]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/page_alloc.c
mm: rework mapcount accounting to enable 4k mapping of THPs
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
65
66 #include <asm/sections.h>
67 #include <asm/tlbflush.h>
68 #include <asm/div64.h>
69 #include "internal.h"
70
71 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72 static DEFINE_MUTEX(pcp_batch_high_lock);
73 #define MIN_PERCPU_PAGELIST_FRACTION (8)
74
75 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76 DEFINE_PER_CPU(int, numa_node);
77 EXPORT_PER_CPU_SYMBOL(numa_node);
78 #endif
79
80 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
81 /*
82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85 * defined in <linux/topology.h>.
86 */
87 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
88 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
89 int _node_numa_mem_[MAX_NUMNODES];
90 #endif
91
92 /*
93 * Array of node states.
94 */
95 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
96 [N_POSSIBLE] = NODE_MASK_ALL,
97 [N_ONLINE] = { { [0] = 1UL } },
98 #ifndef CONFIG_NUMA
99 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
100 #ifdef CONFIG_HIGHMEM
101 [N_HIGH_MEMORY] = { { [0] = 1UL } },
102 #endif
103 #ifdef CONFIG_MOVABLE_NODE
104 [N_MEMORY] = { { [0] = 1UL } },
105 #endif
106 [N_CPU] = { { [0] = 1UL } },
107 #endif /* NUMA */
108 };
109 EXPORT_SYMBOL(node_states);
110
111 /* Protect totalram_pages and zone->managed_pages */
112 static DEFINE_SPINLOCK(managed_page_count_lock);
113
114 unsigned long totalram_pages __read_mostly;
115 unsigned long totalreserve_pages __read_mostly;
116 unsigned long totalcma_pages __read_mostly;
117
118 int percpu_pagelist_fraction;
119 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
120
121 /*
122 * A cached value of the page's pageblock's migratetype, used when the page is
123 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
124 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
125 * Also the migratetype set in the page does not necessarily match the pcplist
126 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
127 * other index - this ensures that it will be put on the correct CMA freelist.
128 */
129 static inline int get_pcppage_migratetype(struct page *page)
130 {
131 return page->index;
132 }
133
134 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
135 {
136 page->index = migratetype;
137 }
138
139 #ifdef CONFIG_PM_SLEEP
140 /*
141 * The following functions are used by the suspend/hibernate code to temporarily
142 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
143 * while devices are suspended. To avoid races with the suspend/hibernate code,
144 * they should always be called with pm_mutex held (gfp_allowed_mask also should
145 * only be modified with pm_mutex held, unless the suspend/hibernate code is
146 * guaranteed not to run in parallel with that modification).
147 */
148
149 static gfp_t saved_gfp_mask;
150
151 void pm_restore_gfp_mask(void)
152 {
153 WARN_ON(!mutex_is_locked(&pm_mutex));
154 if (saved_gfp_mask) {
155 gfp_allowed_mask = saved_gfp_mask;
156 saved_gfp_mask = 0;
157 }
158 }
159
160 void pm_restrict_gfp_mask(void)
161 {
162 WARN_ON(!mutex_is_locked(&pm_mutex));
163 WARN_ON(saved_gfp_mask);
164 saved_gfp_mask = gfp_allowed_mask;
165 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
166 }
167
168 bool pm_suspended_storage(void)
169 {
170 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
171 return false;
172 return true;
173 }
174 #endif /* CONFIG_PM_SLEEP */
175
176 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
177 unsigned int pageblock_order __read_mostly;
178 #endif
179
180 static void __free_pages_ok(struct page *page, unsigned int order);
181
182 /*
183 * results with 256, 32 in the lowmem_reserve sysctl:
184 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
185 * 1G machine -> (16M dma, 784M normal, 224M high)
186 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
187 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
188 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
189 *
190 * TBD: should special case ZONE_DMA32 machines here - in those we normally
191 * don't need any ZONE_NORMAL reservation
192 */
193 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
194 #ifdef CONFIG_ZONE_DMA
195 256,
196 #endif
197 #ifdef CONFIG_ZONE_DMA32
198 256,
199 #endif
200 #ifdef CONFIG_HIGHMEM
201 32,
202 #endif
203 32,
204 };
205
206 EXPORT_SYMBOL(totalram_pages);
207
208 static char * const zone_names[MAX_NR_ZONES] = {
209 #ifdef CONFIG_ZONE_DMA
210 "DMA",
211 #endif
212 #ifdef CONFIG_ZONE_DMA32
213 "DMA32",
214 #endif
215 "Normal",
216 #ifdef CONFIG_HIGHMEM
217 "HighMem",
218 #endif
219 "Movable",
220 #ifdef CONFIG_ZONE_DEVICE
221 "Device",
222 #endif
223 };
224
225 static void free_compound_page(struct page *page);
226 compound_page_dtor * const compound_page_dtors[] = {
227 NULL,
228 free_compound_page,
229 #ifdef CONFIG_HUGETLB_PAGE
230 free_huge_page,
231 #endif
232 };
233
234 int min_free_kbytes = 1024;
235 int user_min_free_kbytes = -1;
236
237 static unsigned long __meminitdata nr_kernel_pages;
238 static unsigned long __meminitdata nr_all_pages;
239 static unsigned long __meminitdata dma_reserve;
240
241 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
242 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
243 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
244 static unsigned long __initdata required_kernelcore;
245 static unsigned long __initdata required_movablecore;
246 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
247
248 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
249 int movable_zone;
250 EXPORT_SYMBOL(movable_zone);
251 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
252
253 #if MAX_NUMNODES > 1
254 int nr_node_ids __read_mostly = MAX_NUMNODES;
255 int nr_online_nodes __read_mostly = 1;
256 EXPORT_SYMBOL(nr_node_ids);
257 EXPORT_SYMBOL(nr_online_nodes);
258 #endif
259
260 int page_group_by_mobility_disabled __read_mostly;
261
262 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
263 static inline void reset_deferred_meminit(pg_data_t *pgdat)
264 {
265 pgdat->first_deferred_pfn = ULONG_MAX;
266 }
267
268 /* Returns true if the struct page for the pfn is uninitialised */
269 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
270 {
271 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
272 return true;
273
274 return false;
275 }
276
277 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
278 {
279 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
280 return true;
281
282 return false;
283 }
284
285 /*
286 * Returns false when the remaining initialisation should be deferred until
287 * later in the boot cycle when it can be parallelised.
288 */
289 static inline bool update_defer_init(pg_data_t *pgdat,
290 unsigned long pfn, unsigned long zone_end,
291 unsigned long *nr_initialised)
292 {
293 /* Always populate low zones for address-contrained allocations */
294 if (zone_end < pgdat_end_pfn(pgdat))
295 return true;
296
297 /* Initialise at least 2G of the highest zone */
298 (*nr_initialised)++;
299 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
300 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
301 pgdat->first_deferred_pfn = pfn;
302 return false;
303 }
304
305 return true;
306 }
307 #else
308 static inline void reset_deferred_meminit(pg_data_t *pgdat)
309 {
310 }
311
312 static inline bool early_page_uninitialised(unsigned long pfn)
313 {
314 return false;
315 }
316
317 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
318 {
319 return false;
320 }
321
322 static inline bool update_defer_init(pg_data_t *pgdat,
323 unsigned long pfn, unsigned long zone_end,
324 unsigned long *nr_initialised)
325 {
326 return true;
327 }
328 #endif
329
330
331 void set_pageblock_migratetype(struct page *page, int migratetype)
332 {
333 if (unlikely(page_group_by_mobility_disabled &&
334 migratetype < MIGRATE_PCPTYPES))
335 migratetype = MIGRATE_UNMOVABLE;
336
337 set_pageblock_flags_group(page, (unsigned long)migratetype,
338 PB_migrate, PB_migrate_end);
339 }
340
341 #ifdef CONFIG_DEBUG_VM
342 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
343 {
344 int ret = 0;
345 unsigned seq;
346 unsigned long pfn = page_to_pfn(page);
347 unsigned long sp, start_pfn;
348
349 do {
350 seq = zone_span_seqbegin(zone);
351 start_pfn = zone->zone_start_pfn;
352 sp = zone->spanned_pages;
353 if (!zone_spans_pfn(zone, pfn))
354 ret = 1;
355 } while (zone_span_seqretry(zone, seq));
356
357 if (ret)
358 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
359 pfn, zone_to_nid(zone), zone->name,
360 start_pfn, start_pfn + sp);
361
362 return ret;
363 }
364
365 static int page_is_consistent(struct zone *zone, struct page *page)
366 {
367 if (!pfn_valid_within(page_to_pfn(page)))
368 return 0;
369 if (zone != page_zone(page))
370 return 0;
371
372 return 1;
373 }
374 /*
375 * Temporary debugging check for pages not lying within a given zone.
376 */
377 static int bad_range(struct zone *zone, struct page *page)
378 {
379 if (page_outside_zone_boundaries(zone, page))
380 return 1;
381 if (!page_is_consistent(zone, page))
382 return 1;
383
384 return 0;
385 }
386 #else
387 static inline int bad_range(struct zone *zone, struct page *page)
388 {
389 return 0;
390 }
391 #endif
392
393 static void bad_page(struct page *page, const char *reason,
394 unsigned long bad_flags)
395 {
396 static unsigned long resume;
397 static unsigned long nr_shown;
398 static unsigned long nr_unshown;
399
400 /* Don't complain about poisoned pages */
401 if (PageHWPoison(page)) {
402 page_mapcount_reset(page); /* remove PageBuddy */
403 return;
404 }
405
406 /*
407 * Allow a burst of 60 reports, then keep quiet for that minute;
408 * or allow a steady drip of one report per second.
409 */
410 if (nr_shown == 60) {
411 if (time_before(jiffies, resume)) {
412 nr_unshown++;
413 goto out;
414 }
415 if (nr_unshown) {
416 printk(KERN_ALERT
417 "BUG: Bad page state: %lu messages suppressed\n",
418 nr_unshown);
419 nr_unshown = 0;
420 }
421 nr_shown = 0;
422 }
423 if (nr_shown++ == 0)
424 resume = jiffies + 60 * HZ;
425
426 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
427 current->comm, page_to_pfn(page));
428 dump_page_badflags(page, reason, bad_flags);
429
430 print_modules();
431 dump_stack();
432 out:
433 /* Leave bad fields for debug, except PageBuddy could make trouble */
434 page_mapcount_reset(page); /* remove PageBuddy */
435 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
436 }
437
438 /*
439 * Higher-order pages are called "compound pages". They are structured thusly:
440 *
441 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
442 *
443 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
444 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
445 *
446 * The first tail page's ->compound_dtor holds the offset in array of compound
447 * page destructors. See compound_page_dtors.
448 *
449 * The first tail page's ->compound_order holds the order of allocation.
450 * This usage means that zero-order pages may not be compound.
451 */
452
453 static void free_compound_page(struct page *page)
454 {
455 __free_pages_ok(page, compound_order(page));
456 }
457
458 void prep_compound_page(struct page *page, unsigned int order)
459 {
460 int i;
461 int nr_pages = 1 << order;
462
463 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
464 set_compound_order(page, order);
465 __SetPageHead(page);
466 for (i = 1; i < nr_pages; i++) {
467 struct page *p = page + i;
468 set_page_count(p, 0);
469 p->mapping = TAIL_MAPPING;
470 set_compound_head(p, page);
471 }
472 atomic_set(compound_mapcount_ptr(page), -1);
473 }
474
475 #ifdef CONFIG_DEBUG_PAGEALLOC
476 unsigned int _debug_guardpage_minorder;
477 bool _debug_pagealloc_enabled __read_mostly;
478 bool _debug_guardpage_enabled __read_mostly;
479
480 static int __init early_debug_pagealloc(char *buf)
481 {
482 if (!buf)
483 return -EINVAL;
484
485 if (strcmp(buf, "on") == 0)
486 _debug_pagealloc_enabled = true;
487
488 return 0;
489 }
490 early_param("debug_pagealloc", early_debug_pagealloc);
491
492 static bool need_debug_guardpage(void)
493 {
494 /* If we don't use debug_pagealloc, we don't need guard page */
495 if (!debug_pagealloc_enabled())
496 return false;
497
498 return true;
499 }
500
501 static void init_debug_guardpage(void)
502 {
503 if (!debug_pagealloc_enabled())
504 return;
505
506 _debug_guardpage_enabled = true;
507 }
508
509 struct page_ext_operations debug_guardpage_ops = {
510 .need = need_debug_guardpage,
511 .init = init_debug_guardpage,
512 };
513
514 static int __init debug_guardpage_minorder_setup(char *buf)
515 {
516 unsigned long res;
517
518 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
519 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
520 return 0;
521 }
522 _debug_guardpage_minorder = res;
523 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
524 return 0;
525 }
526 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
527
528 static inline void set_page_guard(struct zone *zone, struct page *page,
529 unsigned int order, int migratetype)
530 {
531 struct page_ext *page_ext;
532
533 if (!debug_guardpage_enabled())
534 return;
535
536 page_ext = lookup_page_ext(page);
537 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
538
539 INIT_LIST_HEAD(&page->lru);
540 set_page_private(page, order);
541 /* Guard pages are not available for any usage */
542 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
543 }
544
545 static inline void clear_page_guard(struct zone *zone, struct page *page,
546 unsigned int order, int migratetype)
547 {
548 struct page_ext *page_ext;
549
550 if (!debug_guardpage_enabled())
551 return;
552
553 page_ext = lookup_page_ext(page);
554 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
555
556 set_page_private(page, 0);
557 if (!is_migrate_isolate(migratetype))
558 __mod_zone_freepage_state(zone, (1 << order), migratetype);
559 }
560 #else
561 struct page_ext_operations debug_guardpage_ops = { NULL, };
562 static inline void set_page_guard(struct zone *zone, struct page *page,
563 unsigned int order, int migratetype) {}
564 static inline void clear_page_guard(struct zone *zone, struct page *page,
565 unsigned int order, int migratetype) {}
566 #endif
567
568 static inline void set_page_order(struct page *page, unsigned int order)
569 {
570 set_page_private(page, order);
571 __SetPageBuddy(page);
572 }
573
574 static inline void rmv_page_order(struct page *page)
575 {
576 __ClearPageBuddy(page);
577 set_page_private(page, 0);
578 }
579
580 /*
581 * This function checks whether a page is free && is the buddy
582 * we can do coalesce a page and its buddy if
583 * (a) the buddy is not in a hole &&
584 * (b) the buddy is in the buddy system &&
585 * (c) a page and its buddy have the same order &&
586 * (d) a page and its buddy are in the same zone.
587 *
588 * For recording whether a page is in the buddy system, we set ->_mapcount
589 * PAGE_BUDDY_MAPCOUNT_VALUE.
590 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
591 * serialized by zone->lock.
592 *
593 * For recording page's order, we use page_private(page).
594 */
595 static inline int page_is_buddy(struct page *page, struct page *buddy,
596 unsigned int order)
597 {
598 if (!pfn_valid_within(page_to_pfn(buddy)))
599 return 0;
600
601 if (page_is_guard(buddy) && page_order(buddy) == order) {
602 if (page_zone_id(page) != page_zone_id(buddy))
603 return 0;
604
605 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
606
607 return 1;
608 }
609
610 if (PageBuddy(buddy) && page_order(buddy) == order) {
611 /*
612 * zone check is done late to avoid uselessly
613 * calculating zone/node ids for pages that could
614 * never merge.
615 */
616 if (page_zone_id(page) != page_zone_id(buddy))
617 return 0;
618
619 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
620
621 return 1;
622 }
623 return 0;
624 }
625
626 /*
627 * Freeing function for a buddy system allocator.
628 *
629 * The concept of a buddy system is to maintain direct-mapped table
630 * (containing bit values) for memory blocks of various "orders".
631 * The bottom level table contains the map for the smallest allocatable
632 * units of memory (here, pages), and each level above it describes
633 * pairs of units from the levels below, hence, "buddies".
634 * At a high level, all that happens here is marking the table entry
635 * at the bottom level available, and propagating the changes upward
636 * as necessary, plus some accounting needed to play nicely with other
637 * parts of the VM system.
638 * At each level, we keep a list of pages, which are heads of continuous
639 * free pages of length of (1 << order) and marked with _mapcount
640 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
641 * field.
642 * So when we are allocating or freeing one, we can derive the state of the
643 * other. That is, if we allocate a small block, and both were
644 * free, the remainder of the region must be split into blocks.
645 * If a block is freed, and its buddy is also free, then this
646 * triggers coalescing into a block of larger size.
647 *
648 * -- nyc
649 */
650
651 static inline void __free_one_page(struct page *page,
652 unsigned long pfn,
653 struct zone *zone, unsigned int order,
654 int migratetype)
655 {
656 unsigned long page_idx;
657 unsigned long combined_idx;
658 unsigned long uninitialized_var(buddy_idx);
659 struct page *buddy;
660 unsigned int max_order = MAX_ORDER;
661
662 VM_BUG_ON(!zone_is_initialized(zone));
663 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
664
665 VM_BUG_ON(migratetype == -1);
666 if (is_migrate_isolate(migratetype)) {
667 /*
668 * We restrict max order of merging to prevent merge
669 * between freepages on isolate pageblock and normal
670 * pageblock. Without this, pageblock isolation
671 * could cause incorrect freepage accounting.
672 */
673 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
674 } else {
675 __mod_zone_freepage_state(zone, 1 << order, migratetype);
676 }
677
678 page_idx = pfn & ((1 << max_order) - 1);
679
680 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
681 VM_BUG_ON_PAGE(bad_range(zone, page), page);
682
683 while (order < max_order - 1) {
684 buddy_idx = __find_buddy_index(page_idx, order);
685 buddy = page + (buddy_idx - page_idx);
686 if (!page_is_buddy(page, buddy, order))
687 break;
688 /*
689 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
690 * merge with it and move up one order.
691 */
692 if (page_is_guard(buddy)) {
693 clear_page_guard(zone, buddy, order, migratetype);
694 } else {
695 list_del(&buddy->lru);
696 zone->free_area[order].nr_free--;
697 rmv_page_order(buddy);
698 }
699 combined_idx = buddy_idx & page_idx;
700 page = page + (combined_idx - page_idx);
701 page_idx = combined_idx;
702 order++;
703 }
704 set_page_order(page, order);
705
706 /*
707 * If this is not the largest possible page, check if the buddy
708 * of the next-highest order is free. If it is, it's possible
709 * that pages are being freed that will coalesce soon. In case,
710 * that is happening, add the free page to the tail of the list
711 * so it's less likely to be used soon and more likely to be merged
712 * as a higher order page
713 */
714 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
715 struct page *higher_page, *higher_buddy;
716 combined_idx = buddy_idx & page_idx;
717 higher_page = page + (combined_idx - page_idx);
718 buddy_idx = __find_buddy_index(combined_idx, order + 1);
719 higher_buddy = higher_page + (buddy_idx - combined_idx);
720 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
721 list_add_tail(&page->lru,
722 &zone->free_area[order].free_list[migratetype]);
723 goto out;
724 }
725 }
726
727 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
728 out:
729 zone->free_area[order].nr_free++;
730 }
731
732 static inline int free_pages_check(struct page *page)
733 {
734 const char *bad_reason = NULL;
735 unsigned long bad_flags = 0;
736
737 if (unlikely(atomic_read(&page->_mapcount) != -1))
738 bad_reason = "nonzero mapcount";
739 if (unlikely(page->mapping != NULL))
740 bad_reason = "non-NULL mapping";
741 if (unlikely(atomic_read(&page->_count) != 0))
742 bad_reason = "nonzero _count";
743 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
744 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
745 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
746 }
747 #ifdef CONFIG_MEMCG
748 if (unlikely(page->mem_cgroup))
749 bad_reason = "page still charged to cgroup";
750 #endif
751 if (unlikely(bad_reason)) {
752 bad_page(page, bad_reason, bad_flags);
753 return 1;
754 }
755 page_cpupid_reset_last(page);
756 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
757 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
758 return 0;
759 }
760
761 /*
762 * Frees a number of pages from the PCP lists
763 * Assumes all pages on list are in same zone, and of same order.
764 * count is the number of pages to free.
765 *
766 * If the zone was previously in an "all pages pinned" state then look to
767 * see if this freeing clears that state.
768 *
769 * And clear the zone's pages_scanned counter, to hold off the "all pages are
770 * pinned" detection logic.
771 */
772 static void free_pcppages_bulk(struct zone *zone, int count,
773 struct per_cpu_pages *pcp)
774 {
775 int migratetype = 0;
776 int batch_free = 0;
777 int to_free = count;
778 unsigned long nr_scanned;
779
780 spin_lock(&zone->lock);
781 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
782 if (nr_scanned)
783 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
784
785 while (to_free) {
786 struct page *page;
787 struct list_head *list;
788
789 /*
790 * Remove pages from lists in a round-robin fashion. A
791 * batch_free count is maintained that is incremented when an
792 * empty list is encountered. This is so more pages are freed
793 * off fuller lists instead of spinning excessively around empty
794 * lists
795 */
796 do {
797 batch_free++;
798 if (++migratetype == MIGRATE_PCPTYPES)
799 migratetype = 0;
800 list = &pcp->lists[migratetype];
801 } while (list_empty(list));
802
803 /* This is the only non-empty list. Free them all. */
804 if (batch_free == MIGRATE_PCPTYPES)
805 batch_free = to_free;
806
807 do {
808 int mt; /* migratetype of the to-be-freed page */
809
810 page = list_last_entry(list, struct page, lru);
811 /* must delete as __free_one_page list manipulates */
812 list_del(&page->lru);
813
814 mt = get_pcppage_migratetype(page);
815 /* MIGRATE_ISOLATE page should not go to pcplists */
816 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
817 /* Pageblock could have been isolated meanwhile */
818 if (unlikely(has_isolate_pageblock(zone)))
819 mt = get_pageblock_migratetype(page);
820
821 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
822 trace_mm_page_pcpu_drain(page, 0, mt);
823 } while (--to_free && --batch_free && !list_empty(list));
824 }
825 spin_unlock(&zone->lock);
826 }
827
828 static void free_one_page(struct zone *zone,
829 struct page *page, unsigned long pfn,
830 unsigned int order,
831 int migratetype)
832 {
833 unsigned long nr_scanned;
834 spin_lock(&zone->lock);
835 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
836 if (nr_scanned)
837 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
838
839 if (unlikely(has_isolate_pageblock(zone) ||
840 is_migrate_isolate(migratetype))) {
841 migratetype = get_pfnblock_migratetype(page, pfn);
842 }
843 __free_one_page(page, pfn, zone, order, migratetype);
844 spin_unlock(&zone->lock);
845 }
846
847 static int free_tail_pages_check(struct page *head_page, struct page *page)
848 {
849 int ret = 1;
850
851 /*
852 * We rely page->lru.next never has bit 0 set, unless the page
853 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
854 */
855 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
856
857 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
858 ret = 0;
859 goto out;
860 }
861 /* mapping in first tail page is used for compound_mapcount() */
862 if (page - head_page == 1) {
863 if (unlikely(compound_mapcount(page))) {
864 bad_page(page, "nonzero compound_mapcount", 0);
865 goto out;
866 }
867 } else if (page->mapping != TAIL_MAPPING) {
868 bad_page(page, "corrupted mapping in tail page", 0);
869 goto out;
870 }
871 if (unlikely(!PageTail(page))) {
872 bad_page(page, "PageTail not set", 0);
873 goto out;
874 }
875 if (unlikely(compound_head(page) != head_page)) {
876 bad_page(page, "compound_head not consistent", 0);
877 goto out;
878 }
879 ret = 0;
880 out:
881 page->mapping = NULL;
882 clear_compound_head(page);
883 return ret;
884 }
885
886 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
887 unsigned long zone, int nid)
888 {
889 set_page_links(page, zone, nid, pfn);
890 init_page_count(page);
891 page_mapcount_reset(page);
892 page_cpupid_reset_last(page);
893
894 INIT_LIST_HEAD(&page->lru);
895 #ifdef WANT_PAGE_VIRTUAL
896 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
897 if (!is_highmem_idx(zone))
898 set_page_address(page, __va(pfn << PAGE_SHIFT));
899 #endif
900 }
901
902 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
903 int nid)
904 {
905 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
906 }
907
908 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
909 static void init_reserved_page(unsigned long pfn)
910 {
911 pg_data_t *pgdat;
912 int nid, zid;
913
914 if (!early_page_uninitialised(pfn))
915 return;
916
917 nid = early_pfn_to_nid(pfn);
918 pgdat = NODE_DATA(nid);
919
920 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
921 struct zone *zone = &pgdat->node_zones[zid];
922
923 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
924 break;
925 }
926 __init_single_pfn(pfn, zid, nid);
927 }
928 #else
929 static inline void init_reserved_page(unsigned long pfn)
930 {
931 }
932 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
933
934 /*
935 * Initialised pages do not have PageReserved set. This function is
936 * called for each range allocated by the bootmem allocator and
937 * marks the pages PageReserved. The remaining valid pages are later
938 * sent to the buddy page allocator.
939 */
940 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
941 {
942 unsigned long start_pfn = PFN_DOWN(start);
943 unsigned long end_pfn = PFN_UP(end);
944
945 for (; start_pfn < end_pfn; start_pfn++) {
946 if (pfn_valid(start_pfn)) {
947 struct page *page = pfn_to_page(start_pfn);
948
949 init_reserved_page(start_pfn);
950
951 /* Avoid false-positive PageTail() */
952 INIT_LIST_HEAD(&page->lru);
953
954 SetPageReserved(page);
955 }
956 }
957 }
958
959 static bool free_pages_prepare(struct page *page, unsigned int order)
960 {
961 bool compound = PageCompound(page);
962 int i, bad = 0;
963
964 VM_BUG_ON_PAGE(PageTail(page), page);
965 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
966
967 trace_mm_page_free(page, order);
968 kmemcheck_free_shadow(page, order);
969 kasan_free_pages(page, order);
970
971 if (PageAnon(page))
972 page->mapping = NULL;
973 bad += free_pages_check(page);
974 for (i = 1; i < (1 << order); i++) {
975 if (compound)
976 bad += free_tail_pages_check(page, page + i);
977 bad += free_pages_check(page + i);
978 }
979 if (bad)
980 return false;
981
982 reset_page_owner(page, order);
983
984 if (!PageHighMem(page)) {
985 debug_check_no_locks_freed(page_address(page),
986 PAGE_SIZE << order);
987 debug_check_no_obj_freed(page_address(page),
988 PAGE_SIZE << order);
989 }
990 arch_free_page(page, order);
991 kernel_map_pages(page, 1 << order, 0);
992
993 return true;
994 }
995
996 static void __free_pages_ok(struct page *page, unsigned int order)
997 {
998 unsigned long flags;
999 int migratetype;
1000 unsigned long pfn = page_to_pfn(page);
1001
1002 if (!free_pages_prepare(page, order))
1003 return;
1004
1005 migratetype = get_pfnblock_migratetype(page, pfn);
1006 local_irq_save(flags);
1007 __count_vm_events(PGFREE, 1 << order);
1008 free_one_page(page_zone(page), page, pfn, order, migratetype);
1009 local_irq_restore(flags);
1010 }
1011
1012 static void __init __free_pages_boot_core(struct page *page,
1013 unsigned long pfn, unsigned int order)
1014 {
1015 unsigned int nr_pages = 1 << order;
1016 struct page *p = page;
1017 unsigned int loop;
1018
1019 prefetchw(p);
1020 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1021 prefetchw(p + 1);
1022 __ClearPageReserved(p);
1023 set_page_count(p, 0);
1024 }
1025 __ClearPageReserved(p);
1026 set_page_count(p, 0);
1027
1028 page_zone(page)->managed_pages += nr_pages;
1029 set_page_refcounted(page);
1030 __free_pages(page, order);
1031 }
1032
1033 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1034 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1035
1036 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1037
1038 int __meminit early_pfn_to_nid(unsigned long pfn)
1039 {
1040 static DEFINE_SPINLOCK(early_pfn_lock);
1041 int nid;
1042
1043 spin_lock(&early_pfn_lock);
1044 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1045 if (nid < 0)
1046 nid = 0;
1047 spin_unlock(&early_pfn_lock);
1048
1049 return nid;
1050 }
1051 #endif
1052
1053 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1054 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1055 struct mminit_pfnnid_cache *state)
1056 {
1057 int nid;
1058
1059 nid = __early_pfn_to_nid(pfn, state);
1060 if (nid >= 0 && nid != node)
1061 return false;
1062 return true;
1063 }
1064
1065 /* Only safe to use early in boot when initialisation is single-threaded */
1066 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1067 {
1068 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1069 }
1070
1071 #else
1072
1073 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1074 {
1075 return true;
1076 }
1077 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1078 struct mminit_pfnnid_cache *state)
1079 {
1080 return true;
1081 }
1082 #endif
1083
1084
1085 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1086 unsigned int order)
1087 {
1088 if (early_page_uninitialised(pfn))
1089 return;
1090 return __free_pages_boot_core(page, pfn, order);
1091 }
1092
1093 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1094 static void __init deferred_free_range(struct page *page,
1095 unsigned long pfn, int nr_pages)
1096 {
1097 int i;
1098
1099 if (!page)
1100 return;
1101
1102 /* Free a large naturally-aligned chunk if possible */
1103 if (nr_pages == MAX_ORDER_NR_PAGES &&
1104 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1105 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1106 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1107 return;
1108 }
1109
1110 for (i = 0; i < nr_pages; i++, page++, pfn++)
1111 __free_pages_boot_core(page, pfn, 0);
1112 }
1113
1114 /* Completion tracking for deferred_init_memmap() threads */
1115 static atomic_t pgdat_init_n_undone __initdata;
1116 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1117
1118 static inline void __init pgdat_init_report_one_done(void)
1119 {
1120 if (atomic_dec_and_test(&pgdat_init_n_undone))
1121 complete(&pgdat_init_all_done_comp);
1122 }
1123
1124 /* Initialise remaining memory on a node */
1125 static int __init deferred_init_memmap(void *data)
1126 {
1127 pg_data_t *pgdat = data;
1128 int nid = pgdat->node_id;
1129 struct mminit_pfnnid_cache nid_init_state = { };
1130 unsigned long start = jiffies;
1131 unsigned long nr_pages = 0;
1132 unsigned long walk_start, walk_end;
1133 int i, zid;
1134 struct zone *zone;
1135 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1136 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1137
1138 if (first_init_pfn == ULONG_MAX) {
1139 pgdat_init_report_one_done();
1140 return 0;
1141 }
1142
1143 /* Bind memory initialisation thread to a local node if possible */
1144 if (!cpumask_empty(cpumask))
1145 set_cpus_allowed_ptr(current, cpumask);
1146
1147 /* Sanity check boundaries */
1148 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1149 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1150 pgdat->first_deferred_pfn = ULONG_MAX;
1151
1152 /* Only the highest zone is deferred so find it */
1153 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1154 zone = pgdat->node_zones + zid;
1155 if (first_init_pfn < zone_end_pfn(zone))
1156 break;
1157 }
1158
1159 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1160 unsigned long pfn, end_pfn;
1161 struct page *page = NULL;
1162 struct page *free_base_page = NULL;
1163 unsigned long free_base_pfn = 0;
1164 int nr_to_free = 0;
1165
1166 end_pfn = min(walk_end, zone_end_pfn(zone));
1167 pfn = first_init_pfn;
1168 if (pfn < walk_start)
1169 pfn = walk_start;
1170 if (pfn < zone->zone_start_pfn)
1171 pfn = zone->zone_start_pfn;
1172
1173 for (; pfn < end_pfn; pfn++) {
1174 if (!pfn_valid_within(pfn))
1175 goto free_range;
1176
1177 /*
1178 * Ensure pfn_valid is checked every
1179 * MAX_ORDER_NR_PAGES for memory holes
1180 */
1181 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1182 if (!pfn_valid(pfn)) {
1183 page = NULL;
1184 goto free_range;
1185 }
1186 }
1187
1188 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1189 page = NULL;
1190 goto free_range;
1191 }
1192
1193 /* Minimise pfn page lookups and scheduler checks */
1194 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1195 page++;
1196 } else {
1197 nr_pages += nr_to_free;
1198 deferred_free_range(free_base_page,
1199 free_base_pfn, nr_to_free);
1200 free_base_page = NULL;
1201 free_base_pfn = nr_to_free = 0;
1202
1203 page = pfn_to_page(pfn);
1204 cond_resched();
1205 }
1206
1207 if (page->flags) {
1208 VM_BUG_ON(page_zone(page) != zone);
1209 goto free_range;
1210 }
1211
1212 __init_single_page(page, pfn, zid, nid);
1213 if (!free_base_page) {
1214 free_base_page = page;
1215 free_base_pfn = pfn;
1216 nr_to_free = 0;
1217 }
1218 nr_to_free++;
1219
1220 /* Where possible, batch up pages for a single free */
1221 continue;
1222 free_range:
1223 /* Free the current block of pages to allocator */
1224 nr_pages += nr_to_free;
1225 deferred_free_range(free_base_page, free_base_pfn,
1226 nr_to_free);
1227 free_base_page = NULL;
1228 free_base_pfn = nr_to_free = 0;
1229 }
1230
1231 first_init_pfn = max(end_pfn, first_init_pfn);
1232 }
1233
1234 /* Sanity check that the next zone really is unpopulated */
1235 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1236
1237 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1238 jiffies_to_msecs(jiffies - start));
1239
1240 pgdat_init_report_one_done();
1241 return 0;
1242 }
1243
1244 void __init page_alloc_init_late(void)
1245 {
1246 int nid;
1247
1248 /* There will be num_node_state(N_MEMORY) threads */
1249 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1250 for_each_node_state(nid, N_MEMORY) {
1251 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1252 }
1253
1254 /* Block until all are initialised */
1255 wait_for_completion(&pgdat_init_all_done_comp);
1256
1257 /* Reinit limits that are based on free pages after the kernel is up */
1258 files_maxfiles_init();
1259 }
1260 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1261
1262 #ifdef CONFIG_CMA
1263 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1264 void __init init_cma_reserved_pageblock(struct page *page)
1265 {
1266 unsigned i = pageblock_nr_pages;
1267 struct page *p = page;
1268
1269 do {
1270 __ClearPageReserved(p);
1271 set_page_count(p, 0);
1272 } while (++p, --i);
1273
1274 set_pageblock_migratetype(page, MIGRATE_CMA);
1275
1276 if (pageblock_order >= MAX_ORDER) {
1277 i = pageblock_nr_pages;
1278 p = page;
1279 do {
1280 set_page_refcounted(p);
1281 __free_pages(p, MAX_ORDER - 1);
1282 p += MAX_ORDER_NR_PAGES;
1283 } while (i -= MAX_ORDER_NR_PAGES);
1284 } else {
1285 set_page_refcounted(page);
1286 __free_pages(page, pageblock_order);
1287 }
1288
1289 adjust_managed_page_count(page, pageblock_nr_pages);
1290 }
1291 #endif
1292
1293 /*
1294 * The order of subdivision here is critical for the IO subsystem.
1295 * Please do not alter this order without good reasons and regression
1296 * testing. Specifically, as large blocks of memory are subdivided,
1297 * the order in which smaller blocks are delivered depends on the order
1298 * they're subdivided in this function. This is the primary factor
1299 * influencing the order in which pages are delivered to the IO
1300 * subsystem according to empirical testing, and this is also justified
1301 * by considering the behavior of a buddy system containing a single
1302 * large block of memory acted on by a series of small allocations.
1303 * This behavior is a critical factor in sglist merging's success.
1304 *
1305 * -- nyc
1306 */
1307 static inline void expand(struct zone *zone, struct page *page,
1308 int low, int high, struct free_area *area,
1309 int migratetype)
1310 {
1311 unsigned long size = 1 << high;
1312
1313 while (high > low) {
1314 area--;
1315 high--;
1316 size >>= 1;
1317 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1318
1319 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1320 debug_guardpage_enabled() &&
1321 high < debug_guardpage_minorder()) {
1322 /*
1323 * Mark as guard pages (or page), that will allow to
1324 * merge back to allocator when buddy will be freed.
1325 * Corresponding page table entries will not be touched,
1326 * pages will stay not present in virtual address space
1327 */
1328 set_page_guard(zone, &page[size], high, migratetype);
1329 continue;
1330 }
1331 list_add(&page[size].lru, &area->free_list[migratetype]);
1332 area->nr_free++;
1333 set_page_order(&page[size], high);
1334 }
1335 }
1336
1337 /*
1338 * This page is about to be returned from the page allocator
1339 */
1340 static inline int check_new_page(struct page *page)
1341 {
1342 const char *bad_reason = NULL;
1343 unsigned long bad_flags = 0;
1344
1345 if (unlikely(atomic_read(&page->_mapcount) != -1))
1346 bad_reason = "nonzero mapcount";
1347 if (unlikely(page->mapping != NULL))
1348 bad_reason = "non-NULL mapping";
1349 if (unlikely(atomic_read(&page->_count) != 0))
1350 bad_reason = "nonzero _count";
1351 if (unlikely(page->flags & __PG_HWPOISON)) {
1352 bad_reason = "HWPoisoned (hardware-corrupted)";
1353 bad_flags = __PG_HWPOISON;
1354 }
1355 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1356 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1357 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1358 }
1359 #ifdef CONFIG_MEMCG
1360 if (unlikely(page->mem_cgroup))
1361 bad_reason = "page still charged to cgroup";
1362 #endif
1363 if (unlikely(bad_reason)) {
1364 bad_page(page, bad_reason, bad_flags);
1365 return 1;
1366 }
1367 return 0;
1368 }
1369
1370 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1371 int alloc_flags)
1372 {
1373 int i;
1374
1375 for (i = 0; i < (1 << order); i++) {
1376 struct page *p = page + i;
1377 if (unlikely(check_new_page(p)))
1378 return 1;
1379 }
1380
1381 set_page_private(page, 0);
1382 set_page_refcounted(page);
1383
1384 arch_alloc_page(page, order);
1385 kernel_map_pages(page, 1 << order, 1);
1386 kasan_alloc_pages(page, order);
1387
1388 if (gfp_flags & __GFP_ZERO)
1389 for (i = 0; i < (1 << order); i++)
1390 clear_highpage(page + i);
1391
1392 if (order && (gfp_flags & __GFP_COMP))
1393 prep_compound_page(page, order);
1394
1395 set_page_owner(page, order, gfp_flags);
1396
1397 /*
1398 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1399 * allocate the page. The expectation is that the caller is taking
1400 * steps that will free more memory. The caller should avoid the page
1401 * being used for !PFMEMALLOC purposes.
1402 */
1403 if (alloc_flags & ALLOC_NO_WATERMARKS)
1404 set_page_pfmemalloc(page);
1405 else
1406 clear_page_pfmemalloc(page);
1407
1408 return 0;
1409 }
1410
1411 /*
1412 * Go through the free lists for the given migratetype and remove
1413 * the smallest available page from the freelists
1414 */
1415 static inline
1416 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1417 int migratetype)
1418 {
1419 unsigned int current_order;
1420 struct free_area *area;
1421 struct page *page;
1422
1423 /* Find a page of the appropriate size in the preferred list */
1424 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1425 area = &(zone->free_area[current_order]);
1426 page = list_first_entry_or_null(&area->free_list[migratetype],
1427 struct page, lru);
1428 if (!page)
1429 continue;
1430 list_del(&page->lru);
1431 rmv_page_order(page);
1432 area->nr_free--;
1433 expand(zone, page, order, current_order, area, migratetype);
1434 set_pcppage_migratetype(page, migratetype);
1435 return page;
1436 }
1437
1438 return NULL;
1439 }
1440
1441
1442 /*
1443 * This array describes the order lists are fallen back to when
1444 * the free lists for the desirable migrate type are depleted
1445 */
1446 static int fallbacks[MIGRATE_TYPES][4] = {
1447 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1448 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1449 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1450 #ifdef CONFIG_CMA
1451 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1452 #endif
1453 #ifdef CONFIG_MEMORY_ISOLATION
1454 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1455 #endif
1456 };
1457
1458 #ifdef CONFIG_CMA
1459 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1460 unsigned int order)
1461 {
1462 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1463 }
1464 #else
1465 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1466 unsigned int order) { return NULL; }
1467 #endif
1468
1469 /*
1470 * Move the free pages in a range to the free lists of the requested type.
1471 * Note that start_page and end_pages are not aligned on a pageblock
1472 * boundary. If alignment is required, use move_freepages_block()
1473 */
1474 int move_freepages(struct zone *zone,
1475 struct page *start_page, struct page *end_page,
1476 int migratetype)
1477 {
1478 struct page *page;
1479 unsigned int order;
1480 int pages_moved = 0;
1481
1482 #ifndef CONFIG_HOLES_IN_ZONE
1483 /*
1484 * page_zone is not safe to call in this context when
1485 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1486 * anyway as we check zone boundaries in move_freepages_block().
1487 * Remove at a later date when no bug reports exist related to
1488 * grouping pages by mobility
1489 */
1490 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1491 #endif
1492
1493 for (page = start_page; page <= end_page;) {
1494 /* Make sure we are not inadvertently changing nodes */
1495 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1496
1497 if (!pfn_valid_within(page_to_pfn(page))) {
1498 page++;
1499 continue;
1500 }
1501
1502 if (!PageBuddy(page)) {
1503 page++;
1504 continue;
1505 }
1506
1507 order = page_order(page);
1508 list_move(&page->lru,
1509 &zone->free_area[order].free_list[migratetype]);
1510 page += 1 << order;
1511 pages_moved += 1 << order;
1512 }
1513
1514 return pages_moved;
1515 }
1516
1517 int move_freepages_block(struct zone *zone, struct page *page,
1518 int migratetype)
1519 {
1520 unsigned long start_pfn, end_pfn;
1521 struct page *start_page, *end_page;
1522
1523 start_pfn = page_to_pfn(page);
1524 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1525 start_page = pfn_to_page(start_pfn);
1526 end_page = start_page + pageblock_nr_pages - 1;
1527 end_pfn = start_pfn + pageblock_nr_pages - 1;
1528
1529 /* Do not cross zone boundaries */
1530 if (!zone_spans_pfn(zone, start_pfn))
1531 start_page = page;
1532 if (!zone_spans_pfn(zone, end_pfn))
1533 return 0;
1534
1535 return move_freepages(zone, start_page, end_page, migratetype);
1536 }
1537
1538 static void change_pageblock_range(struct page *pageblock_page,
1539 int start_order, int migratetype)
1540 {
1541 int nr_pageblocks = 1 << (start_order - pageblock_order);
1542
1543 while (nr_pageblocks--) {
1544 set_pageblock_migratetype(pageblock_page, migratetype);
1545 pageblock_page += pageblock_nr_pages;
1546 }
1547 }
1548
1549 /*
1550 * When we are falling back to another migratetype during allocation, try to
1551 * steal extra free pages from the same pageblocks to satisfy further
1552 * allocations, instead of polluting multiple pageblocks.
1553 *
1554 * If we are stealing a relatively large buddy page, it is likely there will
1555 * be more free pages in the pageblock, so try to steal them all. For
1556 * reclaimable and unmovable allocations, we steal regardless of page size,
1557 * as fragmentation caused by those allocations polluting movable pageblocks
1558 * is worse than movable allocations stealing from unmovable and reclaimable
1559 * pageblocks.
1560 */
1561 static bool can_steal_fallback(unsigned int order, int start_mt)
1562 {
1563 /*
1564 * Leaving this order check is intended, although there is
1565 * relaxed order check in next check. The reason is that
1566 * we can actually steal whole pageblock if this condition met,
1567 * but, below check doesn't guarantee it and that is just heuristic
1568 * so could be changed anytime.
1569 */
1570 if (order >= pageblock_order)
1571 return true;
1572
1573 if (order >= pageblock_order / 2 ||
1574 start_mt == MIGRATE_RECLAIMABLE ||
1575 start_mt == MIGRATE_UNMOVABLE ||
1576 page_group_by_mobility_disabled)
1577 return true;
1578
1579 return false;
1580 }
1581
1582 /*
1583 * This function implements actual steal behaviour. If order is large enough,
1584 * we can steal whole pageblock. If not, we first move freepages in this
1585 * pageblock and check whether half of pages are moved or not. If half of
1586 * pages are moved, we can change migratetype of pageblock and permanently
1587 * use it's pages as requested migratetype in the future.
1588 */
1589 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1590 int start_type)
1591 {
1592 unsigned int current_order = page_order(page);
1593 int pages;
1594
1595 /* Take ownership for orders >= pageblock_order */
1596 if (current_order >= pageblock_order) {
1597 change_pageblock_range(page, current_order, start_type);
1598 return;
1599 }
1600
1601 pages = move_freepages_block(zone, page, start_type);
1602
1603 /* Claim the whole block if over half of it is free */
1604 if (pages >= (1 << (pageblock_order-1)) ||
1605 page_group_by_mobility_disabled)
1606 set_pageblock_migratetype(page, start_type);
1607 }
1608
1609 /*
1610 * Check whether there is a suitable fallback freepage with requested order.
1611 * If only_stealable is true, this function returns fallback_mt only if
1612 * we can steal other freepages all together. This would help to reduce
1613 * fragmentation due to mixed migratetype pages in one pageblock.
1614 */
1615 int find_suitable_fallback(struct free_area *area, unsigned int order,
1616 int migratetype, bool only_stealable, bool *can_steal)
1617 {
1618 int i;
1619 int fallback_mt;
1620
1621 if (area->nr_free == 0)
1622 return -1;
1623
1624 *can_steal = false;
1625 for (i = 0;; i++) {
1626 fallback_mt = fallbacks[migratetype][i];
1627 if (fallback_mt == MIGRATE_TYPES)
1628 break;
1629
1630 if (list_empty(&area->free_list[fallback_mt]))
1631 continue;
1632
1633 if (can_steal_fallback(order, migratetype))
1634 *can_steal = true;
1635
1636 if (!only_stealable)
1637 return fallback_mt;
1638
1639 if (*can_steal)
1640 return fallback_mt;
1641 }
1642
1643 return -1;
1644 }
1645
1646 /*
1647 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1648 * there are no empty page blocks that contain a page with a suitable order
1649 */
1650 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1651 unsigned int alloc_order)
1652 {
1653 int mt;
1654 unsigned long max_managed, flags;
1655
1656 /*
1657 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1658 * Check is race-prone but harmless.
1659 */
1660 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1661 if (zone->nr_reserved_highatomic >= max_managed)
1662 return;
1663
1664 spin_lock_irqsave(&zone->lock, flags);
1665
1666 /* Recheck the nr_reserved_highatomic limit under the lock */
1667 if (zone->nr_reserved_highatomic >= max_managed)
1668 goto out_unlock;
1669
1670 /* Yoink! */
1671 mt = get_pageblock_migratetype(page);
1672 if (mt != MIGRATE_HIGHATOMIC &&
1673 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1674 zone->nr_reserved_highatomic += pageblock_nr_pages;
1675 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1676 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1677 }
1678
1679 out_unlock:
1680 spin_unlock_irqrestore(&zone->lock, flags);
1681 }
1682
1683 /*
1684 * Used when an allocation is about to fail under memory pressure. This
1685 * potentially hurts the reliability of high-order allocations when under
1686 * intense memory pressure but failed atomic allocations should be easier
1687 * to recover from than an OOM.
1688 */
1689 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1690 {
1691 struct zonelist *zonelist = ac->zonelist;
1692 unsigned long flags;
1693 struct zoneref *z;
1694 struct zone *zone;
1695 struct page *page;
1696 int order;
1697
1698 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1699 ac->nodemask) {
1700 /* Preserve at least one pageblock */
1701 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1702 continue;
1703
1704 spin_lock_irqsave(&zone->lock, flags);
1705 for (order = 0; order < MAX_ORDER; order++) {
1706 struct free_area *area = &(zone->free_area[order]);
1707
1708 page = list_first_entry_or_null(
1709 &area->free_list[MIGRATE_HIGHATOMIC],
1710 struct page, lru);
1711 if (!page)
1712 continue;
1713
1714 /*
1715 * It should never happen but changes to locking could
1716 * inadvertently allow a per-cpu drain to add pages
1717 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1718 * and watch for underflows.
1719 */
1720 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1721 zone->nr_reserved_highatomic);
1722
1723 /*
1724 * Convert to ac->migratetype and avoid the normal
1725 * pageblock stealing heuristics. Minimally, the caller
1726 * is doing the work and needs the pages. More
1727 * importantly, if the block was always converted to
1728 * MIGRATE_UNMOVABLE or another type then the number
1729 * of pageblocks that cannot be completely freed
1730 * may increase.
1731 */
1732 set_pageblock_migratetype(page, ac->migratetype);
1733 move_freepages_block(zone, page, ac->migratetype);
1734 spin_unlock_irqrestore(&zone->lock, flags);
1735 return;
1736 }
1737 spin_unlock_irqrestore(&zone->lock, flags);
1738 }
1739 }
1740
1741 /* Remove an element from the buddy allocator from the fallback list */
1742 static inline struct page *
1743 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1744 {
1745 struct free_area *area;
1746 unsigned int current_order;
1747 struct page *page;
1748 int fallback_mt;
1749 bool can_steal;
1750
1751 /* Find the largest possible block of pages in the other list */
1752 for (current_order = MAX_ORDER-1;
1753 current_order >= order && current_order <= MAX_ORDER-1;
1754 --current_order) {
1755 area = &(zone->free_area[current_order]);
1756 fallback_mt = find_suitable_fallback(area, current_order,
1757 start_migratetype, false, &can_steal);
1758 if (fallback_mt == -1)
1759 continue;
1760
1761 page = list_first_entry(&area->free_list[fallback_mt],
1762 struct page, lru);
1763 if (can_steal)
1764 steal_suitable_fallback(zone, page, start_migratetype);
1765
1766 /* Remove the page from the freelists */
1767 area->nr_free--;
1768 list_del(&page->lru);
1769 rmv_page_order(page);
1770
1771 expand(zone, page, order, current_order, area,
1772 start_migratetype);
1773 /*
1774 * The pcppage_migratetype may differ from pageblock's
1775 * migratetype depending on the decisions in
1776 * find_suitable_fallback(). This is OK as long as it does not
1777 * differ for MIGRATE_CMA pageblocks. Those can be used as
1778 * fallback only via special __rmqueue_cma_fallback() function
1779 */
1780 set_pcppage_migratetype(page, start_migratetype);
1781
1782 trace_mm_page_alloc_extfrag(page, order, current_order,
1783 start_migratetype, fallback_mt);
1784
1785 return page;
1786 }
1787
1788 return NULL;
1789 }
1790
1791 /*
1792 * Do the hard work of removing an element from the buddy allocator.
1793 * Call me with the zone->lock already held.
1794 */
1795 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1796 int migratetype)
1797 {
1798 struct page *page;
1799
1800 page = __rmqueue_smallest(zone, order, migratetype);
1801 if (unlikely(!page)) {
1802 if (migratetype == MIGRATE_MOVABLE)
1803 page = __rmqueue_cma_fallback(zone, order);
1804
1805 if (!page)
1806 page = __rmqueue_fallback(zone, order, migratetype);
1807 }
1808
1809 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1810 return page;
1811 }
1812
1813 /*
1814 * Obtain a specified number of elements from the buddy allocator, all under
1815 * a single hold of the lock, for efficiency. Add them to the supplied list.
1816 * Returns the number of new pages which were placed at *list.
1817 */
1818 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1819 unsigned long count, struct list_head *list,
1820 int migratetype, bool cold)
1821 {
1822 int i;
1823
1824 spin_lock(&zone->lock);
1825 for (i = 0; i < count; ++i) {
1826 struct page *page = __rmqueue(zone, order, migratetype);
1827 if (unlikely(page == NULL))
1828 break;
1829
1830 /*
1831 * Split buddy pages returned by expand() are received here
1832 * in physical page order. The page is added to the callers and
1833 * list and the list head then moves forward. From the callers
1834 * perspective, the linked list is ordered by page number in
1835 * some conditions. This is useful for IO devices that can
1836 * merge IO requests if the physical pages are ordered
1837 * properly.
1838 */
1839 if (likely(!cold))
1840 list_add(&page->lru, list);
1841 else
1842 list_add_tail(&page->lru, list);
1843 list = &page->lru;
1844 if (is_migrate_cma(get_pcppage_migratetype(page)))
1845 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1846 -(1 << order));
1847 }
1848 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1849 spin_unlock(&zone->lock);
1850 return i;
1851 }
1852
1853 #ifdef CONFIG_NUMA
1854 /*
1855 * Called from the vmstat counter updater to drain pagesets of this
1856 * currently executing processor on remote nodes after they have
1857 * expired.
1858 *
1859 * Note that this function must be called with the thread pinned to
1860 * a single processor.
1861 */
1862 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1863 {
1864 unsigned long flags;
1865 int to_drain, batch;
1866
1867 local_irq_save(flags);
1868 batch = READ_ONCE(pcp->batch);
1869 to_drain = min(pcp->count, batch);
1870 if (to_drain > 0) {
1871 free_pcppages_bulk(zone, to_drain, pcp);
1872 pcp->count -= to_drain;
1873 }
1874 local_irq_restore(flags);
1875 }
1876 #endif
1877
1878 /*
1879 * Drain pcplists of the indicated processor and zone.
1880 *
1881 * The processor must either be the current processor and the
1882 * thread pinned to the current processor or a processor that
1883 * is not online.
1884 */
1885 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1886 {
1887 unsigned long flags;
1888 struct per_cpu_pageset *pset;
1889 struct per_cpu_pages *pcp;
1890
1891 local_irq_save(flags);
1892 pset = per_cpu_ptr(zone->pageset, cpu);
1893
1894 pcp = &pset->pcp;
1895 if (pcp->count) {
1896 free_pcppages_bulk(zone, pcp->count, pcp);
1897 pcp->count = 0;
1898 }
1899 local_irq_restore(flags);
1900 }
1901
1902 /*
1903 * Drain pcplists of all zones on the indicated processor.
1904 *
1905 * The processor must either be the current processor and the
1906 * thread pinned to the current processor or a processor that
1907 * is not online.
1908 */
1909 static void drain_pages(unsigned int cpu)
1910 {
1911 struct zone *zone;
1912
1913 for_each_populated_zone(zone) {
1914 drain_pages_zone(cpu, zone);
1915 }
1916 }
1917
1918 /*
1919 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1920 *
1921 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1922 * the single zone's pages.
1923 */
1924 void drain_local_pages(struct zone *zone)
1925 {
1926 int cpu = smp_processor_id();
1927
1928 if (zone)
1929 drain_pages_zone(cpu, zone);
1930 else
1931 drain_pages(cpu);
1932 }
1933
1934 /*
1935 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1936 *
1937 * When zone parameter is non-NULL, spill just the single zone's pages.
1938 *
1939 * Note that this code is protected against sending an IPI to an offline
1940 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1941 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1942 * nothing keeps CPUs from showing up after we populated the cpumask and
1943 * before the call to on_each_cpu_mask().
1944 */
1945 void drain_all_pages(struct zone *zone)
1946 {
1947 int cpu;
1948
1949 /*
1950 * Allocate in the BSS so we wont require allocation in
1951 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1952 */
1953 static cpumask_t cpus_with_pcps;
1954
1955 /*
1956 * We don't care about racing with CPU hotplug event
1957 * as offline notification will cause the notified
1958 * cpu to drain that CPU pcps and on_each_cpu_mask
1959 * disables preemption as part of its processing
1960 */
1961 for_each_online_cpu(cpu) {
1962 struct per_cpu_pageset *pcp;
1963 struct zone *z;
1964 bool has_pcps = false;
1965
1966 if (zone) {
1967 pcp = per_cpu_ptr(zone->pageset, cpu);
1968 if (pcp->pcp.count)
1969 has_pcps = true;
1970 } else {
1971 for_each_populated_zone(z) {
1972 pcp = per_cpu_ptr(z->pageset, cpu);
1973 if (pcp->pcp.count) {
1974 has_pcps = true;
1975 break;
1976 }
1977 }
1978 }
1979
1980 if (has_pcps)
1981 cpumask_set_cpu(cpu, &cpus_with_pcps);
1982 else
1983 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1984 }
1985 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1986 zone, 1);
1987 }
1988
1989 #ifdef CONFIG_HIBERNATION
1990
1991 void mark_free_pages(struct zone *zone)
1992 {
1993 unsigned long pfn, max_zone_pfn;
1994 unsigned long flags;
1995 unsigned int order, t;
1996 struct page *page;
1997
1998 if (zone_is_empty(zone))
1999 return;
2000
2001 spin_lock_irqsave(&zone->lock, flags);
2002
2003 max_zone_pfn = zone_end_pfn(zone);
2004 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2005 if (pfn_valid(pfn)) {
2006 page = pfn_to_page(pfn);
2007 if (!swsusp_page_is_forbidden(page))
2008 swsusp_unset_page_free(page);
2009 }
2010
2011 for_each_migratetype_order(order, t) {
2012 list_for_each_entry(page,
2013 &zone->free_area[order].free_list[t], lru) {
2014 unsigned long i;
2015
2016 pfn = page_to_pfn(page);
2017 for (i = 0; i < (1UL << order); i++)
2018 swsusp_set_page_free(pfn_to_page(pfn + i));
2019 }
2020 }
2021 spin_unlock_irqrestore(&zone->lock, flags);
2022 }
2023 #endif /* CONFIG_PM */
2024
2025 /*
2026 * Free a 0-order page
2027 * cold == true ? free a cold page : free a hot page
2028 */
2029 void free_hot_cold_page(struct page *page, bool cold)
2030 {
2031 struct zone *zone = page_zone(page);
2032 struct per_cpu_pages *pcp;
2033 unsigned long flags;
2034 unsigned long pfn = page_to_pfn(page);
2035 int migratetype;
2036
2037 if (!free_pages_prepare(page, 0))
2038 return;
2039
2040 migratetype = get_pfnblock_migratetype(page, pfn);
2041 set_pcppage_migratetype(page, migratetype);
2042 local_irq_save(flags);
2043 __count_vm_event(PGFREE);
2044
2045 /*
2046 * We only track unmovable, reclaimable and movable on pcp lists.
2047 * Free ISOLATE pages back to the allocator because they are being
2048 * offlined but treat RESERVE as movable pages so we can get those
2049 * areas back if necessary. Otherwise, we may have to free
2050 * excessively into the page allocator
2051 */
2052 if (migratetype >= MIGRATE_PCPTYPES) {
2053 if (unlikely(is_migrate_isolate(migratetype))) {
2054 free_one_page(zone, page, pfn, 0, migratetype);
2055 goto out;
2056 }
2057 migratetype = MIGRATE_MOVABLE;
2058 }
2059
2060 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2061 if (!cold)
2062 list_add(&page->lru, &pcp->lists[migratetype]);
2063 else
2064 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2065 pcp->count++;
2066 if (pcp->count >= pcp->high) {
2067 unsigned long batch = READ_ONCE(pcp->batch);
2068 free_pcppages_bulk(zone, batch, pcp);
2069 pcp->count -= batch;
2070 }
2071
2072 out:
2073 local_irq_restore(flags);
2074 }
2075
2076 /*
2077 * Free a list of 0-order pages
2078 */
2079 void free_hot_cold_page_list(struct list_head *list, bool cold)
2080 {
2081 struct page *page, *next;
2082
2083 list_for_each_entry_safe(page, next, list, lru) {
2084 trace_mm_page_free_batched(page, cold);
2085 free_hot_cold_page(page, cold);
2086 }
2087 }
2088
2089 /*
2090 * split_page takes a non-compound higher-order page, and splits it into
2091 * n (1<<order) sub-pages: page[0..n]
2092 * Each sub-page must be freed individually.
2093 *
2094 * Note: this is probably too low level an operation for use in drivers.
2095 * Please consult with lkml before using this in your driver.
2096 */
2097 void split_page(struct page *page, unsigned int order)
2098 {
2099 int i;
2100 gfp_t gfp_mask;
2101
2102 VM_BUG_ON_PAGE(PageCompound(page), page);
2103 VM_BUG_ON_PAGE(!page_count(page), page);
2104
2105 #ifdef CONFIG_KMEMCHECK
2106 /*
2107 * Split shadow pages too, because free(page[0]) would
2108 * otherwise free the whole shadow.
2109 */
2110 if (kmemcheck_page_is_tracked(page))
2111 split_page(virt_to_page(page[0].shadow), order);
2112 #endif
2113
2114 gfp_mask = get_page_owner_gfp(page);
2115 set_page_owner(page, 0, gfp_mask);
2116 for (i = 1; i < (1 << order); i++) {
2117 set_page_refcounted(page + i);
2118 set_page_owner(page + i, 0, gfp_mask);
2119 }
2120 }
2121 EXPORT_SYMBOL_GPL(split_page);
2122
2123 int __isolate_free_page(struct page *page, unsigned int order)
2124 {
2125 unsigned long watermark;
2126 struct zone *zone;
2127 int mt;
2128
2129 BUG_ON(!PageBuddy(page));
2130
2131 zone = page_zone(page);
2132 mt = get_pageblock_migratetype(page);
2133
2134 if (!is_migrate_isolate(mt)) {
2135 /* Obey watermarks as if the page was being allocated */
2136 watermark = low_wmark_pages(zone) + (1 << order);
2137 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2138 return 0;
2139
2140 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2141 }
2142
2143 /* Remove page from free list */
2144 list_del(&page->lru);
2145 zone->free_area[order].nr_free--;
2146 rmv_page_order(page);
2147
2148 set_page_owner(page, order, __GFP_MOVABLE);
2149
2150 /* Set the pageblock if the isolated page is at least a pageblock */
2151 if (order >= pageblock_order - 1) {
2152 struct page *endpage = page + (1 << order) - 1;
2153 for (; page < endpage; page += pageblock_nr_pages) {
2154 int mt = get_pageblock_migratetype(page);
2155 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2156 set_pageblock_migratetype(page,
2157 MIGRATE_MOVABLE);
2158 }
2159 }
2160
2161
2162 return 1UL << order;
2163 }
2164
2165 /*
2166 * Similar to split_page except the page is already free. As this is only
2167 * being used for migration, the migratetype of the block also changes.
2168 * As this is called with interrupts disabled, the caller is responsible
2169 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2170 * are enabled.
2171 *
2172 * Note: this is probably too low level an operation for use in drivers.
2173 * Please consult with lkml before using this in your driver.
2174 */
2175 int split_free_page(struct page *page)
2176 {
2177 unsigned int order;
2178 int nr_pages;
2179
2180 order = page_order(page);
2181
2182 nr_pages = __isolate_free_page(page, order);
2183 if (!nr_pages)
2184 return 0;
2185
2186 /* Split into individual pages */
2187 set_page_refcounted(page);
2188 split_page(page, order);
2189 return nr_pages;
2190 }
2191
2192 /*
2193 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2194 */
2195 static inline
2196 struct page *buffered_rmqueue(struct zone *preferred_zone,
2197 struct zone *zone, unsigned int order,
2198 gfp_t gfp_flags, int alloc_flags, int migratetype)
2199 {
2200 unsigned long flags;
2201 struct page *page;
2202 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2203
2204 if (likely(order == 0)) {
2205 struct per_cpu_pages *pcp;
2206 struct list_head *list;
2207
2208 local_irq_save(flags);
2209 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2210 list = &pcp->lists[migratetype];
2211 if (list_empty(list)) {
2212 pcp->count += rmqueue_bulk(zone, 0,
2213 pcp->batch, list,
2214 migratetype, cold);
2215 if (unlikely(list_empty(list)))
2216 goto failed;
2217 }
2218
2219 if (cold)
2220 page = list_last_entry(list, struct page, lru);
2221 else
2222 page = list_first_entry(list, struct page, lru);
2223
2224 list_del(&page->lru);
2225 pcp->count--;
2226 } else {
2227 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2228 /*
2229 * __GFP_NOFAIL is not to be used in new code.
2230 *
2231 * All __GFP_NOFAIL callers should be fixed so that they
2232 * properly detect and handle allocation failures.
2233 *
2234 * We most definitely don't want callers attempting to
2235 * allocate greater than order-1 page units with
2236 * __GFP_NOFAIL.
2237 */
2238 WARN_ON_ONCE(order > 1);
2239 }
2240 spin_lock_irqsave(&zone->lock, flags);
2241
2242 page = NULL;
2243 if (alloc_flags & ALLOC_HARDER) {
2244 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2245 if (page)
2246 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2247 }
2248 if (!page)
2249 page = __rmqueue(zone, order, migratetype);
2250 spin_unlock(&zone->lock);
2251 if (!page)
2252 goto failed;
2253 __mod_zone_freepage_state(zone, -(1 << order),
2254 get_pcppage_migratetype(page));
2255 }
2256
2257 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2258 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2259 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2260 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2261
2262 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2263 zone_statistics(preferred_zone, zone, gfp_flags);
2264 local_irq_restore(flags);
2265
2266 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2267 return page;
2268
2269 failed:
2270 local_irq_restore(flags);
2271 return NULL;
2272 }
2273
2274 #ifdef CONFIG_FAIL_PAGE_ALLOC
2275
2276 static struct {
2277 struct fault_attr attr;
2278
2279 bool ignore_gfp_highmem;
2280 bool ignore_gfp_reclaim;
2281 u32 min_order;
2282 } fail_page_alloc = {
2283 .attr = FAULT_ATTR_INITIALIZER,
2284 .ignore_gfp_reclaim = true,
2285 .ignore_gfp_highmem = true,
2286 .min_order = 1,
2287 };
2288
2289 static int __init setup_fail_page_alloc(char *str)
2290 {
2291 return setup_fault_attr(&fail_page_alloc.attr, str);
2292 }
2293 __setup("fail_page_alloc=", setup_fail_page_alloc);
2294
2295 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2296 {
2297 if (order < fail_page_alloc.min_order)
2298 return false;
2299 if (gfp_mask & __GFP_NOFAIL)
2300 return false;
2301 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2302 return false;
2303 if (fail_page_alloc.ignore_gfp_reclaim &&
2304 (gfp_mask & __GFP_DIRECT_RECLAIM))
2305 return false;
2306
2307 return should_fail(&fail_page_alloc.attr, 1 << order);
2308 }
2309
2310 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2311
2312 static int __init fail_page_alloc_debugfs(void)
2313 {
2314 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2315 struct dentry *dir;
2316
2317 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2318 &fail_page_alloc.attr);
2319 if (IS_ERR(dir))
2320 return PTR_ERR(dir);
2321
2322 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2323 &fail_page_alloc.ignore_gfp_reclaim))
2324 goto fail;
2325 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2326 &fail_page_alloc.ignore_gfp_highmem))
2327 goto fail;
2328 if (!debugfs_create_u32("min-order", mode, dir,
2329 &fail_page_alloc.min_order))
2330 goto fail;
2331
2332 return 0;
2333 fail:
2334 debugfs_remove_recursive(dir);
2335
2336 return -ENOMEM;
2337 }
2338
2339 late_initcall(fail_page_alloc_debugfs);
2340
2341 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2342
2343 #else /* CONFIG_FAIL_PAGE_ALLOC */
2344
2345 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2346 {
2347 return false;
2348 }
2349
2350 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2351
2352 /*
2353 * Return true if free base pages are above 'mark'. For high-order checks it
2354 * will return true of the order-0 watermark is reached and there is at least
2355 * one free page of a suitable size. Checking now avoids taking the zone lock
2356 * to check in the allocation paths if no pages are free.
2357 */
2358 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2359 unsigned long mark, int classzone_idx, int alloc_flags,
2360 long free_pages)
2361 {
2362 long min = mark;
2363 int o;
2364 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
2365
2366 /* free_pages may go negative - that's OK */
2367 free_pages -= (1 << order) - 1;
2368
2369 if (alloc_flags & ALLOC_HIGH)
2370 min -= min / 2;
2371
2372 /*
2373 * If the caller does not have rights to ALLOC_HARDER then subtract
2374 * the high-atomic reserves. This will over-estimate the size of the
2375 * atomic reserve but it avoids a search.
2376 */
2377 if (likely(!alloc_harder))
2378 free_pages -= z->nr_reserved_highatomic;
2379 else
2380 min -= min / 4;
2381
2382 #ifdef CONFIG_CMA
2383 /* If allocation can't use CMA areas don't use free CMA pages */
2384 if (!(alloc_flags & ALLOC_CMA))
2385 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2386 #endif
2387
2388 /*
2389 * Check watermarks for an order-0 allocation request. If these
2390 * are not met, then a high-order request also cannot go ahead
2391 * even if a suitable page happened to be free.
2392 */
2393 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2394 return false;
2395
2396 /* If this is an order-0 request then the watermark is fine */
2397 if (!order)
2398 return true;
2399
2400 /* For a high-order request, check at least one suitable page is free */
2401 for (o = order; o < MAX_ORDER; o++) {
2402 struct free_area *area = &z->free_area[o];
2403 int mt;
2404
2405 if (!area->nr_free)
2406 continue;
2407
2408 if (alloc_harder)
2409 return true;
2410
2411 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2412 if (!list_empty(&area->free_list[mt]))
2413 return true;
2414 }
2415
2416 #ifdef CONFIG_CMA
2417 if ((alloc_flags & ALLOC_CMA) &&
2418 !list_empty(&area->free_list[MIGRATE_CMA])) {
2419 return true;
2420 }
2421 #endif
2422 }
2423 return false;
2424 }
2425
2426 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2427 int classzone_idx, int alloc_flags)
2428 {
2429 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2430 zone_page_state(z, NR_FREE_PAGES));
2431 }
2432
2433 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2434 unsigned long mark, int classzone_idx)
2435 {
2436 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2437
2438 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2439 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2440
2441 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2442 free_pages);
2443 }
2444
2445 #ifdef CONFIG_NUMA
2446 static bool zone_local(struct zone *local_zone, struct zone *zone)
2447 {
2448 return local_zone->node == zone->node;
2449 }
2450
2451 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2452 {
2453 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2454 RECLAIM_DISTANCE;
2455 }
2456 #else /* CONFIG_NUMA */
2457 static bool zone_local(struct zone *local_zone, struct zone *zone)
2458 {
2459 return true;
2460 }
2461
2462 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2463 {
2464 return true;
2465 }
2466 #endif /* CONFIG_NUMA */
2467
2468 static void reset_alloc_batches(struct zone *preferred_zone)
2469 {
2470 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2471
2472 do {
2473 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2474 high_wmark_pages(zone) - low_wmark_pages(zone) -
2475 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2476 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2477 } while (zone++ != preferred_zone);
2478 }
2479
2480 /*
2481 * get_page_from_freelist goes through the zonelist trying to allocate
2482 * a page.
2483 */
2484 static struct page *
2485 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2486 const struct alloc_context *ac)
2487 {
2488 struct zonelist *zonelist = ac->zonelist;
2489 struct zoneref *z;
2490 struct page *page = NULL;
2491 struct zone *zone;
2492 int nr_fair_skipped = 0;
2493 bool zonelist_rescan;
2494
2495 zonelist_scan:
2496 zonelist_rescan = false;
2497
2498 /*
2499 * Scan zonelist, looking for a zone with enough free.
2500 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2501 */
2502 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2503 ac->nodemask) {
2504 unsigned long mark;
2505
2506 if (cpusets_enabled() &&
2507 (alloc_flags & ALLOC_CPUSET) &&
2508 !cpuset_zone_allowed(zone, gfp_mask))
2509 continue;
2510 /*
2511 * Distribute pages in proportion to the individual
2512 * zone size to ensure fair page aging. The zone a
2513 * page was allocated in should have no effect on the
2514 * time the page has in memory before being reclaimed.
2515 */
2516 if (alloc_flags & ALLOC_FAIR) {
2517 if (!zone_local(ac->preferred_zone, zone))
2518 break;
2519 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2520 nr_fair_skipped++;
2521 continue;
2522 }
2523 }
2524 /*
2525 * When allocating a page cache page for writing, we
2526 * want to get it from a zone that is within its dirty
2527 * limit, such that no single zone holds more than its
2528 * proportional share of globally allowed dirty pages.
2529 * The dirty limits take into account the zone's
2530 * lowmem reserves and high watermark so that kswapd
2531 * should be able to balance it without having to
2532 * write pages from its LRU list.
2533 *
2534 * This may look like it could increase pressure on
2535 * lower zones by failing allocations in higher zones
2536 * before they are full. But the pages that do spill
2537 * over are limited as the lower zones are protected
2538 * by this very same mechanism. It should not become
2539 * a practical burden to them.
2540 *
2541 * XXX: For now, allow allocations to potentially
2542 * exceed the per-zone dirty limit in the slowpath
2543 * (spread_dirty_pages unset) before going into reclaim,
2544 * which is important when on a NUMA setup the allowed
2545 * zones are together not big enough to reach the
2546 * global limit. The proper fix for these situations
2547 * will require awareness of zones in the
2548 * dirty-throttling and the flusher threads.
2549 */
2550 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2551 continue;
2552
2553 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2554 if (!zone_watermark_ok(zone, order, mark,
2555 ac->classzone_idx, alloc_flags)) {
2556 int ret;
2557
2558 /* Checked here to keep the fast path fast */
2559 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2560 if (alloc_flags & ALLOC_NO_WATERMARKS)
2561 goto try_this_zone;
2562
2563 if (zone_reclaim_mode == 0 ||
2564 !zone_allows_reclaim(ac->preferred_zone, zone))
2565 continue;
2566
2567 ret = zone_reclaim(zone, gfp_mask, order);
2568 switch (ret) {
2569 case ZONE_RECLAIM_NOSCAN:
2570 /* did not scan */
2571 continue;
2572 case ZONE_RECLAIM_FULL:
2573 /* scanned but unreclaimable */
2574 continue;
2575 default:
2576 /* did we reclaim enough */
2577 if (zone_watermark_ok(zone, order, mark,
2578 ac->classzone_idx, alloc_flags))
2579 goto try_this_zone;
2580
2581 continue;
2582 }
2583 }
2584
2585 try_this_zone:
2586 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2587 gfp_mask, alloc_flags, ac->migratetype);
2588 if (page) {
2589 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2590 goto try_this_zone;
2591
2592 /*
2593 * If this is a high-order atomic allocation then check
2594 * if the pageblock should be reserved for the future
2595 */
2596 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2597 reserve_highatomic_pageblock(page, zone, order);
2598
2599 return page;
2600 }
2601 }
2602
2603 /*
2604 * The first pass makes sure allocations are spread fairly within the
2605 * local node. However, the local node might have free pages left
2606 * after the fairness batches are exhausted, and remote zones haven't
2607 * even been considered yet. Try once more without fairness, and
2608 * include remote zones now, before entering the slowpath and waking
2609 * kswapd: prefer spilling to a remote zone over swapping locally.
2610 */
2611 if (alloc_flags & ALLOC_FAIR) {
2612 alloc_flags &= ~ALLOC_FAIR;
2613 if (nr_fair_skipped) {
2614 zonelist_rescan = true;
2615 reset_alloc_batches(ac->preferred_zone);
2616 }
2617 if (nr_online_nodes > 1)
2618 zonelist_rescan = true;
2619 }
2620
2621 if (zonelist_rescan)
2622 goto zonelist_scan;
2623
2624 return NULL;
2625 }
2626
2627 /*
2628 * Large machines with many possible nodes should not always dump per-node
2629 * meminfo in irq context.
2630 */
2631 static inline bool should_suppress_show_mem(void)
2632 {
2633 bool ret = false;
2634
2635 #if NODES_SHIFT > 8
2636 ret = in_interrupt();
2637 #endif
2638 return ret;
2639 }
2640
2641 static DEFINE_RATELIMIT_STATE(nopage_rs,
2642 DEFAULT_RATELIMIT_INTERVAL,
2643 DEFAULT_RATELIMIT_BURST);
2644
2645 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2646 {
2647 unsigned int filter = SHOW_MEM_FILTER_NODES;
2648
2649 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2650 debug_guardpage_minorder() > 0)
2651 return;
2652
2653 /*
2654 * This documents exceptions given to allocations in certain
2655 * contexts that are allowed to allocate outside current's set
2656 * of allowed nodes.
2657 */
2658 if (!(gfp_mask & __GFP_NOMEMALLOC))
2659 if (test_thread_flag(TIF_MEMDIE) ||
2660 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2661 filter &= ~SHOW_MEM_FILTER_NODES;
2662 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2663 filter &= ~SHOW_MEM_FILTER_NODES;
2664
2665 if (fmt) {
2666 struct va_format vaf;
2667 va_list args;
2668
2669 va_start(args, fmt);
2670
2671 vaf.fmt = fmt;
2672 vaf.va = &args;
2673
2674 pr_warn("%pV", &vaf);
2675
2676 va_end(args);
2677 }
2678
2679 pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n",
2680 current->comm, order, gfp_mask);
2681
2682 dump_stack();
2683 if (!should_suppress_show_mem())
2684 show_mem(filter);
2685 }
2686
2687 static inline struct page *
2688 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2689 const struct alloc_context *ac, unsigned long *did_some_progress)
2690 {
2691 struct oom_control oc = {
2692 .zonelist = ac->zonelist,
2693 .nodemask = ac->nodemask,
2694 .gfp_mask = gfp_mask,
2695 .order = order,
2696 };
2697 struct page *page;
2698
2699 *did_some_progress = 0;
2700
2701 /*
2702 * Acquire the oom lock. If that fails, somebody else is
2703 * making progress for us.
2704 */
2705 if (!mutex_trylock(&oom_lock)) {
2706 *did_some_progress = 1;
2707 schedule_timeout_uninterruptible(1);
2708 return NULL;
2709 }
2710
2711 /*
2712 * Go through the zonelist yet one more time, keep very high watermark
2713 * here, this is only to catch a parallel oom killing, we must fail if
2714 * we're still under heavy pressure.
2715 */
2716 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2717 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2718 if (page)
2719 goto out;
2720
2721 if (!(gfp_mask & __GFP_NOFAIL)) {
2722 /* Coredumps can quickly deplete all memory reserves */
2723 if (current->flags & PF_DUMPCORE)
2724 goto out;
2725 /* The OOM killer will not help higher order allocs */
2726 if (order > PAGE_ALLOC_COSTLY_ORDER)
2727 goto out;
2728 /* The OOM killer does not needlessly kill tasks for lowmem */
2729 if (ac->high_zoneidx < ZONE_NORMAL)
2730 goto out;
2731 /* The OOM killer does not compensate for IO-less reclaim */
2732 if (!(gfp_mask & __GFP_FS)) {
2733 /*
2734 * XXX: Page reclaim didn't yield anything,
2735 * and the OOM killer can't be invoked, but
2736 * keep looping as per tradition.
2737 */
2738 *did_some_progress = 1;
2739 goto out;
2740 }
2741 if (pm_suspended_storage())
2742 goto out;
2743 /* The OOM killer may not free memory on a specific node */
2744 if (gfp_mask & __GFP_THISNODE)
2745 goto out;
2746 }
2747 /* Exhausted what can be done so it's blamo time */
2748 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
2749 *did_some_progress = 1;
2750
2751 if (gfp_mask & __GFP_NOFAIL) {
2752 page = get_page_from_freelist(gfp_mask, order,
2753 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2754 /*
2755 * fallback to ignore cpuset restriction if our nodes
2756 * are depleted
2757 */
2758 if (!page)
2759 page = get_page_from_freelist(gfp_mask, order,
2760 ALLOC_NO_WATERMARKS, ac);
2761 }
2762 }
2763 out:
2764 mutex_unlock(&oom_lock);
2765 return page;
2766 }
2767
2768 #ifdef CONFIG_COMPACTION
2769 /* Try memory compaction for high-order allocations before reclaim */
2770 static struct page *
2771 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2772 int alloc_flags, const struct alloc_context *ac,
2773 enum migrate_mode mode, int *contended_compaction,
2774 bool *deferred_compaction)
2775 {
2776 unsigned long compact_result;
2777 struct page *page;
2778
2779 if (!order)
2780 return NULL;
2781
2782 current->flags |= PF_MEMALLOC;
2783 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2784 mode, contended_compaction);
2785 current->flags &= ~PF_MEMALLOC;
2786
2787 switch (compact_result) {
2788 case COMPACT_DEFERRED:
2789 *deferred_compaction = true;
2790 /* fall-through */
2791 case COMPACT_SKIPPED:
2792 return NULL;
2793 default:
2794 break;
2795 }
2796
2797 /*
2798 * At least in one zone compaction wasn't deferred or skipped, so let's
2799 * count a compaction stall
2800 */
2801 count_vm_event(COMPACTSTALL);
2802
2803 page = get_page_from_freelist(gfp_mask, order,
2804 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2805
2806 if (page) {
2807 struct zone *zone = page_zone(page);
2808
2809 zone->compact_blockskip_flush = false;
2810 compaction_defer_reset(zone, order, true);
2811 count_vm_event(COMPACTSUCCESS);
2812 return page;
2813 }
2814
2815 /*
2816 * It's bad if compaction run occurs and fails. The most likely reason
2817 * is that pages exist, but not enough to satisfy watermarks.
2818 */
2819 count_vm_event(COMPACTFAIL);
2820
2821 cond_resched();
2822
2823 return NULL;
2824 }
2825 #else
2826 static inline struct page *
2827 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2828 int alloc_flags, const struct alloc_context *ac,
2829 enum migrate_mode mode, int *contended_compaction,
2830 bool *deferred_compaction)
2831 {
2832 return NULL;
2833 }
2834 #endif /* CONFIG_COMPACTION */
2835
2836 /* Perform direct synchronous page reclaim */
2837 static int
2838 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2839 const struct alloc_context *ac)
2840 {
2841 struct reclaim_state reclaim_state;
2842 int progress;
2843
2844 cond_resched();
2845
2846 /* We now go into synchronous reclaim */
2847 cpuset_memory_pressure_bump();
2848 current->flags |= PF_MEMALLOC;
2849 lockdep_set_current_reclaim_state(gfp_mask);
2850 reclaim_state.reclaimed_slab = 0;
2851 current->reclaim_state = &reclaim_state;
2852
2853 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2854 ac->nodemask);
2855
2856 current->reclaim_state = NULL;
2857 lockdep_clear_current_reclaim_state();
2858 current->flags &= ~PF_MEMALLOC;
2859
2860 cond_resched();
2861
2862 return progress;
2863 }
2864
2865 /* The really slow allocator path where we enter direct reclaim */
2866 static inline struct page *
2867 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2868 int alloc_flags, const struct alloc_context *ac,
2869 unsigned long *did_some_progress)
2870 {
2871 struct page *page = NULL;
2872 bool drained = false;
2873
2874 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2875 if (unlikely(!(*did_some_progress)))
2876 return NULL;
2877
2878 retry:
2879 page = get_page_from_freelist(gfp_mask, order,
2880 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2881
2882 /*
2883 * If an allocation failed after direct reclaim, it could be because
2884 * pages are pinned on the per-cpu lists or in high alloc reserves.
2885 * Shrink them them and try again
2886 */
2887 if (!page && !drained) {
2888 unreserve_highatomic_pageblock(ac);
2889 drain_all_pages(NULL);
2890 drained = true;
2891 goto retry;
2892 }
2893
2894 return page;
2895 }
2896
2897 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2898 {
2899 struct zoneref *z;
2900 struct zone *zone;
2901
2902 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2903 ac->high_zoneidx, ac->nodemask)
2904 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2905 }
2906
2907 static inline int
2908 gfp_to_alloc_flags(gfp_t gfp_mask)
2909 {
2910 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2911
2912 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2913 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2914
2915 /*
2916 * The caller may dip into page reserves a bit more if the caller
2917 * cannot run direct reclaim, or if the caller has realtime scheduling
2918 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2919 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
2920 */
2921 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2922
2923 if (gfp_mask & __GFP_ATOMIC) {
2924 /*
2925 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2926 * if it can't schedule.
2927 */
2928 if (!(gfp_mask & __GFP_NOMEMALLOC))
2929 alloc_flags |= ALLOC_HARDER;
2930 /*
2931 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2932 * comment for __cpuset_node_allowed().
2933 */
2934 alloc_flags &= ~ALLOC_CPUSET;
2935 } else if (unlikely(rt_task(current)) && !in_interrupt())
2936 alloc_flags |= ALLOC_HARDER;
2937
2938 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2939 if (gfp_mask & __GFP_MEMALLOC)
2940 alloc_flags |= ALLOC_NO_WATERMARKS;
2941 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2942 alloc_flags |= ALLOC_NO_WATERMARKS;
2943 else if (!in_interrupt() &&
2944 ((current->flags & PF_MEMALLOC) ||
2945 unlikely(test_thread_flag(TIF_MEMDIE))))
2946 alloc_flags |= ALLOC_NO_WATERMARKS;
2947 }
2948 #ifdef CONFIG_CMA
2949 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2950 alloc_flags |= ALLOC_CMA;
2951 #endif
2952 return alloc_flags;
2953 }
2954
2955 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2956 {
2957 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2958 }
2959
2960 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
2961 {
2962 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
2963 }
2964
2965 static inline struct page *
2966 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2967 struct alloc_context *ac)
2968 {
2969 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
2970 struct page *page = NULL;
2971 int alloc_flags;
2972 unsigned long pages_reclaimed = 0;
2973 unsigned long did_some_progress;
2974 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2975 bool deferred_compaction = false;
2976 int contended_compaction = COMPACT_CONTENDED_NONE;
2977
2978 /*
2979 * In the slowpath, we sanity check order to avoid ever trying to
2980 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2981 * be using allocators in order of preference for an area that is
2982 * too large.
2983 */
2984 if (order >= MAX_ORDER) {
2985 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2986 return NULL;
2987 }
2988
2989 /*
2990 * We also sanity check to catch abuse of atomic reserves being used by
2991 * callers that are not in atomic context.
2992 */
2993 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
2994 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
2995 gfp_mask &= ~__GFP_ATOMIC;
2996
2997 /*
2998 * If this allocation cannot block and it is for a specific node, then
2999 * fail early. There's no need to wakeup kswapd or retry for a
3000 * speculative node-specific allocation.
3001 */
3002 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
3003 goto nopage;
3004
3005 retry:
3006 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3007 wake_all_kswapds(order, ac);
3008
3009 /*
3010 * OK, we're below the kswapd watermark and have kicked background
3011 * reclaim. Now things get more complex, so set up alloc_flags according
3012 * to how we want to proceed.
3013 */
3014 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3015
3016 /*
3017 * Find the true preferred zone if the allocation is unconstrained by
3018 * cpusets.
3019 */
3020 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3021 struct zoneref *preferred_zoneref;
3022 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3023 ac->high_zoneidx, NULL, &ac->preferred_zone);
3024 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3025 }
3026
3027 /* This is the last chance, in general, before the goto nopage. */
3028 page = get_page_from_freelist(gfp_mask, order,
3029 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3030 if (page)
3031 goto got_pg;
3032
3033 /* Allocate without watermarks if the context allows */
3034 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3035 /*
3036 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3037 * the allocation is high priority and these type of
3038 * allocations are system rather than user orientated
3039 */
3040 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3041 page = get_page_from_freelist(gfp_mask, order,
3042 ALLOC_NO_WATERMARKS, ac);
3043 if (page)
3044 goto got_pg;
3045 }
3046
3047 /* Caller is not willing to reclaim, we can't balance anything */
3048 if (!can_direct_reclaim) {
3049 /*
3050 * All existing users of the __GFP_NOFAIL are blockable, so warn
3051 * of any new users that actually allow this type of allocation
3052 * to fail.
3053 */
3054 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3055 goto nopage;
3056 }
3057
3058 /* Avoid recursion of direct reclaim */
3059 if (current->flags & PF_MEMALLOC) {
3060 /*
3061 * __GFP_NOFAIL request from this context is rather bizarre
3062 * because we cannot reclaim anything and only can loop waiting
3063 * for somebody to do a work for us.
3064 */
3065 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3066 cond_resched();
3067 goto retry;
3068 }
3069 goto nopage;
3070 }
3071
3072 /* Avoid allocations with no watermarks from looping endlessly */
3073 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3074 goto nopage;
3075
3076 /*
3077 * Try direct compaction. The first pass is asynchronous. Subsequent
3078 * attempts after direct reclaim are synchronous
3079 */
3080 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3081 migration_mode,
3082 &contended_compaction,
3083 &deferred_compaction);
3084 if (page)
3085 goto got_pg;
3086
3087 /* Checks for THP-specific high-order allocations */
3088 if (is_thp_gfp_mask(gfp_mask)) {
3089 /*
3090 * If compaction is deferred for high-order allocations, it is
3091 * because sync compaction recently failed. If this is the case
3092 * and the caller requested a THP allocation, we do not want
3093 * to heavily disrupt the system, so we fail the allocation
3094 * instead of entering direct reclaim.
3095 */
3096 if (deferred_compaction)
3097 goto nopage;
3098
3099 /*
3100 * In all zones where compaction was attempted (and not
3101 * deferred or skipped), lock contention has been detected.
3102 * For THP allocation we do not want to disrupt the others
3103 * so we fallback to base pages instead.
3104 */
3105 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3106 goto nopage;
3107
3108 /*
3109 * If compaction was aborted due to need_resched(), we do not
3110 * want to further increase allocation latency, unless it is
3111 * khugepaged trying to collapse.
3112 */
3113 if (contended_compaction == COMPACT_CONTENDED_SCHED
3114 && !(current->flags & PF_KTHREAD))
3115 goto nopage;
3116 }
3117
3118 /*
3119 * It can become very expensive to allocate transparent hugepages at
3120 * fault, so use asynchronous memory compaction for THP unless it is
3121 * khugepaged trying to collapse.
3122 */
3123 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3124 migration_mode = MIGRATE_SYNC_LIGHT;
3125
3126 /* Try direct reclaim and then allocating */
3127 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3128 &did_some_progress);
3129 if (page)
3130 goto got_pg;
3131
3132 /* Do not loop if specifically requested */
3133 if (gfp_mask & __GFP_NORETRY)
3134 goto noretry;
3135
3136 /* Keep reclaiming pages as long as there is reasonable progress */
3137 pages_reclaimed += did_some_progress;
3138 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3139 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3140 /* Wait for some write requests to complete then retry */
3141 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3142 goto retry;
3143 }
3144
3145 /* Reclaim has failed us, start killing things */
3146 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3147 if (page)
3148 goto got_pg;
3149
3150 /* Retry as long as the OOM killer is making progress */
3151 if (did_some_progress)
3152 goto retry;
3153
3154 noretry:
3155 /*
3156 * High-order allocations do not necessarily loop after
3157 * direct reclaim and reclaim/compaction depends on compaction
3158 * being called after reclaim so call directly if necessary
3159 */
3160 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3161 ac, migration_mode,
3162 &contended_compaction,
3163 &deferred_compaction);
3164 if (page)
3165 goto got_pg;
3166 nopage:
3167 warn_alloc_failed(gfp_mask, order, NULL);
3168 got_pg:
3169 return page;
3170 }
3171
3172 /*
3173 * This is the 'heart' of the zoned buddy allocator.
3174 */
3175 struct page *
3176 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3177 struct zonelist *zonelist, nodemask_t *nodemask)
3178 {
3179 struct zoneref *preferred_zoneref;
3180 struct page *page = NULL;
3181 unsigned int cpuset_mems_cookie;
3182 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3183 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3184 struct alloc_context ac = {
3185 .high_zoneidx = gfp_zone(gfp_mask),
3186 .nodemask = nodemask,
3187 .migratetype = gfpflags_to_migratetype(gfp_mask),
3188 };
3189
3190 gfp_mask &= gfp_allowed_mask;
3191
3192 lockdep_trace_alloc(gfp_mask);
3193
3194 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3195
3196 if (should_fail_alloc_page(gfp_mask, order))
3197 return NULL;
3198
3199 /*
3200 * Check the zones suitable for the gfp_mask contain at least one
3201 * valid zone. It's possible to have an empty zonelist as a result
3202 * of __GFP_THISNODE and a memoryless node
3203 */
3204 if (unlikely(!zonelist->_zonerefs->zone))
3205 return NULL;
3206
3207 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3208 alloc_flags |= ALLOC_CMA;
3209
3210 retry_cpuset:
3211 cpuset_mems_cookie = read_mems_allowed_begin();
3212
3213 /* We set it here, as __alloc_pages_slowpath might have changed it */
3214 ac.zonelist = zonelist;
3215
3216 /* Dirty zone balancing only done in the fast path */
3217 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3218
3219 /* The preferred zone is used for statistics later */
3220 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3221 ac.nodemask ? : &cpuset_current_mems_allowed,
3222 &ac.preferred_zone);
3223 if (!ac.preferred_zone)
3224 goto out;
3225 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3226
3227 /* First allocation attempt */
3228 alloc_mask = gfp_mask|__GFP_HARDWALL;
3229 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3230 if (unlikely(!page)) {
3231 /*
3232 * Runtime PM, block IO and its error handling path
3233 * can deadlock because I/O on the device might not
3234 * complete.
3235 */
3236 alloc_mask = memalloc_noio_flags(gfp_mask);
3237 ac.spread_dirty_pages = false;
3238
3239 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3240 }
3241
3242 if (kmemcheck_enabled && page)
3243 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3244
3245 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3246
3247 out:
3248 /*
3249 * When updating a task's mems_allowed, it is possible to race with
3250 * parallel threads in such a way that an allocation can fail while
3251 * the mask is being updated. If a page allocation is about to fail,
3252 * check if the cpuset changed during allocation and if so, retry.
3253 */
3254 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3255 goto retry_cpuset;
3256
3257 return page;
3258 }
3259 EXPORT_SYMBOL(__alloc_pages_nodemask);
3260
3261 /*
3262 * Common helper functions.
3263 */
3264 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3265 {
3266 struct page *page;
3267
3268 /*
3269 * __get_free_pages() returns a 32-bit address, which cannot represent
3270 * a highmem page
3271 */
3272 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3273
3274 page = alloc_pages(gfp_mask, order);
3275 if (!page)
3276 return 0;
3277 return (unsigned long) page_address(page);
3278 }
3279 EXPORT_SYMBOL(__get_free_pages);
3280
3281 unsigned long get_zeroed_page(gfp_t gfp_mask)
3282 {
3283 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3284 }
3285 EXPORT_SYMBOL(get_zeroed_page);
3286
3287 void __free_pages(struct page *page, unsigned int order)
3288 {
3289 if (put_page_testzero(page)) {
3290 if (order == 0)
3291 free_hot_cold_page(page, false);
3292 else
3293 __free_pages_ok(page, order);
3294 }
3295 }
3296
3297 EXPORT_SYMBOL(__free_pages);
3298
3299 void free_pages(unsigned long addr, unsigned int order)
3300 {
3301 if (addr != 0) {
3302 VM_BUG_ON(!virt_addr_valid((void *)addr));
3303 __free_pages(virt_to_page((void *)addr), order);
3304 }
3305 }
3306
3307 EXPORT_SYMBOL(free_pages);
3308
3309 /*
3310 * Page Fragment:
3311 * An arbitrary-length arbitrary-offset area of memory which resides
3312 * within a 0 or higher order page. Multiple fragments within that page
3313 * are individually refcounted, in the page's reference counter.
3314 *
3315 * The page_frag functions below provide a simple allocation framework for
3316 * page fragments. This is used by the network stack and network device
3317 * drivers to provide a backing region of memory for use as either an
3318 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3319 */
3320 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3321 gfp_t gfp_mask)
3322 {
3323 struct page *page = NULL;
3324 gfp_t gfp = gfp_mask;
3325
3326 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3327 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3328 __GFP_NOMEMALLOC;
3329 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3330 PAGE_FRAG_CACHE_MAX_ORDER);
3331 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3332 #endif
3333 if (unlikely(!page))
3334 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3335
3336 nc->va = page ? page_address(page) : NULL;
3337
3338 return page;
3339 }
3340
3341 void *__alloc_page_frag(struct page_frag_cache *nc,
3342 unsigned int fragsz, gfp_t gfp_mask)
3343 {
3344 unsigned int size = PAGE_SIZE;
3345 struct page *page;
3346 int offset;
3347
3348 if (unlikely(!nc->va)) {
3349 refill:
3350 page = __page_frag_refill(nc, gfp_mask);
3351 if (!page)
3352 return NULL;
3353
3354 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3355 /* if size can vary use size else just use PAGE_SIZE */
3356 size = nc->size;
3357 #endif
3358 /* Even if we own the page, we do not use atomic_set().
3359 * This would break get_page_unless_zero() users.
3360 */
3361 atomic_add(size - 1, &page->_count);
3362
3363 /* reset page count bias and offset to start of new frag */
3364 nc->pfmemalloc = page_is_pfmemalloc(page);
3365 nc->pagecnt_bias = size;
3366 nc->offset = size;
3367 }
3368
3369 offset = nc->offset - fragsz;
3370 if (unlikely(offset < 0)) {
3371 page = virt_to_page(nc->va);
3372
3373 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3374 goto refill;
3375
3376 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3377 /* if size can vary use size else just use PAGE_SIZE */
3378 size = nc->size;
3379 #endif
3380 /* OK, page count is 0, we can safely set it */
3381 atomic_set(&page->_count, size);
3382
3383 /* reset page count bias and offset to start of new frag */
3384 nc->pagecnt_bias = size;
3385 offset = size - fragsz;
3386 }
3387
3388 nc->pagecnt_bias--;
3389 nc->offset = offset;
3390
3391 return nc->va + offset;
3392 }
3393 EXPORT_SYMBOL(__alloc_page_frag);
3394
3395 /*
3396 * Frees a page fragment allocated out of either a compound or order 0 page.
3397 */
3398 void __free_page_frag(void *addr)
3399 {
3400 struct page *page = virt_to_head_page(addr);
3401
3402 if (unlikely(put_page_testzero(page)))
3403 __free_pages_ok(page, compound_order(page));
3404 }
3405 EXPORT_SYMBOL(__free_page_frag);
3406
3407 /*
3408 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3409 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3410 * equivalent to alloc_pages.
3411 *
3412 * It should be used when the caller would like to use kmalloc, but since the
3413 * allocation is large, it has to fall back to the page allocator.
3414 */
3415 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3416 {
3417 struct page *page;
3418
3419 page = alloc_pages(gfp_mask, order);
3420 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3421 __free_pages(page, order);
3422 page = NULL;
3423 }
3424 return page;
3425 }
3426
3427 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3428 {
3429 struct page *page;
3430
3431 page = alloc_pages_node(nid, gfp_mask, order);
3432 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3433 __free_pages(page, order);
3434 page = NULL;
3435 }
3436 return page;
3437 }
3438
3439 /*
3440 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3441 * alloc_kmem_pages.
3442 */
3443 void __free_kmem_pages(struct page *page, unsigned int order)
3444 {
3445 memcg_kmem_uncharge(page, order);
3446 __free_pages(page, order);
3447 }
3448
3449 void free_kmem_pages(unsigned long addr, unsigned int order)
3450 {
3451 if (addr != 0) {
3452 VM_BUG_ON(!virt_addr_valid((void *)addr));
3453 __free_kmem_pages(virt_to_page((void *)addr), order);
3454 }
3455 }
3456
3457 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3458 size_t size)
3459 {
3460 if (addr) {
3461 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3462 unsigned long used = addr + PAGE_ALIGN(size);
3463
3464 split_page(virt_to_page((void *)addr), order);
3465 while (used < alloc_end) {
3466 free_page(used);
3467 used += PAGE_SIZE;
3468 }
3469 }
3470 return (void *)addr;
3471 }
3472
3473 /**
3474 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3475 * @size: the number of bytes to allocate
3476 * @gfp_mask: GFP flags for the allocation
3477 *
3478 * This function is similar to alloc_pages(), except that it allocates the
3479 * minimum number of pages to satisfy the request. alloc_pages() can only
3480 * allocate memory in power-of-two pages.
3481 *
3482 * This function is also limited by MAX_ORDER.
3483 *
3484 * Memory allocated by this function must be released by free_pages_exact().
3485 */
3486 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3487 {
3488 unsigned int order = get_order(size);
3489 unsigned long addr;
3490
3491 addr = __get_free_pages(gfp_mask, order);
3492 return make_alloc_exact(addr, order, size);
3493 }
3494 EXPORT_SYMBOL(alloc_pages_exact);
3495
3496 /**
3497 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3498 * pages on a node.
3499 * @nid: the preferred node ID where memory should be allocated
3500 * @size: the number of bytes to allocate
3501 * @gfp_mask: GFP flags for the allocation
3502 *
3503 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3504 * back.
3505 */
3506 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3507 {
3508 unsigned int order = get_order(size);
3509 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3510 if (!p)
3511 return NULL;
3512 return make_alloc_exact((unsigned long)page_address(p), order, size);
3513 }
3514
3515 /**
3516 * free_pages_exact - release memory allocated via alloc_pages_exact()
3517 * @virt: the value returned by alloc_pages_exact.
3518 * @size: size of allocation, same value as passed to alloc_pages_exact().
3519 *
3520 * Release the memory allocated by a previous call to alloc_pages_exact.
3521 */
3522 void free_pages_exact(void *virt, size_t size)
3523 {
3524 unsigned long addr = (unsigned long)virt;
3525 unsigned long end = addr + PAGE_ALIGN(size);
3526
3527 while (addr < end) {
3528 free_page(addr);
3529 addr += PAGE_SIZE;
3530 }
3531 }
3532 EXPORT_SYMBOL(free_pages_exact);
3533
3534 /**
3535 * nr_free_zone_pages - count number of pages beyond high watermark
3536 * @offset: The zone index of the highest zone
3537 *
3538 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3539 * high watermark within all zones at or below a given zone index. For each
3540 * zone, the number of pages is calculated as:
3541 * managed_pages - high_pages
3542 */
3543 static unsigned long nr_free_zone_pages(int offset)
3544 {
3545 struct zoneref *z;
3546 struct zone *zone;
3547
3548 /* Just pick one node, since fallback list is circular */
3549 unsigned long sum = 0;
3550
3551 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3552
3553 for_each_zone_zonelist(zone, z, zonelist, offset) {
3554 unsigned long size = zone->managed_pages;
3555 unsigned long high = high_wmark_pages(zone);
3556 if (size > high)
3557 sum += size - high;
3558 }
3559
3560 return sum;
3561 }
3562
3563 /**
3564 * nr_free_buffer_pages - count number of pages beyond high watermark
3565 *
3566 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3567 * watermark within ZONE_DMA and ZONE_NORMAL.
3568 */
3569 unsigned long nr_free_buffer_pages(void)
3570 {
3571 return nr_free_zone_pages(gfp_zone(GFP_USER));
3572 }
3573 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3574
3575 /**
3576 * nr_free_pagecache_pages - count number of pages beyond high watermark
3577 *
3578 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3579 * high watermark within all zones.
3580 */
3581 unsigned long nr_free_pagecache_pages(void)
3582 {
3583 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3584 }
3585
3586 static inline void show_node(struct zone *zone)
3587 {
3588 if (IS_ENABLED(CONFIG_NUMA))
3589 printk("Node %d ", zone_to_nid(zone));
3590 }
3591
3592 void si_meminfo(struct sysinfo *val)
3593 {
3594 val->totalram = totalram_pages;
3595 val->sharedram = global_page_state(NR_SHMEM);
3596 val->freeram = global_page_state(NR_FREE_PAGES);
3597 val->bufferram = nr_blockdev_pages();
3598 val->totalhigh = totalhigh_pages;
3599 val->freehigh = nr_free_highpages();
3600 val->mem_unit = PAGE_SIZE;
3601 }
3602
3603 EXPORT_SYMBOL(si_meminfo);
3604
3605 #ifdef CONFIG_NUMA
3606 void si_meminfo_node(struct sysinfo *val, int nid)
3607 {
3608 int zone_type; /* needs to be signed */
3609 unsigned long managed_pages = 0;
3610 pg_data_t *pgdat = NODE_DATA(nid);
3611
3612 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3613 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3614 val->totalram = managed_pages;
3615 val->sharedram = node_page_state(nid, NR_SHMEM);
3616 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3617 #ifdef CONFIG_HIGHMEM
3618 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3619 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3620 NR_FREE_PAGES);
3621 #else
3622 val->totalhigh = 0;
3623 val->freehigh = 0;
3624 #endif
3625 val->mem_unit = PAGE_SIZE;
3626 }
3627 #endif
3628
3629 /*
3630 * Determine whether the node should be displayed or not, depending on whether
3631 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3632 */
3633 bool skip_free_areas_node(unsigned int flags, int nid)
3634 {
3635 bool ret = false;
3636 unsigned int cpuset_mems_cookie;
3637
3638 if (!(flags & SHOW_MEM_FILTER_NODES))
3639 goto out;
3640
3641 do {
3642 cpuset_mems_cookie = read_mems_allowed_begin();
3643 ret = !node_isset(nid, cpuset_current_mems_allowed);
3644 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3645 out:
3646 return ret;
3647 }
3648
3649 #define K(x) ((x) << (PAGE_SHIFT-10))
3650
3651 static void show_migration_types(unsigned char type)
3652 {
3653 static const char types[MIGRATE_TYPES] = {
3654 [MIGRATE_UNMOVABLE] = 'U',
3655 [MIGRATE_MOVABLE] = 'M',
3656 [MIGRATE_RECLAIMABLE] = 'E',
3657 [MIGRATE_HIGHATOMIC] = 'H',
3658 #ifdef CONFIG_CMA
3659 [MIGRATE_CMA] = 'C',
3660 #endif
3661 #ifdef CONFIG_MEMORY_ISOLATION
3662 [MIGRATE_ISOLATE] = 'I',
3663 #endif
3664 };
3665 char tmp[MIGRATE_TYPES + 1];
3666 char *p = tmp;
3667 int i;
3668
3669 for (i = 0; i < MIGRATE_TYPES; i++) {
3670 if (type & (1 << i))
3671 *p++ = types[i];
3672 }
3673
3674 *p = '\0';
3675 printk("(%s) ", tmp);
3676 }
3677
3678 /*
3679 * Show free area list (used inside shift_scroll-lock stuff)
3680 * We also calculate the percentage fragmentation. We do this by counting the
3681 * memory on each free list with the exception of the first item on the list.
3682 *
3683 * Bits in @filter:
3684 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3685 * cpuset.
3686 */
3687 void show_free_areas(unsigned int filter)
3688 {
3689 unsigned long free_pcp = 0;
3690 int cpu;
3691 struct zone *zone;
3692
3693 for_each_populated_zone(zone) {
3694 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3695 continue;
3696
3697 for_each_online_cpu(cpu)
3698 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3699 }
3700
3701 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3702 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3703 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3704 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3705 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3706 " free:%lu free_pcp:%lu free_cma:%lu\n",
3707 global_page_state(NR_ACTIVE_ANON),
3708 global_page_state(NR_INACTIVE_ANON),
3709 global_page_state(NR_ISOLATED_ANON),
3710 global_page_state(NR_ACTIVE_FILE),
3711 global_page_state(NR_INACTIVE_FILE),
3712 global_page_state(NR_ISOLATED_FILE),
3713 global_page_state(NR_UNEVICTABLE),
3714 global_page_state(NR_FILE_DIRTY),
3715 global_page_state(NR_WRITEBACK),
3716 global_page_state(NR_UNSTABLE_NFS),
3717 global_page_state(NR_SLAB_RECLAIMABLE),
3718 global_page_state(NR_SLAB_UNRECLAIMABLE),
3719 global_page_state(NR_FILE_MAPPED),
3720 global_page_state(NR_SHMEM),
3721 global_page_state(NR_PAGETABLE),
3722 global_page_state(NR_BOUNCE),
3723 global_page_state(NR_FREE_PAGES),
3724 free_pcp,
3725 global_page_state(NR_FREE_CMA_PAGES));
3726
3727 for_each_populated_zone(zone) {
3728 int i;
3729
3730 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3731 continue;
3732
3733 free_pcp = 0;
3734 for_each_online_cpu(cpu)
3735 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3736
3737 show_node(zone);
3738 printk("%s"
3739 " free:%lukB"
3740 " min:%lukB"
3741 " low:%lukB"
3742 " high:%lukB"
3743 " active_anon:%lukB"
3744 " inactive_anon:%lukB"
3745 " active_file:%lukB"
3746 " inactive_file:%lukB"
3747 " unevictable:%lukB"
3748 " isolated(anon):%lukB"
3749 " isolated(file):%lukB"
3750 " present:%lukB"
3751 " managed:%lukB"
3752 " mlocked:%lukB"
3753 " dirty:%lukB"
3754 " writeback:%lukB"
3755 " mapped:%lukB"
3756 " shmem:%lukB"
3757 " slab_reclaimable:%lukB"
3758 " slab_unreclaimable:%lukB"
3759 " kernel_stack:%lukB"
3760 " pagetables:%lukB"
3761 " unstable:%lukB"
3762 " bounce:%lukB"
3763 " free_pcp:%lukB"
3764 " local_pcp:%ukB"
3765 " free_cma:%lukB"
3766 " writeback_tmp:%lukB"
3767 " pages_scanned:%lu"
3768 " all_unreclaimable? %s"
3769 "\n",
3770 zone->name,
3771 K(zone_page_state(zone, NR_FREE_PAGES)),
3772 K(min_wmark_pages(zone)),
3773 K(low_wmark_pages(zone)),
3774 K(high_wmark_pages(zone)),
3775 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3776 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3777 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3778 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3779 K(zone_page_state(zone, NR_UNEVICTABLE)),
3780 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3781 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3782 K(zone->present_pages),
3783 K(zone->managed_pages),
3784 K(zone_page_state(zone, NR_MLOCK)),
3785 K(zone_page_state(zone, NR_FILE_DIRTY)),
3786 K(zone_page_state(zone, NR_WRITEBACK)),
3787 K(zone_page_state(zone, NR_FILE_MAPPED)),
3788 K(zone_page_state(zone, NR_SHMEM)),
3789 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3790 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3791 zone_page_state(zone, NR_KERNEL_STACK) *
3792 THREAD_SIZE / 1024,
3793 K(zone_page_state(zone, NR_PAGETABLE)),
3794 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3795 K(zone_page_state(zone, NR_BOUNCE)),
3796 K(free_pcp),
3797 K(this_cpu_read(zone->pageset->pcp.count)),
3798 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3799 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3800 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3801 (!zone_reclaimable(zone) ? "yes" : "no")
3802 );
3803 printk("lowmem_reserve[]:");
3804 for (i = 0; i < MAX_NR_ZONES; i++)
3805 printk(" %ld", zone->lowmem_reserve[i]);
3806 printk("\n");
3807 }
3808
3809 for_each_populated_zone(zone) {
3810 unsigned int order;
3811 unsigned long nr[MAX_ORDER], flags, total = 0;
3812 unsigned char types[MAX_ORDER];
3813
3814 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3815 continue;
3816 show_node(zone);
3817 printk("%s: ", zone->name);
3818
3819 spin_lock_irqsave(&zone->lock, flags);
3820 for (order = 0; order < MAX_ORDER; order++) {
3821 struct free_area *area = &zone->free_area[order];
3822 int type;
3823
3824 nr[order] = area->nr_free;
3825 total += nr[order] << order;
3826
3827 types[order] = 0;
3828 for (type = 0; type < MIGRATE_TYPES; type++) {
3829 if (!list_empty(&area->free_list[type]))
3830 types[order] |= 1 << type;
3831 }
3832 }
3833 spin_unlock_irqrestore(&zone->lock, flags);
3834 for (order = 0; order < MAX_ORDER; order++) {
3835 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3836 if (nr[order])
3837 show_migration_types(types[order]);
3838 }
3839 printk("= %lukB\n", K(total));
3840 }
3841
3842 hugetlb_show_meminfo();
3843
3844 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3845
3846 show_swap_cache_info();
3847 }
3848
3849 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3850 {
3851 zoneref->zone = zone;
3852 zoneref->zone_idx = zone_idx(zone);
3853 }
3854
3855 /*
3856 * Builds allocation fallback zone lists.
3857 *
3858 * Add all populated zones of a node to the zonelist.
3859 */
3860 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3861 int nr_zones)
3862 {
3863 struct zone *zone;
3864 enum zone_type zone_type = MAX_NR_ZONES;
3865
3866 do {
3867 zone_type--;
3868 zone = pgdat->node_zones + zone_type;
3869 if (populated_zone(zone)) {
3870 zoneref_set_zone(zone,
3871 &zonelist->_zonerefs[nr_zones++]);
3872 check_highest_zone(zone_type);
3873 }
3874 } while (zone_type);
3875
3876 return nr_zones;
3877 }
3878
3879
3880 /*
3881 * zonelist_order:
3882 * 0 = automatic detection of better ordering.
3883 * 1 = order by ([node] distance, -zonetype)
3884 * 2 = order by (-zonetype, [node] distance)
3885 *
3886 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3887 * the same zonelist. So only NUMA can configure this param.
3888 */
3889 #define ZONELIST_ORDER_DEFAULT 0
3890 #define ZONELIST_ORDER_NODE 1
3891 #define ZONELIST_ORDER_ZONE 2
3892
3893 /* zonelist order in the kernel.
3894 * set_zonelist_order() will set this to NODE or ZONE.
3895 */
3896 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3897 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3898
3899
3900 #ifdef CONFIG_NUMA
3901 /* The value user specified ....changed by config */
3902 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3903 /* string for sysctl */
3904 #define NUMA_ZONELIST_ORDER_LEN 16
3905 char numa_zonelist_order[16] = "default";
3906
3907 /*
3908 * interface for configure zonelist ordering.
3909 * command line option "numa_zonelist_order"
3910 * = "[dD]efault - default, automatic configuration.
3911 * = "[nN]ode - order by node locality, then by zone within node
3912 * = "[zZ]one - order by zone, then by locality within zone
3913 */
3914
3915 static int __parse_numa_zonelist_order(char *s)
3916 {
3917 if (*s == 'd' || *s == 'D') {
3918 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3919 } else if (*s == 'n' || *s == 'N') {
3920 user_zonelist_order = ZONELIST_ORDER_NODE;
3921 } else if (*s == 'z' || *s == 'Z') {
3922 user_zonelist_order = ZONELIST_ORDER_ZONE;
3923 } else {
3924 printk(KERN_WARNING
3925 "Ignoring invalid numa_zonelist_order value: "
3926 "%s\n", s);
3927 return -EINVAL;
3928 }
3929 return 0;
3930 }
3931
3932 static __init int setup_numa_zonelist_order(char *s)
3933 {
3934 int ret;
3935
3936 if (!s)
3937 return 0;
3938
3939 ret = __parse_numa_zonelist_order(s);
3940 if (ret == 0)
3941 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3942
3943 return ret;
3944 }
3945 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3946
3947 /*
3948 * sysctl handler for numa_zonelist_order
3949 */
3950 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3951 void __user *buffer, size_t *length,
3952 loff_t *ppos)
3953 {
3954 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3955 int ret;
3956 static DEFINE_MUTEX(zl_order_mutex);
3957
3958 mutex_lock(&zl_order_mutex);
3959 if (write) {
3960 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3961 ret = -EINVAL;
3962 goto out;
3963 }
3964 strcpy(saved_string, (char *)table->data);
3965 }
3966 ret = proc_dostring(table, write, buffer, length, ppos);
3967 if (ret)
3968 goto out;
3969 if (write) {
3970 int oldval = user_zonelist_order;
3971
3972 ret = __parse_numa_zonelist_order((char *)table->data);
3973 if (ret) {
3974 /*
3975 * bogus value. restore saved string
3976 */
3977 strncpy((char *)table->data, saved_string,
3978 NUMA_ZONELIST_ORDER_LEN);
3979 user_zonelist_order = oldval;
3980 } else if (oldval != user_zonelist_order) {
3981 mutex_lock(&zonelists_mutex);
3982 build_all_zonelists(NULL, NULL);
3983 mutex_unlock(&zonelists_mutex);
3984 }
3985 }
3986 out:
3987 mutex_unlock(&zl_order_mutex);
3988 return ret;
3989 }
3990
3991
3992 #define MAX_NODE_LOAD (nr_online_nodes)
3993 static int node_load[MAX_NUMNODES];
3994
3995 /**
3996 * find_next_best_node - find the next node that should appear in a given node's fallback list
3997 * @node: node whose fallback list we're appending
3998 * @used_node_mask: nodemask_t of already used nodes
3999 *
4000 * We use a number of factors to determine which is the next node that should
4001 * appear on a given node's fallback list. The node should not have appeared
4002 * already in @node's fallback list, and it should be the next closest node
4003 * according to the distance array (which contains arbitrary distance values
4004 * from each node to each node in the system), and should also prefer nodes
4005 * with no CPUs, since presumably they'll have very little allocation pressure
4006 * on them otherwise.
4007 * It returns -1 if no node is found.
4008 */
4009 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4010 {
4011 int n, val;
4012 int min_val = INT_MAX;
4013 int best_node = NUMA_NO_NODE;
4014 const struct cpumask *tmp = cpumask_of_node(0);
4015
4016 /* Use the local node if we haven't already */
4017 if (!node_isset(node, *used_node_mask)) {
4018 node_set(node, *used_node_mask);
4019 return node;
4020 }
4021
4022 for_each_node_state(n, N_MEMORY) {
4023
4024 /* Don't want a node to appear more than once */
4025 if (node_isset(n, *used_node_mask))
4026 continue;
4027
4028 /* Use the distance array to find the distance */
4029 val = node_distance(node, n);
4030
4031 /* Penalize nodes under us ("prefer the next node") */
4032 val += (n < node);
4033
4034 /* Give preference to headless and unused nodes */
4035 tmp = cpumask_of_node(n);
4036 if (!cpumask_empty(tmp))
4037 val += PENALTY_FOR_NODE_WITH_CPUS;
4038
4039 /* Slight preference for less loaded node */
4040 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4041 val += node_load[n];
4042
4043 if (val < min_val) {
4044 min_val = val;
4045 best_node = n;
4046 }
4047 }
4048
4049 if (best_node >= 0)
4050 node_set(best_node, *used_node_mask);
4051
4052 return best_node;
4053 }
4054
4055
4056 /*
4057 * Build zonelists ordered by node and zones within node.
4058 * This results in maximum locality--normal zone overflows into local
4059 * DMA zone, if any--but risks exhausting DMA zone.
4060 */
4061 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4062 {
4063 int j;
4064 struct zonelist *zonelist;
4065
4066 zonelist = &pgdat->node_zonelists[0];
4067 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4068 ;
4069 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4070 zonelist->_zonerefs[j].zone = NULL;
4071 zonelist->_zonerefs[j].zone_idx = 0;
4072 }
4073
4074 /*
4075 * Build gfp_thisnode zonelists
4076 */
4077 static void build_thisnode_zonelists(pg_data_t *pgdat)
4078 {
4079 int j;
4080 struct zonelist *zonelist;
4081
4082 zonelist = &pgdat->node_zonelists[1];
4083 j = build_zonelists_node(pgdat, zonelist, 0);
4084 zonelist->_zonerefs[j].zone = NULL;
4085 zonelist->_zonerefs[j].zone_idx = 0;
4086 }
4087
4088 /*
4089 * Build zonelists ordered by zone and nodes within zones.
4090 * This results in conserving DMA zone[s] until all Normal memory is
4091 * exhausted, but results in overflowing to remote node while memory
4092 * may still exist in local DMA zone.
4093 */
4094 static int node_order[MAX_NUMNODES];
4095
4096 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4097 {
4098 int pos, j, node;
4099 int zone_type; /* needs to be signed */
4100 struct zone *z;
4101 struct zonelist *zonelist;
4102
4103 zonelist = &pgdat->node_zonelists[0];
4104 pos = 0;
4105 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4106 for (j = 0; j < nr_nodes; j++) {
4107 node = node_order[j];
4108 z = &NODE_DATA(node)->node_zones[zone_type];
4109 if (populated_zone(z)) {
4110 zoneref_set_zone(z,
4111 &zonelist->_zonerefs[pos++]);
4112 check_highest_zone(zone_type);
4113 }
4114 }
4115 }
4116 zonelist->_zonerefs[pos].zone = NULL;
4117 zonelist->_zonerefs[pos].zone_idx = 0;
4118 }
4119
4120 #if defined(CONFIG_64BIT)
4121 /*
4122 * Devices that require DMA32/DMA are relatively rare and do not justify a
4123 * penalty to every machine in case the specialised case applies. Default
4124 * to Node-ordering on 64-bit NUMA machines
4125 */
4126 static int default_zonelist_order(void)
4127 {
4128 return ZONELIST_ORDER_NODE;
4129 }
4130 #else
4131 /*
4132 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4133 * by the kernel. If processes running on node 0 deplete the low memory zone
4134 * then reclaim will occur more frequency increasing stalls and potentially
4135 * be easier to OOM if a large percentage of the zone is under writeback or
4136 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4137 * Hence, default to zone ordering on 32-bit.
4138 */
4139 static int default_zonelist_order(void)
4140 {
4141 return ZONELIST_ORDER_ZONE;
4142 }
4143 #endif /* CONFIG_64BIT */
4144
4145 static void set_zonelist_order(void)
4146 {
4147 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4148 current_zonelist_order = default_zonelist_order();
4149 else
4150 current_zonelist_order = user_zonelist_order;
4151 }
4152
4153 static void build_zonelists(pg_data_t *pgdat)
4154 {
4155 int i, node, load;
4156 nodemask_t used_mask;
4157 int local_node, prev_node;
4158 struct zonelist *zonelist;
4159 unsigned int order = current_zonelist_order;
4160
4161 /* initialize zonelists */
4162 for (i = 0; i < MAX_ZONELISTS; i++) {
4163 zonelist = pgdat->node_zonelists + i;
4164 zonelist->_zonerefs[0].zone = NULL;
4165 zonelist->_zonerefs[0].zone_idx = 0;
4166 }
4167
4168 /* NUMA-aware ordering of nodes */
4169 local_node = pgdat->node_id;
4170 load = nr_online_nodes;
4171 prev_node = local_node;
4172 nodes_clear(used_mask);
4173
4174 memset(node_order, 0, sizeof(node_order));
4175 i = 0;
4176
4177 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4178 /*
4179 * We don't want to pressure a particular node.
4180 * So adding penalty to the first node in same
4181 * distance group to make it round-robin.
4182 */
4183 if (node_distance(local_node, node) !=
4184 node_distance(local_node, prev_node))
4185 node_load[node] = load;
4186
4187 prev_node = node;
4188 load--;
4189 if (order == ZONELIST_ORDER_NODE)
4190 build_zonelists_in_node_order(pgdat, node);
4191 else
4192 node_order[i++] = node; /* remember order */
4193 }
4194
4195 if (order == ZONELIST_ORDER_ZONE) {
4196 /* calculate node order -- i.e., DMA last! */
4197 build_zonelists_in_zone_order(pgdat, i);
4198 }
4199
4200 build_thisnode_zonelists(pgdat);
4201 }
4202
4203 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4204 /*
4205 * Return node id of node used for "local" allocations.
4206 * I.e., first node id of first zone in arg node's generic zonelist.
4207 * Used for initializing percpu 'numa_mem', which is used primarily
4208 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4209 */
4210 int local_memory_node(int node)
4211 {
4212 struct zone *zone;
4213
4214 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4215 gfp_zone(GFP_KERNEL),
4216 NULL,
4217 &zone);
4218 return zone->node;
4219 }
4220 #endif
4221
4222 #else /* CONFIG_NUMA */
4223
4224 static void set_zonelist_order(void)
4225 {
4226 current_zonelist_order = ZONELIST_ORDER_ZONE;
4227 }
4228
4229 static void build_zonelists(pg_data_t *pgdat)
4230 {
4231 int node, local_node;
4232 enum zone_type j;
4233 struct zonelist *zonelist;
4234
4235 local_node = pgdat->node_id;
4236
4237 zonelist = &pgdat->node_zonelists[0];
4238 j = build_zonelists_node(pgdat, zonelist, 0);
4239
4240 /*
4241 * Now we build the zonelist so that it contains the zones
4242 * of all the other nodes.
4243 * We don't want to pressure a particular node, so when
4244 * building the zones for node N, we make sure that the
4245 * zones coming right after the local ones are those from
4246 * node N+1 (modulo N)
4247 */
4248 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4249 if (!node_online(node))
4250 continue;
4251 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4252 }
4253 for (node = 0; node < local_node; node++) {
4254 if (!node_online(node))
4255 continue;
4256 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4257 }
4258
4259 zonelist->_zonerefs[j].zone = NULL;
4260 zonelist->_zonerefs[j].zone_idx = 0;
4261 }
4262
4263 #endif /* CONFIG_NUMA */
4264
4265 /*
4266 * Boot pageset table. One per cpu which is going to be used for all
4267 * zones and all nodes. The parameters will be set in such a way
4268 * that an item put on a list will immediately be handed over to
4269 * the buddy list. This is safe since pageset manipulation is done
4270 * with interrupts disabled.
4271 *
4272 * The boot_pagesets must be kept even after bootup is complete for
4273 * unused processors and/or zones. They do play a role for bootstrapping
4274 * hotplugged processors.
4275 *
4276 * zoneinfo_show() and maybe other functions do
4277 * not check if the processor is online before following the pageset pointer.
4278 * Other parts of the kernel may not check if the zone is available.
4279 */
4280 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4281 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4282 static void setup_zone_pageset(struct zone *zone);
4283
4284 /*
4285 * Global mutex to protect against size modification of zonelists
4286 * as well as to serialize pageset setup for the new populated zone.
4287 */
4288 DEFINE_MUTEX(zonelists_mutex);
4289
4290 /* return values int ....just for stop_machine() */
4291 static int __build_all_zonelists(void *data)
4292 {
4293 int nid;
4294 int cpu;
4295 pg_data_t *self = data;
4296
4297 #ifdef CONFIG_NUMA
4298 memset(node_load, 0, sizeof(node_load));
4299 #endif
4300
4301 if (self && !node_online(self->node_id)) {
4302 build_zonelists(self);
4303 }
4304
4305 for_each_online_node(nid) {
4306 pg_data_t *pgdat = NODE_DATA(nid);
4307
4308 build_zonelists(pgdat);
4309 }
4310
4311 /*
4312 * Initialize the boot_pagesets that are going to be used
4313 * for bootstrapping processors. The real pagesets for
4314 * each zone will be allocated later when the per cpu
4315 * allocator is available.
4316 *
4317 * boot_pagesets are used also for bootstrapping offline
4318 * cpus if the system is already booted because the pagesets
4319 * are needed to initialize allocators on a specific cpu too.
4320 * F.e. the percpu allocator needs the page allocator which
4321 * needs the percpu allocator in order to allocate its pagesets
4322 * (a chicken-egg dilemma).
4323 */
4324 for_each_possible_cpu(cpu) {
4325 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4326
4327 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4328 /*
4329 * We now know the "local memory node" for each node--
4330 * i.e., the node of the first zone in the generic zonelist.
4331 * Set up numa_mem percpu variable for on-line cpus. During
4332 * boot, only the boot cpu should be on-line; we'll init the
4333 * secondary cpus' numa_mem as they come on-line. During
4334 * node/memory hotplug, we'll fixup all on-line cpus.
4335 */
4336 if (cpu_online(cpu))
4337 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4338 #endif
4339 }
4340
4341 return 0;
4342 }
4343
4344 static noinline void __init
4345 build_all_zonelists_init(void)
4346 {
4347 __build_all_zonelists(NULL);
4348 mminit_verify_zonelist();
4349 cpuset_init_current_mems_allowed();
4350 }
4351
4352 /*
4353 * Called with zonelists_mutex held always
4354 * unless system_state == SYSTEM_BOOTING.
4355 *
4356 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4357 * [we're only called with non-NULL zone through __meminit paths] and
4358 * (2) call of __init annotated helper build_all_zonelists_init
4359 * [protected by SYSTEM_BOOTING].
4360 */
4361 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4362 {
4363 set_zonelist_order();
4364
4365 if (system_state == SYSTEM_BOOTING) {
4366 build_all_zonelists_init();
4367 } else {
4368 #ifdef CONFIG_MEMORY_HOTPLUG
4369 if (zone)
4370 setup_zone_pageset(zone);
4371 #endif
4372 /* we have to stop all cpus to guarantee there is no user
4373 of zonelist */
4374 stop_machine(__build_all_zonelists, pgdat, NULL);
4375 /* cpuset refresh routine should be here */
4376 }
4377 vm_total_pages = nr_free_pagecache_pages();
4378 /*
4379 * Disable grouping by mobility if the number of pages in the
4380 * system is too low to allow the mechanism to work. It would be
4381 * more accurate, but expensive to check per-zone. This check is
4382 * made on memory-hotadd so a system can start with mobility
4383 * disabled and enable it later
4384 */
4385 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4386 page_group_by_mobility_disabled = 1;
4387 else
4388 page_group_by_mobility_disabled = 0;
4389
4390 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
4391 "Total pages: %ld\n",
4392 nr_online_nodes,
4393 zonelist_order_name[current_zonelist_order],
4394 page_group_by_mobility_disabled ? "off" : "on",
4395 vm_total_pages);
4396 #ifdef CONFIG_NUMA
4397 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4398 #endif
4399 }
4400
4401 /*
4402 * Helper functions to size the waitqueue hash table.
4403 * Essentially these want to choose hash table sizes sufficiently
4404 * large so that collisions trying to wait on pages are rare.
4405 * But in fact, the number of active page waitqueues on typical
4406 * systems is ridiculously low, less than 200. So this is even
4407 * conservative, even though it seems large.
4408 *
4409 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4410 * waitqueues, i.e. the size of the waitq table given the number of pages.
4411 */
4412 #define PAGES_PER_WAITQUEUE 256
4413
4414 #ifndef CONFIG_MEMORY_HOTPLUG
4415 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4416 {
4417 unsigned long size = 1;
4418
4419 pages /= PAGES_PER_WAITQUEUE;
4420
4421 while (size < pages)
4422 size <<= 1;
4423
4424 /*
4425 * Once we have dozens or even hundreds of threads sleeping
4426 * on IO we've got bigger problems than wait queue collision.
4427 * Limit the size of the wait table to a reasonable size.
4428 */
4429 size = min(size, 4096UL);
4430
4431 return max(size, 4UL);
4432 }
4433 #else
4434 /*
4435 * A zone's size might be changed by hot-add, so it is not possible to determine
4436 * a suitable size for its wait_table. So we use the maximum size now.
4437 *
4438 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4439 *
4440 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4441 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4442 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4443 *
4444 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4445 * or more by the traditional way. (See above). It equals:
4446 *
4447 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4448 * ia64(16K page size) : = ( 8G + 4M)byte.
4449 * powerpc (64K page size) : = (32G +16M)byte.
4450 */
4451 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4452 {
4453 return 4096UL;
4454 }
4455 #endif
4456
4457 /*
4458 * This is an integer logarithm so that shifts can be used later
4459 * to extract the more random high bits from the multiplicative
4460 * hash function before the remainder is taken.
4461 */
4462 static inline unsigned long wait_table_bits(unsigned long size)
4463 {
4464 return ffz(~size);
4465 }
4466
4467 /*
4468 * Initially all pages are reserved - free ones are freed
4469 * up by free_all_bootmem() once the early boot process is
4470 * done. Non-atomic initialization, single-pass.
4471 */
4472 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4473 unsigned long start_pfn, enum memmap_context context)
4474 {
4475 pg_data_t *pgdat = NODE_DATA(nid);
4476 unsigned long end_pfn = start_pfn + size;
4477 unsigned long pfn;
4478 struct zone *z;
4479 unsigned long nr_initialised = 0;
4480
4481 if (highest_memmap_pfn < end_pfn - 1)
4482 highest_memmap_pfn = end_pfn - 1;
4483
4484 z = &pgdat->node_zones[zone];
4485 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4486 /*
4487 * There can be holes in boot-time mem_map[]s
4488 * handed to this function. They do not
4489 * exist on hotplugged memory.
4490 */
4491 if (context == MEMMAP_EARLY) {
4492 if (!early_pfn_valid(pfn))
4493 continue;
4494 if (!early_pfn_in_nid(pfn, nid))
4495 continue;
4496 if (!update_defer_init(pgdat, pfn, end_pfn,
4497 &nr_initialised))
4498 break;
4499 }
4500
4501 /*
4502 * Mark the block movable so that blocks are reserved for
4503 * movable at startup. This will force kernel allocations
4504 * to reserve their blocks rather than leaking throughout
4505 * the address space during boot when many long-lived
4506 * kernel allocations are made.
4507 *
4508 * bitmap is created for zone's valid pfn range. but memmap
4509 * can be created for invalid pages (for alignment)
4510 * check here not to call set_pageblock_migratetype() against
4511 * pfn out of zone.
4512 */
4513 if (!(pfn & (pageblock_nr_pages - 1))) {
4514 struct page *page = pfn_to_page(pfn);
4515
4516 __init_single_page(page, pfn, zone, nid);
4517 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4518 } else {
4519 __init_single_pfn(pfn, zone, nid);
4520 }
4521 }
4522 }
4523
4524 static void __meminit zone_init_free_lists(struct zone *zone)
4525 {
4526 unsigned int order, t;
4527 for_each_migratetype_order(order, t) {
4528 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4529 zone->free_area[order].nr_free = 0;
4530 }
4531 }
4532
4533 #ifndef __HAVE_ARCH_MEMMAP_INIT
4534 #define memmap_init(size, nid, zone, start_pfn) \
4535 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4536 #endif
4537
4538 static int zone_batchsize(struct zone *zone)
4539 {
4540 #ifdef CONFIG_MMU
4541 int batch;
4542
4543 /*
4544 * The per-cpu-pages pools are set to around 1000th of the
4545 * size of the zone. But no more than 1/2 of a meg.
4546 *
4547 * OK, so we don't know how big the cache is. So guess.
4548 */
4549 batch = zone->managed_pages / 1024;
4550 if (batch * PAGE_SIZE > 512 * 1024)
4551 batch = (512 * 1024) / PAGE_SIZE;
4552 batch /= 4; /* We effectively *= 4 below */
4553 if (batch < 1)
4554 batch = 1;
4555
4556 /*
4557 * Clamp the batch to a 2^n - 1 value. Having a power
4558 * of 2 value was found to be more likely to have
4559 * suboptimal cache aliasing properties in some cases.
4560 *
4561 * For example if 2 tasks are alternately allocating
4562 * batches of pages, one task can end up with a lot
4563 * of pages of one half of the possible page colors
4564 * and the other with pages of the other colors.
4565 */
4566 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4567
4568 return batch;
4569
4570 #else
4571 /* The deferral and batching of frees should be suppressed under NOMMU
4572 * conditions.
4573 *
4574 * The problem is that NOMMU needs to be able to allocate large chunks
4575 * of contiguous memory as there's no hardware page translation to
4576 * assemble apparent contiguous memory from discontiguous pages.
4577 *
4578 * Queueing large contiguous runs of pages for batching, however,
4579 * causes the pages to actually be freed in smaller chunks. As there
4580 * can be a significant delay between the individual batches being
4581 * recycled, this leads to the once large chunks of space being
4582 * fragmented and becoming unavailable for high-order allocations.
4583 */
4584 return 0;
4585 #endif
4586 }
4587
4588 /*
4589 * pcp->high and pcp->batch values are related and dependent on one another:
4590 * ->batch must never be higher then ->high.
4591 * The following function updates them in a safe manner without read side
4592 * locking.
4593 *
4594 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4595 * those fields changing asynchronously (acording the the above rule).
4596 *
4597 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4598 * outside of boot time (or some other assurance that no concurrent updaters
4599 * exist).
4600 */
4601 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4602 unsigned long batch)
4603 {
4604 /* start with a fail safe value for batch */
4605 pcp->batch = 1;
4606 smp_wmb();
4607
4608 /* Update high, then batch, in order */
4609 pcp->high = high;
4610 smp_wmb();
4611
4612 pcp->batch = batch;
4613 }
4614
4615 /* a companion to pageset_set_high() */
4616 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4617 {
4618 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4619 }
4620
4621 static void pageset_init(struct per_cpu_pageset *p)
4622 {
4623 struct per_cpu_pages *pcp;
4624 int migratetype;
4625
4626 memset(p, 0, sizeof(*p));
4627
4628 pcp = &p->pcp;
4629 pcp->count = 0;
4630 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4631 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4632 }
4633
4634 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4635 {
4636 pageset_init(p);
4637 pageset_set_batch(p, batch);
4638 }
4639
4640 /*
4641 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4642 * to the value high for the pageset p.
4643 */
4644 static void pageset_set_high(struct per_cpu_pageset *p,
4645 unsigned long high)
4646 {
4647 unsigned long batch = max(1UL, high / 4);
4648 if ((high / 4) > (PAGE_SHIFT * 8))
4649 batch = PAGE_SHIFT * 8;
4650
4651 pageset_update(&p->pcp, high, batch);
4652 }
4653
4654 static void pageset_set_high_and_batch(struct zone *zone,
4655 struct per_cpu_pageset *pcp)
4656 {
4657 if (percpu_pagelist_fraction)
4658 pageset_set_high(pcp,
4659 (zone->managed_pages /
4660 percpu_pagelist_fraction));
4661 else
4662 pageset_set_batch(pcp, zone_batchsize(zone));
4663 }
4664
4665 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4666 {
4667 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4668
4669 pageset_init(pcp);
4670 pageset_set_high_and_batch(zone, pcp);
4671 }
4672
4673 static void __meminit setup_zone_pageset(struct zone *zone)
4674 {
4675 int cpu;
4676 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4677 for_each_possible_cpu(cpu)
4678 zone_pageset_init(zone, cpu);
4679 }
4680
4681 /*
4682 * Allocate per cpu pagesets and initialize them.
4683 * Before this call only boot pagesets were available.
4684 */
4685 void __init setup_per_cpu_pageset(void)
4686 {
4687 struct zone *zone;
4688
4689 for_each_populated_zone(zone)
4690 setup_zone_pageset(zone);
4691 }
4692
4693 static noinline __init_refok
4694 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4695 {
4696 int i;
4697 size_t alloc_size;
4698
4699 /*
4700 * The per-page waitqueue mechanism uses hashed waitqueues
4701 * per zone.
4702 */
4703 zone->wait_table_hash_nr_entries =
4704 wait_table_hash_nr_entries(zone_size_pages);
4705 zone->wait_table_bits =
4706 wait_table_bits(zone->wait_table_hash_nr_entries);
4707 alloc_size = zone->wait_table_hash_nr_entries
4708 * sizeof(wait_queue_head_t);
4709
4710 if (!slab_is_available()) {
4711 zone->wait_table = (wait_queue_head_t *)
4712 memblock_virt_alloc_node_nopanic(
4713 alloc_size, zone->zone_pgdat->node_id);
4714 } else {
4715 /*
4716 * This case means that a zone whose size was 0 gets new memory
4717 * via memory hot-add.
4718 * But it may be the case that a new node was hot-added. In
4719 * this case vmalloc() will not be able to use this new node's
4720 * memory - this wait_table must be initialized to use this new
4721 * node itself as well.
4722 * To use this new node's memory, further consideration will be
4723 * necessary.
4724 */
4725 zone->wait_table = vmalloc(alloc_size);
4726 }
4727 if (!zone->wait_table)
4728 return -ENOMEM;
4729
4730 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4731 init_waitqueue_head(zone->wait_table + i);
4732
4733 return 0;
4734 }
4735
4736 static __meminit void zone_pcp_init(struct zone *zone)
4737 {
4738 /*
4739 * per cpu subsystem is not up at this point. The following code
4740 * relies on the ability of the linker to provide the
4741 * offset of a (static) per cpu variable into the per cpu area.
4742 */
4743 zone->pageset = &boot_pageset;
4744
4745 if (populated_zone(zone))
4746 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4747 zone->name, zone->present_pages,
4748 zone_batchsize(zone));
4749 }
4750
4751 int __meminit init_currently_empty_zone(struct zone *zone,
4752 unsigned long zone_start_pfn,
4753 unsigned long size)
4754 {
4755 struct pglist_data *pgdat = zone->zone_pgdat;
4756 int ret;
4757 ret = zone_wait_table_init(zone, size);
4758 if (ret)
4759 return ret;
4760 pgdat->nr_zones = zone_idx(zone) + 1;
4761
4762 zone->zone_start_pfn = zone_start_pfn;
4763
4764 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4765 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4766 pgdat->node_id,
4767 (unsigned long)zone_idx(zone),
4768 zone_start_pfn, (zone_start_pfn + size));
4769
4770 zone_init_free_lists(zone);
4771
4772 return 0;
4773 }
4774
4775 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4776 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4777
4778 /*
4779 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4780 */
4781 int __meminit __early_pfn_to_nid(unsigned long pfn,
4782 struct mminit_pfnnid_cache *state)
4783 {
4784 unsigned long start_pfn, end_pfn;
4785 int nid;
4786
4787 if (state->last_start <= pfn && pfn < state->last_end)
4788 return state->last_nid;
4789
4790 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4791 if (nid != -1) {
4792 state->last_start = start_pfn;
4793 state->last_end = end_pfn;
4794 state->last_nid = nid;
4795 }
4796
4797 return nid;
4798 }
4799 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4800
4801 /**
4802 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4803 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4804 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4805 *
4806 * If an architecture guarantees that all ranges registered contain no holes
4807 * and may be freed, this this function may be used instead of calling
4808 * memblock_free_early_nid() manually.
4809 */
4810 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4811 {
4812 unsigned long start_pfn, end_pfn;
4813 int i, this_nid;
4814
4815 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4816 start_pfn = min(start_pfn, max_low_pfn);
4817 end_pfn = min(end_pfn, max_low_pfn);
4818
4819 if (start_pfn < end_pfn)
4820 memblock_free_early_nid(PFN_PHYS(start_pfn),
4821 (end_pfn - start_pfn) << PAGE_SHIFT,
4822 this_nid);
4823 }
4824 }
4825
4826 /**
4827 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4828 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4829 *
4830 * If an architecture guarantees that all ranges registered contain no holes and may
4831 * be freed, this function may be used instead of calling memory_present() manually.
4832 */
4833 void __init sparse_memory_present_with_active_regions(int nid)
4834 {
4835 unsigned long start_pfn, end_pfn;
4836 int i, this_nid;
4837
4838 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4839 memory_present(this_nid, start_pfn, end_pfn);
4840 }
4841
4842 /**
4843 * get_pfn_range_for_nid - Return the start and end page frames for a node
4844 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4845 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4846 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4847 *
4848 * It returns the start and end page frame of a node based on information
4849 * provided by memblock_set_node(). If called for a node
4850 * with no available memory, a warning is printed and the start and end
4851 * PFNs will be 0.
4852 */
4853 void __meminit get_pfn_range_for_nid(unsigned int nid,
4854 unsigned long *start_pfn, unsigned long *end_pfn)
4855 {
4856 unsigned long this_start_pfn, this_end_pfn;
4857 int i;
4858
4859 *start_pfn = -1UL;
4860 *end_pfn = 0;
4861
4862 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4863 *start_pfn = min(*start_pfn, this_start_pfn);
4864 *end_pfn = max(*end_pfn, this_end_pfn);
4865 }
4866
4867 if (*start_pfn == -1UL)
4868 *start_pfn = 0;
4869 }
4870
4871 /*
4872 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4873 * assumption is made that zones within a node are ordered in monotonic
4874 * increasing memory addresses so that the "highest" populated zone is used
4875 */
4876 static void __init find_usable_zone_for_movable(void)
4877 {
4878 int zone_index;
4879 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4880 if (zone_index == ZONE_MOVABLE)
4881 continue;
4882
4883 if (arch_zone_highest_possible_pfn[zone_index] >
4884 arch_zone_lowest_possible_pfn[zone_index])
4885 break;
4886 }
4887
4888 VM_BUG_ON(zone_index == -1);
4889 movable_zone = zone_index;
4890 }
4891
4892 /*
4893 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4894 * because it is sized independent of architecture. Unlike the other zones,
4895 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4896 * in each node depending on the size of each node and how evenly kernelcore
4897 * is distributed. This helper function adjusts the zone ranges
4898 * provided by the architecture for a given node by using the end of the
4899 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4900 * zones within a node are in order of monotonic increases memory addresses
4901 */
4902 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4903 unsigned long zone_type,
4904 unsigned long node_start_pfn,
4905 unsigned long node_end_pfn,
4906 unsigned long *zone_start_pfn,
4907 unsigned long *zone_end_pfn)
4908 {
4909 /* Only adjust if ZONE_MOVABLE is on this node */
4910 if (zone_movable_pfn[nid]) {
4911 /* Size ZONE_MOVABLE */
4912 if (zone_type == ZONE_MOVABLE) {
4913 *zone_start_pfn = zone_movable_pfn[nid];
4914 *zone_end_pfn = min(node_end_pfn,
4915 arch_zone_highest_possible_pfn[movable_zone]);
4916
4917 /* Adjust for ZONE_MOVABLE starting within this range */
4918 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4919 *zone_end_pfn > zone_movable_pfn[nid]) {
4920 *zone_end_pfn = zone_movable_pfn[nid];
4921
4922 /* Check if this whole range is within ZONE_MOVABLE */
4923 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4924 *zone_start_pfn = *zone_end_pfn;
4925 }
4926 }
4927
4928 /*
4929 * Return the number of pages a zone spans in a node, including holes
4930 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4931 */
4932 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4933 unsigned long zone_type,
4934 unsigned long node_start_pfn,
4935 unsigned long node_end_pfn,
4936 unsigned long *ignored)
4937 {
4938 unsigned long zone_start_pfn, zone_end_pfn;
4939
4940 /* When hotadd a new node from cpu_up(), the node should be empty */
4941 if (!node_start_pfn && !node_end_pfn)
4942 return 0;
4943
4944 /* Get the start and end of the zone */
4945 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4946 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4947 adjust_zone_range_for_zone_movable(nid, zone_type,
4948 node_start_pfn, node_end_pfn,
4949 &zone_start_pfn, &zone_end_pfn);
4950
4951 /* Check that this node has pages within the zone's required range */
4952 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4953 return 0;
4954
4955 /* Move the zone boundaries inside the node if necessary */
4956 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4957 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4958
4959 /* Return the spanned pages */
4960 return zone_end_pfn - zone_start_pfn;
4961 }
4962
4963 /*
4964 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4965 * then all holes in the requested range will be accounted for.
4966 */
4967 unsigned long __meminit __absent_pages_in_range(int nid,
4968 unsigned long range_start_pfn,
4969 unsigned long range_end_pfn)
4970 {
4971 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4972 unsigned long start_pfn, end_pfn;
4973 int i;
4974
4975 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4976 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4977 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4978 nr_absent -= end_pfn - start_pfn;
4979 }
4980 return nr_absent;
4981 }
4982
4983 /**
4984 * absent_pages_in_range - Return number of page frames in holes within a range
4985 * @start_pfn: The start PFN to start searching for holes
4986 * @end_pfn: The end PFN to stop searching for holes
4987 *
4988 * It returns the number of pages frames in memory holes within a range.
4989 */
4990 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4991 unsigned long end_pfn)
4992 {
4993 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4994 }
4995
4996 /* Return the number of page frames in holes in a zone on a node */
4997 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4998 unsigned long zone_type,
4999 unsigned long node_start_pfn,
5000 unsigned long node_end_pfn,
5001 unsigned long *ignored)
5002 {
5003 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5004 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5005 unsigned long zone_start_pfn, zone_end_pfn;
5006
5007 /* When hotadd a new node from cpu_up(), the node should be empty */
5008 if (!node_start_pfn && !node_end_pfn)
5009 return 0;
5010
5011 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5012 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5013
5014 adjust_zone_range_for_zone_movable(nid, zone_type,
5015 node_start_pfn, node_end_pfn,
5016 &zone_start_pfn, &zone_end_pfn);
5017 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5018 }
5019
5020 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5021 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5022 unsigned long zone_type,
5023 unsigned long node_start_pfn,
5024 unsigned long node_end_pfn,
5025 unsigned long *zones_size)
5026 {
5027 return zones_size[zone_type];
5028 }
5029
5030 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5031 unsigned long zone_type,
5032 unsigned long node_start_pfn,
5033 unsigned long node_end_pfn,
5034 unsigned long *zholes_size)
5035 {
5036 if (!zholes_size)
5037 return 0;
5038
5039 return zholes_size[zone_type];
5040 }
5041
5042 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5043
5044 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5045 unsigned long node_start_pfn,
5046 unsigned long node_end_pfn,
5047 unsigned long *zones_size,
5048 unsigned long *zholes_size)
5049 {
5050 unsigned long realtotalpages = 0, totalpages = 0;
5051 enum zone_type i;
5052
5053 for (i = 0; i < MAX_NR_ZONES; i++) {
5054 struct zone *zone = pgdat->node_zones + i;
5055 unsigned long size, real_size;
5056
5057 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5058 node_start_pfn,
5059 node_end_pfn,
5060 zones_size);
5061 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5062 node_start_pfn, node_end_pfn,
5063 zholes_size);
5064 zone->spanned_pages = size;
5065 zone->present_pages = real_size;
5066
5067 totalpages += size;
5068 realtotalpages += real_size;
5069 }
5070
5071 pgdat->node_spanned_pages = totalpages;
5072 pgdat->node_present_pages = realtotalpages;
5073 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5074 realtotalpages);
5075 }
5076
5077 #ifndef CONFIG_SPARSEMEM
5078 /*
5079 * Calculate the size of the zone->blockflags rounded to an unsigned long
5080 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5081 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5082 * round what is now in bits to nearest long in bits, then return it in
5083 * bytes.
5084 */
5085 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5086 {
5087 unsigned long usemapsize;
5088
5089 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5090 usemapsize = roundup(zonesize, pageblock_nr_pages);
5091 usemapsize = usemapsize >> pageblock_order;
5092 usemapsize *= NR_PAGEBLOCK_BITS;
5093 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5094
5095 return usemapsize / 8;
5096 }
5097
5098 static void __init setup_usemap(struct pglist_data *pgdat,
5099 struct zone *zone,
5100 unsigned long zone_start_pfn,
5101 unsigned long zonesize)
5102 {
5103 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5104 zone->pageblock_flags = NULL;
5105 if (usemapsize)
5106 zone->pageblock_flags =
5107 memblock_virt_alloc_node_nopanic(usemapsize,
5108 pgdat->node_id);
5109 }
5110 #else
5111 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5112 unsigned long zone_start_pfn, unsigned long zonesize) {}
5113 #endif /* CONFIG_SPARSEMEM */
5114
5115 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5116
5117 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5118 void __paginginit set_pageblock_order(void)
5119 {
5120 unsigned int order;
5121
5122 /* Check that pageblock_nr_pages has not already been setup */
5123 if (pageblock_order)
5124 return;
5125
5126 if (HPAGE_SHIFT > PAGE_SHIFT)
5127 order = HUGETLB_PAGE_ORDER;
5128 else
5129 order = MAX_ORDER - 1;
5130
5131 /*
5132 * Assume the largest contiguous order of interest is a huge page.
5133 * This value may be variable depending on boot parameters on IA64 and
5134 * powerpc.
5135 */
5136 pageblock_order = order;
5137 }
5138 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5139
5140 /*
5141 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5142 * is unused as pageblock_order is set at compile-time. See
5143 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5144 * the kernel config
5145 */
5146 void __paginginit set_pageblock_order(void)
5147 {
5148 }
5149
5150 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5151
5152 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5153 unsigned long present_pages)
5154 {
5155 unsigned long pages = spanned_pages;
5156
5157 /*
5158 * Provide a more accurate estimation if there are holes within
5159 * the zone and SPARSEMEM is in use. If there are holes within the
5160 * zone, each populated memory region may cost us one or two extra
5161 * memmap pages due to alignment because memmap pages for each
5162 * populated regions may not naturally algined on page boundary.
5163 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5164 */
5165 if (spanned_pages > present_pages + (present_pages >> 4) &&
5166 IS_ENABLED(CONFIG_SPARSEMEM))
5167 pages = present_pages;
5168
5169 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5170 }
5171
5172 /*
5173 * Set up the zone data structures:
5174 * - mark all pages reserved
5175 * - mark all memory queues empty
5176 * - clear the memory bitmaps
5177 *
5178 * NOTE: pgdat should get zeroed by caller.
5179 */
5180 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5181 {
5182 enum zone_type j;
5183 int nid = pgdat->node_id;
5184 unsigned long zone_start_pfn = pgdat->node_start_pfn;
5185 int ret;
5186
5187 pgdat_resize_init(pgdat);
5188 #ifdef CONFIG_NUMA_BALANCING
5189 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5190 pgdat->numabalancing_migrate_nr_pages = 0;
5191 pgdat->numabalancing_migrate_next_window = jiffies;
5192 #endif
5193 init_waitqueue_head(&pgdat->kswapd_wait);
5194 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5195 pgdat_page_ext_init(pgdat);
5196
5197 for (j = 0; j < MAX_NR_ZONES; j++) {
5198 struct zone *zone = pgdat->node_zones + j;
5199 unsigned long size, realsize, freesize, memmap_pages;
5200
5201 size = zone->spanned_pages;
5202 realsize = freesize = zone->present_pages;
5203
5204 /*
5205 * Adjust freesize so that it accounts for how much memory
5206 * is used by this zone for memmap. This affects the watermark
5207 * and per-cpu initialisations
5208 */
5209 memmap_pages = calc_memmap_size(size, realsize);
5210 if (!is_highmem_idx(j)) {
5211 if (freesize >= memmap_pages) {
5212 freesize -= memmap_pages;
5213 if (memmap_pages)
5214 printk(KERN_DEBUG
5215 " %s zone: %lu pages used for memmap\n",
5216 zone_names[j], memmap_pages);
5217 } else
5218 printk(KERN_WARNING
5219 " %s zone: %lu pages exceeds freesize %lu\n",
5220 zone_names[j], memmap_pages, freesize);
5221 }
5222
5223 /* Account for reserved pages */
5224 if (j == 0 && freesize > dma_reserve) {
5225 freesize -= dma_reserve;
5226 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5227 zone_names[0], dma_reserve);
5228 }
5229
5230 if (!is_highmem_idx(j))
5231 nr_kernel_pages += freesize;
5232 /* Charge for highmem memmap if there are enough kernel pages */
5233 else if (nr_kernel_pages > memmap_pages * 2)
5234 nr_kernel_pages -= memmap_pages;
5235 nr_all_pages += freesize;
5236
5237 /*
5238 * Set an approximate value for lowmem here, it will be adjusted
5239 * when the bootmem allocator frees pages into the buddy system.
5240 * And all highmem pages will be managed by the buddy system.
5241 */
5242 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5243 #ifdef CONFIG_NUMA
5244 zone->node = nid;
5245 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5246 / 100;
5247 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5248 #endif
5249 zone->name = zone_names[j];
5250 spin_lock_init(&zone->lock);
5251 spin_lock_init(&zone->lru_lock);
5252 zone_seqlock_init(zone);
5253 zone->zone_pgdat = pgdat;
5254 zone_pcp_init(zone);
5255
5256 /* For bootup, initialized properly in watermark setup */
5257 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5258
5259 lruvec_init(&zone->lruvec);
5260 if (!size)
5261 continue;
5262
5263 set_pageblock_order();
5264 setup_usemap(pgdat, zone, zone_start_pfn, size);
5265 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5266 BUG_ON(ret);
5267 memmap_init(size, nid, j, zone_start_pfn);
5268 zone_start_pfn += size;
5269 }
5270 }
5271
5272 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5273 {
5274 unsigned long __maybe_unused start = 0;
5275 unsigned long __maybe_unused offset = 0;
5276
5277 /* Skip empty nodes */
5278 if (!pgdat->node_spanned_pages)
5279 return;
5280
5281 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5282 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5283 offset = pgdat->node_start_pfn - start;
5284 /* ia64 gets its own node_mem_map, before this, without bootmem */
5285 if (!pgdat->node_mem_map) {
5286 unsigned long size, end;
5287 struct page *map;
5288
5289 /*
5290 * The zone's endpoints aren't required to be MAX_ORDER
5291 * aligned but the node_mem_map endpoints must be in order
5292 * for the buddy allocator to function correctly.
5293 */
5294 end = pgdat_end_pfn(pgdat);
5295 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5296 size = (end - start) * sizeof(struct page);
5297 map = alloc_remap(pgdat->node_id, size);
5298 if (!map)
5299 map = memblock_virt_alloc_node_nopanic(size,
5300 pgdat->node_id);
5301 pgdat->node_mem_map = map + offset;
5302 }
5303 #ifndef CONFIG_NEED_MULTIPLE_NODES
5304 /*
5305 * With no DISCONTIG, the global mem_map is just set as node 0's
5306 */
5307 if (pgdat == NODE_DATA(0)) {
5308 mem_map = NODE_DATA(0)->node_mem_map;
5309 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5310 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5311 mem_map -= offset;
5312 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5313 }
5314 #endif
5315 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5316 }
5317
5318 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5319 unsigned long node_start_pfn, unsigned long *zholes_size)
5320 {
5321 pg_data_t *pgdat = NODE_DATA(nid);
5322 unsigned long start_pfn = 0;
5323 unsigned long end_pfn = 0;
5324
5325 /* pg_data_t should be reset to zero when it's allocated */
5326 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5327
5328 reset_deferred_meminit(pgdat);
5329 pgdat->node_id = nid;
5330 pgdat->node_start_pfn = node_start_pfn;
5331 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5332 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5333 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5334 (u64)start_pfn << PAGE_SHIFT,
5335 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5336 #endif
5337 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5338 zones_size, zholes_size);
5339
5340 alloc_node_mem_map(pgdat);
5341 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5342 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5343 nid, (unsigned long)pgdat,
5344 (unsigned long)pgdat->node_mem_map);
5345 #endif
5346
5347 free_area_init_core(pgdat);
5348 }
5349
5350 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5351
5352 #if MAX_NUMNODES > 1
5353 /*
5354 * Figure out the number of possible node ids.
5355 */
5356 void __init setup_nr_node_ids(void)
5357 {
5358 unsigned int highest;
5359
5360 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5361 nr_node_ids = highest + 1;
5362 }
5363 #endif
5364
5365 /**
5366 * node_map_pfn_alignment - determine the maximum internode alignment
5367 *
5368 * This function should be called after node map is populated and sorted.
5369 * It calculates the maximum power of two alignment which can distinguish
5370 * all the nodes.
5371 *
5372 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5373 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5374 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5375 * shifted, 1GiB is enough and this function will indicate so.
5376 *
5377 * This is used to test whether pfn -> nid mapping of the chosen memory
5378 * model has fine enough granularity to avoid incorrect mapping for the
5379 * populated node map.
5380 *
5381 * Returns the determined alignment in pfn's. 0 if there is no alignment
5382 * requirement (single node).
5383 */
5384 unsigned long __init node_map_pfn_alignment(void)
5385 {
5386 unsigned long accl_mask = 0, last_end = 0;
5387 unsigned long start, end, mask;
5388 int last_nid = -1;
5389 int i, nid;
5390
5391 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5392 if (!start || last_nid < 0 || last_nid == nid) {
5393 last_nid = nid;
5394 last_end = end;
5395 continue;
5396 }
5397
5398 /*
5399 * Start with a mask granular enough to pin-point to the
5400 * start pfn and tick off bits one-by-one until it becomes
5401 * too coarse to separate the current node from the last.
5402 */
5403 mask = ~((1 << __ffs(start)) - 1);
5404 while (mask && last_end <= (start & (mask << 1)))
5405 mask <<= 1;
5406
5407 /* accumulate all internode masks */
5408 accl_mask |= mask;
5409 }
5410
5411 /* convert mask to number of pages */
5412 return ~accl_mask + 1;
5413 }
5414
5415 /* Find the lowest pfn for a node */
5416 static unsigned long __init find_min_pfn_for_node(int nid)
5417 {
5418 unsigned long min_pfn = ULONG_MAX;
5419 unsigned long start_pfn;
5420 int i;
5421
5422 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5423 min_pfn = min(min_pfn, start_pfn);
5424
5425 if (min_pfn == ULONG_MAX) {
5426 printk(KERN_WARNING
5427 "Could not find start_pfn for node %d\n", nid);
5428 return 0;
5429 }
5430
5431 return min_pfn;
5432 }
5433
5434 /**
5435 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5436 *
5437 * It returns the minimum PFN based on information provided via
5438 * memblock_set_node().
5439 */
5440 unsigned long __init find_min_pfn_with_active_regions(void)
5441 {
5442 return find_min_pfn_for_node(MAX_NUMNODES);
5443 }
5444
5445 /*
5446 * early_calculate_totalpages()
5447 * Sum pages in active regions for movable zone.
5448 * Populate N_MEMORY for calculating usable_nodes.
5449 */
5450 static unsigned long __init early_calculate_totalpages(void)
5451 {
5452 unsigned long totalpages = 0;
5453 unsigned long start_pfn, end_pfn;
5454 int i, nid;
5455
5456 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5457 unsigned long pages = end_pfn - start_pfn;
5458
5459 totalpages += pages;
5460 if (pages)
5461 node_set_state(nid, N_MEMORY);
5462 }
5463 return totalpages;
5464 }
5465
5466 /*
5467 * Find the PFN the Movable zone begins in each node. Kernel memory
5468 * is spread evenly between nodes as long as the nodes have enough
5469 * memory. When they don't, some nodes will have more kernelcore than
5470 * others
5471 */
5472 static void __init find_zone_movable_pfns_for_nodes(void)
5473 {
5474 int i, nid;
5475 unsigned long usable_startpfn;
5476 unsigned long kernelcore_node, kernelcore_remaining;
5477 /* save the state before borrow the nodemask */
5478 nodemask_t saved_node_state = node_states[N_MEMORY];
5479 unsigned long totalpages = early_calculate_totalpages();
5480 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5481 struct memblock_region *r;
5482
5483 /* Need to find movable_zone earlier when movable_node is specified. */
5484 find_usable_zone_for_movable();
5485
5486 /*
5487 * If movable_node is specified, ignore kernelcore and movablecore
5488 * options.
5489 */
5490 if (movable_node_is_enabled()) {
5491 for_each_memblock(memory, r) {
5492 if (!memblock_is_hotpluggable(r))
5493 continue;
5494
5495 nid = r->nid;
5496
5497 usable_startpfn = PFN_DOWN(r->base);
5498 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5499 min(usable_startpfn, zone_movable_pfn[nid]) :
5500 usable_startpfn;
5501 }
5502
5503 goto out2;
5504 }
5505
5506 /*
5507 * If movablecore=nn[KMG] was specified, calculate what size of
5508 * kernelcore that corresponds so that memory usable for
5509 * any allocation type is evenly spread. If both kernelcore
5510 * and movablecore are specified, then the value of kernelcore
5511 * will be used for required_kernelcore if it's greater than
5512 * what movablecore would have allowed.
5513 */
5514 if (required_movablecore) {
5515 unsigned long corepages;
5516
5517 /*
5518 * Round-up so that ZONE_MOVABLE is at least as large as what
5519 * was requested by the user
5520 */
5521 required_movablecore =
5522 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5523 required_movablecore = min(totalpages, required_movablecore);
5524 corepages = totalpages - required_movablecore;
5525
5526 required_kernelcore = max(required_kernelcore, corepages);
5527 }
5528
5529 /*
5530 * If kernelcore was not specified or kernelcore size is larger
5531 * than totalpages, there is no ZONE_MOVABLE.
5532 */
5533 if (!required_kernelcore || required_kernelcore >= totalpages)
5534 goto out;
5535
5536 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5537 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5538
5539 restart:
5540 /* Spread kernelcore memory as evenly as possible throughout nodes */
5541 kernelcore_node = required_kernelcore / usable_nodes;
5542 for_each_node_state(nid, N_MEMORY) {
5543 unsigned long start_pfn, end_pfn;
5544
5545 /*
5546 * Recalculate kernelcore_node if the division per node
5547 * now exceeds what is necessary to satisfy the requested
5548 * amount of memory for the kernel
5549 */
5550 if (required_kernelcore < kernelcore_node)
5551 kernelcore_node = required_kernelcore / usable_nodes;
5552
5553 /*
5554 * As the map is walked, we track how much memory is usable
5555 * by the kernel using kernelcore_remaining. When it is
5556 * 0, the rest of the node is usable by ZONE_MOVABLE
5557 */
5558 kernelcore_remaining = kernelcore_node;
5559
5560 /* Go through each range of PFNs within this node */
5561 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5562 unsigned long size_pages;
5563
5564 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5565 if (start_pfn >= end_pfn)
5566 continue;
5567
5568 /* Account for what is only usable for kernelcore */
5569 if (start_pfn < usable_startpfn) {
5570 unsigned long kernel_pages;
5571 kernel_pages = min(end_pfn, usable_startpfn)
5572 - start_pfn;
5573
5574 kernelcore_remaining -= min(kernel_pages,
5575 kernelcore_remaining);
5576 required_kernelcore -= min(kernel_pages,
5577 required_kernelcore);
5578
5579 /* Continue if range is now fully accounted */
5580 if (end_pfn <= usable_startpfn) {
5581
5582 /*
5583 * Push zone_movable_pfn to the end so
5584 * that if we have to rebalance
5585 * kernelcore across nodes, we will
5586 * not double account here
5587 */
5588 zone_movable_pfn[nid] = end_pfn;
5589 continue;
5590 }
5591 start_pfn = usable_startpfn;
5592 }
5593
5594 /*
5595 * The usable PFN range for ZONE_MOVABLE is from
5596 * start_pfn->end_pfn. Calculate size_pages as the
5597 * number of pages used as kernelcore
5598 */
5599 size_pages = end_pfn - start_pfn;
5600 if (size_pages > kernelcore_remaining)
5601 size_pages = kernelcore_remaining;
5602 zone_movable_pfn[nid] = start_pfn + size_pages;
5603
5604 /*
5605 * Some kernelcore has been met, update counts and
5606 * break if the kernelcore for this node has been
5607 * satisfied
5608 */
5609 required_kernelcore -= min(required_kernelcore,
5610 size_pages);
5611 kernelcore_remaining -= size_pages;
5612 if (!kernelcore_remaining)
5613 break;
5614 }
5615 }
5616
5617 /*
5618 * If there is still required_kernelcore, we do another pass with one
5619 * less node in the count. This will push zone_movable_pfn[nid] further
5620 * along on the nodes that still have memory until kernelcore is
5621 * satisfied
5622 */
5623 usable_nodes--;
5624 if (usable_nodes && required_kernelcore > usable_nodes)
5625 goto restart;
5626
5627 out2:
5628 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5629 for (nid = 0; nid < MAX_NUMNODES; nid++)
5630 zone_movable_pfn[nid] =
5631 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5632
5633 out:
5634 /* restore the node_state */
5635 node_states[N_MEMORY] = saved_node_state;
5636 }
5637
5638 /* Any regular or high memory on that node ? */
5639 static void check_for_memory(pg_data_t *pgdat, int nid)
5640 {
5641 enum zone_type zone_type;
5642
5643 if (N_MEMORY == N_NORMAL_MEMORY)
5644 return;
5645
5646 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5647 struct zone *zone = &pgdat->node_zones[zone_type];
5648 if (populated_zone(zone)) {
5649 node_set_state(nid, N_HIGH_MEMORY);
5650 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5651 zone_type <= ZONE_NORMAL)
5652 node_set_state(nid, N_NORMAL_MEMORY);
5653 break;
5654 }
5655 }
5656 }
5657
5658 /**
5659 * free_area_init_nodes - Initialise all pg_data_t and zone data
5660 * @max_zone_pfn: an array of max PFNs for each zone
5661 *
5662 * This will call free_area_init_node() for each active node in the system.
5663 * Using the page ranges provided by memblock_set_node(), the size of each
5664 * zone in each node and their holes is calculated. If the maximum PFN
5665 * between two adjacent zones match, it is assumed that the zone is empty.
5666 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5667 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5668 * starts where the previous one ended. For example, ZONE_DMA32 starts
5669 * at arch_max_dma_pfn.
5670 */
5671 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5672 {
5673 unsigned long start_pfn, end_pfn;
5674 int i, nid;
5675
5676 /* Record where the zone boundaries are */
5677 memset(arch_zone_lowest_possible_pfn, 0,
5678 sizeof(arch_zone_lowest_possible_pfn));
5679 memset(arch_zone_highest_possible_pfn, 0,
5680 sizeof(arch_zone_highest_possible_pfn));
5681 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5682 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5683 for (i = 1; i < MAX_NR_ZONES; i++) {
5684 if (i == ZONE_MOVABLE)
5685 continue;
5686 arch_zone_lowest_possible_pfn[i] =
5687 arch_zone_highest_possible_pfn[i-1];
5688 arch_zone_highest_possible_pfn[i] =
5689 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5690 }
5691 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5692 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5693
5694 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5695 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5696 find_zone_movable_pfns_for_nodes();
5697
5698 /* Print out the zone ranges */
5699 pr_info("Zone ranges:\n");
5700 for (i = 0; i < MAX_NR_ZONES; i++) {
5701 if (i == ZONE_MOVABLE)
5702 continue;
5703 pr_info(" %-8s ", zone_names[i]);
5704 if (arch_zone_lowest_possible_pfn[i] ==
5705 arch_zone_highest_possible_pfn[i])
5706 pr_cont("empty\n");
5707 else
5708 pr_cont("[mem %#018Lx-%#018Lx]\n",
5709 (u64)arch_zone_lowest_possible_pfn[i]
5710 << PAGE_SHIFT,
5711 ((u64)arch_zone_highest_possible_pfn[i]
5712 << PAGE_SHIFT) - 1);
5713 }
5714
5715 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5716 pr_info("Movable zone start for each node\n");
5717 for (i = 0; i < MAX_NUMNODES; i++) {
5718 if (zone_movable_pfn[i])
5719 pr_info(" Node %d: %#018Lx\n", i,
5720 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5721 }
5722
5723 /* Print out the early node map */
5724 pr_info("Early memory node ranges\n");
5725 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5726 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5727 (u64)start_pfn << PAGE_SHIFT,
5728 ((u64)end_pfn << PAGE_SHIFT) - 1);
5729
5730 /* Initialise every node */
5731 mminit_verify_pageflags_layout();
5732 setup_nr_node_ids();
5733 for_each_online_node(nid) {
5734 pg_data_t *pgdat = NODE_DATA(nid);
5735 free_area_init_node(nid, NULL,
5736 find_min_pfn_for_node(nid), NULL);
5737
5738 /* Any memory on that node */
5739 if (pgdat->node_present_pages)
5740 node_set_state(nid, N_MEMORY);
5741 check_for_memory(pgdat, nid);
5742 }
5743 }
5744
5745 static int __init cmdline_parse_core(char *p, unsigned long *core)
5746 {
5747 unsigned long long coremem;
5748 if (!p)
5749 return -EINVAL;
5750
5751 coremem = memparse(p, &p);
5752 *core = coremem >> PAGE_SHIFT;
5753
5754 /* Paranoid check that UL is enough for the coremem value */
5755 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5756
5757 return 0;
5758 }
5759
5760 /*
5761 * kernelcore=size sets the amount of memory for use for allocations that
5762 * cannot be reclaimed or migrated.
5763 */
5764 static int __init cmdline_parse_kernelcore(char *p)
5765 {
5766 return cmdline_parse_core(p, &required_kernelcore);
5767 }
5768
5769 /*
5770 * movablecore=size sets the amount of memory for use for allocations that
5771 * can be reclaimed or migrated.
5772 */
5773 static int __init cmdline_parse_movablecore(char *p)
5774 {
5775 return cmdline_parse_core(p, &required_movablecore);
5776 }
5777
5778 early_param("kernelcore", cmdline_parse_kernelcore);
5779 early_param("movablecore", cmdline_parse_movablecore);
5780
5781 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5782
5783 void adjust_managed_page_count(struct page *page, long count)
5784 {
5785 spin_lock(&managed_page_count_lock);
5786 page_zone(page)->managed_pages += count;
5787 totalram_pages += count;
5788 #ifdef CONFIG_HIGHMEM
5789 if (PageHighMem(page))
5790 totalhigh_pages += count;
5791 #endif
5792 spin_unlock(&managed_page_count_lock);
5793 }
5794 EXPORT_SYMBOL(adjust_managed_page_count);
5795
5796 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5797 {
5798 void *pos;
5799 unsigned long pages = 0;
5800
5801 start = (void *)PAGE_ALIGN((unsigned long)start);
5802 end = (void *)((unsigned long)end & PAGE_MASK);
5803 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5804 if ((unsigned int)poison <= 0xFF)
5805 memset(pos, poison, PAGE_SIZE);
5806 free_reserved_page(virt_to_page(pos));
5807 }
5808
5809 if (pages && s)
5810 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5811 s, pages << (PAGE_SHIFT - 10), start, end);
5812
5813 return pages;
5814 }
5815 EXPORT_SYMBOL(free_reserved_area);
5816
5817 #ifdef CONFIG_HIGHMEM
5818 void free_highmem_page(struct page *page)
5819 {
5820 __free_reserved_page(page);
5821 totalram_pages++;
5822 page_zone(page)->managed_pages++;
5823 totalhigh_pages++;
5824 }
5825 #endif
5826
5827
5828 void __init mem_init_print_info(const char *str)
5829 {
5830 unsigned long physpages, codesize, datasize, rosize, bss_size;
5831 unsigned long init_code_size, init_data_size;
5832
5833 physpages = get_num_physpages();
5834 codesize = _etext - _stext;
5835 datasize = _edata - _sdata;
5836 rosize = __end_rodata - __start_rodata;
5837 bss_size = __bss_stop - __bss_start;
5838 init_data_size = __init_end - __init_begin;
5839 init_code_size = _einittext - _sinittext;
5840
5841 /*
5842 * Detect special cases and adjust section sizes accordingly:
5843 * 1) .init.* may be embedded into .data sections
5844 * 2) .init.text.* may be out of [__init_begin, __init_end],
5845 * please refer to arch/tile/kernel/vmlinux.lds.S.
5846 * 3) .rodata.* may be embedded into .text or .data sections.
5847 */
5848 #define adj_init_size(start, end, size, pos, adj) \
5849 do { \
5850 if (start <= pos && pos < end && size > adj) \
5851 size -= adj; \
5852 } while (0)
5853
5854 adj_init_size(__init_begin, __init_end, init_data_size,
5855 _sinittext, init_code_size);
5856 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5857 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5858 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5859 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5860
5861 #undef adj_init_size
5862
5863 pr_info("Memory: %luK/%luK available "
5864 "(%luK kernel code, %luK rwdata, %luK rodata, "
5865 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5866 #ifdef CONFIG_HIGHMEM
5867 ", %luK highmem"
5868 #endif
5869 "%s%s)\n",
5870 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5871 codesize >> 10, datasize >> 10, rosize >> 10,
5872 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5873 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5874 totalcma_pages << (PAGE_SHIFT-10),
5875 #ifdef CONFIG_HIGHMEM
5876 totalhigh_pages << (PAGE_SHIFT-10),
5877 #endif
5878 str ? ", " : "", str ? str : "");
5879 }
5880
5881 /**
5882 * set_dma_reserve - set the specified number of pages reserved in the first zone
5883 * @new_dma_reserve: The number of pages to mark reserved
5884 *
5885 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
5886 * In the DMA zone, a significant percentage may be consumed by kernel image
5887 * and other unfreeable allocations which can skew the watermarks badly. This
5888 * function may optionally be used to account for unfreeable pages in the
5889 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5890 * smaller per-cpu batchsize.
5891 */
5892 void __init set_dma_reserve(unsigned long new_dma_reserve)
5893 {
5894 dma_reserve = new_dma_reserve;
5895 }
5896
5897 void __init free_area_init(unsigned long *zones_size)
5898 {
5899 free_area_init_node(0, zones_size,
5900 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5901 }
5902
5903 static int page_alloc_cpu_notify(struct notifier_block *self,
5904 unsigned long action, void *hcpu)
5905 {
5906 int cpu = (unsigned long)hcpu;
5907
5908 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5909 lru_add_drain_cpu(cpu);
5910 drain_pages(cpu);
5911
5912 /*
5913 * Spill the event counters of the dead processor
5914 * into the current processors event counters.
5915 * This artificially elevates the count of the current
5916 * processor.
5917 */
5918 vm_events_fold_cpu(cpu);
5919
5920 /*
5921 * Zero the differential counters of the dead processor
5922 * so that the vm statistics are consistent.
5923 *
5924 * This is only okay since the processor is dead and cannot
5925 * race with what we are doing.
5926 */
5927 cpu_vm_stats_fold(cpu);
5928 }
5929 return NOTIFY_OK;
5930 }
5931
5932 void __init page_alloc_init(void)
5933 {
5934 hotcpu_notifier(page_alloc_cpu_notify, 0);
5935 }
5936
5937 /*
5938 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5939 * or min_free_kbytes changes.
5940 */
5941 static void calculate_totalreserve_pages(void)
5942 {
5943 struct pglist_data *pgdat;
5944 unsigned long reserve_pages = 0;
5945 enum zone_type i, j;
5946
5947 for_each_online_pgdat(pgdat) {
5948 for (i = 0; i < MAX_NR_ZONES; i++) {
5949 struct zone *zone = pgdat->node_zones + i;
5950 long max = 0;
5951
5952 /* Find valid and maximum lowmem_reserve in the zone */
5953 for (j = i; j < MAX_NR_ZONES; j++) {
5954 if (zone->lowmem_reserve[j] > max)
5955 max = zone->lowmem_reserve[j];
5956 }
5957
5958 /* we treat the high watermark as reserved pages. */
5959 max += high_wmark_pages(zone);
5960
5961 if (max > zone->managed_pages)
5962 max = zone->managed_pages;
5963
5964 zone->totalreserve_pages = max;
5965
5966 reserve_pages += max;
5967 }
5968 }
5969 totalreserve_pages = reserve_pages;
5970 }
5971
5972 /*
5973 * setup_per_zone_lowmem_reserve - called whenever
5974 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
5975 * has a correct pages reserved value, so an adequate number of
5976 * pages are left in the zone after a successful __alloc_pages().
5977 */
5978 static void setup_per_zone_lowmem_reserve(void)
5979 {
5980 struct pglist_data *pgdat;
5981 enum zone_type j, idx;
5982
5983 for_each_online_pgdat(pgdat) {
5984 for (j = 0; j < MAX_NR_ZONES; j++) {
5985 struct zone *zone = pgdat->node_zones + j;
5986 unsigned long managed_pages = zone->managed_pages;
5987
5988 zone->lowmem_reserve[j] = 0;
5989
5990 idx = j;
5991 while (idx) {
5992 struct zone *lower_zone;
5993
5994 idx--;
5995
5996 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5997 sysctl_lowmem_reserve_ratio[idx] = 1;
5998
5999 lower_zone = pgdat->node_zones + idx;
6000 lower_zone->lowmem_reserve[j] = managed_pages /
6001 sysctl_lowmem_reserve_ratio[idx];
6002 managed_pages += lower_zone->managed_pages;
6003 }
6004 }
6005 }
6006
6007 /* update totalreserve_pages */
6008 calculate_totalreserve_pages();
6009 }
6010
6011 static void __setup_per_zone_wmarks(void)
6012 {
6013 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6014 unsigned long lowmem_pages = 0;
6015 struct zone *zone;
6016 unsigned long flags;
6017
6018 /* Calculate total number of !ZONE_HIGHMEM pages */
6019 for_each_zone(zone) {
6020 if (!is_highmem(zone))
6021 lowmem_pages += zone->managed_pages;
6022 }
6023
6024 for_each_zone(zone) {
6025 u64 tmp;
6026
6027 spin_lock_irqsave(&zone->lock, flags);
6028 tmp = (u64)pages_min * zone->managed_pages;
6029 do_div(tmp, lowmem_pages);
6030 if (is_highmem(zone)) {
6031 /*
6032 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6033 * need highmem pages, so cap pages_min to a small
6034 * value here.
6035 *
6036 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6037 * deltas control asynch page reclaim, and so should
6038 * not be capped for highmem.
6039 */
6040 unsigned long min_pages;
6041
6042 min_pages = zone->managed_pages / 1024;
6043 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6044 zone->watermark[WMARK_MIN] = min_pages;
6045 } else {
6046 /*
6047 * If it's a lowmem zone, reserve a number of pages
6048 * proportionate to the zone's size.
6049 */
6050 zone->watermark[WMARK_MIN] = tmp;
6051 }
6052
6053 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6054 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
6055
6056 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6057 high_wmark_pages(zone) - low_wmark_pages(zone) -
6058 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6059
6060 spin_unlock_irqrestore(&zone->lock, flags);
6061 }
6062
6063 /* update totalreserve_pages */
6064 calculate_totalreserve_pages();
6065 }
6066
6067 /**
6068 * setup_per_zone_wmarks - called when min_free_kbytes changes
6069 * or when memory is hot-{added|removed}
6070 *
6071 * Ensures that the watermark[min,low,high] values for each zone are set
6072 * correctly with respect to min_free_kbytes.
6073 */
6074 void setup_per_zone_wmarks(void)
6075 {
6076 mutex_lock(&zonelists_mutex);
6077 __setup_per_zone_wmarks();
6078 mutex_unlock(&zonelists_mutex);
6079 }
6080
6081 /*
6082 * The inactive anon list should be small enough that the VM never has to
6083 * do too much work, but large enough that each inactive page has a chance
6084 * to be referenced again before it is swapped out.
6085 *
6086 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6087 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6088 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6089 * the anonymous pages are kept on the inactive list.
6090 *
6091 * total target max
6092 * memory ratio inactive anon
6093 * -------------------------------------
6094 * 10MB 1 5MB
6095 * 100MB 1 50MB
6096 * 1GB 3 250MB
6097 * 10GB 10 0.9GB
6098 * 100GB 31 3GB
6099 * 1TB 101 10GB
6100 * 10TB 320 32GB
6101 */
6102 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6103 {
6104 unsigned int gb, ratio;
6105
6106 /* Zone size in gigabytes */
6107 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6108 if (gb)
6109 ratio = int_sqrt(10 * gb);
6110 else
6111 ratio = 1;
6112
6113 zone->inactive_ratio = ratio;
6114 }
6115
6116 static void __meminit setup_per_zone_inactive_ratio(void)
6117 {
6118 struct zone *zone;
6119
6120 for_each_zone(zone)
6121 calculate_zone_inactive_ratio(zone);
6122 }
6123
6124 /*
6125 * Initialise min_free_kbytes.
6126 *
6127 * For small machines we want it small (128k min). For large machines
6128 * we want it large (64MB max). But it is not linear, because network
6129 * bandwidth does not increase linearly with machine size. We use
6130 *
6131 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6132 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6133 *
6134 * which yields
6135 *
6136 * 16MB: 512k
6137 * 32MB: 724k
6138 * 64MB: 1024k
6139 * 128MB: 1448k
6140 * 256MB: 2048k
6141 * 512MB: 2896k
6142 * 1024MB: 4096k
6143 * 2048MB: 5792k
6144 * 4096MB: 8192k
6145 * 8192MB: 11584k
6146 * 16384MB: 16384k
6147 */
6148 int __meminit init_per_zone_wmark_min(void)
6149 {
6150 unsigned long lowmem_kbytes;
6151 int new_min_free_kbytes;
6152
6153 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6154 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6155
6156 if (new_min_free_kbytes > user_min_free_kbytes) {
6157 min_free_kbytes = new_min_free_kbytes;
6158 if (min_free_kbytes < 128)
6159 min_free_kbytes = 128;
6160 if (min_free_kbytes > 65536)
6161 min_free_kbytes = 65536;
6162 } else {
6163 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6164 new_min_free_kbytes, user_min_free_kbytes);
6165 }
6166 setup_per_zone_wmarks();
6167 refresh_zone_stat_thresholds();
6168 setup_per_zone_lowmem_reserve();
6169 setup_per_zone_inactive_ratio();
6170 return 0;
6171 }
6172 module_init(init_per_zone_wmark_min)
6173
6174 /*
6175 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6176 * that we can call two helper functions whenever min_free_kbytes
6177 * changes.
6178 */
6179 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6180 void __user *buffer, size_t *length, loff_t *ppos)
6181 {
6182 int rc;
6183
6184 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6185 if (rc)
6186 return rc;
6187
6188 if (write) {
6189 user_min_free_kbytes = min_free_kbytes;
6190 setup_per_zone_wmarks();
6191 }
6192 return 0;
6193 }
6194
6195 #ifdef CONFIG_NUMA
6196 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6197 void __user *buffer, size_t *length, loff_t *ppos)
6198 {
6199 struct zone *zone;
6200 int rc;
6201
6202 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6203 if (rc)
6204 return rc;
6205
6206 for_each_zone(zone)
6207 zone->min_unmapped_pages = (zone->managed_pages *
6208 sysctl_min_unmapped_ratio) / 100;
6209 return 0;
6210 }
6211
6212 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6213 void __user *buffer, size_t *length, loff_t *ppos)
6214 {
6215 struct zone *zone;
6216 int rc;
6217
6218 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6219 if (rc)
6220 return rc;
6221
6222 for_each_zone(zone)
6223 zone->min_slab_pages = (zone->managed_pages *
6224 sysctl_min_slab_ratio) / 100;
6225 return 0;
6226 }
6227 #endif
6228
6229 /*
6230 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6231 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6232 * whenever sysctl_lowmem_reserve_ratio changes.
6233 *
6234 * The reserve ratio obviously has absolutely no relation with the
6235 * minimum watermarks. The lowmem reserve ratio can only make sense
6236 * if in function of the boot time zone sizes.
6237 */
6238 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6239 void __user *buffer, size_t *length, loff_t *ppos)
6240 {
6241 proc_dointvec_minmax(table, write, buffer, length, ppos);
6242 setup_per_zone_lowmem_reserve();
6243 return 0;
6244 }
6245
6246 /*
6247 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6248 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6249 * pagelist can have before it gets flushed back to buddy allocator.
6250 */
6251 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6252 void __user *buffer, size_t *length, loff_t *ppos)
6253 {
6254 struct zone *zone;
6255 int old_percpu_pagelist_fraction;
6256 int ret;
6257
6258 mutex_lock(&pcp_batch_high_lock);
6259 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6260
6261 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6262 if (!write || ret < 0)
6263 goto out;
6264
6265 /* Sanity checking to avoid pcp imbalance */
6266 if (percpu_pagelist_fraction &&
6267 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6268 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6269 ret = -EINVAL;
6270 goto out;
6271 }
6272
6273 /* No change? */
6274 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6275 goto out;
6276
6277 for_each_populated_zone(zone) {
6278 unsigned int cpu;
6279
6280 for_each_possible_cpu(cpu)
6281 pageset_set_high_and_batch(zone,
6282 per_cpu_ptr(zone->pageset, cpu));
6283 }
6284 out:
6285 mutex_unlock(&pcp_batch_high_lock);
6286 return ret;
6287 }
6288
6289 #ifdef CONFIG_NUMA
6290 int hashdist = HASHDIST_DEFAULT;
6291
6292 static int __init set_hashdist(char *str)
6293 {
6294 if (!str)
6295 return 0;
6296 hashdist = simple_strtoul(str, &str, 0);
6297 return 1;
6298 }
6299 __setup("hashdist=", set_hashdist);
6300 #endif
6301
6302 /*
6303 * allocate a large system hash table from bootmem
6304 * - it is assumed that the hash table must contain an exact power-of-2
6305 * quantity of entries
6306 * - limit is the number of hash buckets, not the total allocation size
6307 */
6308 void *__init alloc_large_system_hash(const char *tablename,
6309 unsigned long bucketsize,
6310 unsigned long numentries,
6311 int scale,
6312 int flags,
6313 unsigned int *_hash_shift,
6314 unsigned int *_hash_mask,
6315 unsigned long low_limit,
6316 unsigned long high_limit)
6317 {
6318 unsigned long long max = high_limit;
6319 unsigned long log2qty, size;
6320 void *table = NULL;
6321
6322 /* allow the kernel cmdline to have a say */
6323 if (!numentries) {
6324 /* round applicable memory size up to nearest megabyte */
6325 numentries = nr_kernel_pages;
6326
6327 /* It isn't necessary when PAGE_SIZE >= 1MB */
6328 if (PAGE_SHIFT < 20)
6329 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6330
6331 /* limit to 1 bucket per 2^scale bytes of low memory */
6332 if (scale > PAGE_SHIFT)
6333 numentries >>= (scale - PAGE_SHIFT);
6334 else
6335 numentries <<= (PAGE_SHIFT - scale);
6336
6337 /* Make sure we've got at least a 0-order allocation.. */
6338 if (unlikely(flags & HASH_SMALL)) {
6339 /* Makes no sense without HASH_EARLY */
6340 WARN_ON(!(flags & HASH_EARLY));
6341 if (!(numentries >> *_hash_shift)) {
6342 numentries = 1UL << *_hash_shift;
6343 BUG_ON(!numentries);
6344 }
6345 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6346 numentries = PAGE_SIZE / bucketsize;
6347 }
6348 numentries = roundup_pow_of_two(numentries);
6349
6350 /* limit allocation size to 1/16 total memory by default */
6351 if (max == 0) {
6352 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6353 do_div(max, bucketsize);
6354 }
6355 max = min(max, 0x80000000ULL);
6356
6357 if (numentries < low_limit)
6358 numentries = low_limit;
6359 if (numentries > max)
6360 numentries = max;
6361
6362 log2qty = ilog2(numentries);
6363
6364 do {
6365 size = bucketsize << log2qty;
6366 if (flags & HASH_EARLY)
6367 table = memblock_virt_alloc_nopanic(size, 0);
6368 else if (hashdist)
6369 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6370 else {
6371 /*
6372 * If bucketsize is not a power-of-two, we may free
6373 * some pages at the end of hash table which
6374 * alloc_pages_exact() automatically does
6375 */
6376 if (get_order(size) < MAX_ORDER) {
6377 table = alloc_pages_exact(size, GFP_ATOMIC);
6378 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6379 }
6380 }
6381 } while (!table && size > PAGE_SIZE && --log2qty);
6382
6383 if (!table)
6384 panic("Failed to allocate %s hash table\n", tablename);
6385
6386 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6387 tablename,
6388 (1UL << log2qty),
6389 ilog2(size) - PAGE_SHIFT,
6390 size);
6391
6392 if (_hash_shift)
6393 *_hash_shift = log2qty;
6394 if (_hash_mask)
6395 *_hash_mask = (1 << log2qty) - 1;
6396
6397 return table;
6398 }
6399
6400 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6401 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6402 unsigned long pfn)
6403 {
6404 #ifdef CONFIG_SPARSEMEM
6405 return __pfn_to_section(pfn)->pageblock_flags;
6406 #else
6407 return zone->pageblock_flags;
6408 #endif /* CONFIG_SPARSEMEM */
6409 }
6410
6411 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6412 {
6413 #ifdef CONFIG_SPARSEMEM
6414 pfn &= (PAGES_PER_SECTION-1);
6415 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6416 #else
6417 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6418 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6419 #endif /* CONFIG_SPARSEMEM */
6420 }
6421
6422 /**
6423 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6424 * @page: The page within the block of interest
6425 * @pfn: The target page frame number
6426 * @end_bitidx: The last bit of interest to retrieve
6427 * @mask: mask of bits that the caller is interested in
6428 *
6429 * Return: pageblock_bits flags
6430 */
6431 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6432 unsigned long end_bitidx,
6433 unsigned long mask)
6434 {
6435 struct zone *zone;
6436 unsigned long *bitmap;
6437 unsigned long bitidx, word_bitidx;
6438 unsigned long word;
6439
6440 zone = page_zone(page);
6441 bitmap = get_pageblock_bitmap(zone, pfn);
6442 bitidx = pfn_to_bitidx(zone, pfn);
6443 word_bitidx = bitidx / BITS_PER_LONG;
6444 bitidx &= (BITS_PER_LONG-1);
6445
6446 word = bitmap[word_bitidx];
6447 bitidx += end_bitidx;
6448 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6449 }
6450
6451 /**
6452 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6453 * @page: The page within the block of interest
6454 * @flags: The flags to set
6455 * @pfn: The target page frame number
6456 * @end_bitidx: The last bit of interest
6457 * @mask: mask of bits that the caller is interested in
6458 */
6459 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6460 unsigned long pfn,
6461 unsigned long end_bitidx,
6462 unsigned long mask)
6463 {
6464 struct zone *zone;
6465 unsigned long *bitmap;
6466 unsigned long bitidx, word_bitidx;
6467 unsigned long old_word, word;
6468
6469 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6470
6471 zone = page_zone(page);
6472 bitmap = get_pageblock_bitmap(zone, pfn);
6473 bitidx = pfn_to_bitidx(zone, pfn);
6474 word_bitidx = bitidx / BITS_PER_LONG;
6475 bitidx &= (BITS_PER_LONG-1);
6476
6477 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6478
6479 bitidx += end_bitidx;
6480 mask <<= (BITS_PER_LONG - bitidx - 1);
6481 flags <<= (BITS_PER_LONG - bitidx - 1);
6482
6483 word = READ_ONCE(bitmap[word_bitidx]);
6484 for (;;) {
6485 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6486 if (word == old_word)
6487 break;
6488 word = old_word;
6489 }
6490 }
6491
6492 /*
6493 * This function checks whether pageblock includes unmovable pages or not.
6494 * If @count is not zero, it is okay to include less @count unmovable pages
6495 *
6496 * PageLRU check without isolation or lru_lock could race so that
6497 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6498 * expect this function should be exact.
6499 */
6500 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6501 bool skip_hwpoisoned_pages)
6502 {
6503 unsigned long pfn, iter, found;
6504 int mt;
6505
6506 /*
6507 * For avoiding noise data, lru_add_drain_all() should be called
6508 * If ZONE_MOVABLE, the zone never contains unmovable pages
6509 */
6510 if (zone_idx(zone) == ZONE_MOVABLE)
6511 return false;
6512 mt = get_pageblock_migratetype(page);
6513 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6514 return false;
6515
6516 pfn = page_to_pfn(page);
6517 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6518 unsigned long check = pfn + iter;
6519
6520 if (!pfn_valid_within(check))
6521 continue;
6522
6523 page = pfn_to_page(check);
6524
6525 /*
6526 * Hugepages are not in LRU lists, but they're movable.
6527 * We need not scan over tail pages bacause we don't
6528 * handle each tail page individually in migration.
6529 */
6530 if (PageHuge(page)) {
6531 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6532 continue;
6533 }
6534
6535 /*
6536 * We can't use page_count without pin a page
6537 * because another CPU can free compound page.
6538 * This check already skips compound tails of THP
6539 * because their page->_count is zero at all time.
6540 */
6541 if (!atomic_read(&page->_count)) {
6542 if (PageBuddy(page))
6543 iter += (1 << page_order(page)) - 1;
6544 continue;
6545 }
6546
6547 /*
6548 * The HWPoisoned page may be not in buddy system, and
6549 * page_count() is not 0.
6550 */
6551 if (skip_hwpoisoned_pages && PageHWPoison(page))
6552 continue;
6553
6554 if (!PageLRU(page))
6555 found++;
6556 /*
6557 * If there are RECLAIMABLE pages, we need to check
6558 * it. But now, memory offline itself doesn't call
6559 * shrink_node_slabs() and it still to be fixed.
6560 */
6561 /*
6562 * If the page is not RAM, page_count()should be 0.
6563 * we don't need more check. This is an _used_ not-movable page.
6564 *
6565 * The problematic thing here is PG_reserved pages. PG_reserved
6566 * is set to both of a memory hole page and a _used_ kernel
6567 * page at boot.
6568 */
6569 if (found > count)
6570 return true;
6571 }
6572 return false;
6573 }
6574
6575 bool is_pageblock_removable_nolock(struct page *page)
6576 {
6577 struct zone *zone;
6578 unsigned long pfn;
6579
6580 /*
6581 * We have to be careful here because we are iterating over memory
6582 * sections which are not zone aware so we might end up outside of
6583 * the zone but still within the section.
6584 * We have to take care about the node as well. If the node is offline
6585 * its NODE_DATA will be NULL - see page_zone.
6586 */
6587 if (!node_online(page_to_nid(page)))
6588 return false;
6589
6590 zone = page_zone(page);
6591 pfn = page_to_pfn(page);
6592 if (!zone_spans_pfn(zone, pfn))
6593 return false;
6594
6595 return !has_unmovable_pages(zone, page, 0, true);
6596 }
6597
6598 #ifdef CONFIG_CMA
6599
6600 static unsigned long pfn_max_align_down(unsigned long pfn)
6601 {
6602 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6603 pageblock_nr_pages) - 1);
6604 }
6605
6606 static unsigned long pfn_max_align_up(unsigned long pfn)
6607 {
6608 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6609 pageblock_nr_pages));
6610 }
6611
6612 /* [start, end) must belong to a single zone. */
6613 static int __alloc_contig_migrate_range(struct compact_control *cc,
6614 unsigned long start, unsigned long end)
6615 {
6616 /* This function is based on compact_zone() from compaction.c. */
6617 unsigned long nr_reclaimed;
6618 unsigned long pfn = start;
6619 unsigned int tries = 0;
6620 int ret = 0;
6621
6622 migrate_prep();
6623
6624 while (pfn < end || !list_empty(&cc->migratepages)) {
6625 if (fatal_signal_pending(current)) {
6626 ret = -EINTR;
6627 break;
6628 }
6629
6630 if (list_empty(&cc->migratepages)) {
6631 cc->nr_migratepages = 0;
6632 pfn = isolate_migratepages_range(cc, pfn, end);
6633 if (!pfn) {
6634 ret = -EINTR;
6635 break;
6636 }
6637 tries = 0;
6638 } else if (++tries == 5) {
6639 ret = ret < 0 ? ret : -EBUSY;
6640 break;
6641 }
6642
6643 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6644 &cc->migratepages);
6645 cc->nr_migratepages -= nr_reclaimed;
6646
6647 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6648 NULL, 0, cc->mode, MR_CMA);
6649 }
6650 if (ret < 0) {
6651 putback_movable_pages(&cc->migratepages);
6652 return ret;
6653 }
6654 return 0;
6655 }
6656
6657 /**
6658 * alloc_contig_range() -- tries to allocate given range of pages
6659 * @start: start PFN to allocate
6660 * @end: one-past-the-last PFN to allocate
6661 * @migratetype: migratetype of the underlaying pageblocks (either
6662 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6663 * in range must have the same migratetype and it must
6664 * be either of the two.
6665 *
6666 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6667 * aligned, however it's the caller's responsibility to guarantee that
6668 * we are the only thread that changes migrate type of pageblocks the
6669 * pages fall in.
6670 *
6671 * The PFN range must belong to a single zone.
6672 *
6673 * Returns zero on success or negative error code. On success all
6674 * pages which PFN is in [start, end) are allocated for the caller and
6675 * need to be freed with free_contig_range().
6676 */
6677 int alloc_contig_range(unsigned long start, unsigned long end,
6678 unsigned migratetype)
6679 {
6680 unsigned long outer_start, outer_end;
6681 unsigned int order;
6682 int ret = 0;
6683
6684 struct compact_control cc = {
6685 .nr_migratepages = 0,
6686 .order = -1,
6687 .zone = page_zone(pfn_to_page(start)),
6688 .mode = MIGRATE_SYNC,
6689 .ignore_skip_hint = true,
6690 };
6691 INIT_LIST_HEAD(&cc.migratepages);
6692
6693 /*
6694 * What we do here is we mark all pageblocks in range as
6695 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6696 * have different sizes, and due to the way page allocator
6697 * work, we align the range to biggest of the two pages so
6698 * that page allocator won't try to merge buddies from
6699 * different pageblocks and change MIGRATE_ISOLATE to some
6700 * other migration type.
6701 *
6702 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6703 * migrate the pages from an unaligned range (ie. pages that
6704 * we are interested in). This will put all the pages in
6705 * range back to page allocator as MIGRATE_ISOLATE.
6706 *
6707 * When this is done, we take the pages in range from page
6708 * allocator removing them from the buddy system. This way
6709 * page allocator will never consider using them.
6710 *
6711 * This lets us mark the pageblocks back as
6712 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6713 * aligned range but not in the unaligned, original range are
6714 * put back to page allocator so that buddy can use them.
6715 */
6716
6717 ret = start_isolate_page_range(pfn_max_align_down(start),
6718 pfn_max_align_up(end), migratetype,
6719 false);
6720 if (ret)
6721 return ret;
6722
6723 /*
6724 * In case of -EBUSY, we'd like to know which page causes problem.
6725 * So, just fall through. We will check it in test_pages_isolated().
6726 */
6727 ret = __alloc_contig_migrate_range(&cc, start, end);
6728 if (ret && ret != -EBUSY)
6729 goto done;
6730
6731 /*
6732 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6733 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6734 * more, all pages in [start, end) are free in page allocator.
6735 * What we are going to do is to allocate all pages from
6736 * [start, end) (that is remove them from page allocator).
6737 *
6738 * The only problem is that pages at the beginning and at the
6739 * end of interesting range may be not aligned with pages that
6740 * page allocator holds, ie. they can be part of higher order
6741 * pages. Because of this, we reserve the bigger range and
6742 * once this is done free the pages we are not interested in.
6743 *
6744 * We don't have to hold zone->lock here because the pages are
6745 * isolated thus they won't get removed from buddy.
6746 */
6747
6748 lru_add_drain_all();
6749 drain_all_pages(cc.zone);
6750
6751 order = 0;
6752 outer_start = start;
6753 while (!PageBuddy(pfn_to_page(outer_start))) {
6754 if (++order >= MAX_ORDER) {
6755 outer_start = start;
6756 break;
6757 }
6758 outer_start &= ~0UL << order;
6759 }
6760
6761 if (outer_start != start) {
6762 order = page_order(pfn_to_page(outer_start));
6763
6764 /*
6765 * outer_start page could be small order buddy page and
6766 * it doesn't include start page. Adjust outer_start
6767 * in this case to report failed page properly
6768 * on tracepoint in test_pages_isolated()
6769 */
6770 if (outer_start + (1UL << order) <= start)
6771 outer_start = start;
6772 }
6773
6774 /* Make sure the range is really isolated. */
6775 if (test_pages_isolated(outer_start, end, false)) {
6776 pr_info("%s: [%lx, %lx) PFNs busy\n",
6777 __func__, outer_start, end);
6778 ret = -EBUSY;
6779 goto done;
6780 }
6781
6782 /* Grab isolated pages from freelists. */
6783 outer_end = isolate_freepages_range(&cc, outer_start, end);
6784 if (!outer_end) {
6785 ret = -EBUSY;
6786 goto done;
6787 }
6788
6789 /* Free head and tail (if any) */
6790 if (start != outer_start)
6791 free_contig_range(outer_start, start - outer_start);
6792 if (end != outer_end)
6793 free_contig_range(end, outer_end - end);
6794
6795 done:
6796 undo_isolate_page_range(pfn_max_align_down(start),
6797 pfn_max_align_up(end), migratetype);
6798 return ret;
6799 }
6800
6801 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6802 {
6803 unsigned int count = 0;
6804
6805 for (; nr_pages--; pfn++) {
6806 struct page *page = pfn_to_page(pfn);
6807
6808 count += page_count(page) != 1;
6809 __free_page(page);
6810 }
6811 WARN(count != 0, "%d pages are still in use!\n", count);
6812 }
6813 #endif
6814
6815 #ifdef CONFIG_MEMORY_HOTPLUG
6816 /*
6817 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6818 * page high values need to be recalulated.
6819 */
6820 void __meminit zone_pcp_update(struct zone *zone)
6821 {
6822 unsigned cpu;
6823 mutex_lock(&pcp_batch_high_lock);
6824 for_each_possible_cpu(cpu)
6825 pageset_set_high_and_batch(zone,
6826 per_cpu_ptr(zone->pageset, cpu));
6827 mutex_unlock(&pcp_batch_high_lock);
6828 }
6829 #endif
6830
6831 void zone_pcp_reset(struct zone *zone)
6832 {
6833 unsigned long flags;
6834 int cpu;
6835 struct per_cpu_pageset *pset;
6836
6837 /* avoid races with drain_pages() */
6838 local_irq_save(flags);
6839 if (zone->pageset != &boot_pageset) {
6840 for_each_online_cpu(cpu) {
6841 pset = per_cpu_ptr(zone->pageset, cpu);
6842 drain_zonestat(zone, pset);
6843 }
6844 free_percpu(zone->pageset);
6845 zone->pageset = &boot_pageset;
6846 }
6847 local_irq_restore(flags);
6848 }
6849
6850 #ifdef CONFIG_MEMORY_HOTREMOVE
6851 /*
6852 * All pages in the range must be isolated before calling this.
6853 */
6854 void
6855 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6856 {
6857 struct page *page;
6858 struct zone *zone;
6859 unsigned int order, i;
6860 unsigned long pfn;
6861 unsigned long flags;
6862 /* find the first valid pfn */
6863 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6864 if (pfn_valid(pfn))
6865 break;
6866 if (pfn == end_pfn)
6867 return;
6868 zone = page_zone(pfn_to_page(pfn));
6869 spin_lock_irqsave(&zone->lock, flags);
6870 pfn = start_pfn;
6871 while (pfn < end_pfn) {
6872 if (!pfn_valid(pfn)) {
6873 pfn++;
6874 continue;
6875 }
6876 page = pfn_to_page(pfn);
6877 /*
6878 * The HWPoisoned page may be not in buddy system, and
6879 * page_count() is not 0.
6880 */
6881 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6882 pfn++;
6883 SetPageReserved(page);
6884 continue;
6885 }
6886
6887 BUG_ON(page_count(page));
6888 BUG_ON(!PageBuddy(page));
6889 order = page_order(page);
6890 #ifdef CONFIG_DEBUG_VM
6891 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6892 pfn, 1 << order, end_pfn);
6893 #endif
6894 list_del(&page->lru);
6895 rmv_page_order(page);
6896 zone->free_area[order].nr_free--;
6897 for (i = 0; i < (1 << order); i++)
6898 SetPageReserved((page+i));
6899 pfn += (1 << order);
6900 }
6901 spin_unlock_irqrestore(&zone->lock, flags);
6902 }
6903 #endif
6904
6905 #ifdef CONFIG_MEMORY_FAILURE
6906 bool is_free_buddy_page(struct page *page)
6907 {
6908 struct zone *zone = page_zone(page);
6909 unsigned long pfn = page_to_pfn(page);
6910 unsigned long flags;
6911 unsigned int order;
6912
6913 spin_lock_irqsave(&zone->lock, flags);
6914 for (order = 0; order < MAX_ORDER; order++) {
6915 struct page *page_head = page - (pfn & ((1 << order) - 1));
6916
6917 if (PageBuddy(page_head) && page_order(page_head) >= order)
6918 break;
6919 }
6920 spin_unlock_irqrestore(&zone->lock, flags);
6921
6922 return order < MAX_ORDER;
6923 }
6924 #endif