]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/page_alloc.c
Group short-lived and reclaimable kernel allocations
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 #include <linux/fault-inject.h>
44
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
47 #include "internal.h"
48
49 /*
50 * Array of node states.
51 */
52 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
53 [N_POSSIBLE] = NODE_MASK_ALL,
54 [N_ONLINE] = { { [0] = 1UL } },
55 #ifndef CONFIG_NUMA
56 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
57 #ifdef CONFIG_HIGHMEM
58 [N_HIGH_MEMORY] = { { [0] = 1UL } },
59 #endif
60 [N_CPU] = { { [0] = 1UL } },
61 #endif /* NUMA */
62 };
63 EXPORT_SYMBOL(node_states);
64
65 unsigned long totalram_pages __read_mostly;
66 unsigned long totalreserve_pages __read_mostly;
67 long nr_swap_pages;
68 int percpu_pagelist_fraction;
69
70 static void __free_pages_ok(struct page *page, unsigned int order);
71
72 /*
73 * results with 256, 32 in the lowmem_reserve sysctl:
74 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
75 * 1G machine -> (16M dma, 784M normal, 224M high)
76 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
77 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
78 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
79 *
80 * TBD: should special case ZONE_DMA32 machines here - in those we normally
81 * don't need any ZONE_NORMAL reservation
82 */
83 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
84 #ifdef CONFIG_ZONE_DMA
85 256,
86 #endif
87 #ifdef CONFIG_ZONE_DMA32
88 256,
89 #endif
90 #ifdef CONFIG_HIGHMEM
91 32,
92 #endif
93 32,
94 };
95
96 EXPORT_SYMBOL(totalram_pages);
97
98 static char * const zone_names[MAX_NR_ZONES] = {
99 #ifdef CONFIG_ZONE_DMA
100 "DMA",
101 #endif
102 #ifdef CONFIG_ZONE_DMA32
103 "DMA32",
104 #endif
105 "Normal",
106 #ifdef CONFIG_HIGHMEM
107 "HighMem",
108 #endif
109 "Movable",
110 };
111
112 int min_free_kbytes = 1024;
113
114 unsigned long __meminitdata nr_kernel_pages;
115 unsigned long __meminitdata nr_all_pages;
116 static unsigned long __meminitdata dma_reserve;
117
118 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
119 /*
120 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
121 * ranges of memory (RAM) that may be registered with add_active_range().
122 * Ranges passed to add_active_range() will be merged if possible
123 * so the number of times add_active_range() can be called is
124 * related to the number of nodes and the number of holes
125 */
126 #ifdef CONFIG_MAX_ACTIVE_REGIONS
127 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
128 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
129 #else
130 #if MAX_NUMNODES >= 32
131 /* If there can be many nodes, allow up to 50 holes per node */
132 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
133 #else
134 /* By default, allow up to 256 distinct regions */
135 #define MAX_ACTIVE_REGIONS 256
136 #endif
137 #endif
138
139 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
140 static int __meminitdata nr_nodemap_entries;
141 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
142 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
143 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
144 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
145 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
146 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
147 unsigned long __initdata required_kernelcore;
148 unsigned long __initdata required_movablecore;
149 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
150
151 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
152 int movable_zone;
153 EXPORT_SYMBOL(movable_zone);
154 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
155
156 #if MAX_NUMNODES > 1
157 int nr_node_ids __read_mostly = MAX_NUMNODES;
158 EXPORT_SYMBOL(nr_node_ids);
159 #endif
160
161 #ifdef CONFIG_PAGE_GROUP_BY_MOBILITY
162 static inline int get_pageblock_migratetype(struct page *page)
163 {
164 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
165 }
166
167 static void set_pageblock_migratetype(struct page *page, int migratetype)
168 {
169 set_pageblock_flags_group(page, (unsigned long)migratetype,
170 PB_migrate, PB_migrate_end);
171 }
172
173 static inline int gfpflags_to_migratetype(gfp_t gfp_flags)
174 {
175 WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
176
177 return (((gfp_flags & __GFP_MOVABLE) != 0) << 1) |
178 ((gfp_flags & __GFP_RECLAIMABLE) != 0);
179 }
180
181 #else
182 static inline int get_pageblock_migratetype(struct page *page)
183 {
184 return MIGRATE_UNMOVABLE;
185 }
186
187 static void set_pageblock_migratetype(struct page *page, int migratetype)
188 {
189 }
190
191 static inline int gfpflags_to_migratetype(gfp_t gfp_flags)
192 {
193 return MIGRATE_UNMOVABLE;
194 }
195 #endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */
196
197 #ifdef CONFIG_DEBUG_VM
198 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
199 {
200 int ret = 0;
201 unsigned seq;
202 unsigned long pfn = page_to_pfn(page);
203
204 do {
205 seq = zone_span_seqbegin(zone);
206 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
207 ret = 1;
208 else if (pfn < zone->zone_start_pfn)
209 ret = 1;
210 } while (zone_span_seqretry(zone, seq));
211
212 return ret;
213 }
214
215 static int page_is_consistent(struct zone *zone, struct page *page)
216 {
217 if (!pfn_valid_within(page_to_pfn(page)))
218 return 0;
219 if (zone != page_zone(page))
220 return 0;
221
222 return 1;
223 }
224 /*
225 * Temporary debugging check for pages not lying within a given zone.
226 */
227 static int bad_range(struct zone *zone, struct page *page)
228 {
229 if (page_outside_zone_boundaries(zone, page))
230 return 1;
231 if (!page_is_consistent(zone, page))
232 return 1;
233
234 return 0;
235 }
236 #else
237 static inline int bad_range(struct zone *zone, struct page *page)
238 {
239 return 0;
240 }
241 #endif
242
243 static void bad_page(struct page *page)
244 {
245 printk(KERN_EMERG "Bad page state in process '%s'\n"
246 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
247 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
248 KERN_EMERG "Backtrace:\n",
249 current->comm, page, (int)(2*sizeof(unsigned long)),
250 (unsigned long)page->flags, page->mapping,
251 page_mapcount(page), page_count(page));
252 dump_stack();
253 page->flags &= ~(1 << PG_lru |
254 1 << PG_private |
255 1 << PG_locked |
256 1 << PG_active |
257 1 << PG_dirty |
258 1 << PG_reclaim |
259 1 << PG_slab |
260 1 << PG_swapcache |
261 1 << PG_writeback |
262 1 << PG_buddy );
263 set_page_count(page, 0);
264 reset_page_mapcount(page);
265 page->mapping = NULL;
266 add_taint(TAINT_BAD_PAGE);
267 }
268
269 /*
270 * Higher-order pages are called "compound pages". They are structured thusly:
271 *
272 * The first PAGE_SIZE page is called the "head page".
273 *
274 * The remaining PAGE_SIZE pages are called "tail pages".
275 *
276 * All pages have PG_compound set. All pages have their ->private pointing at
277 * the head page (even the head page has this).
278 *
279 * The first tail page's ->lru.next holds the address of the compound page's
280 * put_page() function. Its ->lru.prev holds the order of allocation.
281 * This usage means that zero-order pages may not be compound.
282 */
283
284 static void free_compound_page(struct page *page)
285 {
286 __free_pages_ok(page, compound_order(page));
287 }
288
289 static void prep_compound_page(struct page *page, unsigned long order)
290 {
291 int i;
292 int nr_pages = 1 << order;
293
294 set_compound_page_dtor(page, free_compound_page);
295 set_compound_order(page, order);
296 __SetPageHead(page);
297 for (i = 1; i < nr_pages; i++) {
298 struct page *p = page + i;
299
300 __SetPageTail(p);
301 p->first_page = page;
302 }
303 }
304
305 static void destroy_compound_page(struct page *page, unsigned long order)
306 {
307 int i;
308 int nr_pages = 1 << order;
309
310 if (unlikely(compound_order(page) != order))
311 bad_page(page);
312
313 if (unlikely(!PageHead(page)))
314 bad_page(page);
315 __ClearPageHead(page);
316 for (i = 1; i < nr_pages; i++) {
317 struct page *p = page + i;
318
319 if (unlikely(!PageTail(p) |
320 (p->first_page != page)))
321 bad_page(page);
322 __ClearPageTail(p);
323 }
324 }
325
326 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
327 {
328 int i;
329
330 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
331 /*
332 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
333 * and __GFP_HIGHMEM from hard or soft interrupt context.
334 */
335 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
336 for (i = 0; i < (1 << order); i++)
337 clear_highpage(page + i);
338 }
339
340 /*
341 * function for dealing with page's order in buddy system.
342 * zone->lock is already acquired when we use these.
343 * So, we don't need atomic page->flags operations here.
344 */
345 static inline unsigned long page_order(struct page *page)
346 {
347 return page_private(page);
348 }
349
350 static inline void set_page_order(struct page *page, int order)
351 {
352 set_page_private(page, order);
353 __SetPageBuddy(page);
354 }
355
356 static inline void rmv_page_order(struct page *page)
357 {
358 __ClearPageBuddy(page);
359 set_page_private(page, 0);
360 }
361
362 /*
363 * Locate the struct page for both the matching buddy in our
364 * pair (buddy1) and the combined O(n+1) page they form (page).
365 *
366 * 1) Any buddy B1 will have an order O twin B2 which satisfies
367 * the following equation:
368 * B2 = B1 ^ (1 << O)
369 * For example, if the starting buddy (buddy2) is #8 its order
370 * 1 buddy is #10:
371 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
372 *
373 * 2) Any buddy B will have an order O+1 parent P which
374 * satisfies the following equation:
375 * P = B & ~(1 << O)
376 *
377 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
378 */
379 static inline struct page *
380 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
381 {
382 unsigned long buddy_idx = page_idx ^ (1 << order);
383
384 return page + (buddy_idx - page_idx);
385 }
386
387 static inline unsigned long
388 __find_combined_index(unsigned long page_idx, unsigned int order)
389 {
390 return (page_idx & ~(1 << order));
391 }
392
393 /*
394 * This function checks whether a page is free && is the buddy
395 * we can do coalesce a page and its buddy if
396 * (a) the buddy is not in a hole &&
397 * (b) the buddy is in the buddy system &&
398 * (c) a page and its buddy have the same order &&
399 * (d) a page and its buddy are in the same zone.
400 *
401 * For recording whether a page is in the buddy system, we use PG_buddy.
402 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
403 *
404 * For recording page's order, we use page_private(page).
405 */
406 static inline int page_is_buddy(struct page *page, struct page *buddy,
407 int order)
408 {
409 if (!pfn_valid_within(page_to_pfn(buddy)))
410 return 0;
411
412 if (page_zone_id(page) != page_zone_id(buddy))
413 return 0;
414
415 if (PageBuddy(buddy) && page_order(buddy) == order) {
416 BUG_ON(page_count(buddy) != 0);
417 return 1;
418 }
419 return 0;
420 }
421
422 /*
423 * Freeing function for a buddy system allocator.
424 *
425 * The concept of a buddy system is to maintain direct-mapped table
426 * (containing bit values) for memory blocks of various "orders".
427 * The bottom level table contains the map for the smallest allocatable
428 * units of memory (here, pages), and each level above it describes
429 * pairs of units from the levels below, hence, "buddies".
430 * At a high level, all that happens here is marking the table entry
431 * at the bottom level available, and propagating the changes upward
432 * as necessary, plus some accounting needed to play nicely with other
433 * parts of the VM system.
434 * At each level, we keep a list of pages, which are heads of continuous
435 * free pages of length of (1 << order) and marked with PG_buddy. Page's
436 * order is recorded in page_private(page) field.
437 * So when we are allocating or freeing one, we can derive the state of the
438 * other. That is, if we allocate a small block, and both were
439 * free, the remainder of the region must be split into blocks.
440 * If a block is freed, and its buddy is also free, then this
441 * triggers coalescing into a block of larger size.
442 *
443 * -- wli
444 */
445
446 static inline void __free_one_page(struct page *page,
447 struct zone *zone, unsigned int order)
448 {
449 unsigned long page_idx;
450 int order_size = 1 << order;
451 int migratetype = get_pageblock_migratetype(page);
452
453 if (unlikely(PageCompound(page)))
454 destroy_compound_page(page, order);
455
456 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
457
458 VM_BUG_ON(page_idx & (order_size - 1));
459 VM_BUG_ON(bad_range(zone, page));
460
461 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
462 while (order < MAX_ORDER-1) {
463 unsigned long combined_idx;
464 struct page *buddy;
465
466 buddy = __page_find_buddy(page, page_idx, order);
467 if (!page_is_buddy(page, buddy, order))
468 break; /* Move the buddy up one level. */
469
470 list_del(&buddy->lru);
471 zone->free_area[order].nr_free--;
472 rmv_page_order(buddy);
473 combined_idx = __find_combined_index(page_idx, order);
474 page = page + (combined_idx - page_idx);
475 page_idx = combined_idx;
476 order++;
477 }
478 set_page_order(page, order);
479 list_add(&page->lru,
480 &zone->free_area[order].free_list[migratetype]);
481 zone->free_area[order].nr_free++;
482 }
483
484 static inline int free_pages_check(struct page *page)
485 {
486 if (unlikely(page_mapcount(page) |
487 (page->mapping != NULL) |
488 (page_count(page) != 0) |
489 (page->flags & (
490 1 << PG_lru |
491 1 << PG_private |
492 1 << PG_locked |
493 1 << PG_active |
494 1 << PG_slab |
495 1 << PG_swapcache |
496 1 << PG_writeback |
497 1 << PG_reserved |
498 1 << PG_buddy ))))
499 bad_page(page);
500 if (PageDirty(page))
501 __ClearPageDirty(page);
502 /*
503 * For now, we report if PG_reserved was found set, but do not
504 * clear it, and do not free the page. But we shall soon need
505 * to do more, for when the ZERO_PAGE count wraps negative.
506 */
507 return PageReserved(page);
508 }
509
510 /*
511 * Frees a list of pages.
512 * Assumes all pages on list are in same zone, and of same order.
513 * count is the number of pages to free.
514 *
515 * If the zone was previously in an "all pages pinned" state then look to
516 * see if this freeing clears that state.
517 *
518 * And clear the zone's pages_scanned counter, to hold off the "all pages are
519 * pinned" detection logic.
520 */
521 static void free_pages_bulk(struct zone *zone, int count,
522 struct list_head *list, int order)
523 {
524 spin_lock(&zone->lock);
525 zone->all_unreclaimable = 0;
526 zone->pages_scanned = 0;
527 while (count--) {
528 struct page *page;
529
530 VM_BUG_ON(list_empty(list));
531 page = list_entry(list->prev, struct page, lru);
532 /* have to delete it as __free_one_page list manipulates */
533 list_del(&page->lru);
534 __free_one_page(page, zone, order);
535 }
536 spin_unlock(&zone->lock);
537 }
538
539 static void free_one_page(struct zone *zone, struct page *page, int order)
540 {
541 spin_lock(&zone->lock);
542 zone->all_unreclaimable = 0;
543 zone->pages_scanned = 0;
544 __free_one_page(page, zone, order);
545 spin_unlock(&zone->lock);
546 }
547
548 static void __free_pages_ok(struct page *page, unsigned int order)
549 {
550 unsigned long flags;
551 int i;
552 int reserved = 0;
553
554 for (i = 0 ; i < (1 << order) ; ++i)
555 reserved += free_pages_check(page + i);
556 if (reserved)
557 return;
558
559 if (!PageHighMem(page))
560 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
561 arch_free_page(page, order);
562 kernel_map_pages(page, 1 << order, 0);
563
564 local_irq_save(flags);
565 __count_vm_events(PGFREE, 1 << order);
566 free_one_page(page_zone(page), page, order);
567 local_irq_restore(flags);
568 }
569
570 /*
571 * permit the bootmem allocator to evade page validation on high-order frees
572 */
573 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
574 {
575 if (order == 0) {
576 __ClearPageReserved(page);
577 set_page_count(page, 0);
578 set_page_refcounted(page);
579 __free_page(page);
580 } else {
581 int loop;
582
583 prefetchw(page);
584 for (loop = 0; loop < BITS_PER_LONG; loop++) {
585 struct page *p = &page[loop];
586
587 if (loop + 1 < BITS_PER_LONG)
588 prefetchw(p + 1);
589 __ClearPageReserved(p);
590 set_page_count(p, 0);
591 }
592
593 set_page_refcounted(page);
594 __free_pages(page, order);
595 }
596 }
597
598
599 /*
600 * The order of subdivision here is critical for the IO subsystem.
601 * Please do not alter this order without good reasons and regression
602 * testing. Specifically, as large blocks of memory are subdivided,
603 * the order in which smaller blocks are delivered depends on the order
604 * they're subdivided in this function. This is the primary factor
605 * influencing the order in which pages are delivered to the IO
606 * subsystem according to empirical testing, and this is also justified
607 * by considering the behavior of a buddy system containing a single
608 * large block of memory acted on by a series of small allocations.
609 * This behavior is a critical factor in sglist merging's success.
610 *
611 * -- wli
612 */
613 static inline void expand(struct zone *zone, struct page *page,
614 int low, int high, struct free_area *area,
615 int migratetype)
616 {
617 unsigned long size = 1 << high;
618
619 while (high > low) {
620 area--;
621 high--;
622 size >>= 1;
623 VM_BUG_ON(bad_range(zone, &page[size]));
624 list_add(&page[size].lru, &area->free_list[migratetype]);
625 area->nr_free++;
626 set_page_order(&page[size], high);
627 }
628 }
629
630 /*
631 * This page is about to be returned from the page allocator
632 */
633 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
634 {
635 if (unlikely(page_mapcount(page) |
636 (page->mapping != NULL) |
637 (page_count(page) != 0) |
638 (page->flags & (
639 1 << PG_lru |
640 1 << PG_private |
641 1 << PG_locked |
642 1 << PG_active |
643 1 << PG_dirty |
644 1 << PG_slab |
645 1 << PG_swapcache |
646 1 << PG_writeback |
647 1 << PG_reserved |
648 1 << PG_buddy ))))
649 bad_page(page);
650
651 /*
652 * For now, we report if PG_reserved was found set, but do not
653 * clear it, and do not allocate the page: as a safety net.
654 */
655 if (PageReserved(page))
656 return 1;
657
658 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
659 1 << PG_referenced | 1 << PG_arch_1 |
660 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
661 set_page_private(page, 0);
662 set_page_refcounted(page);
663
664 arch_alloc_page(page, order);
665 kernel_map_pages(page, 1 << order, 1);
666
667 if (gfp_flags & __GFP_ZERO)
668 prep_zero_page(page, order, gfp_flags);
669
670 if (order && (gfp_flags & __GFP_COMP))
671 prep_compound_page(page, order);
672
673 return 0;
674 }
675
676 #ifdef CONFIG_PAGE_GROUP_BY_MOBILITY
677 /*
678 * This array describes the order lists are fallen back to when
679 * the free lists for the desirable migrate type are depleted
680 */
681 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
682 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
683 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
684 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
685 };
686
687 /*
688 * Move the free pages in a range to the free lists of the requested type.
689 * Note that start_page and end_pages are not aligned in a MAX_ORDER_NR_PAGES
690 * boundary. If alignment is required, use move_freepages_block()
691 */
692 int move_freepages(struct zone *zone,
693 struct page *start_page, struct page *end_page,
694 int migratetype)
695 {
696 struct page *page;
697 unsigned long order;
698 int blocks_moved = 0;
699
700 #ifndef CONFIG_HOLES_IN_ZONE
701 /*
702 * page_zone is not safe to call in this context when
703 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
704 * anyway as we check zone boundaries in move_freepages_block().
705 * Remove at a later date when no bug reports exist related to
706 * CONFIG_PAGE_GROUP_BY_MOBILITY
707 */
708 BUG_ON(page_zone(start_page) != page_zone(end_page));
709 #endif
710
711 for (page = start_page; page <= end_page;) {
712 if (!pfn_valid_within(page_to_pfn(page))) {
713 page++;
714 continue;
715 }
716
717 if (!PageBuddy(page)) {
718 page++;
719 continue;
720 }
721
722 order = page_order(page);
723 list_del(&page->lru);
724 list_add(&page->lru,
725 &zone->free_area[order].free_list[migratetype]);
726 page += 1 << order;
727 blocks_moved++;
728 }
729
730 return blocks_moved;
731 }
732
733 int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
734 {
735 unsigned long start_pfn, end_pfn;
736 struct page *start_page, *end_page;
737
738 start_pfn = page_to_pfn(page);
739 start_pfn = start_pfn & ~(MAX_ORDER_NR_PAGES-1);
740 start_page = pfn_to_page(start_pfn);
741 end_page = start_page + MAX_ORDER_NR_PAGES - 1;
742 end_pfn = start_pfn + MAX_ORDER_NR_PAGES - 1;
743
744 /* Do not cross zone boundaries */
745 if (start_pfn < zone->zone_start_pfn)
746 start_page = page;
747 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
748 return 0;
749
750 return move_freepages(zone, start_page, end_page, migratetype);
751 }
752
753 /* Remove an element from the buddy allocator from the fallback list */
754 static struct page *__rmqueue_fallback(struct zone *zone, int order,
755 int start_migratetype)
756 {
757 struct free_area * area;
758 int current_order;
759 struct page *page;
760 int migratetype, i;
761
762 /* Find the largest possible block of pages in the other list */
763 for (current_order = MAX_ORDER-1; current_order >= order;
764 --current_order) {
765 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
766 migratetype = fallbacks[start_migratetype][i];
767
768 area = &(zone->free_area[current_order]);
769 if (list_empty(&area->free_list[migratetype]))
770 continue;
771
772 page = list_entry(area->free_list[migratetype].next,
773 struct page, lru);
774 area->nr_free--;
775
776 /*
777 * If breaking a large block of pages, move all free
778 * pages to the preferred allocation list
779 */
780 if (unlikely(current_order >= MAX_ORDER / 2)) {
781 migratetype = start_migratetype;
782 move_freepages_block(zone, page, migratetype);
783 }
784
785 /* Remove the page from the freelists */
786 list_del(&page->lru);
787 rmv_page_order(page);
788 __mod_zone_page_state(zone, NR_FREE_PAGES,
789 -(1UL << order));
790
791 if (current_order == MAX_ORDER - 1)
792 set_pageblock_migratetype(page,
793 start_migratetype);
794
795 expand(zone, page, order, current_order, area, migratetype);
796 return page;
797 }
798 }
799
800 return NULL;
801 }
802 #else
803 static struct page *__rmqueue_fallback(struct zone *zone, int order,
804 int start_migratetype)
805 {
806 return NULL;
807 }
808 #endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */
809
810 /*
811 * Do the hard work of removing an element from the buddy allocator.
812 * Call me with the zone->lock already held.
813 */
814 static struct page *__rmqueue(struct zone *zone, unsigned int order,
815 int migratetype)
816 {
817 struct free_area * area;
818 unsigned int current_order;
819 struct page *page;
820
821 /* Find a page of the appropriate size in the preferred list */
822 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
823 area = &(zone->free_area[current_order]);
824 if (list_empty(&area->free_list[migratetype]))
825 continue;
826
827 page = list_entry(area->free_list[migratetype].next,
828 struct page, lru);
829 list_del(&page->lru);
830 rmv_page_order(page);
831 area->nr_free--;
832 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
833 expand(zone, page, order, current_order, area, migratetype);
834 goto got_page;
835 }
836
837 page = __rmqueue_fallback(zone, order, migratetype);
838
839 got_page:
840
841 return page;
842 }
843
844 /*
845 * Obtain a specified number of elements from the buddy allocator, all under
846 * a single hold of the lock, for efficiency. Add them to the supplied list.
847 * Returns the number of new pages which were placed at *list.
848 */
849 static int rmqueue_bulk(struct zone *zone, unsigned int order,
850 unsigned long count, struct list_head *list,
851 int migratetype)
852 {
853 int i;
854
855 spin_lock(&zone->lock);
856 for (i = 0; i < count; ++i) {
857 struct page *page = __rmqueue(zone, order, migratetype);
858 if (unlikely(page == NULL))
859 break;
860 list_add(&page->lru, list);
861 set_page_private(page, migratetype);
862 }
863 spin_unlock(&zone->lock);
864 return i;
865 }
866
867 #ifdef CONFIG_NUMA
868 /*
869 * Called from the vmstat counter updater to drain pagesets of this
870 * currently executing processor on remote nodes after they have
871 * expired.
872 *
873 * Note that this function must be called with the thread pinned to
874 * a single processor.
875 */
876 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
877 {
878 unsigned long flags;
879 int to_drain;
880
881 local_irq_save(flags);
882 if (pcp->count >= pcp->batch)
883 to_drain = pcp->batch;
884 else
885 to_drain = pcp->count;
886 free_pages_bulk(zone, to_drain, &pcp->list, 0);
887 pcp->count -= to_drain;
888 local_irq_restore(flags);
889 }
890 #endif
891
892 static void __drain_pages(unsigned int cpu)
893 {
894 unsigned long flags;
895 struct zone *zone;
896 int i;
897
898 for_each_zone(zone) {
899 struct per_cpu_pageset *pset;
900
901 if (!populated_zone(zone))
902 continue;
903
904 pset = zone_pcp(zone, cpu);
905 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
906 struct per_cpu_pages *pcp;
907
908 pcp = &pset->pcp[i];
909 local_irq_save(flags);
910 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
911 pcp->count = 0;
912 local_irq_restore(flags);
913 }
914 }
915 }
916
917 #ifdef CONFIG_HIBERNATION
918
919 void mark_free_pages(struct zone *zone)
920 {
921 unsigned long pfn, max_zone_pfn;
922 unsigned long flags;
923 int order, t;
924 struct list_head *curr;
925
926 if (!zone->spanned_pages)
927 return;
928
929 spin_lock_irqsave(&zone->lock, flags);
930
931 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
932 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
933 if (pfn_valid(pfn)) {
934 struct page *page = pfn_to_page(pfn);
935
936 if (!swsusp_page_is_forbidden(page))
937 swsusp_unset_page_free(page);
938 }
939
940 for_each_migratetype_order(order, t) {
941 list_for_each(curr, &zone->free_area[order].free_list[t]) {
942 unsigned long i;
943
944 pfn = page_to_pfn(list_entry(curr, struct page, lru));
945 for (i = 0; i < (1UL << order); i++)
946 swsusp_set_page_free(pfn_to_page(pfn + i));
947 }
948 }
949 spin_unlock_irqrestore(&zone->lock, flags);
950 }
951 #endif /* CONFIG_PM */
952
953 #if defined(CONFIG_HIBERNATION) || defined(CONFIG_PAGE_GROUP_BY_MOBILITY)
954 /*
955 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
956 */
957 void drain_local_pages(void)
958 {
959 unsigned long flags;
960
961 local_irq_save(flags);
962 __drain_pages(smp_processor_id());
963 local_irq_restore(flags);
964 }
965
966 void smp_drain_local_pages(void *arg)
967 {
968 drain_local_pages();
969 }
970
971 /*
972 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
973 */
974 void drain_all_local_pages(void)
975 {
976 unsigned long flags;
977
978 local_irq_save(flags);
979 __drain_pages(smp_processor_id());
980 local_irq_restore(flags);
981
982 smp_call_function(smp_drain_local_pages, NULL, 0, 1);
983 }
984 #else
985 void drain_all_local_pages(void) {}
986 #endif /* CONFIG_HIBERNATION || CONFIG_PAGE_GROUP_BY_MOBILITY */
987
988 /*
989 * Free a 0-order page
990 */
991 static void fastcall free_hot_cold_page(struct page *page, int cold)
992 {
993 struct zone *zone = page_zone(page);
994 struct per_cpu_pages *pcp;
995 unsigned long flags;
996
997 if (PageAnon(page))
998 page->mapping = NULL;
999 if (free_pages_check(page))
1000 return;
1001
1002 if (!PageHighMem(page))
1003 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1004 arch_free_page(page, 0);
1005 kernel_map_pages(page, 1, 0);
1006
1007 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1008 local_irq_save(flags);
1009 __count_vm_event(PGFREE);
1010 list_add(&page->lru, &pcp->list);
1011 set_page_private(page, get_pageblock_migratetype(page));
1012 pcp->count++;
1013 if (pcp->count >= pcp->high) {
1014 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1015 pcp->count -= pcp->batch;
1016 }
1017 local_irq_restore(flags);
1018 put_cpu();
1019 }
1020
1021 void fastcall free_hot_page(struct page *page)
1022 {
1023 free_hot_cold_page(page, 0);
1024 }
1025
1026 void fastcall free_cold_page(struct page *page)
1027 {
1028 free_hot_cold_page(page, 1);
1029 }
1030
1031 /*
1032 * split_page takes a non-compound higher-order page, and splits it into
1033 * n (1<<order) sub-pages: page[0..n]
1034 * Each sub-page must be freed individually.
1035 *
1036 * Note: this is probably too low level an operation for use in drivers.
1037 * Please consult with lkml before using this in your driver.
1038 */
1039 void split_page(struct page *page, unsigned int order)
1040 {
1041 int i;
1042
1043 VM_BUG_ON(PageCompound(page));
1044 VM_BUG_ON(!page_count(page));
1045 for (i = 1; i < (1 << order); i++)
1046 set_page_refcounted(page + i);
1047 }
1048
1049 /*
1050 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1051 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1052 * or two.
1053 */
1054 static struct page *buffered_rmqueue(struct zonelist *zonelist,
1055 struct zone *zone, int order, gfp_t gfp_flags)
1056 {
1057 unsigned long flags;
1058 struct page *page;
1059 int cold = !!(gfp_flags & __GFP_COLD);
1060 int cpu;
1061 int migratetype = gfpflags_to_migratetype(gfp_flags);
1062
1063 again:
1064 cpu = get_cpu();
1065 if (likely(order == 0)) {
1066 struct per_cpu_pages *pcp;
1067
1068 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1069 local_irq_save(flags);
1070 if (!pcp->count) {
1071 pcp->count = rmqueue_bulk(zone, 0,
1072 pcp->batch, &pcp->list, migratetype);
1073 if (unlikely(!pcp->count))
1074 goto failed;
1075 }
1076
1077 #ifdef CONFIG_PAGE_GROUP_BY_MOBILITY
1078 /* Find a page of the appropriate migrate type */
1079 list_for_each_entry(page, &pcp->list, lru)
1080 if (page_private(page) == migratetype)
1081 break;
1082
1083 /* Allocate more to the pcp list if necessary */
1084 if (unlikely(&page->lru == &pcp->list)) {
1085 pcp->count += rmqueue_bulk(zone, 0,
1086 pcp->batch, &pcp->list, migratetype);
1087 page = list_entry(pcp->list.next, struct page, lru);
1088 }
1089 #else
1090 page = list_entry(pcp->list.next, struct page, lru);
1091 #endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */
1092
1093 list_del(&page->lru);
1094 pcp->count--;
1095 } else {
1096 spin_lock_irqsave(&zone->lock, flags);
1097 page = __rmqueue(zone, order, migratetype);
1098 spin_unlock(&zone->lock);
1099 if (!page)
1100 goto failed;
1101 }
1102
1103 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1104 zone_statistics(zonelist, zone);
1105 local_irq_restore(flags);
1106 put_cpu();
1107
1108 VM_BUG_ON(bad_range(zone, page));
1109 if (prep_new_page(page, order, gfp_flags))
1110 goto again;
1111 return page;
1112
1113 failed:
1114 local_irq_restore(flags);
1115 put_cpu();
1116 return NULL;
1117 }
1118
1119 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1120 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1121 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1122 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1123 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1124 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1125 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1126
1127 #ifdef CONFIG_FAIL_PAGE_ALLOC
1128
1129 static struct fail_page_alloc_attr {
1130 struct fault_attr attr;
1131
1132 u32 ignore_gfp_highmem;
1133 u32 ignore_gfp_wait;
1134 u32 min_order;
1135
1136 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1137
1138 struct dentry *ignore_gfp_highmem_file;
1139 struct dentry *ignore_gfp_wait_file;
1140 struct dentry *min_order_file;
1141
1142 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1143
1144 } fail_page_alloc = {
1145 .attr = FAULT_ATTR_INITIALIZER,
1146 .ignore_gfp_wait = 1,
1147 .ignore_gfp_highmem = 1,
1148 .min_order = 1,
1149 };
1150
1151 static int __init setup_fail_page_alloc(char *str)
1152 {
1153 return setup_fault_attr(&fail_page_alloc.attr, str);
1154 }
1155 __setup("fail_page_alloc=", setup_fail_page_alloc);
1156
1157 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1158 {
1159 if (order < fail_page_alloc.min_order)
1160 return 0;
1161 if (gfp_mask & __GFP_NOFAIL)
1162 return 0;
1163 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1164 return 0;
1165 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1166 return 0;
1167
1168 return should_fail(&fail_page_alloc.attr, 1 << order);
1169 }
1170
1171 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1172
1173 static int __init fail_page_alloc_debugfs(void)
1174 {
1175 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1176 struct dentry *dir;
1177 int err;
1178
1179 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1180 "fail_page_alloc");
1181 if (err)
1182 return err;
1183 dir = fail_page_alloc.attr.dentries.dir;
1184
1185 fail_page_alloc.ignore_gfp_wait_file =
1186 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1187 &fail_page_alloc.ignore_gfp_wait);
1188
1189 fail_page_alloc.ignore_gfp_highmem_file =
1190 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1191 &fail_page_alloc.ignore_gfp_highmem);
1192 fail_page_alloc.min_order_file =
1193 debugfs_create_u32("min-order", mode, dir,
1194 &fail_page_alloc.min_order);
1195
1196 if (!fail_page_alloc.ignore_gfp_wait_file ||
1197 !fail_page_alloc.ignore_gfp_highmem_file ||
1198 !fail_page_alloc.min_order_file) {
1199 err = -ENOMEM;
1200 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1201 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1202 debugfs_remove(fail_page_alloc.min_order_file);
1203 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1204 }
1205
1206 return err;
1207 }
1208
1209 late_initcall(fail_page_alloc_debugfs);
1210
1211 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1212
1213 #else /* CONFIG_FAIL_PAGE_ALLOC */
1214
1215 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1216 {
1217 return 0;
1218 }
1219
1220 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1221
1222 /*
1223 * Return 1 if free pages are above 'mark'. This takes into account the order
1224 * of the allocation.
1225 */
1226 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1227 int classzone_idx, int alloc_flags)
1228 {
1229 /* free_pages my go negative - that's OK */
1230 long min = mark;
1231 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1232 int o;
1233
1234 if (alloc_flags & ALLOC_HIGH)
1235 min -= min / 2;
1236 if (alloc_flags & ALLOC_HARDER)
1237 min -= min / 4;
1238
1239 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1240 return 0;
1241 for (o = 0; o < order; o++) {
1242 /* At the next order, this order's pages become unavailable */
1243 free_pages -= z->free_area[o].nr_free << o;
1244
1245 /* Require fewer higher order pages to be free */
1246 min >>= 1;
1247
1248 if (free_pages <= min)
1249 return 0;
1250 }
1251 return 1;
1252 }
1253
1254 #ifdef CONFIG_NUMA
1255 /*
1256 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1257 * skip over zones that are not allowed by the cpuset, or that have
1258 * been recently (in last second) found to be nearly full. See further
1259 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1260 * that have to skip over alot of full or unallowed zones.
1261 *
1262 * If the zonelist cache is present in the passed in zonelist, then
1263 * returns a pointer to the allowed node mask (either the current
1264 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1265 *
1266 * If the zonelist cache is not available for this zonelist, does
1267 * nothing and returns NULL.
1268 *
1269 * If the fullzones BITMAP in the zonelist cache is stale (more than
1270 * a second since last zap'd) then we zap it out (clear its bits.)
1271 *
1272 * We hold off even calling zlc_setup, until after we've checked the
1273 * first zone in the zonelist, on the theory that most allocations will
1274 * be satisfied from that first zone, so best to examine that zone as
1275 * quickly as we can.
1276 */
1277 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1278 {
1279 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1280 nodemask_t *allowednodes; /* zonelist_cache approximation */
1281
1282 zlc = zonelist->zlcache_ptr;
1283 if (!zlc)
1284 return NULL;
1285
1286 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1287 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1288 zlc->last_full_zap = jiffies;
1289 }
1290
1291 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1292 &cpuset_current_mems_allowed :
1293 &node_states[N_HIGH_MEMORY];
1294 return allowednodes;
1295 }
1296
1297 /*
1298 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1299 * if it is worth looking at further for free memory:
1300 * 1) Check that the zone isn't thought to be full (doesn't have its
1301 * bit set in the zonelist_cache fullzones BITMAP).
1302 * 2) Check that the zones node (obtained from the zonelist_cache
1303 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1304 * Return true (non-zero) if zone is worth looking at further, or
1305 * else return false (zero) if it is not.
1306 *
1307 * This check -ignores- the distinction between various watermarks,
1308 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1309 * found to be full for any variation of these watermarks, it will
1310 * be considered full for up to one second by all requests, unless
1311 * we are so low on memory on all allowed nodes that we are forced
1312 * into the second scan of the zonelist.
1313 *
1314 * In the second scan we ignore this zonelist cache and exactly
1315 * apply the watermarks to all zones, even it is slower to do so.
1316 * We are low on memory in the second scan, and should leave no stone
1317 * unturned looking for a free page.
1318 */
1319 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1320 nodemask_t *allowednodes)
1321 {
1322 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1323 int i; /* index of *z in zonelist zones */
1324 int n; /* node that zone *z is on */
1325
1326 zlc = zonelist->zlcache_ptr;
1327 if (!zlc)
1328 return 1;
1329
1330 i = z - zonelist->zones;
1331 n = zlc->z_to_n[i];
1332
1333 /* This zone is worth trying if it is allowed but not full */
1334 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1335 }
1336
1337 /*
1338 * Given 'z' scanning a zonelist, set the corresponding bit in
1339 * zlc->fullzones, so that subsequent attempts to allocate a page
1340 * from that zone don't waste time re-examining it.
1341 */
1342 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1343 {
1344 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1345 int i; /* index of *z in zonelist zones */
1346
1347 zlc = zonelist->zlcache_ptr;
1348 if (!zlc)
1349 return;
1350
1351 i = z - zonelist->zones;
1352
1353 set_bit(i, zlc->fullzones);
1354 }
1355
1356 #else /* CONFIG_NUMA */
1357
1358 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1359 {
1360 return NULL;
1361 }
1362
1363 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1364 nodemask_t *allowednodes)
1365 {
1366 return 1;
1367 }
1368
1369 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1370 {
1371 }
1372 #endif /* CONFIG_NUMA */
1373
1374 /*
1375 * get_page_from_freelist goes through the zonelist trying to allocate
1376 * a page.
1377 */
1378 static struct page *
1379 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1380 struct zonelist *zonelist, int alloc_flags)
1381 {
1382 struct zone **z;
1383 struct page *page = NULL;
1384 int classzone_idx = zone_idx(zonelist->zones[0]);
1385 struct zone *zone;
1386 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1387 int zlc_active = 0; /* set if using zonelist_cache */
1388 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1389 enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
1390
1391 zonelist_scan:
1392 /*
1393 * Scan zonelist, looking for a zone with enough free.
1394 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1395 */
1396 z = zonelist->zones;
1397
1398 do {
1399 /*
1400 * In NUMA, this could be a policy zonelist which contains
1401 * zones that may not be allowed by the current gfp_mask.
1402 * Check the zone is allowed by the current flags
1403 */
1404 if (unlikely(alloc_should_filter_zonelist(zonelist))) {
1405 if (highest_zoneidx == -1)
1406 highest_zoneidx = gfp_zone(gfp_mask);
1407 if (zone_idx(*z) > highest_zoneidx)
1408 continue;
1409 }
1410
1411 if (NUMA_BUILD && zlc_active &&
1412 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1413 continue;
1414 zone = *z;
1415 if ((alloc_flags & ALLOC_CPUSET) &&
1416 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1417 goto try_next_zone;
1418
1419 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1420 unsigned long mark;
1421 if (alloc_flags & ALLOC_WMARK_MIN)
1422 mark = zone->pages_min;
1423 else if (alloc_flags & ALLOC_WMARK_LOW)
1424 mark = zone->pages_low;
1425 else
1426 mark = zone->pages_high;
1427 if (!zone_watermark_ok(zone, order, mark,
1428 classzone_idx, alloc_flags)) {
1429 if (!zone_reclaim_mode ||
1430 !zone_reclaim(zone, gfp_mask, order))
1431 goto this_zone_full;
1432 }
1433 }
1434
1435 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1436 if (page)
1437 break;
1438 this_zone_full:
1439 if (NUMA_BUILD)
1440 zlc_mark_zone_full(zonelist, z);
1441 try_next_zone:
1442 if (NUMA_BUILD && !did_zlc_setup) {
1443 /* we do zlc_setup after the first zone is tried */
1444 allowednodes = zlc_setup(zonelist, alloc_flags);
1445 zlc_active = 1;
1446 did_zlc_setup = 1;
1447 }
1448 } while (*(++z) != NULL);
1449
1450 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1451 /* Disable zlc cache for second zonelist scan */
1452 zlc_active = 0;
1453 goto zonelist_scan;
1454 }
1455 return page;
1456 }
1457
1458 /*
1459 * This is the 'heart' of the zoned buddy allocator.
1460 */
1461 struct page * fastcall
1462 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1463 struct zonelist *zonelist)
1464 {
1465 const gfp_t wait = gfp_mask & __GFP_WAIT;
1466 struct zone **z;
1467 struct page *page;
1468 struct reclaim_state reclaim_state;
1469 struct task_struct *p = current;
1470 int do_retry;
1471 int alloc_flags;
1472 int did_some_progress;
1473
1474 might_sleep_if(wait);
1475
1476 if (should_fail_alloc_page(gfp_mask, order))
1477 return NULL;
1478
1479 restart:
1480 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1481
1482 if (unlikely(*z == NULL)) {
1483 /*
1484 * Happens if we have an empty zonelist as a result of
1485 * GFP_THISNODE being used on a memoryless node
1486 */
1487 return NULL;
1488 }
1489
1490 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1491 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1492 if (page)
1493 goto got_pg;
1494
1495 /*
1496 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1497 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1498 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1499 * using a larger set of nodes after it has established that the
1500 * allowed per node queues are empty and that nodes are
1501 * over allocated.
1502 */
1503 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1504 goto nopage;
1505
1506 for (z = zonelist->zones; *z; z++)
1507 wakeup_kswapd(*z, order);
1508
1509 /*
1510 * OK, we're below the kswapd watermark and have kicked background
1511 * reclaim. Now things get more complex, so set up alloc_flags according
1512 * to how we want to proceed.
1513 *
1514 * The caller may dip into page reserves a bit more if the caller
1515 * cannot run direct reclaim, or if the caller has realtime scheduling
1516 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1517 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1518 */
1519 alloc_flags = ALLOC_WMARK_MIN;
1520 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1521 alloc_flags |= ALLOC_HARDER;
1522 if (gfp_mask & __GFP_HIGH)
1523 alloc_flags |= ALLOC_HIGH;
1524 if (wait)
1525 alloc_flags |= ALLOC_CPUSET;
1526
1527 /*
1528 * Go through the zonelist again. Let __GFP_HIGH and allocations
1529 * coming from realtime tasks go deeper into reserves.
1530 *
1531 * This is the last chance, in general, before the goto nopage.
1532 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1533 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1534 */
1535 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1536 if (page)
1537 goto got_pg;
1538
1539 /* This allocation should allow future memory freeing. */
1540
1541 rebalance:
1542 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1543 && !in_interrupt()) {
1544 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1545 nofail_alloc:
1546 /* go through the zonelist yet again, ignoring mins */
1547 page = get_page_from_freelist(gfp_mask, order,
1548 zonelist, ALLOC_NO_WATERMARKS);
1549 if (page)
1550 goto got_pg;
1551 if (gfp_mask & __GFP_NOFAIL) {
1552 congestion_wait(WRITE, HZ/50);
1553 goto nofail_alloc;
1554 }
1555 }
1556 goto nopage;
1557 }
1558
1559 /* Atomic allocations - we can't balance anything */
1560 if (!wait)
1561 goto nopage;
1562
1563 cond_resched();
1564
1565 /* We now go into synchronous reclaim */
1566 cpuset_memory_pressure_bump();
1567 p->flags |= PF_MEMALLOC;
1568 reclaim_state.reclaimed_slab = 0;
1569 p->reclaim_state = &reclaim_state;
1570
1571 did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1572
1573 p->reclaim_state = NULL;
1574 p->flags &= ~PF_MEMALLOC;
1575
1576 cond_resched();
1577
1578 if (order != 0)
1579 drain_all_local_pages();
1580
1581 if (likely(did_some_progress)) {
1582 page = get_page_from_freelist(gfp_mask, order,
1583 zonelist, alloc_flags);
1584 if (page)
1585 goto got_pg;
1586 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1587 /*
1588 * Go through the zonelist yet one more time, keep
1589 * very high watermark here, this is only to catch
1590 * a parallel oom killing, we must fail if we're still
1591 * under heavy pressure.
1592 */
1593 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1594 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1595 if (page)
1596 goto got_pg;
1597
1598 /* The OOM killer will not help higher order allocs so fail */
1599 if (order > PAGE_ALLOC_COSTLY_ORDER)
1600 goto nopage;
1601
1602 out_of_memory(zonelist, gfp_mask, order);
1603 goto restart;
1604 }
1605
1606 /*
1607 * Don't let big-order allocations loop unless the caller explicitly
1608 * requests that. Wait for some write requests to complete then retry.
1609 *
1610 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1611 * <= 3, but that may not be true in other implementations.
1612 */
1613 do_retry = 0;
1614 if (!(gfp_mask & __GFP_NORETRY)) {
1615 if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1616 (gfp_mask & __GFP_REPEAT))
1617 do_retry = 1;
1618 if (gfp_mask & __GFP_NOFAIL)
1619 do_retry = 1;
1620 }
1621 if (do_retry) {
1622 congestion_wait(WRITE, HZ/50);
1623 goto rebalance;
1624 }
1625
1626 nopage:
1627 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1628 printk(KERN_WARNING "%s: page allocation failure."
1629 " order:%d, mode:0x%x\n",
1630 p->comm, order, gfp_mask);
1631 dump_stack();
1632 show_mem();
1633 }
1634 got_pg:
1635 return page;
1636 }
1637
1638 EXPORT_SYMBOL(__alloc_pages);
1639
1640 /*
1641 * Common helper functions.
1642 */
1643 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1644 {
1645 struct page * page;
1646 page = alloc_pages(gfp_mask, order);
1647 if (!page)
1648 return 0;
1649 return (unsigned long) page_address(page);
1650 }
1651
1652 EXPORT_SYMBOL(__get_free_pages);
1653
1654 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1655 {
1656 struct page * page;
1657
1658 /*
1659 * get_zeroed_page() returns a 32-bit address, which cannot represent
1660 * a highmem page
1661 */
1662 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1663
1664 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1665 if (page)
1666 return (unsigned long) page_address(page);
1667 return 0;
1668 }
1669
1670 EXPORT_SYMBOL(get_zeroed_page);
1671
1672 void __pagevec_free(struct pagevec *pvec)
1673 {
1674 int i = pagevec_count(pvec);
1675
1676 while (--i >= 0)
1677 free_hot_cold_page(pvec->pages[i], pvec->cold);
1678 }
1679
1680 fastcall void __free_pages(struct page *page, unsigned int order)
1681 {
1682 if (put_page_testzero(page)) {
1683 if (order == 0)
1684 free_hot_page(page);
1685 else
1686 __free_pages_ok(page, order);
1687 }
1688 }
1689
1690 EXPORT_SYMBOL(__free_pages);
1691
1692 fastcall void free_pages(unsigned long addr, unsigned int order)
1693 {
1694 if (addr != 0) {
1695 VM_BUG_ON(!virt_addr_valid((void *)addr));
1696 __free_pages(virt_to_page((void *)addr), order);
1697 }
1698 }
1699
1700 EXPORT_SYMBOL(free_pages);
1701
1702 static unsigned int nr_free_zone_pages(int offset)
1703 {
1704 /* Just pick one node, since fallback list is circular */
1705 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1706 unsigned int sum = 0;
1707
1708 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1709 struct zone **zonep = zonelist->zones;
1710 struct zone *zone;
1711
1712 for (zone = *zonep++; zone; zone = *zonep++) {
1713 unsigned long size = zone->present_pages;
1714 unsigned long high = zone->pages_high;
1715 if (size > high)
1716 sum += size - high;
1717 }
1718
1719 return sum;
1720 }
1721
1722 /*
1723 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1724 */
1725 unsigned int nr_free_buffer_pages(void)
1726 {
1727 return nr_free_zone_pages(gfp_zone(GFP_USER));
1728 }
1729 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1730
1731 /*
1732 * Amount of free RAM allocatable within all zones
1733 */
1734 unsigned int nr_free_pagecache_pages(void)
1735 {
1736 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1737 }
1738
1739 static inline void show_node(struct zone *zone)
1740 {
1741 if (NUMA_BUILD)
1742 printk("Node %d ", zone_to_nid(zone));
1743 }
1744
1745 void si_meminfo(struct sysinfo *val)
1746 {
1747 val->totalram = totalram_pages;
1748 val->sharedram = 0;
1749 val->freeram = global_page_state(NR_FREE_PAGES);
1750 val->bufferram = nr_blockdev_pages();
1751 val->totalhigh = totalhigh_pages;
1752 val->freehigh = nr_free_highpages();
1753 val->mem_unit = PAGE_SIZE;
1754 }
1755
1756 EXPORT_SYMBOL(si_meminfo);
1757
1758 #ifdef CONFIG_NUMA
1759 void si_meminfo_node(struct sysinfo *val, int nid)
1760 {
1761 pg_data_t *pgdat = NODE_DATA(nid);
1762
1763 val->totalram = pgdat->node_present_pages;
1764 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1765 #ifdef CONFIG_HIGHMEM
1766 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1767 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1768 NR_FREE_PAGES);
1769 #else
1770 val->totalhigh = 0;
1771 val->freehigh = 0;
1772 #endif
1773 val->mem_unit = PAGE_SIZE;
1774 }
1775 #endif
1776
1777 #define K(x) ((x) << (PAGE_SHIFT-10))
1778
1779 /*
1780 * Show free area list (used inside shift_scroll-lock stuff)
1781 * We also calculate the percentage fragmentation. We do this by counting the
1782 * memory on each free list with the exception of the first item on the list.
1783 */
1784 void show_free_areas(void)
1785 {
1786 int cpu;
1787 struct zone *zone;
1788
1789 for_each_zone(zone) {
1790 if (!populated_zone(zone))
1791 continue;
1792
1793 show_node(zone);
1794 printk("%s per-cpu:\n", zone->name);
1795
1796 for_each_online_cpu(cpu) {
1797 struct per_cpu_pageset *pageset;
1798
1799 pageset = zone_pcp(zone, cpu);
1800
1801 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1802 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1803 cpu, pageset->pcp[0].high,
1804 pageset->pcp[0].batch, pageset->pcp[0].count,
1805 pageset->pcp[1].high, pageset->pcp[1].batch,
1806 pageset->pcp[1].count);
1807 }
1808 }
1809
1810 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1811 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1812 global_page_state(NR_ACTIVE),
1813 global_page_state(NR_INACTIVE),
1814 global_page_state(NR_FILE_DIRTY),
1815 global_page_state(NR_WRITEBACK),
1816 global_page_state(NR_UNSTABLE_NFS),
1817 global_page_state(NR_FREE_PAGES),
1818 global_page_state(NR_SLAB_RECLAIMABLE) +
1819 global_page_state(NR_SLAB_UNRECLAIMABLE),
1820 global_page_state(NR_FILE_MAPPED),
1821 global_page_state(NR_PAGETABLE),
1822 global_page_state(NR_BOUNCE));
1823
1824 for_each_zone(zone) {
1825 int i;
1826
1827 if (!populated_zone(zone))
1828 continue;
1829
1830 show_node(zone);
1831 printk("%s"
1832 " free:%lukB"
1833 " min:%lukB"
1834 " low:%lukB"
1835 " high:%lukB"
1836 " active:%lukB"
1837 " inactive:%lukB"
1838 " present:%lukB"
1839 " pages_scanned:%lu"
1840 " all_unreclaimable? %s"
1841 "\n",
1842 zone->name,
1843 K(zone_page_state(zone, NR_FREE_PAGES)),
1844 K(zone->pages_min),
1845 K(zone->pages_low),
1846 K(zone->pages_high),
1847 K(zone_page_state(zone, NR_ACTIVE)),
1848 K(zone_page_state(zone, NR_INACTIVE)),
1849 K(zone->present_pages),
1850 zone->pages_scanned,
1851 (zone->all_unreclaimable ? "yes" : "no")
1852 );
1853 printk("lowmem_reserve[]:");
1854 for (i = 0; i < MAX_NR_ZONES; i++)
1855 printk(" %lu", zone->lowmem_reserve[i]);
1856 printk("\n");
1857 }
1858
1859 for_each_zone(zone) {
1860 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1861
1862 if (!populated_zone(zone))
1863 continue;
1864
1865 show_node(zone);
1866 printk("%s: ", zone->name);
1867
1868 spin_lock_irqsave(&zone->lock, flags);
1869 for (order = 0; order < MAX_ORDER; order++) {
1870 nr[order] = zone->free_area[order].nr_free;
1871 total += nr[order] << order;
1872 }
1873 spin_unlock_irqrestore(&zone->lock, flags);
1874 for (order = 0; order < MAX_ORDER; order++)
1875 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1876 printk("= %lukB\n", K(total));
1877 }
1878
1879 show_swap_cache_info();
1880 }
1881
1882 /*
1883 * Builds allocation fallback zone lists.
1884 *
1885 * Add all populated zones of a node to the zonelist.
1886 */
1887 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1888 int nr_zones, enum zone_type zone_type)
1889 {
1890 struct zone *zone;
1891
1892 BUG_ON(zone_type >= MAX_NR_ZONES);
1893 zone_type++;
1894
1895 do {
1896 zone_type--;
1897 zone = pgdat->node_zones + zone_type;
1898 if (populated_zone(zone)) {
1899 zonelist->zones[nr_zones++] = zone;
1900 check_highest_zone(zone_type);
1901 }
1902
1903 } while (zone_type);
1904 return nr_zones;
1905 }
1906
1907
1908 /*
1909 * zonelist_order:
1910 * 0 = automatic detection of better ordering.
1911 * 1 = order by ([node] distance, -zonetype)
1912 * 2 = order by (-zonetype, [node] distance)
1913 *
1914 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1915 * the same zonelist. So only NUMA can configure this param.
1916 */
1917 #define ZONELIST_ORDER_DEFAULT 0
1918 #define ZONELIST_ORDER_NODE 1
1919 #define ZONELIST_ORDER_ZONE 2
1920
1921 /* zonelist order in the kernel.
1922 * set_zonelist_order() will set this to NODE or ZONE.
1923 */
1924 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1925 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1926
1927
1928 #ifdef CONFIG_NUMA
1929 /* The value user specified ....changed by config */
1930 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1931 /* string for sysctl */
1932 #define NUMA_ZONELIST_ORDER_LEN 16
1933 char numa_zonelist_order[16] = "default";
1934
1935 /*
1936 * interface for configure zonelist ordering.
1937 * command line option "numa_zonelist_order"
1938 * = "[dD]efault - default, automatic configuration.
1939 * = "[nN]ode - order by node locality, then by zone within node
1940 * = "[zZ]one - order by zone, then by locality within zone
1941 */
1942
1943 static int __parse_numa_zonelist_order(char *s)
1944 {
1945 if (*s == 'd' || *s == 'D') {
1946 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1947 } else if (*s == 'n' || *s == 'N') {
1948 user_zonelist_order = ZONELIST_ORDER_NODE;
1949 } else if (*s == 'z' || *s == 'Z') {
1950 user_zonelist_order = ZONELIST_ORDER_ZONE;
1951 } else {
1952 printk(KERN_WARNING
1953 "Ignoring invalid numa_zonelist_order value: "
1954 "%s\n", s);
1955 return -EINVAL;
1956 }
1957 return 0;
1958 }
1959
1960 static __init int setup_numa_zonelist_order(char *s)
1961 {
1962 if (s)
1963 return __parse_numa_zonelist_order(s);
1964 return 0;
1965 }
1966 early_param("numa_zonelist_order", setup_numa_zonelist_order);
1967
1968 /*
1969 * sysctl handler for numa_zonelist_order
1970 */
1971 int numa_zonelist_order_handler(ctl_table *table, int write,
1972 struct file *file, void __user *buffer, size_t *length,
1973 loff_t *ppos)
1974 {
1975 char saved_string[NUMA_ZONELIST_ORDER_LEN];
1976 int ret;
1977
1978 if (write)
1979 strncpy(saved_string, (char*)table->data,
1980 NUMA_ZONELIST_ORDER_LEN);
1981 ret = proc_dostring(table, write, file, buffer, length, ppos);
1982 if (ret)
1983 return ret;
1984 if (write) {
1985 int oldval = user_zonelist_order;
1986 if (__parse_numa_zonelist_order((char*)table->data)) {
1987 /*
1988 * bogus value. restore saved string
1989 */
1990 strncpy((char*)table->data, saved_string,
1991 NUMA_ZONELIST_ORDER_LEN);
1992 user_zonelist_order = oldval;
1993 } else if (oldval != user_zonelist_order)
1994 build_all_zonelists();
1995 }
1996 return 0;
1997 }
1998
1999
2000 #define MAX_NODE_LOAD (num_online_nodes())
2001 static int node_load[MAX_NUMNODES];
2002
2003 /**
2004 * find_next_best_node - find the next node that should appear in a given node's fallback list
2005 * @node: node whose fallback list we're appending
2006 * @used_node_mask: nodemask_t of already used nodes
2007 *
2008 * We use a number of factors to determine which is the next node that should
2009 * appear on a given node's fallback list. The node should not have appeared
2010 * already in @node's fallback list, and it should be the next closest node
2011 * according to the distance array (which contains arbitrary distance values
2012 * from each node to each node in the system), and should also prefer nodes
2013 * with no CPUs, since presumably they'll have very little allocation pressure
2014 * on them otherwise.
2015 * It returns -1 if no node is found.
2016 */
2017 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2018 {
2019 int n, val;
2020 int min_val = INT_MAX;
2021 int best_node = -1;
2022
2023 /* Use the local node if we haven't already */
2024 if (!node_isset(node, *used_node_mask)) {
2025 node_set(node, *used_node_mask);
2026 return node;
2027 }
2028
2029 for_each_node_state(n, N_HIGH_MEMORY) {
2030 cpumask_t tmp;
2031
2032 /* Don't want a node to appear more than once */
2033 if (node_isset(n, *used_node_mask))
2034 continue;
2035
2036 /* Use the distance array to find the distance */
2037 val = node_distance(node, n);
2038
2039 /* Penalize nodes under us ("prefer the next node") */
2040 val += (n < node);
2041
2042 /* Give preference to headless and unused nodes */
2043 tmp = node_to_cpumask(n);
2044 if (!cpus_empty(tmp))
2045 val += PENALTY_FOR_NODE_WITH_CPUS;
2046
2047 /* Slight preference for less loaded node */
2048 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2049 val += node_load[n];
2050
2051 if (val < min_val) {
2052 min_val = val;
2053 best_node = n;
2054 }
2055 }
2056
2057 if (best_node >= 0)
2058 node_set(best_node, *used_node_mask);
2059
2060 return best_node;
2061 }
2062
2063
2064 /*
2065 * Build zonelists ordered by node and zones within node.
2066 * This results in maximum locality--normal zone overflows into local
2067 * DMA zone, if any--but risks exhausting DMA zone.
2068 */
2069 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2070 {
2071 enum zone_type i;
2072 int j;
2073 struct zonelist *zonelist;
2074
2075 for (i = 0; i < MAX_NR_ZONES; i++) {
2076 zonelist = pgdat->node_zonelists + i;
2077 for (j = 0; zonelist->zones[j] != NULL; j++)
2078 ;
2079 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2080 zonelist->zones[j] = NULL;
2081 }
2082 }
2083
2084 /*
2085 * Build gfp_thisnode zonelists
2086 */
2087 static void build_thisnode_zonelists(pg_data_t *pgdat)
2088 {
2089 enum zone_type i;
2090 int j;
2091 struct zonelist *zonelist;
2092
2093 for (i = 0; i < MAX_NR_ZONES; i++) {
2094 zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
2095 j = build_zonelists_node(pgdat, zonelist, 0, i);
2096 zonelist->zones[j] = NULL;
2097 }
2098 }
2099
2100 /*
2101 * Build zonelists ordered by zone and nodes within zones.
2102 * This results in conserving DMA zone[s] until all Normal memory is
2103 * exhausted, but results in overflowing to remote node while memory
2104 * may still exist in local DMA zone.
2105 */
2106 static int node_order[MAX_NUMNODES];
2107
2108 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2109 {
2110 enum zone_type i;
2111 int pos, j, node;
2112 int zone_type; /* needs to be signed */
2113 struct zone *z;
2114 struct zonelist *zonelist;
2115
2116 for (i = 0; i < MAX_NR_ZONES; i++) {
2117 zonelist = pgdat->node_zonelists + i;
2118 pos = 0;
2119 for (zone_type = i; zone_type >= 0; zone_type--) {
2120 for (j = 0; j < nr_nodes; j++) {
2121 node = node_order[j];
2122 z = &NODE_DATA(node)->node_zones[zone_type];
2123 if (populated_zone(z)) {
2124 zonelist->zones[pos++] = z;
2125 check_highest_zone(zone_type);
2126 }
2127 }
2128 }
2129 zonelist->zones[pos] = NULL;
2130 }
2131 }
2132
2133 static int default_zonelist_order(void)
2134 {
2135 int nid, zone_type;
2136 unsigned long low_kmem_size,total_size;
2137 struct zone *z;
2138 int average_size;
2139 /*
2140 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2141 * If they are really small and used heavily, the system can fall
2142 * into OOM very easily.
2143 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2144 */
2145 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2146 low_kmem_size = 0;
2147 total_size = 0;
2148 for_each_online_node(nid) {
2149 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2150 z = &NODE_DATA(nid)->node_zones[zone_type];
2151 if (populated_zone(z)) {
2152 if (zone_type < ZONE_NORMAL)
2153 low_kmem_size += z->present_pages;
2154 total_size += z->present_pages;
2155 }
2156 }
2157 }
2158 if (!low_kmem_size || /* there are no DMA area. */
2159 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2160 return ZONELIST_ORDER_NODE;
2161 /*
2162 * look into each node's config.
2163 * If there is a node whose DMA/DMA32 memory is very big area on
2164 * local memory, NODE_ORDER may be suitable.
2165 */
2166 average_size = total_size /
2167 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2168 for_each_online_node(nid) {
2169 low_kmem_size = 0;
2170 total_size = 0;
2171 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2172 z = &NODE_DATA(nid)->node_zones[zone_type];
2173 if (populated_zone(z)) {
2174 if (zone_type < ZONE_NORMAL)
2175 low_kmem_size += z->present_pages;
2176 total_size += z->present_pages;
2177 }
2178 }
2179 if (low_kmem_size &&
2180 total_size > average_size && /* ignore small node */
2181 low_kmem_size > total_size * 70/100)
2182 return ZONELIST_ORDER_NODE;
2183 }
2184 return ZONELIST_ORDER_ZONE;
2185 }
2186
2187 static void set_zonelist_order(void)
2188 {
2189 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2190 current_zonelist_order = default_zonelist_order();
2191 else
2192 current_zonelist_order = user_zonelist_order;
2193 }
2194
2195 static void build_zonelists(pg_data_t *pgdat)
2196 {
2197 int j, node, load;
2198 enum zone_type i;
2199 nodemask_t used_mask;
2200 int local_node, prev_node;
2201 struct zonelist *zonelist;
2202 int order = current_zonelist_order;
2203
2204 /* initialize zonelists */
2205 for (i = 0; i < MAX_ZONELISTS; i++) {
2206 zonelist = pgdat->node_zonelists + i;
2207 zonelist->zones[0] = NULL;
2208 }
2209
2210 /* NUMA-aware ordering of nodes */
2211 local_node = pgdat->node_id;
2212 load = num_online_nodes();
2213 prev_node = local_node;
2214 nodes_clear(used_mask);
2215
2216 memset(node_load, 0, sizeof(node_load));
2217 memset(node_order, 0, sizeof(node_order));
2218 j = 0;
2219
2220 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2221 int distance = node_distance(local_node, node);
2222
2223 /*
2224 * If another node is sufficiently far away then it is better
2225 * to reclaim pages in a zone before going off node.
2226 */
2227 if (distance > RECLAIM_DISTANCE)
2228 zone_reclaim_mode = 1;
2229
2230 /*
2231 * We don't want to pressure a particular node.
2232 * So adding penalty to the first node in same
2233 * distance group to make it round-robin.
2234 */
2235 if (distance != node_distance(local_node, prev_node))
2236 node_load[node] = load;
2237
2238 prev_node = node;
2239 load--;
2240 if (order == ZONELIST_ORDER_NODE)
2241 build_zonelists_in_node_order(pgdat, node);
2242 else
2243 node_order[j++] = node; /* remember order */
2244 }
2245
2246 if (order == ZONELIST_ORDER_ZONE) {
2247 /* calculate node order -- i.e., DMA last! */
2248 build_zonelists_in_zone_order(pgdat, j);
2249 }
2250
2251 build_thisnode_zonelists(pgdat);
2252 }
2253
2254 /* Construct the zonelist performance cache - see further mmzone.h */
2255 static void build_zonelist_cache(pg_data_t *pgdat)
2256 {
2257 int i;
2258
2259 for (i = 0; i < MAX_NR_ZONES; i++) {
2260 struct zonelist *zonelist;
2261 struct zonelist_cache *zlc;
2262 struct zone **z;
2263
2264 zonelist = pgdat->node_zonelists + i;
2265 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2266 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2267 for (z = zonelist->zones; *z; z++)
2268 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2269 }
2270 }
2271
2272
2273 #else /* CONFIG_NUMA */
2274
2275 static void set_zonelist_order(void)
2276 {
2277 current_zonelist_order = ZONELIST_ORDER_ZONE;
2278 }
2279
2280 static void build_zonelists(pg_data_t *pgdat)
2281 {
2282 int node, local_node;
2283 enum zone_type i,j;
2284
2285 local_node = pgdat->node_id;
2286 for (i = 0; i < MAX_NR_ZONES; i++) {
2287 struct zonelist *zonelist;
2288
2289 zonelist = pgdat->node_zonelists + i;
2290
2291 j = build_zonelists_node(pgdat, zonelist, 0, i);
2292 /*
2293 * Now we build the zonelist so that it contains the zones
2294 * of all the other nodes.
2295 * We don't want to pressure a particular node, so when
2296 * building the zones for node N, we make sure that the
2297 * zones coming right after the local ones are those from
2298 * node N+1 (modulo N)
2299 */
2300 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2301 if (!node_online(node))
2302 continue;
2303 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2304 }
2305 for (node = 0; node < local_node; node++) {
2306 if (!node_online(node))
2307 continue;
2308 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2309 }
2310
2311 zonelist->zones[j] = NULL;
2312 }
2313 }
2314
2315 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2316 static void build_zonelist_cache(pg_data_t *pgdat)
2317 {
2318 int i;
2319
2320 for (i = 0; i < MAX_NR_ZONES; i++)
2321 pgdat->node_zonelists[i].zlcache_ptr = NULL;
2322 }
2323
2324 #endif /* CONFIG_NUMA */
2325
2326 /* return values int ....just for stop_machine_run() */
2327 static int __build_all_zonelists(void *dummy)
2328 {
2329 int nid;
2330
2331 for_each_online_node(nid) {
2332 pg_data_t *pgdat = NODE_DATA(nid);
2333
2334 build_zonelists(pgdat);
2335 build_zonelist_cache(pgdat);
2336 }
2337 return 0;
2338 }
2339
2340 void build_all_zonelists(void)
2341 {
2342 set_zonelist_order();
2343
2344 if (system_state == SYSTEM_BOOTING) {
2345 __build_all_zonelists(NULL);
2346 cpuset_init_current_mems_allowed();
2347 } else {
2348 /* we have to stop all cpus to guaranntee there is no user
2349 of zonelist */
2350 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2351 /* cpuset refresh routine should be here */
2352 }
2353 vm_total_pages = nr_free_pagecache_pages();
2354 printk("Built %i zonelists in %s order. Total pages: %ld\n",
2355 num_online_nodes(),
2356 zonelist_order_name[current_zonelist_order],
2357 vm_total_pages);
2358 #ifdef CONFIG_NUMA
2359 printk("Policy zone: %s\n", zone_names[policy_zone]);
2360 #endif
2361 }
2362
2363 /*
2364 * Helper functions to size the waitqueue hash table.
2365 * Essentially these want to choose hash table sizes sufficiently
2366 * large so that collisions trying to wait on pages are rare.
2367 * But in fact, the number of active page waitqueues on typical
2368 * systems is ridiculously low, less than 200. So this is even
2369 * conservative, even though it seems large.
2370 *
2371 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2372 * waitqueues, i.e. the size of the waitq table given the number of pages.
2373 */
2374 #define PAGES_PER_WAITQUEUE 256
2375
2376 #ifndef CONFIG_MEMORY_HOTPLUG
2377 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2378 {
2379 unsigned long size = 1;
2380
2381 pages /= PAGES_PER_WAITQUEUE;
2382
2383 while (size < pages)
2384 size <<= 1;
2385
2386 /*
2387 * Once we have dozens or even hundreds of threads sleeping
2388 * on IO we've got bigger problems than wait queue collision.
2389 * Limit the size of the wait table to a reasonable size.
2390 */
2391 size = min(size, 4096UL);
2392
2393 return max(size, 4UL);
2394 }
2395 #else
2396 /*
2397 * A zone's size might be changed by hot-add, so it is not possible to determine
2398 * a suitable size for its wait_table. So we use the maximum size now.
2399 *
2400 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2401 *
2402 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2403 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2404 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2405 *
2406 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2407 * or more by the traditional way. (See above). It equals:
2408 *
2409 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2410 * ia64(16K page size) : = ( 8G + 4M)byte.
2411 * powerpc (64K page size) : = (32G +16M)byte.
2412 */
2413 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2414 {
2415 return 4096UL;
2416 }
2417 #endif
2418
2419 /*
2420 * This is an integer logarithm so that shifts can be used later
2421 * to extract the more random high bits from the multiplicative
2422 * hash function before the remainder is taken.
2423 */
2424 static inline unsigned long wait_table_bits(unsigned long size)
2425 {
2426 return ffz(~size);
2427 }
2428
2429 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2430
2431 /*
2432 * Initially all pages are reserved - free ones are freed
2433 * up by free_all_bootmem() once the early boot process is
2434 * done. Non-atomic initialization, single-pass.
2435 */
2436 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2437 unsigned long start_pfn, enum memmap_context context)
2438 {
2439 struct page *page;
2440 unsigned long end_pfn = start_pfn + size;
2441 unsigned long pfn;
2442
2443 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2444 /*
2445 * There can be holes in boot-time mem_map[]s
2446 * handed to this function. They do not
2447 * exist on hotplugged memory.
2448 */
2449 if (context == MEMMAP_EARLY) {
2450 if (!early_pfn_valid(pfn))
2451 continue;
2452 if (!early_pfn_in_nid(pfn, nid))
2453 continue;
2454 }
2455 page = pfn_to_page(pfn);
2456 set_page_links(page, zone, nid, pfn);
2457 init_page_count(page);
2458 reset_page_mapcount(page);
2459 SetPageReserved(page);
2460
2461 /*
2462 * Mark the block movable so that blocks are reserved for
2463 * movable at startup. This will force kernel allocations
2464 * to reserve their blocks rather than leaking throughout
2465 * the address space during boot when many long-lived
2466 * kernel allocations are made
2467 */
2468 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2469
2470 INIT_LIST_HEAD(&page->lru);
2471 #ifdef WANT_PAGE_VIRTUAL
2472 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2473 if (!is_highmem_idx(zone))
2474 set_page_address(page, __va(pfn << PAGE_SHIFT));
2475 #endif
2476 }
2477 }
2478
2479 static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2480 struct zone *zone, unsigned long size)
2481 {
2482 int order, t;
2483 for_each_migratetype_order(order, t) {
2484 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2485 zone->free_area[order].nr_free = 0;
2486 }
2487 }
2488
2489 #ifndef __HAVE_ARCH_MEMMAP_INIT
2490 #define memmap_init(size, nid, zone, start_pfn) \
2491 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2492 #endif
2493
2494 static int __devinit zone_batchsize(struct zone *zone)
2495 {
2496 int batch;
2497
2498 /*
2499 * The per-cpu-pages pools are set to around 1000th of the
2500 * size of the zone. But no more than 1/2 of a meg.
2501 *
2502 * OK, so we don't know how big the cache is. So guess.
2503 */
2504 batch = zone->present_pages / 1024;
2505 if (batch * PAGE_SIZE > 512 * 1024)
2506 batch = (512 * 1024) / PAGE_SIZE;
2507 batch /= 4; /* We effectively *= 4 below */
2508 if (batch < 1)
2509 batch = 1;
2510
2511 /*
2512 * Clamp the batch to a 2^n - 1 value. Having a power
2513 * of 2 value was found to be more likely to have
2514 * suboptimal cache aliasing properties in some cases.
2515 *
2516 * For example if 2 tasks are alternately allocating
2517 * batches of pages, one task can end up with a lot
2518 * of pages of one half of the possible page colors
2519 * and the other with pages of the other colors.
2520 */
2521 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2522
2523 return batch;
2524 }
2525
2526 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2527 {
2528 struct per_cpu_pages *pcp;
2529
2530 memset(p, 0, sizeof(*p));
2531
2532 pcp = &p->pcp[0]; /* hot */
2533 pcp->count = 0;
2534 pcp->high = 6 * batch;
2535 pcp->batch = max(1UL, 1 * batch);
2536 INIT_LIST_HEAD(&pcp->list);
2537
2538 pcp = &p->pcp[1]; /* cold*/
2539 pcp->count = 0;
2540 pcp->high = 2 * batch;
2541 pcp->batch = max(1UL, batch/2);
2542 INIT_LIST_HEAD(&pcp->list);
2543 }
2544
2545 /*
2546 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2547 * to the value high for the pageset p.
2548 */
2549
2550 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2551 unsigned long high)
2552 {
2553 struct per_cpu_pages *pcp;
2554
2555 pcp = &p->pcp[0]; /* hot list */
2556 pcp->high = high;
2557 pcp->batch = max(1UL, high/4);
2558 if ((high/4) > (PAGE_SHIFT * 8))
2559 pcp->batch = PAGE_SHIFT * 8;
2560 }
2561
2562
2563 #ifdef CONFIG_NUMA
2564 /*
2565 * Boot pageset table. One per cpu which is going to be used for all
2566 * zones and all nodes. The parameters will be set in such a way
2567 * that an item put on a list will immediately be handed over to
2568 * the buddy list. This is safe since pageset manipulation is done
2569 * with interrupts disabled.
2570 *
2571 * Some NUMA counter updates may also be caught by the boot pagesets.
2572 *
2573 * The boot_pagesets must be kept even after bootup is complete for
2574 * unused processors and/or zones. They do play a role for bootstrapping
2575 * hotplugged processors.
2576 *
2577 * zoneinfo_show() and maybe other functions do
2578 * not check if the processor is online before following the pageset pointer.
2579 * Other parts of the kernel may not check if the zone is available.
2580 */
2581 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2582
2583 /*
2584 * Dynamically allocate memory for the
2585 * per cpu pageset array in struct zone.
2586 */
2587 static int __cpuinit process_zones(int cpu)
2588 {
2589 struct zone *zone, *dzone;
2590 int node = cpu_to_node(cpu);
2591
2592 node_set_state(node, N_CPU); /* this node has a cpu */
2593
2594 for_each_zone(zone) {
2595
2596 if (!populated_zone(zone))
2597 continue;
2598
2599 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2600 GFP_KERNEL, node);
2601 if (!zone_pcp(zone, cpu))
2602 goto bad;
2603
2604 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2605
2606 if (percpu_pagelist_fraction)
2607 setup_pagelist_highmark(zone_pcp(zone, cpu),
2608 (zone->present_pages / percpu_pagelist_fraction));
2609 }
2610
2611 return 0;
2612 bad:
2613 for_each_zone(dzone) {
2614 if (!populated_zone(dzone))
2615 continue;
2616 if (dzone == zone)
2617 break;
2618 kfree(zone_pcp(dzone, cpu));
2619 zone_pcp(dzone, cpu) = NULL;
2620 }
2621 return -ENOMEM;
2622 }
2623
2624 static inline void free_zone_pagesets(int cpu)
2625 {
2626 struct zone *zone;
2627
2628 for_each_zone(zone) {
2629 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2630
2631 /* Free per_cpu_pageset if it is slab allocated */
2632 if (pset != &boot_pageset[cpu])
2633 kfree(pset);
2634 zone_pcp(zone, cpu) = NULL;
2635 }
2636 }
2637
2638 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2639 unsigned long action,
2640 void *hcpu)
2641 {
2642 int cpu = (long)hcpu;
2643 int ret = NOTIFY_OK;
2644
2645 switch (action) {
2646 case CPU_UP_PREPARE:
2647 case CPU_UP_PREPARE_FROZEN:
2648 if (process_zones(cpu))
2649 ret = NOTIFY_BAD;
2650 break;
2651 case CPU_UP_CANCELED:
2652 case CPU_UP_CANCELED_FROZEN:
2653 case CPU_DEAD:
2654 case CPU_DEAD_FROZEN:
2655 free_zone_pagesets(cpu);
2656 break;
2657 default:
2658 break;
2659 }
2660 return ret;
2661 }
2662
2663 static struct notifier_block __cpuinitdata pageset_notifier =
2664 { &pageset_cpuup_callback, NULL, 0 };
2665
2666 void __init setup_per_cpu_pageset(void)
2667 {
2668 int err;
2669
2670 /* Initialize per_cpu_pageset for cpu 0.
2671 * A cpuup callback will do this for every cpu
2672 * as it comes online
2673 */
2674 err = process_zones(smp_processor_id());
2675 BUG_ON(err);
2676 register_cpu_notifier(&pageset_notifier);
2677 }
2678
2679 #endif
2680
2681 static noinline __init_refok
2682 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2683 {
2684 int i;
2685 struct pglist_data *pgdat = zone->zone_pgdat;
2686 size_t alloc_size;
2687
2688 /*
2689 * The per-page waitqueue mechanism uses hashed waitqueues
2690 * per zone.
2691 */
2692 zone->wait_table_hash_nr_entries =
2693 wait_table_hash_nr_entries(zone_size_pages);
2694 zone->wait_table_bits =
2695 wait_table_bits(zone->wait_table_hash_nr_entries);
2696 alloc_size = zone->wait_table_hash_nr_entries
2697 * sizeof(wait_queue_head_t);
2698
2699 if (system_state == SYSTEM_BOOTING) {
2700 zone->wait_table = (wait_queue_head_t *)
2701 alloc_bootmem_node(pgdat, alloc_size);
2702 } else {
2703 /*
2704 * This case means that a zone whose size was 0 gets new memory
2705 * via memory hot-add.
2706 * But it may be the case that a new node was hot-added. In
2707 * this case vmalloc() will not be able to use this new node's
2708 * memory - this wait_table must be initialized to use this new
2709 * node itself as well.
2710 * To use this new node's memory, further consideration will be
2711 * necessary.
2712 */
2713 zone->wait_table = vmalloc(alloc_size);
2714 }
2715 if (!zone->wait_table)
2716 return -ENOMEM;
2717
2718 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2719 init_waitqueue_head(zone->wait_table + i);
2720
2721 return 0;
2722 }
2723
2724 static __meminit void zone_pcp_init(struct zone *zone)
2725 {
2726 int cpu;
2727 unsigned long batch = zone_batchsize(zone);
2728
2729 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2730 #ifdef CONFIG_NUMA
2731 /* Early boot. Slab allocator not functional yet */
2732 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2733 setup_pageset(&boot_pageset[cpu],0);
2734 #else
2735 setup_pageset(zone_pcp(zone,cpu), batch);
2736 #endif
2737 }
2738 if (zone->present_pages)
2739 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2740 zone->name, zone->present_pages, batch);
2741 }
2742
2743 __meminit int init_currently_empty_zone(struct zone *zone,
2744 unsigned long zone_start_pfn,
2745 unsigned long size,
2746 enum memmap_context context)
2747 {
2748 struct pglist_data *pgdat = zone->zone_pgdat;
2749 int ret;
2750 ret = zone_wait_table_init(zone, size);
2751 if (ret)
2752 return ret;
2753 pgdat->nr_zones = zone_idx(zone) + 1;
2754
2755 zone->zone_start_pfn = zone_start_pfn;
2756
2757 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2758
2759 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2760
2761 return 0;
2762 }
2763
2764 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2765 /*
2766 * Basic iterator support. Return the first range of PFNs for a node
2767 * Note: nid == MAX_NUMNODES returns first region regardless of node
2768 */
2769 static int __meminit first_active_region_index_in_nid(int nid)
2770 {
2771 int i;
2772
2773 for (i = 0; i < nr_nodemap_entries; i++)
2774 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2775 return i;
2776
2777 return -1;
2778 }
2779
2780 /*
2781 * Basic iterator support. Return the next active range of PFNs for a node
2782 * Note: nid == MAX_NUMNODES returns next region regardles of node
2783 */
2784 static int __meminit next_active_region_index_in_nid(int index, int nid)
2785 {
2786 for (index = index + 1; index < nr_nodemap_entries; index++)
2787 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2788 return index;
2789
2790 return -1;
2791 }
2792
2793 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2794 /*
2795 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2796 * Architectures may implement their own version but if add_active_range()
2797 * was used and there are no special requirements, this is a convenient
2798 * alternative
2799 */
2800 int __meminit early_pfn_to_nid(unsigned long pfn)
2801 {
2802 int i;
2803
2804 for (i = 0; i < nr_nodemap_entries; i++) {
2805 unsigned long start_pfn = early_node_map[i].start_pfn;
2806 unsigned long end_pfn = early_node_map[i].end_pfn;
2807
2808 if (start_pfn <= pfn && pfn < end_pfn)
2809 return early_node_map[i].nid;
2810 }
2811
2812 return 0;
2813 }
2814 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2815
2816 /* Basic iterator support to walk early_node_map[] */
2817 #define for_each_active_range_index_in_nid(i, nid) \
2818 for (i = first_active_region_index_in_nid(nid); i != -1; \
2819 i = next_active_region_index_in_nid(i, nid))
2820
2821 /**
2822 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2823 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2824 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2825 *
2826 * If an architecture guarantees that all ranges registered with
2827 * add_active_ranges() contain no holes and may be freed, this
2828 * this function may be used instead of calling free_bootmem() manually.
2829 */
2830 void __init free_bootmem_with_active_regions(int nid,
2831 unsigned long max_low_pfn)
2832 {
2833 int i;
2834
2835 for_each_active_range_index_in_nid(i, nid) {
2836 unsigned long size_pages = 0;
2837 unsigned long end_pfn = early_node_map[i].end_pfn;
2838
2839 if (early_node_map[i].start_pfn >= max_low_pfn)
2840 continue;
2841
2842 if (end_pfn > max_low_pfn)
2843 end_pfn = max_low_pfn;
2844
2845 size_pages = end_pfn - early_node_map[i].start_pfn;
2846 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2847 PFN_PHYS(early_node_map[i].start_pfn),
2848 size_pages << PAGE_SHIFT);
2849 }
2850 }
2851
2852 /**
2853 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2854 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2855 *
2856 * If an architecture guarantees that all ranges registered with
2857 * add_active_ranges() contain no holes and may be freed, this
2858 * function may be used instead of calling memory_present() manually.
2859 */
2860 void __init sparse_memory_present_with_active_regions(int nid)
2861 {
2862 int i;
2863
2864 for_each_active_range_index_in_nid(i, nid)
2865 memory_present(early_node_map[i].nid,
2866 early_node_map[i].start_pfn,
2867 early_node_map[i].end_pfn);
2868 }
2869
2870 /**
2871 * push_node_boundaries - Push node boundaries to at least the requested boundary
2872 * @nid: The nid of the node to push the boundary for
2873 * @start_pfn: The start pfn of the node
2874 * @end_pfn: The end pfn of the node
2875 *
2876 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2877 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2878 * be hotplugged even though no physical memory exists. This function allows
2879 * an arch to push out the node boundaries so mem_map is allocated that can
2880 * be used later.
2881 */
2882 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2883 void __init push_node_boundaries(unsigned int nid,
2884 unsigned long start_pfn, unsigned long end_pfn)
2885 {
2886 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2887 nid, start_pfn, end_pfn);
2888
2889 /* Initialise the boundary for this node if necessary */
2890 if (node_boundary_end_pfn[nid] == 0)
2891 node_boundary_start_pfn[nid] = -1UL;
2892
2893 /* Update the boundaries */
2894 if (node_boundary_start_pfn[nid] > start_pfn)
2895 node_boundary_start_pfn[nid] = start_pfn;
2896 if (node_boundary_end_pfn[nid] < end_pfn)
2897 node_boundary_end_pfn[nid] = end_pfn;
2898 }
2899
2900 /* If necessary, push the node boundary out for reserve hotadd */
2901 static void __meminit account_node_boundary(unsigned int nid,
2902 unsigned long *start_pfn, unsigned long *end_pfn)
2903 {
2904 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2905 nid, *start_pfn, *end_pfn);
2906
2907 /* Return if boundary information has not been provided */
2908 if (node_boundary_end_pfn[nid] == 0)
2909 return;
2910
2911 /* Check the boundaries and update if necessary */
2912 if (node_boundary_start_pfn[nid] < *start_pfn)
2913 *start_pfn = node_boundary_start_pfn[nid];
2914 if (node_boundary_end_pfn[nid] > *end_pfn)
2915 *end_pfn = node_boundary_end_pfn[nid];
2916 }
2917 #else
2918 void __init push_node_boundaries(unsigned int nid,
2919 unsigned long start_pfn, unsigned long end_pfn) {}
2920
2921 static void __meminit account_node_boundary(unsigned int nid,
2922 unsigned long *start_pfn, unsigned long *end_pfn) {}
2923 #endif
2924
2925
2926 /**
2927 * get_pfn_range_for_nid - Return the start and end page frames for a node
2928 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2929 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2930 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2931 *
2932 * It returns the start and end page frame of a node based on information
2933 * provided by an arch calling add_active_range(). If called for a node
2934 * with no available memory, a warning is printed and the start and end
2935 * PFNs will be 0.
2936 */
2937 void __meminit get_pfn_range_for_nid(unsigned int nid,
2938 unsigned long *start_pfn, unsigned long *end_pfn)
2939 {
2940 int i;
2941 *start_pfn = -1UL;
2942 *end_pfn = 0;
2943
2944 for_each_active_range_index_in_nid(i, nid) {
2945 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2946 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2947 }
2948
2949 if (*start_pfn == -1UL)
2950 *start_pfn = 0;
2951
2952 /* Push the node boundaries out if requested */
2953 account_node_boundary(nid, start_pfn, end_pfn);
2954 }
2955
2956 /*
2957 * This finds a zone that can be used for ZONE_MOVABLE pages. The
2958 * assumption is made that zones within a node are ordered in monotonic
2959 * increasing memory addresses so that the "highest" populated zone is used
2960 */
2961 void __init find_usable_zone_for_movable(void)
2962 {
2963 int zone_index;
2964 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
2965 if (zone_index == ZONE_MOVABLE)
2966 continue;
2967
2968 if (arch_zone_highest_possible_pfn[zone_index] >
2969 arch_zone_lowest_possible_pfn[zone_index])
2970 break;
2971 }
2972
2973 VM_BUG_ON(zone_index == -1);
2974 movable_zone = zone_index;
2975 }
2976
2977 /*
2978 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
2979 * because it is sized independant of architecture. Unlike the other zones,
2980 * the starting point for ZONE_MOVABLE is not fixed. It may be different
2981 * in each node depending on the size of each node and how evenly kernelcore
2982 * is distributed. This helper function adjusts the zone ranges
2983 * provided by the architecture for a given node by using the end of the
2984 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
2985 * zones within a node are in order of monotonic increases memory addresses
2986 */
2987 void __meminit adjust_zone_range_for_zone_movable(int nid,
2988 unsigned long zone_type,
2989 unsigned long node_start_pfn,
2990 unsigned long node_end_pfn,
2991 unsigned long *zone_start_pfn,
2992 unsigned long *zone_end_pfn)
2993 {
2994 /* Only adjust if ZONE_MOVABLE is on this node */
2995 if (zone_movable_pfn[nid]) {
2996 /* Size ZONE_MOVABLE */
2997 if (zone_type == ZONE_MOVABLE) {
2998 *zone_start_pfn = zone_movable_pfn[nid];
2999 *zone_end_pfn = min(node_end_pfn,
3000 arch_zone_highest_possible_pfn[movable_zone]);
3001
3002 /* Adjust for ZONE_MOVABLE starting within this range */
3003 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3004 *zone_end_pfn > zone_movable_pfn[nid]) {
3005 *zone_end_pfn = zone_movable_pfn[nid];
3006
3007 /* Check if this whole range is within ZONE_MOVABLE */
3008 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3009 *zone_start_pfn = *zone_end_pfn;
3010 }
3011 }
3012
3013 /*
3014 * Return the number of pages a zone spans in a node, including holes
3015 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3016 */
3017 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3018 unsigned long zone_type,
3019 unsigned long *ignored)
3020 {
3021 unsigned long node_start_pfn, node_end_pfn;
3022 unsigned long zone_start_pfn, zone_end_pfn;
3023
3024 /* Get the start and end of the node and zone */
3025 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3026 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3027 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3028 adjust_zone_range_for_zone_movable(nid, zone_type,
3029 node_start_pfn, node_end_pfn,
3030 &zone_start_pfn, &zone_end_pfn);
3031
3032 /* Check that this node has pages within the zone's required range */
3033 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3034 return 0;
3035
3036 /* Move the zone boundaries inside the node if necessary */
3037 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3038 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3039
3040 /* Return the spanned pages */
3041 return zone_end_pfn - zone_start_pfn;
3042 }
3043
3044 /*
3045 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3046 * then all holes in the requested range will be accounted for.
3047 */
3048 unsigned long __meminit __absent_pages_in_range(int nid,
3049 unsigned long range_start_pfn,
3050 unsigned long range_end_pfn)
3051 {
3052 int i = 0;
3053 unsigned long prev_end_pfn = 0, hole_pages = 0;
3054 unsigned long start_pfn;
3055
3056 /* Find the end_pfn of the first active range of pfns in the node */
3057 i = first_active_region_index_in_nid(nid);
3058 if (i == -1)
3059 return 0;
3060
3061 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3062
3063 /* Account for ranges before physical memory on this node */
3064 if (early_node_map[i].start_pfn > range_start_pfn)
3065 hole_pages = prev_end_pfn - range_start_pfn;
3066
3067 /* Find all holes for the zone within the node */
3068 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3069
3070 /* No need to continue if prev_end_pfn is outside the zone */
3071 if (prev_end_pfn >= range_end_pfn)
3072 break;
3073
3074 /* Make sure the end of the zone is not within the hole */
3075 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3076 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3077
3078 /* Update the hole size cound and move on */
3079 if (start_pfn > range_start_pfn) {
3080 BUG_ON(prev_end_pfn > start_pfn);
3081 hole_pages += start_pfn - prev_end_pfn;
3082 }
3083 prev_end_pfn = early_node_map[i].end_pfn;
3084 }
3085
3086 /* Account for ranges past physical memory on this node */
3087 if (range_end_pfn > prev_end_pfn)
3088 hole_pages += range_end_pfn -
3089 max(range_start_pfn, prev_end_pfn);
3090
3091 return hole_pages;
3092 }
3093
3094 /**
3095 * absent_pages_in_range - Return number of page frames in holes within a range
3096 * @start_pfn: The start PFN to start searching for holes
3097 * @end_pfn: The end PFN to stop searching for holes
3098 *
3099 * It returns the number of pages frames in memory holes within a range.
3100 */
3101 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3102 unsigned long end_pfn)
3103 {
3104 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3105 }
3106
3107 /* Return the number of page frames in holes in a zone on a node */
3108 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3109 unsigned long zone_type,
3110 unsigned long *ignored)
3111 {
3112 unsigned long node_start_pfn, node_end_pfn;
3113 unsigned long zone_start_pfn, zone_end_pfn;
3114
3115 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3116 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3117 node_start_pfn);
3118 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3119 node_end_pfn);
3120
3121 adjust_zone_range_for_zone_movable(nid, zone_type,
3122 node_start_pfn, node_end_pfn,
3123 &zone_start_pfn, &zone_end_pfn);
3124 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3125 }
3126
3127 #else
3128 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3129 unsigned long zone_type,
3130 unsigned long *zones_size)
3131 {
3132 return zones_size[zone_type];
3133 }
3134
3135 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3136 unsigned long zone_type,
3137 unsigned long *zholes_size)
3138 {
3139 if (!zholes_size)
3140 return 0;
3141
3142 return zholes_size[zone_type];
3143 }
3144
3145 #endif
3146
3147 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3148 unsigned long *zones_size, unsigned long *zholes_size)
3149 {
3150 unsigned long realtotalpages, totalpages = 0;
3151 enum zone_type i;
3152
3153 for (i = 0; i < MAX_NR_ZONES; i++)
3154 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3155 zones_size);
3156 pgdat->node_spanned_pages = totalpages;
3157
3158 realtotalpages = totalpages;
3159 for (i = 0; i < MAX_NR_ZONES; i++)
3160 realtotalpages -=
3161 zone_absent_pages_in_node(pgdat->node_id, i,
3162 zholes_size);
3163 pgdat->node_present_pages = realtotalpages;
3164 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3165 realtotalpages);
3166 }
3167
3168 #ifndef CONFIG_SPARSEMEM
3169 /*
3170 * Calculate the size of the zone->blockflags rounded to an unsigned long
3171 * Start by making sure zonesize is a multiple of MAX_ORDER-1 by rounding up
3172 * Then figure 1 NR_PAGEBLOCK_BITS worth of bits per MAX_ORDER-1, finally
3173 * round what is now in bits to nearest long in bits, then return it in
3174 * bytes.
3175 */
3176 static unsigned long __init usemap_size(unsigned long zonesize)
3177 {
3178 unsigned long usemapsize;
3179
3180 usemapsize = roundup(zonesize, MAX_ORDER_NR_PAGES);
3181 usemapsize = usemapsize >> (MAX_ORDER-1);
3182 usemapsize *= NR_PAGEBLOCK_BITS;
3183 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3184
3185 return usemapsize / 8;
3186 }
3187
3188 static void __init setup_usemap(struct pglist_data *pgdat,
3189 struct zone *zone, unsigned long zonesize)
3190 {
3191 unsigned long usemapsize = usemap_size(zonesize);
3192 zone->pageblock_flags = NULL;
3193 if (usemapsize) {
3194 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3195 memset(zone->pageblock_flags, 0, usemapsize);
3196 }
3197 }
3198 #else
3199 static void inline setup_usemap(struct pglist_data *pgdat,
3200 struct zone *zone, unsigned long zonesize) {}
3201 #endif /* CONFIG_SPARSEMEM */
3202
3203 /*
3204 * Set up the zone data structures:
3205 * - mark all pages reserved
3206 * - mark all memory queues empty
3207 * - clear the memory bitmaps
3208 */
3209 static void __meminit free_area_init_core(struct pglist_data *pgdat,
3210 unsigned long *zones_size, unsigned long *zholes_size)
3211 {
3212 enum zone_type j;
3213 int nid = pgdat->node_id;
3214 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3215 int ret;
3216
3217 pgdat_resize_init(pgdat);
3218 pgdat->nr_zones = 0;
3219 init_waitqueue_head(&pgdat->kswapd_wait);
3220 pgdat->kswapd_max_order = 0;
3221
3222 for (j = 0; j < MAX_NR_ZONES; j++) {
3223 struct zone *zone = pgdat->node_zones + j;
3224 unsigned long size, realsize, memmap_pages;
3225
3226 size = zone_spanned_pages_in_node(nid, j, zones_size);
3227 realsize = size - zone_absent_pages_in_node(nid, j,
3228 zholes_size);
3229
3230 /*
3231 * Adjust realsize so that it accounts for how much memory
3232 * is used by this zone for memmap. This affects the watermark
3233 * and per-cpu initialisations
3234 */
3235 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
3236 if (realsize >= memmap_pages) {
3237 realsize -= memmap_pages;
3238 printk(KERN_DEBUG
3239 " %s zone: %lu pages used for memmap\n",
3240 zone_names[j], memmap_pages);
3241 } else
3242 printk(KERN_WARNING
3243 " %s zone: %lu pages exceeds realsize %lu\n",
3244 zone_names[j], memmap_pages, realsize);
3245
3246 /* Account for reserved pages */
3247 if (j == 0 && realsize > dma_reserve) {
3248 realsize -= dma_reserve;
3249 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3250 zone_names[0], dma_reserve);
3251 }
3252
3253 if (!is_highmem_idx(j))
3254 nr_kernel_pages += realsize;
3255 nr_all_pages += realsize;
3256
3257 zone->spanned_pages = size;
3258 zone->present_pages = realsize;
3259 #ifdef CONFIG_NUMA
3260 zone->node = nid;
3261 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3262 / 100;
3263 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3264 #endif
3265 zone->name = zone_names[j];
3266 spin_lock_init(&zone->lock);
3267 spin_lock_init(&zone->lru_lock);
3268 zone_seqlock_init(zone);
3269 zone->zone_pgdat = pgdat;
3270
3271 zone->prev_priority = DEF_PRIORITY;
3272
3273 zone_pcp_init(zone);
3274 INIT_LIST_HEAD(&zone->active_list);
3275 INIT_LIST_HEAD(&zone->inactive_list);
3276 zone->nr_scan_active = 0;
3277 zone->nr_scan_inactive = 0;
3278 zap_zone_vm_stats(zone);
3279 atomic_set(&zone->reclaim_in_progress, 0);
3280 if (!size)
3281 continue;
3282
3283 setup_usemap(pgdat, zone, size);
3284 ret = init_currently_empty_zone(zone, zone_start_pfn,
3285 size, MEMMAP_EARLY);
3286 BUG_ON(ret);
3287 zone_start_pfn += size;
3288 }
3289 }
3290
3291 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3292 {
3293 /* Skip empty nodes */
3294 if (!pgdat->node_spanned_pages)
3295 return;
3296
3297 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3298 /* ia64 gets its own node_mem_map, before this, without bootmem */
3299 if (!pgdat->node_mem_map) {
3300 unsigned long size, start, end;
3301 struct page *map;
3302
3303 /*
3304 * The zone's endpoints aren't required to be MAX_ORDER
3305 * aligned but the node_mem_map endpoints must be in order
3306 * for the buddy allocator to function correctly.
3307 */
3308 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3309 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3310 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3311 size = (end - start) * sizeof(struct page);
3312 map = alloc_remap(pgdat->node_id, size);
3313 if (!map)
3314 map = alloc_bootmem_node(pgdat, size);
3315 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3316 }
3317 #ifndef CONFIG_NEED_MULTIPLE_NODES
3318 /*
3319 * With no DISCONTIG, the global mem_map is just set as node 0's
3320 */
3321 if (pgdat == NODE_DATA(0)) {
3322 mem_map = NODE_DATA(0)->node_mem_map;
3323 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3324 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3325 mem_map -= pgdat->node_start_pfn;
3326 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3327 }
3328 #endif
3329 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3330 }
3331
3332 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
3333 unsigned long *zones_size, unsigned long node_start_pfn,
3334 unsigned long *zholes_size)
3335 {
3336 pgdat->node_id = nid;
3337 pgdat->node_start_pfn = node_start_pfn;
3338 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3339
3340 alloc_node_mem_map(pgdat);
3341
3342 free_area_init_core(pgdat, zones_size, zholes_size);
3343 }
3344
3345 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3346
3347 #if MAX_NUMNODES > 1
3348 /*
3349 * Figure out the number of possible node ids.
3350 */
3351 static void __init setup_nr_node_ids(void)
3352 {
3353 unsigned int node;
3354 unsigned int highest = 0;
3355
3356 for_each_node_mask(node, node_possible_map)
3357 highest = node;
3358 nr_node_ids = highest + 1;
3359 }
3360 #else
3361 static inline void setup_nr_node_ids(void)
3362 {
3363 }
3364 #endif
3365
3366 /**
3367 * add_active_range - Register a range of PFNs backed by physical memory
3368 * @nid: The node ID the range resides on
3369 * @start_pfn: The start PFN of the available physical memory
3370 * @end_pfn: The end PFN of the available physical memory
3371 *
3372 * These ranges are stored in an early_node_map[] and later used by
3373 * free_area_init_nodes() to calculate zone sizes and holes. If the
3374 * range spans a memory hole, it is up to the architecture to ensure
3375 * the memory is not freed by the bootmem allocator. If possible
3376 * the range being registered will be merged with existing ranges.
3377 */
3378 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3379 unsigned long end_pfn)
3380 {
3381 int i;
3382
3383 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3384 "%d entries of %d used\n",
3385 nid, start_pfn, end_pfn,
3386 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3387
3388 /* Merge with existing active regions if possible */
3389 for (i = 0; i < nr_nodemap_entries; i++) {
3390 if (early_node_map[i].nid != nid)
3391 continue;
3392
3393 /* Skip if an existing region covers this new one */
3394 if (start_pfn >= early_node_map[i].start_pfn &&
3395 end_pfn <= early_node_map[i].end_pfn)
3396 return;
3397
3398 /* Merge forward if suitable */
3399 if (start_pfn <= early_node_map[i].end_pfn &&
3400 end_pfn > early_node_map[i].end_pfn) {
3401 early_node_map[i].end_pfn = end_pfn;
3402 return;
3403 }
3404
3405 /* Merge backward if suitable */
3406 if (start_pfn < early_node_map[i].end_pfn &&
3407 end_pfn >= early_node_map[i].start_pfn) {
3408 early_node_map[i].start_pfn = start_pfn;
3409 return;
3410 }
3411 }
3412
3413 /* Check that early_node_map is large enough */
3414 if (i >= MAX_ACTIVE_REGIONS) {
3415 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3416 MAX_ACTIVE_REGIONS);
3417 return;
3418 }
3419
3420 early_node_map[i].nid = nid;
3421 early_node_map[i].start_pfn = start_pfn;
3422 early_node_map[i].end_pfn = end_pfn;
3423 nr_nodemap_entries = i + 1;
3424 }
3425
3426 /**
3427 * shrink_active_range - Shrink an existing registered range of PFNs
3428 * @nid: The node id the range is on that should be shrunk
3429 * @old_end_pfn: The old end PFN of the range
3430 * @new_end_pfn: The new PFN of the range
3431 *
3432 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3433 * The map is kept at the end physical page range that has already been
3434 * registered with add_active_range(). This function allows an arch to shrink
3435 * an existing registered range.
3436 */
3437 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3438 unsigned long new_end_pfn)
3439 {
3440 int i;
3441
3442 /* Find the old active region end and shrink */
3443 for_each_active_range_index_in_nid(i, nid)
3444 if (early_node_map[i].end_pfn == old_end_pfn) {
3445 early_node_map[i].end_pfn = new_end_pfn;
3446 break;
3447 }
3448 }
3449
3450 /**
3451 * remove_all_active_ranges - Remove all currently registered regions
3452 *
3453 * During discovery, it may be found that a table like SRAT is invalid
3454 * and an alternative discovery method must be used. This function removes
3455 * all currently registered regions.
3456 */
3457 void __init remove_all_active_ranges(void)
3458 {
3459 memset(early_node_map, 0, sizeof(early_node_map));
3460 nr_nodemap_entries = 0;
3461 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3462 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3463 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3464 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3465 }
3466
3467 /* Compare two active node_active_regions */
3468 static int __init cmp_node_active_region(const void *a, const void *b)
3469 {
3470 struct node_active_region *arange = (struct node_active_region *)a;
3471 struct node_active_region *brange = (struct node_active_region *)b;
3472
3473 /* Done this way to avoid overflows */
3474 if (arange->start_pfn > brange->start_pfn)
3475 return 1;
3476 if (arange->start_pfn < brange->start_pfn)
3477 return -1;
3478
3479 return 0;
3480 }
3481
3482 /* sort the node_map by start_pfn */
3483 static void __init sort_node_map(void)
3484 {
3485 sort(early_node_map, (size_t)nr_nodemap_entries,
3486 sizeof(struct node_active_region),
3487 cmp_node_active_region, NULL);
3488 }
3489
3490 /* Find the lowest pfn for a node */
3491 unsigned long __init find_min_pfn_for_node(unsigned long nid)
3492 {
3493 int i;
3494 unsigned long min_pfn = ULONG_MAX;
3495
3496 /* Assuming a sorted map, the first range found has the starting pfn */
3497 for_each_active_range_index_in_nid(i, nid)
3498 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3499
3500 if (min_pfn == ULONG_MAX) {
3501 printk(KERN_WARNING
3502 "Could not find start_pfn for node %lu\n", nid);
3503 return 0;
3504 }
3505
3506 return min_pfn;
3507 }
3508
3509 /**
3510 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3511 *
3512 * It returns the minimum PFN based on information provided via
3513 * add_active_range().
3514 */
3515 unsigned long __init find_min_pfn_with_active_regions(void)
3516 {
3517 return find_min_pfn_for_node(MAX_NUMNODES);
3518 }
3519
3520 /**
3521 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3522 *
3523 * It returns the maximum PFN based on information provided via
3524 * add_active_range().
3525 */
3526 unsigned long __init find_max_pfn_with_active_regions(void)
3527 {
3528 int i;
3529 unsigned long max_pfn = 0;
3530
3531 for (i = 0; i < nr_nodemap_entries; i++)
3532 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3533
3534 return max_pfn;
3535 }
3536
3537 /*
3538 * early_calculate_totalpages()
3539 * Sum pages in active regions for movable zone.
3540 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3541 */
3542 unsigned long __init early_calculate_totalpages(void)
3543 {
3544 int i;
3545 unsigned long totalpages = 0;
3546
3547 for (i = 0; i < nr_nodemap_entries; i++) {
3548 unsigned long pages = early_node_map[i].end_pfn -
3549 early_node_map[i].start_pfn;
3550 totalpages += pages;
3551 if (pages)
3552 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3553 }
3554 return totalpages;
3555 }
3556
3557 /*
3558 * Find the PFN the Movable zone begins in each node. Kernel memory
3559 * is spread evenly between nodes as long as the nodes have enough
3560 * memory. When they don't, some nodes will have more kernelcore than
3561 * others
3562 */
3563 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3564 {
3565 int i, nid;
3566 unsigned long usable_startpfn;
3567 unsigned long kernelcore_node, kernelcore_remaining;
3568 unsigned long totalpages = early_calculate_totalpages();
3569 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3570
3571 /*
3572 * If movablecore was specified, calculate what size of
3573 * kernelcore that corresponds so that memory usable for
3574 * any allocation type is evenly spread. If both kernelcore
3575 * and movablecore are specified, then the value of kernelcore
3576 * will be used for required_kernelcore if it's greater than
3577 * what movablecore would have allowed.
3578 */
3579 if (required_movablecore) {
3580 unsigned long corepages;
3581
3582 /*
3583 * Round-up so that ZONE_MOVABLE is at least as large as what
3584 * was requested by the user
3585 */
3586 required_movablecore =
3587 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3588 corepages = totalpages - required_movablecore;
3589
3590 required_kernelcore = max(required_kernelcore, corepages);
3591 }
3592
3593 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3594 if (!required_kernelcore)
3595 return;
3596
3597 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3598 find_usable_zone_for_movable();
3599 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3600
3601 restart:
3602 /* Spread kernelcore memory as evenly as possible throughout nodes */
3603 kernelcore_node = required_kernelcore / usable_nodes;
3604 for_each_node_state(nid, N_HIGH_MEMORY) {
3605 /*
3606 * Recalculate kernelcore_node if the division per node
3607 * now exceeds what is necessary to satisfy the requested
3608 * amount of memory for the kernel
3609 */
3610 if (required_kernelcore < kernelcore_node)
3611 kernelcore_node = required_kernelcore / usable_nodes;
3612
3613 /*
3614 * As the map is walked, we track how much memory is usable
3615 * by the kernel using kernelcore_remaining. When it is
3616 * 0, the rest of the node is usable by ZONE_MOVABLE
3617 */
3618 kernelcore_remaining = kernelcore_node;
3619
3620 /* Go through each range of PFNs within this node */
3621 for_each_active_range_index_in_nid(i, nid) {
3622 unsigned long start_pfn, end_pfn;
3623 unsigned long size_pages;
3624
3625 start_pfn = max(early_node_map[i].start_pfn,
3626 zone_movable_pfn[nid]);
3627 end_pfn = early_node_map[i].end_pfn;
3628 if (start_pfn >= end_pfn)
3629 continue;
3630
3631 /* Account for what is only usable for kernelcore */
3632 if (start_pfn < usable_startpfn) {
3633 unsigned long kernel_pages;
3634 kernel_pages = min(end_pfn, usable_startpfn)
3635 - start_pfn;
3636
3637 kernelcore_remaining -= min(kernel_pages,
3638 kernelcore_remaining);
3639 required_kernelcore -= min(kernel_pages,
3640 required_kernelcore);
3641
3642 /* Continue if range is now fully accounted */
3643 if (end_pfn <= usable_startpfn) {
3644
3645 /*
3646 * Push zone_movable_pfn to the end so
3647 * that if we have to rebalance
3648 * kernelcore across nodes, we will
3649 * not double account here
3650 */
3651 zone_movable_pfn[nid] = end_pfn;
3652 continue;
3653 }
3654 start_pfn = usable_startpfn;
3655 }
3656
3657 /*
3658 * The usable PFN range for ZONE_MOVABLE is from
3659 * start_pfn->end_pfn. Calculate size_pages as the
3660 * number of pages used as kernelcore
3661 */
3662 size_pages = end_pfn - start_pfn;
3663 if (size_pages > kernelcore_remaining)
3664 size_pages = kernelcore_remaining;
3665 zone_movable_pfn[nid] = start_pfn + size_pages;
3666
3667 /*
3668 * Some kernelcore has been met, update counts and
3669 * break if the kernelcore for this node has been
3670 * satisified
3671 */
3672 required_kernelcore -= min(required_kernelcore,
3673 size_pages);
3674 kernelcore_remaining -= size_pages;
3675 if (!kernelcore_remaining)
3676 break;
3677 }
3678 }
3679
3680 /*
3681 * If there is still required_kernelcore, we do another pass with one
3682 * less node in the count. This will push zone_movable_pfn[nid] further
3683 * along on the nodes that still have memory until kernelcore is
3684 * satisified
3685 */
3686 usable_nodes--;
3687 if (usable_nodes && required_kernelcore > usable_nodes)
3688 goto restart;
3689
3690 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3691 for (nid = 0; nid < MAX_NUMNODES; nid++)
3692 zone_movable_pfn[nid] =
3693 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3694 }
3695
3696 /* Any regular memory on that node ? */
3697 static void check_for_regular_memory(pg_data_t *pgdat)
3698 {
3699 #ifdef CONFIG_HIGHMEM
3700 enum zone_type zone_type;
3701
3702 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3703 struct zone *zone = &pgdat->node_zones[zone_type];
3704 if (zone->present_pages)
3705 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3706 }
3707 #endif
3708 }
3709
3710 /**
3711 * free_area_init_nodes - Initialise all pg_data_t and zone data
3712 * @max_zone_pfn: an array of max PFNs for each zone
3713 *
3714 * This will call free_area_init_node() for each active node in the system.
3715 * Using the page ranges provided by add_active_range(), the size of each
3716 * zone in each node and their holes is calculated. If the maximum PFN
3717 * between two adjacent zones match, it is assumed that the zone is empty.
3718 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3719 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3720 * starts where the previous one ended. For example, ZONE_DMA32 starts
3721 * at arch_max_dma_pfn.
3722 */
3723 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3724 {
3725 unsigned long nid;
3726 enum zone_type i;
3727
3728 /* Sort early_node_map as initialisation assumes it is sorted */
3729 sort_node_map();
3730
3731 /* Record where the zone boundaries are */
3732 memset(arch_zone_lowest_possible_pfn, 0,
3733 sizeof(arch_zone_lowest_possible_pfn));
3734 memset(arch_zone_highest_possible_pfn, 0,
3735 sizeof(arch_zone_highest_possible_pfn));
3736 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3737 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3738 for (i = 1; i < MAX_NR_ZONES; i++) {
3739 if (i == ZONE_MOVABLE)
3740 continue;
3741 arch_zone_lowest_possible_pfn[i] =
3742 arch_zone_highest_possible_pfn[i-1];
3743 arch_zone_highest_possible_pfn[i] =
3744 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3745 }
3746 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3747 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3748
3749 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3750 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3751 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3752
3753 /* Print out the zone ranges */
3754 printk("Zone PFN ranges:\n");
3755 for (i = 0; i < MAX_NR_ZONES; i++) {
3756 if (i == ZONE_MOVABLE)
3757 continue;
3758 printk(" %-8s %8lu -> %8lu\n",
3759 zone_names[i],
3760 arch_zone_lowest_possible_pfn[i],
3761 arch_zone_highest_possible_pfn[i]);
3762 }
3763
3764 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3765 printk("Movable zone start PFN for each node\n");
3766 for (i = 0; i < MAX_NUMNODES; i++) {
3767 if (zone_movable_pfn[i])
3768 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3769 }
3770
3771 /* Print out the early_node_map[] */
3772 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3773 for (i = 0; i < nr_nodemap_entries; i++)
3774 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3775 early_node_map[i].start_pfn,
3776 early_node_map[i].end_pfn);
3777
3778 /* Initialise every node */
3779 setup_nr_node_ids();
3780 for_each_online_node(nid) {
3781 pg_data_t *pgdat = NODE_DATA(nid);
3782 free_area_init_node(nid, pgdat, NULL,
3783 find_min_pfn_for_node(nid), NULL);
3784
3785 /* Any memory on that node */
3786 if (pgdat->node_present_pages)
3787 node_set_state(nid, N_HIGH_MEMORY);
3788 check_for_regular_memory(pgdat);
3789 }
3790 }
3791
3792 static int __init cmdline_parse_core(char *p, unsigned long *core)
3793 {
3794 unsigned long long coremem;
3795 if (!p)
3796 return -EINVAL;
3797
3798 coremem = memparse(p, &p);
3799 *core = coremem >> PAGE_SHIFT;
3800
3801 /* Paranoid check that UL is enough for the coremem value */
3802 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3803
3804 return 0;
3805 }
3806
3807 /*
3808 * kernelcore=size sets the amount of memory for use for allocations that
3809 * cannot be reclaimed or migrated.
3810 */
3811 static int __init cmdline_parse_kernelcore(char *p)
3812 {
3813 return cmdline_parse_core(p, &required_kernelcore);
3814 }
3815
3816 /*
3817 * movablecore=size sets the amount of memory for use for allocations that
3818 * can be reclaimed or migrated.
3819 */
3820 static int __init cmdline_parse_movablecore(char *p)
3821 {
3822 return cmdline_parse_core(p, &required_movablecore);
3823 }
3824
3825 early_param("kernelcore", cmdline_parse_kernelcore);
3826 early_param("movablecore", cmdline_parse_movablecore);
3827
3828 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3829
3830 /**
3831 * set_dma_reserve - set the specified number of pages reserved in the first zone
3832 * @new_dma_reserve: The number of pages to mark reserved
3833 *
3834 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3835 * In the DMA zone, a significant percentage may be consumed by kernel image
3836 * and other unfreeable allocations which can skew the watermarks badly. This
3837 * function may optionally be used to account for unfreeable pages in the
3838 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3839 * smaller per-cpu batchsize.
3840 */
3841 void __init set_dma_reserve(unsigned long new_dma_reserve)
3842 {
3843 dma_reserve = new_dma_reserve;
3844 }
3845
3846 #ifndef CONFIG_NEED_MULTIPLE_NODES
3847 static bootmem_data_t contig_bootmem_data;
3848 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3849
3850 EXPORT_SYMBOL(contig_page_data);
3851 #endif
3852
3853 void __init free_area_init(unsigned long *zones_size)
3854 {
3855 free_area_init_node(0, NODE_DATA(0), zones_size,
3856 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3857 }
3858
3859 static int page_alloc_cpu_notify(struct notifier_block *self,
3860 unsigned long action, void *hcpu)
3861 {
3862 int cpu = (unsigned long)hcpu;
3863
3864 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3865 local_irq_disable();
3866 __drain_pages(cpu);
3867 vm_events_fold_cpu(cpu);
3868 local_irq_enable();
3869 refresh_cpu_vm_stats(cpu);
3870 }
3871 return NOTIFY_OK;
3872 }
3873
3874 void __init page_alloc_init(void)
3875 {
3876 hotcpu_notifier(page_alloc_cpu_notify, 0);
3877 }
3878
3879 /*
3880 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3881 * or min_free_kbytes changes.
3882 */
3883 static void calculate_totalreserve_pages(void)
3884 {
3885 struct pglist_data *pgdat;
3886 unsigned long reserve_pages = 0;
3887 enum zone_type i, j;
3888
3889 for_each_online_pgdat(pgdat) {
3890 for (i = 0; i < MAX_NR_ZONES; i++) {
3891 struct zone *zone = pgdat->node_zones + i;
3892 unsigned long max = 0;
3893
3894 /* Find valid and maximum lowmem_reserve in the zone */
3895 for (j = i; j < MAX_NR_ZONES; j++) {
3896 if (zone->lowmem_reserve[j] > max)
3897 max = zone->lowmem_reserve[j];
3898 }
3899
3900 /* we treat pages_high as reserved pages. */
3901 max += zone->pages_high;
3902
3903 if (max > zone->present_pages)
3904 max = zone->present_pages;
3905 reserve_pages += max;
3906 }
3907 }
3908 totalreserve_pages = reserve_pages;
3909 }
3910
3911 /*
3912 * setup_per_zone_lowmem_reserve - called whenever
3913 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
3914 * has a correct pages reserved value, so an adequate number of
3915 * pages are left in the zone after a successful __alloc_pages().
3916 */
3917 static void setup_per_zone_lowmem_reserve(void)
3918 {
3919 struct pglist_data *pgdat;
3920 enum zone_type j, idx;
3921
3922 for_each_online_pgdat(pgdat) {
3923 for (j = 0; j < MAX_NR_ZONES; j++) {
3924 struct zone *zone = pgdat->node_zones + j;
3925 unsigned long present_pages = zone->present_pages;
3926
3927 zone->lowmem_reserve[j] = 0;
3928
3929 idx = j;
3930 while (idx) {
3931 struct zone *lower_zone;
3932
3933 idx--;
3934
3935 if (sysctl_lowmem_reserve_ratio[idx] < 1)
3936 sysctl_lowmem_reserve_ratio[idx] = 1;
3937
3938 lower_zone = pgdat->node_zones + idx;
3939 lower_zone->lowmem_reserve[j] = present_pages /
3940 sysctl_lowmem_reserve_ratio[idx];
3941 present_pages += lower_zone->present_pages;
3942 }
3943 }
3944 }
3945
3946 /* update totalreserve_pages */
3947 calculate_totalreserve_pages();
3948 }
3949
3950 /**
3951 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3952 *
3953 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3954 * with respect to min_free_kbytes.
3955 */
3956 void setup_per_zone_pages_min(void)
3957 {
3958 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3959 unsigned long lowmem_pages = 0;
3960 struct zone *zone;
3961 unsigned long flags;
3962
3963 /* Calculate total number of !ZONE_HIGHMEM pages */
3964 for_each_zone(zone) {
3965 if (!is_highmem(zone))
3966 lowmem_pages += zone->present_pages;
3967 }
3968
3969 for_each_zone(zone) {
3970 u64 tmp;
3971
3972 spin_lock_irqsave(&zone->lru_lock, flags);
3973 tmp = (u64)pages_min * zone->present_pages;
3974 do_div(tmp, lowmem_pages);
3975 if (is_highmem(zone)) {
3976 /*
3977 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3978 * need highmem pages, so cap pages_min to a small
3979 * value here.
3980 *
3981 * The (pages_high-pages_low) and (pages_low-pages_min)
3982 * deltas controls asynch page reclaim, and so should
3983 * not be capped for highmem.
3984 */
3985 int min_pages;
3986
3987 min_pages = zone->present_pages / 1024;
3988 if (min_pages < SWAP_CLUSTER_MAX)
3989 min_pages = SWAP_CLUSTER_MAX;
3990 if (min_pages > 128)
3991 min_pages = 128;
3992 zone->pages_min = min_pages;
3993 } else {
3994 /*
3995 * If it's a lowmem zone, reserve a number of pages
3996 * proportionate to the zone's size.
3997 */
3998 zone->pages_min = tmp;
3999 }
4000
4001 zone->pages_low = zone->pages_min + (tmp >> 2);
4002 zone->pages_high = zone->pages_min + (tmp >> 1);
4003 spin_unlock_irqrestore(&zone->lru_lock, flags);
4004 }
4005
4006 /* update totalreserve_pages */
4007 calculate_totalreserve_pages();
4008 }
4009
4010 /*
4011 * Initialise min_free_kbytes.
4012 *
4013 * For small machines we want it small (128k min). For large machines
4014 * we want it large (64MB max). But it is not linear, because network
4015 * bandwidth does not increase linearly with machine size. We use
4016 *
4017 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4018 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4019 *
4020 * which yields
4021 *
4022 * 16MB: 512k
4023 * 32MB: 724k
4024 * 64MB: 1024k
4025 * 128MB: 1448k
4026 * 256MB: 2048k
4027 * 512MB: 2896k
4028 * 1024MB: 4096k
4029 * 2048MB: 5792k
4030 * 4096MB: 8192k
4031 * 8192MB: 11584k
4032 * 16384MB: 16384k
4033 */
4034 static int __init init_per_zone_pages_min(void)
4035 {
4036 unsigned long lowmem_kbytes;
4037
4038 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4039
4040 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4041 if (min_free_kbytes < 128)
4042 min_free_kbytes = 128;
4043 if (min_free_kbytes > 65536)
4044 min_free_kbytes = 65536;
4045 setup_per_zone_pages_min();
4046 setup_per_zone_lowmem_reserve();
4047 return 0;
4048 }
4049 module_init(init_per_zone_pages_min)
4050
4051 /*
4052 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4053 * that we can call two helper functions whenever min_free_kbytes
4054 * changes.
4055 */
4056 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4057 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4058 {
4059 proc_dointvec(table, write, file, buffer, length, ppos);
4060 if (write)
4061 setup_per_zone_pages_min();
4062 return 0;
4063 }
4064
4065 #ifdef CONFIG_NUMA
4066 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4067 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4068 {
4069 struct zone *zone;
4070 int rc;
4071
4072 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4073 if (rc)
4074 return rc;
4075
4076 for_each_zone(zone)
4077 zone->min_unmapped_pages = (zone->present_pages *
4078 sysctl_min_unmapped_ratio) / 100;
4079 return 0;
4080 }
4081
4082 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4083 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4084 {
4085 struct zone *zone;
4086 int rc;
4087
4088 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4089 if (rc)
4090 return rc;
4091
4092 for_each_zone(zone)
4093 zone->min_slab_pages = (zone->present_pages *
4094 sysctl_min_slab_ratio) / 100;
4095 return 0;
4096 }
4097 #endif
4098
4099 /*
4100 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4101 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4102 * whenever sysctl_lowmem_reserve_ratio changes.
4103 *
4104 * The reserve ratio obviously has absolutely no relation with the
4105 * pages_min watermarks. The lowmem reserve ratio can only make sense
4106 * if in function of the boot time zone sizes.
4107 */
4108 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4109 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4110 {
4111 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4112 setup_per_zone_lowmem_reserve();
4113 return 0;
4114 }
4115
4116 /*
4117 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4118 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4119 * can have before it gets flushed back to buddy allocator.
4120 */
4121
4122 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4123 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4124 {
4125 struct zone *zone;
4126 unsigned int cpu;
4127 int ret;
4128
4129 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4130 if (!write || (ret == -EINVAL))
4131 return ret;
4132 for_each_zone(zone) {
4133 for_each_online_cpu(cpu) {
4134 unsigned long high;
4135 high = zone->present_pages / percpu_pagelist_fraction;
4136 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4137 }
4138 }
4139 return 0;
4140 }
4141
4142 int hashdist = HASHDIST_DEFAULT;
4143
4144 #ifdef CONFIG_NUMA
4145 static int __init set_hashdist(char *str)
4146 {
4147 if (!str)
4148 return 0;
4149 hashdist = simple_strtoul(str, &str, 0);
4150 return 1;
4151 }
4152 __setup("hashdist=", set_hashdist);
4153 #endif
4154
4155 /*
4156 * allocate a large system hash table from bootmem
4157 * - it is assumed that the hash table must contain an exact power-of-2
4158 * quantity of entries
4159 * - limit is the number of hash buckets, not the total allocation size
4160 */
4161 void *__init alloc_large_system_hash(const char *tablename,
4162 unsigned long bucketsize,
4163 unsigned long numentries,
4164 int scale,
4165 int flags,
4166 unsigned int *_hash_shift,
4167 unsigned int *_hash_mask,
4168 unsigned long limit)
4169 {
4170 unsigned long long max = limit;
4171 unsigned long log2qty, size;
4172 void *table = NULL;
4173
4174 /* allow the kernel cmdline to have a say */
4175 if (!numentries) {
4176 /* round applicable memory size up to nearest megabyte */
4177 numentries = nr_kernel_pages;
4178 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4179 numentries >>= 20 - PAGE_SHIFT;
4180 numentries <<= 20 - PAGE_SHIFT;
4181
4182 /* limit to 1 bucket per 2^scale bytes of low memory */
4183 if (scale > PAGE_SHIFT)
4184 numentries >>= (scale - PAGE_SHIFT);
4185 else
4186 numentries <<= (PAGE_SHIFT - scale);
4187
4188 /* Make sure we've got at least a 0-order allocation.. */
4189 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4190 numentries = PAGE_SIZE / bucketsize;
4191 }
4192 numentries = roundup_pow_of_two(numentries);
4193
4194 /* limit allocation size to 1/16 total memory by default */
4195 if (max == 0) {
4196 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4197 do_div(max, bucketsize);
4198 }
4199
4200 if (numentries > max)
4201 numentries = max;
4202
4203 log2qty = ilog2(numentries);
4204
4205 do {
4206 size = bucketsize << log2qty;
4207 if (flags & HASH_EARLY)
4208 table = alloc_bootmem(size);
4209 else if (hashdist)
4210 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4211 else {
4212 unsigned long order;
4213 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
4214 ;
4215 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4216 /*
4217 * If bucketsize is not a power-of-two, we may free
4218 * some pages at the end of hash table.
4219 */
4220 if (table) {
4221 unsigned long alloc_end = (unsigned long)table +
4222 (PAGE_SIZE << order);
4223 unsigned long used = (unsigned long)table +
4224 PAGE_ALIGN(size);
4225 split_page(virt_to_page(table), order);
4226 while (used < alloc_end) {
4227 free_page(used);
4228 used += PAGE_SIZE;
4229 }
4230 }
4231 }
4232 } while (!table && size > PAGE_SIZE && --log2qty);
4233
4234 if (!table)
4235 panic("Failed to allocate %s hash table\n", tablename);
4236
4237 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4238 tablename,
4239 (1U << log2qty),
4240 ilog2(size) - PAGE_SHIFT,
4241 size);
4242
4243 if (_hash_shift)
4244 *_hash_shift = log2qty;
4245 if (_hash_mask)
4246 *_hash_mask = (1 << log2qty) - 1;
4247
4248 return table;
4249 }
4250
4251 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4252 struct page *pfn_to_page(unsigned long pfn)
4253 {
4254 return __pfn_to_page(pfn);
4255 }
4256 unsigned long page_to_pfn(struct page *page)
4257 {
4258 return __page_to_pfn(page);
4259 }
4260 EXPORT_SYMBOL(pfn_to_page);
4261 EXPORT_SYMBOL(page_to_pfn);
4262 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4263
4264 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4265 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4266 unsigned long pfn)
4267 {
4268 #ifdef CONFIG_SPARSEMEM
4269 return __pfn_to_section(pfn)->pageblock_flags;
4270 #else
4271 return zone->pageblock_flags;
4272 #endif /* CONFIG_SPARSEMEM */
4273 }
4274
4275 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4276 {
4277 #ifdef CONFIG_SPARSEMEM
4278 pfn &= (PAGES_PER_SECTION-1);
4279 return (pfn >> (MAX_ORDER-1)) * NR_PAGEBLOCK_BITS;
4280 #else
4281 pfn = pfn - zone->zone_start_pfn;
4282 return (pfn >> (MAX_ORDER-1)) * NR_PAGEBLOCK_BITS;
4283 #endif /* CONFIG_SPARSEMEM */
4284 }
4285
4286 /**
4287 * get_pageblock_flags_group - Return the requested group of flags for the MAX_ORDER_NR_PAGES block of pages
4288 * @page: The page within the block of interest
4289 * @start_bitidx: The first bit of interest to retrieve
4290 * @end_bitidx: The last bit of interest
4291 * returns pageblock_bits flags
4292 */
4293 unsigned long get_pageblock_flags_group(struct page *page,
4294 int start_bitidx, int end_bitidx)
4295 {
4296 struct zone *zone;
4297 unsigned long *bitmap;
4298 unsigned long pfn, bitidx;
4299 unsigned long flags = 0;
4300 unsigned long value = 1;
4301
4302 zone = page_zone(page);
4303 pfn = page_to_pfn(page);
4304 bitmap = get_pageblock_bitmap(zone, pfn);
4305 bitidx = pfn_to_bitidx(zone, pfn);
4306
4307 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4308 if (test_bit(bitidx + start_bitidx, bitmap))
4309 flags |= value;
4310
4311 return flags;
4312 }
4313
4314 /**
4315 * set_pageblock_flags_group - Set the requested group of flags for a MAX_ORDER_NR_PAGES block of pages
4316 * @page: The page within the block of interest
4317 * @start_bitidx: The first bit of interest
4318 * @end_bitidx: The last bit of interest
4319 * @flags: The flags to set
4320 */
4321 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4322 int start_bitidx, int end_bitidx)
4323 {
4324 struct zone *zone;
4325 unsigned long *bitmap;
4326 unsigned long pfn, bitidx;
4327 unsigned long value = 1;
4328
4329 zone = page_zone(page);
4330 pfn = page_to_pfn(page);
4331 bitmap = get_pageblock_bitmap(zone, pfn);
4332 bitidx = pfn_to_bitidx(zone, pfn);
4333
4334 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4335 if (flags & value)
4336 __set_bit(bitidx + start_bitidx, bitmap);
4337 else
4338 __clear_bit(bitidx + start_bitidx, bitmap);
4339 }