]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/page_alloc.c
slab allocators: remove multiple alignment specifications
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 #include <linux/fault-inject.h>
44
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
47 #include "internal.h"
48
49 /*
50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
51 * initializer cleaner
52 */
53 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
54 EXPORT_SYMBOL(node_online_map);
55 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
56 EXPORT_SYMBOL(node_possible_map);
57 unsigned long totalram_pages __read_mostly;
58 unsigned long totalreserve_pages __read_mostly;
59 long nr_swap_pages;
60 int percpu_pagelist_fraction;
61
62 static void __free_pages_ok(struct page *page, unsigned int order);
63
64 /*
65 * results with 256, 32 in the lowmem_reserve sysctl:
66 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67 * 1G machine -> (16M dma, 784M normal, 224M high)
68 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
71 *
72 * TBD: should special case ZONE_DMA32 machines here - in those we normally
73 * don't need any ZONE_NORMAL reservation
74 */
75 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
76 #ifdef CONFIG_ZONE_DMA
77 256,
78 #endif
79 #ifdef CONFIG_ZONE_DMA32
80 256,
81 #endif
82 #ifdef CONFIG_HIGHMEM
83 32
84 #endif
85 };
86
87 EXPORT_SYMBOL(totalram_pages);
88
89 static char * const zone_names[MAX_NR_ZONES] = {
90 #ifdef CONFIG_ZONE_DMA
91 "DMA",
92 #endif
93 #ifdef CONFIG_ZONE_DMA32
94 "DMA32",
95 #endif
96 "Normal",
97 #ifdef CONFIG_HIGHMEM
98 "HighMem"
99 #endif
100 };
101
102 int min_free_kbytes = 1024;
103
104 unsigned long __meminitdata nr_kernel_pages;
105 unsigned long __meminitdata nr_all_pages;
106 static unsigned long __initdata dma_reserve;
107
108 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
109 /*
110 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
111 * ranges of memory (RAM) that may be registered with add_active_range().
112 * Ranges passed to add_active_range() will be merged if possible
113 * so the number of times add_active_range() can be called is
114 * related to the number of nodes and the number of holes
115 */
116 #ifdef CONFIG_MAX_ACTIVE_REGIONS
117 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
118 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
119 #else
120 #if MAX_NUMNODES >= 32
121 /* If there can be many nodes, allow up to 50 holes per node */
122 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
123 #else
124 /* By default, allow up to 256 distinct regions */
125 #define MAX_ACTIVE_REGIONS 256
126 #endif
127 #endif
128
129 struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS];
130 int __initdata nr_nodemap_entries;
131 unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
132 unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
133 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
134 unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES];
135 unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES];
136 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
137 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
138
139 #ifdef CONFIG_DEBUG_VM
140 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
141 {
142 int ret = 0;
143 unsigned seq;
144 unsigned long pfn = page_to_pfn(page);
145
146 do {
147 seq = zone_span_seqbegin(zone);
148 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
149 ret = 1;
150 else if (pfn < zone->zone_start_pfn)
151 ret = 1;
152 } while (zone_span_seqretry(zone, seq));
153
154 return ret;
155 }
156
157 static int page_is_consistent(struct zone *zone, struct page *page)
158 {
159 if (!pfn_valid_within(page_to_pfn(page)))
160 return 0;
161 if (zone != page_zone(page))
162 return 0;
163
164 return 1;
165 }
166 /*
167 * Temporary debugging check for pages not lying within a given zone.
168 */
169 static int bad_range(struct zone *zone, struct page *page)
170 {
171 if (page_outside_zone_boundaries(zone, page))
172 return 1;
173 if (!page_is_consistent(zone, page))
174 return 1;
175
176 return 0;
177 }
178 #else
179 static inline int bad_range(struct zone *zone, struct page *page)
180 {
181 return 0;
182 }
183 #endif
184
185 static void bad_page(struct page *page)
186 {
187 printk(KERN_EMERG "Bad page state in process '%s'\n"
188 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
189 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
190 KERN_EMERG "Backtrace:\n",
191 current->comm, page, (int)(2*sizeof(unsigned long)),
192 (unsigned long)page->flags, page->mapping,
193 page_mapcount(page), page_count(page));
194 dump_stack();
195 page->flags &= ~(1 << PG_lru |
196 1 << PG_private |
197 1 << PG_locked |
198 1 << PG_active |
199 1 << PG_dirty |
200 1 << PG_reclaim |
201 1 << PG_slab |
202 1 << PG_swapcache |
203 1 << PG_writeback |
204 1 << PG_buddy );
205 set_page_count(page, 0);
206 reset_page_mapcount(page);
207 page->mapping = NULL;
208 add_taint(TAINT_BAD_PAGE);
209 }
210
211 /*
212 * Higher-order pages are called "compound pages". They are structured thusly:
213 *
214 * The first PAGE_SIZE page is called the "head page".
215 *
216 * The remaining PAGE_SIZE pages are called "tail pages".
217 *
218 * All pages have PG_compound set. All pages have their ->private pointing at
219 * the head page (even the head page has this).
220 *
221 * The first tail page's ->lru.next holds the address of the compound page's
222 * put_page() function. Its ->lru.prev holds the order of allocation.
223 * This usage means that zero-order pages may not be compound.
224 */
225
226 static void free_compound_page(struct page *page)
227 {
228 __free_pages_ok(page, compound_order(page));
229 }
230
231 static void prep_compound_page(struct page *page, unsigned long order)
232 {
233 int i;
234 int nr_pages = 1 << order;
235
236 set_compound_page_dtor(page, free_compound_page);
237 set_compound_order(page, order);
238 __SetPageHead(page);
239 for (i = 1; i < nr_pages; i++) {
240 struct page *p = page + i;
241
242 __SetPageTail(p);
243 p->first_page = page;
244 }
245 }
246
247 static void destroy_compound_page(struct page *page, unsigned long order)
248 {
249 int i;
250 int nr_pages = 1 << order;
251
252 if (unlikely(compound_order(page) != order))
253 bad_page(page);
254
255 if (unlikely(!PageHead(page)))
256 bad_page(page);
257 __ClearPageHead(page);
258 for (i = 1; i < nr_pages; i++) {
259 struct page *p = page + i;
260
261 if (unlikely(!PageTail(p) |
262 (p->first_page != page)))
263 bad_page(page);
264 __ClearPageTail(p);
265 }
266 }
267
268 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
269 {
270 int i;
271
272 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
273 /*
274 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
275 * and __GFP_HIGHMEM from hard or soft interrupt context.
276 */
277 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
278 for (i = 0; i < (1 << order); i++)
279 clear_highpage(page + i);
280 }
281
282 /*
283 * function for dealing with page's order in buddy system.
284 * zone->lock is already acquired when we use these.
285 * So, we don't need atomic page->flags operations here.
286 */
287 static inline unsigned long page_order(struct page *page)
288 {
289 return page_private(page);
290 }
291
292 static inline void set_page_order(struct page *page, int order)
293 {
294 set_page_private(page, order);
295 __SetPageBuddy(page);
296 }
297
298 static inline void rmv_page_order(struct page *page)
299 {
300 __ClearPageBuddy(page);
301 set_page_private(page, 0);
302 }
303
304 /*
305 * Locate the struct page for both the matching buddy in our
306 * pair (buddy1) and the combined O(n+1) page they form (page).
307 *
308 * 1) Any buddy B1 will have an order O twin B2 which satisfies
309 * the following equation:
310 * B2 = B1 ^ (1 << O)
311 * For example, if the starting buddy (buddy2) is #8 its order
312 * 1 buddy is #10:
313 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
314 *
315 * 2) Any buddy B will have an order O+1 parent P which
316 * satisfies the following equation:
317 * P = B & ~(1 << O)
318 *
319 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
320 */
321 static inline struct page *
322 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
323 {
324 unsigned long buddy_idx = page_idx ^ (1 << order);
325
326 return page + (buddy_idx - page_idx);
327 }
328
329 static inline unsigned long
330 __find_combined_index(unsigned long page_idx, unsigned int order)
331 {
332 return (page_idx & ~(1 << order));
333 }
334
335 /*
336 * This function checks whether a page is free && is the buddy
337 * we can do coalesce a page and its buddy if
338 * (a) the buddy is not in a hole &&
339 * (b) the buddy is in the buddy system &&
340 * (c) a page and its buddy have the same order &&
341 * (d) a page and its buddy are in the same zone.
342 *
343 * For recording whether a page is in the buddy system, we use PG_buddy.
344 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
345 *
346 * For recording page's order, we use page_private(page).
347 */
348 static inline int page_is_buddy(struct page *page, struct page *buddy,
349 int order)
350 {
351 if (!pfn_valid_within(page_to_pfn(buddy)))
352 return 0;
353
354 if (page_zone_id(page) != page_zone_id(buddy))
355 return 0;
356
357 if (PageBuddy(buddy) && page_order(buddy) == order) {
358 BUG_ON(page_count(buddy) != 0);
359 return 1;
360 }
361 return 0;
362 }
363
364 /*
365 * Freeing function for a buddy system allocator.
366 *
367 * The concept of a buddy system is to maintain direct-mapped table
368 * (containing bit values) for memory blocks of various "orders".
369 * The bottom level table contains the map for the smallest allocatable
370 * units of memory (here, pages), and each level above it describes
371 * pairs of units from the levels below, hence, "buddies".
372 * At a high level, all that happens here is marking the table entry
373 * at the bottom level available, and propagating the changes upward
374 * as necessary, plus some accounting needed to play nicely with other
375 * parts of the VM system.
376 * At each level, we keep a list of pages, which are heads of continuous
377 * free pages of length of (1 << order) and marked with PG_buddy. Page's
378 * order is recorded in page_private(page) field.
379 * So when we are allocating or freeing one, we can derive the state of the
380 * other. That is, if we allocate a small block, and both were
381 * free, the remainder of the region must be split into blocks.
382 * If a block is freed, and its buddy is also free, then this
383 * triggers coalescing into a block of larger size.
384 *
385 * -- wli
386 */
387
388 static inline void __free_one_page(struct page *page,
389 struct zone *zone, unsigned int order)
390 {
391 unsigned long page_idx;
392 int order_size = 1 << order;
393
394 if (unlikely(PageCompound(page)))
395 destroy_compound_page(page, order);
396
397 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
398
399 VM_BUG_ON(page_idx & (order_size - 1));
400 VM_BUG_ON(bad_range(zone, page));
401
402 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
403 while (order < MAX_ORDER-1) {
404 unsigned long combined_idx;
405 struct free_area *area;
406 struct page *buddy;
407
408 buddy = __page_find_buddy(page, page_idx, order);
409 if (!page_is_buddy(page, buddy, order))
410 break; /* Move the buddy up one level. */
411
412 list_del(&buddy->lru);
413 area = zone->free_area + order;
414 area->nr_free--;
415 rmv_page_order(buddy);
416 combined_idx = __find_combined_index(page_idx, order);
417 page = page + (combined_idx - page_idx);
418 page_idx = combined_idx;
419 order++;
420 }
421 set_page_order(page, order);
422 list_add(&page->lru, &zone->free_area[order].free_list);
423 zone->free_area[order].nr_free++;
424 }
425
426 static inline int free_pages_check(struct page *page)
427 {
428 if (unlikely(page_mapcount(page) |
429 (page->mapping != NULL) |
430 (page_count(page) != 0) |
431 (page->flags & (
432 1 << PG_lru |
433 1 << PG_private |
434 1 << PG_locked |
435 1 << PG_active |
436 1 << PG_slab |
437 1 << PG_swapcache |
438 1 << PG_writeback |
439 1 << PG_reserved |
440 1 << PG_buddy ))))
441 bad_page(page);
442 /*
443 * PageReclaim == PageTail. It is only an error
444 * for PageReclaim to be set if PageCompound is clear.
445 */
446 if (unlikely(!PageCompound(page) && PageReclaim(page)))
447 bad_page(page);
448 if (PageDirty(page))
449 __ClearPageDirty(page);
450 /*
451 * For now, we report if PG_reserved was found set, but do not
452 * clear it, and do not free the page. But we shall soon need
453 * to do more, for when the ZERO_PAGE count wraps negative.
454 */
455 return PageReserved(page);
456 }
457
458 /*
459 * Frees a list of pages.
460 * Assumes all pages on list are in same zone, and of same order.
461 * count is the number of pages to free.
462 *
463 * If the zone was previously in an "all pages pinned" state then look to
464 * see if this freeing clears that state.
465 *
466 * And clear the zone's pages_scanned counter, to hold off the "all pages are
467 * pinned" detection logic.
468 */
469 static void free_pages_bulk(struct zone *zone, int count,
470 struct list_head *list, int order)
471 {
472 spin_lock(&zone->lock);
473 zone->all_unreclaimable = 0;
474 zone->pages_scanned = 0;
475 while (count--) {
476 struct page *page;
477
478 VM_BUG_ON(list_empty(list));
479 page = list_entry(list->prev, struct page, lru);
480 /* have to delete it as __free_one_page list manipulates */
481 list_del(&page->lru);
482 __free_one_page(page, zone, order);
483 }
484 spin_unlock(&zone->lock);
485 }
486
487 static void free_one_page(struct zone *zone, struct page *page, int order)
488 {
489 spin_lock(&zone->lock);
490 zone->all_unreclaimable = 0;
491 zone->pages_scanned = 0;
492 __free_one_page(page, zone, order);
493 spin_unlock(&zone->lock);
494 }
495
496 static void __free_pages_ok(struct page *page, unsigned int order)
497 {
498 unsigned long flags;
499 int i;
500 int reserved = 0;
501
502 for (i = 0 ; i < (1 << order) ; ++i)
503 reserved += free_pages_check(page + i);
504 if (reserved)
505 return;
506
507 if (!PageHighMem(page))
508 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
509 arch_free_page(page, order);
510 kernel_map_pages(page, 1 << order, 0);
511
512 local_irq_save(flags);
513 __count_vm_events(PGFREE, 1 << order);
514 free_one_page(page_zone(page), page, order);
515 local_irq_restore(flags);
516 }
517
518 /*
519 * permit the bootmem allocator to evade page validation on high-order frees
520 */
521 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
522 {
523 if (order == 0) {
524 __ClearPageReserved(page);
525 set_page_count(page, 0);
526 set_page_refcounted(page);
527 __free_page(page);
528 } else {
529 int loop;
530
531 prefetchw(page);
532 for (loop = 0; loop < BITS_PER_LONG; loop++) {
533 struct page *p = &page[loop];
534
535 if (loop + 1 < BITS_PER_LONG)
536 prefetchw(p + 1);
537 __ClearPageReserved(p);
538 set_page_count(p, 0);
539 }
540
541 set_page_refcounted(page);
542 __free_pages(page, order);
543 }
544 }
545
546
547 /*
548 * The order of subdivision here is critical for the IO subsystem.
549 * Please do not alter this order without good reasons and regression
550 * testing. Specifically, as large blocks of memory are subdivided,
551 * the order in which smaller blocks are delivered depends on the order
552 * they're subdivided in this function. This is the primary factor
553 * influencing the order in which pages are delivered to the IO
554 * subsystem according to empirical testing, and this is also justified
555 * by considering the behavior of a buddy system containing a single
556 * large block of memory acted on by a series of small allocations.
557 * This behavior is a critical factor in sglist merging's success.
558 *
559 * -- wli
560 */
561 static inline void expand(struct zone *zone, struct page *page,
562 int low, int high, struct free_area *area)
563 {
564 unsigned long size = 1 << high;
565
566 while (high > low) {
567 area--;
568 high--;
569 size >>= 1;
570 VM_BUG_ON(bad_range(zone, &page[size]));
571 list_add(&page[size].lru, &area->free_list);
572 area->nr_free++;
573 set_page_order(&page[size], high);
574 }
575 }
576
577 /*
578 * This page is about to be returned from the page allocator
579 */
580 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
581 {
582 if (unlikely(page_mapcount(page) |
583 (page->mapping != NULL) |
584 (page_count(page) != 0) |
585 (page->flags & (
586 1 << PG_lru |
587 1 << PG_private |
588 1 << PG_locked |
589 1 << PG_active |
590 1 << PG_dirty |
591 1 << PG_reclaim |
592 1 << PG_slab |
593 1 << PG_swapcache |
594 1 << PG_writeback |
595 1 << PG_reserved |
596 1 << PG_buddy ))))
597 bad_page(page);
598
599 /*
600 * For now, we report if PG_reserved was found set, but do not
601 * clear it, and do not allocate the page: as a safety net.
602 */
603 if (PageReserved(page))
604 return 1;
605
606 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
607 1 << PG_referenced | 1 << PG_arch_1 |
608 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
609 set_page_private(page, 0);
610 set_page_refcounted(page);
611
612 arch_alloc_page(page, order);
613 kernel_map_pages(page, 1 << order, 1);
614
615 if (gfp_flags & __GFP_ZERO)
616 prep_zero_page(page, order, gfp_flags);
617
618 if (order && (gfp_flags & __GFP_COMP))
619 prep_compound_page(page, order);
620
621 return 0;
622 }
623
624 /*
625 * Do the hard work of removing an element from the buddy allocator.
626 * Call me with the zone->lock already held.
627 */
628 static struct page *__rmqueue(struct zone *zone, unsigned int order)
629 {
630 struct free_area * area;
631 unsigned int current_order;
632 struct page *page;
633
634 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
635 area = zone->free_area + current_order;
636 if (list_empty(&area->free_list))
637 continue;
638
639 page = list_entry(area->free_list.next, struct page, lru);
640 list_del(&page->lru);
641 rmv_page_order(page);
642 area->nr_free--;
643 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
644 expand(zone, page, order, current_order, area);
645 return page;
646 }
647
648 return NULL;
649 }
650
651 /*
652 * Obtain a specified number of elements from the buddy allocator, all under
653 * a single hold of the lock, for efficiency. Add them to the supplied list.
654 * Returns the number of new pages which were placed at *list.
655 */
656 static int rmqueue_bulk(struct zone *zone, unsigned int order,
657 unsigned long count, struct list_head *list)
658 {
659 int i;
660
661 spin_lock(&zone->lock);
662 for (i = 0; i < count; ++i) {
663 struct page *page = __rmqueue(zone, order);
664 if (unlikely(page == NULL))
665 break;
666 list_add_tail(&page->lru, list);
667 }
668 spin_unlock(&zone->lock);
669 return i;
670 }
671
672 #if MAX_NUMNODES > 1
673 int nr_node_ids __read_mostly = MAX_NUMNODES;
674 EXPORT_SYMBOL(nr_node_ids);
675
676 /*
677 * Figure out the number of possible node ids.
678 */
679 static void __init setup_nr_node_ids(void)
680 {
681 unsigned int node;
682 unsigned int highest = 0;
683
684 for_each_node_mask(node, node_possible_map)
685 highest = node;
686 nr_node_ids = highest + 1;
687 }
688 #else
689 static void __init setup_nr_node_ids(void) {}
690 #endif
691
692 #ifdef CONFIG_NUMA
693 /*
694 * Called from the slab reaper to drain pagesets on a particular node that
695 * belongs to the currently executing processor.
696 * Note that this function must be called with the thread pinned to
697 * a single processor.
698 */
699 void drain_node_pages(int nodeid)
700 {
701 int i;
702 enum zone_type z;
703 unsigned long flags;
704
705 for (z = 0; z < MAX_NR_ZONES; z++) {
706 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
707 struct per_cpu_pageset *pset;
708
709 if (!populated_zone(zone))
710 continue;
711
712 pset = zone_pcp(zone, smp_processor_id());
713 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
714 struct per_cpu_pages *pcp;
715
716 pcp = &pset->pcp[i];
717 if (pcp->count) {
718 int to_drain;
719
720 local_irq_save(flags);
721 if (pcp->count >= pcp->batch)
722 to_drain = pcp->batch;
723 else
724 to_drain = pcp->count;
725 free_pages_bulk(zone, to_drain, &pcp->list, 0);
726 pcp->count -= to_drain;
727 local_irq_restore(flags);
728 }
729 }
730 }
731 }
732 #endif
733
734 static void __drain_pages(unsigned int cpu)
735 {
736 unsigned long flags;
737 struct zone *zone;
738 int i;
739
740 for_each_zone(zone) {
741 struct per_cpu_pageset *pset;
742
743 if (!populated_zone(zone))
744 continue;
745
746 pset = zone_pcp(zone, cpu);
747 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
748 struct per_cpu_pages *pcp;
749
750 pcp = &pset->pcp[i];
751 local_irq_save(flags);
752 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
753 pcp->count = 0;
754 local_irq_restore(flags);
755 }
756 }
757 }
758
759 #ifdef CONFIG_PM
760
761 void mark_free_pages(struct zone *zone)
762 {
763 unsigned long pfn, max_zone_pfn;
764 unsigned long flags;
765 int order;
766 struct list_head *curr;
767
768 if (!zone->spanned_pages)
769 return;
770
771 spin_lock_irqsave(&zone->lock, flags);
772
773 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
774 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
775 if (pfn_valid(pfn)) {
776 struct page *page = pfn_to_page(pfn);
777
778 if (!PageNosave(page))
779 ClearPageNosaveFree(page);
780 }
781
782 for (order = MAX_ORDER - 1; order >= 0; --order)
783 list_for_each(curr, &zone->free_area[order].free_list) {
784 unsigned long i;
785
786 pfn = page_to_pfn(list_entry(curr, struct page, lru));
787 for (i = 0; i < (1UL << order); i++)
788 SetPageNosaveFree(pfn_to_page(pfn + i));
789 }
790
791 spin_unlock_irqrestore(&zone->lock, flags);
792 }
793
794 /*
795 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
796 */
797 void drain_local_pages(void)
798 {
799 unsigned long flags;
800
801 local_irq_save(flags);
802 __drain_pages(smp_processor_id());
803 local_irq_restore(flags);
804 }
805 #endif /* CONFIG_PM */
806
807 /*
808 * Free a 0-order page
809 */
810 static void fastcall free_hot_cold_page(struct page *page, int cold)
811 {
812 struct zone *zone = page_zone(page);
813 struct per_cpu_pages *pcp;
814 unsigned long flags;
815
816 if (PageAnon(page))
817 page->mapping = NULL;
818 if (free_pages_check(page))
819 return;
820
821 if (!PageHighMem(page))
822 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
823 arch_free_page(page, 0);
824 kernel_map_pages(page, 1, 0);
825
826 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
827 local_irq_save(flags);
828 __count_vm_event(PGFREE);
829 list_add(&page->lru, &pcp->list);
830 pcp->count++;
831 if (pcp->count >= pcp->high) {
832 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
833 pcp->count -= pcp->batch;
834 }
835 local_irq_restore(flags);
836 put_cpu();
837 }
838
839 void fastcall free_hot_page(struct page *page)
840 {
841 free_hot_cold_page(page, 0);
842 }
843
844 void fastcall free_cold_page(struct page *page)
845 {
846 free_hot_cold_page(page, 1);
847 }
848
849 /*
850 * split_page takes a non-compound higher-order page, and splits it into
851 * n (1<<order) sub-pages: page[0..n]
852 * Each sub-page must be freed individually.
853 *
854 * Note: this is probably too low level an operation for use in drivers.
855 * Please consult with lkml before using this in your driver.
856 */
857 void split_page(struct page *page, unsigned int order)
858 {
859 int i;
860
861 VM_BUG_ON(PageCompound(page));
862 VM_BUG_ON(!page_count(page));
863 for (i = 1; i < (1 << order); i++)
864 set_page_refcounted(page + i);
865 }
866
867 /*
868 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
869 * we cheat by calling it from here, in the order > 0 path. Saves a branch
870 * or two.
871 */
872 static struct page *buffered_rmqueue(struct zonelist *zonelist,
873 struct zone *zone, int order, gfp_t gfp_flags)
874 {
875 unsigned long flags;
876 struct page *page;
877 int cold = !!(gfp_flags & __GFP_COLD);
878 int cpu;
879
880 again:
881 cpu = get_cpu();
882 if (likely(order == 0)) {
883 struct per_cpu_pages *pcp;
884
885 pcp = &zone_pcp(zone, cpu)->pcp[cold];
886 local_irq_save(flags);
887 if (!pcp->count) {
888 pcp->count = rmqueue_bulk(zone, 0,
889 pcp->batch, &pcp->list);
890 if (unlikely(!pcp->count))
891 goto failed;
892 }
893 page = list_entry(pcp->list.next, struct page, lru);
894 list_del(&page->lru);
895 pcp->count--;
896 } else {
897 spin_lock_irqsave(&zone->lock, flags);
898 page = __rmqueue(zone, order);
899 spin_unlock(&zone->lock);
900 if (!page)
901 goto failed;
902 }
903
904 __count_zone_vm_events(PGALLOC, zone, 1 << order);
905 zone_statistics(zonelist, zone);
906 local_irq_restore(flags);
907 put_cpu();
908
909 VM_BUG_ON(bad_range(zone, page));
910 if (prep_new_page(page, order, gfp_flags))
911 goto again;
912 return page;
913
914 failed:
915 local_irq_restore(flags);
916 put_cpu();
917 return NULL;
918 }
919
920 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
921 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
922 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
923 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
924 #define ALLOC_HARDER 0x10 /* try to alloc harder */
925 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
926 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
927
928 #ifdef CONFIG_FAIL_PAGE_ALLOC
929
930 static struct fail_page_alloc_attr {
931 struct fault_attr attr;
932
933 u32 ignore_gfp_highmem;
934 u32 ignore_gfp_wait;
935
936 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
937
938 struct dentry *ignore_gfp_highmem_file;
939 struct dentry *ignore_gfp_wait_file;
940
941 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
942
943 } fail_page_alloc = {
944 .attr = FAULT_ATTR_INITIALIZER,
945 .ignore_gfp_wait = 1,
946 .ignore_gfp_highmem = 1,
947 };
948
949 static int __init setup_fail_page_alloc(char *str)
950 {
951 return setup_fault_attr(&fail_page_alloc.attr, str);
952 }
953 __setup("fail_page_alloc=", setup_fail_page_alloc);
954
955 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
956 {
957 if (gfp_mask & __GFP_NOFAIL)
958 return 0;
959 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
960 return 0;
961 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
962 return 0;
963
964 return should_fail(&fail_page_alloc.attr, 1 << order);
965 }
966
967 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
968
969 static int __init fail_page_alloc_debugfs(void)
970 {
971 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
972 struct dentry *dir;
973 int err;
974
975 err = init_fault_attr_dentries(&fail_page_alloc.attr,
976 "fail_page_alloc");
977 if (err)
978 return err;
979 dir = fail_page_alloc.attr.dentries.dir;
980
981 fail_page_alloc.ignore_gfp_wait_file =
982 debugfs_create_bool("ignore-gfp-wait", mode, dir,
983 &fail_page_alloc.ignore_gfp_wait);
984
985 fail_page_alloc.ignore_gfp_highmem_file =
986 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
987 &fail_page_alloc.ignore_gfp_highmem);
988
989 if (!fail_page_alloc.ignore_gfp_wait_file ||
990 !fail_page_alloc.ignore_gfp_highmem_file) {
991 err = -ENOMEM;
992 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
993 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
994 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
995 }
996
997 return err;
998 }
999
1000 late_initcall(fail_page_alloc_debugfs);
1001
1002 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1003
1004 #else /* CONFIG_FAIL_PAGE_ALLOC */
1005
1006 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1007 {
1008 return 0;
1009 }
1010
1011 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1012
1013 /*
1014 * Return 1 if free pages are above 'mark'. This takes into account the order
1015 * of the allocation.
1016 */
1017 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1018 int classzone_idx, int alloc_flags)
1019 {
1020 /* free_pages my go negative - that's OK */
1021 long min = mark;
1022 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1023 int o;
1024
1025 if (alloc_flags & ALLOC_HIGH)
1026 min -= min / 2;
1027 if (alloc_flags & ALLOC_HARDER)
1028 min -= min / 4;
1029
1030 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1031 return 0;
1032 for (o = 0; o < order; o++) {
1033 /* At the next order, this order's pages become unavailable */
1034 free_pages -= z->free_area[o].nr_free << o;
1035
1036 /* Require fewer higher order pages to be free */
1037 min >>= 1;
1038
1039 if (free_pages <= min)
1040 return 0;
1041 }
1042 return 1;
1043 }
1044
1045 #ifdef CONFIG_NUMA
1046 /*
1047 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1048 * skip over zones that are not allowed by the cpuset, or that have
1049 * been recently (in last second) found to be nearly full. See further
1050 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1051 * that have to skip over alot of full or unallowed zones.
1052 *
1053 * If the zonelist cache is present in the passed in zonelist, then
1054 * returns a pointer to the allowed node mask (either the current
1055 * tasks mems_allowed, or node_online_map.)
1056 *
1057 * If the zonelist cache is not available for this zonelist, does
1058 * nothing and returns NULL.
1059 *
1060 * If the fullzones BITMAP in the zonelist cache is stale (more than
1061 * a second since last zap'd) then we zap it out (clear its bits.)
1062 *
1063 * We hold off even calling zlc_setup, until after we've checked the
1064 * first zone in the zonelist, on the theory that most allocations will
1065 * be satisfied from that first zone, so best to examine that zone as
1066 * quickly as we can.
1067 */
1068 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1069 {
1070 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1071 nodemask_t *allowednodes; /* zonelist_cache approximation */
1072
1073 zlc = zonelist->zlcache_ptr;
1074 if (!zlc)
1075 return NULL;
1076
1077 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1078 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1079 zlc->last_full_zap = jiffies;
1080 }
1081
1082 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1083 &cpuset_current_mems_allowed :
1084 &node_online_map;
1085 return allowednodes;
1086 }
1087
1088 /*
1089 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1090 * if it is worth looking at further for free memory:
1091 * 1) Check that the zone isn't thought to be full (doesn't have its
1092 * bit set in the zonelist_cache fullzones BITMAP).
1093 * 2) Check that the zones node (obtained from the zonelist_cache
1094 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1095 * Return true (non-zero) if zone is worth looking at further, or
1096 * else return false (zero) if it is not.
1097 *
1098 * This check -ignores- the distinction between various watermarks,
1099 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1100 * found to be full for any variation of these watermarks, it will
1101 * be considered full for up to one second by all requests, unless
1102 * we are so low on memory on all allowed nodes that we are forced
1103 * into the second scan of the zonelist.
1104 *
1105 * In the second scan we ignore this zonelist cache and exactly
1106 * apply the watermarks to all zones, even it is slower to do so.
1107 * We are low on memory in the second scan, and should leave no stone
1108 * unturned looking for a free page.
1109 */
1110 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1111 nodemask_t *allowednodes)
1112 {
1113 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1114 int i; /* index of *z in zonelist zones */
1115 int n; /* node that zone *z is on */
1116
1117 zlc = zonelist->zlcache_ptr;
1118 if (!zlc)
1119 return 1;
1120
1121 i = z - zonelist->zones;
1122 n = zlc->z_to_n[i];
1123
1124 /* This zone is worth trying if it is allowed but not full */
1125 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1126 }
1127
1128 /*
1129 * Given 'z' scanning a zonelist, set the corresponding bit in
1130 * zlc->fullzones, so that subsequent attempts to allocate a page
1131 * from that zone don't waste time re-examining it.
1132 */
1133 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1134 {
1135 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1136 int i; /* index of *z in zonelist zones */
1137
1138 zlc = zonelist->zlcache_ptr;
1139 if (!zlc)
1140 return;
1141
1142 i = z - zonelist->zones;
1143
1144 set_bit(i, zlc->fullzones);
1145 }
1146
1147 #else /* CONFIG_NUMA */
1148
1149 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1150 {
1151 return NULL;
1152 }
1153
1154 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1155 nodemask_t *allowednodes)
1156 {
1157 return 1;
1158 }
1159
1160 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1161 {
1162 }
1163 #endif /* CONFIG_NUMA */
1164
1165 /*
1166 * get_page_from_freelist goes through the zonelist trying to allocate
1167 * a page.
1168 */
1169 static struct page *
1170 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1171 struct zonelist *zonelist, int alloc_flags)
1172 {
1173 struct zone **z;
1174 struct page *page = NULL;
1175 int classzone_idx = zone_idx(zonelist->zones[0]);
1176 struct zone *zone;
1177 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1178 int zlc_active = 0; /* set if using zonelist_cache */
1179 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1180
1181 zonelist_scan:
1182 /*
1183 * Scan zonelist, looking for a zone with enough free.
1184 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1185 */
1186 z = zonelist->zones;
1187
1188 do {
1189 if (NUMA_BUILD && zlc_active &&
1190 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1191 continue;
1192 zone = *z;
1193 if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1194 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1195 break;
1196 if ((alloc_flags & ALLOC_CPUSET) &&
1197 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1198 goto try_next_zone;
1199
1200 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1201 unsigned long mark;
1202 if (alloc_flags & ALLOC_WMARK_MIN)
1203 mark = zone->pages_min;
1204 else if (alloc_flags & ALLOC_WMARK_LOW)
1205 mark = zone->pages_low;
1206 else
1207 mark = zone->pages_high;
1208 if (!zone_watermark_ok(zone, order, mark,
1209 classzone_idx, alloc_flags)) {
1210 if (!zone_reclaim_mode ||
1211 !zone_reclaim(zone, gfp_mask, order))
1212 goto this_zone_full;
1213 }
1214 }
1215
1216 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1217 if (page)
1218 break;
1219 this_zone_full:
1220 if (NUMA_BUILD)
1221 zlc_mark_zone_full(zonelist, z);
1222 try_next_zone:
1223 if (NUMA_BUILD && !did_zlc_setup) {
1224 /* we do zlc_setup after the first zone is tried */
1225 allowednodes = zlc_setup(zonelist, alloc_flags);
1226 zlc_active = 1;
1227 did_zlc_setup = 1;
1228 }
1229 } while (*(++z) != NULL);
1230
1231 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1232 /* Disable zlc cache for second zonelist scan */
1233 zlc_active = 0;
1234 goto zonelist_scan;
1235 }
1236 return page;
1237 }
1238
1239 /*
1240 * This is the 'heart' of the zoned buddy allocator.
1241 */
1242 struct page * fastcall
1243 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1244 struct zonelist *zonelist)
1245 {
1246 const gfp_t wait = gfp_mask & __GFP_WAIT;
1247 struct zone **z;
1248 struct page *page;
1249 struct reclaim_state reclaim_state;
1250 struct task_struct *p = current;
1251 int do_retry;
1252 int alloc_flags;
1253 int did_some_progress;
1254
1255 might_sleep_if(wait);
1256
1257 if (should_fail_alloc_page(gfp_mask, order))
1258 return NULL;
1259
1260 restart:
1261 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1262
1263 if (unlikely(*z == NULL)) {
1264 /* Should this ever happen?? */
1265 return NULL;
1266 }
1267
1268 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1269 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1270 if (page)
1271 goto got_pg;
1272
1273 /*
1274 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1275 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1276 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1277 * using a larger set of nodes after it has established that the
1278 * allowed per node queues are empty and that nodes are
1279 * over allocated.
1280 */
1281 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1282 goto nopage;
1283
1284 for (z = zonelist->zones; *z; z++)
1285 wakeup_kswapd(*z, order);
1286
1287 /*
1288 * OK, we're below the kswapd watermark and have kicked background
1289 * reclaim. Now things get more complex, so set up alloc_flags according
1290 * to how we want to proceed.
1291 *
1292 * The caller may dip into page reserves a bit more if the caller
1293 * cannot run direct reclaim, or if the caller has realtime scheduling
1294 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1295 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1296 */
1297 alloc_flags = ALLOC_WMARK_MIN;
1298 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1299 alloc_flags |= ALLOC_HARDER;
1300 if (gfp_mask & __GFP_HIGH)
1301 alloc_flags |= ALLOC_HIGH;
1302 if (wait)
1303 alloc_flags |= ALLOC_CPUSET;
1304
1305 /*
1306 * Go through the zonelist again. Let __GFP_HIGH and allocations
1307 * coming from realtime tasks go deeper into reserves.
1308 *
1309 * This is the last chance, in general, before the goto nopage.
1310 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1311 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1312 */
1313 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1314 if (page)
1315 goto got_pg;
1316
1317 /* This allocation should allow future memory freeing. */
1318
1319 rebalance:
1320 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1321 && !in_interrupt()) {
1322 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1323 nofail_alloc:
1324 /* go through the zonelist yet again, ignoring mins */
1325 page = get_page_from_freelist(gfp_mask, order,
1326 zonelist, ALLOC_NO_WATERMARKS);
1327 if (page)
1328 goto got_pg;
1329 if (gfp_mask & __GFP_NOFAIL) {
1330 congestion_wait(WRITE, HZ/50);
1331 goto nofail_alloc;
1332 }
1333 }
1334 goto nopage;
1335 }
1336
1337 /* Atomic allocations - we can't balance anything */
1338 if (!wait)
1339 goto nopage;
1340
1341 cond_resched();
1342
1343 /* We now go into synchronous reclaim */
1344 cpuset_memory_pressure_bump();
1345 p->flags |= PF_MEMALLOC;
1346 reclaim_state.reclaimed_slab = 0;
1347 p->reclaim_state = &reclaim_state;
1348
1349 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1350
1351 p->reclaim_state = NULL;
1352 p->flags &= ~PF_MEMALLOC;
1353
1354 cond_resched();
1355
1356 if (likely(did_some_progress)) {
1357 page = get_page_from_freelist(gfp_mask, order,
1358 zonelist, alloc_flags);
1359 if (page)
1360 goto got_pg;
1361 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1362 /*
1363 * Go through the zonelist yet one more time, keep
1364 * very high watermark here, this is only to catch
1365 * a parallel oom killing, we must fail if we're still
1366 * under heavy pressure.
1367 */
1368 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1369 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1370 if (page)
1371 goto got_pg;
1372
1373 out_of_memory(zonelist, gfp_mask, order);
1374 goto restart;
1375 }
1376
1377 /*
1378 * Don't let big-order allocations loop unless the caller explicitly
1379 * requests that. Wait for some write requests to complete then retry.
1380 *
1381 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1382 * <= 3, but that may not be true in other implementations.
1383 */
1384 do_retry = 0;
1385 if (!(gfp_mask & __GFP_NORETRY)) {
1386 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1387 do_retry = 1;
1388 if (gfp_mask & __GFP_NOFAIL)
1389 do_retry = 1;
1390 }
1391 if (do_retry) {
1392 congestion_wait(WRITE, HZ/50);
1393 goto rebalance;
1394 }
1395
1396 nopage:
1397 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1398 printk(KERN_WARNING "%s: page allocation failure."
1399 " order:%d, mode:0x%x\n",
1400 p->comm, order, gfp_mask);
1401 dump_stack();
1402 show_mem();
1403 }
1404 got_pg:
1405 return page;
1406 }
1407
1408 EXPORT_SYMBOL(__alloc_pages);
1409
1410 /*
1411 * Common helper functions.
1412 */
1413 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1414 {
1415 struct page * page;
1416 page = alloc_pages(gfp_mask, order);
1417 if (!page)
1418 return 0;
1419 return (unsigned long) page_address(page);
1420 }
1421
1422 EXPORT_SYMBOL(__get_free_pages);
1423
1424 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1425 {
1426 struct page * page;
1427
1428 /*
1429 * get_zeroed_page() returns a 32-bit address, which cannot represent
1430 * a highmem page
1431 */
1432 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1433
1434 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1435 if (page)
1436 return (unsigned long) page_address(page);
1437 return 0;
1438 }
1439
1440 EXPORT_SYMBOL(get_zeroed_page);
1441
1442 void __pagevec_free(struct pagevec *pvec)
1443 {
1444 int i = pagevec_count(pvec);
1445
1446 while (--i >= 0)
1447 free_hot_cold_page(pvec->pages[i], pvec->cold);
1448 }
1449
1450 fastcall void __free_pages(struct page *page, unsigned int order)
1451 {
1452 if (put_page_testzero(page)) {
1453 if (order == 0)
1454 free_hot_page(page);
1455 else
1456 __free_pages_ok(page, order);
1457 }
1458 }
1459
1460 EXPORT_SYMBOL(__free_pages);
1461
1462 fastcall void free_pages(unsigned long addr, unsigned int order)
1463 {
1464 if (addr != 0) {
1465 VM_BUG_ON(!virt_addr_valid((void *)addr));
1466 __free_pages(virt_to_page((void *)addr), order);
1467 }
1468 }
1469
1470 EXPORT_SYMBOL(free_pages);
1471
1472 static unsigned int nr_free_zone_pages(int offset)
1473 {
1474 /* Just pick one node, since fallback list is circular */
1475 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1476 unsigned int sum = 0;
1477
1478 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1479 struct zone **zonep = zonelist->zones;
1480 struct zone *zone;
1481
1482 for (zone = *zonep++; zone; zone = *zonep++) {
1483 unsigned long size = zone->present_pages;
1484 unsigned long high = zone->pages_high;
1485 if (size > high)
1486 sum += size - high;
1487 }
1488
1489 return sum;
1490 }
1491
1492 /*
1493 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1494 */
1495 unsigned int nr_free_buffer_pages(void)
1496 {
1497 return nr_free_zone_pages(gfp_zone(GFP_USER));
1498 }
1499
1500 /*
1501 * Amount of free RAM allocatable within all zones
1502 */
1503 unsigned int nr_free_pagecache_pages(void)
1504 {
1505 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1506 }
1507
1508 static inline void show_node(struct zone *zone)
1509 {
1510 if (NUMA_BUILD)
1511 printk("Node %d ", zone_to_nid(zone));
1512 }
1513
1514 void si_meminfo(struct sysinfo *val)
1515 {
1516 val->totalram = totalram_pages;
1517 val->sharedram = 0;
1518 val->freeram = global_page_state(NR_FREE_PAGES);
1519 val->bufferram = nr_blockdev_pages();
1520 val->totalhigh = totalhigh_pages;
1521 val->freehigh = nr_free_highpages();
1522 val->mem_unit = PAGE_SIZE;
1523 }
1524
1525 EXPORT_SYMBOL(si_meminfo);
1526
1527 #ifdef CONFIG_NUMA
1528 void si_meminfo_node(struct sysinfo *val, int nid)
1529 {
1530 pg_data_t *pgdat = NODE_DATA(nid);
1531
1532 val->totalram = pgdat->node_present_pages;
1533 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1534 #ifdef CONFIG_HIGHMEM
1535 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1536 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1537 NR_FREE_PAGES);
1538 #else
1539 val->totalhigh = 0;
1540 val->freehigh = 0;
1541 #endif
1542 val->mem_unit = PAGE_SIZE;
1543 }
1544 #endif
1545
1546 #define K(x) ((x) << (PAGE_SHIFT-10))
1547
1548 /*
1549 * Show free area list (used inside shift_scroll-lock stuff)
1550 * We also calculate the percentage fragmentation. We do this by counting the
1551 * memory on each free list with the exception of the first item on the list.
1552 */
1553 void show_free_areas(void)
1554 {
1555 int cpu;
1556 struct zone *zone;
1557
1558 for_each_zone(zone) {
1559 if (!populated_zone(zone))
1560 continue;
1561
1562 show_node(zone);
1563 printk("%s per-cpu:\n", zone->name);
1564
1565 for_each_online_cpu(cpu) {
1566 struct per_cpu_pageset *pageset;
1567
1568 pageset = zone_pcp(zone, cpu);
1569
1570 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1571 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1572 cpu, pageset->pcp[0].high,
1573 pageset->pcp[0].batch, pageset->pcp[0].count,
1574 pageset->pcp[1].high, pageset->pcp[1].batch,
1575 pageset->pcp[1].count);
1576 }
1577 }
1578
1579 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1580 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1581 global_page_state(NR_ACTIVE),
1582 global_page_state(NR_INACTIVE),
1583 global_page_state(NR_FILE_DIRTY),
1584 global_page_state(NR_WRITEBACK),
1585 global_page_state(NR_UNSTABLE_NFS),
1586 global_page_state(NR_FREE_PAGES),
1587 global_page_state(NR_SLAB_RECLAIMABLE) +
1588 global_page_state(NR_SLAB_UNRECLAIMABLE),
1589 global_page_state(NR_FILE_MAPPED),
1590 global_page_state(NR_PAGETABLE),
1591 global_page_state(NR_BOUNCE));
1592
1593 for_each_zone(zone) {
1594 int i;
1595
1596 if (!populated_zone(zone))
1597 continue;
1598
1599 show_node(zone);
1600 printk("%s"
1601 " free:%lukB"
1602 " min:%lukB"
1603 " low:%lukB"
1604 " high:%lukB"
1605 " active:%lukB"
1606 " inactive:%lukB"
1607 " present:%lukB"
1608 " pages_scanned:%lu"
1609 " all_unreclaimable? %s"
1610 "\n",
1611 zone->name,
1612 K(zone_page_state(zone, NR_FREE_PAGES)),
1613 K(zone->pages_min),
1614 K(zone->pages_low),
1615 K(zone->pages_high),
1616 K(zone_page_state(zone, NR_ACTIVE)),
1617 K(zone_page_state(zone, NR_INACTIVE)),
1618 K(zone->present_pages),
1619 zone->pages_scanned,
1620 (zone->all_unreclaimable ? "yes" : "no")
1621 );
1622 printk("lowmem_reserve[]:");
1623 for (i = 0; i < MAX_NR_ZONES; i++)
1624 printk(" %lu", zone->lowmem_reserve[i]);
1625 printk("\n");
1626 }
1627
1628 for_each_zone(zone) {
1629 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1630
1631 if (!populated_zone(zone))
1632 continue;
1633
1634 show_node(zone);
1635 printk("%s: ", zone->name);
1636
1637 spin_lock_irqsave(&zone->lock, flags);
1638 for (order = 0; order < MAX_ORDER; order++) {
1639 nr[order] = zone->free_area[order].nr_free;
1640 total += nr[order] << order;
1641 }
1642 spin_unlock_irqrestore(&zone->lock, flags);
1643 for (order = 0; order < MAX_ORDER; order++)
1644 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1645 printk("= %lukB\n", K(total));
1646 }
1647
1648 show_swap_cache_info();
1649 }
1650
1651 /*
1652 * Builds allocation fallback zone lists.
1653 *
1654 * Add all populated zones of a node to the zonelist.
1655 */
1656 static int __meminit build_zonelists_node(pg_data_t *pgdat,
1657 struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1658 {
1659 struct zone *zone;
1660
1661 BUG_ON(zone_type >= MAX_NR_ZONES);
1662 zone_type++;
1663
1664 do {
1665 zone_type--;
1666 zone = pgdat->node_zones + zone_type;
1667 if (populated_zone(zone)) {
1668 zonelist->zones[nr_zones++] = zone;
1669 check_highest_zone(zone_type);
1670 }
1671
1672 } while (zone_type);
1673 return nr_zones;
1674 }
1675
1676 #ifdef CONFIG_NUMA
1677 #define MAX_NODE_LOAD (num_online_nodes())
1678 static int __meminitdata node_load[MAX_NUMNODES];
1679 /**
1680 * find_next_best_node - find the next node that should appear in a given node's fallback list
1681 * @node: node whose fallback list we're appending
1682 * @used_node_mask: nodemask_t of already used nodes
1683 *
1684 * We use a number of factors to determine which is the next node that should
1685 * appear on a given node's fallback list. The node should not have appeared
1686 * already in @node's fallback list, and it should be the next closest node
1687 * according to the distance array (which contains arbitrary distance values
1688 * from each node to each node in the system), and should also prefer nodes
1689 * with no CPUs, since presumably they'll have very little allocation pressure
1690 * on them otherwise.
1691 * It returns -1 if no node is found.
1692 */
1693 static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1694 {
1695 int n, val;
1696 int min_val = INT_MAX;
1697 int best_node = -1;
1698
1699 /* Use the local node if we haven't already */
1700 if (!node_isset(node, *used_node_mask)) {
1701 node_set(node, *used_node_mask);
1702 return node;
1703 }
1704
1705 for_each_online_node(n) {
1706 cpumask_t tmp;
1707
1708 /* Don't want a node to appear more than once */
1709 if (node_isset(n, *used_node_mask))
1710 continue;
1711
1712 /* Use the distance array to find the distance */
1713 val = node_distance(node, n);
1714
1715 /* Penalize nodes under us ("prefer the next node") */
1716 val += (n < node);
1717
1718 /* Give preference to headless and unused nodes */
1719 tmp = node_to_cpumask(n);
1720 if (!cpus_empty(tmp))
1721 val += PENALTY_FOR_NODE_WITH_CPUS;
1722
1723 /* Slight preference for less loaded node */
1724 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1725 val += node_load[n];
1726
1727 if (val < min_val) {
1728 min_val = val;
1729 best_node = n;
1730 }
1731 }
1732
1733 if (best_node >= 0)
1734 node_set(best_node, *used_node_mask);
1735
1736 return best_node;
1737 }
1738
1739 static void __meminit build_zonelists(pg_data_t *pgdat)
1740 {
1741 int j, node, local_node;
1742 enum zone_type i;
1743 int prev_node, load;
1744 struct zonelist *zonelist;
1745 nodemask_t used_mask;
1746
1747 /* initialize zonelists */
1748 for (i = 0; i < MAX_NR_ZONES; i++) {
1749 zonelist = pgdat->node_zonelists + i;
1750 zonelist->zones[0] = NULL;
1751 }
1752
1753 /* NUMA-aware ordering of nodes */
1754 local_node = pgdat->node_id;
1755 load = num_online_nodes();
1756 prev_node = local_node;
1757 nodes_clear(used_mask);
1758 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1759 int distance = node_distance(local_node, node);
1760
1761 /*
1762 * If another node is sufficiently far away then it is better
1763 * to reclaim pages in a zone before going off node.
1764 */
1765 if (distance > RECLAIM_DISTANCE)
1766 zone_reclaim_mode = 1;
1767
1768 /*
1769 * We don't want to pressure a particular node.
1770 * So adding penalty to the first node in same
1771 * distance group to make it round-robin.
1772 */
1773
1774 if (distance != node_distance(local_node, prev_node))
1775 node_load[node] += load;
1776 prev_node = node;
1777 load--;
1778 for (i = 0; i < MAX_NR_ZONES; i++) {
1779 zonelist = pgdat->node_zonelists + i;
1780 for (j = 0; zonelist->zones[j] != NULL; j++);
1781
1782 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1783 zonelist->zones[j] = NULL;
1784 }
1785 }
1786 }
1787
1788 /* Construct the zonelist performance cache - see further mmzone.h */
1789 static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1790 {
1791 int i;
1792
1793 for (i = 0; i < MAX_NR_ZONES; i++) {
1794 struct zonelist *zonelist;
1795 struct zonelist_cache *zlc;
1796 struct zone **z;
1797
1798 zonelist = pgdat->node_zonelists + i;
1799 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
1800 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1801 for (z = zonelist->zones; *z; z++)
1802 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
1803 }
1804 }
1805
1806 #else /* CONFIG_NUMA */
1807
1808 static void __meminit build_zonelists(pg_data_t *pgdat)
1809 {
1810 int node, local_node;
1811 enum zone_type i,j;
1812
1813 local_node = pgdat->node_id;
1814 for (i = 0; i < MAX_NR_ZONES; i++) {
1815 struct zonelist *zonelist;
1816
1817 zonelist = pgdat->node_zonelists + i;
1818
1819 j = build_zonelists_node(pgdat, zonelist, 0, i);
1820 /*
1821 * Now we build the zonelist so that it contains the zones
1822 * of all the other nodes.
1823 * We don't want to pressure a particular node, so when
1824 * building the zones for node N, we make sure that the
1825 * zones coming right after the local ones are those from
1826 * node N+1 (modulo N)
1827 */
1828 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1829 if (!node_online(node))
1830 continue;
1831 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1832 }
1833 for (node = 0; node < local_node; node++) {
1834 if (!node_online(node))
1835 continue;
1836 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1837 }
1838
1839 zonelist->zones[j] = NULL;
1840 }
1841 }
1842
1843 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
1844 static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1845 {
1846 int i;
1847
1848 for (i = 0; i < MAX_NR_ZONES; i++)
1849 pgdat->node_zonelists[i].zlcache_ptr = NULL;
1850 }
1851
1852 #endif /* CONFIG_NUMA */
1853
1854 /* return values int ....just for stop_machine_run() */
1855 static int __meminit __build_all_zonelists(void *dummy)
1856 {
1857 int nid;
1858
1859 for_each_online_node(nid) {
1860 build_zonelists(NODE_DATA(nid));
1861 build_zonelist_cache(NODE_DATA(nid));
1862 }
1863 return 0;
1864 }
1865
1866 void __meminit build_all_zonelists(void)
1867 {
1868 if (system_state == SYSTEM_BOOTING) {
1869 __build_all_zonelists(NULL);
1870 cpuset_init_current_mems_allowed();
1871 } else {
1872 /* we have to stop all cpus to guaranntee there is no user
1873 of zonelist */
1874 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1875 /* cpuset refresh routine should be here */
1876 }
1877 vm_total_pages = nr_free_pagecache_pages();
1878 printk("Built %i zonelists. Total pages: %ld\n",
1879 num_online_nodes(), vm_total_pages);
1880 }
1881
1882 /*
1883 * Helper functions to size the waitqueue hash table.
1884 * Essentially these want to choose hash table sizes sufficiently
1885 * large so that collisions trying to wait on pages are rare.
1886 * But in fact, the number of active page waitqueues on typical
1887 * systems is ridiculously low, less than 200. So this is even
1888 * conservative, even though it seems large.
1889 *
1890 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1891 * waitqueues, i.e. the size of the waitq table given the number of pages.
1892 */
1893 #define PAGES_PER_WAITQUEUE 256
1894
1895 #ifndef CONFIG_MEMORY_HOTPLUG
1896 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1897 {
1898 unsigned long size = 1;
1899
1900 pages /= PAGES_PER_WAITQUEUE;
1901
1902 while (size < pages)
1903 size <<= 1;
1904
1905 /*
1906 * Once we have dozens or even hundreds of threads sleeping
1907 * on IO we've got bigger problems than wait queue collision.
1908 * Limit the size of the wait table to a reasonable size.
1909 */
1910 size = min(size, 4096UL);
1911
1912 return max(size, 4UL);
1913 }
1914 #else
1915 /*
1916 * A zone's size might be changed by hot-add, so it is not possible to determine
1917 * a suitable size for its wait_table. So we use the maximum size now.
1918 *
1919 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1920 *
1921 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1922 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1923 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1924 *
1925 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1926 * or more by the traditional way. (See above). It equals:
1927 *
1928 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1929 * ia64(16K page size) : = ( 8G + 4M)byte.
1930 * powerpc (64K page size) : = (32G +16M)byte.
1931 */
1932 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1933 {
1934 return 4096UL;
1935 }
1936 #endif
1937
1938 /*
1939 * This is an integer logarithm so that shifts can be used later
1940 * to extract the more random high bits from the multiplicative
1941 * hash function before the remainder is taken.
1942 */
1943 static inline unsigned long wait_table_bits(unsigned long size)
1944 {
1945 return ffz(~size);
1946 }
1947
1948 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1949
1950 /*
1951 * Initially all pages are reserved - free ones are freed
1952 * up by free_all_bootmem() once the early boot process is
1953 * done. Non-atomic initialization, single-pass.
1954 */
1955 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1956 unsigned long start_pfn, enum memmap_context context)
1957 {
1958 struct page *page;
1959 unsigned long end_pfn = start_pfn + size;
1960 unsigned long pfn;
1961
1962 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1963 /*
1964 * There can be holes in boot-time mem_map[]s
1965 * handed to this function. They do not
1966 * exist on hotplugged memory.
1967 */
1968 if (context == MEMMAP_EARLY) {
1969 if (!early_pfn_valid(pfn))
1970 continue;
1971 if (!early_pfn_in_nid(pfn, nid))
1972 continue;
1973 }
1974 page = pfn_to_page(pfn);
1975 set_page_links(page, zone, nid, pfn);
1976 init_page_count(page);
1977 reset_page_mapcount(page);
1978 SetPageReserved(page);
1979 INIT_LIST_HEAD(&page->lru);
1980 #ifdef WANT_PAGE_VIRTUAL
1981 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1982 if (!is_highmem_idx(zone))
1983 set_page_address(page, __va(pfn << PAGE_SHIFT));
1984 #endif
1985 }
1986 }
1987
1988 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1989 unsigned long size)
1990 {
1991 int order;
1992 for (order = 0; order < MAX_ORDER ; order++) {
1993 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1994 zone->free_area[order].nr_free = 0;
1995 }
1996 }
1997
1998 #ifndef __HAVE_ARCH_MEMMAP_INIT
1999 #define memmap_init(size, nid, zone, start_pfn) \
2000 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2001 #endif
2002
2003 static int __cpuinit zone_batchsize(struct zone *zone)
2004 {
2005 int batch;
2006
2007 /*
2008 * The per-cpu-pages pools are set to around 1000th of the
2009 * size of the zone. But no more than 1/2 of a meg.
2010 *
2011 * OK, so we don't know how big the cache is. So guess.
2012 */
2013 batch = zone->present_pages / 1024;
2014 if (batch * PAGE_SIZE > 512 * 1024)
2015 batch = (512 * 1024) / PAGE_SIZE;
2016 batch /= 4; /* We effectively *= 4 below */
2017 if (batch < 1)
2018 batch = 1;
2019
2020 /*
2021 * Clamp the batch to a 2^n - 1 value. Having a power
2022 * of 2 value was found to be more likely to have
2023 * suboptimal cache aliasing properties in some cases.
2024 *
2025 * For example if 2 tasks are alternately allocating
2026 * batches of pages, one task can end up with a lot
2027 * of pages of one half of the possible page colors
2028 * and the other with pages of the other colors.
2029 */
2030 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2031
2032 return batch;
2033 }
2034
2035 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2036 {
2037 struct per_cpu_pages *pcp;
2038
2039 memset(p, 0, sizeof(*p));
2040
2041 pcp = &p->pcp[0]; /* hot */
2042 pcp->count = 0;
2043 pcp->high = 6 * batch;
2044 pcp->batch = max(1UL, 1 * batch);
2045 INIT_LIST_HEAD(&pcp->list);
2046
2047 pcp = &p->pcp[1]; /* cold*/
2048 pcp->count = 0;
2049 pcp->high = 2 * batch;
2050 pcp->batch = max(1UL, batch/2);
2051 INIT_LIST_HEAD(&pcp->list);
2052 }
2053
2054 /*
2055 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2056 * to the value high for the pageset p.
2057 */
2058
2059 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2060 unsigned long high)
2061 {
2062 struct per_cpu_pages *pcp;
2063
2064 pcp = &p->pcp[0]; /* hot list */
2065 pcp->high = high;
2066 pcp->batch = max(1UL, high/4);
2067 if ((high/4) > (PAGE_SHIFT * 8))
2068 pcp->batch = PAGE_SHIFT * 8;
2069 }
2070
2071
2072 #ifdef CONFIG_NUMA
2073 /*
2074 * Boot pageset table. One per cpu which is going to be used for all
2075 * zones and all nodes. The parameters will be set in such a way
2076 * that an item put on a list will immediately be handed over to
2077 * the buddy list. This is safe since pageset manipulation is done
2078 * with interrupts disabled.
2079 *
2080 * Some NUMA counter updates may also be caught by the boot pagesets.
2081 *
2082 * The boot_pagesets must be kept even after bootup is complete for
2083 * unused processors and/or zones. They do play a role for bootstrapping
2084 * hotplugged processors.
2085 *
2086 * zoneinfo_show() and maybe other functions do
2087 * not check if the processor is online before following the pageset pointer.
2088 * Other parts of the kernel may not check if the zone is available.
2089 */
2090 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2091
2092 /*
2093 * Dynamically allocate memory for the
2094 * per cpu pageset array in struct zone.
2095 */
2096 static int __cpuinit process_zones(int cpu)
2097 {
2098 struct zone *zone, *dzone;
2099
2100 for_each_zone(zone) {
2101
2102 if (!populated_zone(zone))
2103 continue;
2104
2105 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2106 GFP_KERNEL, cpu_to_node(cpu));
2107 if (!zone_pcp(zone, cpu))
2108 goto bad;
2109
2110 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2111
2112 if (percpu_pagelist_fraction)
2113 setup_pagelist_highmark(zone_pcp(zone, cpu),
2114 (zone->present_pages / percpu_pagelist_fraction));
2115 }
2116
2117 return 0;
2118 bad:
2119 for_each_zone(dzone) {
2120 if (dzone == zone)
2121 break;
2122 kfree(zone_pcp(dzone, cpu));
2123 zone_pcp(dzone, cpu) = NULL;
2124 }
2125 return -ENOMEM;
2126 }
2127
2128 static inline void free_zone_pagesets(int cpu)
2129 {
2130 struct zone *zone;
2131
2132 for_each_zone(zone) {
2133 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2134
2135 /* Free per_cpu_pageset if it is slab allocated */
2136 if (pset != &boot_pageset[cpu])
2137 kfree(pset);
2138 zone_pcp(zone, cpu) = NULL;
2139 }
2140 }
2141
2142 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2143 unsigned long action,
2144 void *hcpu)
2145 {
2146 int cpu = (long)hcpu;
2147 int ret = NOTIFY_OK;
2148
2149 switch (action) {
2150 case CPU_UP_PREPARE:
2151 if (process_zones(cpu))
2152 ret = NOTIFY_BAD;
2153 break;
2154 case CPU_UP_CANCELED:
2155 case CPU_DEAD:
2156 free_zone_pagesets(cpu);
2157 break;
2158 default:
2159 break;
2160 }
2161 return ret;
2162 }
2163
2164 static struct notifier_block __cpuinitdata pageset_notifier =
2165 { &pageset_cpuup_callback, NULL, 0 };
2166
2167 void __init setup_per_cpu_pageset(void)
2168 {
2169 int err;
2170
2171 /* Initialize per_cpu_pageset for cpu 0.
2172 * A cpuup callback will do this for every cpu
2173 * as it comes online
2174 */
2175 err = process_zones(smp_processor_id());
2176 BUG_ON(err);
2177 register_cpu_notifier(&pageset_notifier);
2178 }
2179
2180 #endif
2181
2182 static __meminit
2183 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2184 {
2185 int i;
2186 struct pglist_data *pgdat = zone->zone_pgdat;
2187 size_t alloc_size;
2188
2189 /*
2190 * The per-page waitqueue mechanism uses hashed waitqueues
2191 * per zone.
2192 */
2193 zone->wait_table_hash_nr_entries =
2194 wait_table_hash_nr_entries(zone_size_pages);
2195 zone->wait_table_bits =
2196 wait_table_bits(zone->wait_table_hash_nr_entries);
2197 alloc_size = zone->wait_table_hash_nr_entries
2198 * sizeof(wait_queue_head_t);
2199
2200 if (system_state == SYSTEM_BOOTING) {
2201 zone->wait_table = (wait_queue_head_t *)
2202 alloc_bootmem_node(pgdat, alloc_size);
2203 } else {
2204 /*
2205 * This case means that a zone whose size was 0 gets new memory
2206 * via memory hot-add.
2207 * But it may be the case that a new node was hot-added. In
2208 * this case vmalloc() will not be able to use this new node's
2209 * memory - this wait_table must be initialized to use this new
2210 * node itself as well.
2211 * To use this new node's memory, further consideration will be
2212 * necessary.
2213 */
2214 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2215 }
2216 if (!zone->wait_table)
2217 return -ENOMEM;
2218
2219 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2220 init_waitqueue_head(zone->wait_table + i);
2221
2222 return 0;
2223 }
2224
2225 static __meminit void zone_pcp_init(struct zone *zone)
2226 {
2227 int cpu;
2228 unsigned long batch = zone_batchsize(zone);
2229
2230 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2231 #ifdef CONFIG_NUMA
2232 /* Early boot. Slab allocator not functional yet */
2233 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2234 setup_pageset(&boot_pageset[cpu],0);
2235 #else
2236 setup_pageset(zone_pcp(zone,cpu), batch);
2237 #endif
2238 }
2239 if (zone->present_pages)
2240 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2241 zone->name, zone->present_pages, batch);
2242 }
2243
2244 __meminit int init_currently_empty_zone(struct zone *zone,
2245 unsigned long zone_start_pfn,
2246 unsigned long size,
2247 enum memmap_context context)
2248 {
2249 struct pglist_data *pgdat = zone->zone_pgdat;
2250 int ret;
2251 ret = zone_wait_table_init(zone, size);
2252 if (ret)
2253 return ret;
2254 pgdat->nr_zones = zone_idx(zone) + 1;
2255
2256 zone->zone_start_pfn = zone_start_pfn;
2257
2258 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2259
2260 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2261
2262 return 0;
2263 }
2264
2265 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2266 /*
2267 * Basic iterator support. Return the first range of PFNs for a node
2268 * Note: nid == MAX_NUMNODES returns first region regardless of node
2269 */
2270 static int __init first_active_region_index_in_nid(int nid)
2271 {
2272 int i;
2273
2274 for (i = 0; i < nr_nodemap_entries; i++)
2275 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2276 return i;
2277
2278 return -1;
2279 }
2280
2281 /*
2282 * Basic iterator support. Return the next active range of PFNs for a node
2283 * Note: nid == MAX_NUMNODES returns next region regardles of node
2284 */
2285 static int __init next_active_region_index_in_nid(int index, int nid)
2286 {
2287 for (index = index + 1; index < nr_nodemap_entries; index++)
2288 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2289 return index;
2290
2291 return -1;
2292 }
2293
2294 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2295 /*
2296 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2297 * Architectures may implement their own version but if add_active_range()
2298 * was used and there are no special requirements, this is a convenient
2299 * alternative
2300 */
2301 int __init early_pfn_to_nid(unsigned long pfn)
2302 {
2303 int i;
2304
2305 for (i = 0; i < nr_nodemap_entries; i++) {
2306 unsigned long start_pfn = early_node_map[i].start_pfn;
2307 unsigned long end_pfn = early_node_map[i].end_pfn;
2308
2309 if (start_pfn <= pfn && pfn < end_pfn)
2310 return early_node_map[i].nid;
2311 }
2312
2313 return 0;
2314 }
2315 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2316
2317 /* Basic iterator support to walk early_node_map[] */
2318 #define for_each_active_range_index_in_nid(i, nid) \
2319 for (i = first_active_region_index_in_nid(nid); i != -1; \
2320 i = next_active_region_index_in_nid(i, nid))
2321
2322 /**
2323 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2324 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2325 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2326 *
2327 * If an architecture guarantees that all ranges registered with
2328 * add_active_ranges() contain no holes and may be freed, this
2329 * this function may be used instead of calling free_bootmem() manually.
2330 */
2331 void __init free_bootmem_with_active_regions(int nid,
2332 unsigned long max_low_pfn)
2333 {
2334 int i;
2335
2336 for_each_active_range_index_in_nid(i, nid) {
2337 unsigned long size_pages = 0;
2338 unsigned long end_pfn = early_node_map[i].end_pfn;
2339
2340 if (early_node_map[i].start_pfn >= max_low_pfn)
2341 continue;
2342
2343 if (end_pfn > max_low_pfn)
2344 end_pfn = max_low_pfn;
2345
2346 size_pages = end_pfn - early_node_map[i].start_pfn;
2347 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2348 PFN_PHYS(early_node_map[i].start_pfn),
2349 size_pages << PAGE_SHIFT);
2350 }
2351 }
2352
2353 /**
2354 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2355 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2356 *
2357 * If an architecture guarantees that all ranges registered with
2358 * add_active_ranges() contain no holes and may be freed, this
2359 * function may be used instead of calling memory_present() manually.
2360 */
2361 void __init sparse_memory_present_with_active_regions(int nid)
2362 {
2363 int i;
2364
2365 for_each_active_range_index_in_nid(i, nid)
2366 memory_present(early_node_map[i].nid,
2367 early_node_map[i].start_pfn,
2368 early_node_map[i].end_pfn);
2369 }
2370
2371 /**
2372 * push_node_boundaries - Push node boundaries to at least the requested boundary
2373 * @nid: The nid of the node to push the boundary for
2374 * @start_pfn: The start pfn of the node
2375 * @end_pfn: The end pfn of the node
2376 *
2377 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2378 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2379 * be hotplugged even though no physical memory exists. This function allows
2380 * an arch to push out the node boundaries so mem_map is allocated that can
2381 * be used later.
2382 */
2383 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2384 void __init push_node_boundaries(unsigned int nid,
2385 unsigned long start_pfn, unsigned long end_pfn)
2386 {
2387 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2388 nid, start_pfn, end_pfn);
2389
2390 /* Initialise the boundary for this node if necessary */
2391 if (node_boundary_end_pfn[nid] == 0)
2392 node_boundary_start_pfn[nid] = -1UL;
2393
2394 /* Update the boundaries */
2395 if (node_boundary_start_pfn[nid] > start_pfn)
2396 node_boundary_start_pfn[nid] = start_pfn;
2397 if (node_boundary_end_pfn[nid] < end_pfn)
2398 node_boundary_end_pfn[nid] = end_pfn;
2399 }
2400
2401 /* If necessary, push the node boundary out for reserve hotadd */
2402 static void __init account_node_boundary(unsigned int nid,
2403 unsigned long *start_pfn, unsigned long *end_pfn)
2404 {
2405 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2406 nid, *start_pfn, *end_pfn);
2407
2408 /* Return if boundary information has not been provided */
2409 if (node_boundary_end_pfn[nid] == 0)
2410 return;
2411
2412 /* Check the boundaries and update if necessary */
2413 if (node_boundary_start_pfn[nid] < *start_pfn)
2414 *start_pfn = node_boundary_start_pfn[nid];
2415 if (node_boundary_end_pfn[nid] > *end_pfn)
2416 *end_pfn = node_boundary_end_pfn[nid];
2417 }
2418 #else
2419 void __init push_node_boundaries(unsigned int nid,
2420 unsigned long start_pfn, unsigned long end_pfn) {}
2421
2422 static void __init account_node_boundary(unsigned int nid,
2423 unsigned long *start_pfn, unsigned long *end_pfn) {}
2424 #endif
2425
2426
2427 /**
2428 * get_pfn_range_for_nid - Return the start and end page frames for a node
2429 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2430 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2431 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2432 *
2433 * It returns the start and end page frame of a node based on information
2434 * provided by an arch calling add_active_range(). If called for a node
2435 * with no available memory, a warning is printed and the start and end
2436 * PFNs will be 0.
2437 */
2438 void __init get_pfn_range_for_nid(unsigned int nid,
2439 unsigned long *start_pfn, unsigned long *end_pfn)
2440 {
2441 int i;
2442 *start_pfn = -1UL;
2443 *end_pfn = 0;
2444
2445 for_each_active_range_index_in_nid(i, nid) {
2446 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2447 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2448 }
2449
2450 if (*start_pfn == -1UL) {
2451 printk(KERN_WARNING "Node %u active with no memory\n", nid);
2452 *start_pfn = 0;
2453 }
2454
2455 /* Push the node boundaries out if requested */
2456 account_node_boundary(nid, start_pfn, end_pfn);
2457 }
2458
2459 /*
2460 * Return the number of pages a zone spans in a node, including holes
2461 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2462 */
2463 unsigned long __init zone_spanned_pages_in_node(int nid,
2464 unsigned long zone_type,
2465 unsigned long *ignored)
2466 {
2467 unsigned long node_start_pfn, node_end_pfn;
2468 unsigned long zone_start_pfn, zone_end_pfn;
2469
2470 /* Get the start and end of the node and zone */
2471 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2472 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2473 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2474
2475 /* Check that this node has pages within the zone's required range */
2476 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2477 return 0;
2478
2479 /* Move the zone boundaries inside the node if necessary */
2480 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2481 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2482
2483 /* Return the spanned pages */
2484 return zone_end_pfn - zone_start_pfn;
2485 }
2486
2487 /*
2488 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2489 * then all holes in the requested range will be accounted for.
2490 */
2491 unsigned long __init __absent_pages_in_range(int nid,
2492 unsigned long range_start_pfn,
2493 unsigned long range_end_pfn)
2494 {
2495 int i = 0;
2496 unsigned long prev_end_pfn = 0, hole_pages = 0;
2497 unsigned long start_pfn;
2498
2499 /* Find the end_pfn of the first active range of pfns in the node */
2500 i = first_active_region_index_in_nid(nid);
2501 if (i == -1)
2502 return 0;
2503
2504 /* Account for ranges before physical memory on this node */
2505 if (early_node_map[i].start_pfn > range_start_pfn)
2506 hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2507
2508 prev_end_pfn = early_node_map[i].start_pfn;
2509
2510 /* Find all holes for the zone within the node */
2511 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2512
2513 /* No need to continue if prev_end_pfn is outside the zone */
2514 if (prev_end_pfn >= range_end_pfn)
2515 break;
2516
2517 /* Make sure the end of the zone is not within the hole */
2518 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2519 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2520
2521 /* Update the hole size cound and move on */
2522 if (start_pfn > range_start_pfn) {
2523 BUG_ON(prev_end_pfn > start_pfn);
2524 hole_pages += start_pfn - prev_end_pfn;
2525 }
2526 prev_end_pfn = early_node_map[i].end_pfn;
2527 }
2528
2529 /* Account for ranges past physical memory on this node */
2530 if (range_end_pfn > prev_end_pfn)
2531 hole_pages += range_end_pfn -
2532 max(range_start_pfn, prev_end_pfn);
2533
2534 return hole_pages;
2535 }
2536
2537 /**
2538 * absent_pages_in_range - Return number of page frames in holes within a range
2539 * @start_pfn: The start PFN to start searching for holes
2540 * @end_pfn: The end PFN to stop searching for holes
2541 *
2542 * It returns the number of pages frames in memory holes within a range.
2543 */
2544 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2545 unsigned long end_pfn)
2546 {
2547 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2548 }
2549
2550 /* Return the number of page frames in holes in a zone on a node */
2551 unsigned long __init zone_absent_pages_in_node(int nid,
2552 unsigned long zone_type,
2553 unsigned long *ignored)
2554 {
2555 unsigned long node_start_pfn, node_end_pfn;
2556 unsigned long zone_start_pfn, zone_end_pfn;
2557
2558 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2559 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2560 node_start_pfn);
2561 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2562 node_end_pfn);
2563
2564 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2565 }
2566
2567 #else
2568 static inline unsigned long zone_spanned_pages_in_node(int nid,
2569 unsigned long zone_type,
2570 unsigned long *zones_size)
2571 {
2572 return zones_size[zone_type];
2573 }
2574
2575 static inline unsigned long zone_absent_pages_in_node(int nid,
2576 unsigned long zone_type,
2577 unsigned long *zholes_size)
2578 {
2579 if (!zholes_size)
2580 return 0;
2581
2582 return zholes_size[zone_type];
2583 }
2584
2585 #endif
2586
2587 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
2588 unsigned long *zones_size, unsigned long *zholes_size)
2589 {
2590 unsigned long realtotalpages, totalpages = 0;
2591 enum zone_type i;
2592
2593 for (i = 0; i < MAX_NR_ZONES; i++)
2594 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2595 zones_size);
2596 pgdat->node_spanned_pages = totalpages;
2597
2598 realtotalpages = totalpages;
2599 for (i = 0; i < MAX_NR_ZONES; i++)
2600 realtotalpages -=
2601 zone_absent_pages_in_node(pgdat->node_id, i,
2602 zholes_size);
2603 pgdat->node_present_pages = realtotalpages;
2604 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2605 realtotalpages);
2606 }
2607
2608 /*
2609 * Set up the zone data structures:
2610 * - mark all pages reserved
2611 * - mark all memory queues empty
2612 * - clear the memory bitmaps
2613 */
2614 static void __meminit free_area_init_core(struct pglist_data *pgdat,
2615 unsigned long *zones_size, unsigned long *zholes_size)
2616 {
2617 enum zone_type j;
2618 int nid = pgdat->node_id;
2619 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2620 int ret;
2621
2622 pgdat_resize_init(pgdat);
2623 pgdat->nr_zones = 0;
2624 init_waitqueue_head(&pgdat->kswapd_wait);
2625 pgdat->kswapd_max_order = 0;
2626
2627 for (j = 0; j < MAX_NR_ZONES; j++) {
2628 struct zone *zone = pgdat->node_zones + j;
2629 unsigned long size, realsize, memmap_pages;
2630
2631 size = zone_spanned_pages_in_node(nid, j, zones_size);
2632 realsize = size - zone_absent_pages_in_node(nid, j,
2633 zholes_size);
2634
2635 /*
2636 * Adjust realsize so that it accounts for how much memory
2637 * is used by this zone for memmap. This affects the watermark
2638 * and per-cpu initialisations
2639 */
2640 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2641 if (realsize >= memmap_pages) {
2642 realsize -= memmap_pages;
2643 printk(KERN_DEBUG
2644 " %s zone: %lu pages used for memmap\n",
2645 zone_names[j], memmap_pages);
2646 } else
2647 printk(KERN_WARNING
2648 " %s zone: %lu pages exceeds realsize %lu\n",
2649 zone_names[j], memmap_pages, realsize);
2650
2651 /* Account for reserved pages */
2652 if (j == 0 && realsize > dma_reserve) {
2653 realsize -= dma_reserve;
2654 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
2655 zone_names[0], dma_reserve);
2656 }
2657
2658 if (!is_highmem_idx(j))
2659 nr_kernel_pages += realsize;
2660 nr_all_pages += realsize;
2661
2662 zone->spanned_pages = size;
2663 zone->present_pages = realsize;
2664 #ifdef CONFIG_NUMA
2665 zone->node = nid;
2666 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2667 / 100;
2668 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2669 #endif
2670 zone->name = zone_names[j];
2671 spin_lock_init(&zone->lock);
2672 spin_lock_init(&zone->lru_lock);
2673 zone_seqlock_init(zone);
2674 zone->zone_pgdat = pgdat;
2675
2676 zone->prev_priority = DEF_PRIORITY;
2677
2678 zone_pcp_init(zone);
2679 INIT_LIST_HEAD(&zone->active_list);
2680 INIT_LIST_HEAD(&zone->inactive_list);
2681 zone->nr_scan_active = 0;
2682 zone->nr_scan_inactive = 0;
2683 zap_zone_vm_stats(zone);
2684 atomic_set(&zone->reclaim_in_progress, 0);
2685 if (!size)
2686 continue;
2687
2688 ret = init_currently_empty_zone(zone, zone_start_pfn,
2689 size, MEMMAP_EARLY);
2690 BUG_ON(ret);
2691 zone_start_pfn += size;
2692 }
2693 }
2694
2695 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2696 {
2697 /* Skip empty nodes */
2698 if (!pgdat->node_spanned_pages)
2699 return;
2700
2701 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2702 /* ia64 gets its own node_mem_map, before this, without bootmem */
2703 if (!pgdat->node_mem_map) {
2704 unsigned long size, start, end;
2705 struct page *map;
2706
2707 /*
2708 * The zone's endpoints aren't required to be MAX_ORDER
2709 * aligned but the node_mem_map endpoints must be in order
2710 * for the buddy allocator to function correctly.
2711 */
2712 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2713 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2714 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2715 size = (end - start) * sizeof(struct page);
2716 map = alloc_remap(pgdat->node_id, size);
2717 if (!map)
2718 map = alloc_bootmem_node(pgdat, size);
2719 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2720 }
2721 #ifdef CONFIG_FLATMEM
2722 /*
2723 * With no DISCONTIG, the global mem_map is just set as node 0's
2724 */
2725 if (pgdat == NODE_DATA(0)) {
2726 mem_map = NODE_DATA(0)->node_mem_map;
2727 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2728 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
2729 mem_map -= pgdat->node_start_pfn;
2730 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2731 }
2732 #endif
2733 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2734 }
2735
2736 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2737 unsigned long *zones_size, unsigned long node_start_pfn,
2738 unsigned long *zholes_size)
2739 {
2740 pgdat->node_id = nid;
2741 pgdat->node_start_pfn = node_start_pfn;
2742 calculate_node_totalpages(pgdat, zones_size, zholes_size);
2743
2744 alloc_node_mem_map(pgdat);
2745
2746 free_area_init_core(pgdat, zones_size, zholes_size);
2747 }
2748
2749 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2750 /**
2751 * add_active_range - Register a range of PFNs backed by physical memory
2752 * @nid: The node ID the range resides on
2753 * @start_pfn: The start PFN of the available physical memory
2754 * @end_pfn: The end PFN of the available physical memory
2755 *
2756 * These ranges are stored in an early_node_map[] and later used by
2757 * free_area_init_nodes() to calculate zone sizes and holes. If the
2758 * range spans a memory hole, it is up to the architecture to ensure
2759 * the memory is not freed by the bootmem allocator. If possible
2760 * the range being registered will be merged with existing ranges.
2761 */
2762 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
2763 unsigned long end_pfn)
2764 {
2765 int i;
2766
2767 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
2768 "%d entries of %d used\n",
2769 nid, start_pfn, end_pfn,
2770 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
2771
2772 /* Merge with existing active regions if possible */
2773 for (i = 0; i < nr_nodemap_entries; i++) {
2774 if (early_node_map[i].nid != nid)
2775 continue;
2776
2777 /* Skip if an existing region covers this new one */
2778 if (start_pfn >= early_node_map[i].start_pfn &&
2779 end_pfn <= early_node_map[i].end_pfn)
2780 return;
2781
2782 /* Merge forward if suitable */
2783 if (start_pfn <= early_node_map[i].end_pfn &&
2784 end_pfn > early_node_map[i].end_pfn) {
2785 early_node_map[i].end_pfn = end_pfn;
2786 return;
2787 }
2788
2789 /* Merge backward if suitable */
2790 if (start_pfn < early_node_map[i].end_pfn &&
2791 end_pfn >= early_node_map[i].start_pfn) {
2792 early_node_map[i].start_pfn = start_pfn;
2793 return;
2794 }
2795 }
2796
2797 /* Check that early_node_map is large enough */
2798 if (i >= MAX_ACTIVE_REGIONS) {
2799 printk(KERN_CRIT "More than %d memory regions, truncating\n",
2800 MAX_ACTIVE_REGIONS);
2801 return;
2802 }
2803
2804 early_node_map[i].nid = nid;
2805 early_node_map[i].start_pfn = start_pfn;
2806 early_node_map[i].end_pfn = end_pfn;
2807 nr_nodemap_entries = i + 1;
2808 }
2809
2810 /**
2811 * shrink_active_range - Shrink an existing registered range of PFNs
2812 * @nid: The node id the range is on that should be shrunk
2813 * @old_end_pfn: The old end PFN of the range
2814 * @new_end_pfn: The new PFN of the range
2815 *
2816 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
2817 * The map is kept at the end physical page range that has already been
2818 * registered with add_active_range(). This function allows an arch to shrink
2819 * an existing registered range.
2820 */
2821 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
2822 unsigned long new_end_pfn)
2823 {
2824 int i;
2825
2826 /* Find the old active region end and shrink */
2827 for_each_active_range_index_in_nid(i, nid)
2828 if (early_node_map[i].end_pfn == old_end_pfn) {
2829 early_node_map[i].end_pfn = new_end_pfn;
2830 break;
2831 }
2832 }
2833
2834 /**
2835 * remove_all_active_ranges - Remove all currently registered regions
2836 *
2837 * During discovery, it may be found that a table like SRAT is invalid
2838 * and an alternative discovery method must be used. This function removes
2839 * all currently registered regions.
2840 */
2841 void __init remove_all_active_ranges(void)
2842 {
2843 memset(early_node_map, 0, sizeof(early_node_map));
2844 nr_nodemap_entries = 0;
2845 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2846 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
2847 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
2848 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2849 }
2850
2851 /* Compare two active node_active_regions */
2852 static int __init cmp_node_active_region(const void *a, const void *b)
2853 {
2854 struct node_active_region *arange = (struct node_active_region *)a;
2855 struct node_active_region *brange = (struct node_active_region *)b;
2856
2857 /* Done this way to avoid overflows */
2858 if (arange->start_pfn > brange->start_pfn)
2859 return 1;
2860 if (arange->start_pfn < brange->start_pfn)
2861 return -1;
2862
2863 return 0;
2864 }
2865
2866 /* sort the node_map by start_pfn */
2867 static void __init sort_node_map(void)
2868 {
2869 sort(early_node_map, (size_t)nr_nodemap_entries,
2870 sizeof(struct node_active_region),
2871 cmp_node_active_region, NULL);
2872 }
2873
2874 /* Find the lowest pfn for a node */
2875 unsigned long __init find_min_pfn_for_node(unsigned long nid)
2876 {
2877 int i;
2878 unsigned long min_pfn = ULONG_MAX;
2879
2880 /* Assuming a sorted map, the first range found has the starting pfn */
2881 for_each_active_range_index_in_nid(i, nid)
2882 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
2883
2884 if (min_pfn == ULONG_MAX) {
2885 printk(KERN_WARNING
2886 "Could not find start_pfn for node %lu\n", nid);
2887 return 0;
2888 }
2889
2890 return min_pfn;
2891 }
2892
2893 /**
2894 * find_min_pfn_with_active_regions - Find the minimum PFN registered
2895 *
2896 * It returns the minimum PFN based on information provided via
2897 * add_active_range().
2898 */
2899 unsigned long __init find_min_pfn_with_active_regions(void)
2900 {
2901 return find_min_pfn_for_node(MAX_NUMNODES);
2902 }
2903
2904 /**
2905 * find_max_pfn_with_active_regions - Find the maximum PFN registered
2906 *
2907 * It returns the maximum PFN based on information provided via
2908 * add_active_range().
2909 */
2910 unsigned long __init find_max_pfn_with_active_regions(void)
2911 {
2912 int i;
2913 unsigned long max_pfn = 0;
2914
2915 for (i = 0; i < nr_nodemap_entries; i++)
2916 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
2917
2918 return max_pfn;
2919 }
2920
2921 /**
2922 * free_area_init_nodes - Initialise all pg_data_t and zone data
2923 * @max_zone_pfn: an array of max PFNs for each zone
2924 *
2925 * This will call free_area_init_node() for each active node in the system.
2926 * Using the page ranges provided by add_active_range(), the size of each
2927 * zone in each node and their holes is calculated. If the maximum PFN
2928 * between two adjacent zones match, it is assumed that the zone is empty.
2929 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
2930 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
2931 * starts where the previous one ended. For example, ZONE_DMA32 starts
2932 * at arch_max_dma_pfn.
2933 */
2934 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
2935 {
2936 unsigned long nid;
2937 enum zone_type i;
2938
2939 /* Sort early_node_map as initialisation assumes it is sorted */
2940 sort_node_map();
2941
2942 /* Record where the zone boundaries are */
2943 memset(arch_zone_lowest_possible_pfn, 0,
2944 sizeof(arch_zone_lowest_possible_pfn));
2945 memset(arch_zone_highest_possible_pfn, 0,
2946 sizeof(arch_zone_highest_possible_pfn));
2947 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
2948 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
2949 for (i = 1; i < MAX_NR_ZONES; i++) {
2950 arch_zone_lowest_possible_pfn[i] =
2951 arch_zone_highest_possible_pfn[i-1];
2952 arch_zone_highest_possible_pfn[i] =
2953 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
2954 }
2955
2956 /* Print out the zone ranges */
2957 printk("Zone PFN ranges:\n");
2958 for (i = 0; i < MAX_NR_ZONES; i++)
2959 printk(" %-8s %8lu -> %8lu\n",
2960 zone_names[i],
2961 arch_zone_lowest_possible_pfn[i],
2962 arch_zone_highest_possible_pfn[i]);
2963
2964 /* Print out the early_node_map[] */
2965 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
2966 for (i = 0; i < nr_nodemap_entries; i++)
2967 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
2968 early_node_map[i].start_pfn,
2969 early_node_map[i].end_pfn);
2970
2971 /* Initialise every node */
2972 setup_nr_node_ids();
2973 for_each_online_node(nid) {
2974 pg_data_t *pgdat = NODE_DATA(nid);
2975 free_area_init_node(nid, pgdat, NULL,
2976 find_min_pfn_for_node(nid), NULL);
2977 }
2978 }
2979 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2980
2981 /**
2982 * set_dma_reserve - set the specified number of pages reserved in the first zone
2983 * @new_dma_reserve: The number of pages to mark reserved
2984 *
2985 * The per-cpu batchsize and zone watermarks are determined by present_pages.
2986 * In the DMA zone, a significant percentage may be consumed by kernel image
2987 * and other unfreeable allocations which can skew the watermarks badly. This
2988 * function may optionally be used to account for unfreeable pages in the
2989 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2990 * smaller per-cpu batchsize.
2991 */
2992 void __init set_dma_reserve(unsigned long new_dma_reserve)
2993 {
2994 dma_reserve = new_dma_reserve;
2995 }
2996
2997 #ifndef CONFIG_NEED_MULTIPLE_NODES
2998 static bootmem_data_t contig_bootmem_data;
2999 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3000
3001 EXPORT_SYMBOL(contig_page_data);
3002 #endif
3003
3004 void __init free_area_init(unsigned long *zones_size)
3005 {
3006 free_area_init_node(0, NODE_DATA(0), zones_size,
3007 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3008 }
3009
3010 static int page_alloc_cpu_notify(struct notifier_block *self,
3011 unsigned long action, void *hcpu)
3012 {
3013 int cpu = (unsigned long)hcpu;
3014
3015 if (action == CPU_DEAD) {
3016 local_irq_disable();
3017 __drain_pages(cpu);
3018 vm_events_fold_cpu(cpu);
3019 local_irq_enable();
3020 refresh_cpu_vm_stats(cpu);
3021 }
3022 return NOTIFY_OK;
3023 }
3024
3025 void __init page_alloc_init(void)
3026 {
3027 hotcpu_notifier(page_alloc_cpu_notify, 0);
3028 }
3029
3030 /*
3031 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3032 * or min_free_kbytes changes.
3033 */
3034 static void calculate_totalreserve_pages(void)
3035 {
3036 struct pglist_data *pgdat;
3037 unsigned long reserve_pages = 0;
3038 enum zone_type i, j;
3039
3040 for_each_online_pgdat(pgdat) {
3041 for (i = 0; i < MAX_NR_ZONES; i++) {
3042 struct zone *zone = pgdat->node_zones + i;
3043 unsigned long max = 0;
3044
3045 /* Find valid and maximum lowmem_reserve in the zone */
3046 for (j = i; j < MAX_NR_ZONES; j++) {
3047 if (zone->lowmem_reserve[j] > max)
3048 max = zone->lowmem_reserve[j];
3049 }
3050
3051 /* we treat pages_high as reserved pages. */
3052 max += zone->pages_high;
3053
3054 if (max > zone->present_pages)
3055 max = zone->present_pages;
3056 reserve_pages += max;
3057 }
3058 }
3059 totalreserve_pages = reserve_pages;
3060 }
3061
3062 /*
3063 * setup_per_zone_lowmem_reserve - called whenever
3064 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
3065 * has a correct pages reserved value, so an adequate number of
3066 * pages are left in the zone after a successful __alloc_pages().
3067 */
3068 static void setup_per_zone_lowmem_reserve(void)
3069 {
3070 struct pglist_data *pgdat;
3071 enum zone_type j, idx;
3072
3073 for_each_online_pgdat(pgdat) {
3074 for (j = 0; j < MAX_NR_ZONES; j++) {
3075 struct zone *zone = pgdat->node_zones + j;
3076 unsigned long present_pages = zone->present_pages;
3077
3078 zone->lowmem_reserve[j] = 0;
3079
3080 idx = j;
3081 while (idx) {
3082 struct zone *lower_zone;
3083
3084 idx--;
3085
3086 if (sysctl_lowmem_reserve_ratio[idx] < 1)
3087 sysctl_lowmem_reserve_ratio[idx] = 1;
3088
3089 lower_zone = pgdat->node_zones + idx;
3090 lower_zone->lowmem_reserve[j] = present_pages /
3091 sysctl_lowmem_reserve_ratio[idx];
3092 present_pages += lower_zone->present_pages;
3093 }
3094 }
3095 }
3096
3097 /* update totalreserve_pages */
3098 calculate_totalreserve_pages();
3099 }
3100
3101 /**
3102 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3103 *
3104 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3105 * with respect to min_free_kbytes.
3106 */
3107 void setup_per_zone_pages_min(void)
3108 {
3109 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3110 unsigned long lowmem_pages = 0;
3111 struct zone *zone;
3112 unsigned long flags;
3113
3114 /* Calculate total number of !ZONE_HIGHMEM pages */
3115 for_each_zone(zone) {
3116 if (!is_highmem(zone))
3117 lowmem_pages += zone->present_pages;
3118 }
3119
3120 for_each_zone(zone) {
3121 u64 tmp;
3122
3123 spin_lock_irqsave(&zone->lru_lock, flags);
3124 tmp = (u64)pages_min * zone->present_pages;
3125 do_div(tmp, lowmem_pages);
3126 if (is_highmem(zone)) {
3127 /*
3128 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3129 * need highmem pages, so cap pages_min to a small
3130 * value here.
3131 *
3132 * The (pages_high-pages_low) and (pages_low-pages_min)
3133 * deltas controls asynch page reclaim, and so should
3134 * not be capped for highmem.
3135 */
3136 int min_pages;
3137
3138 min_pages = zone->present_pages / 1024;
3139 if (min_pages < SWAP_CLUSTER_MAX)
3140 min_pages = SWAP_CLUSTER_MAX;
3141 if (min_pages > 128)
3142 min_pages = 128;
3143 zone->pages_min = min_pages;
3144 } else {
3145 /*
3146 * If it's a lowmem zone, reserve a number of pages
3147 * proportionate to the zone's size.
3148 */
3149 zone->pages_min = tmp;
3150 }
3151
3152 zone->pages_low = zone->pages_min + (tmp >> 2);
3153 zone->pages_high = zone->pages_min + (tmp >> 1);
3154 spin_unlock_irqrestore(&zone->lru_lock, flags);
3155 }
3156
3157 /* update totalreserve_pages */
3158 calculate_totalreserve_pages();
3159 }
3160
3161 /*
3162 * Initialise min_free_kbytes.
3163 *
3164 * For small machines we want it small (128k min). For large machines
3165 * we want it large (64MB max). But it is not linear, because network
3166 * bandwidth does not increase linearly with machine size. We use
3167 *
3168 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3169 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
3170 *
3171 * which yields
3172 *
3173 * 16MB: 512k
3174 * 32MB: 724k
3175 * 64MB: 1024k
3176 * 128MB: 1448k
3177 * 256MB: 2048k
3178 * 512MB: 2896k
3179 * 1024MB: 4096k
3180 * 2048MB: 5792k
3181 * 4096MB: 8192k
3182 * 8192MB: 11584k
3183 * 16384MB: 16384k
3184 */
3185 static int __init init_per_zone_pages_min(void)
3186 {
3187 unsigned long lowmem_kbytes;
3188
3189 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3190
3191 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3192 if (min_free_kbytes < 128)
3193 min_free_kbytes = 128;
3194 if (min_free_kbytes > 65536)
3195 min_free_kbytes = 65536;
3196 setup_per_zone_pages_min();
3197 setup_per_zone_lowmem_reserve();
3198 return 0;
3199 }
3200 module_init(init_per_zone_pages_min)
3201
3202 /*
3203 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3204 * that we can call two helper functions whenever min_free_kbytes
3205 * changes.
3206 */
3207 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3208 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3209 {
3210 proc_dointvec(table, write, file, buffer, length, ppos);
3211 if (write)
3212 setup_per_zone_pages_min();
3213 return 0;
3214 }
3215
3216 #ifdef CONFIG_NUMA
3217 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3218 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3219 {
3220 struct zone *zone;
3221 int rc;
3222
3223 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3224 if (rc)
3225 return rc;
3226
3227 for_each_zone(zone)
3228 zone->min_unmapped_pages = (zone->present_pages *
3229 sysctl_min_unmapped_ratio) / 100;
3230 return 0;
3231 }
3232
3233 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3234 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3235 {
3236 struct zone *zone;
3237 int rc;
3238
3239 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3240 if (rc)
3241 return rc;
3242
3243 for_each_zone(zone)
3244 zone->min_slab_pages = (zone->present_pages *
3245 sysctl_min_slab_ratio) / 100;
3246 return 0;
3247 }
3248 #endif
3249
3250 /*
3251 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3252 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3253 * whenever sysctl_lowmem_reserve_ratio changes.
3254 *
3255 * The reserve ratio obviously has absolutely no relation with the
3256 * pages_min watermarks. The lowmem reserve ratio can only make sense
3257 * if in function of the boot time zone sizes.
3258 */
3259 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3260 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3261 {
3262 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3263 setup_per_zone_lowmem_reserve();
3264 return 0;
3265 }
3266
3267 /*
3268 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3269 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
3270 * can have before it gets flushed back to buddy allocator.
3271 */
3272
3273 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3274 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3275 {
3276 struct zone *zone;
3277 unsigned int cpu;
3278 int ret;
3279
3280 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3281 if (!write || (ret == -EINVAL))
3282 return ret;
3283 for_each_zone(zone) {
3284 for_each_online_cpu(cpu) {
3285 unsigned long high;
3286 high = zone->present_pages / percpu_pagelist_fraction;
3287 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3288 }
3289 }
3290 return 0;
3291 }
3292
3293 int hashdist = HASHDIST_DEFAULT;
3294
3295 #ifdef CONFIG_NUMA
3296 static int __init set_hashdist(char *str)
3297 {
3298 if (!str)
3299 return 0;
3300 hashdist = simple_strtoul(str, &str, 0);
3301 return 1;
3302 }
3303 __setup("hashdist=", set_hashdist);
3304 #endif
3305
3306 /*
3307 * allocate a large system hash table from bootmem
3308 * - it is assumed that the hash table must contain an exact power-of-2
3309 * quantity of entries
3310 * - limit is the number of hash buckets, not the total allocation size
3311 */
3312 void *__init alloc_large_system_hash(const char *tablename,
3313 unsigned long bucketsize,
3314 unsigned long numentries,
3315 int scale,
3316 int flags,
3317 unsigned int *_hash_shift,
3318 unsigned int *_hash_mask,
3319 unsigned long limit)
3320 {
3321 unsigned long long max = limit;
3322 unsigned long log2qty, size;
3323 void *table = NULL;
3324
3325 /* allow the kernel cmdline to have a say */
3326 if (!numentries) {
3327 /* round applicable memory size up to nearest megabyte */
3328 numentries = nr_kernel_pages;
3329 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3330 numentries >>= 20 - PAGE_SHIFT;
3331 numentries <<= 20 - PAGE_SHIFT;
3332
3333 /* limit to 1 bucket per 2^scale bytes of low memory */
3334 if (scale > PAGE_SHIFT)
3335 numentries >>= (scale - PAGE_SHIFT);
3336 else
3337 numentries <<= (PAGE_SHIFT - scale);
3338
3339 /* Make sure we've got at least a 0-order allocation.. */
3340 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3341 numentries = PAGE_SIZE / bucketsize;
3342 }
3343 numentries = roundup_pow_of_two(numentries);
3344
3345 /* limit allocation size to 1/16 total memory by default */
3346 if (max == 0) {
3347 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3348 do_div(max, bucketsize);
3349 }
3350
3351 if (numentries > max)
3352 numentries = max;
3353
3354 log2qty = ilog2(numentries);
3355
3356 do {
3357 size = bucketsize << log2qty;
3358 if (flags & HASH_EARLY)
3359 table = alloc_bootmem(size);
3360 else if (hashdist)
3361 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3362 else {
3363 unsigned long order;
3364 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3365 ;
3366 table = (void*) __get_free_pages(GFP_ATOMIC, order);
3367 }
3368 } while (!table && size > PAGE_SIZE && --log2qty);
3369
3370 if (!table)
3371 panic("Failed to allocate %s hash table\n", tablename);
3372
3373 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
3374 tablename,
3375 (1U << log2qty),
3376 ilog2(size) - PAGE_SHIFT,
3377 size);
3378
3379 if (_hash_shift)
3380 *_hash_shift = log2qty;
3381 if (_hash_mask)
3382 *_hash_mask = (1 << log2qty) - 1;
3383
3384 return table;
3385 }
3386
3387 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3388 struct page *pfn_to_page(unsigned long pfn)
3389 {
3390 return __pfn_to_page(pfn);
3391 }
3392 unsigned long page_to_pfn(struct page *page)
3393 {
3394 return __page_to_pfn(page);
3395 }
3396 EXPORT_SYMBOL(pfn_to_page);
3397 EXPORT_SYMBOL(page_to_pfn);
3398 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
3399
3400