]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/page_alloc.c
327516b7aee96de1caf2afebb048955734a71ebd
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63
64 #include <asm/sections.h>
65 #include <asm/tlbflush.h>
66 #include <asm/div64.h>
67 #include "internal.h"
68
69 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
70 static DEFINE_MUTEX(pcp_batch_high_lock);
71
72 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
73 DEFINE_PER_CPU(int, numa_node);
74 EXPORT_PER_CPU_SYMBOL(numa_node);
75 #endif
76
77 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
78 /*
79 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
80 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
81 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
82 * defined in <linux/topology.h>.
83 */
84 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
85 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
86 #endif
87
88 /*
89 * Array of node states.
90 */
91 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
92 [N_POSSIBLE] = NODE_MASK_ALL,
93 [N_ONLINE] = { { [0] = 1UL } },
94 #ifndef CONFIG_NUMA
95 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
96 #ifdef CONFIG_HIGHMEM
97 [N_HIGH_MEMORY] = { { [0] = 1UL } },
98 #endif
99 #ifdef CONFIG_MOVABLE_NODE
100 [N_MEMORY] = { { [0] = 1UL } },
101 #endif
102 [N_CPU] = { { [0] = 1UL } },
103 #endif /* NUMA */
104 };
105 EXPORT_SYMBOL(node_states);
106
107 /* Protect totalram_pages and zone->managed_pages */
108 static DEFINE_SPINLOCK(managed_page_count_lock);
109
110 unsigned long totalram_pages __read_mostly;
111 unsigned long totalreserve_pages __read_mostly;
112 /*
113 * When calculating the number of globally allowed dirty pages, there
114 * is a certain number of per-zone reserves that should not be
115 * considered dirtyable memory. This is the sum of those reserves
116 * over all existing zones that contribute dirtyable memory.
117 */
118 unsigned long dirty_balance_reserve __read_mostly;
119
120 int percpu_pagelist_fraction;
121 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
122
123 #ifdef CONFIG_PM_SLEEP
124 /*
125 * The following functions are used by the suspend/hibernate code to temporarily
126 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
127 * while devices are suspended. To avoid races with the suspend/hibernate code,
128 * they should always be called with pm_mutex held (gfp_allowed_mask also should
129 * only be modified with pm_mutex held, unless the suspend/hibernate code is
130 * guaranteed not to run in parallel with that modification).
131 */
132
133 static gfp_t saved_gfp_mask;
134
135 void pm_restore_gfp_mask(void)
136 {
137 WARN_ON(!mutex_is_locked(&pm_mutex));
138 if (saved_gfp_mask) {
139 gfp_allowed_mask = saved_gfp_mask;
140 saved_gfp_mask = 0;
141 }
142 }
143
144 void pm_restrict_gfp_mask(void)
145 {
146 WARN_ON(!mutex_is_locked(&pm_mutex));
147 WARN_ON(saved_gfp_mask);
148 saved_gfp_mask = gfp_allowed_mask;
149 gfp_allowed_mask &= ~GFP_IOFS;
150 }
151
152 bool pm_suspended_storage(void)
153 {
154 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
155 return false;
156 return true;
157 }
158 #endif /* CONFIG_PM_SLEEP */
159
160 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
161 int pageblock_order __read_mostly;
162 #endif
163
164 static void __free_pages_ok(struct page *page, unsigned int order);
165
166 /*
167 * results with 256, 32 in the lowmem_reserve sysctl:
168 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
169 * 1G machine -> (16M dma, 784M normal, 224M high)
170 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
171 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
172 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
173 *
174 * TBD: should special case ZONE_DMA32 machines here - in those we normally
175 * don't need any ZONE_NORMAL reservation
176 */
177 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
178 #ifdef CONFIG_ZONE_DMA
179 256,
180 #endif
181 #ifdef CONFIG_ZONE_DMA32
182 256,
183 #endif
184 #ifdef CONFIG_HIGHMEM
185 32,
186 #endif
187 32,
188 };
189
190 EXPORT_SYMBOL(totalram_pages);
191
192 static char * const zone_names[MAX_NR_ZONES] = {
193 #ifdef CONFIG_ZONE_DMA
194 "DMA",
195 #endif
196 #ifdef CONFIG_ZONE_DMA32
197 "DMA32",
198 #endif
199 "Normal",
200 #ifdef CONFIG_HIGHMEM
201 "HighMem",
202 #endif
203 "Movable",
204 };
205
206 int min_free_kbytes = 1024;
207
208 static unsigned long __meminitdata nr_kernel_pages;
209 static unsigned long __meminitdata nr_all_pages;
210 static unsigned long __meminitdata dma_reserve;
211
212 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
213 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
214 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
215 static unsigned long __initdata required_kernelcore;
216 static unsigned long __initdata required_movablecore;
217 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
218
219 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
220 int movable_zone;
221 EXPORT_SYMBOL(movable_zone);
222 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
223
224 #if MAX_NUMNODES > 1
225 int nr_node_ids __read_mostly = MAX_NUMNODES;
226 int nr_online_nodes __read_mostly = 1;
227 EXPORT_SYMBOL(nr_node_ids);
228 EXPORT_SYMBOL(nr_online_nodes);
229 #endif
230
231 int page_group_by_mobility_disabled __read_mostly;
232
233 void set_pageblock_migratetype(struct page *page, int migratetype)
234 {
235
236 if (unlikely(page_group_by_mobility_disabled))
237 migratetype = MIGRATE_UNMOVABLE;
238
239 set_pageblock_flags_group(page, (unsigned long)migratetype,
240 PB_migrate, PB_migrate_end);
241 }
242
243 bool oom_killer_disabled __read_mostly;
244
245 #ifdef CONFIG_DEBUG_VM
246 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
247 {
248 int ret = 0;
249 unsigned seq;
250 unsigned long pfn = page_to_pfn(page);
251 unsigned long sp, start_pfn;
252
253 do {
254 seq = zone_span_seqbegin(zone);
255 start_pfn = zone->zone_start_pfn;
256 sp = zone->spanned_pages;
257 if (!zone_spans_pfn(zone, pfn))
258 ret = 1;
259 } while (zone_span_seqretry(zone, seq));
260
261 if (ret)
262 pr_err("page %lu outside zone [ %lu - %lu ]\n",
263 pfn, start_pfn, start_pfn + sp);
264
265 return ret;
266 }
267
268 static int page_is_consistent(struct zone *zone, struct page *page)
269 {
270 if (!pfn_valid_within(page_to_pfn(page)))
271 return 0;
272 if (zone != page_zone(page))
273 return 0;
274
275 return 1;
276 }
277 /*
278 * Temporary debugging check for pages not lying within a given zone.
279 */
280 static int bad_range(struct zone *zone, struct page *page)
281 {
282 if (page_outside_zone_boundaries(zone, page))
283 return 1;
284 if (!page_is_consistent(zone, page))
285 return 1;
286
287 return 0;
288 }
289 #else
290 static inline int bad_range(struct zone *zone, struct page *page)
291 {
292 return 0;
293 }
294 #endif
295
296 static void bad_page(struct page *page)
297 {
298 static unsigned long resume;
299 static unsigned long nr_shown;
300 static unsigned long nr_unshown;
301
302 /* Don't complain about poisoned pages */
303 if (PageHWPoison(page)) {
304 page_mapcount_reset(page); /* remove PageBuddy */
305 return;
306 }
307
308 /*
309 * Allow a burst of 60 reports, then keep quiet for that minute;
310 * or allow a steady drip of one report per second.
311 */
312 if (nr_shown == 60) {
313 if (time_before(jiffies, resume)) {
314 nr_unshown++;
315 goto out;
316 }
317 if (nr_unshown) {
318 printk(KERN_ALERT
319 "BUG: Bad page state: %lu messages suppressed\n",
320 nr_unshown);
321 nr_unshown = 0;
322 }
323 nr_shown = 0;
324 }
325 if (nr_shown++ == 0)
326 resume = jiffies + 60 * HZ;
327
328 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
329 current->comm, page_to_pfn(page));
330 dump_page(page);
331
332 print_modules();
333 dump_stack();
334 out:
335 /* Leave bad fields for debug, except PageBuddy could make trouble */
336 page_mapcount_reset(page); /* remove PageBuddy */
337 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
338 }
339
340 /*
341 * Higher-order pages are called "compound pages". They are structured thusly:
342 *
343 * The first PAGE_SIZE page is called the "head page".
344 *
345 * The remaining PAGE_SIZE pages are called "tail pages".
346 *
347 * All pages have PG_compound set. All tail pages have their ->first_page
348 * pointing at the head page.
349 *
350 * The first tail page's ->lru.next holds the address of the compound page's
351 * put_page() function. Its ->lru.prev holds the order of allocation.
352 * This usage means that zero-order pages may not be compound.
353 */
354
355 static void free_compound_page(struct page *page)
356 {
357 __free_pages_ok(page, compound_order(page));
358 }
359
360 void prep_compound_page(struct page *page, unsigned long order)
361 {
362 int i;
363 int nr_pages = 1 << order;
364
365 set_compound_page_dtor(page, free_compound_page);
366 set_compound_order(page, order);
367 __SetPageHead(page);
368 for (i = 1; i < nr_pages; i++) {
369 struct page *p = page + i;
370 __SetPageTail(p);
371 set_page_count(p, 0);
372 p->first_page = page;
373 }
374 }
375
376 /* update __split_huge_page_refcount if you change this function */
377 static int destroy_compound_page(struct page *page, unsigned long order)
378 {
379 int i;
380 int nr_pages = 1 << order;
381 int bad = 0;
382
383 if (unlikely(compound_order(page) != order)) {
384 bad_page(page);
385 bad++;
386 }
387
388 __ClearPageHead(page);
389
390 for (i = 1; i < nr_pages; i++) {
391 struct page *p = page + i;
392
393 if (unlikely(!PageTail(p) || (p->first_page != page))) {
394 bad_page(page);
395 bad++;
396 }
397 __ClearPageTail(p);
398 }
399
400 return bad;
401 }
402
403 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
404 {
405 int i;
406
407 /*
408 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
409 * and __GFP_HIGHMEM from hard or soft interrupt context.
410 */
411 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
412 for (i = 0; i < (1 << order); i++)
413 clear_highpage(page + i);
414 }
415
416 #ifdef CONFIG_DEBUG_PAGEALLOC
417 unsigned int _debug_guardpage_minorder;
418
419 static int __init debug_guardpage_minorder_setup(char *buf)
420 {
421 unsigned long res;
422
423 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
424 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
425 return 0;
426 }
427 _debug_guardpage_minorder = res;
428 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
429 return 0;
430 }
431 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
432
433 static inline void set_page_guard_flag(struct page *page)
434 {
435 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
436 }
437
438 static inline void clear_page_guard_flag(struct page *page)
439 {
440 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
441 }
442 #else
443 static inline void set_page_guard_flag(struct page *page) { }
444 static inline void clear_page_guard_flag(struct page *page) { }
445 #endif
446
447 static inline void set_page_order(struct page *page, int order)
448 {
449 set_page_private(page, order);
450 __SetPageBuddy(page);
451 }
452
453 static inline void rmv_page_order(struct page *page)
454 {
455 __ClearPageBuddy(page);
456 set_page_private(page, 0);
457 }
458
459 /*
460 * Locate the struct page for both the matching buddy in our
461 * pair (buddy1) and the combined O(n+1) page they form (page).
462 *
463 * 1) Any buddy B1 will have an order O twin B2 which satisfies
464 * the following equation:
465 * B2 = B1 ^ (1 << O)
466 * For example, if the starting buddy (buddy2) is #8 its order
467 * 1 buddy is #10:
468 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
469 *
470 * 2) Any buddy B will have an order O+1 parent P which
471 * satisfies the following equation:
472 * P = B & ~(1 << O)
473 *
474 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
475 */
476 static inline unsigned long
477 __find_buddy_index(unsigned long page_idx, unsigned int order)
478 {
479 return page_idx ^ (1 << order);
480 }
481
482 /*
483 * This function checks whether a page is free && is the buddy
484 * we can do coalesce a page and its buddy if
485 * (a) the buddy is not in a hole &&
486 * (b) the buddy is in the buddy system &&
487 * (c) a page and its buddy have the same order &&
488 * (d) a page and its buddy are in the same zone.
489 *
490 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
491 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
492 *
493 * For recording page's order, we use page_private(page).
494 */
495 static inline int page_is_buddy(struct page *page, struct page *buddy,
496 int order)
497 {
498 if (!pfn_valid_within(page_to_pfn(buddy)))
499 return 0;
500
501 if (page_zone_id(page) != page_zone_id(buddy))
502 return 0;
503
504 if (page_is_guard(buddy) && page_order(buddy) == order) {
505 VM_BUG_ON(page_count(buddy) != 0);
506 return 1;
507 }
508
509 if (PageBuddy(buddy) && page_order(buddy) == order) {
510 VM_BUG_ON(page_count(buddy) != 0);
511 return 1;
512 }
513 return 0;
514 }
515
516 /*
517 * Freeing function for a buddy system allocator.
518 *
519 * The concept of a buddy system is to maintain direct-mapped table
520 * (containing bit values) for memory blocks of various "orders".
521 * The bottom level table contains the map for the smallest allocatable
522 * units of memory (here, pages), and each level above it describes
523 * pairs of units from the levels below, hence, "buddies".
524 * At a high level, all that happens here is marking the table entry
525 * at the bottom level available, and propagating the changes upward
526 * as necessary, plus some accounting needed to play nicely with other
527 * parts of the VM system.
528 * At each level, we keep a list of pages, which are heads of continuous
529 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
530 * order is recorded in page_private(page) field.
531 * So when we are allocating or freeing one, we can derive the state of the
532 * other. That is, if we allocate a small block, and both were
533 * free, the remainder of the region must be split into blocks.
534 * If a block is freed, and its buddy is also free, then this
535 * triggers coalescing into a block of larger size.
536 *
537 * -- nyc
538 */
539
540 static inline void __free_one_page(struct page *page,
541 struct zone *zone, unsigned int order,
542 int migratetype)
543 {
544 unsigned long page_idx;
545 unsigned long combined_idx;
546 unsigned long uninitialized_var(buddy_idx);
547 struct page *buddy;
548
549 VM_BUG_ON(!zone_is_initialized(zone));
550
551 if (unlikely(PageCompound(page)))
552 if (unlikely(destroy_compound_page(page, order)))
553 return;
554
555 VM_BUG_ON(migratetype == -1);
556
557 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
558
559 VM_BUG_ON(page_idx & ((1 << order) - 1));
560 VM_BUG_ON(bad_range(zone, page));
561
562 while (order < MAX_ORDER-1) {
563 buddy_idx = __find_buddy_index(page_idx, order);
564 buddy = page + (buddy_idx - page_idx);
565 if (!page_is_buddy(page, buddy, order))
566 break;
567 /*
568 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
569 * merge with it and move up one order.
570 */
571 if (page_is_guard(buddy)) {
572 clear_page_guard_flag(buddy);
573 set_page_private(page, 0);
574 __mod_zone_freepage_state(zone, 1 << order,
575 migratetype);
576 } else {
577 list_del(&buddy->lru);
578 zone->free_area[order].nr_free--;
579 rmv_page_order(buddy);
580 }
581 combined_idx = buddy_idx & page_idx;
582 page = page + (combined_idx - page_idx);
583 page_idx = combined_idx;
584 order++;
585 }
586 set_page_order(page, order);
587
588 /*
589 * If this is not the largest possible page, check if the buddy
590 * of the next-highest order is free. If it is, it's possible
591 * that pages are being freed that will coalesce soon. In case,
592 * that is happening, add the free page to the tail of the list
593 * so it's less likely to be used soon and more likely to be merged
594 * as a higher order page
595 */
596 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
597 struct page *higher_page, *higher_buddy;
598 combined_idx = buddy_idx & page_idx;
599 higher_page = page + (combined_idx - page_idx);
600 buddy_idx = __find_buddy_index(combined_idx, order + 1);
601 higher_buddy = higher_page + (buddy_idx - combined_idx);
602 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
603 list_add_tail(&page->lru,
604 &zone->free_area[order].free_list[migratetype]);
605 goto out;
606 }
607 }
608
609 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
610 out:
611 zone->free_area[order].nr_free++;
612 }
613
614 static inline int free_pages_check(struct page *page)
615 {
616 if (unlikely(page_mapcount(page) |
617 (page->mapping != NULL) |
618 (atomic_read(&page->_count) != 0) |
619 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
620 (mem_cgroup_bad_page_check(page)))) {
621 bad_page(page);
622 return 1;
623 }
624 page_nid_reset_last(page);
625 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
626 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
627 return 0;
628 }
629
630 /*
631 * Frees a number of pages from the PCP lists
632 * Assumes all pages on list are in same zone, and of same order.
633 * count is the number of pages to free.
634 *
635 * If the zone was previously in an "all pages pinned" state then look to
636 * see if this freeing clears that state.
637 *
638 * And clear the zone's pages_scanned counter, to hold off the "all pages are
639 * pinned" detection logic.
640 */
641 static void free_pcppages_bulk(struct zone *zone, int count,
642 struct per_cpu_pages *pcp)
643 {
644 int migratetype = 0;
645 int batch_free = 0;
646 int to_free = count;
647
648 spin_lock(&zone->lock);
649 zone->all_unreclaimable = 0;
650 zone->pages_scanned = 0;
651
652 while (to_free) {
653 struct page *page;
654 struct list_head *list;
655
656 /*
657 * Remove pages from lists in a round-robin fashion. A
658 * batch_free count is maintained that is incremented when an
659 * empty list is encountered. This is so more pages are freed
660 * off fuller lists instead of spinning excessively around empty
661 * lists
662 */
663 do {
664 batch_free++;
665 if (++migratetype == MIGRATE_PCPTYPES)
666 migratetype = 0;
667 list = &pcp->lists[migratetype];
668 } while (list_empty(list));
669
670 /* This is the only non-empty list. Free them all. */
671 if (batch_free == MIGRATE_PCPTYPES)
672 batch_free = to_free;
673
674 do {
675 int mt; /* migratetype of the to-be-freed page */
676
677 page = list_entry(list->prev, struct page, lru);
678 /* must delete as __free_one_page list manipulates */
679 list_del(&page->lru);
680 mt = get_freepage_migratetype(page);
681 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
682 __free_one_page(page, zone, 0, mt);
683 trace_mm_page_pcpu_drain(page, 0, mt);
684 if (likely(!is_migrate_isolate_page(page))) {
685 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
686 if (is_migrate_cma(mt))
687 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
688 }
689 } while (--to_free && --batch_free && !list_empty(list));
690 }
691 spin_unlock(&zone->lock);
692 }
693
694 static void free_one_page(struct zone *zone, struct page *page, int order,
695 int migratetype)
696 {
697 spin_lock(&zone->lock);
698 zone->all_unreclaimable = 0;
699 zone->pages_scanned = 0;
700
701 __free_one_page(page, zone, order, migratetype);
702 if (unlikely(!is_migrate_isolate(migratetype)))
703 __mod_zone_freepage_state(zone, 1 << order, migratetype);
704 spin_unlock(&zone->lock);
705 }
706
707 static bool free_pages_prepare(struct page *page, unsigned int order)
708 {
709 int i;
710 int bad = 0;
711
712 trace_mm_page_free(page, order);
713 kmemcheck_free_shadow(page, order);
714
715 if (PageAnon(page))
716 page->mapping = NULL;
717 for (i = 0; i < (1 << order); i++)
718 bad += free_pages_check(page + i);
719 if (bad)
720 return false;
721
722 if (!PageHighMem(page)) {
723 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
724 debug_check_no_obj_freed(page_address(page),
725 PAGE_SIZE << order);
726 }
727 arch_free_page(page, order);
728 kernel_map_pages(page, 1 << order, 0);
729
730 return true;
731 }
732
733 static void __free_pages_ok(struct page *page, unsigned int order)
734 {
735 unsigned long flags;
736 int migratetype;
737
738 if (!free_pages_prepare(page, order))
739 return;
740
741 local_irq_save(flags);
742 __count_vm_events(PGFREE, 1 << order);
743 migratetype = get_pageblock_migratetype(page);
744 set_freepage_migratetype(page, migratetype);
745 free_one_page(page_zone(page), page, order, migratetype);
746 local_irq_restore(flags);
747 }
748
749 void __init __free_pages_bootmem(struct page *page, unsigned int order)
750 {
751 unsigned int nr_pages = 1 << order;
752 unsigned int loop;
753
754 prefetchw(page);
755 for (loop = 0; loop < nr_pages; loop++) {
756 struct page *p = &page[loop];
757
758 if (loop + 1 < nr_pages)
759 prefetchw(p + 1);
760 __ClearPageReserved(p);
761 set_page_count(p, 0);
762 }
763
764 page_zone(page)->managed_pages += 1 << order;
765 set_page_refcounted(page);
766 __free_pages(page, order);
767 }
768
769 #ifdef CONFIG_CMA
770 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
771 void __init init_cma_reserved_pageblock(struct page *page)
772 {
773 unsigned i = pageblock_nr_pages;
774 struct page *p = page;
775
776 do {
777 __ClearPageReserved(p);
778 set_page_count(p, 0);
779 } while (++p, --i);
780
781 set_page_refcounted(page);
782 set_pageblock_migratetype(page, MIGRATE_CMA);
783 __free_pages(page, pageblock_order);
784 adjust_managed_page_count(page, pageblock_nr_pages);
785 }
786 #endif
787
788 /*
789 * The order of subdivision here is critical for the IO subsystem.
790 * Please do not alter this order without good reasons and regression
791 * testing. Specifically, as large blocks of memory are subdivided,
792 * the order in which smaller blocks are delivered depends on the order
793 * they're subdivided in this function. This is the primary factor
794 * influencing the order in which pages are delivered to the IO
795 * subsystem according to empirical testing, and this is also justified
796 * by considering the behavior of a buddy system containing a single
797 * large block of memory acted on by a series of small allocations.
798 * This behavior is a critical factor in sglist merging's success.
799 *
800 * -- nyc
801 */
802 static inline void expand(struct zone *zone, struct page *page,
803 int low, int high, struct free_area *area,
804 int migratetype)
805 {
806 unsigned long size = 1 << high;
807
808 while (high > low) {
809 area--;
810 high--;
811 size >>= 1;
812 VM_BUG_ON(bad_range(zone, &page[size]));
813
814 #ifdef CONFIG_DEBUG_PAGEALLOC
815 if (high < debug_guardpage_minorder()) {
816 /*
817 * Mark as guard pages (or page), that will allow to
818 * merge back to allocator when buddy will be freed.
819 * Corresponding page table entries will not be touched,
820 * pages will stay not present in virtual address space
821 */
822 INIT_LIST_HEAD(&page[size].lru);
823 set_page_guard_flag(&page[size]);
824 set_page_private(&page[size], high);
825 /* Guard pages are not available for any usage */
826 __mod_zone_freepage_state(zone, -(1 << high),
827 migratetype);
828 continue;
829 }
830 #endif
831 list_add(&page[size].lru, &area->free_list[migratetype]);
832 area->nr_free++;
833 set_page_order(&page[size], high);
834 }
835 }
836
837 /*
838 * This page is about to be returned from the page allocator
839 */
840 static inline int check_new_page(struct page *page)
841 {
842 if (unlikely(page_mapcount(page) |
843 (page->mapping != NULL) |
844 (atomic_read(&page->_count) != 0) |
845 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
846 (mem_cgroup_bad_page_check(page)))) {
847 bad_page(page);
848 return 1;
849 }
850 return 0;
851 }
852
853 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
854 {
855 int i;
856
857 for (i = 0; i < (1 << order); i++) {
858 struct page *p = page + i;
859 if (unlikely(check_new_page(p)))
860 return 1;
861 }
862
863 set_page_private(page, 0);
864 set_page_refcounted(page);
865
866 arch_alloc_page(page, order);
867 kernel_map_pages(page, 1 << order, 1);
868
869 if (gfp_flags & __GFP_ZERO)
870 prep_zero_page(page, order, gfp_flags);
871
872 if (order && (gfp_flags & __GFP_COMP))
873 prep_compound_page(page, order);
874
875 return 0;
876 }
877
878 /*
879 * Go through the free lists for the given migratetype and remove
880 * the smallest available page from the freelists
881 */
882 static inline
883 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
884 int migratetype)
885 {
886 unsigned int current_order;
887 struct free_area * area;
888 struct page *page;
889
890 /* Find a page of the appropriate size in the preferred list */
891 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
892 area = &(zone->free_area[current_order]);
893 if (list_empty(&area->free_list[migratetype]))
894 continue;
895
896 page = list_entry(area->free_list[migratetype].next,
897 struct page, lru);
898 list_del(&page->lru);
899 rmv_page_order(page);
900 area->nr_free--;
901 expand(zone, page, order, current_order, area, migratetype);
902 return page;
903 }
904
905 return NULL;
906 }
907
908
909 /*
910 * This array describes the order lists are fallen back to when
911 * the free lists for the desirable migrate type are depleted
912 */
913 static int fallbacks[MIGRATE_TYPES][4] = {
914 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
915 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
916 #ifdef CONFIG_CMA
917 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
918 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
919 #else
920 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
921 #endif
922 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
923 #ifdef CONFIG_MEMORY_ISOLATION
924 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
925 #endif
926 };
927
928 /*
929 * Move the free pages in a range to the free lists of the requested type.
930 * Note that start_page and end_pages are not aligned on a pageblock
931 * boundary. If alignment is required, use move_freepages_block()
932 */
933 int move_freepages(struct zone *zone,
934 struct page *start_page, struct page *end_page,
935 int migratetype)
936 {
937 struct page *page;
938 unsigned long order;
939 int pages_moved = 0;
940
941 #ifndef CONFIG_HOLES_IN_ZONE
942 /*
943 * page_zone is not safe to call in this context when
944 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
945 * anyway as we check zone boundaries in move_freepages_block().
946 * Remove at a later date when no bug reports exist related to
947 * grouping pages by mobility
948 */
949 BUG_ON(page_zone(start_page) != page_zone(end_page));
950 #endif
951
952 for (page = start_page; page <= end_page;) {
953 /* Make sure we are not inadvertently changing nodes */
954 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
955
956 if (!pfn_valid_within(page_to_pfn(page))) {
957 page++;
958 continue;
959 }
960
961 if (!PageBuddy(page)) {
962 page++;
963 continue;
964 }
965
966 order = page_order(page);
967 list_move(&page->lru,
968 &zone->free_area[order].free_list[migratetype]);
969 set_freepage_migratetype(page, migratetype);
970 page += 1 << order;
971 pages_moved += 1 << order;
972 }
973
974 return pages_moved;
975 }
976
977 int move_freepages_block(struct zone *zone, struct page *page,
978 int migratetype)
979 {
980 unsigned long start_pfn, end_pfn;
981 struct page *start_page, *end_page;
982
983 start_pfn = page_to_pfn(page);
984 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
985 start_page = pfn_to_page(start_pfn);
986 end_page = start_page + pageblock_nr_pages - 1;
987 end_pfn = start_pfn + pageblock_nr_pages - 1;
988
989 /* Do not cross zone boundaries */
990 if (!zone_spans_pfn(zone, start_pfn))
991 start_page = page;
992 if (!zone_spans_pfn(zone, end_pfn))
993 return 0;
994
995 return move_freepages(zone, start_page, end_page, migratetype);
996 }
997
998 static void change_pageblock_range(struct page *pageblock_page,
999 int start_order, int migratetype)
1000 {
1001 int nr_pageblocks = 1 << (start_order - pageblock_order);
1002
1003 while (nr_pageblocks--) {
1004 set_pageblock_migratetype(pageblock_page, migratetype);
1005 pageblock_page += pageblock_nr_pages;
1006 }
1007 }
1008
1009 /* Remove an element from the buddy allocator from the fallback list */
1010 static inline struct page *
1011 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1012 {
1013 struct free_area * area;
1014 int current_order;
1015 struct page *page;
1016 int migratetype, i;
1017
1018 /* Find the largest possible block of pages in the other list */
1019 for (current_order = MAX_ORDER-1; current_order >= order;
1020 --current_order) {
1021 for (i = 0;; i++) {
1022 migratetype = fallbacks[start_migratetype][i];
1023
1024 /* MIGRATE_RESERVE handled later if necessary */
1025 if (migratetype == MIGRATE_RESERVE)
1026 break;
1027
1028 area = &(zone->free_area[current_order]);
1029 if (list_empty(&area->free_list[migratetype]))
1030 continue;
1031
1032 page = list_entry(area->free_list[migratetype].next,
1033 struct page, lru);
1034 area->nr_free--;
1035
1036 /*
1037 * If breaking a large block of pages, move all free
1038 * pages to the preferred allocation list. If falling
1039 * back for a reclaimable kernel allocation, be more
1040 * aggressive about taking ownership of free pages
1041 *
1042 * On the other hand, never change migration
1043 * type of MIGRATE_CMA pageblocks nor move CMA
1044 * pages on different free lists. We don't
1045 * want unmovable pages to be allocated from
1046 * MIGRATE_CMA areas.
1047 */
1048 if (!is_migrate_cma(migratetype) &&
1049 (unlikely(current_order >= pageblock_order / 2) ||
1050 start_migratetype == MIGRATE_RECLAIMABLE ||
1051 page_group_by_mobility_disabled)) {
1052 int pages;
1053 pages = move_freepages_block(zone, page,
1054 start_migratetype);
1055
1056 /* Claim the whole block if over half of it is free */
1057 if (pages >= (1 << (pageblock_order-1)) ||
1058 page_group_by_mobility_disabled)
1059 set_pageblock_migratetype(page,
1060 start_migratetype);
1061
1062 migratetype = start_migratetype;
1063 }
1064
1065 /* Remove the page from the freelists */
1066 list_del(&page->lru);
1067 rmv_page_order(page);
1068
1069 /* Take ownership for orders >= pageblock_order */
1070 if (current_order >= pageblock_order &&
1071 !is_migrate_cma(migratetype))
1072 change_pageblock_range(page, current_order,
1073 start_migratetype);
1074
1075 expand(zone, page, order, current_order, area,
1076 is_migrate_cma(migratetype)
1077 ? migratetype : start_migratetype);
1078
1079 trace_mm_page_alloc_extfrag(page, order, current_order,
1080 start_migratetype, migratetype);
1081
1082 return page;
1083 }
1084 }
1085
1086 return NULL;
1087 }
1088
1089 /*
1090 * Do the hard work of removing an element from the buddy allocator.
1091 * Call me with the zone->lock already held.
1092 */
1093 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1094 int migratetype)
1095 {
1096 struct page *page;
1097
1098 retry_reserve:
1099 page = __rmqueue_smallest(zone, order, migratetype);
1100
1101 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1102 page = __rmqueue_fallback(zone, order, migratetype);
1103
1104 /*
1105 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1106 * is used because __rmqueue_smallest is an inline function
1107 * and we want just one call site
1108 */
1109 if (!page) {
1110 migratetype = MIGRATE_RESERVE;
1111 goto retry_reserve;
1112 }
1113 }
1114
1115 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1116 return page;
1117 }
1118
1119 /*
1120 * Obtain a specified number of elements from the buddy allocator, all under
1121 * a single hold of the lock, for efficiency. Add them to the supplied list.
1122 * Returns the number of new pages which were placed at *list.
1123 */
1124 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1125 unsigned long count, struct list_head *list,
1126 int migratetype, int cold)
1127 {
1128 int mt = migratetype, i;
1129
1130 spin_lock(&zone->lock);
1131 for (i = 0; i < count; ++i) {
1132 struct page *page = __rmqueue(zone, order, migratetype);
1133 if (unlikely(page == NULL))
1134 break;
1135
1136 /*
1137 * Split buddy pages returned by expand() are received here
1138 * in physical page order. The page is added to the callers and
1139 * list and the list head then moves forward. From the callers
1140 * perspective, the linked list is ordered by page number in
1141 * some conditions. This is useful for IO devices that can
1142 * merge IO requests if the physical pages are ordered
1143 * properly.
1144 */
1145 if (likely(cold == 0))
1146 list_add(&page->lru, list);
1147 else
1148 list_add_tail(&page->lru, list);
1149 if (IS_ENABLED(CONFIG_CMA)) {
1150 mt = get_pageblock_migratetype(page);
1151 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1152 mt = migratetype;
1153 }
1154 set_freepage_migratetype(page, mt);
1155 list = &page->lru;
1156 if (is_migrate_cma(mt))
1157 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1158 -(1 << order));
1159 }
1160 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1161 spin_unlock(&zone->lock);
1162 return i;
1163 }
1164
1165 #ifdef CONFIG_NUMA
1166 /*
1167 * Called from the vmstat counter updater to drain pagesets of this
1168 * currently executing processor on remote nodes after they have
1169 * expired.
1170 *
1171 * Note that this function must be called with the thread pinned to
1172 * a single processor.
1173 */
1174 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1175 {
1176 unsigned long flags;
1177 int to_drain;
1178 unsigned long batch;
1179
1180 local_irq_save(flags);
1181 batch = ACCESS_ONCE(pcp->batch);
1182 if (pcp->count >= batch)
1183 to_drain = batch;
1184 else
1185 to_drain = pcp->count;
1186 if (to_drain > 0) {
1187 free_pcppages_bulk(zone, to_drain, pcp);
1188 pcp->count -= to_drain;
1189 }
1190 local_irq_restore(flags);
1191 }
1192 #endif
1193
1194 /*
1195 * Drain pages of the indicated processor.
1196 *
1197 * The processor must either be the current processor and the
1198 * thread pinned to the current processor or a processor that
1199 * is not online.
1200 */
1201 static void drain_pages(unsigned int cpu)
1202 {
1203 unsigned long flags;
1204 struct zone *zone;
1205
1206 for_each_populated_zone(zone) {
1207 struct per_cpu_pageset *pset;
1208 struct per_cpu_pages *pcp;
1209
1210 local_irq_save(flags);
1211 pset = per_cpu_ptr(zone->pageset, cpu);
1212
1213 pcp = &pset->pcp;
1214 if (pcp->count) {
1215 free_pcppages_bulk(zone, pcp->count, pcp);
1216 pcp->count = 0;
1217 }
1218 local_irq_restore(flags);
1219 }
1220 }
1221
1222 /*
1223 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1224 */
1225 void drain_local_pages(void *arg)
1226 {
1227 drain_pages(smp_processor_id());
1228 }
1229
1230 /*
1231 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1232 *
1233 * Note that this code is protected against sending an IPI to an offline
1234 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1235 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1236 * nothing keeps CPUs from showing up after we populated the cpumask and
1237 * before the call to on_each_cpu_mask().
1238 */
1239 void drain_all_pages(void)
1240 {
1241 int cpu;
1242 struct per_cpu_pageset *pcp;
1243 struct zone *zone;
1244
1245 /*
1246 * Allocate in the BSS so we wont require allocation in
1247 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1248 */
1249 static cpumask_t cpus_with_pcps;
1250
1251 /*
1252 * We don't care about racing with CPU hotplug event
1253 * as offline notification will cause the notified
1254 * cpu to drain that CPU pcps and on_each_cpu_mask
1255 * disables preemption as part of its processing
1256 */
1257 for_each_online_cpu(cpu) {
1258 bool has_pcps = false;
1259 for_each_populated_zone(zone) {
1260 pcp = per_cpu_ptr(zone->pageset, cpu);
1261 if (pcp->pcp.count) {
1262 has_pcps = true;
1263 break;
1264 }
1265 }
1266 if (has_pcps)
1267 cpumask_set_cpu(cpu, &cpus_with_pcps);
1268 else
1269 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1270 }
1271 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1272 }
1273
1274 #ifdef CONFIG_HIBERNATION
1275
1276 void mark_free_pages(struct zone *zone)
1277 {
1278 unsigned long pfn, max_zone_pfn;
1279 unsigned long flags;
1280 int order, t;
1281 struct list_head *curr;
1282
1283 if (!zone->spanned_pages)
1284 return;
1285
1286 spin_lock_irqsave(&zone->lock, flags);
1287
1288 max_zone_pfn = zone_end_pfn(zone);
1289 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1290 if (pfn_valid(pfn)) {
1291 struct page *page = pfn_to_page(pfn);
1292
1293 if (!swsusp_page_is_forbidden(page))
1294 swsusp_unset_page_free(page);
1295 }
1296
1297 for_each_migratetype_order(order, t) {
1298 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1299 unsigned long i;
1300
1301 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1302 for (i = 0; i < (1UL << order); i++)
1303 swsusp_set_page_free(pfn_to_page(pfn + i));
1304 }
1305 }
1306 spin_unlock_irqrestore(&zone->lock, flags);
1307 }
1308 #endif /* CONFIG_PM */
1309
1310 /*
1311 * Free a 0-order page
1312 * cold == 1 ? free a cold page : free a hot page
1313 */
1314 void free_hot_cold_page(struct page *page, int cold)
1315 {
1316 struct zone *zone = page_zone(page);
1317 struct per_cpu_pages *pcp;
1318 unsigned long flags;
1319 int migratetype;
1320
1321 if (!free_pages_prepare(page, 0))
1322 return;
1323
1324 migratetype = get_pageblock_migratetype(page);
1325 set_freepage_migratetype(page, migratetype);
1326 local_irq_save(flags);
1327 __count_vm_event(PGFREE);
1328
1329 /*
1330 * We only track unmovable, reclaimable and movable on pcp lists.
1331 * Free ISOLATE pages back to the allocator because they are being
1332 * offlined but treat RESERVE as movable pages so we can get those
1333 * areas back if necessary. Otherwise, we may have to free
1334 * excessively into the page allocator
1335 */
1336 if (migratetype >= MIGRATE_PCPTYPES) {
1337 if (unlikely(is_migrate_isolate(migratetype))) {
1338 free_one_page(zone, page, 0, migratetype);
1339 goto out;
1340 }
1341 migratetype = MIGRATE_MOVABLE;
1342 }
1343
1344 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1345 if (cold)
1346 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1347 else
1348 list_add(&page->lru, &pcp->lists[migratetype]);
1349 pcp->count++;
1350 if (pcp->count >= pcp->high) {
1351 unsigned long batch = ACCESS_ONCE(pcp->batch);
1352 free_pcppages_bulk(zone, batch, pcp);
1353 pcp->count -= batch;
1354 }
1355
1356 out:
1357 local_irq_restore(flags);
1358 }
1359
1360 /*
1361 * Free a list of 0-order pages
1362 */
1363 void free_hot_cold_page_list(struct list_head *list, int cold)
1364 {
1365 struct page *page, *next;
1366
1367 list_for_each_entry_safe(page, next, list, lru) {
1368 trace_mm_page_free_batched(page, cold);
1369 free_hot_cold_page(page, cold);
1370 }
1371 }
1372
1373 /*
1374 * split_page takes a non-compound higher-order page, and splits it into
1375 * n (1<<order) sub-pages: page[0..n]
1376 * Each sub-page must be freed individually.
1377 *
1378 * Note: this is probably too low level an operation for use in drivers.
1379 * Please consult with lkml before using this in your driver.
1380 */
1381 void split_page(struct page *page, unsigned int order)
1382 {
1383 int i;
1384
1385 VM_BUG_ON(PageCompound(page));
1386 VM_BUG_ON(!page_count(page));
1387
1388 #ifdef CONFIG_KMEMCHECK
1389 /*
1390 * Split shadow pages too, because free(page[0]) would
1391 * otherwise free the whole shadow.
1392 */
1393 if (kmemcheck_page_is_tracked(page))
1394 split_page(virt_to_page(page[0].shadow), order);
1395 #endif
1396
1397 for (i = 1; i < (1 << order); i++)
1398 set_page_refcounted(page + i);
1399 }
1400 EXPORT_SYMBOL_GPL(split_page);
1401
1402 static int __isolate_free_page(struct page *page, unsigned int order)
1403 {
1404 unsigned long watermark;
1405 struct zone *zone;
1406 int mt;
1407
1408 BUG_ON(!PageBuddy(page));
1409
1410 zone = page_zone(page);
1411 mt = get_pageblock_migratetype(page);
1412
1413 if (!is_migrate_isolate(mt)) {
1414 /* Obey watermarks as if the page was being allocated */
1415 watermark = low_wmark_pages(zone) + (1 << order);
1416 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1417 return 0;
1418
1419 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1420 }
1421
1422 /* Remove page from free list */
1423 list_del(&page->lru);
1424 zone->free_area[order].nr_free--;
1425 rmv_page_order(page);
1426
1427 /* Set the pageblock if the isolated page is at least a pageblock */
1428 if (order >= pageblock_order - 1) {
1429 struct page *endpage = page + (1 << order) - 1;
1430 for (; page < endpage; page += pageblock_nr_pages) {
1431 int mt = get_pageblock_migratetype(page);
1432 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1433 set_pageblock_migratetype(page,
1434 MIGRATE_MOVABLE);
1435 }
1436 }
1437
1438 return 1UL << order;
1439 }
1440
1441 /*
1442 * Similar to split_page except the page is already free. As this is only
1443 * being used for migration, the migratetype of the block also changes.
1444 * As this is called with interrupts disabled, the caller is responsible
1445 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1446 * are enabled.
1447 *
1448 * Note: this is probably too low level an operation for use in drivers.
1449 * Please consult with lkml before using this in your driver.
1450 */
1451 int split_free_page(struct page *page)
1452 {
1453 unsigned int order;
1454 int nr_pages;
1455
1456 order = page_order(page);
1457
1458 nr_pages = __isolate_free_page(page, order);
1459 if (!nr_pages)
1460 return 0;
1461
1462 /* Split into individual pages */
1463 set_page_refcounted(page);
1464 split_page(page, order);
1465 return nr_pages;
1466 }
1467
1468 /*
1469 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1470 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1471 * or two.
1472 */
1473 static inline
1474 struct page *buffered_rmqueue(struct zone *preferred_zone,
1475 struct zone *zone, int order, gfp_t gfp_flags,
1476 int migratetype)
1477 {
1478 unsigned long flags;
1479 struct page *page;
1480 int cold = !!(gfp_flags & __GFP_COLD);
1481
1482 again:
1483 if (likely(order == 0)) {
1484 struct per_cpu_pages *pcp;
1485 struct list_head *list;
1486
1487 local_irq_save(flags);
1488 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1489 list = &pcp->lists[migratetype];
1490 if (list_empty(list)) {
1491 pcp->count += rmqueue_bulk(zone, 0,
1492 pcp->batch, list,
1493 migratetype, cold);
1494 if (unlikely(list_empty(list)))
1495 goto failed;
1496 }
1497
1498 if (cold)
1499 page = list_entry(list->prev, struct page, lru);
1500 else
1501 page = list_entry(list->next, struct page, lru);
1502
1503 list_del(&page->lru);
1504 pcp->count--;
1505 } else {
1506 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1507 /*
1508 * __GFP_NOFAIL is not to be used in new code.
1509 *
1510 * All __GFP_NOFAIL callers should be fixed so that they
1511 * properly detect and handle allocation failures.
1512 *
1513 * We most definitely don't want callers attempting to
1514 * allocate greater than order-1 page units with
1515 * __GFP_NOFAIL.
1516 */
1517 WARN_ON_ONCE(order > 1);
1518 }
1519 spin_lock_irqsave(&zone->lock, flags);
1520 page = __rmqueue(zone, order, migratetype);
1521 spin_unlock(&zone->lock);
1522 if (!page)
1523 goto failed;
1524 __mod_zone_freepage_state(zone, -(1 << order),
1525 get_pageblock_migratetype(page));
1526 }
1527
1528 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1529 zone_statistics(preferred_zone, zone, gfp_flags);
1530 local_irq_restore(flags);
1531
1532 VM_BUG_ON(bad_range(zone, page));
1533 if (prep_new_page(page, order, gfp_flags))
1534 goto again;
1535 return page;
1536
1537 failed:
1538 local_irq_restore(flags);
1539 return NULL;
1540 }
1541
1542 #ifdef CONFIG_FAIL_PAGE_ALLOC
1543
1544 static struct {
1545 struct fault_attr attr;
1546
1547 u32 ignore_gfp_highmem;
1548 u32 ignore_gfp_wait;
1549 u32 min_order;
1550 } fail_page_alloc = {
1551 .attr = FAULT_ATTR_INITIALIZER,
1552 .ignore_gfp_wait = 1,
1553 .ignore_gfp_highmem = 1,
1554 .min_order = 1,
1555 };
1556
1557 static int __init setup_fail_page_alloc(char *str)
1558 {
1559 return setup_fault_attr(&fail_page_alloc.attr, str);
1560 }
1561 __setup("fail_page_alloc=", setup_fail_page_alloc);
1562
1563 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1564 {
1565 if (order < fail_page_alloc.min_order)
1566 return false;
1567 if (gfp_mask & __GFP_NOFAIL)
1568 return false;
1569 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1570 return false;
1571 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1572 return false;
1573
1574 return should_fail(&fail_page_alloc.attr, 1 << order);
1575 }
1576
1577 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1578
1579 static int __init fail_page_alloc_debugfs(void)
1580 {
1581 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1582 struct dentry *dir;
1583
1584 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1585 &fail_page_alloc.attr);
1586 if (IS_ERR(dir))
1587 return PTR_ERR(dir);
1588
1589 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1590 &fail_page_alloc.ignore_gfp_wait))
1591 goto fail;
1592 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1593 &fail_page_alloc.ignore_gfp_highmem))
1594 goto fail;
1595 if (!debugfs_create_u32("min-order", mode, dir,
1596 &fail_page_alloc.min_order))
1597 goto fail;
1598
1599 return 0;
1600 fail:
1601 debugfs_remove_recursive(dir);
1602
1603 return -ENOMEM;
1604 }
1605
1606 late_initcall(fail_page_alloc_debugfs);
1607
1608 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1609
1610 #else /* CONFIG_FAIL_PAGE_ALLOC */
1611
1612 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1613 {
1614 return false;
1615 }
1616
1617 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1618
1619 /*
1620 * Return true if free pages are above 'mark'. This takes into account the order
1621 * of the allocation.
1622 */
1623 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1624 int classzone_idx, int alloc_flags, long free_pages)
1625 {
1626 /* free_pages my go negative - that's OK */
1627 long min = mark;
1628 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1629 int o;
1630 long free_cma = 0;
1631
1632 free_pages -= (1 << order) - 1;
1633 if (alloc_flags & ALLOC_HIGH)
1634 min -= min / 2;
1635 if (alloc_flags & ALLOC_HARDER)
1636 min -= min / 4;
1637 #ifdef CONFIG_CMA
1638 /* If allocation can't use CMA areas don't use free CMA pages */
1639 if (!(alloc_flags & ALLOC_CMA))
1640 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1641 #endif
1642
1643 if (free_pages - free_cma <= min + lowmem_reserve)
1644 return false;
1645 for (o = 0; o < order; o++) {
1646 /* At the next order, this order's pages become unavailable */
1647 free_pages -= z->free_area[o].nr_free << o;
1648
1649 /* Require fewer higher order pages to be free */
1650 min >>= 1;
1651
1652 if (free_pages <= min)
1653 return false;
1654 }
1655 return true;
1656 }
1657
1658 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1659 int classzone_idx, int alloc_flags)
1660 {
1661 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1662 zone_page_state(z, NR_FREE_PAGES));
1663 }
1664
1665 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1666 int classzone_idx, int alloc_flags)
1667 {
1668 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1669
1670 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1671 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1672
1673 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1674 free_pages);
1675 }
1676
1677 #ifdef CONFIG_NUMA
1678 /*
1679 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1680 * skip over zones that are not allowed by the cpuset, or that have
1681 * been recently (in last second) found to be nearly full. See further
1682 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1683 * that have to skip over a lot of full or unallowed zones.
1684 *
1685 * If the zonelist cache is present in the passed in zonelist, then
1686 * returns a pointer to the allowed node mask (either the current
1687 * tasks mems_allowed, or node_states[N_MEMORY].)
1688 *
1689 * If the zonelist cache is not available for this zonelist, does
1690 * nothing and returns NULL.
1691 *
1692 * If the fullzones BITMAP in the zonelist cache is stale (more than
1693 * a second since last zap'd) then we zap it out (clear its bits.)
1694 *
1695 * We hold off even calling zlc_setup, until after we've checked the
1696 * first zone in the zonelist, on the theory that most allocations will
1697 * be satisfied from that first zone, so best to examine that zone as
1698 * quickly as we can.
1699 */
1700 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1701 {
1702 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1703 nodemask_t *allowednodes; /* zonelist_cache approximation */
1704
1705 zlc = zonelist->zlcache_ptr;
1706 if (!zlc)
1707 return NULL;
1708
1709 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1710 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1711 zlc->last_full_zap = jiffies;
1712 }
1713
1714 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1715 &cpuset_current_mems_allowed :
1716 &node_states[N_MEMORY];
1717 return allowednodes;
1718 }
1719
1720 /*
1721 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1722 * if it is worth looking at further for free memory:
1723 * 1) Check that the zone isn't thought to be full (doesn't have its
1724 * bit set in the zonelist_cache fullzones BITMAP).
1725 * 2) Check that the zones node (obtained from the zonelist_cache
1726 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1727 * Return true (non-zero) if zone is worth looking at further, or
1728 * else return false (zero) if it is not.
1729 *
1730 * This check -ignores- the distinction between various watermarks,
1731 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1732 * found to be full for any variation of these watermarks, it will
1733 * be considered full for up to one second by all requests, unless
1734 * we are so low on memory on all allowed nodes that we are forced
1735 * into the second scan of the zonelist.
1736 *
1737 * In the second scan we ignore this zonelist cache and exactly
1738 * apply the watermarks to all zones, even it is slower to do so.
1739 * We are low on memory in the second scan, and should leave no stone
1740 * unturned looking for a free page.
1741 */
1742 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1743 nodemask_t *allowednodes)
1744 {
1745 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1746 int i; /* index of *z in zonelist zones */
1747 int n; /* node that zone *z is on */
1748
1749 zlc = zonelist->zlcache_ptr;
1750 if (!zlc)
1751 return 1;
1752
1753 i = z - zonelist->_zonerefs;
1754 n = zlc->z_to_n[i];
1755
1756 /* This zone is worth trying if it is allowed but not full */
1757 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1758 }
1759
1760 /*
1761 * Given 'z' scanning a zonelist, set the corresponding bit in
1762 * zlc->fullzones, so that subsequent attempts to allocate a page
1763 * from that zone don't waste time re-examining it.
1764 */
1765 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1766 {
1767 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1768 int i; /* index of *z in zonelist zones */
1769
1770 zlc = zonelist->zlcache_ptr;
1771 if (!zlc)
1772 return;
1773
1774 i = z - zonelist->_zonerefs;
1775
1776 set_bit(i, zlc->fullzones);
1777 }
1778
1779 /*
1780 * clear all zones full, called after direct reclaim makes progress so that
1781 * a zone that was recently full is not skipped over for up to a second
1782 */
1783 static void zlc_clear_zones_full(struct zonelist *zonelist)
1784 {
1785 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1786
1787 zlc = zonelist->zlcache_ptr;
1788 if (!zlc)
1789 return;
1790
1791 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1792 }
1793
1794 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1795 {
1796 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1797 }
1798
1799 static void __paginginit init_zone_allows_reclaim(int nid)
1800 {
1801 int i;
1802
1803 for_each_online_node(i)
1804 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1805 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1806 else
1807 zone_reclaim_mode = 1;
1808 }
1809
1810 #else /* CONFIG_NUMA */
1811
1812 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1813 {
1814 return NULL;
1815 }
1816
1817 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1818 nodemask_t *allowednodes)
1819 {
1820 return 1;
1821 }
1822
1823 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1824 {
1825 }
1826
1827 static void zlc_clear_zones_full(struct zonelist *zonelist)
1828 {
1829 }
1830
1831 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1832 {
1833 return true;
1834 }
1835
1836 static inline void init_zone_allows_reclaim(int nid)
1837 {
1838 }
1839 #endif /* CONFIG_NUMA */
1840
1841 /*
1842 * get_page_from_freelist goes through the zonelist trying to allocate
1843 * a page.
1844 */
1845 static struct page *
1846 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1847 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1848 struct zone *preferred_zone, int migratetype)
1849 {
1850 struct zoneref *z;
1851 struct page *page = NULL;
1852 int classzone_idx;
1853 struct zone *zone;
1854 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1855 int zlc_active = 0; /* set if using zonelist_cache */
1856 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1857
1858 classzone_idx = zone_idx(preferred_zone);
1859 zonelist_scan:
1860 /*
1861 * Scan zonelist, looking for a zone with enough free.
1862 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1863 */
1864 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1865 high_zoneidx, nodemask) {
1866 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1867 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1868 continue;
1869 if ((alloc_flags & ALLOC_CPUSET) &&
1870 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1871 continue;
1872 /*
1873 * When allocating a page cache page for writing, we
1874 * want to get it from a zone that is within its dirty
1875 * limit, such that no single zone holds more than its
1876 * proportional share of globally allowed dirty pages.
1877 * The dirty limits take into account the zone's
1878 * lowmem reserves and high watermark so that kswapd
1879 * should be able to balance it without having to
1880 * write pages from its LRU list.
1881 *
1882 * This may look like it could increase pressure on
1883 * lower zones by failing allocations in higher zones
1884 * before they are full. But the pages that do spill
1885 * over are limited as the lower zones are protected
1886 * by this very same mechanism. It should not become
1887 * a practical burden to them.
1888 *
1889 * XXX: For now, allow allocations to potentially
1890 * exceed the per-zone dirty limit in the slowpath
1891 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1892 * which is important when on a NUMA setup the allowed
1893 * zones are together not big enough to reach the
1894 * global limit. The proper fix for these situations
1895 * will require awareness of zones in the
1896 * dirty-throttling and the flusher threads.
1897 */
1898 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1899 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1900 goto this_zone_full;
1901
1902 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1903 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1904 unsigned long mark;
1905 int ret;
1906
1907 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1908 if (zone_watermark_ok(zone, order, mark,
1909 classzone_idx, alloc_flags))
1910 goto try_this_zone;
1911
1912 if (IS_ENABLED(CONFIG_NUMA) &&
1913 !did_zlc_setup && nr_online_nodes > 1) {
1914 /*
1915 * we do zlc_setup if there are multiple nodes
1916 * and before considering the first zone allowed
1917 * by the cpuset.
1918 */
1919 allowednodes = zlc_setup(zonelist, alloc_flags);
1920 zlc_active = 1;
1921 did_zlc_setup = 1;
1922 }
1923
1924 if (zone_reclaim_mode == 0 ||
1925 !zone_allows_reclaim(preferred_zone, zone))
1926 goto this_zone_full;
1927
1928 /*
1929 * As we may have just activated ZLC, check if the first
1930 * eligible zone has failed zone_reclaim recently.
1931 */
1932 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1933 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1934 continue;
1935
1936 ret = zone_reclaim(zone, gfp_mask, order);
1937 switch (ret) {
1938 case ZONE_RECLAIM_NOSCAN:
1939 /* did not scan */
1940 continue;
1941 case ZONE_RECLAIM_FULL:
1942 /* scanned but unreclaimable */
1943 continue;
1944 default:
1945 /* did we reclaim enough */
1946 if (zone_watermark_ok(zone, order, mark,
1947 classzone_idx, alloc_flags))
1948 goto try_this_zone;
1949
1950 /*
1951 * Failed to reclaim enough to meet watermark.
1952 * Only mark the zone full if checking the min
1953 * watermark or if we failed to reclaim just
1954 * 1<<order pages or else the page allocator
1955 * fastpath will prematurely mark zones full
1956 * when the watermark is between the low and
1957 * min watermarks.
1958 */
1959 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
1960 ret == ZONE_RECLAIM_SOME)
1961 goto this_zone_full;
1962
1963 continue;
1964 }
1965 }
1966
1967 try_this_zone:
1968 page = buffered_rmqueue(preferred_zone, zone, order,
1969 gfp_mask, migratetype);
1970 if (page)
1971 break;
1972 this_zone_full:
1973 if (IS_ENABLED(CONFIG_NUMA))
1974 zlc_mark_zone_full(zonelist, z);
1975 }
1976
1977 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1978 /* Disable zlc cache for second zonelist scan */
1979 zlc_active = 0;
1980 goto zonelist_scan;
1981 }
1982
1983 if (page)
1984 /*
1985 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1986 * necessary to allocate the page. The expectation is
1987 * that the caller is taking steps that will free more
1988 * memory. The caller should avoid the page being used
1989 * for !PFMEMALLOC purposes.
1990 */
1991 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1992
1993 return page;
1994 }
1995
1996 /*
1997 * Large machines with many possible nodes should not always dump per-node
1998 * meminfo in irq context.
1999 */
2000 static inline bool should_suppress_show_mem(void)
2001 {
2002 bool ret = false;
2003
2004 #if NODES_SHIFT > 8
2005 ret = in_interrupt();
2006 #endif
2007 return ret;
2008 }
2009
2010 static DEFINE_RATELIMIT_STATE(nopage_rs,
2011 DEFAULT_RATELIMIT_INTERVAL,
2012 DEFAULT_RATELIMIT_BURST);
2013
2014 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2015 {
2016 unsigned int filter = SHOW_MEM_FILTER_NODES;
2017
2018 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2019 debug_guardpage_minorder() > 0)
2020 return;
2021
2022 /*
2023 * Walking all memory to count page types is very expensive and should
2024 * be inhibited in non-blockable contexts.
2025 */
2026 if (!(gfp_mask & __GFP_WAIT))
2027 filter |= SHOW_MEM_FILTER_PAGE_COUNT;
2028
2029 /*
2030 * This documents exceptions given to allocations in certain
2031 * contexts that are allowed to allocate outside current's set
2032 * of allowed nodes.
2033 */
2034 if (!(gfp_mask & __GFP_NOMEMALLOC))
2035 if (test_thread_flag(TIF_MEMDIE) ||
2036 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2037 filter &= ~SHOW_MEM_FILTER_NODES;
2038 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2039 filter &= ~SHOW_MEM_FILTER_NODES;
2040
2041 if (fmt) {
2042 struct va_format vaf;
2043 va_list args;
2044
2045 va_start(args, fmt);
2046
2047 vaf.fmt = fmt;
2048 vaf.va = &args;
2049
2050 pr_warn("%pV", &vaf);
2051
2052 va_end(args);
2053 }
2054
2055 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2056 current->comm, order, gfp_mask);
2057
2058 dump_stack();
2059 if (!should_suppress_show_mem())
2060 show_mem(filter);
2061 }
2062
2063 static inline int
2064 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2065 unsigned long did_some_progress,
2066 unsigned long pages_reclaimed)
2067 {
2068 /* Do not loop if specifically requested */
2069 if (gfp_mask & __GFP_NORETRY)
2070 return 0;
2071
2072 /* Always retry if specifically requested */
2073 if (gfp_mask & __GFP_NOFAIL)
2074 return 1;
2075
2076 /*
2077 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2078 * making forward progress without invoking OOM. Suspend also disables
2079 * storage devices so kswapd will not help. Bail if we are suspending.
2080 */
2081 if (!did_some_progress && pm_suspended_storage())
2082 return 0;
2083
2084 /*
2085 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2086 * means __GFP_NOFAIL, but that may not be true in other
2087 * implementations.
2088 */
2089 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2090 return 1;
2091
2092 /*
2093 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2094 * specified, then we retry until we no longer reclaim any pages
2095 * (above), or we've reclaimed an order of pages at least as
2096 * large as the allocation's order. In both cases, if the
2097 * allocation still fails, we stop retrying.
2098 */
2099 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2100 return 1;
2101
2102 return 0;
2103 }
2104
2105 static inline struct page *
2106 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2107 struct zonelist *zonelist, enum zone_type high_zoneidx,
2108 nodemask_t *nodemask, struct zone *preferred_zone,
2109 int migratetype)
2110 {
2111 struct page *page;
2112
2113 /* Acquire the OOM killer lock for the zones in zonelist */
2114 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2115 schedule_timeout_uninterruptible(1);
2116 return NULL;
2117 }
2118
2119 /*
2120 * Go through the zonelist yet one more time, keep very high watermark
2121 * here, this is only to catch a parallel oom killing, we must fail if
2122 * we're still under heavy pressure.
2123 */
2124 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2125 order, zonelist, high_zoneidx,
2126 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2127 preferred_zone, migratetype);
2128 if (page)
2129 goto out;
2130
2131 if (!(gfp_mask & __GFP_NOFAIL)) {
2132 /* The OOM killer will not help higher order allocs */
2133 if (order > PAGE_ALLOC_COSTLY_ORDER)
2134 goto out;
2135 /* The OOM killer does not needlessly kill tasks for lowmem */
2136 if (high_zoneidx < ZONE_NORMAL)
2137 goto out;
2138 /*
2139 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2140 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2141 * The caller should handle page allocation failure by itself if
2142 * it specifies __GFP_THISNODE.
2143 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2144 */
2145 if (gfp_mask & __GFP_THISNODE)
2146 goto out;
2147 }
2148 /* Exhausted what can be done so it's blamo time */
2149 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2150
2151 out:
2152 clear_zonelist_oom(zonelist, gfp_mask);
2153 return page;
2154 }
2155
2156 #ifdef CONFIG_COMPACTION
2157 /* Try memory compaction for high-order allocations before reclaim */
2158 static struct page *
2159 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2160 struct zonelist *zonelist, enum zone_type high_zoneidx,
2161 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2162 int migratetype, bool sync_migration,
2163 bool *contended_compaction, bool *deferred_compaction,
2164 unsigned long *did_some_progress)
2165 {
2166 if (!order)
2167 return NULL;
2168
2169 if (compaction_deferred(preferred_zone, order)) {
2170 *deferred_compaction = true;
2171 return NULL;
2172 }
2173
2174 current->flags |= PF_MEMALLOC;
2175 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2176 nodemask, sync_migration,
2177 contended_compaction);
2178 current->flags &= ~PF_MEMALLOC;
2179
2180 if (*did_some_progress != COMPACT_SKIPPED) {
2181 struct page *page;
2182
2183 /* Page migration frees to the PCP lists but we want merging */
2184 drain_pages(get_cpu());
2185 put_cpu();
2186
2187 page = get_page_from_freelist(gfp_mask, nodemask,
2188 order, zonelist, high_zoneidx,
2189 alloc_flags & ~ALLOC_NO_WATERMARKS,
2190 preferred_zone, migratetype);
2191 if (page) {
2192 preferred_zone->compact_blockskip_flush = false;
2193 preferred_zone->compact_considered = 0;
2194 preferred_zone->compact_defer_shift = 0;
2195 if (order >= preferred_zone->compact_order_failed)
2196 preferred_zone->compact_order_failed = order + 1;
2197 count_vm_event(COMPACTSUCCESS);
2198 return page;
2199 }
2200
2201 /*
2202 * It's bad if compaction run occurs and fails.
2203 * The most likely reason is that pages exist,
2204 * but not enough to satisfy watermarks.
2205 */
2206 count_vm_event(COMPACTFAIL);
2207
2208 /*
2209 * As async compaction considers a subset of pageblocks, only
2210 * defer if the failure was a sync compaction failure.
2211 */
2212 if (sync_migration)
2213 defer_compaction(preferred_zone, order);
2214
2215 cond_resched();
2216 }
2217
2218 return NULL;
2219 }
2220 #else
2221 static inline struct page *
2222 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2223 struct zonelist *zonelist, enum zone_type high_zoneidx,
2224 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2225 int migratetype, bool sync_migration,
2226 bool *contended_compaction, bool *deferred_compaction,
2227 unsigned long *did_some_progress)
2228 {
2229 return NULL;
2230 }
2231 #endif /* CONFIG_COMPACTION */
2232
2233 /* Perform direct synchronous page reclaim */
2234 static int
2235 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2236 nodemask_t *nodemask)
2237 {
2238 struct reclaim_state reclaim_state;
2239 int progress;
2240
2241 cond_resched();
2242
2243 /* We now go into synchronous reclaim */
2244 cpuset_memory_pressure_bump();
2245 current->flags |= PF_MEMALLOC;
2246 lockdep_set_current_reclaim_state(gfp_mask);
2247 reclaim_state.reclaimed_slab = 0;
2248 current->reclaim_state = &reclaim_state;
2249
2250 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2251
2252 current->reclaim_state = NULL;
2253 lockdep_clear_current_reclaim_state();
2254 current->flags &= ~PF_MEMALLOC;
2255
2256 cond_resched();
2257
2258 return progress;
2259 }
2260
2261 /* The really slow allocator path where we enter direct reclaim */
2262 static inline struct page *
2263 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2264 struct zonelist *zonelist, enum zone_type high_zoneidx,
2265 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2266 int migratetype, unsigned long *did_some_progress)
2267 {
2268 struct page *page = NULL;
2269 bool drained = false;
2270
2271 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2272 nodemask);
2273 if (unlikely(!(*did_some_progress)))
2274 return NULL;
2275
2276 /* After successful reclaim, reconsider all zones for allocation */
2277 if (IS_ENABLED(CONFIG_NUMA))
2278 zlc_clear_zones_full(zonelist);
2279
2280 retry:
2281 page = get_page_from_freelist(gfp_mask, nodemask, order,
2282 zonelist, high_zoneidx,
2283 alloc_flags & ~ALLOC_NO_WATERMARKS,
2284 preferred_zone, migratetype);
2285
2286 /*
2287 * If an allocation failed after direct reclaim, it could be because
2288 * pages are pinned on the per-cpu lists. Drain them and try again
2289 */
2290 if (!page && !drained) {
2291 drain_all_pages();
2292 drained = true;
2293 goto retry;
2294 }
2295
2296 return page;
2297 }
2298
2299 /*
2300 * This is called in the allocator slow-path if the allocation request is of
2301 * sufficient urgency to ignore watermarks and take other desperate measures
2302 */
2303 static inline struct page *
2304 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2305 struct zonelist *zonelist, enum zone_type high_zoneidx,
2306 nodemask_t *nodemask, struct zone *preferred_zone,
2307 int migratetype)
2308 {
2309 struct page *page;
2310
2311 do {
2312 page = get_page_from_freelist(gfp_mask, nodemask, order,
2313 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2314 preferred_zone, migratetype);
2315
2316 if (!page && gfp_mask & __GFP_NOFAIL)
2317 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2318 } while (!page && (gfp_mask & __GFP_NOFAIL));
2319
2320 return page;
2321 }
2322
2323 static inline
2324 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2325 enum zone_type high_zoneidx,
2326 enum zone_type classzone_idx)
2327 {
2328 struct zoneref *z;
2329 struct zone *zone;
2330
2331 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2332 wakeup_kswapd(zone, order, classzone_idx);
2333 }
2334
2335 static inline int
2336 gfp_to_alloc_flags(gfp_t gfp_mask)
2337 {
2338 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2339 const gfp_t wait = gfp_mask & __GFP_WAIT;
2340
2341 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2342 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2343
2344 /*
2345 * The caller may dip into page reserves a bit more if the caller
2346 * cannot run direct reclaim, or if the caller has realtime scheduling
2347 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2348 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2349 */
2350 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2351
2352 if (!wait) {
2353 /*
2354 * Not worth trying to allocate harder for
2355 * __GFP_NOMEMALLOC even if it can't schedule.
2356 */
2357 if (!(gfp_mask & __GFP_NOMEMALLOC))
2358 alloc_flags |= ALLOC_HARDER;
2359 /*
2360 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2361 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2362 */
2363 alloc_flags &= ~ALLOC_CPUSET;
2364 } else if (unlikely(rt_task(current)) && !in_interrupt())
2365 alloc_flags |= ALLOC_HARDER;
2366
2367 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2368 if (gfp_mask & __GFP_MEMALLOC)
2369 alloc_flags |= ALLOC_NO_WATERMARKS;
2370 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2371 alloc_flags |= ALLOC_NO_WATERMARKS;
2372 else if (!in_interrupt() &&
2373 ((current->flags & PF_MEMALLOC) ||
2374 unlikely(test_thread_flag(TIF_MEMDIE))))
2375 alloc_flags |= ALLOC_NO_WATERMARKS;
2376 }
2377 #ifdef CONFIG_CMA
2378 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2379 alloc_flags |= ALLOC_CMA;
2380 #endif
2381 return alloc_flags;
2382 }
2383
2384 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2385 {
2386 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2387 }
2388
2389 static inline struct page *
2390 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2391 struct zonelist *zonelist, enum zone_type high_zoneidx,
2392 nodemask_t *nodemask, struct zone *preferred_zone,
2393 int migratetype)
2394 {
2395 const gfp_t wait = gfp_mask & __GFP_WAIT;
2396 struct page *page = NULL;
2397 int alloc_flags;
2398 unsigned long pages_reclaimed = 0;
2399 unsigned long did_some_progress;
2400 bool sync_migration = false;
2401 bool deferred_compaction = false;
2402 bool contended_compaction = false;
2403
2404 /*
2405 * In the slowpath, we sanity check order to avoid ever trying to
2406 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2407 * be using allocators in order of preference for an area that is
2408 * too large.
2409 */
2410 if (order >= MAX_ORDER) {
2411 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2412 return NULL;
2413 }
2414
2415 /*
2416 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2417 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2418 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2419 * using a larger set of nodes after it has established that the
2420 * allowed per node queues are empty and that nodes are
2421 * over allocated.
2422 */
2423 if (IS_ENABLED(CONFIG_NUMA) &&
2424 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2425 goto nopage;
2426
2427 restart:
2428 if (!(gfp_mask & __GFP_NO_KSWAPD))
2429 wake_all_kswapd(order, zonelist, high_zoneidx,
2430 zone_idx(preferred_zone));
2431
2432 /*
2433 * OK, we're below the kswapd watermark and have kicked background
2434 * reclaim. Now things get more complex, so set up alloc_flags according
2435 * to how we want to proceed.
2436 */
2437 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2438
2439 /*
2440 * Find the true preferred zone if the allocation is unconstrained by
2441 * cpusets.
2442 */
2443 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2444 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2445 &preferred_zone);
2446
2447 rebalance:
2448 /* This is the last chance, in general, before the goto nopage. */
2449 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2450 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2451 preferred_zone, migratetype);
2452 if (page)
2453 goto got_pg;
2454
2455 /* Allocate without watermarks if the context allows */
2456 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2457 /*
2458 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2459 * the allocation is high priority and these type of
2460 * allocations are system rather than user orientated
2461 */
2462 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2463
2464 page = __alloc_pages_high_priority(gfp_mask, order,
2465 zonelist, high_zoneidx, nodemask,
2466 preferred_zone, migratetype);
2467 if (page) {
2468 goto got_pg;
2469 }
2470 }
2471
2472 /* Atomic allocations - we can't balance anything */
2473 if (!wait)
2474 goto nopage;
2475
2476 /* Avoid recursion of direct reclaim */
2477 if (current->flags & PF_MEMALLOC)
2478 goto nopage;
2479
2480 /* Avoid allocations with no watermarks from looping endlessly */
2481 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2482 goto nopage;
2483
2484 /*
2485 * Try direct compaction. The first pass is asynchronous. Subsequent
2486 * attempts after direct reclaim are synchronous
2487 */
2488 page = __alloc_pages_direct_compact(gfp_mask, order,
2489 zonelist, high_zoneidx,
2490 nodemask,
2491 alloc_flags, preferred_zone,
2492 migratetype, sync_migration,
2493 &contended_compaction,
2494 &deferred_compaction,
2495 &did_some_progress);
2496 if (page)
2497 goto got_pg;
2498 sync_migration = true;
2499
2500 /*
2501 * If compaction is deferred for high-order allocations, it is because
2502 * sync compaction recently failed. In this is the case and the caller
2503 * requested a movable allocation that does not heavily disrupt the
2504 * system then fail the allocation instead of entering direct reclaim.
2505 */
2506 if ((deferred_compaction || contended_compaction) &&
2507 (gfp_mask & __GFP_NO_KSWAPD))
2508 goto nopage;
2509
2510 /* Try direct reclaim and then allocating */
2511 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2512 zonelist, high_zoneidx,
2513 nodemask,
2514 alloc_flags, preferred_zone,
2515 migratetype, &did_some_progress);
2516 if (page)
2517 goto got_pg;
2518
2519 /*
2520 * If we failed to make any progress reclaiming, then we are
2521 * running out of options and have to consider going OOM
2522 */
2523 if (!did_some_progress) {
2524 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2525 if (oom_killer_disabled)
2526 goto nopage;
2527 /* Coredumps can quickly deplete all memory reserves */
2528 if ((current->flags & PF_DUMPCORE) &&
2529 !(gfp_mask & __GFP_NOFAIL))
2530 goto nopage;
2531 page = __alloc_pages_may_oom(gfp_mask, order,
2532 zonelist, high_zoneidx,
2533 nodemask, preferred_zone,
2534 migratetype);
2535 if (page)
2536 goto got_pg;
2537
2538 if (!(gfp_mask & __GFP_NOFAIL)) {
2539 /*
2540 * The oom killer is not called for high-order
2541 * allocations that may fail, so if no progress
2542 * is being made, there are no other options and
2543 * retrying is unlikely to help.
2544 */
2545 if (order > PAGE_ALLOC_COSTLY_ORDER)
2546 goto nopage;
2547 /*
2548 * The oom killer is not called for lowmem
2549 * allocations to prevent needlessly killing
2550 * innocent tasks.
2551 */
2552 if (high_zoneidx < ZONE_NORMAL)
2553 goto nopage;
2554 }
2555
2556 goto restart;
2557 }
2558 }
2559
2560 /* Check if we should retry the allocation */
2561 pages_reclaimed += did_some_progress;
2562 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2563 pages_reclaimed)) {
2564 /* Wait for some write requests to complete then retry */
2565 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2566 goto rebalance;
2567 } else {
2568 /*
2569 * High-order allocations do not necessarily loop after
2570 * direct reclaim and reclaim/compaction depends on compaction
2571 * being called after reclaim so call directly if necessary
2572 */
2573 page = __alloc_pages_direct_compact(gfp_mask, order,
2574 zonelist, high_zoneidx,
2575 nodemask,
2576 alloc_flags, preferred_zone,
2577 migratetype, sync_migration,
2578 &contended_compaction,
2579 &deferred_compaction,
2580 &did_some_progress);
2581 if (page)
2582 goto got_pg;
2583 }
2584
2585 nopage:
2586 warn_alloc_failed(gfp_mask, order, NULL);
2587 return page;
2588 got_pg:
2589 if (kmemcheck_enabled)
2590 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2591
2592 return page;
2593 }
2594
2595 /*
2596 * This is the 'heart' of the zoned buddy allocator.
2597 */
2598 struct page *
2599 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2600 struct zonelist *zonelist, nodemask_t *nodemask)
2601 {
2602 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2603 struct zone *preferred_zone;
2604 struct page *page = NULL;
2605 int migratetype = allocflags_to_migratetype(gfp_mask);
2606 unsigned int cpuset_mems_cookie;
2607 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2608 struct mem_cgroup *memcg = NULL;
2609
2610 gfp_mask &= gfp_allowed_mask;
2611
2612 lockdep_trace_alloc(gfp_mask);
2613
2614 might_sleep_if(gfp_mask & __GFP_WAIT);
2615
2616 if (should_fail_alloc_page(gfp_mask, order))
2617 return NULL;
2618
2619 /*
2620 * Check the zones suitable for the gfp_mask contain at least one
2621 * valid zone. It's possible to have an empty zonelist as a result
2622 * of GFP_THISNODE and a memoryless node
2623 */
2624 if (unlikely(!zonelist->_zonerefs->zone))
2625 return NULL;
2626
2627 /*
2628 * Will only have any effect when __GFP_KMEMCG is set. This is
2629 * verified in the (always inline) callee
2630 */
2631 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2632 return NULL;
2633
2634 retry_cpuset:
2635 cpuset_mems_cookie = get_mems_allowed();
2636
2637 /* The preferred zone is used for statistics later */
2638 first_zones_zonelist(zonelist, high_zoneidx,
2639 nodemask ? : &cpuset_current_mems_allowed,
2640 &preferred_zone);
2641 if (!preferred_zone)
2642 goto out;
2643
2644 #ifdef CONFIG_CMA
2645 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2646 alloc_flags |= ALLOC_CMA;
2647 #endif
2648 /* First allocation attempt */
2649 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2650 zonelist, high_zoneidx, alloc_flags,
2651 preferred_zone, migratetype);
2652 if (unlikely(!page)) {
2653 /*
2654 * Runtime PM, block IO and its error handling path
2655 * can deadlock because I/O on the device might not
2656 * complete.
2657 */
2658 gfp_mask = memalloc_noio_flags(gfp_mask);
2659 page = __alloc_pages_slowpath(gfp_mask, order,
2660 zonelist, high_zoneidx, nodemask,
2661 preferred_zone, migratetype);
2662 }
2663
2664 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2665
2666 out:
2667 /*
2668 * When updating a task's mems_allowed, it is possible to race with
2669 * parallel threads in such a way that an allocation can fail while
2670 * the mask is being updated. If a page allocation is about to fail,
2671 * check if the cpuset changed during allocation and if so, retry.
2672 */
2673 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2674 goto retry_cpuset;
2675
2676 memcg_kmem_commit_charge(page, memcg, order);
2677
2678 return page;
2679 }
2680 EXPORT_SYMBOL(__alloc_pages_nodemask);
2681
2682 /*
2683 * Common helper functions.
2684 */
2685 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2686 {
2687 struct page *page;
2688
2689 /*
2690 * __get_free_pages() returns a 32-bit address, which cannot represent
2691 * a highmem page
2692 */
2693 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2694
2695 page = alloc_pages(gfp_mask, order);
2696 if (!page)
2697 return 0;
2698 return (unsigned long) page_address(page);
2699 }
2700 EXPORT_SYMBOL(__get_free_pages);
2701
2702 unsigned long get_zeroed_page(gfp_t gfp_mask)
2703 {
2704 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2705 }
2706 EXPORT_SYMBOL(get_zeroed_page);
2707
2708 void __free_pages(struct page *page, unsigned int order)
2709 {
2710 if (put_page_testzero(page)) {
2711 if (order == 0)
2712 free_hot_cold_page(page, 0);
2713 else
2714 __free_pages_ok(page, order);
2715 }
2716 }
2717
2718 EXPORT_SYMBOL(__free_pages);
2719
2720 void free_pages(unsigned long addr, unsigned int order)
2721 {
2722 if (addr != 0) {
2723 VM_BUG_ON(!virt_addr_valid((void *)addr));
2724 __free_pages(virt_to_page((void *)addr), order);
2725 }
2726 }
2727
2728 EXPORT_SYMBOL(free_pages);
2729
2730 /*
2731 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2732 * pages allocated with __GFP_KMEMCG.
2733 *
2734 * Those pages are accounted to a particular memcg, embedded in the
2735 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2736 * for that information only to find out that it is NULL for users who have no
2737 * interest in that whatsoever, we provide these functions.
2738 *
2739 * The caller knows better which flags it relies on.
2740 */
2741 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2742 {
2743 memcg_kmem_uncharge_pages(page, order);
2744 __free_pages(page, order);
2745 }
2746
2747 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2748 {
2749 if (addr != 0) {
2750 VM_BUG_ON(!virt_addr_valid((void *)addr));
2751 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2752 }
2753 }
2754
2755 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2756 {
2757 if (addr) {
2758 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2759 unsigned long used = addr + PAGE_ALIGN(size);
2760
2761 split_page(virt_to_page((void *)addr), order);
2762 while (used < alloc_end) {
2763 free_page(used);
2764 used += PAGE_SIZE;
2765 }
2766 }
2767 return (void *)addr;
2768 }
2769
2770 /**
2771 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2772 * @size: the number of bytes to allocate
2773 * @gfp_mask: GFP flags for the allocation
2774 *
2775 * This function is similar to alloc_pages(), except that it allocates the
2776 * minimum number of pages to satisfy the request. alloc_pages() can only
2777 * allocate memory in power-of-two pages.
2778 *
2779 * This function is also limited by MAX_ORDER.
2780 *
2781 * Memory allocated by this function must be released by free_pages_exact().
2782 */
2783 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2784 {
2785 unsigned int order = get_order(size);
2786 unsigned long addr;
2787
2788 addr = __get_free_pages(gfp_mask, order);
2789 return make_alloc_exact(addr, order, size);
2790 }
2791 EXPORT_SYMBOL(alloc_pages_exact);
2792
2793 /**
2794 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2795 * pages on a node.
2796 * @nid: the preferred node ID where memory should be allocated
2797 * @size: the number of bytes to allocate
2798 * @gfp_mask: GFP flags for the allocation
2799 *
2800 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2801 * back.
2802 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2803 * but is not exact.
2804 */
2805 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2806 {
2807 unsigned order = get_order(size);
2808 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2809 if (!p)
2810 return NULL;
2811 return make_alloc_exact((unsigned long)page_address(p), order, size);
2812 }
2813 EXPORT_SYMBOL(alloc_pages_exact_nid);
2814
2815 /**
2816 * free_pages_exact - release memory allocated via alloc_pages_exact()
2817 * @virt: the value returned by alloc_pages_exact.
2818 * @size: size of allocation, same value as passed to alloc_pages_exact().
2819 *
2820 * Release the memory allocated by a previous call to alloc_pages_exact.
2821 */
2822 void free_pages_exact(void *virt, size_t size)
2823 {
2824 unsigned long addr = (unsigned long)virt;
2825 unsigned long end = addr + PAGE_ALIGN(size);
2826
2827 while (addr < end) {
2828 free_page(addr);
2829 addr += PAGE_SIZE;
2830 }
2831 }
2832 EXPORT_SYMBOL(free_pages_exact);
2833
2834 /**
2835 * nr_free_zone_pages - count number of pages beyond high watermark
2836 * @offset: The zone index of the highest zone
2837 *
2838 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2839 * high watermark within all zones at or below a given zone index. For each
2840 * zone, the number of pages is calculated as:
2841 * managed_pages - high_pages
2842 */
2843 static unsigned long nr_free_zone_pages(int offset)
2844 {
2845 struct zoneref *z;
2846 struct zone *zone;
2847
2848 /* Just pick one node, since fallback list is circular */
2849 unsigned long sum = 0;
2850
2851 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2852
2853 for_each_zone_zonelist(zone, z, zonelist, offset) {
2854 unsigned long size = zone->managed_pages;
2855 unsigned long high = high_wmark_pages(zone);
2856 if (size > high)
2857 sum += size - high;
2858 }
2859
2860 return sum;
2861 }
2862
2863 /**
2864 * nr_free_buffer_pages - count number of pages beyond high watermark
2865 *
2866 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2867 * watermark within ZONE_DMA and ZONE_NORMAL.
2868 */
2869 unsigned long nr_free_buffer_pages(void)
2870 {
2871 return nr_free_zone_pages(gfp_zone(GFP_USER));
2872 }
2873 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2874
2875 /**
2876 * nr_free_pagecache_pages - count number of pages beyond high watermark
2877 *
2878 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2879 * high watermark within all zones.
2880 */
2881 unsigned long nr_free_pagecache_pages(void)
2882 {
2883 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2884 }
2885
2886 static inline void show_node(struct zone *zone)
2887 {
2888 if (IS_ENABLED(CONFIG_NUMA))
2889 printk("Node %d ", zone_to_nid(zone));
2890 }
2891
2892 void si_meminfo(struct sysinfo *val)
2893 {
2894 val->totalram = totalram_pages;
2895 val->sharedram = 0;
2896 val->freeram = global_page_state(NR_FREE_PAGES);
2897 val->bufferram = nr_blockdev_pages();
2898 val->totalhigh = totalhigh_pages;
2899 val->freehigh = nr_free_highpages();
2900 val->mem_unit = PAGE_SIZE;
2901 }
2902
2903 EXPORT_SYMBOL(si_meminfo);
2904
2905 #ifdef CONFIG_NUMA
2906 void si_meminfo_node(struct sysinfo *val, int nid)
2907 {
2908 int zone_type; /* needs to be signed */
2909 unsigned long managed_pages = 0;
2910 pg_data_t *pgdat = NODE_DATA(nid);
2911
2912 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
2913 managed_pages += pgdat->node_zones[zone_type].managed_pages;
2914 val->totalram = managed_pages;
2915 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2916 #ifdef CONFIG_HIGHMEM
2917 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
2918 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2919 NR_FREE_PAGES);
2920 #else
2921 val->totalhigh = 0;
2922 val->freehigh = 0;
2923 #endif
2924 val->mem_unit = PAGE_SIZE;
2925 }
2926 #endif
2927
2928 /*
2929 * Determine whether the node should be displayed or not, depending on whether
2930 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2931 */
2932 bool skip_free_areas_node(unsigned int flags, int nid)
2933 {
2934 bool ret = false;
2935 unsigned int cpuset_mems_cookie;
2936
2937 if (!(flags & SHOW_MEM_FILTER_NODES))
2938 goto out;
2939
2940 do {
2941 cpuset_mems_cookie = get_mems_allowed();
2942 ret = !node_isset(nid, cpuset_current_mems_allowed);
2943 } while (!put_mems_allowed(cpuset_mems_cookie));
2944 out:
2945 return ret;
2946 }
2947
2948 #define K(x) ((x) << (PAGE_SHIFT-10))
2949
2950 static void show_migration_types(unsigned char type)
2951 {
2952 static const char types[MIGRATE_TYPES] = {
2953 [MIGRATE_UNMOVABLE] = 'U',
2954 [MIGRATE_RECLAIMABLE] = 'E',
2955 [MIGRATE_MOVABLE] = 'M',
2956 [MIGRATE_RESERVE] = 'R',
2957 #ifdef CONFIG_CMA
2958 [MIGRATE_CMA] = 'C',
2959 #endif
2960 #ifdef CONFIG_MEMORY_ISOLATION
2961 [MIGRATE_ISOLATE] = 'I',
2962 #endif
2963 };
2964 char tmp[MIGRATE_TYPES + 1];
2965 char *p = tmp;
2966 int i;
2967
2968 for (i = 0; i < MIGRATE_TYPES; i++) {
2969 if (type & (1 << i))
2970 *p++ = types[i];
2971 }
2972
2973 *p = '\0';
2974 printk("(%s) ", tmp);
2975 }
2976
2977 /*
2978 * Show free area list (used inside shift_scroll-lock stuff)
2979 * We also calculate the percentage fragmentation. We do this by counting the
2980 * memory on each free list with the exception of the first item on the list.
2981 * Suppresses nodes that are not allowed by current's cpuset if
2982 * SHOW_MEM_FILTER_NODES is passed.
2983 */
2984 void show_free_areas(unsigned int filter)
2985 {
2986 int cpu;
2987 struct zone *zone;
2988
2989 for_each_populated_zone(zone) {
2990 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2991 continue;
2992 show_node(zone);
2993 printk("%s per-cpu:\n", zone->name);
2994
2995 for_each_online_cpu(cpu) {
2996 struct per_cpu_pageset *pageset;
2997
2998 pageset = per_cpu_ptr(zone->pageset, cpu);
2999
3000 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3001 cpu, pageset->pcp.high,
3002 pageset->pcp.batch, pageset->pcp.count);
3003 }
3004 }
3005
3006 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3007 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3008 " unevictable:%lu"
3009 " dirty:%lu writeback:%lu unstable:%lu\n"
3010 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3011 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3012 " free_cma:%lu\n",
3013 global_page_state(NR_ACTIVE_ANON),
3014 global_page_state(NR_INACTIVE_ANON),
3015 global_page_state(NR_ISOLATED_ANON),
3016 global_page_state(NR_ACTIVE_FILE),
3017 global_page_state(NR_INACTIVE_FILE),
3018 global_page_state(NR_ISOLATED_FILE),
3019 global_page_state(NR_UNEVICTABLE),
3020 global_page_state(NR_FILE_DIRTY),
3021 global_page_state(NR_WRITEBACK),
3022 global_page_state(NR_UNSTABLE_NFS),
3023 global_page_state(NR_FREE_PAGES),
3024 global_page_state(NR_SLAB_RECLAIMABLE),
3025 global_page_state(NR_SLAB_UNRECLAIMABLE),
3026 global_page_state(NR_FILE_MAPPED),
3027 global_page_state(NR_SHMEM),
3028 global_page_state(NR_PAGETABLE),
3029 global_page_state(NR_BOUNCE),
3030 global_page_state(NR_FREE_CMA_PAGES));
3031
3032 for_each_populated_zone(zone) {
3033 int i;
3034
3035 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3036 continue;
3037 show_node(zone);
3038 printk("%s"
3039 " free:%lukB"
3040 " min:%lukB"
3041 " low:%lukB"
3042 " high:%lukB"
3043 " active_anon:%lukB"
3044 " inactive_anon:%lukB"
3045 " active_file:%lukB"
3046 " inactive_file:%lukB"
3047 " unevictable:%lukB"
3048 " isolated(anon):%lukB"
3049 " isolated(file):%lukB"
3050 " present:%lukB"
3051 " managed:%lukB"
3052 " mlocked:%lukB"
3053 " dirty:%lukB"
3054 " writeback:%lukB"
3055 " mapped:%lukB"
3056 " shmem:%lukB"
3057 " slab_reclaimable:%lukB"
3058 " slab_unreclaimable:%lukB"
3059 " kernel_stack:%lukB"
3060 " pagetables:%lukB"
3061 " unstable:%lukB"
3062 " bounce:%lukB"
3063 " free_cma:%lukB"
3064 " writeback_tmp:%lukB"
3065 " pages_scanned:%lu"
3066 " all_unreclaimable? %s"
3067 "\n",
3068 zone->name,
3069 K(zone_page_state(zone, NR_FREE_PAGES)),
3070 K(min_wmark_pages(zone)),
3071 K(low_wmark_pages(zone)),
3072 K(high_wmark_pages(zone)),
3073 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3074 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3075 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3076 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3077 K(zone_page_state(zone, NR_UNEVICTABLE)),
3078 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3079 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3080 K(zone->present_pages),
3081 K(zone->managed_pages),
3082 K(zone_page_state(zone, NR_MLOCK)),
3083 K(zone_page_state(zone, NR_FILE_DIRTY)),
3084 K(zone_page_state(zone, NR_WRITEBACK)),
3085 K(zone_page_state(zone, NR_FILE_MAPPED)),
3086 K(zone_page_state(zone, NR_SHMEM)),
3087 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3088 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3089 zone_page_state(zone, NR_KERNEL_STACK) *
3090 THREAD_SIZE / 1024,
3091 K(zone_page_state(zone, NR_PAGETABLE)),
3092 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3093 K(zone_page_state(zone, NR_BOUNCE)),
3094 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3095 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3096 zone->pages_scanned,
3097 (zone->all_unreclaimable ? "yes" : "no")
3098 );
3099 printk("lowmem_reserve[]:");
3100 for (i = 0; i < MAX_NR_ZONES; i++)
3101 printk(" %lu", zone->lowmem_reserve[i]);
3102 printk("\n");
3103 }
3104
3105 for_each_populated_zone(zone) {
3106 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3107 unsigned char types[MAX_ORDER];
3108
3109 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3110 continue;
3111 show_node(zone);
3112 printk("%s: ", zone->name);
3113
3114 spin_lock_irqsave(&zone->lock, flags);
3115 for (order = 0; order < MAX_ORDER; order++) {
3116 struct free_area *area = &zone->free_area[order];
3117 int type;
3118
3119 nr[order] = area->nr_free;
3120 total += nr[order] << order;
3121
3122 types[order] = 0;
3123 for (type = 0; type < MIGRATE_TYPES; type++) {
3124 if (!list_empty(&area->free_list[type]))
3125 types[order] |= 1 << type;
3126 }
3127 }
3128 spin_unlock_irqrestore(&zone->lock, flags);
3129 for (order = 0; order < MAX_ORDER; order++) {
3130 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3131 if (nr[order])
3132 show_migration_types(types[order]);
3133 }
3134 printk("= %lukB\n", K(total));
3135 }
3136
3137 hugetlb_show_meminfo();
3138
3139 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3140
3141 show_swap_cache_info();
3142 }
3143
3144 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3145 {
3146 zoneref->zone = zone;
3147 zoneref->zone_idx = zone_idx(zone);
3148 }
3149
3150 /*
3151 * Builds allocation fallback zone lists.
3152 *
3153 * Add all populated zones of a node to the zonelist.
3154 */
3155 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3156 int nr_zones, enum zone_type zone_type)
3157 {
3158 struct zone *zone;
3159
3160 BUG_ON(zone_type >= MAX_NR_ZONES);
3161 zone_type++;
3162
3163 do {
3164 zone_type--;
3165 zone = pgdat->node_zones + zone_type;
3166 if (populated_zone(zone)) {
3167 zoneref_set_zone(zone,
3168 &zonelist->_zonerefs[nr_zones++]);
3169 check_highest_zone(zone_type);
3170 }
3171
3172 } while (zone_type);
3173 return nr_zones;
3174 }
3175
3176
3177 /*
3178 * zonelist_order:
3179 * 0 = automatic detection of better ordering.
3180 * 1 = order by ([node] distance, -zonetype)
3181 * 2 = order by (-zonetype, [node] distance)
3182 *
3183 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3184 * the same zonelist. So only NUMA can configure this param.
3185 */
3186 #define ZONELIST_ORDER_DEFAULT 0
3187 #define ZONELIST_ORDER_NODE 1
3188 #define ZONELIST_ORDER_ZONE 2
3189
3190 /* zonelist order in the kernel.
3191 * set_zonelist_order() will set this to NODE or ZONE.
3192 */
3193 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3194 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3195
3196
3197 #ifdef CONFIG_NUMA
3198 /* The value user specified ....changed by config */
3199 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3200 /* string for sysctl */
3201 #define NUMA_ZONELIST_ORDER_LEN 16
3202 char numa_zonelist_order[16] = "default";
3203
3204 /*
3205 * interface for configure zonelist ordering.
3206 * command line option "numa_zonelist_order"
3207 * = "[dD]efault - default, automatic configuration.
3208 * = "[nN]ode - order by node locality, then by zone within node
3209 * = "[zZ]one - order by zone, then by locality within zone
3210 */
3211
3212 static int __parse_numa_zonelist_order(char *s)
3213 {
3214 if (*s == 'd' || *s == 'D') {
3215 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3216 } else if (*s == 'n' || *s == 'N') {
3217 user_zonelist_order = ZONELIST_ORDER_NODE;
3218 } else if (*s == 'z' || *s == 'Z') {
3219 user_zonelist_order = ZONELIST_ORDER_ZONE;
3220 } else {
3221 printk(KERN_WARNING
3222 "Ignoring invalid numa_zonelist_order value: "
3223 "%s\n", s);
3224 return -EINVAL;
3225 }
3226 return 0;
3227 }
3228
3229 static __init int setup_numa_zonelist_order(char *s)
3230 {
3231 int ret;
3232
3233 if (!s)
3234 return 0;
3235
3236 ret = __parse_numa_zonelist_order(s);
3237 if (ret == 0)
3238 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3239
3240 return ret;
3241 }
3242 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3243
3244 /*
3245 * sysctl handler for numa_zonelist_order
3246 */
3247 int numa_zonelist_order_handler(ctl_table *table, int write,
3248 void __user *buffer, size_t *length,
3249 loff_t *ppos)
3250 {
3251 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3252 int ret;
3253 static DEFINE_MUTEX(zl_order_mutex);
3254
3255 mutex_lock(&zl_order_mutex);
3256 if (write) {
3257 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3258 ret = -EINVAL;
3259 goto out;
3260 }
3261 strcpy(saved_string, (char *)table->data);
3262 }
3263 ret = proc_dostring(table, write, buffer, length, ppos);
3264 if (ret)
3265 goto out;
3266 if (write) {
3267 int oldval = user_zonelist_order;
3268
3269 ret = __parse_numa_zonelist_order((char *)table->data);
3270 if (ret) {
3271 /*
3272 * bogus value. restore saved string
3273 */
3274 strncpy((char *)table->data, saved_string,
3275 NUMA_ZONELIST_ORDER_LEN);
3276 user_zonelist_order = oldval;
3277 } else if (oldval != user_zonelist_order) {
3278 mutex_lock(&zonelists_mutex);
3279 build_all_zonelists(NULL, NULL);
3280 mutex_unlock(&zonelists_mutex);
3281 }
3282 }
3283 out:
3284 mutex_unlock(&zl_order_mutex);
3285 return ret;
3286 }
3287
3288
3289 #define MAX_NODE_LOAD (nr_online_nodes)
3290 static int node_load[MAX_NUMNODES];
3291
3292 /**
3293 * find_next_best_node - find the next node that should appear in a given node's fallback list
3294 * @node: node whose fallback list we're appending
3295 * @used_node_mask: nodemask_t of already used nodes
3296 *
3297 * We use a number of factors to determine which is the next node that should
3298 * appear on a given node's fallback list. The node should not have appeared
3299 * already in @node's fallback list, and it should be the next closest node
3300 * according to the distance array (which contains arbitrary distance values
3301 * from each node to each node in the system), and should also prefer nodes
3302 * with no CPUs, since presumably they'll have very little allocation pressure
3303 * on them otherwise.
3304 * It returns -1 if no node is found.
3305 */
3306 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3307 {
3308 int n, val;
3309 int min_val = INT_MAX;
3310 int best_node = NUMA_NO_NODE;
3311 const struct cpumask *tmp = cpumask_of_node(0);
3312
3313 /* Use the local node if we haven't already */
3314 if (!node_isset(node, *used_node_mask)) {
3315 node_set(node, *used_node_mask);
3316 return node;
3317 }
3318
3319 for_each_node_state(n, N_MEMORY) {
3320
3321 /* Don't want a node to appear more than once */
3322 if (node_isset(n, *used_node_mask))
3323 continue;
3324
3325 /* Use the distance array to find the distance */
3326 val = node_distance(node, n);
3327
3328 /* Penalize nodes under us ("prefer the next node") */
3329 val += (n < node);
3330
3331 /* Give preference to headless and unused nodes */
3332 tmp = cpumask_of_node(n);
3333 if (!cpumask_empty(tmp))
3334 val += PENALTY_FOR_NODE_WITH_CPUS;
3335
3336 /* Slight preference for less loaded node */
3337 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3338 val += node_load[n];
3339
3340 if (val < min_val) {
3341 min_val = val;
3342 best_node = n;
3343 }
3344 }
3345
3346 if (best_node >= 0)
3347 node_set(best_node, *used_node_mask);
3348
3349 return best_node;
3350 }
3351
3352
3353 /*
3354 * Build zonelists ordered by node and zones within node.
3355 * This results in maximum locality--normal zone overflows into local
3356 * DMA zone, if any--but risks exhausting DMA zone.
3357 */
3358 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3359 {
3360 int j;
3361 struct zonelist *zonelist;
3362
3363 zonelist = &pgdat->node_zonelists[0];
3364 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3365 ;
3366 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3367 MAX_NR_ZONES - 1);
3368 zonelist->_zonerefs[j].zone = NULL;
3369 zonelist->_zonerefs[j].zone_idx = 0;
3370 }
3371
3372 /*
3373 * Build gfp_thisnode zonelists
3374 */
3375 static void build_thisnode_zonelists(pg_data_t *pgdat)
3376 {
3377 int j;
3378 struct zonelist *zonelist;
3379
3380 zonelist = &pgdat->node_zonelists[1];
3381 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3382 zonelist->_zonerefs[j].zone = NULL;
3383 zonelist->_zonerefs[j].zone_idx = 0;
3384 }
3385
3386 /*
3387 * Build zonelists ordered by zone and nodes within zones.
3388 * This results in conserving DMA zone[s] until all Normal memory is
3389 * exhausted, but results in overflowing to remote node while memory
3390 * may still exist in local DMA zone.
3391 */
3392 static int node_order[MAX_NUMNODES];
3393
3394 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3395 {
3396 int pos, j, node;
3397 int zone_type; /* needs to be signed */
3398 struct zone *z;
3399 struct zonelist *zonelist;
3400
3401 zonelist = &pgdat->node_zonelists[0];
3402 pos = 0;
3403 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3404 for (j = 0; j < nr_nodes; j++) {
3405 node = node_order[j];
3406 z = &NODE_DATA(node)->node_zones[zone_type];
3407 if (populated_zone(z)) {
3408 zoneref_set_zone(z,
3409 &zonelist->_zonerefs[pos++]);
3410 check_highest_zone(zone_type);
3411 }
3412 }
3413 }
3414 zonelist->_zonerefs[pos].zone = NULL;
3415 zonelist->_zonerefs[pos].zone_idx = 0;
3416 }
3417
3418 static int default_zonelist_order(void)
3419 {
3420 int nid, zone_type;
3421 unsigned long low_kmem_size,total_size;
3422 struct zone *z;
3423 int average_size;
3424 /*
3425 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3426 * If they are really small and used heavily, the system can fall
3427 * into OOM very easily.
3428 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3429 */
3430 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3431 low_kmem_size = 0;
3432 total_size = 0;
3433 for_each_online_node(nid) {
3434 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3435 z = &NODE_DATA(nid)->node_zones[zone_type];
3436 if (populated_zone(z)) {
3437 if (zone_type < ZONE_NORMAL)
3438 low_kmem_size += z->managed_pages;
3439 total_size += z->managed_pages;
3440 } else if (zone_type == ZONE_NORMAL) {
3441 /*
3442 * If any node has only lowmem, then node order
3443 * is preferred to allow kernel allocations
3444 * locally; otherwise, they can easily infringe
3445 * on other nodes when there is an abundance of
3446 * lowmem available to allocate from.
3447 */
3448 return ZONELIST_ORDER_NODE;
3449 }
3450 }
3451 }
3452 if (!low_kmem_size || /* there are no DMA area. */
3453 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3454 return ZONELIST_ORDER_NODE;
3455 /*
3456 * look into each node's config.
3457 * If there is a node whose DMA/DMA32 memory is very big area on
3458 * local memory, NODE_ORDER may be suitable.
3459 */
3460 average_size = total_size /
3461 (nodes_weight(node_states[N_MEMORY]) + 1);
3462 for_each_online_node(nid) {
3463 low_kmem_size = 0;
3464 total_size = 0;
3465 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3466 z = &NODE_DATA(nid)->node_zones[zone_type];
3467 if (populated_zone(z)) {
3468 if (zone_type < ZONE_NORMAL)
3469 low_kmem_size += z->present_pages;
3470 total_size += z->present_pages;
3471 }
3472 }
3473 if (low_kmem_size &&
3474 total_size > average_size && /* ignore small node */
3475 low_kmem_size > total_size * 70/100)
3476 return ZONELIST_ORDER_NODE;
3477 }
3478 return ZONELIST_ORDER_ZONE;
3479 }
3480
3481 static void set_zonelist_order(void)
3482 {
3483 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3484 current_zonelist_order = default_zonelist_order();
3485 else
3486 current_zonelist_order = user_zonelist_order;
3487 }
3488
3489 static void build_zonelists(pg_data_t *pgdat)
3490 {
3491 int j, node, load;
3492 enum zone_type i;
3493 nodemask_t used_mask;
3494 int local_node, prev_node;
3495 struct zonelist *zonelist;
3496 int order = current_zonelist_order;
3497
3498 /* initialize zonelists */
3499 for (i = 0; i < MAX_ZONELISTS; i++) {
3500 zonelist = pgdat->node_zonelists + i;
3501 zonelist->_zonerefs[0].zone = NULL;
3502 zonelist->_zonerefs[0].zone_idx = 0;
3503 }
3504
3505 /* NUMA-aware ordering of nodes */
3506 local_node = pgdat->node_id;
3507 load = nr_online_nodes;
3508 prev_node = local_node;
3509 nodes_clear(used_mask);
3510
3511 memset(node_order, 0, sizeof(node_order));
3512 j = 0;
3513
3514 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3515 /*
3516 * We don't want to pressure a particular node.
3517 * So adding penalty to the first node in same
3518 * distance group to make it round-robin.
3519 */
3520 if (node_distance(local_node, node) !=
3521 node_distance(local_node, prev_node))
3522 node_load[node] = load;
3523
3524 prev_node = node;
3525 load--;
3526 if (order == ZONELIST_ORDER_NODE)
3527 build_zonelists_in_node_order(pgdat, node);
3528 else
3529 node_order[j++] = node; /* remember order */
3530 }
3531
3532 if (order == ZONELIST_ORDER_ZONE) {
3533 /* calculate node order -- i.e., DMA last! */
3534 build_zonelists_in_zone_order(pgdat, j);
3535 }
3536
3537 build_thisnode_zonelists(pgdat);
3538 }
3539
3540 /* Construct the zonelist performance cache - see further mmzone.h */
3541 static void build_zonelist_cache(pg_data_t *pgdat)
3542 {
3543 struct zonelist *zonelist;
3544 struct zonelist_cache *zlc;
3545 struct zoneref *z;
3546
3547 zonelist = &pgdat->node_zonelists[0];
3548 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3549 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3550 for (z = zonelist->_zonerefs; z->zone; z++)
3551 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3552 }
3553
3554 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3555 /*
3556 * Return node id of node used for "local" allocations.
3557 * I.e., first node id of first zone in arg node's generic zonelist.
3558 * Used for initializing percpu 'numa_mem', which is used primarily
3559 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3560 */
3561 int local_memory_node(int node)
3562 {
3563 struct zone *zone;
3564
3565 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3566 gfp_zone(GFP_KERNEL),
3567 NULL,
3568 &zone);
3569 return zone->node;
3570 }
3571 #endif
3572
3573 #else /* CONFIG_NUMA */
3574
3575 static void set_zonelist_order(void)
3576 {
3577 current_zonelist_order = ZONELIST_ORDER_ZONE;
3578 }
3579
3580 static void build_zonelists(pg_data_t *pgdat)
3581 {
3582 int node, local_node;
3583 enum zone_type j;
3584 struct zonelist *zonelist;
3585
3586 local_node = pgdat->node_id;
3587
3588 zonelist = &pgdat->node_zonelists[0];
3589 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3590
3591 /*
3592 * Now we build the zonelist so that it contains the zones
3593 * of all the other nodes.
3594 * We don't want to pressure a particular node, so when
3595 * building the zones for node N, we make sure that the
3596 * zones coming right after the local ones are those from
3597 * node N+1 (modulo N)
3598 */
3599 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3600 if (!node_online(node))
3601 continue;
3602 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3603 MAX_NR_ZONES - 1);
3604 }
3605 for (node = 0; node < local_node; node++) {
3606 if (!node_online(node))
3607 continue;
3608 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3609 MAX_NR_ZONES - 1);
3610 }
3611
3612 zonelist->_zonerefs[j].zone = NULL;
3613 zonelist->_zonerefs[j].zone_idx = 0;
3614 }
3615
3616 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3617 static void build_zonelist_cache(pg_data_t *pgdat)
3618 {
3619 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3620 }
3621
3622 #endif /* CONFIG_NUMA */
3623
3624 /*
3625 * Boot pageset table. One per cpu which is going to be used for all
3626 * zones and all nodes. The parameters will be set in such a way
3627 * that an item put on a list will immediately be handed over to
3628 * the buddy list. This is safe since pageset manipulation is done
3629 * with interrupts disabled.
3630 *
3631 * The boot_pagesets must be kept even after bootup is complete for
3632 * unused processors and/or zones. They do play a role for bootstrapping
3633 * hotplugged processors.
3634 *
3635 * zoneinfo_show() and maybe other functions do
3636 * not check if the processor is online before following the pageset pointer.
3637 * Other parts of the kernel may not check if the zone is available.
3638 */
3639 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3640 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3641 static void setup_zone_pageset(struct zone *zone);
3642
3643 /*
3644 * Global mutex to protect against size modification of zonelists
3645 * as well as to serialize pageset setup for the new populated zone.
3646 */
3647 DEFINE_MUTEX(zonelists_mutex);
3648
3649 /* return values int ....just for stop_machine() */
3650 static int __build_all_zonelists(void *data)
3651 {
3652 int nid;
3653 int cpu;
3654 pg_data_t *self = data;
3655
3656 #ifdef CONFIG_NUMA
3657 memset(node_load, 0, sizeof(node_load));
3658 #endif
3659
3660 if (self && !node_online(self->node_id)) {
3661 build_zonelists(self);
3662 build_zonelist_cache(self);
3663 }
3664
3665 for_each_online_node(nid) {
3666 pg_data_t *pgdat = NODE_DATA(nid);
3667
3668 build_zonelists(pgdat);
3669 build_zonelist_cache(pgdat);
3670 }
3671
3672 /*
3673 * Initialize the boot_pagesets that are going to be used
3674 * for bootstrapping processors. The real pagesets for
3675 * each zone will be allocated later when the per cpu
3676 * allocator is available.
3677 *
3678 * boot_pagesets are used also for bootstrapping offline
3679 * cpus if the system is already booted because the pagesets
3680 * are needed to initialize allocators on a specific cpu too.
3681 * F.e. the percpu allocator needs the page allocator which
3682 * needs the percpu allocator in order to allocate its pagesets
3683 * (a chicken-egg dilemma).
3684 */
3685 for_each_possible_cpu(cpu) {
3686 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3687
3688 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3689 /*
3690 * We now know the "local memory node" for each node--
3691 * i.e., the node of the first zone in the generic zonelist.
3692 * Set up numa_mem percpu variable for on-line cpus. During
3693 * boot, only the boot cpu should be on-line; we'll init the
3694 * secondary cpus' numa_mem as they come on-line. During
3695 * node/memory hotplug, we'll fixup all on-line cpus.
3696 */
3697 if (cpu_online(cpu))
3698 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3699 #endif
3700 }
3701
3702 return 0;
3703 }
3704
3705 /*
3706 * Called with zonelists_mutex held always
3707 * unless system_state == SYSTEM_BOOTING.
3708 */
3709 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3710 {
3711 set_zonelist_order();
3712
3713 if (system_state == SYSTEM_BOOTING) {
3714 __build_all_zonelists(NULL);
3715 mminit_verify_zonelist();
3716 cpuset_init_current_mems_allowed();
3717 } else {
3718 #ifdef CONFIG_MEMORY_HOTPLUG
3719 if (zone)
3720 setup_zone_pageset(zone);
3721 #endif
3722 /* we have to stop all cpus to guarantee there is no user
3723 of zonelist */
3724 stop_machine(__build_all_zonelists, pgdat, NULL);
3725 /* cpuset refresh routine should be here */
3726 }
3727 vm_total_pages = nr_free_pagecache_pages();
3728 /*
3729 * Disable grouping by mobility if the number of pages in the
3730 * system is too low to allow the mechanism to work. It would be
3731 * more accurate, but expensive to check per-zone. This check is
3732 * made on memory-hotadd so a system can start with mobility
3733 * disabled and enable it later
3734 */
3735 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3736 page_group_by_mobility_disabled = 1;
3737 else
3738 page_group_by_mobility_disabled = 0;
3739
3740 printk("Built %i zonelists in %s order, mobility grouping %s. "
3741 "Total pages: %ld\n",
3742 nr_online_nodes,
3743 zonelist_order_name[current_zonelist_order],
3744 page_group_by_mobility_disabled ? "off" : "on",
3745 vm_total_pages);
3746 #ifdef CONFIG_NUMA
3747 printk("Policy zone: %s\n", zone_names[policy_zone]);
3748 #endif
3749 }
3750
3751 /*
3752 * Helper functions to size the waitqueue hash table.
3753 * Essentially these want to choose hash table sizes sufficiently
3754 * large so that collisions trying to wait on pages are rare.
3755 * But in fact, the number of active page waitqueues on typical
3756 * systems is ridiculously low, less than 200. So this is even
3757 * conservative, even though it seems large.
3758 *
3759 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3760 * waitqueues, i.e. the size of the waitq table given the number of pages.
3761 */
3762 #define PAGES_PER_WAITQUEUE 256
3763
3764 #ifndef CONFIG_MEMORY_HOTPLUG
3765 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3766 {
3767 unsigned long size = 1;
3768
3769 pages /= PAGES_PER_WAITQUEUE;
3770
3771 while (size < pages)
3772 size <<= 1;
3773
3774 /*
3775 * Once we have dozens or even hundreds of threads sleeping
3776 * on IO we've got bigger problems than wait queue collision.
3777 * Limit the size of the wait table to a reasonable size.
3778 */
3779 size = min(size, 4096UL);
3780
3781 return max(size, 4UL);
3782 }
3783 #else
3784 /*
3785 * A zone's size might be changed by hot-add, so it is not possible to determine
3786 * a suitable size for its wait_table. So we use the maximum size now.
3787 *
3788 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3789 *
3790 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3791 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3792 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3793 *
3794 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3795 * or more by the traditional way. (See above). It equals:
3796 *
3797 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3798 * ia64(16K page size) : = ( 8G + 4M)byte.
3799 * powerpc (64K page size) : = (32G +16M)byte.
3800 */
3801 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3802 {
3803 return 4096UL;
3804 }
3805 #endif
3806
3807 /*
3808 * This is an integer logarithm so that shifts can be used later
3809 * to extract the more random high bits from the multiplicative
3810 * hash function before the remainder is taken.
3811 */
3812 static inline unsigned long wait_table_bits(unsigned long size)
3813 {
3814 return ffz(~size);
3815 }
3816
3817 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3818
3819 /*
3820 * Check if a pageblock contains reserved pages
3821 */
3822 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3823 {
3824 unsigned long pfn;
3825
3826 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3827 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3828 return 1;
3829 }
3830 return 0;
3831 }
3832
3833 /*
3834 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3835 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3836 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3837 * higher will lead to a bigger reserve which will get freed as contiguous
3838 * blocks as reclaim kicks in
3839 */
3840 static void setup_zone_migrate_reserve(struct zone *zone)
3841 {
3842 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3843 struct page *page;
3844 unsigned long block_migratetype;
3845 int reserve;
3846
3847 /*
3848 * Get the start pfn, end pfn and the number of blocks to reserve
3849 * We have to be careful to be aligned to pageblock_nr_pages to
3850 * make sure that we always check pfn_valid for the first page in
3851 * the block.
3852 */
3853 start_pfn = zone->zone_start_pfn;
3854 end_pfn = zone_end_pfn(zone);
3855 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3856 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3857 pageblock_order;
3858
3859 /*
3860 * Reserve blocks are generally in place to help high-order atomic
3861 * allocations that are short-lived. A min_free_kbytes value that
3862 * would result in more than 2 reserve blocks for atomic allocations
3863 * is assumed to be in place to help anti-fragmentation for the
3864 * future allocation of hugepages at runtime.
3865 */
3866 reserve = min(2, reserve);
3867
3868 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3869 if (!pfn_valid(pfn))
3870 continue;
3871 page = pfn_to_page(pfn);
3872
3873 /* Watch out for overlapping nodes */
3874 if (page_to_nid(page) != zone_to_nid(zone))
3875 continue;
3876
3877 block_migratetype = get_pageblock_migratetype(page);
3878
3879 /* Only test what is necessary when the reserves are not met */
3880 if (reserve > 0) {
3881 /*
3882 * Blocks with reserved pages will never free, skip
3883 * them.
3884 */
3885 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3886 if (pageblock_is_reserved(pfn, block_end_pfn))
3887 continue;
3888
3889 /* If this block is reserved, account for it */
3890 if (block_migratetype == MIGRATE_RESERVE) {
3891 reserve--;
3892 continue;
3893 }
3894
3895 /* Suitable for reserving if this block is movable */
3896 if (block_migratetype == MIGRATE_MOVABLE) {
3897 set_pageblock_migratetype(page,
3898 MIGRATE_RESERVE);
3899 move_freepages_block(zone, page,
3900 MIGRATE_RESERVE);
3901 reserve--;
3902 continue;
3903 }
3904 }
3905
3906 /*
3907 * If the reserve is met and this is a previous reserved block,
3908 * take it back
3909 */
3910 if (block_migratetype == MIGRATE_RESERVE) {
3911 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3912 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3913 }
3914 }
3915 }
3916
3917 /*
3918 * Initially all pages are reserved - free ones are freed
3919 * up by free_all_bootmem() once the early boot process is
3920 * done. Non-atomic initialization, single-pass.
3921 */
3922 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3923 unsigned long start_pfn, enum memmap_context context)
3924 {
3925 struct page *page;
3926 unsigned long end_pfn = start_pfn + size;
3927 unsigned long pfn;
3928 struct zone *z;
3929
3930 if (highest_memmap_pfn < end_pfn - 1)
3931 highest_memmap_pfn = end_pfn - 1;
3932
3933 z = &NODE_DATA(nid)->node_zones[zone];
3934 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3935 /*
3936 * There can be holes in boot-time mem_map[]s
3937 * handed to this function. They do not
3938 * exist on hotplugged memory.
3939 */
3940 if (context == MEMMAP_EARLY) {
3941 if (!early_pfn_valid(pfn))
3942 continue;
3943 if (!early_pfn_in_nid(pfn, nid))
3944 continue;
3945 }
3946 page = pfn_to_page(pfn);
3947 set_page_links(page, zone, nid, pfn);
3948 mminit_verify_page_links(page, zone, nid, pfn);
3949 init_page_count(page);
3950 page_mapcount_reset(page);
3951 page_nid_reset_last(page);
3952 SetPageReserved(page);
3953 /*
3954 * Mark the block movable so that blocks are reserved for
3955 * movable at startup. This will force kernel allocations
3956 * to reserve their blocks rather than leaking throughout
3957 * the address space during boot when many long-lived
3958 * kernel allocations are made. Later some blocks near
3959 * the start are marked MIGRATE_RESERVE by
3960 * setup_zone_migrate_reserve()
3961 *
3962 * bitmap is created for zone's valid pfn range. but memmap
3963 * can be created for invalid pages (for alignment)
3964 * check here not to call set_pageblock_migratetype() against
3965 * pfn out of zone.
3966 */
3967 if ((z->zone_start_pfn <= pfn)
3968 && (pfn < zone_end_pfn(z))
3969 && !(pfn & (pageblock_nr_pages - 1)))
3970 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3971
3972 INIT_LIST_HEAD(&page->lru);
3973 #ifdef WANT_PAGE_VIRTUAL
3974 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3975 if (!is_highmem_idx(zone))
3976 set_page_address(page, __va(pfn << PAGE_SHIFT));
3977 #endif
3978 }
3979 }
3980
3981 static void __meminit zone_init_free_lists(struct zone *zone)
3982 {
3983 int order, t;
3984 for_each_migratetype_order(order, t) {
3985 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3986 zone->free_area[order].nr_free = 0;
3987 }
3988 }
3989
3990 #ifndef __HAVE_ARCH_MEMMAP_INIT
3991 #define memmap_init(size, nid, zone, start_pfn) \
3992 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3993 #endif
3994
3995 static int __meminit zone_batchsize(struct zone *zone)
3996 {
3997 #ifdef CONFIG_MMU
3998 int batch;
3999
4000 /*
4001 * The per-cpu-pages pools are set to around 1000th of the
4002 * size of the zone. But no more than 1/2 of a meg.
4003 *
4004 * OK, so we don't know how big the cache is. So guess.
4005 */
4006 batch = zone->managed_pages / 1024;
4007 if (batch * PAGE_SIZE > 512 * 1024)
4008 batch = (512 * 1024) / PAGE_SIZE;
4009 batch /= 4; /* We effectively *= 4 below */
4010 if (batch < 1)
4011 batch = 1;
4012
4013 /*
4014 * Clamp the batch to a 2^n - 1 value. Having a power
4015 * of 2 value was found to be more likely to have
4016 * suboptimal cache aliasing properties in some cases.
4017 *
4018 * For example if 2 tasks are alternately allocating
4019 * batches of pages, one task can end up with a lot
4020 * of pages of one half of the possible page colors
4021 * and the other with pages of the other colors.
4022 */
4023 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4024
4025 return batch;
4026
4027 #else
4028 /* The deferral and batching of frees should be suppressed under NOMMU
4029 * conditions.
4030 *
4031 * The problem is that NOMMU needs to be able to allocate large chunks
4032 * of contiguous memory as there's no hardware page translation to
4033 * assemble apparent contiguous memory from discontiguous pages.
4034 *
4035 * Queueing large contiguous runs of pages for batching, however,
4036 * causes the pages to actually be freed in smaller chunks. As there
4037 * can be a significant delay between the individual batches being
4038 * recycled, this leads to the once large chunks of space being
4039 * fragmented and becoming unavailable for high-order allocations.
4040 */
4041 return 0;
4042 #endif
4043 }
4044
4045 /*
4046 * pcp->high and pcp->batch values are related and dependent on one another:
4047 * ->batch must never be higher then ->high.
4048 * The following function updates them in a safe manner without read side
4049 * locking.
4050 *
4051 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4052 * those fields changing asynchronously (acording the the above rule).
4053 *
4054 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4055 * outside of boot time (or some other assurance that no concurrent updaters
4056 * exist).
4057 */
4058 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4059 unsigned long batch)
4060 {
4061 /* start with a fail safe value for batch */
4062 pcp->batch = 1;
4063 smp_wmb();
4064
4065 /* Update high, then batch, in order */
4066 pcp->high = high;
4067 smp_wmb();
4068
4069 pcp->batch = batch;
4070 }
4071
4072 /* a companion to pageset_set_high() */
4073 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4074 {
4075 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4076 }
4077
4078 static void pageset_init(struct per_cpu_pageset *p)
4079 {
4080 struct per_cpu_pages *pcp;
4081 int migratetype;
4082
4083 memset(p, 0, sizeof(*p));
4084
4085 pcp = &p->pcp;
4086 pcp->count = 0;
4087 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4088 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4089 }
4090
4091 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4092 {
4093 pageset_init(p);
4094 pageset_set_batch(p, batch);
4095 }
4096
4097 /*
4098 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4099 * to the value high for the pageset p.
4100 */
4101 static void pageset_set_high(struct per_cpu_pageset *p,
4102 unsigned long high)
4103 {
4104 unsigned long batch = max(1UL, high / 4);
4105 if ((high / 4) > (PAGE_SHIFT * 8))
4106 batch = PAGE_SHIFT * 8;
4107
4108 pageset_update(&p->pcp, high, batch);
4109 }
4110
4111 static void __meminit pageset_set_high_and_batch(struct zone *zone,
4112 struct per_cpu_pageset *pcp)
4113 {
4114 if (percpu_pagelist_fraction)
4115 pageset_set_high(pcp,
4116 (zone->managed_pages /
4117 percpu_pagelist_fraction));
4118 else
4119 pageset_set_batch(pcp, zone_batchsize(zone));
4120 }
4121
4122 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4123 {
4124 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4125
4126 pageset_init(pcp);
4127 pageset_set_high_and_batch(zone, pcp);
4128 }
4129
4130 static void __meminit setup_zone_pageset(struct zone *zone)
4131 {
4132 int cpu;
4133 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4134 for_each_possible_cpu(cpu)
4135 zone_pageset_init(zone, cpu);
4136 }
4137
4138 /*
4139 * Allocate per cpu pagesets and initialize them.
4140 * Before this call only boot pagesets were available.
4141 */
4142 void __init setup_per_cpu_pageset(void)
4143 {
4144 struct zone *zone;
4145
4146 for_each_populated_zone(zone)
4147 setup_zone_pageset(zone);
4148 }
4149
4150 static noinline __init_refok
4151 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4152 {
4153 int i;
4154 struct pglist_data *pgdat = zone->zone_pgdat;
4155 size_t alloc_size;
4156
4157 /*
4158 * The per-page waitqueue mechanism uses hashed waitqueues
4159 * per zone.
4160 */
4161 zone->wait_table_hash_nr_entries =
4162 wait_table_hash_nr_entries(zone_size_pages);
4163 zone->wait_table_bits =
4164 wait_table_bits(zone->wait_table_hash_nr_entries);
4165 alloc_size = zone->wait_table_hash_nr_entries
4166 * sizeof(wait_queue_head_t);
4167
4168 if (!slab_is_available()) {
4169 zone->wait_table = (wait_queue_head_t *)
4170 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4171 } else {
4172 /*
4173 * This case means that a zone whose size was 0 gets new memory
4174 * via memory hot-add.
4175 * But it may be the case that a new node was hot-added. In
4176 * this case vmalloc() will not be able to use this new node's
4177 * memory - this wait_table must be initialized to use this new
4178 * node itself as well.
4179 * To use this new node's memory, further consideration will be
4180 * necessary.
4181 */
4182 zone->wait_table = vmalloc(alloc_size);
4183 }
4184 if (!zone->wait_table)
4185 return -ENOMEM;
4186
4187 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4188 init_waitqueue_head(zone->wait_table + i);
4189
4190 return 0;
4191 }
4192
4193 static __meminit void zone_pcp_init(struct zone *zone)
4194 {
4195 /*
4196 * per cpu subsystem is not up at this point. The following code
4197 * relies on the ability of the linker to provide the
4198 * offset of a (static) per cpu variable into the per cpu area.
4199 */
4200 zone->pageset = &boot_pageset;
4201
4202 if (zone->present_pages)
4203 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4204 zone->name, zone->present_pages,
4205 zone_batchsize(zone));
4206 }
4207
4208 int __meminit init_currently_empty_zone(struct zone *zone,
4209 unsigned long zone_start_pfn,
4210 unsigned long size,
4211 enum memmap_context context)
4212 {
4213 struct pglist_data *pgdat = zone->zone_pgdat;
4214 int ret;
4215 ret = zone_wait_table_init(zone, size);
4216 if (ret)
4217 return ret;
4218 pgdat->nr_zones = zone_idx(zone) + 1;
4219
4220 zone->zone_start_pfn = zone_start_pfn;
4221
4222 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4223 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4224 pgdat->node_id,
4225 (unsigned long)zone_idx(zone),
4226 zone_start_pfn, (zone_start_pfn + size));
4227
4228 zone_init_free_lists(zone);
4229
4230 return 0;
4231 }
4232
4233 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4234 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4235 /*
4236 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4237 * Architectures may implement their own version but if add_active_range()
4238 * was used and there are no special requirements, this is a convenient
4239 * alternative
4240 */
4241 int __meminit __early_pfn_to_nid(unsigned long pfn)
4242 {
4243 unsigned long start_pfn, end_pfn;
4244 int i, nid;
4245 /*
4246 * NOTE: The following SMP-unsafe globals are only used early in boot
4247 * when the kernel is running single-threaded.
4248 */
4249 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4250 static int __meminitdata last_nid;
4251
4252 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4253 return last_nid;
4254
4255 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4256 if (start_pfn <= pfn && pfn < end_pfn) {
4257 last_start_pfn = start_pfn;
4258 last_end_pfn = end_pfn;
4259 last_nid = nid;
4260 return nid;
4261 }
4262 /* This is a memory hole */
4263 return -1;
4264 }
4265 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4266
4267 int __meminit early_pfn_to_nid(unsigned long pfn)
4268 {
4269 int nid;
4270
4271 nid = __early_pfn_to_nid(pfn);
4272 if (nid >= 0)
4273 return nid;
4274 /* just returns 0 */
4275 return 0;
4276 }
4277
4278 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4279 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4280 {
4281 int nid;
4282
4283 nid = __early_pfn_to_nid(pfn);
4284 if (nid >= 0 && nid != node)
4285 return false;
4286 return true;
4287 }
4288 #endif
4289
4290 /**
4291 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4292 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4293 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4294 *
4295 * If an architecture guarantees that all ranges registered with
4296 * add_active_ranges() contain no holes and may be freed, this
4297 * this function may be used instead of calling free_bootmem() manually.
4298 */
4299 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4300 {
4301 unsigned long start_pfn, end_pfn;
4302 int i, this_nid;
4303
4304 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4305 start_pfn = min(start_pfn, max_low_pfn);
4306 end_pfn = min(end_pfn, max_low_pfn);
4307
4308 if (start_pfn < end_pfn)
4309 free_bootmem_node(NODE_DATA(this_nid),
4310 PFN_PHYS(start_pfn),
4311 (end_pfn - start_pfn) << PAGE_SHIFT);
4312 }
4313 }
4314
4315 /**
4316 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4317 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4318 *
4319 * If an architecture guarantees that all ranges registered with
4320 * add_active_ranges() contain no holes and may be freed, this
4321 * function may be used instead of calling memory_present() manually.
4322 */
4323 void __init sparse_memory_present_with_active_regions(int nid)
4324 {
4325 unsigned long start_pfn, end_pfn;
4326 int i, this_nid;
4327
4328 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4329 memory_present(this_nid, start_pfn, end_pfn);
4330 }
4331
4332 /**
4333 * get_pfn_range_for_nid - Return the start and end page frames for a node
4334 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4335 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4336 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4337 *
4338 * It returns the start and end page frame of a node based on information
4339 * provided by an arch calling add_active_range(). If called for a node
4340 * with no available memory, a warning is printed and the start and end
4341 * PFNs will be 0.
4342 */
4343 void __meminit get_pfn_range_for_nid(unsigned int nid,
4344 unsigned long *start_pfn, unsigned long *end_pfn)
4345 {
4346 unsigned long this_start_pfn, this_end_pfn;
4347 int i;
4348
4349 *start_pfn = -1UL;
4350 *end_pfn = 0;
4351
4352 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4353 *start_pfn = min(*start_pfn, this_start_pfn);
4354 *end_pfn = max(*end_pfn, this_end_pfn);
4355 }
4356
4357 if (*start_pfn == -1UL)
4358 *start_pfn = 0;
4359 }
4360
4361 /*
4362 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4363 * assumption is made that zones within a node are ordered in monotonic
4364 * increasing memory addresses so that the "highest" populated zone is used
4365 */
4366 static void __init find_usable_zone_for_movable(void)
4367 {
4368 int zone_index;
4369 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4370 if (zone_index == ZONE_MOVABLE)
4371 continue;
4372
4373 if (arch_zone_highest_possible_pfn[zone_index] >
4374 arch_zone_lowest_possible_pfn[zone_index])
4375 break;
4376 }
4377
4378 VM_BUG_ON(zone_index == -1);
4379 movable_zone = zone_index;
4380 }
4381
4382 /*
4383 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4384 * because it is sized independent of architecture. Unlike the other zones,
4385 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4386 * in each node depending on the size of each node and how evenly kernelcore
4387 * is distributed. This helper function adjusts the zone ranges
4388 * provided by the architecture for a given node by using the end of the
4389 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4390 * zones within a node are in order of monotonic increases memory addresses
4391 */
4392 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4393 unsigned long zone_type,
4394 unsigned long node_start_pfn,
4395 unsigned long node_end_pfn,
4396 unsigned long *zone_start_pfn,
4397 unsigned long *zone_end_pfn)
4398 {
4399 /* Only adjust if ZONE_MOVABLE is on this node */
4400 if (zone_movable_pfn[nid]) {
4401 /* Size ZONE_MOVABLE */
4402 if (zone_type == ZONE_MOVABLE) {
4403 *zone_start_pfn = zone_movable_pfn[nid];
4404 *zone_end_pfn = min(node_end_pfn,
4405 arch_zone_highest_possible_pfn[movable_zone]);
4406
4407 /* Adjust for ZONE_MOVABLE starting within this range */
4408 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4409 *zone_end_pfn > zone_movable_pfn[nid]) {
4410 *zone_end_pfn = zone_movable_pfn[nid];
4411
4412 /* Check if this whole range is within ZONE_MOVABLE */
4413 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4414 *zone_start_pfn = *zone_end_pfn;
4415 }
4416 }
4417
4418 /*
4419 * Return the number of pages a zone spans in a node, including holes
4420 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4421 */
4422 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4423 unsigned long zone_type,
4424 unsigned long *ignored)
4425 {
4426 unsigned long node_start_pfn, node_end_pfn;
4427 unsigned long zone_start_pfn, zone_end_pfn;
4428
4429 /* Get the start and end of the node and zone */
4430 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4431 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4432 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4433 adjust_zone_range_for_zone_movable(nid, zone_type,
4434 node_start_pfn, node_end_pfn,
4435 &zone_start_pfn, &zone_end_pfn);
4436
4437 /* Check that this node has pages within the zone's required range */
4438 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4439 return 0;
4440
4441 /* Move the zone boundaries inside the node if necessary */
4442 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4443 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4444
4445 /* Return the spanned pages */
4446 return zone_end_pfn - zone_start_pfn;
4447 }
4448
4449 /*
4450 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4451 * then all holes in the requested range will be accounted for.
4452 */
4453 unsigned long __meminit __absent_pages_in_range(int nid,
4454 unsigned long range_start_pfn,
4455 unsigned long range_end_pfn)
4456 {
4457 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4458 unsigned long start_pfn, end_pfn;
4459 int i;
4460
4461 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4462 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4463 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4464 nr_absent -= end_pfn - start_pfn;
4465 }
4466 return nr_absent;
4467 }
4468
4469 /**
4470 * absent_pages_in_range - Return number of page frames in holes within a range
4471 * @start_pfn: The start PFN to start searching for holes
4472 * @end_pfn: The end PFN to stop searching for holes
4473 *
4474 * It returns the number of pages frames in memory holes within a range.
4475 */
4476 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4477 unsigned long end_pfn)
4478 {
4479 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4480 }
4481
4482 /* Return the number of page frames in holes in a zone on a node */
4483 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4484 unsigned long zone_type,
4485 unsigned long *ignored)
4486 {
4487 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4488 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4489 unsigned long node_start_pfn, node_end_pfn;
4490 unsigned long zone_start_pfn, zone_end_pfn;
4491
4492 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4493 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4494 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4495
4496 adjust_zone_range_for_zone_movable(nid, zone_type,
4497 node_start_pfn, node_end_pfn,
4498 &zone_start_pfn, &zone_end_pfn);
4499 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4500 }
4501
4502 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4503 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4504 unsigned long zone_type,
4505 unsigned long *zones_size)
4506 {
4507 return zones_size[zone_type];
4508 }
4509
4510 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4511 unsigned long zone_type,
4512 unsigned long *zholes_size)
4513 {
4514 if (!zholes_size)
4515 return 0;
4516
4517 return zholes_size[zone_type];
4518 }
4519
4520 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4521
4522 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4523 unsigned long *zones_size, unsigned long *zholes_size)
4524 {
4525 unsigned long realtotalpages, totalpages = 0;
4526 enum zone_type i;
4527
4528 for (i = 0; i < MAX_NR_ZONES; i++)
4529 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4530 zones_size);
4531 pgdat->node_spanned_pages = totalpages;
4532
4533 realtotalpages = totalpages;
4534 for (i = 0; i < MAX_NR_ZONES; i++)
4535 realtotalpages -=
4536 zone_absent_pages_in_node(pgdat->node_id, i,
4537 zholes_size);
4538 pgdat->node_present_pages = realtotalpages;
4539 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4540 realtotalpages);
4541 }
4542
4543 #ifndef CONFIG_SPARSEMEM
4544 /*
4545 * Calculate the size of the zone->blockflags rounded to an unsigned long
4546 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4547 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4548 * round what is now in bits to nearest long in bits, then return it in
4549 * bytes.
4550 */
4551 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4552 {
4553 unsigned long usemapsize;
4554
4555 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4556 usemapsize = roundup(zonesize, pageblock_nr_pages);
4557 usemapsize = usemapsize >> pageblock_order;
4558 usemapsize *= NR_PAGEBLOCK_BITS;
4559 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4560
4561 return usemapsize / 8;
4562 }
4563
4564 static void __init setup_usemap(struct pglist_data *pgdat,
4565 struct zone *zone,
4566 unsigned long zone_start_pfn,
4567 unsigned long zonesize)
4568 {
4569 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4570 zone->pageblock_flags = NULL;
4571 if (usemapsize)
4572 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4573 usemapsize);
4574 }
4575 #else
4576 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4577 unsigned long zone_start_pfn, unsigned long zonesize) {}
4578 #endif /* CONFIG_SPARSEMEM */
4579
4580 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4581
4582 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4583 void __init set_pageblock_order(void)
4584 {
4585 unsigned int order;
4586
4587 /* Check that pageblock_nr_pages has not already been setup */
4588 if (pageblock_order)
4589 return;
4590
4591 if (HPAGE_SHIFT > PAGE_SHIFT)
4592 order = HUGETLB_PAGE_ORDER;
4593 else
4594 order = MAX_ORDER - 1;
4595
4596 /*
4597 * Assume the largest contiguous order of interest is a huge page.
4598 * This value may be variable depending on boot parameters on IA64 and
4599 * powerpc.
4600 */
4601 pageblock_order = order;
4602 }
4603 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4604
4605 /*
4606 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4607 * is unused as pageblock_order is set at compile-time. See
4608 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4609 * the kernel config
4610 */
4611 void __init set_pageblock_order(void)
4612 {
4613 }
4614
4615 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4616
4617 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4618 unsigned long present_pages)
4619 {
4620 unsigned long pages = spanned_pages;
4621
4622 /*
4623 * Provide a more accurate estimation if there are holes within
4624 * the zone and SPARSEMEM is in use. If there are holes within the
4625 * zone, each populated memory region may cost us one or two extra
4626 * memmap pages due to alignment because memmap pages for each
4627 * populated regions may not naturally algined on page boundary.
4628 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4629 */
4630 if (spanned_pages > present_pages + (present_pages >> 4) &&
4631 IS_ENABLED(CONFIG_SPARSEMEM))
4632 pages = present_pages;
4633
4634 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4635 }
4636
4637 /*
4638 * Set up the zone data structures:
4639 * - mark all pages reserved
4640 * - mark all memory queues empty
4641 * - clear the memory bitmaps
4642 *
4643 * NOTE: pgdat should get zeroed by caller.
4644 */
4645 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4646 unsigned long *zones_size, unsigned long *zholes_size)
4647 {
4648 enum zone_type j;
4649 int nid = pgdat->node_id;
4650 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4651 int ret;
4652
4653 pgdat_resize_init(pgdat);
4654 #ifdef CONFIG_NUMA_BALANCING
4655 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4656 pgdat->numabalancing_migrate_nr_pages = 0;
4657 pgdat->numabalancing_migrate_next_window = jiffies;
4658 #endif
4659 init_waitqueue_head(&pgdat->kswapd_wait);
4660 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4661 pgdat_page_cgroup_init(pgdat);
4662
4663 for (j = 0; j < MAX_NR_ZONES; j++) {
4664 struct zone *zone = pgdat->node_zones + j;
4665 unsigned long size, realsize, freesize, memmap_pages;
4666
4667 size = zone_spanned_pages_in_node(nid, j, zones_size);
4668 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4669 zholes_size);
4670
4671 /*
4672 * Adjust freesize so that it accounts for how much memory
4673 * is used by this zone for memmap. This affects the watermark
4674 * and per-cpu initialisations
4675 */
4676 memmap_pages = calc_memmap_size(size, realsize);
4677 if (freesize >= memmap_pages) {
4678 freesize -= memmap_pages;
4679 if (memmap_pages)
4680 printk(KERN_DEBUG
4681 " %s zone: %lu pages used for memmap\n",
4682 zone_names[j], memmap_pages);
4683 } else
4684 printk(KERN_WARNING
4685 " %s zone: %lu pages exceeds freesize %lu\n",
4686 zone_names[j], memmap_pages, freesize);
4687
4688 /* Account for reserved pages */
4689 if (j == 0 && freesize > dma_reserve) {
4690 freesize -= dma_reserve;
4691 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4692 zone_names[0], dma_reserve);
4693 }
4694
4695 if (!is_highmem_idx(j))
4696 nr_kernel_pages += freesize;
4697 /* Charge for highmem memmap if there are enough kernel pages */
4698 else if (nr_kernel_pages > memmap_pages * 2)
4699 nr_kernel_pages -= memmap_pages;
4700 nr_all_pages += freesize;
4701
4702 zone->spanned_pages = size;
4703 zone->present_pages = realsize;
4704 /*
4705 * Set an approximate value for lowmem here, it will be adjusted
4706 * when the bootmem allocator frees pages into the buddy system.
4707 * And all highmem pages will be managed by the buddy system.
4708 */
4709 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4710 #ifdef CONFIG_NUMA
4711 zone->node = nid;
4712 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4713 / 100;
4714 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4715 #endif
4716 zone->name = zone_names[j];
4717 spin_lock_init(&zone->lock);
4718 spin_lock_init(&zone->lru_lock);
4719 zone_seqlock_init(zone);
4720 zone->zone_pgdat = pgdat;
4721
4722 zone_pcp_init(zone);
4723 lruvec_init(&zone->lruvec);
4724 if (!size)
4725 continue;
4726
4727 set_pageblock_order();
4728 setup_usemap(pgdat, zone, zone_start_pfn, size);
4729 ret = init_currently_empty_zone(zone, zone_start_pfn,
4730 size, MEMMAP_EARLY);
4731 BUG_ON(ret);
4732 memmap_init(size, nid, j, zone_start_pfn);
4733 zone_start_pfn += size;
4734 }
4735 }
4736
4737 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4738 {
4739 /* Skip empty nodes */
4740 if (!pgdat->node_spanned_pages)
4741 return;
4742
4743 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4744 /* ia64 gets its own node_mem_map, before this, without bootmem */
4745 if (!pgdat->node_mem_map) {
4746 unsigned long size, start, end;
4747 struct page *map;
4748
4749 /*
4750 * The zone's endpoints aren't required to be MAX_ORDER
4751 * aligned but the node_mem_map endpoints must be in order
4752 * for the buddy allocator to function correctly.
4753 */
4754 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4755 end = pgdat_end_pfn(pgdat);
4756 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4757 size = (end - start) * sizeof(struct page);
4758 map = alloc_remap(pgdat->node_id, size);
4759 if (!map)
4760 map = alloc_bootmem_node_nopanic(pgdat, size);
4761 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4762 }
4763 #ifndef CONFIG_NEED_MULTIPLE_NODES
4764 /*
4765 * With no DISCONTIG, the global mem_map is just set as node 0's
4766 */
4767 if (pgdat == NODE_DATA(0)) {
4768 mem_map = NODE_DATA(0)->node_mem_map;
4769 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4770 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4771 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4772 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4773 }
4774 #endif
4775 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4776 }
4777
4778 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4779 unsigned long node_start_pfn, unsigned long *zholes_size)
4780 {
4781 pg_data_t *pgdat = NODE_DATA(nid);
4782
4783 /* pg_data_t should be reset to zero when it's allocated */
4784 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4785
4786 pgdat->node_id = nid;
4787 pgdat->node_start_pfn = node_start_pfn;
4788 init_zone_allows_reclaim(nid);
4789 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4790
4791 alloc_node_mem_map(pgdat);
4792 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4793 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4794 nid, (unsigned long)pgdat,
4795 (unsigned long)pgdat->node_mem_map);
4796 #endif
4797
4798 free_area_init_core(pgdat, zones_size, zholes_size);
4799 }
4800
4801 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4802
4803 #if MAX_NUMNODES > 1
4804 /*
4805 * Figure out the number of possible node ids.
4806 */
4807 void __init setup_nr_node_ids(void)
4808 {
4809 unsigned int node;
4810 unsigned int highest = 0;
4811
4812 for_each_node_mask(node, node_possible_map)
4813 highest = node;
4814 nr_node_ids = highest + 1;
4815 }
4816 #endif
4817
4818 /**
4819 * node_map_pfn_alignment - determine the maximum internode alignment
4820 *
4821 * This function should be called after node map is populated and sorted.
4822 * It calculates the maximum power of two alignment which can distinguish
4823 * all the nodes.
4824 *
4825 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4826 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4827 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4828 * shifted, 1GiB is enough and this function will indicate so.
4829 *
4830 * This is used to test whether pfn -> nid mapping of the chosen memory
4831 * model has fine enough granularity to avoid incorrect mapping for the
4832 * populated node map.
4833 *
4834 * Returns the determined alignment in pfn's. 0 if there is no alignment
4835 * requirement (single node).
4836 */
4837 unsigned long __init node_map_pfn_alignment(void)
4838 {
4839 unsigned long accl_mask = 0, last_end = 0;
4840 unsigned long start, end, mask;
4841 int last_nid = -1;
4842 int i, nid;
4843
4844 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4845 if (!start || last_nid < 0 || last_nid == nid) {
4846 last_nid = nid;
4847 last_end = end;
4848 continue;
4849 }
4850
4851 /*
4852 * Start with a mask granular enough to pin-point to the
4853 * start pfn and tick off bits one-by-one until it becomes
4854 * too coarse to separate the current node from the last.
4855 */
4856 mask = ~((1 << __ffs(start)) - 1);
4857 while (mask && last_end <= (start & (mask << 1)))
4858 mask <<= 1;
4859
4860 /* accumulate all internode masks */
4861 accl_mask |= mask;
4862 }
4863
4864 /* convert mask to number of pages */
4865 return ~accl_mask + 1;
4866 }
4867
4868 /* Find the lowest pfn for a node */
4869 static unsigned long __init find_min_pfn_for_node(int nid)
4870 {
4871 unsigned long min_pfn = ULONG_MAX;
4872 unsigned long start_pfn;
4873 int i;
4874
4875 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4876 min_pfn = min(min_pfn, start_pfn);
4877
4878 if (min_pfn == ULONG_MAX) {
4879 printk(KERN_WARNING
4880 "Could not find start_pfn for node %d\n", nid);
4881 return 0;
4882 }
4883
4884 return min_pfn;
4885 }
4886
4887 /**
4888 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4889 *
4890 * It returns the minimum PFN based on information provided via
4891 * add_active_range().
4892 */
4893 unsigned long __init find_min_pfn_with_active_regions(void)
4894 {
4895 return find_min_pfn_for_node(MAX_NUMNODES);
4896 }
4897
4898 /*
4899 * early_calculate_totalpages()
4900 * Sum pages in active regions for movable zone.
4901 * Populate N_MEMORY for calculating usable_nodes.
4902 */
4903 static unsigned long __init early_calculate_totalpages(void)
4904 {
4905 unsigned long totalpages = 0;
4906 unsigned long start_pfn, end_pfn;
4907 int i, nid;
4908
4909 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4910 unsigned long pages = end_pfn - start_pfn;
4911
4912 totalpages += pages;
4913 if (pages)
4914 node_set_state(nid, N_MEMORY);
4915 }
4916 return totalpages;
4917 }
4918
4919 /*
4920 * Find the PFN the Movable zone begins in each node. Kernel memory
4921 * is spread evenly between nodes as long as the nodes have enough
4922 * memory. When they don't, some nodes will have more kernelcore than
4923 * others
4924 */
4925 static void __init find_zone_movable_pfns_for_nodes(void)
4926 {
4927 int i, nid;
4928 unsigned long usable_startpfn;
4929 unsigned long kernelcore_node, kernelcore_remaining;
4930 /* save the state before borrow the nodemask */
4931 nodemask_t saved_node_state = node_states[N_MEMORY];
4932 unsigned long totalpages = early_calculate_totalpages();
4933 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4934
4935 /*
4936 * If movablecore was specified, calculate what size of
4937 * kernelcore that corresponds so that memory usable for
4938 * any allocation type is evenly spread. If both kernelcore
4939 * and movablecore are specified, then the value of kernelcore
4940 * will be used for required_kernelcore if it's greater than
4941 * what movablecore would have allowed.
4942 */
4943 if (required_movablecore) {
4944 unsigned long corepages;
4945
4946 /*
4947 * Round-up so that ZONE_MOVABLE is at least as large as what
4948 * was requested by the user
4949 */
4950 required_movablecore =
4951 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4952 corepages = totalpages - required_movablecore;
4953
4954 required_kernelcore = max(required_kernelcore, corepages);
4955 }
4956
4957 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4958 if (!required_kernelcore)
4959 goto out;
4960
4961 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4962 find_usable_zone_for_movable();
4963 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4964
4965 restart:
4966 /* Spread kernelcore memory as evenly as possible throughout nodes */
4967 kernelcore_node = required_kernelcore / usable_nodes;
4968 for_each_node_state(nid, N_MEMORY) {
4969 unsigned long start_pfn, end_pfn;
4970
4971 /*
4972 * Recalculate kernelcore_node if the division per node
4973 * now exceeds what is necessary to satisfy the requested
4974 * amount of memory for the kernel
4975 */
4976 if (required_kernelcore < kernelcore_node)
4977 kernelcore_node = required_kernelcore / usable_nodes;
4978
4979 /*
4980 * As the map is walked, we track how much memory is usable
4981 * by the kernel using kernelcore_remaining. When it is
4982 * 0, the rest of the node is usable by ZONE_MOVABLE
4983 */
4984 kernelcore_remaining = kernelcore_node;
4985
4986 /* Go through each range of PFNs within this node */
4987 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4988 unsigned long size_pages;
4989
4990 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4991 if (start_pfn >= end_pfn)
4992 continue;
4993
4994 /* Account for what is only usable for kernelcore */
4995 if (start_pfn < usable_startpfn) {
4996 unsigned long kernel_pages;
4997 kernel_pages = min(end_pfn, usable_startpfn)
4998 - start_pfn;
4999
5000 kernelcore_remaining -= min(kernel_pages,
5001 kernelcore_remaining);
5002 required_kernelcore -= min(kernel_pages,
5003 required_kernelcore);
5004
5005 /* Continue if range is now fully accounted */
5006 if (end_pfn <= usable_startpfn) {
5007
5008 /*
5009 * Push zone_movable_pfn to the end so
5010 * that if we have to rebalance
5011 * kernelcore across nodes, we will
5012 * not double account here
5013 */
5014 zone_movable_pfn[nid] = end_pfn;
5015 continue;
5016 }
5017 start_pfn = usable_startpfn;
5018 }
5019
5020 /*
5021 * The usable PFN range for ZONE_MOVABLE is from
5022 * start_pfn->end_pfn. Calculate size_pages as the
5023 * number of pages used as kernelcore
5024 */
5025 size_pages = end_pfn - start_pfn;
5026 if (size_pages > kernelcore_remaining)
5027 size_pages = kernelcore_remaining;
5028 zone_movable_pfn[nid] = start_pfn + size_pages;
5029
5030 /*
5031 * Some kernelcore has been met, update counts and
5032 * break if the kernelcore for this node has been
5033 * satisified
5034 */
5035 required_kernelcore -= min(required_kernelcore,
5036 size_pages);
5037 kernelcore_remaining -= size_pages;
5038 if (!kernelcore_remaining)
5039 break;
5040 }
5041 }
5042
5043 /*
5044 * If there is still required_kernelcore, we do another pass with one
5045 * less node in the count. This will push zone_movable_pfn[nid] further
5046 * along on the nodes that still have memory until kernelcore is
5047 * satisified
5048 */
5049 usable_nodes--;
5050 if (usable_nodes && required_kernelcore > usable_nodes)
5051 goto restart;
5052
5053 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5054 for (nid = 0; nid < MAX_NUMNODES; nid++)
5055 zone_movable_pfn[nid] =
5056 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5057
5058 out:
5059 /* restore the node_state */
5060 node_states[N_MEMORY] = saved_node_state;
5061 }
5062
5063 /* Any regular or high memory on that node ? */
5064 static void check_for_memory(pg_data_t *pgdat, int nid)
5065 {
5066 enum zone_type zone_type;
5067
5068 if (N_MEMORY == N_NORMAL_MEMORY)
5069 return;
5070
5071 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5072 struct zone *zone = &pgdat->node_zones[zone_type];
5073 if (zone->present_pages) {
5074 node_set_state(nid, N_HIGH_MEMORY);
5075 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5076 zone_type <= ZONE_NORMAL)
5077 node_set_state(nid, N_NORMAL_MEMORY);
5078 break;
5079 }
5080 }
5081 }
5082
5083 /**
5084 * free_area_init_nodes - Initialise all pg_data_t and zone data
5085 * @max_zone_pfn: an array of max PFNs for each zone
5086 *
5087 * This will call free_area_init_node() for each active node in the system.
5088 * Using the page ranges provided by add_active_range(), the size of each
5089 * zone in each node and their holes is calculated. If the maximum PFN
5090 * between two adjacent zones match, it is assumed that the zone is empty.
5091 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5092 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5093 * starts where the previous one ended. For example, ZONE_DMA32 starts
5094 * at arch_max_dma_pfn.
5095 */
5096 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5097 {
5098 unsigned long start_pfn, end_pfn;
5099 int i, nid;
5100
5101 /* Record where the zone boundaries are */
5102 memset(arch_zone_lowest_possible_pfn, 0,
5103 sizeof(arch_zone_lowest_possible_pfn));
5104 memset(arch_zone_highest_possible_pfn, 0,
5105 sizeof(arch_zone_highest_possible_pfn));
5106 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5107 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5108 for (i = 1; i < MAX_NR_ZONES; i++) {
5109 if (i == ZONE_MOVABLE)
5110 continue;
5111 arch_zone_lowest_possible_pfn[i] =
5112 arch_zone_highest_possible_pfn[i-1];
5113 arch_zone_highest_possible_pfn[i] =
5114 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5115 }
5116 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5117 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5118
5119 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5120 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5121 find_zone_movable_pfns_for_nodes();
5122
5123 /* Print out the zone ranges */
5124 printk("Zone ranges:\n");
5125 for (i = 0; i < MAX_NR_ZONES; i++) {
5126 if (i == ZONE_MOVABLE)
5127 continue;
5128 printk(KERN_CONT " %-8s ", zone_names[i]);
5129 if (arch_zone_lowest_possible_pfn[i] ==
5130 arch_zone_highest_possible_pfn[i])
5131 printk(KERN_CONT "empty\n");
5132 else
5133 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5134 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5135 (arch_zone_highest_possible_pfn[i]
5136 << PAGE_SHIFT) - 1);
5137 }
5138
5139 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5140 printk("Movable zone start for each node\n");
5141 for (i = 0; i < MAX_NUMNODES; i++) {
5142 if (zone_movable_pfn[i])
5143 printk(" Node %d: %#010lx\n", i,
5144 zone_movable_pfn[i] << PAGE_SHIFT);
5145 }
5146
5147 /* Print out the early node map */
5148 printk("Early memory node ranges\n");
5149 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5150 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5151 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5152
5153 /* Initialise every node */
5154 mminit_verify_pageflags_layout();
5155 setup_nr_node_ids();
5156 for_each_online_node(nid) {
5157 pg_data_t *pgdat = NODE_DATA(nid);
5158 free_area_init_node(nid, NULL,
5159 find_min_pfn_for_node(nid), NULL);
5160
5161 /* Any memory on that node */
5162 if (pgdat->node_present_pages)
5163 node_set_state(nid, N_MEMORY);
5164 check_for_memory(pgdat, nid);
5165 }
5166 }
5167
5168 static int __init cmdline_parse_core(char *p, unsigned long *core)
5169 {
5170 unsigned long long coremem;
5171 if (!p)
5172 return -EINVAL;
5173
5174 coremem = memparse(p, &p);
5175 *core = coremem >> PAGE_SHIFT;
5176
5177 /* Paranoid check that UL is enough for the coremem value */
5178 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5179
5180 return 0;
5181 }
5182
5183 /*
5184 * kernelcore=size sets the amount of memory for use for allocations that
5185 * cannot be reclaimed or migrated.
5186 */
5187 static int __init cmdline_parse_kernelcore(char *p)
5188 {
5189 return cmdline_parse_core(p, &required_kernelcore);
5190 }
5191
5192 /*
5193 * movablecore=size sets the amount of memory for use for allocations that
5194 * can be reclaimed or migrated.
5195 */
5196 static int __init cmdline_parse_movablecore(char *p)
5197 {
5198 return cmdline_parse_core(p, &required_movablecore);
5199 }
5200
5201 early_param("kernelcore", cmdline_parse_kernelcore);
5202 early_param("movablecore", cmdline_parse_movablecore);
5203
5204 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5205
5206 void adjust_managed_page_count(struct page *page, long count)
5207 {
5208 spin_lock(&managed_page_count_lock);
5209 page_zone(page)->managed_pages += count;
5210 totalram_pages += count;
5211 #ifdef CONFIG_HIGHMEM
5212 if (PageHighMem(page))
5213 totalhigh_pages += count;
5214 #endif
5215 spin_unlock(&managed_page_count_lock);
5216 }
5217 EXPORT_SYMBOL(adjust_managed_page_count);
5218
5219 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5220 {
5221 void *pos;
5222 unsigned long pages = 0;
5223
5224 start = (void *)PAGE_ALIGN((unsigned long)start);
5225 end = (void *)((unsigned long)end & PAGE_MASK);
5226 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5227 if ((unsigned int)poison <= 0xFF)
5228 memset(pos, poison, PAGE_SIZE);
5229 free_reserved_page(virt_to_page(pos));
5230 }
5231
5232 if (pages && s)
5233 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5234 s, pages << (PAGE_SHIFT - 10), start, end);
5235
5236 return pages;
5237 }
5238 EXPORT_SYMBOL(free_reserved_area);
5239
5240 #ifdef CONFIG_HIGHMEM
5241 void free_highmem_page(struct page *page)
5242 {
5243 __free_reserved_page(page);
5244 totalram_pages++;
5245 page_zone(page)->managed_pages++;
5246 totalhigh_pages++;
5247 }
5248 #endif
5249
5250
5251 void __init mem_init_print_info(const char *str)
5252 {
5253 unsigned long physpages, codesize, datasize, rosize, bss_size;
5254 unsigned long init_code_size, init_data_size;
5255
5256 physpages = get_num_physpages();
5257 codesize = _etext - _stext;
5258 datasize = _edata - _sdata;
5259 rosize = __end_rodata - __start_rodata;
5260 bss_size = __bss_stop - __bss_start;
5261 init_data_size = __init_end - __init_begin;
5262 init_code_size = _einittext - _sinittext;
5263
5264 /*
5265 * Detect special cases and adjust section sizes accordingly:
5266 * 1) .init.* may be embedded into .data sections
5267 * 2) .init.text.* may be out of [__init_begin, __init_end],
5268 * please refer to arch/tile/kernel/vmlinux.lds.S.
5269 * 3) .rodata.* may be embedded into .text or .data sections.
5270 */
5271 #define adj_init_size(start, end, size, pos, adj) \
5272 if (start <= pos && pos < end && size > adj) \
5273 size -= adj;
5274
5275 adj_init_size(__init_begin, __init_end, init_data_size,
5276 _sinittext, init_code_size);
5277 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5278 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5279 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5280 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5281
5282 #undef adj_init_size
5283
5284 printk("Memory: %luK/%luK available "
5285 "(%luK kernel code, %luK rwdata, %luK rodata, "
5286 "%luK init, %luK bss, %luK reserved"
5287 #ifdef CONFIG_HIGHMEM
5288 ", %luK highmem"
5289 #endif
5290 "%s%s)\n",
5291 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5292 codesize >> 10, datasize >> 10, rosize >> 10,
5293 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5294 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5295 #ifdef CONFIG_HIGHMEM
5296 totalhigh_pages << (PAGE_SHIFT-10),
5297 #endif
5298 str ? ", " : "", str ? str : "");
5299 }
5300
5301 /**
5302 * set_dma_reserve - set the specified number of pages reserved in the first zone
5303 * @new_dma_reserve: The number of pages to mark reserved
5304 *
5305 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5306 * In the DMA zone, a significant percentage may be consumed by kernel image
5307 * and other unfreeable allocations which can skew the watermarks badly. This
5308 * function may optionally be used to account for unfreeable pages in the
5309 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5310 * smaller per-cpu batchsize.
5311 */
5312 void __init set_dma_reserve(unsigned long new_dma_reserve)
5313 {
5314 dma_reserve = new_dma_reserve;
5315 }
5316
5317 void __init free_area_init(unsigned long *zones_size)
5318 {
5319 free_area_init_node(0, zones_size,
5320 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5321 }
5322
5323 static int page_alloc_cpu_notify(struct notifier_block *self,
5324 unsigned long action, void *hcpu)
5325 {
5326 int cpu = (unsigned long)hcpu;
5327
5328 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5329 lru_add_drain_cpu(cpu);
5330 drain_pages(cpu);
5331
5332 /*
5333 * Spill the event counters of the dead processor
5334 * into the current processors event counters.
5335 * This artificially elevates the count of the current
5336 * processor.
5337 */
5338 vm_events_fold_cpu(cpu);
5339
5340 /*
5341 * Zero the differential counters of the dead processor
5342 * so that the vm statistics are consistent.
5343 *
5344 * This is only okay since the processor is dead and cannot
5345 * race with what we are doing.
5346 */
5347 refresh_cpu_vm_stats(cpu);
5348 }
5349 return NOTIFY_OK;
5350 }
5351
5352 void __init page_alloc_init(void)
5353 {
5354 hotcpu_notifier(page_alloc_cpu_notify, 0);
5355 }
5356
5357 /*
5358 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5359 * or min_free_kbytes changes.
5360 */
5361 static void calculate_totalreserve_pages(void)
5362 {
5363 struct pglist_data *pgdat;
5364 unsigned long reserve_pages = 0;
5365 enum zone_type i, j;
5366
5367 for_each_online_pgdat(pgdat) {
5368 for (i = 0; i < MAX_NR_ZONES; i++) {
5369 struct zone *zone = pgdat->node_zones + i;
5370 unsigned long max = 0;
5371
5372 /* Find valid and maximum lowmem_reserve in the zone */
5373 for (j = i; j < MAX_NR_ZONES; j++) {
5374 if (zone->lowmem_reserve[j] > max)
5375 max = zone->lowmem_reserve[j];
5376 }
5377
5378 /* we treat the high watermark as reserved pages. */
5379 max += high_wmark_pages(zone);
5380
5381 if (max > zone->managed_pages)
5382 max = zone->managed_pages;
5383 reserve_pages += max;
5384 /*
5385 * Lowmem reserves are not available to
5386 * GFP_HIGHUSER page cache allocations and
5387 * kswapd tries to balance zones to their high
5388 * watermark. As a result, neither should be
5389 * regarded as dirtyable memory, to prevent a
5390 * situation where reclaim has to clean pages
5391 * in order to balance the zones.
5392 */
5393 zone->dirty_balance_reserve = max;
5394 }
5395 }
5396 dirty_balance_reserve = reserve_pages;
5397 totalreserve_pages = reserve_pages;
5398 }
5399
5400 /*
5401 * setup_per_zone_lowmem_reserve - called whenever
5402 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5403 * has a correct pages reserved value, so an adequate number of
5404 * pages are left in the zone after a successful __alloc_pages().
5405 */
5406 static void setup_per_zone_lowmem_reserve(void)
5407 {
5408 struct pglist_data *pgdat;
5409 enum zone_type j, idx;
5410
5411 for_each_online_pgdat(pgdat) {
5412 for (j = 0; j < MAX_NR_ZONES; j++) {
5413 struct zone *zone = pgdat->node_zones + j;
5414 unsigned long managed_pages = zone->managed_pages;
5415
5416 zone->lowmem_reserve[j] = 0;
5417
5418 idx = j;
5419 while (idx) {
5420 struct zone *lower_zone;
5421
5422 idx--;
5423
5424 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5425 sysctl_lowmem_reserve_ratio[idx] = 1;
5426
5427 lower_zone = pgdat->node_zones + idx;
5428 lower_zone->lowmem_reserve[j] = managed_pages /
5429 sysctl_lowmem_reserve_ratio[idx];
5430 managed_pages += lower_zone->managed_pages;
5431 }
5432 }
5433 }
5434
5435 /* update totalreserve_pages */
5436 calculate_totalreserve_pages();
5437 }
5438
5439 static void __setup_per_zone_wmarks(void)
5440 {
5441 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5442 unsigned long lowmem_pages = 0;
5443 struct zone *zone;
5444 unsigned long flags;
5445
5446 /* Calculate total number of !ZONE_HIGHMEM pages */
5447 for_each_zone(zone) {
5448 if (!is_highmem(zone))
5449 lowmem_pages += zone->managed_pages;
5450 }
5451
5452 for_each_zone(zone) {
5453 u64 tmp;
5454
5455 spin_lock_irqsave(&zone->lock, flags);
5456 tmp = (u64)pages_min * zone->managed_pages;
5457 do_div(tmp, lowmem_pages);
5458 if (is_highmem(zone)) {
5459 /*
5460 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5461 * need highmem pages, so cap pages_min to a small
5462 * value here.
5463 *
5464 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5465 * deltas controls asynch page reclaim, and so should
5466 * not be capped for highmem.
5467 */
5468 unsigned long min_pages;
5469
5470 min_pages = zone->managed_pages / 1024;
5471 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5472 zone->watermark[WMARK_MIN] = min_pages;
5473 } else {
5474 /*
5475 * If it's a lowmem zone, reserve a number of pages
5476 * proportionate to the zone's size.
5477 */
5478 zone->watermark[WMARK_MIN] = tmp;
5479 }
5480
5481 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5482 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5483
5484 setup_zone_migrate_reserve(zone);
5485 spin_unlock_irqrestore(&zone->lock, flags);
5486 }
5487
5488 /* update totalreserve_pages */
5489 calculate_totalreserve_pages();
5490 }
5491
5492 /**
5493 * setup_per_zone_wmarks - called when min_free_kbytes changes
5494 * or when memory is hot-{added|removed}
5495 *
5496 * Ensures that the watermark[min,low,high] values for each zone are set
5497 * correctly with respect to min_free_kbytes.
5498 */
5499 void setup_per_zone_wmarks(void)
5500 {
5501 mutex_lock(&zonelists_mutex);
5502 __setup_per_zone_wmarks();
5503 mutex_unlock(&zonelists_mutex);
5504 }
5505
5506 /*
5507 * The inactive anon list should be small enough that the VM never has to
5508 * do too much work, but large enough that each inactive page has a chance
5509 * to be referenced again before it is swapped out.
5510 *
5511 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5512 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5513 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5514 * the anonymous pages are kept on the inactive list.
5515 *
5516 * total target max
5517 * memory ratio inactive anon
5518 * -------------------------------------
5519 * 10MB 1 5MB
5520 * 100MB 1 50MB
5521 * 1GB 3 250MB
5522 * 10GB 10 0.9GB
5523 * 100GB 31 3GB
5524 * 1TB 101 10GB
5525 * 10TB 320 32GB
5526 */
5527 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5528 {
5529 unsigned int gb, ratio;
5530
5531 /* Zone size in gigabytes */
5532 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5533 if (gb)
5534 ratio = int_sqrt(10 * gb);
5535 else
5536 ratio = 1;
5537
5538 zone->inactive_ratio = ratio;
5539 }
5540
5541 static void __meminit setup_per_zone_inactive_ratio(void)
5542 {
5543 struct zone *zone;
5544
5545 for_each_zone(zone)
5546 calculate_zone_inactive_ratio(zone);
5547 }
5548
5549 /*
5550 * Initialise min_free_kbytes.
5551 *
5552 * For small machines we want it small (128k min). For large machines
5553 * we want it large (64MB max). But it is not linear, because network
5554 * bandwidth does not increase linearly with machine size. We use
5555 *
5556 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5557 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5558 *
5559 * which yields
5560 *
5561 * 16MB: 512k
5562 * 32MB: 724k
5563 * 64MB: 1024k
5564 * 128MB: 1448k
5565 * 256MB: 2048k
5566 * 512MB: 2896k
5567 * 1024MB: 4096k
5568 * 2048MB: 5792k
5569 * 4096MB: 8192k
5570 * 8192MB: 11584k
5571 * 16384MB: 16384k
5572 */
5573 int __meminit init_per_zone_wmark_min(void)
5574 {
5575 unsigned long lowmem_kbytes;
5576
5577 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5578
5579 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5580 if (min_free_kbytes < 128)
5581 min_free_kbytes = 128;
5582 if (min_free_kbytes > 65536)
5583 min_free_kbytes = 65536;
5584 setup_per_zone_wmarks();
5585 refresh_zone_stat_thresholds();
5586 setup_per_zone_lowmem_reserve();
5587 setup_per_zone_inactive_ratio();
5588 return 0;
5589 }
5590 module_init(init_per_zone_wmark_min)
5591
5592 /*
5593 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5594 * that we can call two helper functions whenever min_free_kbytes
5595 * changes.
5596 */
5597 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5598 void __user *buffer, size_t *length, loff_t *ppos)
5599 {
5600 proc_dointvec(table, write, buffer, length, ppos);
5601 if (write)
5602 setup_per_zone_wmarks();
5603 return 0;
5604 }
5605
5606 #ifdef CONFIG_NUMA
5607 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5608 void __user *buffer, size_t *length, loff_t *ppos)
5609 {
5610 struct zone *zone;
5611 int rc;
5612
5613 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5614 if (rc)
5615 return rc;
5616
5617 for_each_zone(zone)
5618 zone->min_unmapped_pages = (zone->managed_pages *
5619 sysctl_min_unmapped_ratio) / 100;
5620 return 0;
5621 }
5622
5623 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5624 void __user *buffer, size_t *length, loff_t *ppos)
5625 {
5626 struct zone *zone;
5627 int rc;
5628
5629 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5630 if (rc)
5631 return rc;
5632
5633 for_each_zone(zone)
5634 zone->min_slab_pages = (zone->managed_pages *
5635 sysctl_min_slab_ratio) / 100;
5636 return 0;
5637 }
5638 #endif
5639
5640 /*
5641 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5642 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5643 * whenever sysctl_lowmem_reserve_ratio changes.
5644 *
5645 * The reserve ratio obviously has absolutely no relation with the
5646 * minimum watermarks. The lowmem reserve ratio can only make sense
5647 * if in function of the boot time zone sizes.
5648 */
5649 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5650 void __user *buffer, size_t *length, loff_t *ppos)
5651 {
5652 proc_dointvec_minmax(table, write, buffer, length, ppos);
5653 setup_per_zone_lowmem_reserve();
5654 return 0;
5655 }
5656
5657 /*
5658 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5659 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5660 * can have before it gets flushed back to buddy allocator.
5661 */
5662 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5663 void __user *buffer, size_t *length, loff_t *ppos)
5664 {
5665 struct zone *zone;
5666 unsigned int cpu;
5667 int ret;
5668
5669 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5670 if (!write || (ret < 0))
5671 return ret;
5672
5673 mutex_lock(&pcp_batch_high_lock);
5674 for_each_populated_zone(zone) {
5675 unsigned long high;
5676 high = zone->managed_pages / percpu_pagelist_fraction;
5677 for_each_possible_cpu(cpu)
5678 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5679 high);
5680 }
5681 mutex_unlock(&pcp_batch_high_lock);
5682 return 0;
5683 }
5684
5685 int hashdist = HASHDIST_DEFAULT;
5686
5687 #ifdef CONFIG_NUMA
5688 static int __init set_hashdist(char *str)
5689 {
5690 if (!str)
5691 return 0;
5692 hashdist = simple_strtoul(str, &str, 0);
5693 return 1;
5694 }
5695 __setup("hashdist=", set_hashdist);
5696 #endif
5697
5698 /*
5699 * allocate a large system hash table from bootmem
5700 * - it is assumed that the hash table must contain an exact power-of-2
5701 * quantity of entries
5702 * - limit is the number of hash buckets, not the total allocation size
5703 */
5704 void *__init alloc_large_system_hash(const char *tablename,
5705 unsigned long bucketsize,
5706 unsigned long numentries,
5707 int scale,
5708 int flags,
5709 unsigned int *_hash_shift,
5710 unsigned int *_hash_mask,
5711 unsigned long low_limit,
5712 unsigned long high_limit)
5713 {
5714 unsigned long long max = high_limit;
5715 unsigned long log2qty, size;
5716 void *table = NULL;
5717
5718 /* allow the kernel cmdline to have a say */
5719 if (!numentries) {
5720 /* round applicable memory size up to nearest megabyte */
5721 numentries = nr_kernel_pages;
5722 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5723 numentries >>= 20 - PAGE_SHIFT;
5724 numentries <<= 20 - PAGE_SHIFT;
5725
5726 /* limit to 1 bucket per 2^scale bytes of low memory */
5727 if (scale > PAGE_SHIFT)
5728 numentries >>= (scale - PAGE_SHIFT);
5729 else
5730 numentries <<= (PAGE_SHIFT - scale);
5731
5732 /* Make sure we've got at least a 0-order allocation.. */
5733 if (unlikely(flags & HASH_SMALL)) {
5734 /* Makes no sense without HASH_EARLY */
5735 WARN_ON(!(flags & HASH_EARLY));
5736 if (!(numentries >> *_hash_shift)) {
5737 numentries = 1UL << *_hash_shift;
5738 BUG_ON(!numentries);
5739 }
5740 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5741 numentries = PAGE_SIZE / bucketsize;
5742 }
5743 numentries = roundup_pow_of_two(numentries);
5744
5745 /* limit allocation size to 1/16 total memory by default */
5746 if (max == 0) {
5747 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5748 do_div(max, bucketsize);
5749 }
5750 max = min(max, 0x80000000ULL);
5751
5752 if (numentries < low_limit)
5753 numentries = low_limit;
5754 if (numentries > max)
5755 numentries = max;
5756
5757 log2qty = ilog2(numentries);
5758
5759 do {
5760 size = bucketsize << log2qty;
5761 if (flags & HASH_EARLY)
5762 table = alloc_bootmem_nopanic(size);
5763 else if (hashdist)
5764 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5765 else {
5766 /*
5767 * If bucketsize is not a power-of-two, we may free
5768 * some pages at the end of hash table which
5769 * alloc_pages_exact() automatically does
5770 */
5771 if (get_order(size) < MAX_ORDER) {
5772 table = alloc_pages_exact(size, GFP_ATOMIC);
5773 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5774 }
5775 }
5776 } while (!table && size > PAGE_SIZE && --log2qty);
5777
5778 if (!table)
5779 panic("Failed to allocate %s hash table\n", tablename);
5780
5781 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5782 tablename,
5783 (1UL << log2qty),
5784 ilog2(size) - PAGE_SHIFT,
5785 size);
5786
5787 if (_hash_shift)
5788 *_hash_shift = log2qty;
5789 if (_hash_mask)
5790 *_hash_mask = (1 << log2qty) - 1;
5791
5792 return table;
5793 }
5794
5795 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5796 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5797 unsigned long pfn)
5798 {
5799 #ifdef CONFIG_SPARSEMEM
5800 return __pfn_to_section(pfn)->pageblock_flags;
5801 #else
5802 return zone->pageblock_flags;
5803 #endif /* CONFIG_SPARSEMEM */
5804 }
5805
5806 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5807 {
5808 #ifdef CONFIG_SPARSEMEM
5809 pfn &= (PAGES_PER_SECTION-1);
5810 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5811 #else
5812 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5813 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5814 #endif /* CONFIG_SPARSEMEM */
5815 }
5816
5817 /**
5818 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5819 * @page: The page within the block of interest
5820 * @start_bitidx: The first bit of interest to retrieve
5821 * @end_bitidx: The last bit of interest
5822 * returns pageblock_bits flags
5823 */
5824 unsigned long get_pageblock_flags_group(struct page *page,
5825 int start_bitidx, int end_bitidx)
5826 {
5827 struct zone *zone;
5828 unsigned long *bitmap;
5829 unsigned long pfn, bitidx;
5830 unsigned long flags = 0;
5831 unsigned long value = 1;
5832
5833 zone = page_zone(page);
5834 pfn = page_to_pfn(page);
5835 bitmap = get_pageblock_bitmap(zone, pfn);
5836 bitidx = pfn_to_bitidx(zone, pfn);
5837
5838 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5839 if (test_bit(bitidx + start_bitidx, bitmap))
5840 flags |= value;
5841
5842 return flags;
5843 }
5844
5845 /**
5846 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5847 * @page: The page within the block of interest
5848 * @start_bitidx: The first bit of interest
5849 * @end_bitidx: The last bit of interest
5850 * @flags: The flags to set
5851 */
5852 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5853 int start_bitidx, int end_bitidx)
5854 {
5855 struct zone *zone;
5856 unsigned long *bitmap;
5857 unsigned long pfn, bitidx;
5858 unsigned long value = 1;
5859
5860 zone = page_zone(page);
5861 pfn = page_to_pfn(page);
5862 bitmap = get_pageblock_bitmap(zone, pfn);
5863 bitidx = pfn_to_bitidx(zone, pfn);
5864 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
5865
5866 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5867 if (flags & value)
5868 __set_bit(bitidx + start_bitidx, bitmap);
5869 else
5870 __clear_bit(bitidx + start_bitidx, bitmap);
5871 }
5872
5873 /*
5874 * This function checks whether pageblock includes unmovable pages or not.
5875 * If @count is not zero, it is okay to include less @count unmovable pages
5876 *
5877 * PageLRU check wihtout isolation or lru_lock could race so that
5878 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5879 * expect this function should be exact.
5880 */
5881 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5882 bool skip_hwpoisoned_pages)
5883 {
5884 unsigned long pfn, iter, found;
5885 int mt;
5886
5887 /*
5888 * For avoiding noise data, lru_add_drain_all() should be called
5889 * If ZONE_MOVABLE, the zone never contains unmovable pages
5890 */
5891 if (zone_idx(zone) == ZONE_MOVABLE)
5892 return false;
5893 mt = get_pageblock_migratetype(page);
5894 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5895 return false;
5896
5897 pfn = page_to_pfn(page);
5898 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5899 unsigned long check = pfn + iter;
5900
5901 if (!pfn_valid_within(check))
5902 continue;
5903
5904 page = pfn_to_page(check);
5905 /*
5906 * We can't use page_count without pin a page
5907 * because another CPU can free compound page.
5908 * This check already skips compound tails of THP
5909 * because their page->_count is zero at all time.
5910 */
5911 if (!atomic_read(&page->_count)) {
5912 if (PageBuddy(page))
5913 iter += (1 << page_order(page)) - 1;
5914 continue;
5915 }
5916
5917 /*
5918 * The HWPoisoned page may be not in buddy system, and
5919 * page_count() is not 0.
5920 */
5921 if (skip_hwpoisoned_pages && PageHWPoison(page))
5922 continue;
5923
5924 if (!PageLRU(page))
5925 found++;
5926 /*
5927 * If there are RECLAIMABLE pages, we need to check it.
5928 * But now, memory offline itself doesn't call shrink_slab()
5929 * and it still to be fixed.
5930 */
5931 /*
5932 * If the page is not RAM, page_count()should be 0.
5933 * we don't need more check. This is an _used_ not-movable page.
5934 *
5935 * The problematic thing here is PG_reserved pages. PG_reserved
5936 * is set to both of a memory hole page and a _used_ kernel
5937 * page at boot.
5938 */
5939 if (found > count)
5940 return true;
5941 }
5942 return false;
5943 }
5944
5945 bool is_pageblock_removable_nolock(struct page *page)
5946 {
5947 struct zone *zone;
5948 unsigned long pfn;
5949
5950 /*
5951 * We have to be careful here because we are iterating over memory
5952 * sections which are not zone aware so we might end up outside of
5953 * the zone but still within the section.
5954 * We have to take care about the node as well. If the node is offline
5955 * its NODE_DATA will be NULL - see page_zone.
5956 */
5957 if (!node_online(page_to_nid(page)))
5958 return false;
5959
5960 zone = page_zone(page);
5961 pfn = page_to_pfn(page);
5962 if (!zone_spans_pfn(zone, pfn))
5963 return false;
5964
5965 return !has_unmovable_pages(zone, page, 0, true);
5966 }
5967
5968 #ifdef CONFIG_CMA
5969
5970 static unsigned long pfn_max_align_down(unsigned long pfn)
5971 {
5972 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5973 pageblock_nr_pages) - 1);
5974 }
5975
5976 static unsigned long pfn_max_align_up(unsigned long pfn)
5977 {
5978 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5979 pageblock_nr_pages));
5980 }
5981
5982 /* [start, end) must belong to a single zone. */
5983 static int __alloc_contig_migrate_range(struct compact_control *cc,
5984 unsigned long start, unsigned long end)
5985 {
5986 /* This function is based on compact_zone() from compaction.c. */
5987 unsigned long nr_reclaimed;
5988 unsigned long pfn = start;
5989 unsigned int tries = 0;
5990 int ret = 0;
5991
5992 migrate_prep();
5993
5994 while (pfn < end || !list_empty(&cc->migratepages)) {
5995 if (fatal_signal_pending(current)) {
5996 ret = -EINTR;
5997 break;
5998 }
5999
6000 if (list_empty(&cc->migratepages)) {
6001 cc->nr_migratepages = 0;
6002 pfn = isolate_migratepages_range(cc->zone, cc,
6003 pfn, end, true);
6004 if (!pfn) {
6005 ret = -EINTR;
6006 break;
6007 }
6008 tries = 0;
6009 } else if (++tries == 5) {
6010 ret = ret < 0 ? ret : -EBUSY;
6011 break;
6012 }
6013
6014 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6015 &cc->migratepages);
6016 cc->nr_migratepages -= nr_reclaimed;
6017
6018 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6019 0, MIGRATE_SYNC, MR_CMA);
6020 }
6021 if (ret < 0) {
6022 putback_movable_pages(&cc->migratepages);
6023 return ret;
6024 }
6025 return 0;
6026 }
6027
6028 /**
6029 * alloc_contig_range() -- tries to allocate given range of pages
6030 * @start: start PFN to allocate
6031 * @end: one-past-the-last PFN to allocate
6032 * @migratetype: migratetype of the underlaying pageblocks (either
6033 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6034 * in range must have the same migratetype and it must
6035 * be either of the two.
6036 *
6037 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6038 * aligned, however it's the caller's responsibility to guarantee that
6039 * we are the only thread that changes migrate type of pageblocks the
6040 * pages fall in.
6041 *
6042 * The PFN range must belong to a single zone.
6043 *
6044 * Returns zero on success or negative error code. On success all
6045 * pages which PFN is in [start, end) are allocated for the caller and
6046 * need to be freed with free_contig_range().
6047 */
6048 int alloc_contig_range(unsigned long start, unsigned long end,
6049 unsigned migratetype)
6050 {
6051 unsigned long outer_start, outer_end;
6052 int ret = 0, order;
6053
6054 struct compact_control cc = {
6055 .nr_migratepages = 0,
6056 .order = -1,
6057 .zone = page_zone(pfn_to_page(start)),
6058 .sync = true,
6059 .ignore_skip_hint = true,
6060 };
6061 INIT_LIST_HEAD(&cc.migratepages);
6062
6063 /*
6064 * What we do here is we mark all pageblocks in range as
6065 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6066 * have different sizes, and due to the way page allocator
6067 * work, we align the range to biggest of the two pages so
6068 * that page allocator won't try to merge buddies from
6069 * different pageblocks and change MIGRATE_ISOLATE to some
6070 * other migration type.
6071 *
6072 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6073 * migrate the pages from an unaligned range (ie. pages that
6074 * we are interested in). This will put all the pages in
6075 * range back to page allocator as MIGRATE_ISOLATE.
6076 *
6077 * When this is done, we take the pages in range from page
6078 * allocator removing them from the buddy system. This way
6079 * page allocator will never consider using them.
6080 *
6081 * This lets us mark the pageblocks back as
6082 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6083 * aligned range but not in the unaligned, original range are
6084 * put back to page allocator so that buddy can use them.
6085 */
6086
6087 ret = start_isolate_page_range(pfn_max_align_down(start),
6088 pfn_max_align_up(end), migratetype,
6089 false);
6090 if (ret)
6091 return ret;
6092
6093 ret = __alloc_contig_migrate_range(&cc, start, end);
6094 if (ret)
6095 goto done;
6096
6097 /*
6098 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6099 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6100 * more, all pages in [start, end) are free in page allocator.
6101 * What we are going to do is to allocate all pages from
6102 * [start, end) (that is remove them from page allocator).
6103 *
6104 * The only problem is that pages at the beginning and at the
6105 * end of interesting range may be not aligned with pages that
6106 * page allocator holds, ie. they can be part of higher order
6107 * pages. Because of this, we reserve the bigger range and
6108 * once this is done free the pages we are not interested in.
6109 *
6110 * We don't have to hold zone->lock here because the pages are
6111 * isolated thus they won't get removed from buddy.
6112 */
6113
6114 lru_add_drain_all();
6115 drain_all_pages();
6116
6117 order = 0;
6118 outer_start = start;
6119 while (!PageBuddy(pfn_to_page(outer_start))) {
6120 if (++order >= MAX_ORDER) {
6121 ret = -EBUSY;
6122 goto done;
6123 }
6124 outer_start &= ~0UL << order;
6125 }
6126
6127 /* Make sure the range is really isolated. */
6128 if (test_pages_isolated(outer_start, end, false)) {
6129 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6130 outer_start, end);
6131 ret = -EBUSY;
6132 goto done;
6133 }
6134
6135
6136 /* Grab isolated pages from freelists. */
6137 outer_end = isolate_freepages_range(&cc, outer_start, end);
6138 if (!outer_end) {
6139 ret = -EBUSY;
6140 goto done;
6141 }
6142
6143 /* Free head and tail (if any) */
6144 if (start != outer_start)
6145 free_contig_range(outer_start, start - outer_start);
6146 if (end != outer_end)
6147 free_contig_range(end, outer_end - end);
6148
6149 done:
6150 undo_isolate_page_range(pfn_max_align_down(start),
6151 pfn_max_align_up(end), migratetype);
6152 return ret;
6153 }
6154
6155 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6156 {
6157 unsigned int count = 0;
6158
6159 for (; nr_pages--; pfn++) {
6160 struct page *page = pfn_to_page(pfn);
6161
6162 count += page_count(page) != 1;
6163 __free_page(page);
6164 }
6165 WARN(count != 0, "%d pages are still in use!\n", count);
6166 }
6167 #endif
6168
6169 #ifdef CONFIG_MEMORY_HOTPLUG
6170 /*
6171 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6172 * page high values need to be recalulated.
6173 */
6174 void __meminit zone_pcp_update(struct zone *zone)
6175 {
6176 unsigned cpu;
6177 mutex_lock(&pcp_batch_high_lock);
6178 for_each_possible_cpu(cpu)
6179 pageset_set_high_and_batch(zone,
6180 per_cpu_ptr(zone->pageset, cpu));
6181 mutex_unlock(&pcp_batch_high_lock);
6182 }
6183 #endif
6184
6185 void zone_pcp_reset(struct zone *zone)
6186 {
6187 unsigned long flags;
6188 int cpu;
6189 struct per_cpu_pageset *pset;
6190
6191 /* avoid races with drain_pages() */
6192 local_irq_save(flags);
6193 if (zone->pageset != &boot_pageset) {
6194 for_each_online_cpu(cpu) {
6195 pset = per_cpu_ptr(zone->pageset, cpu);
6196 drain_zonestat(zone, pset);
6197 }
6198 free_percpu(zone->pageset);
6199 zone->pageset = &boot_pageset;
6200 }
6201 local_irq_restore(flags);
6202 }
6203
6204 #ifdef CONFIG_MEMORY_HOTREMOVE
6205 /*
6206 * All pages in the range must be isolated before calling this.
6207 */
6208 void
6209 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6210 {
6211 struct page *page;
6212 struct zone *zone;
6213 int order, i;
6214 unsigned long pfn;
6215 unsigned long flags;
6216 /* find the first valid pfn */
6217 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6218 if (pfn_valid(pfn))
6219 break;
6220 if (pfn == end_pfn)
6221 return;
6222 zone = page_zone(pfn_to_page(pfn));
6223 spin_lock_irqsave(&zone->lock, flags);
6224 pfn = start_pfn;
6225 while (pfn < end_pfn) {
6226 if (!pfn_valid(pfn)) {
6227 pfn++;
6228 continue;
6229 }
6230 page = pfn_to_page(pfn);
6231 /*
6232 * The HWPoisoned page may be not in buddy system, and
6233 * page_count() is not 0.
6234 */
6235 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6236 pfn++;
6237 SetPageReserved(page);
6238 continue;
6239 }
6240
6241 BUG_ON(page_count(page));
6242 BUG_ON(!PageBuddy(page));
6243 order = page_order(page);
6244 #ifdef CONFIG_DEBUG_VM
6245 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6246 pfn, 1 << order, end_pfn);
6247 #endif
6248 list_del(&page->lru);
6249 rmv_page_order(page);
6250 zone->free_area[order].nr_free--;
6251 #ifdef CONFIG_HIGHMEM
6252 if (PageHighMem(page))
6253 totalhigh_pages -= 1 << order;
6254 #endif
6255 for (i = 0; i < (1 << order); i++)
6256 SetPageReserved((page+i));
6257 pfn += (1 << order);
6258 }
6259 spin_unlock_irqrestore(&zone->lock, flags);
6260 }
6261 #endif
6262
6263 #ifdef CONFIG_MEMORY_FAILURE
6264 bool is_free_buddy_page(struct page *page)
6265 {
6266 struct zone *zone = page_zone(page);
6267 unsigned long pfn = page_to_pfn(page);
6268 unsigned long flags;
6269 int order;
6270
6271 spin_lock_irqsave(&zone->lock, flags);
6272 for (order = 0; order < MAX_ORDER; order++) {
6273 struct page *page_head = page - (pfn & ((1 << order) - 1));
6274
6275 if (PageBuddy(page_head) && page_order(page_head) >= order)
6276 break;
6277 }
6278 spin_unlock_irqrestore(&zone->lock, flags);
6279
6280 return order < MAX_ORDER;
6281 }
6282 #endif
6283
6284 static const struct trace_print_flags pageflag_names[] = {
6285 {1UL << PG_locked, "locked" },
6286 {1UL << PG_error, "error" },
6287 {1UL << PG_referenced, "referenced" },
6288 {1UL << PG_uptodate, "uptodate" },
6289 {1UL << PG_dirty, "dirty" },
6290 {1UL << PG_lru, "lru" },
6291 {1UL << PG_active, "active" },
6292 {1UL << PG_slab, "slab" },
6293 {1UL << PG_owner_priv_1, "owner_priv_1" },
6294 {1UL << PG_arch_1, "arch_1" },
6295 {1UL << PG_reserved, "reserved" },
6296 {1UL << PG_private, "private" },
6297 {1UL << PG_private_2, "private_2" },
6298 {1UL << PG_writeback, "writeback" },
6299 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6300 {1UL << PG_head, "head" },
6301 {1UL << PG_tail, "tail" },
6302 #else
6303 {1UL << PG_compound, "compound" },
6304 #endif
6305 {1UL << PG_swapcache, "swapcache" },
6306 {1UL << PG_mappedtodisk, "mappedtodisk" },
6307 {1UL << PG_reclaim, "reclaim" },
6308 {1UL << PG_swapbacked, "swapbacked" },
6309 {1UL << PG_unevictable, "unevictable" },
6310 #ifdef CONFIG_MMU
6311 {1UL << PG_mlocked, "mlocked" },
6312 #endif
6313 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6314 {1UL << PG_uncached, "uncached" },
6315 #endif
6316 #ifdef CONFIG_MEMORY_FAILURE
6317 {1UL << PG_hwpoison, "hwpoison" },
6318 #endif
6319 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6320 {1UL << PG_compound_lock, "compound_lock" },
6321 #endif
6322 };
6323
6324 static void dump_page_flags(unsigned long flags)
6325 {
6326 const char *delim = "";
6327 unsigned long mask;
6328 int i;
6329
6330 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6331
6332 printk(KERN_ALERT "page flags: %#lx(", flags);
6333
6334 /* remove zone id */
6335 flags &= (1UL << NR_PAGEFLAGS) - 1;
6336
6337 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6338
6339 mask = pageflag_names[i].mask;
6340 if ((flags & mask) != mask)
6341 continue;
6342
6343 flags &= ~mask;
6344 printk("%s%s", delim, pageflag_names[i].name);
6345 delim = "|";
6346 }
6347
6348 /* check for left over flags */
6349 if (flags)
6350 printk("%s%#lx", delim, flags);
6351
6352 printk(")\n");
6353 }
6354
6355 void dump_page(struct page *page)
6356 {
6357 printk(KERN_ALERT
6358 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6359 page, atomic_read(&page->_count), page_mapcount(page),
6360 page->mapping, page->index);
6361 dump_page_flags(page->flags);
6362 mem_cgroup_print_bad_page(page);
6363 }