitidx: The last bit of interest to retrieve
6601 * @mask: mask of bits that the caller is interested in
6602 *
6603 * Return: pageblock_bits flags
6604 */
6605 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6606 unsigned long end_bitidx,
6607 unsigned long mask)
6608 {
6609 struct zone *zone;
6610 unsigned long *bitmap;
6611 unsigned long bitidx, word_bitidx;
6612 unsigned long word;
6613
6614 zone = page_zone(page);
6615 bitmap = get_pageblock_bitmap(zone, pfn);
6616 bitidx = pfn_to_bitidx(zone, pfn);
6617 word_bitidx = bitidx / BITS_PER_LONG;
6618 bitidx &= (BITS_PER_LONG-1);
6619
6620 word = bitmap[word_bitidx];
6621 bitidx += end_bitidx;
6622 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6623 }
6624
6625 /**
6626 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6627 * @page: The page within the block of interest
6628 * @flags: The flags to set
6629 * @pfn: The target page frame number
6630 * @end_bitidx: The last bit of interest
6631 * @mask: mask of bits that the caller is interested in
6632 */
6633 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6634 unsigned long pfn,
6635 unsigned long end_bitidx,
6636 unsigned long mask)
6637 {
6638 struct zone *zone;
6639 unsigned long *bitmap;
6640 unsigned long bitidx, word_bitidx;
6641 unsigned long old_word, word;
6642
6643 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6644
6645 zone = page_zone(page);
6646 bitmap = get_pageblock_bitmap(zone, pfn);
6647 bitidx = pfn_to_bitidx(zone, pfn);
6648 word_bitidx = bitidx / BITS_PER_LONG;
6649 bitidx &= (BITS_PER_LONG-1);
6650
6651 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6652
6653 bitidx += end_bitidx;
6654 mask <<= (BITS_PER_LONG - bitidx - 1);
6655 flags <<= (BITS_PER_LONG - bitidx - 1);
6656
6657 word = READ_ONCE(bitmap[word_bitidx]);
6658 for (;;) {
6659 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6660 if (word == old_word)
6661 break;
6662 word = old_word;
6663 }
6664 }
6665
6666 /*
6667 * This function checks whether pageblock includes unmovable pages or not.
6668 * If @count is not zero, it is okay to include less @count unmovable pages
6669 *
6670 * PageLRU check without isolation or lru_lock could race so that
6671 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6672 * expect this function should be exact.
6673 */
6674 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6675 bool skip_hwpoisoned_pages)
6676 {
6677 unsigned long pfn, iter, found;
6678 int mt;
6679
6680 /*
6681 * For avoiding noise data, lru_add_drain_all() should be called
6682 * If ZONE_MOVABLE, the zone never contains unmovable pages
6683 */
6684 if (zone_idx(zone) == ZONE_MOVABLE)
6685 return false;
6686 mt = get_pageblock_migratetype(page);
6687 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6688 return false;
6689
6690 pfn = page_to_pfn(page);
6691 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6692 unsigned long check = pfn + iter;
6693
6694 if (!pfn_valid_within(check))
6695 continue;
6696
6697 page = pfn_to_page(check);
6698
6699 /*
6700 * Hugepages are not in LRU lists, but they're movable.
6701 * We need not scan over tail pages bacause we don't
6702 * handle each tail page individually in migration.
6703 */
6704 if (PageHuge(page)) {
6705 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6706 continue;
6707 }
6708
6709 /*
6710 * We can't use page_count without pin a page
6711 * because another CPU can free compound page.
6712 * This check already skips compound tails of THP
6713 * because their page->_count is zero at all time.
6714 */
6715 if (!atomic_read(&page->_count)) {
6716 if (PageBuddy(page))
6717 iter += (1 << page_order(page)) - 1;
6718 continue;
6719 }
6720
6721 /*
6722 * The HWPoisoned page may be not in buddy system, and
6723 * page_count() is not 0.
6724 */
6725 if (skip_hwpoisoned_pages && PageHWPoison(page))
6726 continue;
6727
6728 if (!PageLRU(page))
6729 found++;
6730 /*
6731 * If there are RECLAIMABLE pages, we need to check
6732 * it. But now, memory offline itself doesn't call
6733 * shrink_node_slabs() and it still to be fixed.
6734 */
6735 /*
6736 * If the page is not RAM, page_count()should be 0.
6737 * we don't need more check. This is an _used_ not-movable page.
6738 *
6739 * The problematic thing here is PG_reserved pages. PG_reserved
6740 * is set to both of a memory hole page and a _used_ kernel
6741 * page at boot.
6742 */
6743 if (found > count)
6744 return true;
6745 }
6746 return false;
6747 }
6748
6749 bool is_pageblock_removable_nolock(struct page *page)
6750 {
6751 struct zone *zone;
6752 unsigned long pfn;
6753
6754 /*
6755 * We have to be careful here because we are iterating over memory
6756 * sections which are not zone aware so we might end up outside of
6757 * the zone but still within the section.
6758 * We have to take care about the node as well. If the node is offline
6759 * its NODE_DATA will be NULL - see page_zone.
6760 */
6761 if (!node_online(page_to_nid(page)))
6762 return false;
6763
6764 zone = page_zone(page);
6765 pfn = page_to_pfn(page);
6766 if (!zone_spans_pfn(zone, pfn))
6767 return false;
6768
6769 return !has_unmovable_pages(zone, page, 0, true);
6770 }
6771
6772 #ifdef CONFIG_CMA
6773
6774 static unsigned long pfn_max_align_down(unsigned long pfn)
6775 {
6776 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6777 pageblock_nr_pages) - 1);
6778 }
6779
6780 static unsigned long pfn_max_align_up(unsigned long pfn)
6781 {
6782 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6783 pageblock_nr_pages));
6784 }
6785
6786 /* [start, end) must belong to a single zone. */
6787 static int __alloc_contig_migrate_range(struct compact_control *cc,
6788 unsigned long start, unsigned long end)
6789 {
6790 /* This function is based on compact_zone() from compaction.c. */
6791 unsigned long nr_reclaimed;
6792 unsigned long pfn = start;
6793 unsigned int tries = 0;
6794 int ret = 0;
6795
6796 migrate_prep();
6797
6798 while (pfn < end || !list_empty(&cc->migratepages)) {
6799 if (fatal_signal_pending(current)) {
6800 ret = -EINTR;
6801 break;
6802 }
6803
6804 if (list_empty(&cc->migratepages)) {
6805 cc->nr_migratepages = 0;
6806 pfn = isolate_migratepages_range(cc, pfn, end);
6807 if (!pfn) {
6808 ret = -EINTR;
6809 break;
6810 }
6811 tries = 0;
6812 } else if (++tries == 5) {
6813 ret = ret < 0 ? ret : -EBUSY;
6814 break;
6815 }
6816
6817 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6818 &cc->migratepages);
6819 cc->nr_migratepages -= nr_reclaimed;
6820
6821 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6822 NULL, 0, cc->mode, MR_CMA);
6823 }
6824 if (ret < 0) {
6825 putback_movable_pages(&cc->migratepages);
6826 return ret;
6827 }
6828 return 0;
6829 }
6830
6831 /**
6832 * alloc_contig_range() -- tries to allocate given range of pages
6833 * @start: start PFN to allocate
6834 * @end: one-past-the-last PFN to allocate
6835 * @migratetype: migratetype of the underlaying pageblocks (either
6836 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6837 * in range must have the same migratetype and it must
6838 * be either of the two.
6839 *
6840 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6841 * aligned, however it's the caller's responsibility to guarantee that
6842 * we are the only thread that changes migrate type of pageblocks the
6843 * pages fall in.
6844 *
6845 * The PFN range must belong to a single zone.
6846 *
6847 * Returns zero on success or negative error code. On success all
6848 * pages which PFN is in [start, end) are allocated for the caller and
6849 * need to be freed with free_contig_range().
6850 */
6851 int alloc_contig_range(unsigned long start, unsigned long end,
6852 unsigned migratetype)
6853 {
6854 unsigned long outer_start, outer_end;
6855 int ret = 0, order;
6856
6857 struct compact_control cc = {
6858 .nr_migratepages = 0,
6859 .order = -1,
6860 .zone = page_zone(pfn_to_page(start)),
6861 .mode = MIGRATE_SYNC,
6862 .ignore_skip_hint = true,
6863 };
6864 INIT_LIST_HEAD(&cc.migratepages);
6865
6866 /*
6867 * What we do here is we mark all pageblocks in range as
6868 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6869 * have different sizes, and due to the way page allocator
6870 * work, we align the range to biggest of the two pages so
6871 * that page allocator won't try to merge buddies from
6872 * different pageblocks and change MIGRATE_ISOLATE to some
6873 * other migration type.
6874 *
6875 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6876 * migrate the pages from an unaligned range (ie. pages that
6877 * we are interested in). This will put all the pages in
6878 * range back to page allocator as MIGRATE_ISOLATE.
6879 *
6880 * When this is done, we take the pages in range from page
6881 * allocator removing them from the buddy system. This way
6882 * page allocator will never consider using them.
6883 *
6884 * This lets us mark the pageblocks back as
6885 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6886 * aligned range but not in the unaligned, original range are
6887 * put back to page allocator so that buddy can use them.
6888 */
6889
6890 ret = start_isolate_page_range(pfn_max_align_down(start),
6891 pfn_max_align_up(end), migratetype,
6892 false);
6893 if (ret)
6894 return ret;
6895
6896 ret = __alloc_contig_migrate_range(&cc, start, end);
6897 if (ret)
6898 goto done;
6899
6900 /*
6901 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6902 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6903 * more, all pages in [start, end) are free in page allocator.
6904 * What we are going to do is to allocate all pages from
6905 * [start, end) (that is remove them from page allocator).
6906 *
6907 * The only problem is that pages at the beginning and at the
6908 * end of interesting range may be not aligned with pages that
6909 * page allocator holds, ie. they can be part of higher order
6910 * pages. Because of this, we reserve the bigger range and
6911 * once this is done free the pages we are not interested in.
6912 *
6913 * We don't have to hold zone->lock here because the pages are
6914 * isolated thus they won't get removed from buddy.
6915 */
6916
6917 lru_add_drain_all();
6918 drain_all_pages(cc.zone);
6919
6920 order = 0;
6921 outer_start = start;
6922 while (!PageBuddy(pfn_to_page(outer_start))) {
6923 if (++order >= MAX_ORDER) {
6924 ret = -EBUSY;
6925 goto done;
6926 }
6927 outer_start &= ~0UL << order;
6928 }
6929
6930 /* Make sure the range is really isolated. */
6931 if (test_pages_isolated(outer_start, end, false)) {
6932 pr_info("%s: [%lx, %lx) PFNs busy\n",
6933 __func__, outer_start, end);
6934 ret = -EBUSY;
6935 goto done;
6936 }
6937
6938 /* Grab isolated pages from freelists. */
6939 outer_end = isolate_freepages_range(&cc, outer_start, end);
6940 if (!outer_end) {
6941 ret = -EBUSY;
6942 goto done;
6943 }
6944
6945 /* Free head and tail (if any) */
6946 if (start != outer_start)
6947 free_contig_range(outer_start, start - outer_start);
6948 if (end != outer_end)
6949 free_contig_range(end, outer_end - end);
6950
6951 done:
6952 undo_isolate_page_range(pfn_max_align_down(start),
6953 pfn_max_align_up(end), migratetype);
6954 return ret;
6955 }
6956
6957 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6958 {
6959 unsigned int count = 0;
6960
6961 for (; nr_pages--; pfn++) {
6962 struct page *page = pfn_to_page(pfn);
6963
6964 count += page_count(page) != 1;
6965 __free_page(page);
6966 }
6967 WARN(count != 0, "%d pages are still in use!\n", count);
6968 }
6969 #endif
6970
6971 #ifdef CONFIG_MEMORY_HOTPLUG
6972 /*
6973 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6974 * page high values need to be recalulated.
6975 */
6976 void __meminit zone_pcp_update(struct zone *zone)
6977 {
6978 unsigned cpu;
6979 mutex_lock(&pcp_batch_high_lock);
6980 for_each_possible_cpu(cpu)
6981 pageset_set_high_and_batch(zone,
6982 per_cpu_ptr(zone->pageset, cpu));
6983 mutex_unlock(&pcp_batch_high_lock);
6984 }
6985 #endif
6986
6987 void zone_pcp_reset(struct zone *zone)
6988 {
6989 unsigned long flags;
6990 int cpu;
6991 struct per_cpu_pageset *pset;
6992
6993 /* avoid races with drain_pages() */
6994 local_irq_save(flags);
6995 if (zone->pageset != &boot_pageset) {
6996 for_each_online_cpu(cpu) {
6997 pset = per_cpu_ptr(zone->pageset, cpu);
6998 drain_zonestat(zone, pset);
6999 }
7000 free_percpu(zone->pageset);
7001 zone->pageset = &boot_pageset;
7002 }
7003 local_irq_restore(flags);
7004 }
7005
7006 #ifdef CONFIG_MEMORY_HOTREMOVE
7007 /*
7008 * All pages in the range must be isolated before calling this.
7009 */
7010 void
7011 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7012 {
7013 struct page *page;
7014 struct zone *zone;
7015 unsigned int order, i;
7016 unsigned long pfn;
7017 unsigned long flags;
7018 /* find the first valid pfn */
7019 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7020 if (pfn_valid(pfn))
7021 break;
7022 if (pfn == end_pfn)
7023 return;
7024 zone = page_zone(pfn_to_page(pfn));
7025 spin_lock_irqsave(&zone->lock, flags);
7026 pfn = start_pfn;
7027 while (pfn < end_pfn) {
7028 if (!pfn_valid(pfn)) {
7029 pfn++;
7030 continue;
7031 }
7032 page = pfn_to_page(pfn);
7033 /*
7034 * The HWPoisoned page may be not in buddy system, and
7035 * page_count() is not 0.
7036 */
7037 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7038 pfn++;
7039 SetPageReserved(page);
7040 continue;
7041 }
7042
7043 BUG_ON(page_count(page));
7044 BUG_ON(!PageBuddy(page));
7045 order = page_order(page);
7046 #ifdef CONFIG_DEBUG_VM
7047 printk(KERN_INFO "remove from free list %lx %d %lx\n",
7048 pfn, 1 << order, end_pfn);
7049 #endif
7050 list_del(&page->lru);
7051 rmv_page_order(page);
7052 zone->free_area[order].nr_free--;
7053 for (i = 0; i < (1 << order); i++)
7054 SetPageReserved((page+i));
7055 pfn += (1 << order);
7056 }
7057 spin_unlock_irqrestore(&zone->lock, flags);
7058 }
7059 #endif
7060
7061 #ifdef CONFIG_MEMORY_FAILURE
7062 bool is_free_buddy_page(struct page *page)
7063 {
7064 struct zone *zone = page_zone(page);
7065 unsigned long pfn = page_to_pfn(page);
7066 unsigned long flags;
7067 unsigned int order;
7068
7069 spin_lock_irqsave(&zone->lock, flags);
7070 for (order = 0; order < MAX_ORDER; order++) {
7071 struct page *page_head = page - (pfn & ((1 << order) - 1));
7072
7073 if (PageBuddy(page_head) && page_order(page_head) >= order)
7074 break;
7075 }
7076 spin_unlock_irqrestore(&zone->lock, flags);
7077
7078 return order < MAX_ORDER;
7079 }
7080 #endif