]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/page_alloc.c
[PATCH] Light weight event counters
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
40 #include <linux/stop_machine.h>
41
42 #include <asm/tlbflush.h>
43 #include <asm/div64.h>
44 #include "internal.h"
45
46 /*
47 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
48 * initializer cleaner
49 */
50 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
51 EXPORT_SYMBOL(node_online_map);
52 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
53 EXPORT_SYMBOL(node_possible_map);
54 unsigned long totalram_pages __read_mostly;
55 unsigned long totalhigh_pages __read_mostly;
56 unsigned long totalreserve_pages __read_mostly;
57 long nr_swap_pages;
58 int percpu_pagelist_fraction;
59
60 static void __free_pages_ok(struct page *page, unsigned int order);
61
62 /*
63 * results with 256, 32 in the lowmem_reserve sysctl:
64 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
65 * 1G machine -> (16M dma, 784M normal, 224M high)
66 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
67 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
68 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
69 *
70 * TBD: should special case ZONE_DMA32 machines here - in those we normally
71 * don't need any ZONE_NORMAL reservation
72 */
73 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
74
75 EXPORT_SYMBOL(totalram_pages);
76
77 /*
78 * Used by page_zone() to look up the address of the struct zone whose
79 * id is encoded in the upper bits of page->flags
80 */
81 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
82 EXPORT_SYMBOL(zone_table);
83
84 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
85 int min_free_kbytes = 1024;
86
87 unsigned long __meminitdata nr_kernel_pages;
88 unsigned long __meminitdata nr_all_pages;
89
90 #ifdef CONFIG_DEBUG_VM
91 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
92 {
93 int ret = 0;
94 unsigned seq;
95 unsigned long pfn = page_to_pfn(page);
96
97 do {
98 seq = zone_span_seqbegin(zone);
99 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
100 ret = 1;
101 else if (pfn < zone->zone_start_pfn)
102 ret = 1;
103 } while (zone_span_seqretry(zone, seq));
104
105 return ret;
106 }
107
108 static int page_is_consistent(struct zone *zone, struct page *page)
109 {
110 #ifdef CONFIG_HOLES_IN_ZONE
111 if (!pfn_valid(page_to_pfn(page)))
112 return 0;
113 #endif
114 if (zone != page_zone(page))
115 return 0;
116
117 return 1;
118 }
119 /*
120 * Temporary debugging check for pages not lying within a given zone.
121 */
122 static int bad_range(struct zone *zone, struct page *page)
123 {
124 if (page_outside_zone_boundaries(zone, page))
125 return 1;
126 if (!page_is_consistent(zone, page))
127 return 1;
128
129 return 0;
130 }
131
132 #else
133 static inline int bad_range(struct zone *zone, struct page *page)
134 {
135 return 0;
136 }
137 #endif
138
139 static void bad_page(struct page *page)
140 {
141 printk(KERN_EMERG "Bad page state in process '%s'\n"
142 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
143 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
144 KERN_EMERG "Backtrace:\n",
145 current->comm, page, (int)(2*sizeof(unsigned long)),
146 (unsigned long)page->flags, page->mapping,
147 page_mapcount(page), page_count(page));
148 dump_stack();
149 page->flags &= ~(1 << PG_lru |
150 1 << PG_private |
151 1 << PG_locked |
152 1 << PG_active |
153 1 << PG_dirty |
154 1 << PG_reclaim |
155 1 << PG_slab |
156 1 << PG_swapcache |
157 1 << PG_writeback |
158 1 << PG_buddy );
159 set_page_count(page, 0);
160 reset_page_mapcount(page);
161 page->mapping = NULL;
162 add_taint(TAINT_BAD_PAGE);
163 }
164
165 /*
166 * Higher-order pages are called "compound pages". They are structured thusly:
167 *
168 * The first PAGE_SIZE page is called the "head page".
169 *
170 * The remaining PAGE_SIZE pages are called "tail pages".
171 *
172 * All pages have PG_compound set. All pages have their ->private pointing at
173 * the head page (even the head page has this).
174 *
175 * The first tail page's ->lru.next holds the address of the compound page's
176 * put_page() function. Its ->lru.prev holds the order of allocation.
177 * This usage means that zero-order pages may not be compound.
178 */
179
180 static void free_compound_page(struct page *page)
181 {
182 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
183 }
184
185 static void prep_compound_page(struct page *page, unsigned long order)
186 {
187 int i;
188 int nr_pages = 1 << order;
189
190 page[1].lru.next = (void *)free_compound_page; /* set dtor */
191 page[1].lru.prev = (void *)order;
192 for (i = 0; i < nr_pages; i++) {
193 struct page *p = page + i;
194
195 __SetPageCompound(p);
196 set_page_private(p, (unsigned long)page);
197 }
198 }
199
200 static void destroy_compound_page(struct page *page, unsigned long order)
201 {
202 int i;
203 int nr_pages = 1 << order;
204
205 if (unlikely((unsigned long)page[1].lru.prev != order))
206 bad_page(page);
207
208 for (i = 0; i < nr_pages; i++) {
209 struct page *p = page + i;
210
211 if (unlikely(!PageCompound(p) |
212 (page_private(p) != (unsigned long)page)))
213 bad_page(page);
214 __ClearPageCompound(p);
215 }
216 }
217
218 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
219 {
220 int i;
221
222 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
223 /*
224 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
225 * and __GFP_HIGHMEM from hard or soft interrupt context.
226 */
227 BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
228 for (i = 0; i < (1 << order); i++)
229 clear_highpage(page + i);
230 }
231
232 /*
233 * function for dealing with page's order in buddy system.
234 * zone->lock is already acquired when we use these.
235 * So, we don't need atomic page->flags operations here.
236 */
237 static inline unsigned long page_order(struct page *page)
238 {
239 return page_private(page);
240 }
241
242 static inline void set_page_order(struct page *page, int order)
243 {
244 set_page_private(page, order);
245 __SetPageBuddy(page);
246 }
247
248 static inline void rmv_page_order(struct page *page)
249 {
250 __ClearPageBuddy(page);
251 set_page_private(page, 0);
252 }
253
254 /*
255 * Locate the struct page for both the matching buddy in our
256 * pair (buddy1) and the combined O(n+1) page they form (page).
257 *
258 * 1) Any buddy B1 will have an order O twin B2 which satisfies
259 * the following equation:
260 * B2 = B1 ^ (1 << O)
261 * For example, if the starting buddy (buddy2) is #8 its order
262 * 1 buddy is #10:
263 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
264 *
265 * 2) Any buddy B will have an order O+1 parent P which
266 * satisfies the following equation:
267 * P = B & ~(1 << O)
268 *
269 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
270 */
271 static inline struct page *
272 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
273 {
274 unsigned long buddy_idx = page_idx ^ (1 << order);
275
276 return page + (buddy_idx - page_idx);
277 }
278
279 static inline unsigned long
280 __find_combined_index(unsigned long page_idx, unsigned int order)
281 {
282 return (page_idx & ~(1 << order));
283 }
284
285 /*
286 * This function checks whether a page is free && is the buddy
287 * we can do coalesce a page and its buddy if
288 * (a) the buddy is not in a hole &&
289 * (b) the buddy is in the buddy system &&
290 * (c) a page and its buddy have the same order &&
291 * (d) a page and its buddy are in the same zone.
292 *
293 * For recording whether a page is in the buddy system, we use PG_buddy.
294 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
295 *
296 * For recording page's order, we use page_private(page).
297 */
298 static inline int page_is_buddy(struct page *page, struct page *buddy,
299 int order)
300 {
301 #ifdef CONFIG_HOLES_IN_ZONE
302 if (!pfn_valid(page_to_pfn(buddy)))
303 return 0;
304 #endif
305
306 if (page_zone_id(page) != page_zone_id(buddy))
307 return 0;
308
309 if (PageBuddy(buddy) && page_order(buddy) == order) {
310 BUG_ON(page_count(buddy) != 0);
311 return 1;
312 }
313 return 0;
314 }
315
316 /*
317 * Freeing function for a buddy system allocator.
318 *
319 * The concept of a buddy system is to maintain direct-mapped table
320 * (containing bit values) for memory blocks of various "orders".
321 * The bottom level table contains the map for the smallest allocatable
322 * units of memory (here, pages), and each level above it describes
323 * pairs of units from the levels below, hence, "buddies".
324 * At a high level, all that happens here is marking the table entry
325 * at the bottom level available, and propagating the changes upward
326 * as necessary, plus some accounting needed to play nicely with other
327 * parts of the VM system.
328 * At each level, we keep a list of pages, which are heads of continuous
329 * free pages of length of (1 << order) and marked with PG_buddy. Page's
330 * order is recorded in page_private(page) field.
331 * So when we are allocating or freeing one, we can derive the state of the
332 * other. That is, if we allocate a small block, and both were
333 * free, the remainder of the region must be split into blocks.
334 * If a block is freed, and its buddy is also free, then this
335 * triggers coalescing into a block of larger size.
336 *
337 * -- wli
338 */
339
340 static inline void __free_one_page(struct page *page,
341 struct zone *zone, unsigned int order)
342 {
343 unsigned long page_idx;
344 int order_size = 1 << order;
345
346 if (unlikely(PageCompound(page)))
347 destroy_compound_page(page, order);
348
349 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
350
351 BUG_ON(page_idx & (order_size - 1));
352 BUG_ON(bad_range(zone, page));
353
354 zone->free_pages += order_size;
355 while (order < MAX_ORDER-1) {
356 unsigned long combined_idx;
357 struct free_area *area;
358 struct page *buddy;
359
360 buddy = __page_find_buddy(page, page_idx, order);
361 if (!page_is_buddy(page, buddy, order))
362 break; /* Move the buddy up one level. */
363
364 list_del(&buddy->lru);
365 area = zone->free_area + order;
366 area->nr_free--;
367 rmv_page_order(buddy);
368 combined_idx = __find_combined_index(page_idx, order);
369 page = page + (combined_idx - page_idx);
370 page_idx = combined_idx;
371 order++;
372 }
373 set_page_order(page, order);
374 list_add(&page->lru, &zone->free_area[order].free_list);
375 zone->free_area[order].nr_free++;
376 }
377
378 static inline int free_pages_check(struct page *page)
379 {
380 if (unlikely(page_mapcount(page) |
381 (page->mapping != NULL) |
382 (page_count(page) != 0) |
383 (page->flags & (
384 1 << PG_lru |
385 1 << PG_private |
386 1 << PG_locked |
387 1 << PG_active |
388 1 << PG_reclaim |
389 1 << PG_slab |
390 1 << PG_swapcache |
391 1 << PG_writeback |
392 1 << PG_reserved |
393 1 << PG_buddy ))))
394 bad_page(page);
395 if (PageDirty(page))
396 __ClearPageDirty(page);
397 /*
398 * For now, we report if PG_reserved was found set, but do not
399 * clear it, and do not free the page. But we shall soon need
400 * to do more, for when the ZERO_PAGE count wraps negative.
401 */
402 return PageReserved(page);
403 }
404
405 /*
406 * Frees a list of pages.
407 * Assumes all pages on list are in same zone, and of same order.
408 * count is the number of pages to free.
409 *
410 * If the zone was previously in an "all pages pinned" state then look to
411 * see if this freeing clears that state.
412 *
413 * And clear the zone's pages_scanned counter, to hold off the "all pages are
414 * pinned" detection logic.
415 */
416 static void free_pages_bulk(struct zone *zone, int count,
417 struct list_head *list, int order)
418 {
419 spin_lock(&zone->lock);
420 zone->all_unreclaimable = 0;
421 zone->pages_scanned = 0;
422 while (count--) {
423 struct page *page;
424
425 BUG_ON(list_empty(list));
426 page = list_entry(list->prev, struct page, lru);
427 /* have to delete it as __free_one_page list manipulates */
428 list_del(&page->lru);
429 __free_one_page(page, zone, order);
430 }
431 spin_unlock(&zone->lock);
432 }
433
434 static void free_one_page(struct zone *zone, struct page *page, int order)
435 {
436 LIST_HEAD(list);
437 list_add(&page->lru, &list);
438 free_pages_bulk(zone, 1, &list, order);
439 }
440
441 static void __free_pages_ok(struct page *page, unsigned int order)
442 {
443 unsigned long flags;
444 int i;
445 int reserved = 0;
446
447 arch_free_page(page, order);
448 if (!PageHighMem(page))
449 debug_check_no_locks_freed(page_address(page),
450 PAGE_SIZE<<order);
451
452 for (i = 0 ; i < (1 << order) ; ++i)
453 reserved += free_pages_check(page + i);
454 if (reserved)
455 return;
456
457 kernel_map_pages(page, 1 << order, 0);
458 local_irq_save(flags);
459 __count_vm_events(PGFREE, 1 << order);
460 free_one_page(page_zone(page), page, order);
461 local_irq_restore(flags);
462 }
463
464 /*
465 * permit the bootmem allocator to evade page validation on high-order frees
466 */
467 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
468 {
469 if (order == 0) {
470 __ClearPageReserved(page);
471 set_page_count(page, 0);
472 set_page_refcounted(page);
473 __free_page(page);
474 } else {
475 int loop;
476
477 prefetchw(page);
478 for (loop = 0; loop < BITS_PER_LONG; loop++) {
479 struct page *p = &page[loop];
480
481 if (loop + 1 < BITS_PER_LONG)
482 prefetchw(p + 1);
483 __ClearPageReserved(p);
484 set_page_count(p, 0);
485 }
486
487 set_page_refcounted(page);
488 __free_pages(page, order);
489 }
490 }
491
492
493 /*
494 * The order of subdivision here is critical for the IO subsystem.
495 * Please do not alter this order without good reasons and regression
496 * testing. Specifically, as large blocks of memory are subdivided,
497 * the order in which smaller blocks are delivered depends on the order
498 * they're subdivided in this function. This is the primary factor
499 * influencing the order in which pages are delivered to the IO
500 * subsystem according to empirical testing, and this is also justified
501 * by considering the behavior of a buddy system containing a single
502 * large block of memory acted on by a series of small allocations.
503 * This behavior is a critical factor in sglist merging's success.
504 *
505 * -- wli
506 */
507 static inline void expand(struct zone *zone, struct page *page,
508 int low, int high, struct free_area *area)
509 {
510 unsigned long size = 1 << high;
511
512 while (high > low) {
513 area--;
514 high--;
515 size >>= 1;
516 BUG_ON(bad_range(zone, &page[size]));
517 list_add(&page[size].lru, &area->free_list);
518 area->nr_free++;
519 set_page_order(&page[size], high);
520 }
521 }
522
523 /*
524 * This page is about to be returned from the page allocator
525 */
526 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
527 {
528 if (unlikely(page_mapcount(page) |
529 (page->mapping != NULL) |
530 (page_count(page) != 0) |
531 (page->flags & (
532 1 << PG_lru |
533 1 << PG_private |
534 1 << PG_locked |
535 1 << PG_active |
536 1 << PG_dirty |
537 1 << PG_reclaim |
538 1 << PG_slab |
539 1 << PG_swapcache |
540 1 << PG_writeback |
541 1 << PG_reserved |
542 1 << PG_buddy ))))
543 bad_page(page);
544
545 /*
546 * For now, we report if PG_reserved was found set, but do not
547 * clear it, and do not allocate the page: as a safety net.
548 */
549 if (PageReserved(page))
550 return 1;
551
552 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
553 1 << PG_referenced | 1 << PG_arch_1 |
554 1 << PG_checked | 1 << PG_mappedtodisk);
555 set_page_private(page, 0);
556 set_page_refcounted(page);
557 kernel_map_pages(page, 1 << order, 1);
558
559 if (gfp_flags & __GFP_ZERO)
560 prep_zero_page(page, order, gfp_flags);
561
562 if (order && (gfp_flags & __GFP_COMP))
563 prep_compound_page(page, order);
564
565 return 0;
566 }
567
568 /*
569 * Do the hard work of removing an element from the buddy allocator.
570 * Call me with the zone->lock already held.
571 */
572 static struct page *__rmqueue(struct zone *zone, unsigned int order)
573 {
574 struct free_area * area;
575 unsigned int current_order;
576 struct page *page;
577
578 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
579 area = zone->free_area + current_order;
580 if (list_empty(&area->free_list))
581 continue;
582
583 page = list_entry(area->free_list.next, struct page, lru);
584 list_del(&page->lru);
585 rmv_page_order(page);
586 area->nr_free--;
587 zone->free_pages -= 1UL << order;
588 expand(zone, page, order, current_order, area);
589 return page;
590 }
591
592 return NULL;
593 }
594
595 /*
596 * Obtain a specified number of elements from the buddy allocator, all under
597 * a single hold of the lock, for efficiency. Add them to the supplied list.
598 * Returns the number of new pages which were placed at *list.
599 */
600 static int rmqueue_bulk(struct zone *zone, unsigned int order,
601 unsigned long count, struct list_head *list)
602 {
603 int i;
604
605 spin_lock(&zone->lock);
606 for (i = 0; i < count; ++i) {
607 struct page *page = __rmqueue(zone, order);
608 if (unlikely(page == NULL))
609 break;
610 list_add_tail(&page->lru, list);
611 }
612 spin_unlock(&zone->lock);
613 return i;
614 }
615
616 #ifdef CONFIG_NUMA
617 /*
618 * Called from the slab reaper to drain pagesets on a particular node that
619 * belong to the currently executing processor.
620 * Note that this function must be called with the thread pinned to
621 * a single processor.
622 */
623 void drain_node_pages(int nodeid)
624 {
625 int i, z;
626 unsigned long flags;
627
628 for (z = 0; z < MAX_NR_ZONES; z++) {
629 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
630 struct per_cpu_pageset *pset;
631
632 pset = zone_pcp(zone, smp_processor_id());
633 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
634 struct per_cpu_pages *pcp;
635
636 pcp = &pset->pcp[i];
637 if (pcp->count) {
638 local_irq_save(flags);
639 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
640 pcp->count = 0;
641 local_irq_restore(flags);
642 }
643 }
644 }
645 }
646 #endif
647
648 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
649 static void __drain_pages(unsigned int cpu)
650 {
651 unsigned long flags;
652 struct zone *zone;
653 int i;
654
655 for_each_zone(zone) {
656 struct per_cpu_pageset *pset;
657
658 pset = zone_pcp(zone, cpu);
659 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
660 struct per_cpu_pages *pcp;
661
662 pcp = &pset->pcp[i];
663 local_irq_save(flags);
664 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
665 pcp->count = 0;
666 local_irq_restore(flags);
667 }
668 }
669 }
670 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
671
672 #ifdef CONFIG_PM
673
674 void mark_free_pages(struct zone *zone)
675 {
676 unsigned long zone_pfn, flags;
677 int order;
678 struct list_head *curr;
679
680 if (!zone->spanned_pages)
681 return;
682
683 spin_lock_irqsave(&zone->lock, flags);
684 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
685 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
686
687 for (order = MAX_ORDER - 1; order >= 0; --order)
688 list_for_each(curr, &zone->free_area[order].free_list) {
689 unsigned long start_pfn, i;
690
691 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
692
693 for (i=0; i < (1<<order); i++)
694 SetPageNosaveFree(pfn_to_page(start_pfn+i));
695 }
696 spin_unlock_irqrestore(&zone->lock, flags);
697 }
698
699 /*
700 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
701 */
702 void drain_local_pages(void)
703 {
704 unsigned long flags;
705
706 local_irq_save(flags);
707 __drain_pages(smp_processor_id());
708 local_irq_restore(flags);
709 }
710 #endif /* CONFIG_PM */
711
712 /*
713 * Free a 0-order page
714 */
715 static void fastcall free_hot_cold_page(struct page *page, int cold)
716 {
717 struct zone *zone = page_zone(page);
718 struct per_cpu_pages *pcp;
719 unsigned long flags;
720
721 arch_free_page(page, 0);
722
723 if (PageAnon(page))
724 page->mapping = NULL;
725 if (free_pages_check(page))
726 return;
727
728 kernel_map_pages(page, 1, 0);
729
730 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
731 local_irq_save(flags);
732 __count_vm_event(PGFREE);
733 list_add(&page->lru, &pcp->list);
734 pcp->count++;
735 if (pcp->count >= pcp->high) {
736 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
737 pcp->count -= pcp->batch;
738 }
739 local_irq_restore(flags);
740 put_cpu();
741 }
742
743 void fastcall free_hot_page(struct page *page)
744 {
745 free_hot_cold_page(page, 0);
746 }
747
748 void fastcall free_cold_page(struct page *page)
749 {
750 free_hot_cold_page(page, 1);
751 }
752
753 /*
754 * split_page takes a non-compound higher-order page, and splits it into
755 * n (1<<order) sub-pages: page[0..n]
756 * Each sub-page must be freed individually.
757 *
758 * Note: this is probably too low level an operation for use in drivers.
759 * Please consult with lkml before using this in your driver.
760 */
761 void split_page(struct page *page, unsigned int order)
762 {
763 int i;
764
765 BUG_ON(PageCompound(page));
766 BUG_ON(!page_count(page));
767 for (i = 1; i < (1 << order); i++)
768 set_page_refcounted(page + i);
769 }
770
771 /*
772 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
773 * we cheat by calling it from here, in the order > 0 path. Saves a branch
774 * or two.
775 */
776 static struct page *buffered_rmqueue(struct zonelist *zonelist,
777 struct zone *zone, int order, gfp_t gfp_flags)
778 {
779 unsigned long flags;
780 struct page *page;
781 int cold = !!(gfp_flags & __GFP_COLD);
782 int cpu;
783
784 again:
785 cpu = get_cpu();
786 if (likely(order == 0)) {
787 struct per_cpu_pages *pcp;
788
789 pcp = &zone_pcp(zone, cpu)->pcp[cold];
790 local_irq_save(flags);
791 if (!pcp->count) {
792 pcp->count += rmqueue_bulk(zone, 0,
793 pcp->batch, &pcp->list);
794 if (unlikely(!pcp->count))
795 goto failed;
796 }
797 page = list_entry(pcp->list.next, struct page, lru);
798 list_del(&page->lru);
799 pcp->count--;
800 } else {
801 spin_lock_irqsave(&zone->lock, flags);
802 page = __rmqueue(zone, order);
803 spin_unlock(&zone->lock);
804 if (!page)
805 goto failed;
806 }
807
808 __count_zone_vm_events(PGALLOC, zone, 1 << order);
809 zone_statistics(zonelist, zone);
810 local_irq_restore(flags);
811 put_cpu();
812
813 BUG_ON(bad_range(zone, page));
814 if (prep_new_page(page, order, gfp_flags))
815 goto again;
816 return page;
817
818 failed:
819 local_irq_restore(flags);
820 put_cpu();
821 return NULL;
822 }
823
824 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
825 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
826 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
827 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
828 #define ALLOC_HARDER 0x10 /* try to alloc harder */
829 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
830 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
831
832 /*
833 * Return 1 if free pages are above 'mark'. This takes into account the order
834 * of the allocation.
835 */
836 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
837 int classzone_idx, int alloc_flags)
838 {
839 /* free_pages my go negative - that's OK */
840 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
841 int o;
842
843 if (alloc_flags & ALLOC_HIGH)
844 min -= min / 2;
845 if (alloc_flags & ALLOC_HARDER)
846 min -= min / 4;
847
848 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
849 return 0;
850 for (o = 0; o < order; o++) {
851 /* At the next order, this order's pages become unavailable */
852 free_pages -= z->free_area[o].nr_free << o;
853
854 /* Require fewer higher order pages to be free */
855 min >>= 1;
856
857 if (free_pages <= min)
858 return 0;
859 }
860 return 1;
861 }
862
863 /*
864 * get_page_from_freeliest goes through the zonelist trying to allocate
865 * a page.
866 */
867 static struct page *
868 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
869 struct zonelist *zonelist, int alloc_flags)
870 {
871 struct zone **z = zonelist->zones;
872 struct page *page = NULL;
873 int classzone_idx = zone_idx(*z);
874
875 /*
876 * Go through the zonelist once, looking for a zone with enough free.
877 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
878 */
879 do {
880 if ((alloc_flags & ALLOC_CPUSET) &&
881 !cpuset_zone_allowed(*z, gfp_mask))
882 continue;
883
884 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
885 unsigned long mark;
886 if (alloc_flags & ALLOC_WMARK_MIN)
887 mark = (*z)->pages_min;
888 else if (alloc_flags & ALLOC_WMARK_LOW)
889 mark = (*z)->pages_low;
890 else
891 mark = (*z)->pages_high;
892 if (!zone_watermark_ok(*z, order, mark,
893 classzone_idx, alloc_flags))
894 if (!zone_reclaim_mode ||
895 !zone_reclaim(*z, gfp_mask, order))
896 continue;
897 }
898
899 page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
900 if (page) {
901 break;
902 }
903 } while (*(++z) != NULL);
904 return page;
905 }
906
907 /*
908 * This is the 'heart' of the zoned buddy allocator.
909 */
910 struct page * fastcall
911 __alloc_pages(gfp_t gfp_mask, unsigned int order,
912 struct zonelist *zonelist)
913 {
914 const gfp_t wait = gfp_mask & __GFP_WAIT;
915 struct zone **z;
916 struct page *page;
917 struct reclaim_state reclaim_state;
918 struct task_struct *p = current;
919 int do_retry;
920 int alloc_flags;
921 int did_some_progress;
922
923 might_sleep_if(wait);
924
925 restart:
926 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
927
928 if (unlikely(*z == NULL)) {
929 /* Should this ever happen?? */
930 return NULL;
931 }
932
933 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
934 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
935 if (page)
936 goto got_pg;
937
938 do {
939 wakeup_kswapd(*z, order);
940 } while (*(++z));
941
942 /*
943 * OK, we're below the kswapd watermark and have kicked background
944 * reclaim. Now things get more complex, so set up alloc_flags according
945 * to how we want to proceed.
946 *
947 * The caller may dip into page reserves a bit more if the caller
948 * cannot run direct reclaim, or if the caller has realtime scheduling
949 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
950 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
951 */
952 alloc_flags = ALLOC_WMARK_MIN;
953 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
954 alloc_flags |= ALLOC_HARDER;
955 if (gfp_mask & __GFP_HIGH)
956 alloc_flags |= ALLOC_HIGH;
957 if (wait)
958 alloc_flags |= ALLOC_CPUSET;
959
960 /*
961 * Go through the zonelist again. Let __GFP_HIGH and allocations
962 * coming from realtime tasks go deeper into reserves.
963 *
964 * This is the last chance, in general, before the goto nopage.
965 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
966 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
967 */
968 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
969 if (page)
970 goto got_pg;
971
972 /* This allocation should allow future memory freeing. */
973
974 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
975 && !in_interrupt()) {
976 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
977 nofail_alloc:
978 /* go through the zonelist yet again, ignoring mins */
979 page = get_page_from_freelist(gfp_mask, order,
980 zonelist, ALLOC_NO_WATERMARKS);
981 if (page)
982 goto got_pg;
983 if (gfp_mask & __GFP_NOFAIL) {
984 blk_congestion_wait(WRITE, HZ/50);
985 goto nofail_alloc;
986 }
987 }
988 goto nopage;
989 }
990
991 /* Atomic allocations - we can't balance anything */
992 if (!wait)
993 goto nopage;
994
995 rebalance:
996 cond_resched();
997
998 /* We now go into synchronous reclaim */
999 cpuset_memory_pressure_bump();
1000 p->flags |= PF_MEMALLOC;
1001 reclaim_state.reclaimed_slab = 0;
1002 p->reclaim_state = &reclaim_state;
1003
1004 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1005
1006 p->reclaim_state = NULL;
1007 p->flags &= ~PF_MEMALLOC;
1008
1009 cond_resched();
1010
1011 if (likely(did_some_progress)) {
1012 page = get_page_from_freelist(gfp_mask, order,
1013 zonelist, alloc_flags);
1014 if (page)
1015 goto got_pg;
1016 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1017 /*
1018 * Go through the zonelist yet one more time, keep
1019 * very high watermark here, this is only to catch
1020 * a parallel oom killing, we must fail if we're still
1021 * under heavy pressure.
1022 */
1023 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1024 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1025 if (page)
1026 goto got_pg;
1027
1028 out_of_memory(zonelist, gfp_mask, order);
1029 goto restart;
1030 }
1031
1032 /*
1033 * Don't let big-order allocations loop unless the caller explicitly
1034 * requests that. Wait for some write requests to complete then retry.
1035 *
1036 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1037 * <= 3, but that may not be true in other implementations.
1038 */
1039 do_retry = 0;
1040 if (!(gfp_mask & __GFP_NORETRY)) {
1041 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1042 do_retry = 1;
1043 if (gfp_mask & __GFP_NOFAIL)
1044 do_retry = 1;
1045 }
1046 if (do_retry) {
1047 blk_congestion_wait(WRITE, HZ/50);
1048 goto rebalance;
1049 }
1050
1051 nopage:
1052 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1053 printk(KERN_WARNING "%s: page allocation failure."
1054 " order:%d, mode:0x%x\n",
1055 p->comm, order, gfp_mask);
1056 dump_stack();
1057 show_mem();
1058 }
1059 got_pg:
1060 return page;
1061 }
1062
1063 EXPORT_SYMBOL(__alloc_pages);
1064
1065 /*
1066 * Common helper functions.
1067 */
1068 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1069 {
1070 struct page * page;
1071 page = alloc_pages(gfp_mask, order);
1072 if (!page)
1073 return 0;
1074 return (unsigned long) page_address(page);
1075 }
1076
1077 EXPORT_SYMBOL(__get_free_pages);
1078
1079 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1080 {
1081 struct page * page;
1082
1083 /*
1084 * get_zeroed_page() returns a 32-bit address, which cannot represent
1085 * a highmem page
1086 */
1087 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1088
1089 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1090 if (page)
1091 return (unsigned long) page_address(page);
1092 return 0;
1093 }
1094
1095 EXPORT_SYMBOL(get_zeroed_page);
1096
1097 void __pagevec_free(struct pagevec *pvec)
1098 {
1099 int i = pagevec_count(pvec);
1100
1101 while (--i >= 0)
1102 free_hot_cold_page(pvec->pages[i], pvec->cold);
1103 }
1104
1105 fastcall void __free_pages(struct page *page, unsigned int order)
1106 {
1107 if (put_page_testzero(page)) {
1108 if (order == 0)
1109 free_hot_page(page);
1110 else
1111 __free_pages_ok(page, order);
1112 }
1113 }
1114
1115 EXPORT_SYMBOL(__free_pages);
1116
1117 fastcall void free_pages(unsigned long addr, unsigned int order)
1118 {
1119 if (addr != 0) {
1120 BUG_ON(!virt_addr_valid((void *)addr));
1121 __free_pages(virt_to_page((void *)addr), order);
1122 }
1123 }
1124
1125 EXPORT_SYMBOL(free_pages);
1126
1127 /*
1128 * Total amount of free (allocatable) RAM:
1129 */
1130 unsigned int nr_free_pages(void)
1131 {
1132 unsigned int sum = 0;
1133 struct zone *zone;
1134
1135 for_each_zone(zone)
1136 sum += zone->free_pages;
1137
1138 return sum;
1139 }
1140
1141 EXPORT_SYMBOL(nr_free_pages);
1142
1143 #ifdef CONFIG_NUMA
1144 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1145 {
1146 unsigned int i, sum = 0;
1147
1148 for (i = 0; i < MAX_NR_ZONES; i++)
1149 sum += pgdat->node_zones[i].free_pages;
1150
1151 return sum;
1152 }
1153 #endif
1154
1155 static unsigned int nr_free_zone_pages(int offset)
1156 {
1157 /* Just pick one node, since fallback list is circular */
1158 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1159 unsigned int sum = 0;
1160
1161 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1162 struct zone **zonep = zonelist->zones;
1163 struct zone *zone;
1164
1165 for (zone = *zonep++; zone; zone = *zonep++) {
1166 unsigned long size = zone->present_pages;
1167 unsigned long high = zone->pages_high;
1168 if (size > high)
1169 sum += size - high;
1170 }
1171
1172 return sum;
1173 }
1174
1175 /*
1176 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1177 */
1178 unsigned int nr_free_buffer_pages(void)
1179 {
1180 return nr_free_zone_pages(gfp_zone(GFP_USER));
1181 }
1182
1183 /*
1184 * Amount of free RAM allocatable within all zones
1185 */
1186 unsigned int nr_free_pagecache_pages(void)
1187 {
1188 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1189 }
1190
1191 #ifdef CONFIG_HIGHMEM
1192 unsigned int nr_free_highpages (void)
1193 {
1194 pg_data_t *pgdat;
1195 unsigned int pages = 0;
1196
1197 for_each_online_pgdat(pgdat)
1198 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1199
1200 return pages;
1201 }
1202 #endif
1203
1204 #ifdef CONFIG_NUMA
1205 static void show_node(struct zone *zone)
1206 {
1207 printk("Node %d ", zone->zone_pgdat->node_id);
1208 }
1209 #else
1210 #define show_node(zone) do { } while (0)
1211 #endif
1212
1213 void si_meminfo(struct sysinfo *val)
1214 {
1215 val->totalram = totalram_pages;
1216 val->sharedram = 0;
1217 val->freeram = nr_free_pages();
1218 val->bufferram = nr_blockdev_pages();
1219 #ifdef CONFIG_HIGHMEM
1220 val->totalhigh = totalhigh_pages;
1221 val->freehigh = nr_free_highpages();
1222 #else
1223 val->totalhigh = 0;
1224 val->freehigh = 0;
1225 #endif
1226 val->mem_unit = PAGE_SIZE;
1227 }
1228
1229 EXPORT_SYMBOL(si_meminfo);
1230
1231 #ifdef CONFIG_NUMA
1232 void si_meminfo_node(struct sysinfo *val, int nid)
1233 {
1234 pg_data_t *pgdat = NODE_DATA(nid);
1235
1236 val->totalram = pgdat->node_present_pages;
1237 val->freeram = nr_free_pages_pgdat(pgdat);
1238 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1239 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1240 val->mem_unit = PAGE_SIZE;
1241 }
1242 #endif
1243
1244 #define K(x) ((x) << (PAGE_SHIFT-10))
1245
1246 /*
1247 * Show free area list (used inside shift_scroll-lock stuff)
1248 * We also calculate the percentage fragmentation. We do this by counting the
1249 * memory on each free list with the exception of the first item on the list.
1250 */
1251 void show_free_areas(void)
1252 {
1253 int cpu, temperature;
1254 unsigned long active;
1255 unsigned long inactive;
1256 unsigned long free;
1257 struct zone *zone;
1258
1259 for_each_zone(zone) {
1260 show_node(zone);
1261 printk("%s per-cpu:", zone->name);
1262
1263 if (!populated_zone(zone)) {
1264 printk(" empty\n");
1265 continue;
1266 } else
1267 printk("\n");
1268
1269 for_each_online_cpu(cpu) {
1270 struct per_cpu_pageset *pageset;
1271
1272 pageset = zone_pcp(zone, cpu);
1273
1274 for (temperature = 0; temperature < 2; temperature++)
1275 printk("cpu %d %s: high %d, batch %d used:%d\n",
1276 cpu,
1277 temperature ? "cold" : "hot",
1278 pageset->pcp[temperature].high,
1279 pageset->pcp[temperature].batch,
1280 pageset->pcp[temperature].count);
1281 }
1282 }
1283
1284 get_zone_counts(&active, &inactive, &free);
1285
1286 printk("Free pages: %11ukB (%ukB HighMem)\n",
1287 K(nr_free_pages()),
1288 K(nr_free_highpages()));
1289
1290 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1291 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1292 active,
1293 inactive,
1294 global_page_state(NR_FILE_DIRTY),
1295 global_page_state(NR_WRITEBACK),
1296 global_page_state(NR_UNSTABLE_NFS),
1297 nr_free_pages(),
1298 global_page_state(NR_SLAB),
1299 global_page_state(NR_FILE_MAPPED),
1300 global_page_state(NR_PAGETABLE));
1301
1302 for_each_zone(zone) {
1303 int i;
1304
1305 show_node(zone);
1306 printk("%s"
1307 " free:%lukB"
1308 " min:%lukB"
1309 " low:%lukB"
1310 " high:%lukB"
1311 " active:%lukB"
1312 " inactive:%lukB"
1313 " present:%lukB"
1314 " pages_scanned:%lu"
1315 " all_unreclaimable? %s"
1316 "\n",
1317 zone->name,
1318 K(zone->free_pages),
1319 K(zone->pages_min),
1320 K(zone->pages_low),
1321 K(zone->pages_high),
1322 K(zone->nr_active),
1323 K(zone->nr_inactive),
1324 K(zone->present_pages),
1325 zone->pages_scanned,
1326 (zone->all_unreclaimable ? "yes" : "no")
1327 );
1328 printk("lowmem_reserve[]:");
1329 for (i = 0; i < MAX_NR_ZONES; i++)
1330 printk(" %lu", zone->lowmem_reserve[i]);
1331 printk("\n");
1332 }
1333
1334 for_each_zone(zone) {
1335 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1336
1337 show_node(zone);
1338 printk("%s: ", zone->name);
1339 if (!populated_zone(zone)) {
1340 printk("empty\n");
1341 continue;
1342 }
1343
1344 spin_lock_irqsave(&zone->lock, flags);
1345 for (order = 0; order < MAX_ORDER; order++) {
1346 nr[order] = zone->free_area[order].nr_free;
1347 total += nr[order] << order;
1348 }
1349 spin_unlock_irqrestore(&zone->lock, flags);
1350 for (order = 0; order < MAX_ORDER; order++)
1351 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1352 printk("= %lukB\n", K(total));
1353 }
1354
1355 show_swap_cache_info();
1356 }
1357
1358 /*
1359 * Builds allocation fallback zone lists.
1360 *
1361 * Add all populated zones of a node to the zonelist.
1362 */
1363 static int __meminit build_zonelists_node(pg_data_t *pgdat,
1364 struct zonelist *zonelist, int nr_zones, int zone_type)
1365 {
1366 struct zone *zone;
1367
1368 BUG_ON(zone_type > ZONE_HIGHMEM);
1369
1370 do {
1371 zone = pgdat->node_zones + zone_type;
1372 if (populated_zone(zone)) {
1373 #ifndef CONFIG_HIGHMEM
1374 BUG_ON(zone_type > ZONE_NORMAL);
1375 #endif
1376 zonelist->zones[nr_zones++] = zone;
1377 check_highest_zone(zone_type);
1378 }
1379 zone_type--;
1380
1381 } while (zone_type >= 0);
1382 return nr_zones;
1383 }
1384
1385 static inline int highest_zone(int zone_bits)
1386 {
1387 int res = ZONE_NORMAL;
1388 if (zone_bits & (__force int)__GFP_HIGHMEM)
1389 res = ZONE_HIGHMEM;
1390 if (zone_bits & (__force int)__GFP_DMA32)
1391 res = ZONE_DMA32;
1392 if (zone_bits & (__force int)__GFP_DMA)
1393 res = ZONE_DMA;
1394 return res;
1395 }
1396
1397 #ifdef CONFIG_NUMA
1398 #define MAX_NODE_LOAD (num_online_nodes())
1399 static int __meminitdata node_load[MAX_NUMNODES];
1400 /**
1401 * find_next_best_node - find the next node that should appear in a given node's fallback list
1402 * @node: node whose fallback list we're appending
1403 * @used_node_mask: nodemask_t of already used nodes
1404 *
1405 * We use a number of factors to determine which is the next node that should
1406 * appear on a given node's fallback list. The node should not have appeared
1407 * already in @node's fallback list, and it should be the next closest node
1408 * according to the distance array (which contains arbitrary distance values
1409 * from each node to each node in the system), and should also prefer nodes
1410 * with no CPUs, since presumably they'll have very little allocation pressure
1411 * on them otherwise.
1412 * It returns -1 if no node is found.
1413 */
1414 static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1415 {
1416 int n, val;
1417 int min_val = INT_MAX;
1418 int best_node = -1;
1419
1420 /* Use the local node if we haven't already */
1421 if (!node_isset(node, *used_node_mask)) {
1422 node_set(node, *used_node_mask);
1423 return node;
1424 }
1425
1426 for_each_online_node(n) {
1427 cpumask_t tmp;
1428
1429 /* Don't want a node to appear more than once */
1430 if (node_isset(n, *used_node_mask))
1431 continue;
1432
1433 /* Use the distance array to find the distance */
1434 val = node_distance(node, n);
1435
1436 /* Penalize nodes under us ("prefer the next node") */
1437 val += (n < node);
1438
1439 /* Give preference to headless and unused nodes */
1440 tmp = node_to_cpumask(n);
1441 if (!cpus_empty(tmp))
1442 val += PENALTY_FOR_NODE_WITH_CPUS;
1443
1444 /* Slight preference for less loaded node */
1445 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1446 val += node_load[n];
1447
1448 if (val < min_val) {
1449 min_val = val;
1450 best_node = n;
1451 }
1452 }
1453
1454 if (best_node >= 0)
1455 node_set(best_node, *used_node_mask);
1456
1457 return best_node;
1458 }
1459
1460 static void __meminit build_zonelists(pg_data_t *pgdat)
1461 {
1462 int i, j, k, node, local_node;
1463 int prev_node, load;
1464 struct zonelist *zonelist;
1465 nodemask_t used_mask;
1466
1467 /* initialize zonelists */
1468 for (i = 0; i < GFP_ZONETYPES; i++) {
1469 zonelist = pgdat->node_zonelists + i;
1470 zonelist->zones[0] = NULL;
1471 }
1472
1473 /* NUMA-aware ordering of nodes */
1474 local_node = pgdat->node_id;
1475 load = num_online_nodes();
1476 prev_node = local_node;
1477 nodes_clear(used_mask);
1478 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1479 int distance = node_distance(local_node, node);
1480
1481 /*
1482 * If another node is sufficiently far away then it is better
1483 * to reclaim pages in a zone before going off node.
1484 */
1485 if (distance > RECLAIM_DISTANCE)
1486 zone_reclaim_mode = 1;
1487
1488 /*
1489 * We don't want to pressure a particular node.
1490 * So adding penalty to the first node in same
1491 * distance group to make it round-robin.
1492 */
1493
1494 if (distance != node_distance(local_node, prev_node))
1495 node_load[node] += load;
1496 prev_node = node;
1497 load--;
1498 for (i = 0; i < GFP_ZONETYPES; i++) {
1499 zonelist = pgdat->node_zonelists + i;
1500 for (j = 0; zonelist->zones[j] != NULL; j++);
1501
1502 k = highest_zone(i);
1503
1504 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1505 zonelist->zones[j] = NULL;
1506 }
1507 }
1508 }
1509
1510 #else /* CONFIG_NUMA */
1511
1512 static void __meminit build_zonelists(pg_data_t *pgdat)
1513 {
1514 int i, j, k, node, local_node;
1515
1516 local_node = pgdat->node_id;
1517 for (i = 0; i < GFP_ZONETYPES; i++) {
1518 struct zonelist *zonelist;
1519
1520 zonelist = pgdat->node_zonelists + i;
1521
1522 j = 0;
1523 k = highest_zone(i);
1524 j = build_zonelists_node(pgdat, zonelist, j, k);
1525 /*
1526 * Now we build the zonelist so that it contains the zones
1527 * of all the other nodes.
1528 * We don't want to pressure a particular node, so when
1529 * building the zones for node N, we make sure that the
1530 * zones coming right after the local ones are those from
1531 * node N+1 (modulo N)
1532 */
1533 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1534 if (!node_online(node))
1535 continue;
1536 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1537 }
1538 for (node = 0; node < local_node; node++) {
1539 if (!node_online(node))
1540 continue;
1541 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1542 }
1543
1544 zonelist->zones[j] = NULL;
1545 }
1546 }
1547
1548 #endif /* CONFIG_NUMA */
1549
1550 /* return values int ....just for stop_machine_run() */
1551 static int __meminit __build_all_zonelists(void *dummy)
1552 {
1553 int nid;
1554 for_each_online_node(nid)
1555 build_zonelists(NODE_DATA(nid));
1556 return 0;
1557 }
1558
1559 void __meminit build_all_zonelists(void)
1560 {
1561 if (system_state == SYSTEM_BOOTING) {
1562 __build_all_zonelists(0);
1563 cpuset_init_current_mems_allowed();
1564 } else {
1565 /* we have to stop all cpus to guaranntee there is no user
1566 of zonelist */
1567 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1568 /* cpuset refresh routine should be here */
1569 }
1570 vm_total_pages = nr_free_pagecache_pages();
1571 printk("Built %i zonelists. Total pages: %ld\n",
1572 num_online_nodes(), vm_total_pages);
1573 }
1574
1575 /*
1576 * Helper functions to size the waitqueue hash table.
1577 * Essentially these want to choose hash table sizes sufficiently
1578 * large so that collisions trying to wait on pages are rare.
1579 * But in fact, the number of active page waitqueues on typical
1580 * systems is ridiculously low, less than 200. So this is even
1581 * conservative, even though it seems large.
1582 *
1583 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1584 * waitqueues, i.e. the size of the waitq table given the number of pages.
1585 */
1586 #define PAGES_PER_WAITQUEUE 256
1587
1588 #ifndef CONFIG_MEMORY_HOTPLUG
1589 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1590 {
1591 unsigned long size = 1;
1592
1593 pages /= PAGES_PER_WAITQUEUE;
1594
1595 while (size < pages)
1596 size <<= 1;
1597
1598 /*
1599 * Once we have dozens or even hundreds of threads sleeping
1600 * on IO we've got bigger problems than wait queue collision.
1601 * Limit the size of the wait table to a reasonable size.
1602 */
1603 size = min(size, 4096UL);
1604
1605 return max(size, 4UL);
1606 }
1607 #else
1608 /*
1609 * A zone's size might be changed by hot-add, so it is not possible to determine
1610 * a suitable size for its wait_table. So we use the maximum size now.
1611 *
1612 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1613 *
1614 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1615 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1616 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1617 *
1618 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1619 * or more by the traditional way. (See above). It equals:
1620 *
1621 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1622 * ia64(16K page size) : = ( 8G + 4M)byte.
1623 * powerpc (64K page size) : = (32G +16M)byte.
1624 */
1625 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1626 {
1627 return 4096UL;
1628 }
1629 #endif
1630
1631 /*
1632 * This is an integer logarithm so that shifts can be used later
1633 * to extract the more random high bits from the multiplicative
1634 * hash function before the remainder is taken.
1635 */
1636 static inline unsigned long wait_table_bits(unsigned long size)
1637 {
1638 return ffz(~size);
1639 }
1640
1641 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1642
1643 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1644 unsigned long *zones_size, unsigned long *zholes_size)
1645 {
1646 unsigned long realtotalpages, totalpages = 0;
1647 int i;
1648
1649 for (i = 0; i < MAX_NR_ZONES; i++)
1650 totalpages += zones_size[i];
1651 pgdat->node_spanned_pages = totalpages;
1652
1653 realtotalpages = totalpages;
1654 if (zholes_size)
1655 for (i = 0; i < MAX_NR_ZONES; i++)
1656 realtotalpages -= zholes_size[i];
1657 pgdat->node_present_pages = realtotalpages;
1658 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1659 }
1660
1661
1662 /*
1663 * Initially all pages are reserved - free ones are freed
1664 * up by free_all_bootmem() once the early boot process is
1665 * done. Non-atomic initialization, single-pass.
1666 */
1667 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1668 unsigned long start_pfn)
1669 {
1670 struct page *page;
1671 unsigned long end_pfn = start_pfn + size;
1672 unsigned long pfn;
1673
1674 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1675 if (!early_pfn_valid(pfn))
1676 continue;
1677 page = pfn_to_page(pfn);
1678 set_page_links(page, zone, nid, pfn);
1679 init_page_count(page);
1680 reset_page_mapcount(page);
1681 SetPageReserved(page);
1682 INIT_LIST_HEAD(&page->lru);
1683 #ifdef WANT_PAGE_VIRTUAL
1684 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1685 if (!is_highmem_idx(zone))
1686 set_page_address(page, __va(pfn << PAGE_SHIFT));
1687 #endif
1688 }
1689 }
1690
1691 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1692 unsigned long size)
1693 {
1694 int order;
1695 for (order = 0; order < MAX_ORDER ; order++) {
1696 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1697 zone->free_area[order].nr_free = 0;
1698 }
1699 }
1700
1701 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1702 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1703 unsigned long size)
1704 {
1705 unsigned long snum = pfn_to_section_nr(pfn);
1706 unsigned long end = pfn_to_section_nr(pfn + size);
1707
1708 if (FLAGS_HAS_NODE)
1709 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1710 else
1711 for (; snum <= end; snum++)
1712 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1713 }
1714
1715 #ifndef __HAVE_ARCH_MEMMAP_INIT
1716 #define memmap_init(size, nid, zone, start_pfn) \
1717 memmap_init_zone((size), (nid), (zone), (start_pfn))
1718 #endif
1719
1720 static int __cpuinit zone_batchsize(struct zone *zone)
1721 {
1722 int batch;
1723
1724 /*
1725 * The per-cpu-pages pools are set to around 1000th of the
1726 * size of the zone. But no more than 1/2 of a meg.
1727 *
1728 * OK, so we don't know how big the cache is. So guess.
1729 */
1730 batch = zone->present_pages / 1024;
1731 if (batch * PAGE_SIZE > 512 * 1024)
1732 batch = (512 * 1024) / PAGE_SIZE;
1733 batch /= 4; /* We effectively *= 4 below */
1734 if (batch < 1)
1735 batch = 1;
1736
1737 /*
1738 * Clamp the batch to a 2^n - 1 value. Having a power
1739 * of 2 value was found to be more likely to have
1740 * suboptimal cache aliasing properties in some cases.
1741 *
1742 * For example if 2 tasks are alternately allocating
1743 * batches of pages, one task can end up with a lot
1744 * of pages of one half of the possible page colors
1745 * and the other with pages of the other colors.
1746 */
1747 batch = (1 << (fls(batch + batch/2)-1)) - 1;
1748
1749 return batch;
1750 }
1751
1752 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1753 {
1754 struct per_cpu_pages *pcp;
1755
1756 memset(p, 0, sizeof(*p));
1757
1758 pcp = &p->pcp[0]; /* hot */
1759 pcp->count = 0;
1760 pcp->high = 6 * batch;
1761 pcp->batch = max(1UL, 1 * batch);
1762 INIT_LIST_HEAD(&pcp->list);
1763
1764 pcp = &p->pcp[1]; /* cold*/
1765 pcp->count = 0;
1766 pcp->high = 2 * batch;
1767 pcp->batch = max(1UL, batch/2);
1768 INIT_LIST_HEAD(&pcp->list);
1769 }
1770
1771 /*
1772 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1773 * to the value high for the pageset p.
1774 */
1775
1776 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1777 unsigned long high)
1778 {
1779 struct per_cpu_pages *pcp;
1780
1781 pcp = &p->pcp[0]; /* hot list */
1782 pcp->high = high;
1783 pcp->batch = max(1UL, high/4);
1784 if ((high/4) > (PAGE_SHIFT * 8))
1785 pcp->batch = PAGE_SHIFT * 8;
1786 }
1787
1788
1789 #ifdef CONFIG_NUMA
1790 /*
1791 * Boot pageset table. One per cpu which is going to be used for all
1792 * zones and all nodes. The parameters will be set in such a way
1793 * that an item put on a list will immediately be handed over to
1794 * the buddy list. This is safe since pageset manipulation is done
1795 * with interrupts disabled.
1796 *
1797 * Some NUMA counter updates may also be caught by the boot pagesets.
1798 *
1799 * The boot_pagesets must be kept even after bootup is complete for
1800 * unused processors and/or zones. They do play a role for bootstrapping
1801 * hotplugged processors.
1802 *
1803 * zoneinfo_show() and maybe other functions do
1804 * not check if the processor is online before following the pageset pointer.
1805 * Other parts of the kernel may not check if the zone is available.
1806 */
1807 static struct per_cpu_pageset boot_pageset[NR_CPUS];
1808
1809 /*
1810 * Dynamically allocate memory for the
1811 * per cpu pageset array in struct zone.
1812 */
1813 static int __cpuinit process_zones(int cpu)
1814 {
1815 struct zone *zone, *dzone;
1816
1817 for_each_zone(zone) {
1818
1819 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1820 GFP_KERNEL, cpu_to_node(cpu));
1821 if (!zone_pcp(zone, cpu))
1822 goto bad;
1823
1824 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1825
1826 if (percpu_pagelist_fraction)
1827 setup_pagelist_highmark(zone_pcp(zone, cpu),
1828 (zone->present_pages / percpu_pagelist_fraction));
1829 }
1830
1831 return 0;
1832 bad:
1833 for_each_zone(dzone) {
1834 if (dzone == zone)
1835 break;
1836 kfree(zone_pcp(dzone, cpu));
1837 zone_pcp(dzone, cpu) = NULL;
1838 }
1839 return -ENOMEM;
1840 }
1841
1842 static inline void free_zone_pagesets(int cpu)
1843 {
1844 struct zone *zone;
1845
1846 for_each_zone(zone) {
1847 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1848
1849 zone_pcp(zone, cpu) = NULL;
1850 kfree(pset);
1851 }
1852 }
1853
1854 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
1855 unsigned long action,
1856 void *hcpu)
1857 {
1858 int cpu = (long)hcpu;
1859 int ret = NOTIFY_OK;
1860
1861 switch (action) {
1862 case CPU_UP_PREPARE:
1863 if (process_zones(cpu))
1864 ret = NOTIFY_BAD;
1865 break;
1866 case CPU_UP_CANCELED:
1867 case CPU_DEAD:
1868 free_zone_pagesets(cpu);
1869 break;
1870 default:
1871 break;
1872 }
1873 return ret;
1874 }
1875
1876 static struct notifier_block __cpuinitdata pageset_notifier =
1877 { &pageset_cpuup_callback, NULL, 0 };
1878
1879 void __init setup_per_cpu_pageset(void)
1880 {
1881 int err;
1882
1883 /* Initialize per_cpu_pageset for cpu 0.
1884 * A cpuup callback will do this for every cpu
1885 * as it comes online
1886 */
1887 err = process_zones(smp_processor_id());
1888 BUG_ON(err);
1889 register_cpu_notifier(&pageset_notifier);
1890 }
1891
1892 #endif
1893
1894 static __meminit
1895 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1896 {
1897 int i;
1898 struct pglist_data *pgdat = zone->zone_pgdat;
1899 size_t alloc_size;
1900
1901 /*
1902 * The per-page waitqueue mechanism uses hashed waitqueues
1903 * per zone.
1904 */
1905 zone->wait_table_hash_nr_entries =
1906 wait_table_hash_nr_entries(zone_size_pages);
1907 zone->wait_table_bits =
1908 wait_table_bits(zone->wait_table_hash_nr_entries);
1909 alloc_size = zone->wait_table_hash_nr_entries
1910 * sizeof(wait_queue_head_t);
1911
1912 if (system_state == SYSTEM_BOOTING) {
1913 zone->wait_table = (wait_queue_head_t *)
1914 alloc_bootmem_node(pgdat, alloc_size);
1915 } else {
1916 /*
1917 * This case means that a zone whose size was 0 gets new memory
1918 * via memory hot-add.
1919 * But it may be the case that a new node was hot-added. In
1920 * this case vmalloc() will not be able to use this new node's
1921 * memory - this wait_table must be initialized to use this new
1922 * node itself as well.
1923 * To use this new node's memory, further consideration will be
1924 * necessary.
1925 */
1926 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
1927 }
1928 if (!zone->wait_table)
1929 return -ENOMEM;
1930
1931 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
1932 init_waitqueue_head(zone->wait_table + i);
1933
1934 return 0;
1935 }
1936
1937 static __meminit void zone_pcp_init(struct zone *zone)
1938 {
1939 int cpu;
1940 unsigned long batch = zone_batchsize(zone);
1941
1942 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1943 #ifdef CONFIG_NUMA
1944 /* Early boot. Slab allocator not functional yet */
1945 zone_pcp(zone, cpu) = &boot_pageset[cpu];
1946 setup_pageset(&boot_pageset[cpu],0);
1947 #else
1948 setup_pageset(zone_pcp(zone,cpu), batch);
1949 #endif
1950 }
1951 if (zone->present_pages)
1952 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1953 zone->name, zone->present_pages, batch);
1954 }
1955
1956 __meminit int init_currently_empty_zone(struct zone *zone,
1957 unsigned long zone_start_pfn,
1958 unsigned long size)
1959 {
1960 struct pglist_data *pgdat = zone->zone_pgdat;
1961 int ret;
1962 ret = zone_wait_table_init(zone, size);
1963 if (ret)
1964 return ret;
1965 pgdat->nr_zones = zone_idx(zone) + 1;
1966
1967 zone->zone_start_pfn = zone_start_pfn;
1968
1969 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1970
1971 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1972
1973 return 0;
1974 }
1975
1976 /*
1977 * Set up the zone data structures:
1978 * - mark all pages reserved
1979 * - mark all memory queues empty
1980 * - clear the memory bitmaps
1981 */
1982 static void __meminit free_area_init_core(struct pglist_data *pgdat,
1983 unsigned long *zones_size, unsigned long *zholes_size)
1984 {
1985 unsigned long j;
1986 int nid = pgdat->node_id;
1987 unsigned long zone_start_pfn = pgdat->node_start_pfn;
1988 int ret;
1989
1990 pgdat_resize_init(pgdat);
1991 pgdat->nr_zones = 0;
1992 init_waitqueue_head(&pgdat->kswapd_wait);
1993 pgdat->kswapd_max_order = 0;
1994
1995 for (j = 0; j < MAX_NR_ZONES; j++) {
1996 struct zone *zone = pgdat->node_zones + j;
1997 unsigned long size, realsize;
1998
1999 realsize = size = zones_size[j];
2000 if (zholes_size)
2001 realsize -= zholes_size[j];
2002
2003 if (j < ZONE_HIGHMEM)
2004 nr_kernel_pages += realsize;
2005 nr_all_pages += realsize;
2006
2007 zone->spanned_pages = size;
2008 zone->present_pages = realsize;
2009 zone->name = zone_names[j];
2010 spin_lock_init(&zone->lock);
2011 spin_lock_init(&zone->lru_lock);
2012 zone_seqlock_init(zone);
2013 zone->zone_pgdat = pgdat;
2014 zone->free_pages = 0;
2015
2016 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2017
2018 zone_pcp_init(zone);
2019 INIT_LIST_HEAD(&zone->active_list);
2020 INIT_LIST_HEAD(&zone->inactive_list);
2021 zone->nr_scan_active = 0;
2022 zone->nr_scan_inactive = 0;
2023 zone->nr_active = 0;
2024 zone->nr_inactive = 0;
2025 zap_zone_vm_stats(zone);
2026 atomic_set(&zone->reclaim_in_progress, 0);
2027 if (!size)
2028 continue;
2029
2030 zonetable_add(zone, nid, j, zone_start_pfn, size);
2031 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2032 BUG_ON(ret);
2033 zone_start_pfn += size;
2034 }
2035 }
2036
2037 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2038 {
2039 /* Skip empty nodes */
2040 if (!pgdat->node_spanned_pages)
2041 return;
2042
2043 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2044 /* ia64 gets its own node_mem_map, before this, without bootmem */
2045 if (!pgdat->node_mem_map) {
2046 unsigned long size, start, end;
2047 struct page *map;
2048
2049 /*
2050 * The zone's endpoints aren't required to be MAX_ORDER
2051 * aligned but the node_mem_map endpoints must be in order
2052 * for the buddy allocator to function correctly.
2053 */
2054 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2055 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2056 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2057 size = (end - start) * sizeof(struct page);
2058 map = alloc_remap(pgdat->node_id, size);
2059 if (!map)
2060 map = alloc_bootmem_node(pgdat, size);
2061 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2062 }
2063 #ifdef CONFIG_FLATMEM
2064 /*
2065 * With no DISCONTIG, the global mem_map is just set as node 0's
2066 */
2067 if (pgdat == NODE_DATA(0))
2068 mem_map = NODE_DATA(0)->node_mem_map;
2069 #endif
2070 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2071 }
2072
2073 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2074 unsigned long *zones_size, unsigned long node_start_pfn,
2075 unsigned long *zholes_size)
2076 {
2077 pgdat->node_id = nid;
2078 pgdat->node_start_pfn = node_start_pfn;
2079 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2080
2081 alloc_node_mem_map(pgdat);
2082
2083 free_area_init_core(pgdat, zones_size, zholes_size);
2084 }
2085
2086 #ifndef CONFIG_NEED_MULTIPLE_NODES
2087 static bootmem_data_t contig_bootmem_data;
2088 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2089
2090 EXPORT_SYMBOL(contig_page_data);
2091 #endif
2092
2093 void __init free_area_init(unsigned long *zones_size)
2094 {
2095 free_area_init_node(0, NODE_DATA(0), zones_size,
2096 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2097 }
2098
2099 #ifdef CONFIG_HOTPLUG_CPU
2100 static int page_alloc_cpu_notify(struct notifier_block *self,
2101 unsigned long action, void *hcpu)
2102 {
2103 int cpu = (unsigned long)hcpu;
2104
2105 if (action == CPU_DEAD) {
2106 local_irq_disable();
2107 __drain_pages(cpu);
2108 vm_events_fold_cpu(cpu);
2109 local_irq_enable();
2110 refresh_cpu_vm_stats(cpu);
2111 }
2112 return NOTIFY_OK;
2113 }
2114 #endif /* CONFIG_HOTPLUG_CPU */
2115
2116 void __init page_alloc_init(void)
2117 {
2118 hotcpu_notifier(page_alloc_cpu_notify, 0);
2119 }
2120
2121 /*
2122 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2123 * or min_free_kbytes changes.
2124 */
2125 static void calculate_totalreserve_pages(void)
2126 {
2127 struct pglist_data *pgdat;
2128 unsigned long reserve_pages = 0;
2129 int i, j;
2130
2131 for_each_online_pgdat(pgdat) {
2132 for (i = 0; i < MAX_NR_ZONES; i++) {
2133 struct zone *zone = pgdat->node_zones + i;
2134 unsigned long max = 0;
2135
2136 /* Find valid and maximum lowmem_reserve in the zone */
2137 for (j = i; j < MAX_NR_ZONES; j++) {
2138 if (zone->lowmem_reserve[j] > max)
2139 max = zone->lowmem_reserve[j];
2140 }
2141
2142 /* we treat pages_high as reserved pages. */
2143 max += zone->pages_high;
2144
2145 if (max > zone->present_pages)
2146 max = zone->present_pages;
2147 reserve_pages += max;
2148 }
2149 }
2150 totalreserve_pages = reserve_pages;
2151 }
2152
2153 /*
2154 * setup_per_zone_lowmem_reserve - called whenever
2155 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2156 * has a correct pages reserved value, so an adequate number of
2157 * pages are left in the zone after a successful __alloc_pages().
2158 */
2159 static void setup_per_zone_lowmem_reserve(void)
2160 {
2161 struct pglist_data *pgdat;
2162 int j, idx;
2163
2164 for_each_online_pgdat(pgdat) {
2165 for (j = 0; j < MAX_NR_ZONES; j++) {
2166 struct zone *zone = pgdat->node_zones + j;
2167 unsigned long present_pages = zone->present_pages;
2168
2169 zone->lowmem_reserve[j] = 0;
2170
2171 for (idx = j-1; idx >= 0; idx--) {
2172 struct zone *lower_zone;
2173
2174 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2175 sysctl_lowmem_reserve_ratio[idx] = 1;
2176
2177 lower_zone = pgdat->node_zones + idx;
2178 lower_zone->lowmem_reserve[j] = present_pages /
2179 sysctl_lowmem_reserve_ratio[idx];
2180 present_pages += lower_zone->present_pages;
2181 }
2182 }
2183 }
2184
2185 /* update totalreserve_pages */
2186 calculate_totalreserve_pages();
2187 }
2188
2189 /*
2190 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2191 * that the pages_{min,low,high} values for each zone are set correctly
2192 * with respect to min_free_kbytes.
2193 */
2194 void setup_per_zone_pages_min(void)
2195 {
2196 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2197 unsigned long lowmem_pages = 0;
2198 struct zone *zone;
2199 unsigned long flags;
2200
2201 /* Calculate total number of !ZONE_HIGHMEM pages */
2202 for_each_zone(zone) {
2203 if (!is_highmem(zone))
2204 lowmem_pages += zone->present_pages;
2205 }
2206
2207 for_each_zone(zone) {
2208 u64 tmp;
2209
2210 spin_lock_irqsave(&zone->lru_lock, flags);
2211 tmp = (u64)pages_min * zone->present_pages;
2212 do_div(tmp, lowmem_pages);
2213 if (is_highmem(zone)) {
2214 /*
2215 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2216 * need highmem pages, so cap pages_min to a small
2217 * value here.
2218 *
2219 * The (pages_high-pages_low) and (pages_low-pages_min)
2220 * deltas controls asynch page reclaim, and so should
2221 * not be capped for highmem.
2222 */
2223 int min_pages;
2224
2225 min_pages = zone->present_pages / 1024;
2226 if (min_pages < SWAP_CLUSTER_MAX)
2227 min_pages = SWAP_CLUSTER_MAX;
2228 if (min_pages > 128)
2229 min_pages = 128;
2230 zone->pages_min = min_pages;
2231 } else {
2232 /*
2233 * If it's a lowmem zone, reserve a number of pages
2234 * proportionate to the zone's size.
2235 */
2236 zone->pages_min = tmp;
2237 }
2238
2239 zone->pages_low = zone->pages_min + (tmp >> 2);
2240 zone->pages_high = zone->pages_min + (tmp >> 1);
2241 spin_unlock_irqrestore(&zone->lru_lock, flags);
2242 }
2243
2244 /* update totalreserve_pages */
2245 calculate_totalreserve_pages();
2246 }
2247
2248 /*
2249 * Initialise min_free_kbytes.
2250 *
2251 * For small machines we want it small (128k min). For large machines
2252 * we want it large (64MB max). But it is not linear, because network
2253 * bandwidth does not increase linearly with machine size. We use
2254 *
2255 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2256 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2257 *
2258 * which yields
2259 *
2260 * 16MB: 512k
2261 * 32MB: 724k
2262 * 64MB: 1024k
2263 * 128MB: 1448k
2264 * 256MB: 2048k
2265 * 512MB: 2896k
2266 * 1024MB: 4096k
2267 * 2048MB: 5792k
2268 * 4096MB: 8192k
2269 * 8192MB: 11584k
2270 * 16384MB: 16384k
2271 */
2272 static int __init init_per_zone_pages_min(void)
2273 {
2274 unsigned long lowmem_kbytes;
2275
2276 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2277
2278 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2279 if (min_free_kbytes < 128)
2280 min_free_kbytes = 128;
2281 if (min_free_kbytes > 65536)
2282 min_free_kbytes = 65536;
2283 setup_per_zone_pages_min();
2284 setup_per_zone_lowmem_reserve();
2285 return 0;
2286 }
2287 module_init(init_per_zone_pages_min)
2288
2289 /*
2290 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2291 * that we can call two helper functions whenever min_free_kbytes
2292 * changes.
2293 */
2294 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2295 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2296 {
2297 proc_dointvec(table, write, file, buffer, length, ppos);
2298 setup_per_zone_pages_min();
2299 return 0;
2300 }
2301
2302 /*
2303 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2304 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2305 * whenever sysctl_lowmem_reserve_ratio changes.
2306 *
2307 * The reserve ratio obviously has absolutely no relation with the
2308 * pages_min watermarks. The lowmem reserve ratio can only make sense
2309 * if in function of the boot time zone sizes.
2310 */
2311 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2312 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2313 {
2314 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2315 setup_per_zone_lowmem_reserve();
2316 return 0;
2317 }
2318
2319 /*
2320 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2321 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2322 * can have before it gets flushed back to buddy allocator.
2323 */
2324
2325 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2326 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2327 {
2328 struct zone *zone;
2329 unsigned int cpu;
2330 int ret;
2331
2332 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2333 if (!write || (ret == -EINVAL))
2334 return ret;
2335 for_each_zone(zone) {
2336 for_each_online_cpu(cpu) {
2337 unsigned long high;
2338 high = zone->present_pages / percpu_pagelist_fraction;
2339 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2340 }
2341 }
2342 return 0;
2343 }
2344
2345 __initdata int hashdist = HASHDIST_DEFAULT;
2346
2347 #ifdef CONFIG_NUMA
2348 static int __init set_hashdist(char *str)
2349 {
2350 if (!str)
2351 return 0;
2352 hashdist = simple_strtoul(str, &str, 0);
2353 return 1;
2354 }
2355 __setup("hashdist=", set_hashdist);
2356 #endif
2357
2358 /*
2359 * allocate a large system hash table from bootmem
2360 * - it is assumed that the hash table must contain an exact power-of-2
2361 * quantity of entries
2362 * - limit is the number of hash buckets, not the total allocation size
2363 */
2364 void *__init alloc_large_system_hash(const char *tablename,
2365 unsigned long bucketsize,
2366 unsigned long numentries,
2367 int scale,
2368 int flags,
2369 unsigned int *_hash_shift,
2370 unsigned int *_hash_mask,
2371 unsigned long limit)
2372 {
2373 unsigned long long max = limit;
2374 unsigned long log2qty, size;
2375 void *table = NULL;
2376
2377 /* allow the kernel cmdline to have a say */
2378 if (!numentries) {
2379 /* round applicable memory size up to nearest megabyte */
2380 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2381 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2382 numentries >>= 20 - PAGE_SHIFT;
2383 numentries <<= 20 - PAGE_SHIFT;
2384
2385 /* limit to 1 bucket per 2^scale bytes of low memory */
2386 if (scale > PAGE_SHIFT)
2387 numentries >>= (scale - PAGE_SHIFT);
2388 else
2389 numentries <<= (PAGE_SHIFT - scale);
2390 }
2391 numentries = roundup_pow_of_two(numentries);
2392
2393 /* limit allocation size to 1/16 total memory by default */
2394 if (max == 0) {
2395 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2396 do_div(max, bucketsize);
2397 }
2398
2399 if (numentries > max)
2400 numentries = max;
2401
2402 log2qty = long_log2(numentries);
2403
2404 do {
2405 size = bucketsize << log2qty;
2406 if (flags & HASH_EARLY)
2407 table = alloc_bootmem(size);
2408 else if (hashdist)
2409 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2410 else {
2411 unsigned long order;
2412 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2413 ;
2414 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2415 }
2416 } while (!table && size > PAGE_SIZE && --log2qty);
2417
2418 if (!table)
2419 panic("Failed to allocate %s hash table\n", tablename);
2420
2421 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2422 tablename,
2423 (1U << log2qty),
2424 long_log2(size) - PAGE_SHIFT,
2425 size);
2426
2427 if (_hash_shift)
2428 *_hash_shift = log2qty;
2429 if (_hash_mask)
2430 *_hash_mask = (1 << log2qty) - 1;
2431
2432 return table;
2433 }
2434
2435 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
2436 struct page *pfn_to_page(unsigned long pfn)
2437 {
2438 return __pfn_to_page(pfn);
2439 }
2440 unsigned long page_to_pfn(struct page *page)
2441 {
2442 return __page_to_pfn(page);
2443 }
2444 EXPORT_SYMBOL(pfn_to_page);
2445 EXPORT_SYMBOL(page_to_pfn);
2446 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */