]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/page_alloc.c
Merge tag 'mips_5.2_2' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux
[mirror_ubuntu-focal-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/highmem.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/jiffies.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/vmstat.h>
43 #include <linux/mempolicy.h>
44 #include <linux/memremap.h>
45 #include <linux/stop_machine.h>
46 #include <linux/random.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
75 #include "internal.h"
76 #include "shuffle.h"
77
78 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
79 static DEFINE_MUTEX(pcp_batch_high_lock);
80 #define MIN_PERCPU_PAGELIST_FRACTION (8)
81
82 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
83 DEFINE_PER_CPU(int, numa_node);
84 EXPORT_PER_CPU_SYMBOL(numa_node);
85 #endif
86
87 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
88
89 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
90 /*
91 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
92 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
93 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
94 * defined in <linux/topology.h>.
95 */
96 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
97 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
98 int _node_numa_mem_[MAX_NUMNODES];
99 #endif
100
101 /* work_structs for global per-cpu drains */
102 struct pcpu_drain {
103 struct zone *zone;
104 struct work_struct work;
105 };
106 DEFINE_MUTEX(pcpu_drain_mutex);
107 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
108
109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
110 volatile unsigned long latent_entropy __latent_entropy;
111 EXPORT_SYMBOL(latent_entropy);
112 #endif
113
114 /*
115 * Array of node states.
116 */
117 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 [N_POSSIBLE] = NODE_MASK_ALL,
119 [N_ONLINE] = { { [0] = 1UL } },
120 #ifndef CONFIG_NUMA
121 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
122 #ifdef CONFIG_HIGHMEM
123 [N_HIGH_MEMORY] = { { [0] = 1UL } },
124 #endif
125 [N_MEMORY] = { { [0] = 1UL } },
126 [N_CPU] = { { [0] = 1UL } },
127 #endif /* NUMA */
128 };
129 EXPORT_SYMBOL(node_states);
130
131 atomic_long_t _totalram_pages __read_mostly;
132 EXPORT_SYMBOL(_totalram_pages);
133 unsigned long totalreserve_pages __read_mostly;
134 unsigned long totalcma_pages __read_mostly;
135
136 int percpu_pagelist_fraction;
137 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
138
139 /*
140 * A cached value of the page's pageblock's migratetype, used when the page is
141 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
142 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
143 * Also the migratetype set in the page does not necessarily match the pcplist
144 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
145 * other index - this ensures that it will be put on the correct CMA freelist.
146 */
147 static inline int get_pcppage_migratetype(struct page *page)
148 {
149 return page->index;
150 }
151
152 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
153 {
154 page->index = migratetype;
155 }
156
157 #ifdef CONFIG_PM_SLEEP
158 /*
159 * The following functions are used by the suspend/hibernate code to temporarily
160 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
161 * while devices are suspended. To avoid races with the suspend/hibernate code,
162 * they should always be called with system_transition_mutex held
163 * (gfp_allowed_mask also should only be modified with system_transition_mutex
164 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
165 * with that modification).
166 */
167
168 static gfp_t saved_gfp_mask;
169
170 void pm_restore_gfp_mask(void)
171 {
172 WARN_ON(!mutex_is_locked(&system_transition_mutex));
173 if (saved_gfp_mask) {
174 gfp_allowed_mask = saved_gfp_mask;
175 saved_gfp_mask = 0;
176 }
177 }
178
179 void pm_restrict_gfp_mask(void)
180 {
181 WARN_ON(!mutex_is_locked(&system_transition_mutex));
182 WARN_ON(saved_gfp_mask);
183 saved_gfp_mask = gfp_allowed_mask;
184 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
185 }
186
187 bool pm_suspended_storage(void)
188 {
189 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
190 return false;
191 return true;
192 }
193 #endif /* CONFIG_PM_SLEEP */
194
195 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
196 unsigned int pageblock_order __read_mostly;
197 #endif
198
199 static void __free_pages_ok(struct page *page, unsigned int order);
200
201 /*
202 * results with 256, 32 in the lowmem_reserve sysctl:
203 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
204 * 1G machine -> (16M dma, 784M normal, 224M high)
205 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
206 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
207 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
208 *
209 * TBD: should special case ZONE_DMA32 machines here - in those we normally
210 * don't need any ZONE_NORMAL reservation
211 */
212 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
213 #ifdef CONFIG_ZONE_DMA
214 [ZONE_DMA] = 256,
215 #endif
216 #ifdef CONFIG_ZONE_DMA32
217 [ZONE_DMA32] = 256,
218 #endif
219 [ZONE_NORMAL] = 32,
220 #ifdef CONFIG_HIGHMEM
221 [ZONE_HIGHMEM] = 0,
222 #endif
223 [ZONE_MOVABLE] = 0,
224 };
225
226 EXPORT_SYMBOL(totalram_pages);
227
228 static char * const zone_names[MAX_NR_ZONES] = {
229 #ifdef CONFIG_ZONE_DMA
230 "DMA",
231 #endif
232 #ifdef CONFIG_ZONE_DMA32
233 "DMA32",
234 #endif
235 "Normal",
236 #ifdef CONFIG_HIGHMEM
237 "HighMem",
238 #endif
239 "Movable",
240 #ifdef CONFIG_ZONE_DEVICE
241 "Device",
242 #endif
243 };
244
245 const char * const migratetype_names[MIGRATE_TYPES] = {
246 "Unmovable",
247 "Movable",
248 "Reclaimable",
249 "HighAtomic",
250 #ifdef CONFIG_CMA
251 "CMA",
252 #endif
253 #ifdef CONFIG_MEMORY_ISOLATION
254 "Isolate",
255 #endif
256 };
257
258 compound_page_dtor * const compound_page_dtors[] = {
259 NULL,
260 free_compound_page,
261 #ifdef CONFIG_HUGETLB_PAGE
262 free_huge_page,
263 #endif
264 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
265 free_transhuge_page,
266 #endif
267 };
268
269 int min_free_kbytes = 1024;
270 int user_min_free_kbytes = -1;
271 #ifdef CONFIG_DISCONTIGMEM
272 /*
273 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
274 * are not on separate NUMA nodes. Functionally this works but with
275 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
276 * quite small. By default, do not boost watermarks on discontigmem as in
277 * many cases very high-order allocations like THP are likely to be
278 * unsupported and the premature reclaim offsets the advantage of long-term
279 * fragmentation avoidance.
280 */
281 int watermark_boost_factor __read_mostly;
282 #else
283 int watermark_boost_factor __read_mostly = 15000;
284 #endif
285 int watermark_scale_factor = 10;
286
287 static unsigned long nr_kernel_pages __initdata;
288 static unsigned long nr_all_pages __initdata;
289 static unsigned long dma_reserve __initdata;
290
291 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
292 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
293 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
294 static unsigned long required_kernelcore __initdata;
295 static unsigned long required_kernelcore_percent __initdata;
296 static unsigned long required_movablecore __initdata;
297 static unsigned long required_movablecore_percent __initdata;
298 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
299 static bool mirrored_kernelcore __meminitdata;
300
301 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
302 int movable_zone;
303 EXPORT_SYMBOL(movable_zone);
304 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
305
306 #if MAX_NUMNODES > 1
307 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
308 unsigned int nr_online_nodes __read_mostly = 1;
309 EXPORT_SYMBOL(nr_node_ids);
310 EXPORT_SYMBOL(nr_online_nodes);
311 #endif
312
313 int page_group_by_mobility_disabled __read_mostly;
314
315 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
316 /*
317 * During boot we initialize deferred pages on-demand, as needed, but once
318 * page_alloc_init_late() has finished, the deferred pages are all initialized,
319 * and we can permanently disable that path.
320 */
321 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
322
323 /*
324 * Calling kasan_free_pages() only after deferred memory initialization
325 * has completed. Poisoning pages during deferred memory init will greatly
326 * lengthen the process and cause problem in large memory systems as the
327 * deferred pages initialization is done with interrupt disabled.
328 *
329 * Assuming that there will be no reference to those newly initialized
330 * pages before they are ever allocated, this should have no effect on
331 * KASAN memory tracking as the poison will be properly inserted at page
332 * allocation time. The only corner case is when pages are allocated by
333 * on-demand allocation and then freed again before the deferred pages
334 * initialization is done, but this is not likely to happen.
335 */
336 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
337 {
338 if (!static_branch_unlikely(&deferred_pages))
339 kasan_free_pages(page, order);
340 }
341
342 /* Returns true if the struct page for the pfn is uninitialised */
343 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
344 {
345 int nid = early_pfn_to_nid(pfn);
346
347 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
348 return true;
349
350 return false;
351 }
352
353 /*
354 * Returns true when the remaining initialisation should be deferred until
355 * later in the boot cycle when it can be parallelised.
356 */
357 static bool __meminit
358 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
359 {
360 static unsigned long prev_end_pfn, nr_initialised;
361
362 /*
363 * prev_end_pfn static that contains the end of previous zone
364 * No need to protect because called very early in boot before smp_init.
365 */
366 if (prev_end_pfn != end_pfn) {
367 prev_end_pfn = end_pfn;
368 nr_initialised = 0;
369 }
370
371 /* Always populate low zones for address-constrained allocations */
372 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
373 return false;
374
375 /*
376 * We start only with one section of pages, more pages are added as
377 * needed until the rest of deferred pages are initialized.
378 */
379 nr_initialised++;
380 if ((nr_initialised > PAGES_PER_SECTION) &&
381 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
382 NODE_DATA(nid)->first_deferred_pfn = pfn;
383 return true;
384 }
385 return false;
386 }
387 #else
388 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
389
390 static inline bool early_page_uninitialised(unsigned long pfn)
391 {
392 return false;
393 }
394
395 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
396 {
397 return false;
398 }
399 #endif
400
401 /* Return a pointer to the bitmap storing bits affecting a block of pages */
402 static inline unsigned long *get_pageblock_bitmap(struct page *page,
403 unsigned long pfn)
404 {
405 #ifdef CONFIG_SPARSEMEM
406 return __pfn_to_section(pfn)->pageblock_flags;
407 #else
408 return page_zone(page)->pageblock_flags;
409 #endif /* CONFIG_SPARSEMEM */
410 }
411
412 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
413 {
414 #ifdef CONFIG_SPARSEMEM
415 pfn &= (PAGES_PER_SECTION-1);
416 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
417 #else
418 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
419 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
420 #endif /* CONFIG_SPARSEMEM */
421 }
422
423 /**
424 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
425 * @page: The page within the block of interest
426 * @pfn: The target page frame number
427 * @end_bitidx: The last bit of interest to retrieve
428 * @mask: mask of bits that the caller is interested in
429 *
430 * Return: pageblock_bits flags
431 */
432 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
433 unsigned long pfn,
434 unsigned long end_bitidx,
435 unsigned long mask)
436 {
437 unsigned long *bitmap;
438 unsigned long bitidx, word_bitidx;
439 unsigned long word;
440
441 bitmap = get_pageblock_bitmap(page, pfn);
442 bitidx = pfn_to_bitidx(page, pfn);
443 word_bitidx = bitidx / BITS_PER_LONG;
444 bitidx &= (BITS_PER_LONG-1);
445
446 word = bitmap[word_bitidx];
447 bitidx += end_bitidx;
448 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
449 }
450
451 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
452 unsigned long end_bitidx,
453 unsigned long mask)
454 {
455 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
456 }
457
458 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
459 {
460 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
461 }
462
463 /**
464 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
465 * @page: The page within the block of interest
466 * @flags: The flags to set
467 * @pfn: The target page frame number
468 * @end_bitidx: The last bit of interest
469 * @mask: mask of bits that the caller is interested in
470 */
471 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
472 unsigned long pfn,
473 unsigned long end_bitidx,
474 unsigned long mask)
475 {
476 unsigned long *bitmap;
477 unsigned long bitidx, word_bitidx;
478 unsigned long old_word, word;
479
480 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
481 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
482
483 bitmap = get_pageblock_bitmap(page, pfn);
484 bitidx = pfn_to_bitidx(page, pfn);
485 word_bitidx = bitidx / BITS_PER_LONG;
486 bitidx &= (BITS_PER_LONG-1);
487
488 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
489
490 bitidx += end_bitidx;
491 mask <<= (BITS_PER_LONG - bitidx - 1);
492 flags <<= (BITS_PER_LONG - bitidx - 1);
493
494 word = READ_ONCE(bitmap[word_bitidx]);
495 for (;;) {
496 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
497 if (word == old_word)
498 break;
499 word = old_word;
500 }
501 }
502
503 void set_pageblock_migratetype(struct page *page, int migratetype)
504 {
505 if (unlikely(page_group_by_mobility_disabled &&
506 migratetype < MIGRATE_PCPTYPES))
507 migratetype = MIGRATE_UNMOVABLE;
508
509 set_pageblock_flags_group(page, (unsigned long)migratetype,
510 PB_migrate, PB_migrate_end);
511 }
512
513 #ifdef CONFIG_DEBUG_VM
514 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
515 {
516 int ret = 0;
517 unsigned seq;
518 unsigned long pfn = page_to_pfn(page);
519 unsigned long sp, start_pfn;
520
521 do {
522 seq = zone_span_seqbegin(zone);
523 start_pfn = zone->zone_start_pfn;
524 sp = zone->spanned_pages;
525 if (!zone_spans_pfn(zone, pfn))
526 ret = 1;
527 } while (zone_span_seqretry(zone, seq));
528
529 if (ret)
530 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
531 pfn, zone_to_nid(zone), zone->name,
532 start_pfn, start_pfn + sp);
533
534 return ret;
535 }
536
537 static int page_is_consistent(struct zone *zone, struct page *page)
538 {
539 if (!pfn_valid_within(page_to_pfn(page)))
540 return 0;
541 if (zone != page_zone(page))
542 return 0;
543
544 return 1;
545 }
546 /*
547 * Temporary debugging check for pages not lying within a given zone.
548 */
549 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
550 {
551 if (page_outside_zone_boundaries(zone, page))
552 return 1;
553 if (!page_is_consistent(zone, page))
554 return 1;
555
556 return 0;
557 }
558 #else
559 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
560 {
561 return 0;
562 }
563 #endif
564
565 static void bad_page(struct page *page, const char *reason,
566 unsigned long bad_flags)
567 {
568 static unsigned long resume;
569 static unsigned long nr_shown;
570 static unsigned long nr_unshown;
571
572 /*
573 * Allow a burst of 60 reports, then keep quiet for that minute;
574 * or allow a steady drip of one report per second.
575 */
576 if (nr_shown == 60) {
577 if (time_before(jiffies, resume)) {
578 nr_unshown++;
579 goto out;
580 }
581 if (nr_unshown) {
582 pr_alert(
583 "BUG: Bad page state: %lu messages suppressed\n",
584 nr_unshown);
585 nr_unshown = 0;
586 }
587 nr_shown = 0;
588 }
589 if (nr_shown++ == 0)
590 resume = jiffies + 60 * HZ;
591
592 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
593 current->comm, page_to_pfn(page));
594 __dump_page(page, reason);
595 bad_flags &= page->flags;
596 if (bad_flags)
597 pr_alert("bad because of flags: %#lx(%pGp)\n",
598 bad_flags, &bad_flags);
599 dump_page_owner(page);
600
601 print_modules();
602 dump_stack();
603 out:
604 /* Leave bad fields for debug, except PageBuddy could make trouble */
605 page_mapcount_reset(page); /* remove PageBuddy */
606 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
607 }
608
609 /*
610 * Higher-order pages are called "compound pages". They are structured thusly:
611 *
612 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
613 *
614 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
615 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
616 *
617 * The first tail page's ->compound_dtor holds the offset in array of compound
618 * page destructors. See compound_page_dtors.
619 *
620 * The first tail page's ->compound_order holds the order of allocation.
621 * This usage means that zero-order pages may not be compound.
622 */
623
624 void free_compound_page(struct page *page)
625 {
626 __free_pages_ok(page, compound_order(page));
627 }
628
629 void prep_compound_page(struct page *page, unsigned int order)
630 {
631 int i;
632 int nr_pages = 1 << order;
633
634 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
635 set_compound_order(page, order);
636 __SetPageHead(page);
637 for (i = 1; i < nr_pages; i++) {
638 struct page *p = page + i;
639 set_page_count(p, 0);
640 p->mapping = TAIL_MAPPING;
641 set_compound_head(p, page);
642 }
643 atomic_set(compound_mapcount_ptr(page), -1);
644 }
645
646 #ifdef CONFIG_DEBUG_PAGEALLOC
647 unsigned int _debug_guardpage_minorder;
648 bool _debug_pagealloc_enabled __read_mostly
649 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
650 EXPORT_SYMBOL(_debug_pagealloc_enabled);
651 bool _debug_guardpage_enabled __read_mostly;
652
653 static int __init early_debug_pagealloc(char *buf)
654 {
655 if (!buf)
656 return -EINVAL;
657 return kstrtobool(buf, &_debug_pagealloc_enabled);
658 }
659 early_param("debug_pagealloc", early_debug_pagealloc);
660
661 static bool need_debug_guardpage(void)
662 {
663 /* If we don't use debug_pagealloc, we don't need guard page */
664 if (!debug_pagealloc_enabled())
665 return false;
666
667 if (!debug_guardpage_minorder())
668 return false;
669
670 return true;
671 }
672
673 static void init_debug_guardpage(void)
674 {
675 if (!debug_pagealloc_enabled())
676 return;
677
678 if (!debug_guardpage_minorder())
679 return;
680
681 _debug_guardpage_enabled = true;
682 }
683
684 struct page_ext_operations debug_guardpage_ops = {
685 .need = need_debug_guardpage,
686 .init = init_debug_guardpage,
687 };
688
689 static int __init debug_guardpage_minorder_setup(char *buf)
690 {
691 unsigned long res;
692
693 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
694 pr_err("Bad debug_guardpage_minorder value\n");
695 return 0;
696 }
697 _debug_guardpage_minorder = res;
698 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
699 return 0;
700 }
701 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
702
703 static inline bool set_page_guard(struct zone *zone, struct page *page,
704 unsigned int order, int migratetype)
705 {
706 struct page_ext *page_ext;
707
708 if (!debug_guardpage_enabled())
709 return false;
710
711 if (order >= debug_guardpage_minorder())
712 return false;
713
714 page_ext = lookup_page_ext(page);
715 if (unlikely(!page_ext))
716 return false;
717
718 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
719
720 INIT_LIST_HEAD(&page->lru);
721 set_page_private(page, order);
722 /* Guard pages are not available for any usage */
723 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
724
725 return true;
726 }
727
728 static inline void clear_page_guard(struct zone *zone, struct page *page,
729 unsigned int order, int migratetype)
730 {
731 struct page_ext *page_ext;
732
733 if (!debug_guardpage_enabled())
734 return;
735
736 page_ext = lookup_page_ext(page);
737 if (unlikely(!page_ext))
738 return;
739
740 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
741
742 set_page_private(page, 0);
743 if (!is_migrate_isolate(migratetype))
744 __mod_zone_freepage_state(zone, (1 << order), migratetype);
745 }
746 #else
747 struct page_ext_operations debug_guardpage_ops;
748 static inline bool set_page_guard(struct zone *zone, struct page *page,
749 unsigned int order, int migratetype) { return false; }
750 static inline void clear_page_guard(struct zone *zone, struct page *page,
751 unsigned int order, int migratetype) {}
752 #endif
753
754 static inline void set_page_order(struct page *page, unsigned int order)
755 {
756 set_page_private(page, order);
757 __SetPageBuddy(page);
758 }
759
760 /*
761 * This function checks whether a page is free && is the buddy
762 * we can coalesce a page and its buddy if
763 * (a) the buddy is not in a hole (check before calling!) &&
764 * (b) the buddy is in the buddy system &&
765 * (c) a page and its buddy have the same order &&
766 * (d) a page and its buddy are in the same zone.
767 *
768 * For recording whether a page is in the buddy system, we set PageBuddy.
769 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
770 *
771 * For recording page's order, we use page_private(page).
772 */
773 static inline int page_is_buddy(struct page *page, struct page *buddy,
774 unsigned int order)
775 {
776 if (page_is_guard(buddy) && page_order(buddy) == order) {
777 if (page_zone_id(page) != page_zone_id(buddy))
778 return 0;
779
780 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
781
782 return 1;
783 }
784
785 if (PageBuddy(buddy) && page_order(buddy) == order) {
786 /*
787 * zone check is done late to avoid uselessly
788 * calculating zone/node ids for pages that could
789 * never merge.
790 */
791 if (page_zone_id(page) != page_zone_id(buddy))
792 return 0;
793
794 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
795
796 return 1;
797 }
798 return 0;
799 }
800
801 #ifdef CONFIG_COMPACTION
802 static inline struct capture_control *task_capc(struct zone *zone)
803 {
804 struct capture_control *capc = current->capture_control;
805
806 return capc &&
807 !(current->flags & PF_KTHREAD) &&
808 !capc->page &&
809 capc->cc->zone == zone &&
810 capc->cc->direct_compaction ? capc : NULL;
811 }
812
813 static inline bool
814 compaction_capture(struct capture_control *capc, struct page *page,
815 int order, int migratetype)
816 {
817 if (!capc || order != capc->cc->order)
818 return false;
819
820 /* Do not accidentally pollute CMA or isolated regions*/
821 if (is_migrate_cma(migratetype) ||
822 is_migrate_isolate(migratetype))
823 return false;
824
825 /*
826 * Do not let lower order allocations polluate a movable pageblock.
827 * This might let an unmovable request use a reclaimable pageblock
828 * and vice-versa but no more than normal fallback logic which can
829 * have trouble finding a high-order free page.
830 */
831 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
832 return false;
833
834 capc->page = page;
835 return true;
836 }
837
838 #else
839 static inline struct capture_control *task_capc(struct zone *zone)
840 {
841 return NULL;
842 }
843
844 static inline bool
845 compaction_capture(struct capture_control *capc, struct page *page,
846 int order, int migratetype)
847 {
848 return false;
849 }
850 #endif /* CONFIG_COMPACTION */
851
852 /*
853 * Freeing function for a buddy system allocator.
854 *
855 * The concept of a buddy system is to maintain direct-mapped table
856 * (containing bit values) for memory blocks of various "orders".
857 * The bottom level table contains the map for the smallest allocatable
858 * units of memory (here, pages), and each level above it describes
859 * pairs of units from the levels below, hence, "buddies".
860 * At a high level, all that happens here is marking the table entry
861 * at the bottom level available, and propagating the changes upward
862 * as necessary, plus some accounting needed to play nicely with other
863 * parts of the VM system.
864 * At each level, we keep a list of pages, which are heads of continuous
865 * free pages of length of (1 << order) and marked with PageBuddy.
866 * Page's order is recorded in page_private(page) field.
867 * So when we are allocating or freeing one, we can derive the state of the
868 * other. That is, if we allocate a small block, and both were
869 * free, the remainder of the region must be split into blocks.
870 * If a block is freed, and its buddy is also free, then this
871 * triggers coalescing into a block of larger size.
872 *
873 * -- nyc
874 */
875
876 static inline void __free_one_page(struct page *page,
877 unsigned long pfn,
878 struct zone *zone, unsigned int order,
879 int migratetype)
880 {
881 unsigned long combined_pfn;
882 unsigned long uninitialized_var(buddy_pfn);
883 struct page *buddy;
884 unsigned int max_order;
885 struct capture_control *capc = task_capc(zone);
886
887 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
888
889 VM_BUG_ON(!zone_is_initialized(zone));
890 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
891
892 VM_BUG_ON(migratetype == -1);
893 if (likely(!is_migrate_isolate(migratetype)))
894 __mod_zone_freepage_state(zone, 1 << order, migratetype);
895
896 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
897 VM_BUG_ON_PAGE(bad_range(zone, page), page);
898
899 continue_merging:
900 while (order < max_order - 1) {
901 if (compaction_capture(capc, page, order, migratetype)) {
902 __mod_zone_freepage_state(zone, -(1 << order),
903 migratetype);
904 return;
905 }
906 buddy_pfn = __find_buddy_pfn(pfn, order);
907 buddy = page + (buddy_pfn - pfn);
908
909 if (!pfn_valid_within(buddy_pfn))
910 goto done_merging;
911 if (!page_is_buddy(page, buddy, order))
912 goto done_merging;
913 /*
914 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
915 * merge with it and move up one order.
916 */
917 if (page_is_guard(buddy))
918 clear_page_guard(zone, buddy, order, migratetype);
919 else
920 del_page_from_free_area(buddy, &zone->free_area[order]);
921 combined_pfn = buddy_pfn & pfn;
922 page = page + (combined_pfn - pfn);
923 pfn = combined_pfn;
924 order++;
925 }
926 if (max_order < MAX_ORDER) {
927 /* If we are here, it means order is >= pageblock_order.
928 * We want to prevent merge between freepages on isolate
929 * pageblock and normal pageblock. Without this, pageblock
930 * isolation could cause incorrect freepage or CMA accounting.
931 *
932 * We don't want to hit this code for the more frequent
933 * low-order merging.
934 */
935 if (unlikely(has_isolate_pageblock(zone))) {
936 int buddy_mt;
937
938 buddy_pfn = __find_buddy_pfn(pfn, order);
939 buddy = page + (buddy_pfn - pfn);
940 buddy_mt = get_pageblock_migratetype(buddy);
941
942 if (migratetype != buddy_mt
943 && (is_migrate_isolate(migratetype) ||
944 is_migrate_isolate(buddy_mt)))
945 goto done_merging;
946 }
947 max_order++;
948 goto continue_merging;
949 }
950
951 done_merging:
952 set_page_order(page, order);
953
954 /*
955 * If this is not the largest possible page, check if the buddy
956 * of the next-highest order is free. If it is, it's possible
957 * that pages are being freed that will coalesce soon. In case,
958 * that is happening, add the free page to the tail of the list
959 * so it's less likely to be used soon and more likely to be merged
960 * as a higher order page
961 */
962 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
963 && !is_shuffle_order(order)) {
964 struct page *higher_page, *higher_buddy;
965 combined_pfn = buddy_pfn & pfn;
966 higher_page = page + (combined_pfn - pfn);
967 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
968 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
969 if (pfn_valid_within(buddy_pfn) &&
970 page_is_buddy(higher_page, higher_buddy, order + 1)) {
971 add_to_free_area_tail(page, &zone->free_area[order],
972 migratetype);
973 return;
974 }
975 }
976
977 if (is_shuffle_order(order))
978 add_to_free_area_random(page, &zone->free_area[order],
979 migratetype);
980 else
981 add_to_free_area(page, &zone->free_area[order], migratetype);
982
983 }
984
985 /*
986 * A bad page could be due to a number of fields. Instead of multiple branches,
987 * try and check multiple fields with one check. The caller must do a detailed
988 * check if necessary.
989 */
990 static inline bool page_expected_state(struct page *page,
991 unsigned long check_flags)
992 {
993 if (unlikely(atomic_read(&page->_mapcount) != -1))
994 return false;
995
996 if (unlikely((unsigned long)page->mapping |
997 page_ref_count(page) |
998 #ifdef CONFIG_MEMCG
999 (unsigned long)page->mem_cgroup |
1000 #endif
1001 (page->flags & check_flags)))
1002 return false;
1003
1004 return true;
1005 }
1006
1007 static void free_pages_check_bad(struct page *page)
1008 {
1009 const char *bad_reason;
1010 unsigned long bad_flags;
1011
1012 bad_reason = NULL;
1013 bad_flags = 0;
1014
1015 if (unlikely(atomic_read(&page->_mapcount) != -1))
1016 bad_reason = "nonzero mapcount";
1017 if (unlikely(page->mapping != NULL))
1018 bad_reason = "non-NULL mapping";
1019 if (unlikely(page_ref_count(page) != 0))
1020 bad_reason = "nonzero _refcount";
1021 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1022 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1023 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1024 }
1025 #ifdef CONFIG_MEMCG
1026 if (unlikely(page->mem_cgroup))
1027 bad_reason = "page still charged to cgroup";
1028 #endif
1029 bad_page(page, bad_reason, bad_flags);
1030 }
1031
1032 static inline int free_pages_check(struct page *page)
1033 {
1034 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1035 return 0;
1036
1037 /* Something has gone sideways, find it */
1038 free_pages_check_bad(page);
1039 return 1;
1040 }
1041
1042 static int free_tail_pages_check(struct page *head_page, struct page *page)
1043 {
1044 int ret = 1;
1045
1046 /*
1047 * We rely page->lru.next never has bit 0 set, unless the page
1048 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1049 */
1050 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1051
1052 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1053 ret = 0;
1054 goto out;
1055 }
1056 switch (page - head_page) {
1057 case 1:
1058 /* the first tail page: ->mapping may be compound_mapcount() */
1059 if (unlikely(compound_mapcount(page))) {
1060 bad_page(page, "nonzero compound_mapcount", 0);
1061 goto out;
1062 }
1063 break;
1064 case 2:
1065 /*
1066 * the second tail page: ->mapping is
1067 * deferred_list.next -- ignore value.
1068 */
1069 break;
1070 default:
1071 if (page->mapping != TAIL_MAPPING) {
1072 bad_page(page, "corrupted mapping in tail page", 0);
1073 goto out;
1074 }
1075 break;
1076 }
1077 if (unlikely(!PageTail(page))) {
1078 bad_page(page, "PageTail not set", 0);
1079 goto out;
1080 }
1081 if (unlikely(compound_head(page) != head_page)) {
1082 bad_page(page, "compound_head not consistent", 0);
1083 goto out;
1084 }
1085 ret = 0;
1086 out:
1087 page->mapping = NULL;
1088 clear_compound_head(page);
1089 return ret;
1090 }
1091
1092 static __always_inline bool free_pages_prepare(struct page *page,
1093 unsigned int order, bool check_free)
1094 {
1095 int bad = 0;
1096
1097 VM_BUG_ON_PAGE(PageTail(page), page);
1098
1099 trace_mm_page_free(page, order);
1100
1101 /*
1102 * Check tail pages before head page information is cleared to
1103 * avoid checking PageCompound for order-0 pages.
1104 */
1105 if (unlikely(order)) {
1106 bool compound = PageCompound(page);
1107 int i;
1108
1109 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1110
1111 if (compound)
1112 ClearPageDoubleMap(page);
1113 for (i = 1; i < (1 << order); i++) {
1114 if (compound)
1115 bad += free_tail_pages_check(page, page + i);
1116 if (unlikely(free_pages_check(page + i))) {
1117 bad++;
1118 continue;
1119 }
1120 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1121 }
1122 }
1123 if (PageMappingFlags(page))
1124 page->mapping = NULL;
1125 if (memcg_kmem_enabled() && PageKmemcg(page))
1126 __memcg_kmem_uncharge(page, order);
1127 if (check_free)
1128 bad += free_pages_check(page);
1129 if (bad)
1130 return false;
1131
1132 page_cpupid_reset_last(page);
1133 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1134 reset_page_owner(page, order);
1135
1136 if (!PageHighMem(page)) {
1137 debug_check_no_locks_freed(page_address(page),
1138 PAGE_SIZE << order);
1139 debug_check_no_obj_freed(page_address(page),
1140 PAGE_SIZE << order);
1141 }
1142 arch_free_page(page, order);
1143 kernel_poison_pages(page, 1 << order, 0);
1144 if (debug_pagealloc_enabled())
1145 kernel_map_pages(page, 1 << order, 0);
1146
1147 kasan_free_nondeferred_pages(page, order);
1148
1149 return true;
1150 }
1151
1152 #ifdef CONFIG_DEBUG_VM
1153 static inline bool free_pcp_prepare(struct page *page)
1154 {
1155 return free_pages_prepare(page, 0, true);
1156 }
1157
1158 static inline bool bulkfree_pcp_prepare(struct page *page)
1159 {
1160 return false;
1161 }
1162 #else
1163 static bool free_pcp_prepare(struct page *page)
1164 {
1165 return free_pages_prepare(page, 0, false);
1166 }
1167
1168 static bool bulkfree_pcp_prepare(struct page *page)
1169 {
1170 return free_pages_check(page);
1171 }
1172 #endif /* CONFIG_DEBUG_VM */
1173
1174 static inline void prefetch_buddy(struct page *page)
1175 {
1176 unsigned long pfn = page_to_pfn(page);
1177 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1178 struct page *buddy = page + (buddy_pfn - pfn);
1179
1180 prefetch(buddy);
1181 }
1182
1183 /*
1184 * Frees a number of pages from the PCP lists
1185 * Assumes all pages on list are in same zone, and of same order.
1186 * count is the number of pages to free.
1187 *
1188 * If the zone was previously in an "all pages pinned" state then look to
1189 * see if this freeing clears that state.
1190 *
1191 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1192 * pinned" detection logic.
1193 */
1194 static void free_pcppages_bulk(struct zone *zone, int count,
1195 struct per_cpu_pages *pcp)
1196 {
1197 int migratetype = 0;
1198 int batch_free = 0;
1199 int prefetch_nr = 0;
1200 bool isolated_pageblocks;
1201 struct page *page, *tmp;
1202 LIST_HEAD(head);
1203
1204 while (count) {
1205 struct list_head *list;
1206
1207 /*
1208 * Remove pages from lists in a round-robin fashion. A
1209 * batch_free count is maintained that is incremented when an
1210 * empty list is encountered. This is so more pages are freed
1211 * off fuller lists instead of spinning excessively around empty
1212 * lists
1213 */
1214 do {
1215 batch_free++;
1216 if (++migratetype == MIGRATE_PCPTYPES)
1217 migratetype = 0;
1218 list = &pcp->lists[migratetype];
1219 } while (list_empty(list));
1220
1221 /* This is the only non-empty list. Free them all. */
1222 if (batch_free == MIGRATE_PCPTYPES)
1223 batch_free = count;
1224
1225 do {
1226 page = list_last_entry(list, struct page, lru);
1227 /* must delete to avoid corrupting pcp list */
1228 list_del(&page->lru);
1229 pcp->count--;
1230
1231 if (bulkfree_pcp_prepare(page))
1232 continue;
1233
1234 list_add_tail(&page->lru, &head);
1235
1236 /*
1237 * We are going to put the page back to the global
1238 * pool, prefetch its buddy to speed up later access
1239 * under zone->lock. It is believed the overhead of
1240 * an additional test and calculating buddy_pfn here
1241 * can be offset by reduced memory latency later. To
1242 * avoid excessive prefetching due to large count, only
1243 * prefetch buddy for the first pcp->batch nr of pages.
1244 */
1245 if (prefetch_nr++ < pcp->batch)
1246 prefetch_buddy(page);
1247 } while (--count && --batch_free && !list_empty(list));
1248 }
1249
1250 spin_lock(&zone->lock);
1251 isolated_pageblocks = has_isolate_pageblock(zone);
1252
1253 /*
1254 * Use safe version since after __free_one_page(),
1255 * page->lru.next will not point to original list.
1256 */
1257 list_for_each_entry_safe(page, tmp, &head, lru) {
1258 int mt = get_pcppage_migratetype(page);
1259 /* MIGRATE_ISOLATE page should not go to pcplists */
1260 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1261 /* Pageblock could have been isolated meanwhile */
1262 if (unlikely(isolated_pageblocks))
1263 mt = get_pageblock_migratetype(page);
1264
1265 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1266 trace_mm_page_pcpu_drain(page, 0, mt);
1267 }
1268 spin_unlock(&zone->lock);
1269 }
1270
1271 static void free_one_page(struct zone *zone,
1272 struct page *page, unsigned long pfn,
1273 unsigned int order,
1274 int migratetype)
1275 {
1276 spin_lock(&zone->lock);
1277 if (unlikely(has_isolate_pageblock(zone) ||
1278 is_migrate_isolate(migratetype))) {
1279 migratetype = get_pfnblock_migratetype(page, pfn);
1280 }
1281 __free_one_page(page, pfn, zone, order, migratetype);
1282 spin_unlock(&zone->lock);
1283 }
1284
1285 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1286 unsigned long zone, int nid)
1287 {
1288 mm_zero_struct_page(page);
1289 set_page_links(page, zone, nid, pfn);
1290 init_page_count(page);
1291 page_mapcount_reset(page);
1292 page_cpupid_reset_last(page);
1293 page_kasan_tag_reset(page);
1294
1295 INIT_LIST_HEAD(&page->lru);
1296 #ifdef WANT_PAGE_VIRTUAL
1297 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1298 if (!is_highmem_idx(zone))
1299 set_page_address(page, __va(pfn << PAGE_SHIFT));
1300 #endif
1301 }
1302
1303 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1304 static void __meminit init_reserved_page(unsigned long pfn)
1305 {
1306 pg_data_t *pgdat;
1307 int nid, zid;
1308
1309 if (!early_page_uninitialised(pfn))
1310 return;
1311
1312 nid = early_pfn_to_nid(pfn);
1313 pgdat = NODE_DATA(nid);
1314
1315 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1316 struct zone *zone = &pgdat->node_zones[zid];
1317
1318 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1319 break;
1320 }
1321 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1322 }
1323 #else
1324 static inline void init_reserved_page(unsigned long pfn)
1325 {
1326 }
1327 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1328
1329 /*
1330 * Initialised pages do not have PageReserved set. This function is
1331 * called for each range allocated by the bootmem allocator and
1332 * marks the pages PageReserved. The remaining valid pages are later
1333 * sent to the buddy page allocator.
1334 */
1335 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1336 {
1337 unsigned long start_pfn = PFN_DOWN(start);
1338 unsigned long end_pfn = PFN_UP(end);
1339
1340 for (; start_pfn < end_pfn; start_pfn++) {
1341 if (pfn_valid(start_pfn)) {
1342 struct page *page = pfn_to_page(start_pfn);
1343
1344 init_reserved_page(start_pfn);
1345
1346 /* Avoid false-positive PageTail() */
1347 INIT_LIST_HEAD(&page->lru);
1348
1349 /*
1350 * no need for atomic set_bit because the struct
1351 * page is not visible yet so nobody should
1352 * access it yet.
1353 */
1354 __SetPageReserved(page);
1355 }
1356 }
1357 }
1358
1359 static void __free_pages_ok(struct page *page, unsigned int order)
1360 {
1361 unsigned long flags;
1362 int migratetype;
1363 unsigned long pfn = page_to_pfn(page);
1364
1365 if (!free_pages_prepare(page, order, true))
1366 return;
1367
1368 migratetype = get_pfnblock_migratetype(page, pfn);
1369 local_irq_save(flags);
1370 __count_vm_events(PGFREE, 1 << order);
1371 free_one_page(page_zone(page), page, pfn, order, migratetype);
1372 local_irq_restore(flags);
1373 }
1374
1375 void __free_pages_core(struct page *page, unsigned int order)
1376 {
1377 unsigned int nr_pages = 1 << order;
1378 struct page *p = page;
1379 unsigned int loop;
1380
1381 prefetchw(p);
1382 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1383 prefetchw(p + 1);
1384 __ClearPageReserved(p);
1385 set_page_count(p, 0);
1386 }
1387 __ClearPageReserved(p);
1388 set_page_count(p, 0);
1389
1390 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1391 set_page_refcounted(page);
1392 __free_pages(page, order);
1393 }
1394
1395 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1396 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1397
1398 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1399
1400 int __meminit early_pfn_to_nid(unsigned long pfn)
1401 {
1402 static DEFINE_SPINLOCK(early_pfn_lock);
1403 int nid;
1404
1405 spin_lock(&early_pfn_lock);
1406 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1407 if (nid < 0)
1408 nid = first_online_node;
1409 spin_unlock(&early_pfn_lock);
1410
1411 return nid;
1412 }
1413 #endif
1414
1415 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1416 /* Only safe to use early in boot when initialisation is single-threaded */
1417 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1418 {
1419 int nid;
1420
1421 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1422 if (nid >= 0 && nid != node)
1423 return false;
1424 return true;
1425 }
1426
1427 #else
1428 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1429 {
1430 return true;
1431 }
1432 #endif
1433
1434
1435 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1436 unsigned int order)
1437 {
1438 if (early_page_uninitialised(pfn))
1439 return;
1440 __free_pages_core(page, order);
1441 }
1442
1443 /*
1444 * Check that the whole (or subset of) a pageblock given by the interval of
1445 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1446 * with the migration of free compaction scanner. The scanners then need to
1447 * use only pfn_valid_within() check for arches that allow holes within
1448 * pageblocks.
1449 *
1450 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1451 *
1452 * It's possible on some configurations to have a setup like node0 node1 node0
1453 * i.e. it's possible that all pages within a zones range of pages do not
1454 * belong to a single zone. We assume that a border between node0 and node1
1455 * can occur within a single pageblock, but not a node0 node1 node0
1456 * interleaving within a single pageblock. It is therefore sufficient to check
1457 * the first and last page of a pageblock and avoid checking each individual
1458 * page in a pageblock.
1459 */
1460 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1461 unsigned long end_pfn, struct zone *zone)
1462 {
1463 struct page *start_page;
1464 struct page *end_page;
1465
1466 /* end_pfn is one past the range we are checking */
1467 end_pfn--;
1468
1469 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1470 return NULL;
1471
1472 start_page = pfn_to_online_page(start_pfn);
1473 if (!start_page)
1474 return NULL;
1475
1476 if (page_zone(start_page) != zone)
1477 return NULL;
1478
1479 end_page = pfn_to_page(end_pfn);
1480
1481 /* This gives a shorter code than deriving page_zone(end_page) */
1482 if (page_zone_id(start_page) != page_zone_id(end_page))
1483 return NULL;
1484
1485 return start_page;
1486 }
1487
1488 void set_zone_contiguous(struct zone *zone)
1489 {
1490 unsigned long block_start_pfn = zone->zone_start_pfn;
1491 unsigned long block_end_pfn;
1492
1493 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1494 for (; block_start_pfn < zone_end_pfn(zone);
1495 block_start_pfn = block_end_pfn,
1496 block_end_pfn += pageblock_nr_pages) {
1497
1498 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1499
1500 if (!__pageblock_pfn_to_page(block_start_pfn,
1501 block_end_pfn, zone))
1502 return;
1503 }
1504
1505 /* We confirm that there is no hole */
1506 zone->contiguous = true;
1507 }
1508
1509 void clear_zone_contiguous(struct zone *zone)
1510 {
1511 zone->contiguous = false;
1512 }
1513
1514 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1515 static void __init deferred_free_range(unsigned long pfn,
1516 unsigned long nr_pages)
1517 {
1518 struct page *page;
1519 unsigned long i;
1520
1521 if (!nr_pages)
1522 return;
1523
1524 page = pfn_to_page(pfn);
1525
1526 /* Free a large naturally-aligned chunk if possible */
1527 if (nr_pages == pageblock_nr_pages &&
1528 (pfn & (pageblock_nr_pages - 1)) == 0) {
1529 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1530 __free_pages_core(page, pageblock_order);
1531 return;
1532 }
1533
1534 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1535 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1536 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1537 __free_pages_core(page, 0);
1538 }
1539 }
1540
1541 /* Completion tracking for deferred_init_memmap() threads */
1542 static atomic_t pgdat_init_n_undone __initdata;
1543 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1544
1545 static inline void __init pgdat_init_report_one_done(void)
1546 {
1547 if (atomic_dec_and_test(&pgdat_init_n_undone))
1548 complete(&pgdat_init_all_done_comp);
1549 }
1550
1551 /*
1552 * Returns true if page needs to be initialized or freed to buddy allocator.
1553 *
1554 * First we check if pfn is valid on architectures where it is possible to have
1555 * holes within pageblock_nr_pages. On systems where it is not possible, this
1556 * function is optimized out.
1557 *
1558 * Then, we check if a current large page is valid by only checking the validity
1559 * of the head pfn.
1560 */
1561 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1562 {
1563 if (!pfn_valid_within(pfn))
1564 return false;
1565 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1566 return false;
1567 return true;
1568 }
1569
1570 /*
1571 * Free pages to buddy allocator. Try to free aligned pages in
1572 * pageblock_nr_pages sizes.
1573 */
1574 static void __init deferred_free_pages(unsigned long pfn,
1575 unsigned long end_pfn)
1576 {
1577 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1578 unsigned long nr_free = 0;
1579
1580 for (; pfn < end_pfn; pfn++) {
1581 if (!deferred_pfn_valid(pfn)) {
1582 deferred_free_range(pfn - nr_free, nr_free);
1583 nr_free = 0;
1584 } else if (!(pfn & nr_pgmask)) {
1585 deferred_free_range(pfn - nr_free, nr_free);
1586 nr_free = 1;
1587 touch_nmi_watchdog();
1588 } else {
1589 nr_free++;
1590 }
1591 }
1592 /* Free the last block of pages to allocator */
1593 deferred_free_range(pfn - nr_free, nr_free);
1594 }
1595
1596 /*
1597 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1598 * by performing it only once every pageblock_nr_pages.
1599 * Return number of pages initialized.
1600 */
1601 static unsigned long __init deferred_init_pages(struct zone *zone,
1602 unsigned long pfn,
1603 unsigned long end_pfn)
1604 {
1605 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1606 int nid = zone_to_nid(zone);
1607 unsigned long nr_pages = 0;
1608 int zid = zone_idx(zone);
1609 struct page *page = NULL;
1610
1611 for (; pfn < end_pfn; pfn++) {
1612 if (!deferred_pfn_valid(pfn)) {
1613 page = NULL;
1614 continue;
1615 } else if (!page || !(pfn & nr_pgmask)) {
1616 page = pfn_to_page(pfn);
1617 touch_nmi_watchdog();
1618 } else {
1619 page++;
1620 }
1621 __init_single_page(page, pfn, zid, nid);
1622 nr_pages++;
1623 }
1624 return (nr_pages);
1625 }
1626
1627 /*
1628 * This function is meant to pre-load the iterator for the zone init.
1629 * Specifically it walks through the ranges until we are caught up to the
1630 * first_init_pfn value and exits there. If we never encounter the value we
1631 * return false indicating there are no valid ranges left.
1632 */
1633 static bool __init
1634 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1635 unsigned long *spfn, unsigned long *epfn,
1636 unsigned long first_init_pfn)
1637 {
1638 u64 j;
1639
1640 /*
1641 * Start out by walking through the ranges in this zone that have
1642 * already been initialized. We don't need to do anything with them
1643 * so we just need to flush them out of the system.
1644 */
1645 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1646 if (*epfn <= first_init_pfn)
1647 continue;
1648 if (*spfn < first_init_pfn)
1649 *spfn = first_init_pfn;
1650 *i = j;
1651 return true;
1652 }
1653
1654 return false;
1655 }
1656
1657 /*
1658 * Initialize and free pages. We do it in two loops: first we initialize
1659 * struct page, then free to buddy allocator, because while we are
1660 * freeing pages we can access pages that are ahead (computing buddy
1661 * page in __free_one_page()).
1662 *
1663 * In order to try and keep some memory in the cache we have the loop
1664 * broken along max page order boundaries. This way we will not cause
1665 * any issues with the buddy page computation.
1666 */
1667 static unsigned long __init
1668 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1669 unsigned long *end_pfn)
1670 {
1671 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1672 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1673 unsigned long nr_pages = 0;
1674 u64 j = *i;
1675
1676 /* First we loop through and initialize the page values */
1677 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1678 unsigned long t;
1679
1680 if (mo_pfn <= *start_pfn)
1681 break;
1682
1683 t = min(mo_pfn, *end_pfn);
1684 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1685
1686 if (mo_pfn < *end_pfn) {
1687 *start_pfn = mo_pfn;
1688 break;
1689 }
1690 }
1691
1692 /* Reset values and now loop through freeing pages as needed */
1693 swap(j, *i);
1694
1695 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1696 unsigned long t;
1697
1698 if (mo_pfn <= spfn)
1699 break;
1700
1701 t = min(mo_pfn, epfn);
1702 deferred_free_pages(spfn, t);
1703
1704 if (mo_pfn <= epfn)
1705 break;
1706 }
1707
1708 return nr_pages;
1709 }
1710
1711 /* Initialise remaining memory on a node */
1712 static int __init deferred_init_memmap(void *data)
1713 {
1714 pg_data_t *pgdat = data;
1715 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1716 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1717 unsigned long first_init_pfn, flags;
1718 unsigned long start = jiffies;
1719 struct zone *zone;
1720 int zid;
1721 u64 i;
1722
1723 /* Bind memory initialisation thread to a local node if possible */
1724 if (!cpumask_empty(cpumask))
1725 set_cpus_allowed_ptr(current, cpumask);
1726
1727 pgdat_resize_lock(pgdat, &flags);
1728 first_init_pfn = pgdat->first_deferred_pfn;
1729 if (first_init_pfn == ULONG_MAX) {
1730 pgdat_resize_unlock(pgdat, &flags);
1731 pgdat_init_report_one_done();
1732 return 0;
1733 }
1734
1735 /* Sanity check boundaries */
1736 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1737 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1738 pgdat->first_deferred_pfn = ULONG_MAX;
1739
1740 /* Only the highest zone is deferred so find it */
1741 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1742 zone = pgdat->node_zones + zid;
1743 if (first_init_pfn < zone_end_pfn(zone))
1744 break;
1745 }
1746
1747 /* If the zone is empty somebody else may have cleared out the zone */
1748 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1749 first_init_pfn))
1750 goto zone_empty;
1751
1752 /*
1753 * Initialize and free pages in MAX_ORDER sized increments so
1754 * that we can avoid introducing any issues with the buddy
1755 * allocator.
1756 */
1757 while (spfn < epfn)
1758 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1759 zone_empty:
1760 pgdat_resize_unlock(pgdat, &flags);
1761
1762 /* Sanity check that the next zone really is unpopulated */
1763 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1764
1765 pr_info("node %d initialised, %lu pages in %ums\n",
1766 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
1767
1768 pgdat_init_report_one_done();
1769 return 0;
1770 }
1771
1772 /*
1773 * If this zone has deferred pages, try to grow it by initializing enough
1774 * deferred pages to satisfy the allocation specified by order, rounded up to
1775 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1776 * of SECTION_SIZE bytes by initializing struct pages in increments of
1777 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1778 *
1779 * Return true when zone was grown, otherwise return false. We return true even
1780 * when we grow less than requested, to let the caller decide if there are
1781 * enough pages to satisfy the allocation.
1782 *
1783 * Note: We use noinline because this function is needed only during boot, and
1784 * it is called from a __ref function _deferred_grow_zone. This way we are
1785 * making sure that it is not inlined into permanent text section.
1786 */
1787 static noinline bool __init
1788 deferred_grow_zone(struct zone *zone, unsigned int order)
1789 {
1790 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1791 pg_data_t *pgdat = zone->zone_pgdat;
1792 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1793 unsigned long spfn, epfn, flags;
1794 unsigned long nr_pages = 0;
1795 u64 i;
1796
1797 /* Only the last zone may have deferred pages */
1798 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1799 return false;
1800
1801 pgdat_resize_lock(pgdat, &flags);
1802
1803 /*
1804 * If deferred pages have been initialized while we were waiting for
1805 * the lock, return true, as the zone was grown. The caller will retry
1806 * this zone. We won't return to this function since the caller also
1807 * has this static branch.
1808 */
1809 if (!static_branch_unlikely(&deferred_pages)) {
1810 pgdat_resize_unlock(pgdat, &flags);
1811 return true;
1812 }
1813
1814 /*
1815 * If someone grew this zone while we were waiting for spinlock, return
1816 * true, as there might be enough pages already.
1817 */
1818 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1819 pgdat_resize_unlock(pgdat, &flags);
1820 return true;
1821 }
1822
1823 /* If the zone is empty somebody else may have cleared out the zone */
1824 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1825 first_deferred_pfn)) {
1826 pgdat->first_deferred_pfn = ULONG_MAX;
1827 pgdat_resize_unlock(pgdat, &flags);
1828 return true;
1829 }
1830
1831 /*
1832 * Initialize and free pages in MAX_ORDER sized increments so
1833 * that we can avoid introducing any issues with the buddy
1834 * allocator.
1835 */
1836 while (spfn < epfn) {
1837 /* update our first deferred PFN for this section */
1838 first_deferred_pfn = spfn;
1839
1840 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1841
1842 /* We should only stop along section boundaries */
1843 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1844 continue;
1845
1846 /* If our quota has been met we can stop here */
1847 if (nr_pages >= nr_pages_needed)
1848 break;
1849 }
1850
1851 pgdat->first_deferred_pfn = spfn;
1852 pgdat_resize_unlock(pgdat, &flags);
1853
1854 return nr_pages > 0;
1855 }
1856
1857 /*
1858 * deferred_grow_zone() is __init, but it is called from
1859 * get_page_from_freelist() during early boot until deferred_pages permanently
1860 * disables this call. This is why we have refdata wrapper to avoid warning,
1861 * and to ensure that the function body gets unloaded.
1862 */
1863 static bool __ref
1864 _deferred_grow_zone(struct zone *zone, unsigned int order)
1865 {
1866 return deferred_grow_zone(zone, order);
1867 }
1868
1869 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1870
1871 void __init page_alloc_init_late(void)
1872 {
1873 struct zone *zone;
1874 int nid;
1875
1876 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1877
1878 /* There will be num_node_state(N_MEMORY) threads */
1879 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1880 for_each_node_state(nid, N_MEMORY) {
1881 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1882 }
1883
1884 /* Block until all are initialised */
1885 wait_for_completion(&pgdat_init_all_done_comp);
1886
1887 /*
1888 * We initialized the rest of the deferred pages. Permanently disable
1889 * on-demand struct page initialization.
1890 */
1891 static_branch_disable(&deferred_pages);
1892
1893 /* Reinit limits that are based on free pages after the kernel is up */
1894 files_maxfiles_init();
1895 #endif
1896
1897 /* Discard memblock private memory */
1898 memblock_discard();
1899
1900 for_each_node_state(nid, N_MEMORY)
1901 shuffle_free_memory(NODE_DATA(nid));
1902
1903 for_each_populated_zone(zone)
1904 set_zone_contiguous(zone);
1905 }
1906
1907 #ifdef CONFIG_CMA
1908 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1909 void __init init_cma_reserved_pageblock(struct page *page)
1910 {
1911 unsigned i = pageblock_nr_pages;
1912 struct page *p = page;
1913
1914 do {
1915 __ClearPageReserved(p);
1916 set_page_count(p, 0);
1917 } while (++p, --i);
1918
1919 set_pageblock_migratetype(page, MIGRATE_CMA);
1920
1921 if (pageblock_order >= MAX_ORDER) {
1922 i = pageblock_nr_pages;
1923 p = page;
1924 do {
1925 set_page_refcounted(p);
1926 __free_pages(p, MAX_ORDER - 1);
1927 p += MAX_ORDER_NR_PAGES;
1928 } while (i -= MAX_ORDER_NR_PAGES);
1929 } else {
1930 set_page_refcounted(page);
1931 __free_pages(page, pageblock_order);
1932 }
1933
1934 adjust_managed_page_count(page, pageblock_nr_pages);
1935 }
1936 #endif
1937
1938 /*
1939 * The order of subdivision here is critical for the IO subsystem.
1940 * Please do not alter this order without good reasons and regression
1941 * testing. Specifically, as large blocks of memory are subdivided,
1942 * the order in which smaller blocks are delivered depends on the order
1943 * they're subdivided in this function. This is the primary factor
1944 * influencing the order in which pages are delivered to the IO
1945 * subsystem according to empirical testing, and this is also justified
1946 * by considering the behavior of a buddy system containing a single
1947 * large block of memory acted on by a series of small allocations.
1948 * This behavior is a critical factor in sglist merging's success.
1949 *
1950 * -- nyc
1951 */
1952 static inline void expand(struct zone *zone, struct page *page,
1953 int low, int high, struct free_area *area,
1954 int migratetype)
1955 {
1956 unsigned long size = 1 << high;
1957
1958 while (high > low) {
1959 area--;
1960 high--;
1961 size >>= 1;
1962 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1963
1964 /*
1965 * Mark as guard pages (or page), that will allow to
1966 * merge back to allocator when buddy will be freed.
1967 * Corresponding page table entries will not be touched,
1968 * pages will stay not present in virtual address space
1969 */
1970 if (set_page_guard(zone, &page[size], high, migratetype))
1971 continue;
1972
1973 add_to_free_area(&page[size], area, migratetype);
1974 set_page_order(&page[size], high);
1975 }
1976 }
1977
1978 static void check_new_page_bad(struct page *page)
1979 {
1980 const char *bad_reason = NULL;
1981 unsigned long bad_flags = 0;
1982
1983 if (unlikely(atomic_read(&page->_mapcount) != -1))
1984 bad_reason = "nonzero mapcount";
1985 if (unlikely(page->mapping != NULL))
1986 bad_reason = "non-NULL mapping";
1987 if (unlikely(page_ref_count(page) != 0))
1988 bad_reason = "nonzero _refcount";
1989 if (unlikely(page->flags & __PG_HWPOISON)) {
1990 bad_reason = "HWPoisoned (hardware-corrupted)";
1991 bad_flags = __PG_HWPOISON;
1992 /* Don't complain about hwpoisoned pages */
1993 page_mapcount_reset(page); /* remove PageBuddy */
1994 return;
1995 }
1996 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1997 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1998 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1999 }
2000 #ifdef CONFIG_MEMCG
2001 if (unlikely(page->mem_cgroup))
2002 bad_reason = "page still charged to cgroup";
2003 #endif
2004 bad_page(page, bad_reason, bad_flags);
2005 }
2006
2007 /*
2008 * This page is about to be returned from the page allocator
2009 */
2010 static inline int check_new_page(struct page *page)
2011 {
2012 if (likely(page_expected_state(page,
2013 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2014 return 0;
2015
2016 check_new_page_bad(page);
2017 return 1;
2018 }
2019
2020 static inline bool free_pages_prezeroed(void)
2021 {
2022 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2023 page_poisoning_enabled();
2024 }
2025
2026 #ifdef CONFIG_DEBUG_VM
2027 static bool check_pcp_refill(struct page *page)
2028 {
2029 return false;
2030 }
2031
2032 static bool check_new_pcp(struct page *page)
2033 {
2034 return check_new_page(page);
2035 }
2036 #else
2037 static bool check_pcp_refill(struct page *page)
2038 {
2039 return check_new_page(page);
2040 }
2041 static bool check_new_pcp(struct page *page)
2042 {
2043 return false;
2044 }
2045 #endif /* CONFIG_DEBUG_VM */
2046
2047 static bool check_new_pages(struct page *page, unsigned int order)
2048 {
2049 int i;
2050 for (i = 0; i < (1 << order); i++) {
2051 struct page *p = page + i;
2052
2053 if (unlikely(check_new_page(p)))
2054 return true;
2055 }
2056
2057 return false;
2058 }
2059
2060 inline void post_alloc_hook(struct page *page, unsigned int order,
2061 gfp_t gfp_flags)
2062 {
2063 set_page_private(page, 0);
2064 set_page_refcounted(page);
2065
2066 arch_alloc_page(page, order);
2067 if (debug_pagealloc_enabled())
2068 kernel_map_pages(page, 1 << order, 1);
2069 kasan_alloc_pages(page, order);
2070 kernel_poison_pages(page, 1 << order, 1);
2071 set_page_owner(page, order, gfp_flags);
2072 }
2073
2074 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2075 unsigned int alloc_flags)
2076 {
2077 int i;
2078
2079 post_alloc_hook(page, order, gfp_flags);
2080
2081 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
2082 for (i = 0; i < (1 << order); i++)
2083 clear_highpage(page + i);
2084
2085 if (order && (gfp_flags & __GFP_COMP))
2086 prep_compound_page(page, order);
2087
2088 /*
2089 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2090 * allocate the page. The expectation is that the caller is taking
2091 * steps that will free more memory. The caller should avoid the page
2092 * being used for !PFMEMALLOC purposes.
2093 */
2094 if (alloc_flags & ALLOC_NO_WATERMARKS)
2095 set_page_pfmemalloc(page);
2096 else
2097 clear_page_pfmemalloc(page);
2098 }
2099
2100 /*
2101 * Go through the free lists for the given migratetype and remove
2102 * the smallest available page from the freelists
2103 */
2104 static __always_inline
2105 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2106 int migratetype)
2107 {
2108 unsigned int current_order;
2109 struct free_area *area;
2110 struct page *page;
2111
2112 /* Find a page of the appropriate size in the preferred list */
2113 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2114 area = &(zone->free_area[current_order]);
2115 page = get_page_from_free_area(area, migratetype);
2116 if (!page)
2117 continue;
2118 del_page_from_free_area(page, area);
2119 expand(zone, page, order, current_order, area, migratetype);
2120 set_pcppage_migratetype(page, migratetype);
2121 return page;
2122 }
2123
2124 return NULL;
2125 }
2126
2127
2128 /*
2129 * This array describes the order lists are fallen back to when
2130 * the free lists for the desirable migrate type are depleted
2131 */
2132 static int fallbacks[MIGRATE_TYPES][4] = {
2133 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2134 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2135 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2136 #ifdef CONFIG_CMA
2137 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2138 #endif
2139 #ifdef CONFIG_MEMORY_ISOLATION
2140 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2141 #endif
2142 };
2143
2144 #ifdef CONFIG_CMA
2145 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2146 unsigned int order)
2147 {
2148 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2149 }
2150 #else
2151 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2152 unsigned int order) { return NULL; }
2153 #endif
2154
2155 /*
2156 * Move the free pages in a range to the free lists of the requested type.
2157 * Note that start_page and end_pages are not aligned on a pageblock
2158 * boundary. If alignment is required, use move_freepages_block()
2159 */
2160 static int move_freepages(struct zone *zone,
2161 struct page *start_page, struct page *end_page,
2162 int migratetype, int *num_movable)
2163 {
2164 struct page *page;
2165 unsigned int order;
2166 int pages_moved = 0;
2167
2168 #ifndef CONFIG_HOLES_IN_ZONE
2169 /*
2170 * page_zone is not safe to call in this context when
2171 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2172 * anyway as we check zone boundaries in move_freepages_block().
2173 * Remove at a later date when no bug reports exist related to
2174 * grouping pages by mobility
2175 */
2176 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2177 pfn_valid(page_to_pfn(end_page)) &&
2178 page_zone(start_page) != page_zone(end_page));
2179 #endif
2180 for (page = start_page; page <= end_page;) {
2181 if (!pfn_valid_within(page_to_pfn(page))) {
2182 page++;
2183 continue;
2184 }
2185
2186 /* Make sure we are not inadvertently changing nodes */
2187 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2188
2189 if (!PageBuddy(page)) {
2190 /*
2191 * We assume that pages that could be isolated for
2192 * migration are movable. But we don't actually try
2193 * isolating, as that would be expensive.
2194 */
2195 if (num_movable &&
2196 (PageLRU(page) || __PageMovable(page)))
2197 (*num_movable)++;
2198
2199 page++;
2200 continue;
2201 }
2202
2203 order = page_order(page);
2204 move_to_free_area(page, &zone->free_area[order], migratetype);
2205 page += 1 << order;
2206 pages_moved += 1 << order;
2207 }
2208
2209 return pages_moved;
2210 }
2211
2212 int move_freepages_block(struct zone *zone, struct page *page,
2213 int migratetype, int *num_movable)
2214 {
2215 unsigned long start_pfn, end_pfn;
2216 struct page *start_page, *end_page;
2217
2218 if (num_movable)
2219 *num_movable = 0;
2220
2221 start_pfn = page_to_pfn(page);
2222 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2223 start_page = pfn_to_page(start_pfn);
2224 end_page = start_page + pageblock_nr_pages - 1;
2225 end_pfn = start_pfn + pageblock_nr_pages - 1;
2226
2227 /* Do not cross zone boundaries */
2228 if (!zone_spans_pfn(zone, start_pfn))
2229 start_page = page;
2230 if (!zone_spans_pfn(zone, end_pfn))
2231 return 0;
2232
2233 return move_freepages(zone, start_page, end_page, migratetype,
2234 num_movable);
2235 }
2236
2237 static void change_pageblock_range(struct page *pageblock_page,
2238 int start_order, int migratetype)
2239 {
2240 int nr_pageblocks = 1 << (start_order - pageblock_order);
2241
2242 while (nr_pageblocks--) {
2243 set_pageblock_migratetype(pageblock_page, migratetype);
2244 pageblock_page += pageblock_nr_pages;
2245 }
2246 }
2247
2248 /*
2249 * When we are falling back to another migratetype during allocation, try to
2250 * steal extra free pages from the same pageblocks to satisfy further
2251 * allocations, instead of polluting multiple pageblocks.
2252 *
2253 * If we are stealing a relatively large buddy page, it is likely there will
2254 * be more free pages in the pageblock, so try to steal them all. For
2255 * reclaimable and unmovable allocations, we steal regardless of page size,
2256 * as fragmentation caused by those allocations polluting movable pageblocks
2257 * is worse than movable allocations stealing from unmovable and reclaimable
2258 * pageblocks.
2259 */
2260 static bool can_steal_fallback(unsigned int order, int start_mt)
2261 {
2262 /*
2263 * Leaving this order check is intended, although there is
2264 * relaxed order check in next check. The reason is that
2265 * we can actually steal whole pageblock if this condition met,
2266 * but, below check doesn't guarantee it and that is just heuristic
2267 * so could be changed anytime.
2268 */
2269 if (order >= pageblock_order)
2270 return true;
2271
2272 if (order >= pageblock_order / 2 ||
2273 start_mt == MIGRATE_RECLAIMABLE ||
2274 start_mt == MIGRATE_UNMOVABLE ||
2275 page_group_by_mobility_disabled)
2276 return true;
2277
2278 return false;
2279 }
2280
2281 static inline void boost_watermark(struct zone *zone)
2282 {
2283 unsigned long max_boost;
2284
2285 if (!watermark_boost_factor)
2286 return;
2287
2288 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2289 watermark_boost_factor, 10000);
2290
2291 /*
2292 * high watermark may be uninitialised if fragmentation occurs
2293 * very early in boot so do not boost. We do not fall
2294 * through and boost by pageblock_nr_pages as failing
2295 * allocations that early means that reclaim is not going
2296 * to help and it may even be impossible to reclaim the
2297 * boosted watermark resulting in a hang.
2298 */
2299 if (!max_boost)
2300 return;
2301
2302 max_boost = max(pageblock_nr_pages, max_boost);
2303
2304 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2305 max_boost);
2306 }
2307
2308 /*
2309 * This function implements actual steal behaviour. If order is large enough,
2310 * we can steal whole pageblock. If not, we first move freepages in this
2311 * pageblock to our migratetype and determine how many already-allocated pages
2312 * are there in the pageblock with a compatible migratetype. If at least half
2313 * of pages are free or compatible, we can change migratetype of the pageblock
2314 * itself, so pages freed in the future will be put on the correct free list.
2315 */
2316 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2317 unsigned int alloc_flags, int start_type, bool whole_block)
2318 {
2319 unsigned int current_order = page_order(page);
2320 struct free_area *area;
2321 int free_pages, movable_pages, alike_pages;
2322 int old_block_type;
2323
2324 old_block_type = get_pageblock_migratetype(page);
2325
2326 /*
2327 * This can happen due to races and we want to prevent broken
2328 * highatomic accounting.
2329 */
2330 if (is_migrate_highatomic(old_block_type))
2331 goto single_page;
2332
2333 /* Take ownership for orders >= pageblock_order */
2334 if (current_order >= pageblock_order) {
2335 change_pageblock_range(page, current_order, start_type);
2336 goto single_page;
2337 }
2338
2339 /*
2340 * Boost watermarks to increase reclaim pressure to reduce the
2341 * likelihood of future fallbacks. Wake kswapd now as the node
2342 * may be balanced overall and kswapd will not wake naturally.
2343 */
2344 boost_watermark(zone);
2345 if (alloc_flags & ALLOC_KSWAPD)
2346 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2347
2348 /* We are not allowed to try stealing from the whole block */
2349 if (!whole_block)
2350 goto single_page;
2351
2352 free_pages = move_freepages_block(zone, page, start_type,
2353 &movable_pages);
2354 /*
2355 * Determine how many pages are compatible with our allocation.
2356 * For movable allocation, it's the number of movable pages which
2357 * we just obtained. For other types it's a bit more tricky.
2358 */
2359 if (start_type == MIGRATE_MOVABLE) {
2360 alike_pages = movable_pages;
2361 } else {
2362 /*
2363 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2364 * to MOVABLE pageblock, consider all non-movable pages as
2365 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2366 * vice versa, be conservative since we can't distinguish the
2367 * exact migratetype of non-movable pages.
2368 */
2369 if (old_block_type == MIGRATE_MOVABLE)
2370 alike_pages = pageblock_nr_pages
2371 - (free_pages + movable_pages);
2372 else
2373 alike_pages = 0;
2374 }
2375
2376 /* moving whole block can fail due to zone boundary conditions */
2377 if (!free_pages)
2378 goto single_page;
2379
2380 /*
2381 * If a sufficient number of pages in the block are either free or of
2382 * comparable migratability as our allocation, claim the whole block.
2383 */
2384 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2385 page_group_by_mobility_disabled)
2386 set_pageblock_migratetype(page, start_type);
2387
2388 return;
2389
2390 single_page:
2391 area = &zone->free_area[current_order];
2392 move_to_free_area(page, area, start_type);
2393 }
2394
2395 /*
2396 * Check whether there is a suitable fallback freepage with requested order.
2397 * If only_stealable is true, this function returns fallback_mt only if
2398 * we can steal other freepages all together. This would help to reduce
2399 * fragmentation due to mixed migratetype pages in one pageblock.
2400 */
2401 int find_suitable_fallback(struct free_area *area, unsigned int order,
2402 int migratetype, bool only_stealable, bool *can_steal)
2403 {
2404 int i;
2405 int fallback_mt;
2406
2407 if (area->nr_free == 0)
2408 return -1;
2409
2410 *can_steal = false;
2411 for (i = 0;; i++) {
2412 fallback_mt = fallbacks[migratetype][i];
2413 if (fallback_mt == MIGRATE_TYPES)
2414 break;
2415
2416 if (free_area_empty(area, fallback_mt))
2417 continue;
2418
2419 if (can_steal_fallback(order, migratetype))
2420 *can_steal = true;
2421
2422 if (!only_stealable)
2423 return fallback_mt;
2424
2425 if (*can_steal)
2426 return fallback_mt;
2427 }
2428
2429 return -1;
2430 }
2431
2432 /*
2433 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2434 * there are no empty page blocks that contain a page with a suitable order
2435 */
2436 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2437 unsigned int alloc_order)
2438 {
2439 int mt;
2440 unsigned long max_managed, flags;
2441
2442 /*
2443 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2444 * Check is race-prone but harmless.
2445 */
2446 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2447 if (zone->nr_reserved_highatomic >= max_managed)
2448 return;
2449
2450 spin_lock_irqsave(&zone->lock, flags);
2451
2452 /* Recheck the nr_reserved_highatomic limit under the lock */
2453 if (zone->nr_reserved_highatomic >= max_managed)
2454 goto out_unlock;
2455
2456 /* Yoink! */
2457 mt = get_pageblock_migratetype(page);
2458 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2459 && !is_migrate_cma(mt)) {
2460 zone->nr_reserved_highatomic += pageblock_nr_pages;
2461 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2462 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2463 }
2464
2465 out_unlock:
2466 spin_unlock_irqrestore(&zone->lock, flags);
2467 }
2468
2469 /*
2470 * Used when an allocation is about to fail under memory pressure. This
2471 * potentially hurts the reliability of high-order allocations when under
2472 * intense memory pressure but failed atomic allocations should be easier
2473 * to recover from than an OOM.
2474 *
2475 * If @force is true, try to unreserve a pageblock even though highatomic
2476 * pageblock is exhausted.
2477 */
2478 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2479 bool force)
2480 {
2481 struct zonelist *zonelist = ac->zonelist;
2482 unsigned long flags;
2483 struct zoneref *z;
2484 struct zone *zone;
2485 struct page *page;
2486 int order;
2487 bool ret;
2488
2489 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2490 ac->nodemask) {
2491 /*
2492 * Preserve at least one pageblock unless memory pressure
2493 * is really high.
2494 */
2495 if (!force && zone->nr_reserved_highatomic <=
2496 pageblock_nr_pages)
2497 continue;
2498
2499 spin_lock_irqsave(&zone->lock, flags);
2500 for (order = 0; order < MAX_ORDER; order++) {
2501 struct free_area *area = &(zone->free_area[order]);
2502
2503 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2504 if (!page)
2505 continue;
2506
2507 /*
2508 * In page freeing path, migratetype change is racy so
2509 * we can counter several free pages in a pageblock
2510 * in this loop althoug we changed the pageblock type
2511 * from highatomic to ac->migratetype. So we should
2512 * adjust the count once.
2513 */
2514 if (is_migrate_highatomic_page(page)) {
2515 /*
2516 * It should never happen but changes to
2517 * locking could inadvertently allow a per-cpu
2518 * drain to add pages to MIGRATE_HIGHATOMIC
2519 * while unreserving so be safe and watch for
2520 * underflows.
2521 */
2522 zone->nr_reserved_highatomic -= min(
2523 pageblock_nr_pages,
2524 zone->nr_reserved_highatomic);
2525 }
2526
2527 /*
2528 * Convert to ac->migratetype and avoid the normal
2529 * pageblock stealing heuristics. Minimally, the caller
2530 * is doing the work and needs the pages. More
2531 * importantly, if the block was always converted to
2532 * MIGRATE_UNMOVABLE or another type then the number
2533 * of pageblocks that cannot be completely freed
2534 * may increase.
2535 */
2536 set_pageblock_migratetype(page, ac->migratetype);
2537 ret = move_freepages_block(zone, page, ac->migratetype,
2538 NULL);
2539 if (ret) {
2540 spin_unlock_irqrestore(&zone->lock, flags);
2541 return ret;
2542 }
2543 }
2544 spin_unlock_irqrestore(&zone->lock, flags);
2545 }
2546
2547 return false;
2548 }
2549
2550 /*
2551 * Try finding a free buddy page on the fallback list and put it on the free
2552 * list of requested migratetype, possibly along with other pages from the same
2553 * block, depending on fragmentation avoidance heuristics. Returns true if
2554 * fallback was found so that __rmqueue_smallest() can grab it.
2555 *
2556 * The use of signed ints for order and current_order is a deliberate
2557 * deviation from the rest of this file, to make the for loop
2558 * condition simpler.
2559 */
2560 static __always_inline bool
2561 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2562 unsigned int alloc_flags)
2563 {
2564 struct free_area *area;
2565 int current_order;
2566 int min_order = order;
2567 struct page *page;
2568 int fallback_mt;
2569 bool can_steal;
2570
2571 /*
2572 * Do not steal pages from freelists belonging to other pageblocks
2573 * i.e. orders < pageblock_order. If there are no local zones free,
2574 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2575 */
2576 if (alloc_flags & ALLOC_NOFRAGMENT)
2577 min_order = pageblock_order;
2578
2579 /*
2580 * Find the largest available free page in the other list. This roughly
2581 * approximates finding the pageblock with the most free pages, which
2582 * would be too costly to do exactly.
2583 */
2584 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2585 --current_order) {
2586 area = &(zone->free_area[current_order]);
2587 fallback_mt = find_suitable_fallback(area, current_order,
2588 start_migratetype, false, &can_steal);
2589 if (fallback_mt == -1)
2590 continue;
2591
2592 /*
2593 * We cannot steal all free pages from the pageblock and the
2594 * requested migratetype is movable. In that case it's better to
2595 * steal and split the smallest available page instead of the
2596 * largest available page, because even if the next movable
2597 * allocation falls back into a different pageblock than this
2598 * one, it won't cause permanent fragmentation.
2599 */
2600 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2601 && current_order > order)
2602 goto find_smallest;
2603
2604 goto do_steal;
2605 }
2606
2607 return false;
2608
2609 find_smallest:
2610 for (current_order = order; current_order < MAX_ORDER;
2611 current_order++) {
2612 area = &(zone->free_area[current_order]);
2613 fallback_mt = find_suitable_fallback(area, current_order,
2614 start_migratetype, false, &can_steal);
2615 if (fallback_mt != -1)
2616 break;
2617 }
2618
2619 /*
2620 * This should not happen - we already found a suitable fallback
2621 * when looking for the largest page.
2622 */
2623 VM_BUG_ON(current_order == MAX_ORDER);
2624
2625 do_steal:
2626 page = get_page_from_free_area(area, fallback_mt);
2627
2628 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2629 can_steal);
2630
2631 trace_mm_page_alloc_extfrag(page, order, current_order,
2632 start_migratetype, fallback_mt);
2633
2634 return true;
2635
2636 }
2637
2638 /*
2639 * Do the hard work of removing an element from the buddy allocator.
2640 * Call me with the zone->lock already held.
2641 */
2642 static __always_inline struct page *
2643 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2644 unsigned int alloc_flags)
2645 {
2646 struct page *page;
2647
2648 retry:
2649 page = __rmqueue_smallest(zone, order, migratetype);
2650 if (unlikely(!page)) {
2651 if (migratetype == MIGRATE_MOVABLE)
2652 page = __rmqueue_cma_fallback(zone, order);
2653
2654 if (!page && __rmqueue_fallback(zone, order, migratetype,
2655 alloc_flags))
2656 goto retry;
2657 }
2658
2659 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2660 return page;
2661 }
2662
2663 /*
2664 * Obtain a specified number of elements from the buddy allocator, all under
2665 * a single hold of the lock, for efficiency. Add them to the supplied list.
2666 * Returns the number of new pages which were placed at *list.
2667 */
2668 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2669 unsigned long count, struct list_head *list,
2670 int migratetype, unsigned int alloc_flags)
2671 {
2672 int i, alloced = 0;
2673
2674 spin_lock(&zone->lock);
2675 for (i = 0; i < count; ++i) {
2676 struct page *page = __rmqueue(zone, order, migratetype,
2677 alloc_flags);
2678 if (unlikely(page == NULL))
2679 break;
2680
2681 if (unlikely(check_pcp_refill(page)))
2682 continue;
2683
2684 /*
2685 * Split buddy pages returned by expand() are received here in
2686 * physical page order. The page is added to the tail of
2687 * caller's list. From the callers perspective, the linked list
2688 * is ordered by page number under some conditions. This is
2689 * useful for IO devices that can forward direction from the
2690 * head, thus also in the physical page order. This is useful
2691 * for IO devices that can merge IO requests if the physical
2692 * pages are ordered properly.
2693 */
2694 list_add_tail(&page->lru, list);
2695 alloced++;
2696 if (is_migrate_cma(get_pcppage_migratetype(page)))
2697 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2698 -(1 << order));
2699 }
2700
2701 /*
2702 * i pages were removed from the buddy list even if some leak due
2703 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2704 * on i. Do not confuse with 'alloced' which is the number of
2705 * pages added to the pcp list.
2706 */
2707 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2708 spin_unlock(&zone->lock);
2709 return alloced;
2710 }
2711
2712 #ifdef CONFIG_NUMA
2713 /*
2714 * Called from the vmstat counter updater to drain pagesets of this
2715 * currently executing processor on remote nodes after they have
2716 * expired.
2717 *
2718 * Note that this function must be called with the thread pinned to
2719 * a single processor.
2720 */
2721 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2722 {
2723 unsigned long flags;
2724 int to_drain, batch;
2725
2726 local_irq_save(flags);
2727 batch = READ_ONCE(pcp->batch);
2728 to_drain = min(pcp->count, batch);
2729 if (to_drain > 0)
2730 free_pcppages_bulk(zone, to_drain, pcp);
2731 local_irq_restore(flags);
2732 }
2733 #endif
2734
2735 /*
2736 * Drain pcplists of the indicated processor and zone.
2737 *
2738 * The processor must either be the current processor and the
2739 * thread pinned to the current processor or a processor that
2740 * is not online.
2741 */
2742 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2743 {
2744 unsigned long flags;
2745 struct per_cpu_pageset *pset;
2746 struct per_cpu_pages *pcp;
2747
2748 local_irq_save(flags);
2749 pset = per_cpu_ptr(zone->pageset, cpu);
2750
2751 pcp = &pset->pcp;
2752 if (pcp->count)
2753 free_pcppages_bulk(zone, pcp->count, pcp);
2754 local_irq_restore(flags);
2755 }
2756
2757 /*
2758 * Drain pcplists of all zones on the indicated processor.
2759 *
2760 * The processor must either be the current processor and the
2761 * thread pinned to the current processor or a processor that
2762 * is not online.
2763 */
2764 static void drain_pages(unsigned int cpu)
2765 {
2766 struct zone *zone;
2767
2768 for_each_populated_zone(zone) {
2769 drain_pages_zone(cpu, zone);
2770 }
2771 }
2772
2773 /*
2774 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2775 *
2776 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2777 * the single zone's pages.
2778 */
2779 void drain_local_pages(struct zone *zone)
2780 {
2781 int cpu = smp_processor_id();
2782
2783 if (zone)
2784 drain_pages_zone(cpu, zone);
2785 else
2786 drain_pages(cpu);
2787 }
2788
2789 static void drain_local_pages_wq(struct work_struct *work)
2790 {
2791 struct pcpu_drain *drain;
2792
2793 drain = container_of(work, struct pcpu_drain, work);
2794
2795 /*
2796 * drain_all_pages doesn't use proper cpu hotplug protection so
2797 * we can race with cpu offline when the WQ can move this from
2798 * a cpu pinned worker to an unbound one. We can operate on a different
2799 * cpu which is allright but we also have to make sure to not move to
2800 * a different one.
2801 */
2802 preempt_disable();
2803 drain_local_pages(drain->zone);
2804 preempt_enable();
2805 }
2806
2807 /*
2808 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2809 *
2810 * When zone parameter is non-NULL, spill just the single zone's pages.
2811 *
2812 * Note that this can be extremely slow as the draining happens in a workqueue.
2813 */
2814 void drain_all_pages(struct zone *zone)
2815 {
2816 int cpu;
2817
2818 /*
2819 * Allocate in the BSS so we wont require allocation in
2820 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2821 */
2822 static cpumask_t cpus_with_pcps;
2823
2824 /*
2825 * Make sure nobody triggers this path before mm_percpu_wq is fully
2826 * initialized.
2827 */
2828 if (WARN_ON_ONCE(!mm_percpu_wq))
2829 return;
2830
2831 /*
2832 * Do not drain if one is already in progress unless it's specific to
2833 * a zone. Such callers are primarily CMA and memory hotplug and need
2834 * the drain to be complete when the call returns.
2835 */
2836 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2837 if (!zone)
2838 return;
2839 mutex_lock(&pcpu_drain_mutex);
2840 }
2841
2842 /*
2843 * We don't care about racing with CPU hotplug event
2844 * as offline notification will cause the notified
2845 * cpu to drain that CPU pcps and on_each_cpu_mask
2846 * disables preemption as part of its processing
2847 */
2848 for_each_online_cpu(cpu) {
2849 struct per_cpu_pageset *pcp;
2850 struct zone *z;
2851 bool has_pcps = false;
2852
2853 if (zone) {
2854 pcp = per_cpu_ptr(zone->pageset, cpu);
2855 if (pcp->pcp.count)
2856 has_pcps = true;
2857 } else {
2858 for_each_populated_zone(z) {
2859 pcp = per_cpu_ptr(z->pageset, cpu);
2860 if (pcp->pcp.count) {
2861 has_pcps = true;
2862 break;
2863 }
2864 }
2865 }
2866
2867 if (has_pcps)
2868 cpumask_set_cpu(cpu, &cpus_with_pcps);
2869 else
2870 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2871 }
2872
2873 for_each_cpu(cpu, &cpus_with_pcps) {
2874 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2875
2876 drain->zone = zone;
2877 INIT_WORK(&drain->work, drain_local_pages_wq);
2878 queue_work_on(cpu, mm_percpu_wq, &drain->work);
2879 }
2880 for_each_cpu(cpu, &cpus_with_pcps)
2881 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2882
2883 mutex_unlock(&pcpu_drain_mutex);
2884 }
2885
2886 #ifdef CONFIG_HIBERNATION
2887
2888 /*
2889 * Touch the watchdog for every WD_PAGE_COUNT pages.
2890 */
2891 #define WD_PAGE_COUNT (128*1024)
2892
2893 void mark_free_pages(struct zone *zone)
2894 {
2895 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2896 unsigned long flags;
2897 unsigned int order, t;
2898 struct page *page;
2899
2900 if (zone_is_empty(zone))
2901 return;
2902
2903 spin_lock_irqsave(&zone->lock, flags);
2904
2905 max_zone_pfn = zone_end_pfn(zone);
2906 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2907 if (pfn_valid(pfn)) {
2908 page = pfn_to_page(pfn);
2909
2910 if (!--page_count) {
2911 touch_nmi_watchdog();
2912 page_count = WD_PAGE_COUNT;
2913 }
2914
2915 if (page_zone(page) != zone)
2916 continue;
2917
2918 if (!swsusp_page_is_forbidden(page))
2919 swsusp_unset_page_free(page);
2920 }
2921
2922 for_each_migratetype_order(order, t) {
2923 list_for_each_entry(page,
2924 &zone->free_area[order].free_list[t], lru) {
2925 unsigned long i;
2926
2927 pfn = page_to_pfn(page);
2928 for (i = 0; i < (1UL << order); i++) {
2929 if (!--page_count) {
2930 touch_nmi_watchdog();
2931 page_count = WD_PAGE_COUNT;
2932 }
2933 swsusp_set_page_free(pfn_to_page(pfn + i));
2934 }
2935 }
2936 }
2937 spin_unlock_irqrestore(&zone->lock, flags);
2938 }
2939 #endif /* CONFIG_PM */
2940
2941 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2942 {
2943 int migratetype;
2944
2945 if (!free_pcp_prepare(page))
2946 return false;
2947
2948 migratetype = get_pfnblock_migratetype(page, pfn);
2949 set_pcppage_migratetype(page, migratetype);
2950 return true;
2951 }
2952
2953 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2954 {
2955 struct zone *zone = page_zone(page);
2956 struct per_cpu_pages *pcp;
2957 int migratetype;
2958
2959 migratetype = get_pcppage_migratetype(page);
2960 __count_vm_event(PGFREE);
2961
2962 /*
2963 * We only track unmovable, reclaimable and movable on pcp lists.
2964 * Free ISOLATE pages back to the allocator because they are being
2965 * offlined but treat HIGHATOMIC as movable pages so we can get those
2966 * areas back if necessary. Otherwise, we may have to free
2967 * excessively into the page allocator
2968 */
2969 if (migratetype >= MIGRATE_PCPTYPES) {
2970 if (unlikely(is_migrate_isolate(migratetype))) {
2971 free_one_page(zone, page, pfn, 0, migratetype);
2972 return;
2973 }
2974 migratetype = MIGRATE_MOVABLE;
2975 }
2976
2977 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2978 list_add(&page->lru, &pcp->lists[migratetype]);
2979 pcp->count++;
2980 if (pcp->count >= pcp->high) {
2981 unsigned long batch = READ_ONCE(pcp->batch);
2982 free_pcppages_bulk(zone, batch, pcp);
2983 }
2984 }
2985
2986 /*
2987 * Free a 0-order page
2988 */
2989 void free_unref_page(struct page *page)
2990 {
2991 unsigned long flags;
2992 unsigned long pfn = page_to_pfn(page);
2993
2994 if (!free_unref_page_prepare(page, pfn))
2995 return;
2996
2997 local_irq_save(flags);
2998 free_unref_page_commit(page, pfn);
2999 local_irq_restore(flags);
3000 }
3001
3002 /*
3003 * Free a list of 0-order pages
3004 */
3005 void free_unref_page_list(struct list_head *list)
3006 {
3007 struct page *page, *next;
3008 unsigned long flags, pfn;
3009 int batch_count = 0;
3010
3011 /* Prepare pages for freeing */
3012 list_for_each_entry_safe(page, next, list, lru) {
3013 pfn = page_to_pfn(page);
3014 if (!free_unref_page_prepare(page, pfn))
3015 list_del(&page->lru);
3016 set_page_private(page, pfn);
3017 }
3018
3019 local_irq_save(flags);
3020 list_for_each_entry_safe(page, next, list, lru) {
3021 unsigned long pfn = page_private(page);
3022
3023 set_page_private(page, 0);
3024 trace_mm_page_free_batched(page);
3025 free_unref_page_commit(page, pfn);
3026
3027 /*
3028 * Guard against excessive IRQ disabled times when we get
3029 * a large list of pages to free.
3030 */
3031 if (++batch_count == SWAP_CLUSTER_MAX) {
3032 local_irq_restore(flags);
3033 batch_count = 0;
3034 local_irq_save(flags);
3035 }
3036 }
3037 local_irq_restore(flags);
3038 }
3039
3040 /*
3041 * split_page takes a non-compound higher-order page, and splits it into
3042 * n (1<<order) sub-pages: page[0..n]
3043 * Each sub-page must be freed individually.
3044 *
3045 * Note: this is probably too low level an operation for use in drivers.
3046 * Please consult with lkml before using this in your driver.
3047 */
3048 void split_page(struct page *page, unsigned int order)
3049 {
3050 int i;
3051
3052 VM_BUG_ON_PAGE(PageCompound(page), page);
3053 VM_BUG_ON_PAGE(!page_count(page), page);
3054
3055 for (i = 1; i < (1 << order); i++)
3056 set_page_refcounted(page + i);
3057 split_page_owner(page, order);
3058 }
3059 EXPORT_SYMBOL_GPL(split_page);
3060
3061 int __isolate_free_page(struct page *page, unsigned int order)
3062 {
3063 struct free_area *area = &page_zone(page)->free_area[order];
3064 unsigned long watermark;
3065 struct zone *zone;
3066 int mt;
3067
3068 BUG_ON(!PageBuddy(page));
3069
3070 zone = page_zone(page);
3071 mt = get_pageblock_migratetype(page);
3072
3073 if (!is_migrate_isolate(mt)) {
3074 /*
3075 * Obey watermarks as if the page was being allocated. We can
3076 * emulate a high-order watermark check with a raised order-0
3077 * watermark, because we already know our high-order page
3078 * exists.
3079 */
3080 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3081 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3082 return 0;
3083
3084 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3085 }
3086
3087 /* Remove page from free list */
3088
3089 del_page_from_free_area(page, area);
3090
3091 /*
3092 * Set the pageblock if the isolated page is at least half of a
3093 * pageblock
3094 */
3095 if (order >= pageblock_order - 1) {
3096 struct page *endpage = page + (1 << order) - 1;
3097 for (; page < endpage; page += pageblock_nr_pages) {
3098 int mt = get_pageblock_migratetype(page);
3099 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3100 && !is_migrate_highatomic(mt))
3101 set_pageblock_migratetype(page,
3102 MIGRATE_MOVABLE);
3103 }
3104 }
3105
3106
3107 return 1UL << order;
3108 }
3109
3110 /*
3111 * Update NUMA hit/miss statistics
3112 *
3113 * Must be called with interrupts disabled.
3114 */
3115 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3116 {
3117 #ifdef CONFIG_NUMA
3118 enum numa_stat_item local_stat = NUMA_LOCAL;
3119
3120 /* skip numa counters update if numa stats is disabled */
3121 if (!static_branch_likely(&vm_numa_stat_key))
3122 return;
3123
3124 if (zone_to_nid(z) != numa_node_id())
3125 local_stat = NUMA_OTHER;
3126
3127 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3128 __inc_numa_state(z, NUMA_HIT);
3129 else {
3130 __inc_numa_state(z, NUMA_MISS);
3131 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3132 }
3133 __inc_numa_state(z, local_stat);
3134 #endif
3135 }
3136
3137 /* Remove page from the per-cpu list, caller must protect the list */
3138 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3139 unsigned int alloc_flags,
3140 struct per_cpu_pages *pcp,
3141 struct list_head *list)
3142 {
3143 struct page *page;
3144
3145 do {
3146 if (list_empty(list)) {
3147 pcp->count += rmqueue_bulk(zone, 0,
3148 pcp->batch, list,
3149 migratetype, alloc_flags);
3150 if (unlikely(list_empty(list)))
3151 return NULL;
3152 }
3153
3154 page = list_first_entry(list, struct page, lru);
3155 list_del(&page->lru);
3156 pcp->count--;
3157 } while (check_new_pcp(page));
3158
3159 return page;
3160 }
3161
3162 /* Lock and remove page from the per-cpu list */
3163 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3164 struct zone *zone, gfp_t gfp_flags,
3165 int migratetype, unsigned int alloc_flags)
3166 {
3167 struct per_cpu_pages *pcp;
3168 struct list_head *list;
3169 struct page *page;
3170 unsigned long flags;
3171
3172 local_irq_save(flags);
3173 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3174 list = &pcp->lists[migratetype];
3175 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3176 if (page) {
3177 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3178 zone_statistics(preferred_zone, zone);
3179 }
3180 local_irq_restore(flags);
3181 return page;
3182 }
3183
3184 /*
3185 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3186 */
3187 static inline
3188 struct page *rmqueue(struct zone *preferred_zone,
3189 struct zone *zone, unsigned int order,
3190 gfp_t gfp_flags, unsigned int alloc_flags,
3191 int migratetype)
3192 {
3193 unsigned long flags;
3194 struct page *page;
3195
3196 if (likely(order == 0)) {
3197 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3198 migratetype, alloc_flags);
3199 goto out;
3200 }
3201
3202 /*
3203 * We most definitely don't want callers attempting to
3204 * allocate greater than order-1 page units with __GFP_NOFAIL.
3205 */
3206 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3207 spin_lock_irqsave(&zone->lock, flags);
3208
3209 do {
3210 page = NULL;
3211 if (alloc_flags & ALLOC_HARDER) {
3212 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3213 if (page)
3214 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3215 }
3216 if (!page)
3217 page = __rmqueue(zone, order, migratetype, alloc_flags);
3218 } while (page && check_new_pages(page, order));
3219 spin_unlock(&zone->lock);
3220 if (!page)
3221 goto failed;
3222 __mod_zone_freepage_state(zone, -(1 << order),
3223 get_pcppage_migratetype(page));
3224
3225 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3226 zone_statistics(preferred_zone, zone);
3227 local_irq_restore(flags);
3228
3229 out:
3230 /* Separate test+clear to avoid unnecessary atomics */
3231 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3232 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3233 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3234 }
3235
3236 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3237 return page;
3238
3239 failed:
3240 local_irq_restore(flags);
3241 return NULL;
3242 }
3243
3244 #ifdef CONFIG_FAIL_PAGE_ALLOC
3245
3246 static struct {
3247 struct fault_attr attr;
3248
3249 bool ignore_gfp_highmem;
3250 bool ignore_gfp_reclaim;
3251 u32 min_order;
3252 } fail_page_alloc = {
3253 .attr = FAULT_ATTR_INITIALIZER,
3254 .ignore_gfp_reclaim = true,
3255 .ignore_gfp_highmem = true,
3256 .min_order = 1,
3257 };
3258
3259 static int __init setup_fail_page_alloc(char *str)
3260 {
3261 return setup_fault_attr(&fail_page_alloc.attr, str);
3262 }
3263 __setup("fail_page_alloc=", setup_fail_page_alloc);
3264
3265 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3266 {
3267 if (order < fail_page_alloc.min_order)
3268 return false;
3269 if (gfp_mask & __GFP_NOFAIL)
3270 return false;
3271 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3272 return false;
3273 if (fail_page_alloc.ignore_gfp_reclaim &&
3274 (gfp_mask & __GFP_DIRECT_RECLAIM))
3275 return false;
3276
3277 return should_fail(&fail_page_alloc.attr, 1 << order);
3278 }
3279
3280 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3281
3282 static int __init fail_page_alloc_debugfs(void)
3283 {
3284 umode_t mode = S_IFREG | 0600;
3285 struct dentry *dir;
3286
3287 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3288 &fail_page_alloc.attr);
3289
3290 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3291 &fail_page_alloc.ignore_gfp_reclaim);
3292 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3293 &fail_page_alloc.ignore_gfp_highmem);
3294 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3295
3296 return 0;
3297 }
3298
3299 late_initcall(fail_page_alloc_debugfs);
3300
3301 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3302
3303 #else /* CONFIG_FAIL_PAGE_ALLOC */
3304
3305 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3306 {
3307 return false;
3308 }
3309
3310 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3311
3312 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3313 {
3314 return __should_fail_alloc_page(gfp_mask, order);
3315 }
3316 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3317
3318 /*
3319 * Return true if free base pages are above 'mark'. For high-order checks it
3320 * will return true of the order-0 watermark is reached and there is at least
3321 * one free page of a suitable size. Checking now avoids taking the zone lock
3322 * to check in the allocation paths if no pages are free.
3323 */
3324 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3325 int classzone_idx, unsigned int alloc_flags,
3326 long free_pages)
3327 {
3328 long min = mark;
3329 int o;
3330 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3331
3332 /* free_pages may go negative - that's OK */
3333 free_pages -= (1 << order) - 1;
3334
3335 if (alloc_flags & ALLOC_HIGH)
3336 min -= min / 2;
3337
3338 /*
3339 * If the caller does not have rights to ALLOC_HARDER then subtract
3340 * the high-atomic reserves. This will over-estimate the size of the
3341 * atomic reserve but it avoids a search.
3342 */
3343 if (likely(!alloc_harder)) {
3344 free_pages -= z->nr_reserved_highatomic;
3345 } else {
3346 /*
3347 * OOM victims can try even harder than normal ALLOC_HARDER
3348 * users on the grounds that it's definitely going to be in
3349 * the exit path shortly and free memory. Any allocation it
3350 * makes during the free path will be small and short-lived.
3351 */
3352 if (alloc_flags & ALLOC_OOM)
3353 min -= min / 2;
3354 else
3355 min -= min / 4;
3356 }
3357
3358
3359 #ifdef CONFIG_CMA
3360 /* If allocation can't use CMA areas don't use free CMA pages */
3361 if (!(alloc_flags & ALLOC_CMA))
3362 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3363 #endif
3364
3365 /*
3366 * Check watermarks for an order-0 allocation request. If these
3367 * are not met, then a high-order request also cannot go ahead
3368 * even if a suitable page happened to be free.
3369 */
3370 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3371 return false;
3372
3373 /* If this is an order-0 request then the watermark is fine */
3374 if (!order)
3375 return true;
3376
3377 /* For a high-order request, check at least one suitable page is free */
3378 for (o = order; o < MAX_ORDER; o++) {
3379 struct free_area *area = &z->free_area[o];
3380 int mt;
3381
3382 if (!area->nr_free)
3383 continue;
3384
3385 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3386 if (!free_area_empty(area, mt))
3387 return true;
3388 }
3389
3390 #ifdef CONFIG_CMA
3391 if ((alloc_flags & ALLOC_CMA) &&
3392 !free_area_empty(area, MIGRATE_CMA)) {
3393 return true;
3394 }
3395 #endif
3396 if (alloc_harder &&
3397 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3398 return true;
3399 }
3400 return false;
3401 }
3402
3403 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3404 int classzone_idx, unsigned int alloc_flags)
3405 {
3406 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3407 zone_page_state(z, NR_FREE_PAGES));
3408 }
3409
3410 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3411 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3412 {
3413 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3414 long cma_pages = 0;
3415
3416 #ifdef CONFIG_CMA
3417 /* If allocation can't use CMA areas don't use free CMA pages */
3418 if (!(alloc_flags & ALLOC_CMA))
3419 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3420 #endif
3421
3422 /*
3423 * Fast check for order-0 only. If this fails then the reserves
3424 * need to be calculated. There is a corner case where the check
3425 * passes but only the high-order atomic reserve are free. If
3426 * the caller is !atomic then it'll uselessly search the free
3427 * list. That corner case is then slower but it is harmless.
3428 */
3429 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3430 return true;
3431
3432 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3433 free_pages);
3434 }
3435
3436 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3437 unsigned long mark, int classzone_idx)
3438 {
3439 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3440
3441 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3442 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3443
3444 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3445 free_pages);
3446 }
3447
3448 #ifdef CONFIG_NUMA
3449 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3450 {
3451 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3452 RECLAIM_DISTANCE;
3453 }
3454 #else /* CONFIG_NUMA */
3455 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3456 {
3457 return true;
3458 }
3459 #endif /* CONFIG_NUMA */
3460
3461 /*
3462 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3463 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3464 * premature use of a lower zone may cause lowmem pressure problems that
3465 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3466 * probably too small. It only makes sense to spread allocations to avoid
3467 * fragmentation between the Normal and DMA32 zones.
3468 */
3469 static inline unsigned int
3470 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3471 {
3472 unsigned int alloc_flags = 0;
3473
3474 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3475 alloc_flags |= ALLOC_KSWAPD;
3476
3477 #ifdef CONFIG_ZONE_DMA32
3478 if (!zone)
3479 return alloc_flags;
3480
3481 if (zone_idx(zone) != ZONE_NORMAL)
3482 return alloc_flags;
3483
3484 /*
3485 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3486 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3487 * on UMA that if Normal is populated then so is DMA32.
3488 */
3489 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3490 if (nr_online_nodes > 1 && !populated_zone(--zone))
3491 return alloc_flags;
3492
3493 alloc_flags |= ALLOC_NOFRAGMENT;
3494 #endif /* CONFIG_ZONE_DMA32 */
3495 return alloc_flags;
3496 }
3497
3498 /*
3499 * get_page_from_freelist goes through the zonelist trying to allocate
3500 * a page.
3501 */
3502 static struct page *
3503 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3504 const struct alloc_context *ac)
3505 {
3506 struct zoneref *z;
3507 struct zone *zone;
3508 struct pglist_data *last_pgdat_dirty_limit = NULL;
3509 bool no_fallback;
3510
3511 retry:
3512 /*
3513 * Scan zonelist, looking for a zone with enough free.
3514 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3515 */
3516 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3517 z = ac->preferred_zoneref;
3518 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3519 ac->nodemask) {
3520 struct page *page;
3521 unsigned long mark;
3522
3523 if (cpusets_enabled() &&
3524 (alloc_flags & ALLOC_CPUSET) &&
3525 !__cpuset_zone_allowed(zone, gfp_mask))
3526 continue;
3527 /*
3528 * When allocating a page cache page for writing, we
3529 * want to get it from a node that is within its dirty
3530 * limit, such that no single node holds more than its
3531 * proportional share of globally allowed dirty pages.
3532 * The dirty limits take into account the node's
3533 * lowmem reserves and high watermark so that kswapd
3534 * should be able to balance it without having to
3535 * write pages from its LRU list.
3536 *
3537 * XXX: For now, allow allocations to potentially
3538 * exceed the per-node dirty limit in the slowpath
3539 * (spread_dirty_pages unset) before going into reclaim,
3540 * which is important when on a NUMA setup the allowed
3541 * nodes are together not big enough to reach the
3542 * global limit. The proper fix for these situations
3543 * will require awareness of nodes in the
3544 * dirty-throttling and the flusher threads.
3545 */
3546 if (ac->spread_dirty_pages) {
3547 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3548 continue;
3549
3550 if (!node_dirty_ok(zone->zone_pgdat)) {
3551 last_pgdat_dirty_limit = zone->zone_pgdat;
3552 continue;
3553 }
3554 }
3555
3556 if (no_fallback && nr_online_nodes > 1 &&
3557 zone != ac->preferred_zoneref->zone) {
3558 int local_nid;
3559
3560 /*
3561 * If moving to a remote node, retry but allow
3562 * fragmenting fallbacks. Locality is more important
3563 * than fragmentation avoidance.
3564 */
3565 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3566 if (zone_to_nid(zone) != local_nid) {
3567 alloc_flags &= ~ALLOC_NOFRAGMENT;
3568 goto retry;
3569 }
3570 }
3571
3572 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3573 if (!zone_watermark_fast(zone, order, mark,
3574 ac_classzone_idx(ac), alloc_flags)) {
3575 int ret;
3576
3577 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3578 /*
3579 * Watermark failed for this zone, but see if we can
3580 * grow this zone if it contains deferred pages.
3581 */
3582 if (static_branch_unlikely(&deferred_pages)) {
3583 if (_deferred_grow_zone(zone, order))
3584 goto try_this_zone;
3585 }
3586 #endif
3587 /* Checked here to keep the fast path fast */
3588 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3589 if (alloc_flags & ALLOC_NO_WATERMARKS)
3590 goto try_this_zone;
3591
3592 if (node_reclaim_mode == 0 ||
3593 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3594 continue;
3595
3596 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3597 switch (ret) {
3598 case NODE_RECLAIM_NOSCAN:
3599 /* did not scan */
3600 continue;
3601 case NODE_RECLAIM_FULL:
3602 /* scanned but unreclaimable */
3603 continue;
3604 default:
3605 /* did we reclaim enough */
3606 if (zone_watermark_ok(zone, order, mark,
3607 ac_classzone_idx(ac), alloc_flags))
3608 goto try_this_zone;
3609
3610 continue;
3611 }
3612 }
3613
3614 try_this_zone:
3615 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3616 gfp_mask, alloc_flags, ac->migratetype);
3617 if (page) {
3618 prep_new_page(page, order, gfp_mask, alloc_flags);
3619
3620 /*
3621 * If this is a high-order atomic allocation then check
3622 * if the pageblock should be reserved for the future
3623 */
3624 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3625 reserve_highatomic_pageblock(page, zone, order);
3626
3627 return page;
3628 } else {
3629 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3630 /* Try again if zone has deferred pages */
3631 if (static_branch_unlikely(&deferred_pages)) {
3632 if (_deferred_grow_zone(zone, order))
3633 goto try_this_zone;
3634 }
3635 #endif
3636 }
3637 }
3638
3639 /*
3640 * It's possible on a UMA machine to get through all zones that are
3641 * fragmented. If avoiding fragmentation, reset and try again.
3642 */
3643 if (no_fallback) {
3644 alloc_flags &= ~ALLOC_NOFRAGMENT;
3645 goto retry;
3646 }
3647
3648 return NULL;
3649 }
3650
3651 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3652 {
3653 unsigned int filter = SHOW_MEM_FILTER_NODES;
3654 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3655
3656 if (!__ratelimit(&show_mem_rs))
3657 return;
3658
3659 /*
3660 * This documents exceptions given to allocations in certain
3661 * contexts that are allowed to allocate outside current's set
3662 * of allowed nodes.
3663 */
3664 if (!(gfp_mask & __GFP_NOMEMALLOC))
3665 if (tsk_is_oom_victim(current) ||
3666 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3667 filter &= ~SHOW_MEM_FILTER_NODES;
3668 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3669 filter &= ~SHOW_MEM_FILTER_NODES;
3670
3671 show_mem(filter, nodemask);
3672 }
3673
3674 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3675 {
3676 struct va_format vaf;
3677 va_list args;
3678 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3679 DEFAULT_RATELIMIT_BURST);
3680
3681 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3682 return;
3683
3684 va_start(args, fmt);
3685 vaf.fmt = fmt;
3686 vaf.va = &args;
3687 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3688 current->comm, &vaf, gfp_mask, &gfp_mask,
3689 nodemask_pr_args(nodemask));
3690 va_end(args);
3691
3692 cpuset_print_current_mems_allowed();
3693 pr_cont("\n");
3694 dump_stack();
3695 warn_alloc_show_mem(gfp_mask, nodemask);
3696 }
3697
3698 static inline struct page *
3699 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3700 unsigned int alloc_flags,
3701 const struct alloc_context *ac)
3702 {
3703 struct page *page;
3704
3705 page = get_page_from_freelist(gfp_mask, order,
3706 alloc_flags|ALLOC_CPUSET, ac);
3707 /*
3708 * fallback to ignore cpuset restriction if our nodes
3709 * are depleted
3710 */
3711 if (!page)
3712 page = get_page_from_freelist(gfp_mask, order,
3713 alloc_flags, ac);
3714
3715 return page;
3716 }
3717
3718 static inline struct page *
3719 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3720 const struct alloc_context *ac, unsigned long *did_some_progress)
3721 {
3722 struct oom_control oc = {
3723 .zonelist = ac->zonelist,
3724 .nodemask = ac->nodemask,
3725 .memcg = NULL,
3726 .gfp_mask = gfp_mask,
3727 .order = order,
3728 };
3729 struct page *page;
3730
3731 *did_some_progress = 0;
3732
3733 /*
3734 * Acquire the oom lock. If that fails, somebody else is
3735 * making progress for us.
3736 */
3737 if (!mutex_trylock(&oom_lock)) {
3738 *did_some_progress = 1;
3739 schedule_timeout_uninterruptible(1);
3740 return NULL;
3741 }
3742
3743 /*
3744 * Go through the zonelist yet one more time, keep very high watermark
3745 * here, this is only to catch a parallel oom killing, we must fail if
3746 * we're still under heavy pressure. But make sure that this reclaim
3747 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3748 * allocation which will never fail due to oom_lock already held.
3749 */
3750 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3751 ~__GFP_DIRECT_RECLAIM, order,
3752 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3753 if (page)
3754 goto out;
3755
3756 /* Coredumps can quickly deplete all memory reserves */
3757 if (current->flags & PF_DUMPCORE)
3758 goto out;
3759 /* The OOM killer will not help higher order allocs */
3760 if (order > PAGE_ALLOC_COSTLY_ORDER)
3761 goto out;
3762 /*
3763 * We have already exhausted all our reclaim opportunities without any
3764 * success so it is time to admit defeat. We will skip the OOM killer
3765 * because it is very likely that the caller has a more reasonable
3766 * fallback than shooting a random task.
3767 */
3768 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3769 goto out;
3770 /* The OOM killer does not needlessly kill tasks for lowmem */
3771 if (ac->high_zoneidx < ZONE_NORMAL)
3772 goto out;
3773 if (pm_suspended_storage())
3774 goto out;
3775 /*
3776 * XXX: GFP_NOFS allocations should rather fail than rely on
3777 * other request to make a forward progress.
3778 * We are in an unfortunate situation where out_of_memory cannot
3779 * do much for this context but let's try it to at least get
3780 * access to memory reserved if the current task is killed (see
3781 * out_of_memory). Once filesystems are ready to handle allocation
3782 * failures more gracefully we should just bail out here.
3783 */
3784
3785 /* The OOM killer may not free memory on a specific node */
3786 if (gfp_mask & __GFP_THISNODE)
3787 goto out;
3788
3789 /* Exhausted what can be done so it's blame time */
3790 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3791 *did_some_progress = 1;
3792
3793 /*
3794 * Help non-failing allocations by giving them access to memory
3795 * reserves
3796 */
3797 if (gfp_mask & __GFP_NOFAIL)
3798 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3799 ALLOC_NO_WATERMARKS, ac);
3800 }
3801 out:
3802 mutex_unlock(&oom_lock);
3803 return page;
3804 }
3805
3806 /*
3807 * Maximum number of compaction retries wit a progress before OOM
3808 * killer is consider as the only way to move forward.
3809 */
3810 #define MAX_COMPACT_RETRIES 16
3811
3812 #ifdef CONFIG_COMPACTION
3813 /* Try memory compaction for high-order allocations before reclaim */
3814 static struct page *
3815 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3816 unsigned int alloc_flags, const struct alloc_context *ac,
3817 enum compact_priority prio, enum compact_result *compact_result)
3818 {
3819 struct page *page = NULL;
3820 unsigned long pflags;
3821 unsigned int noreclaim_flag;
3822
3823 if (!order)
3824 return NULL;
3825
3826 psi_memstall_enter(&pflags);
3827 noreclaim_flag = memalloc_noreclaim_save();
3828
3829 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3830 prio, &page);
3831
3832 memalloc_noreclaim_restore(noreclaim_flag);
3833 psi_memstall_leave(&pflags);
3834
3835 /*
3836 * At least in one zone compaction wasn't deferred or skipped, so let's
3837 * count a compaction stall
3838 */
3839 count_vm_event(COMPACTSTALL);
3840
3841 /* Prep a captured page if available */
3842 if (page)
3843 prep_new_page(page, order, gfp_mask, alloc_flags);
3844
3845 /* Try get a page from the freelist if available */
3846 if (!page)
3847 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3848
3849 if (page) {
3850 struct zone *zone = page_zone(page);
3851
3852 zone->compact_blockskip_flush = false;
3853 compaction_defer_reset(zone, order, true);
3854 count_vm_event(COMPACTSUCCESS);
3855 return page;
3856 }
3857
3858 /*
3859 * It's bad if compaction run occurs and fails. The most likely reason
3860 * is that pages exist, but not enough to satisfy watermarks.
3861 */
3862 count_vm_event(COMPACTFAIL);
3863
3864 cond_resched();
3865
3866 return NULL;
3867 }
3868
3869 static inline bool
3870 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3871 enum compact_result compact_result,
3872 enum compact_priority *compact_priority,
3873 int *compaction_retries)
3874 {
3875 int max_retries = MAX_COMPACT_RETRIES;
3876 int min_priority;
3877 bool ret = false;
3878 int retries = *compaction_retries;
3879 enum compact_priority priority = *compact_priority;
3880
3881 if (!order)
3882 return false;
3883
3884 if (compaction_made_progress(compact_result))
3885 (*compaction_retries)++;
3886
3887 /*
3888 * compaction considers all the zone as desperately out of memory
3889 * so it doesn't really make much sense to retry except when the
3890 * failure could be caused by insufficient priority
3891 */
3892 if (compaction_failed(compact_result))
3893 goto check_priority;
3894
3895 /*
3896 * make sure the compaction wasn't deferred or didn't bail out early
3897 * due to locks contention before we declare that we should give up.
3898 * But do not retry if the given zonelist is not suitable for
3899 * compaction.
3900 */
3901 if (compaction_withdrawn(compact_result)) {
3902 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3903 goto out;
3904 }
3905
3906 /*
3907 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3908 * costly ones because they are de facto nofail and invoke OOM
3909 * killer to move on while costly can fail and users are ready
3910 * to cope with that. 1/4 retries is rather arbitrary but we
3911 * would need much more detailed feedback from compaction to
3912 * make a better decision.
3913 */
3914 if (order > PAGE_ALLOC_COSTLY_ORDER)
3915 max_retries /= 4;
3916 if (*compaction_retries <= max_retries) {
3917 ret = true;
3918 goto out;
3919 }
3920
3921 /*
3922 * Make sure there are attempts at the highest priority if we exhausted
3923 * all retries or failed at the lower priorities.
3924 */
3925 check_priority:
3926 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3927 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3928
3929 if (*compact_priority > min_priority) {
3930 (*compact_priority)--;
3931 *compaction_retries = 0;
3932 ret = true;
3933 }
3934 out:
3935 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3936 return ret;
3937 }
3938 #else
3939 static inline struct page *
3940 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3941 unsigned int alloc_flags, const struct alloc_context *ac,
3942 enum compact_priority prio, enum compact_result *compact_result)
3943 {
3944 *compact_result = COMPACT_SKIPPED;
3945 return NULL;
3946 }
3947
3948 static inline bool
3949 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3950 enum compact_result compact_result,
3951 enum compact_priority *compact_priority,
3952 int *compaction_retries)
3953 {
3954 struct zone *zone;
3955 struct zoneref *z;
3956
3957 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3958 return false;
3959
3960 /*
3961 * There are setups with compaction disabled which would prefer to loop
3962 * inside the allocator rather than hit the oom killer prematurely.
3963 * Let's give them a good hope and keep retrying while the order-0
3964 * watermarks are OK.
3965 */
3966 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3967 ac->nodemask) {
3968 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3969 ac_classzone_idx(ac), alloc_flags))
3970 return true;
3971 }
3972 return false;
3973 }
3974 #endif /* CONFIG_COMPACTION */
3975
3976 #ifdef CONFIG_LOCKDEP
3977 static struct lockdep_map __fs_reclaim_map =
3978 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3979
3980 static bool __need_fs_reclaim(gfp_t gfp_mask)
3981 {
3982 gfp_mask = current_gfp_context(gfp_mask);
3983
3984 /* no reclaim without waiting on it */
3985 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3986 return false;
3987
3988 /* this guy won't enter reclaim */
3989 if (current->flags & PF_MEMALLOC)
3990 return false;
3991
3992 /* We're only interested __GFP_FS allocations for now */
3993 if (!(gfp_mask & __GFP_FS))
3994 return false;
3995
3996 if (gfp_mask & __GFP_NOLOCKDEP)
3997 return false;
3998
3999 return true;
4000 }
4001
4002 void __fs_reclaim_acquire(void)
4003 {
4004 lock_map_acquire(&__fs_reclaim_map);
4005 }
4006
4007 void __fs_reclaim_release(void)
4008 {
4009 lock_map_release(&__fs_reclaim_map);
4010 }
4011
4012 void fs_reclaim_acquire(gfp_t gfp_mask)
4013 {
4014 if (__need_fs_reclaim(gfp_mask))
4015 __fs_reclaim_acquire();
4016 }
4017 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4018
4019 void fs_reclaim_release(gfp_t gfp_mask)
4020 {
4021 if (__need_fs_reclaim(gfp_mask))
4022 __fs_reclaim_release();
4023 }
4024 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4025 #endif
4026
4027 /* Perform direct synchronous page reclaim */
4028 static int
4029 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4030 const struct alloc_context *ac)
4031 {
4032 struct reclaim_state reclaim_state;
4033 int progress;
4034 unsigned int noreclaim_flag;
4035 unsigned long pflags;
4036
4037 cond_resched();
4038
4039 /* We now go into synchronous reclaim */
4040 cpuset_memory_pressure_bump();
4041 psi_memstall_enter(&pflags);
4042 fs_reclaim_acquire(gfp_mask);
4043 noreclaim_flag = memalloc_noreclaim_save();
4044 reclaim_state.reclaimed_slab = 0;
4045 current->reclaim_state = &reclaim_state;
4046
4047 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4048 ac->nodemask);
4049
4050 current->reclaim_state = NULL;
4051 memalloc_noreclaim_restore(noreclaim_flag);
4052 fs_reclaim_release(gfp_mask);
4053 psi_memstall_leave(&pflags);
4054
4055 cond_resched();
4056
4057 return progress;
4058 }
4059
4060 /* The really slow allocator path where we enter direct reclaim */
4061 static inline struct page *
4062 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4063 unsigned int alloc_flags, const struct alloc_context *ac,
4064 unsigned long *did_some_progress)
4065 {
4066 struct page *page = NULL;
4067 bool drained = false;
4068
4069 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4070 if (unlikely(!(*did_some_progress)))
4071 return NULL;
4072
4073 retry:
4074 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4075
4076 /*
4077 * If an allocation failed after direct reclaim, it could be because
4078 * pages are pinned on the per-cpu lists or in high alloc reserves.
4079 * Shrink them them and try again
4080 */
4081 if (!page && !drained) {
4082 unreserve_highatomic_pageblock(ac, false);
4083 drain_all_pages(NULL);
4084 drained = true;
4085 goto retry;
4086 }
4087
4088 return page;
4089 }
4090
4091 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4092 const struct alloc_context *ac)
4093 {
4094 struct zoneref *z;
4095 struct zone *zone;
4096 pg_data_t *last_pgdat = NULL;
4097 enum zone_type high_zoneidx = ac->high_zoneidx;
4098
4099 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4100 ac->nodemask) {
4101 if (last_pgdat != zone->zone_pgdat)
4102 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4103 last_pgdat = zone->zone_pgdat;
4104 }
4105 }
4106
4107 static inline unsigned int
4108 gfp_to_alloc_flags(gfp_t gfp_mask)
4109 {
4110 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4111
4112 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4113 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4114
4115 /*
4116 * The caller may dip into page reserves a bit more if the caller
4117 * cannot run direct reclaim, or if the caller has realtime scheduling
4118 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4119 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4120 */
4121 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
4122
4123 if (gfp_mask & __GFP_ATOMIC) {
4124 /*
4125 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4126 * if it can't schedule.
4127 */
4128 if (!(gfp_mask & __GFP_NOMEMALLOC))
4129 alloc_flags |= ALLOC_HARDER;
4130 /*
4131 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4132 * comment for __cpuset_node_allowed().
4133 */
4134 alloc_flags &= ~ALLOC_CPUSET;
4135 } else if (unlikely(rt_task(current)) && !in_interrupt())
4136 alloc_flags |= ALLOC_HARDER;
4137
4138 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4139 alloc_flags |= ALLOC_KSWAPD;
4140
4141 #ifdef CONFIG_CMA
4142 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4143 alloc_flags |= ALLOC_CMA;
4144 #endif
4145 return alloc_flags;
4146 }
4147
4148 static bool oom_reserves_allowed(struct task_struct *tsk)
4149 {
4150 if (!tsk_is_oom_victim(tsk))
4151 return false;
4152
4153 /*
4154 * !MMU doesn't have oom reaper so give access to memory reserves
4155 * only to the thread with TIF_MEMDIE set
4156 */
4157 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4158 return false;
4159
4160 return true;
4161 }
4162
4163 /*
4164 * Distinguish requests which really need access to full memory
4165 * reserves from oom victims which can live with a portion of it
4166 */
4167 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4168 {
4169 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4170 return 0;
4171 if (gfp_mask & __GFP_MEMALLOC)
4172 return ALLOC_NO_WATERMARKS;
4173 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4174 return ALLOC_NO_WATERMARKS;
4175 if (!in_interrupt()) {
4176 if (current->flags & PF_MEMALLOC)
4177 return ALLOC_NO_WATERMARKS;
4178 else if (oom_reserves_allowed(current))
4179 return ALLOC_OOM;
4180 }
4181
4182 return 0;
4183 }
4184
4185 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4186 {
4187 return !!__gfp_pfmemalloc_flags(gfp_mask);
4188 }
4189
4190 /*
4191 * Checks whether it makes sense to retry the reclaim to make a forward progress
4192 * for the given allocation request.
4193 *
4194 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4195 * without success, or when we couldn't even meet the watermark if we
4196 * reclaimed all remaining pages on the LRU lists.
4197 *
4198 * Returns true if a retry is viable or false to enter the oom path.
4199 */
4200 static inline bool
4201 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4202 struct alloc_context *ac, int alloc_flags,
4203 bool did_some_progress, int *no_progress_loops)
4204 {
4205 struct zone *zone;
4206 struct zoneref *z;
4207 bool ret = false;
4208
4209 /*
4210 * Costly allocations might have made a progress but this doesn't mean
4211 * their order will become available due to high fragmentation so
4212 * always increment the no progress counter for them
4213 */
4214 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4215 *no_progress_loops = 0;
4216 else
4217 (*no_progress_loops)++;
4218
4219 /*
4220 * Make sure we converge to OOM if we cannot make any progress
4221 * several times in the row.
4222 */
4223 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4224 /* Before OOM, exhaust highatomic_reserve */
4225 return unreserve_highatomic_pageblock(ac, true);
4226 }
4227
4228 /*
4229 * Keep reclaiming pages while there is a chance this will lead
4230 * somewhere. If none of the target zones can satisfy our allocation
4231 * request even if all reclaimable pages are considered then we are
4232 * screwed and have to go OOM.
4233 */
4234 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4235 ac->nodemask) {
4236 unsigned long available;
4237 unsigned long reclaimable;
4238 unsigned long min_wmark = min_wmark_pages(zone);
4239 bool wmark;
4240
4241 available = reclaimable = zone_reclaimable_pages(zone);
4242 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4243
4244 /*
4245 * Would the allocation succeed if we reclaimed all
4246 * reclaimable pages?
4247 */
4248 wmark = __zone_watermark_ok(zone, order, min_wmark,
4249 ac_classzone_idx(ac), alloc_flags, available);
4250 trace_reclaim_retry_zone(z, order, reclaimable,
4251 available, min_wmark, *no_progress_loops, wmark);
4252 if (wmark) {
4253 /*
4254 * If we didn't make any progress and have a lot of
4255 * dirty + writeback pages then we should wait for
4256 * an IO to complete to slow down the reclaim and
4257 * prevent from pre mature OOM
4258 */
4259 if (!did_some_progress) {
4260 unsigned long write_pending;
4261
4262 write_pending = zone_page_state_snapshot(zone,
4263 NR_ZONE_WRITE_PENDING);
4264
4265 if (2 * write_pending > reclaimable) {
4266 congestion_wait(BLK_RW_ASYNC, HZ/10);
4267 return true;
4268 }
4269 }
4270
4271 ret = true;
4272 goto out;
4273 }
4274 }
4275
4276 out:
4277 /*
4278 * Memory allocation/reclaim might be called from a WQ context and the
4279 * current implementation of the WQ concurrency control doesn't
4280 * recognize that a particular WQ is congested if the worker thread is
4281 * looping without ever sleeping. Therefore we have to do a short sleep
4282 * here rather than calling cond_resched().
4283 */
4284 if (current->flags & PF_WQ_WORKER)
4285 schedule_timeout_uninterruptible(1);
4286 else
4287 cond_resched();
4288 return ret;
4289 }
4290
4291 static inline bool
4292 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4293 {
4294 /*
4295 * It's possible that cpuset's mems_allowed and the nodemask from
4296 * mempolicy don't intersect. This should be normally dealt with by
4297 * policy_nodemask(), but it's possible to race with cpuset update in
4298 * such a way the check therein was true, and then it became false
4299 * before we got our cpuset_mems_cookie here.
4300 * This assumes that for all allocations, ac->nodemask can come only
4301 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4302 * when it does not intersect with the cpuset restrictions) or the
4303 * caller can deal with a violated nodemask.
4304 */
4305 if (cpusets_enabled() && ac->nodemask &&
4306 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4307 ac->nodemask = NULL;
4308 return true;
4309 }
4310
4311 /*
4312 * When updating a task's mems_allowed or mempolicy nodemask, it is
4313 * possible to race with parallel threads in such a way that our
4314 * allocation can fail while the mask is being updated. If we are about
4315 * to fail, check if the cpuset changed during allocation and if so,
4316 * retry.
4317 */
4318 if (read_mems_allowed_retry(cpuset_mems_cookie))
4319 return true;
4320
4321 return false;
4322 }
4323
4324 static inline struct page *
4325 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4326 struct alloc_context *ac)
4327 {
4328 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4329 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4330 struct page *page = NULL;
4331 unsigned int alloc_flags;
4332 unsigned long did_some_progress;
4333 enum compact_priority compact_priority;
4334 enum compact_result compact_result;
4335 int compaction_retries;
4336 int no_progress_loops;
4337 unsigned int cpuset_mems_cookie;
4338 int reserve_flags;
4339
4340 /*
4341 * We also sanity check to catch abuse of atomic reserves being used by
4342 * callers that are not in atomic context.
4343 */
4344 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4345 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4346 gfp_mask &= ~__GFP_ATOMIC;
4347
4348 retry_cpuset:
4349 compaction_retries = 0;
4350 no_progress_loops = 0;
4351 compact_priority = DEF_COMPACT_PRIORITY;
4352 cpuset_mems_cookie = read_mems_allowed_begin();
4353
4354 /*
4355 * The fast path uses conservative alloc_flags to succeed only until
4356 * kswapd needs to be woken up, and to avoid the cost of setting up
4357 * alloc_flags precisely. So we do that now.
4358 */
4359 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4360
4361 /*
4362 * We need to recalculate the starting point for the zonelist iterator
4363 * because we might have used different nodemask in the fast path, or
4364 * there was a cpuset modification and we are retrying - otherwise we
4365 * could end up iterating over non-eligible zones endlessly.
4366 */
4367 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4368 ac->high_zoneidx, ac->nodemask);
4369 if (!ac->preferred_zoneref->zone)
4370 goto nopage;
4371
4372 if (alloc_flags & ALLOC_KSWAPD)
4373 wake_all_kswapds(order, gfp_mask, ac);
4374
4375 /*
4376 * The adjusted alloc_flags might result in immediate success, so try
4377 * that first
4378 */
4379 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4380 if (page)
4381 goto got_pg;
4382
4383 /*
4384 * For costly allocations, try direct compaction first, as it's likely
4385 * that we have enough base pages and don't need to reclaim. For non-
4386 * movable high-order allocations, do that as well, as compaction will
4387 * try prevent permanent fragmentation by migrating from blocks of the
4388 * same migratetype.
4389 * Don't try this for allocations that are allowed to ignore
4390 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4391 */
4392 if (can_direct_reclaim &&
4393 (costly_order ||
4394 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4395 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4396 page = __alloc_pages_direct_compact(gfp_mask, order,
4397 alloc_flags, ac,
4398 INIT_COMPACT_PRIORITY,
4399 &compact_result);
4400 if (page)
4401 goto got_pg;
4402
4403 /*
4404 * Checks for costly allocations with __GFP_NORETRY, which
4405 * includes THP page fault allocations
4406 */
4407 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4408 /*
4409 * If compaction is deferred for high-order allocations,
4410 * it is because sync compaction recently failed. If
4411 * this is the case and the caller requested a THP
4412 * allocation, we do not want to heavily disrupt the
4413 * system, so we fail the allocation instead of entering
4414 * direct reclaim.
4415 */
4416 if (compact_result == COMPACT_DEFERRED)
4417 goto nopage;
4418
4419 /*
4420 * Looks like reclaim/compaction is worth trying, but
4421 * sync compaction could be very expensive, so keep
4422 * using async compaction.
4423 */
4424 compact_priority = INIT_COMPACT_PRIORITY;
4425 }
4426 }
4427
4428 retry:
4429 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4430 if (alloc_flags & ALLOC_KSWAPD)
4431 wake_all_kswapds(order, gfp_mask, ac);
4432
4433 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4434 if (reserve_flags)
4435 alloc_flags = reserve_flags;
4436
4437 /*
4438 * Reset the nodemask and zonelist iterators if memory policies can be
4439 * ignored. These allocations are high priority and system rather than
4440 * user oriented.
4441 */
4442 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4443 ac->nodemask = NULL;
4444 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4445 ac->high_zoneidx, ac->nodemask);
4446 }
4447
4448 /* Attempt with potentially adjusted zonelist and alloc_flags */
4449 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4450 if (page)
4451 goto got_pg;
4452
4453 /* Caller is not willing to reclaim, we can't balance anything */
4454 if (!can_direct_reclaim)
4455 goto nopage;
4456
4457 /* Avoid recursion of direct reclaim */
4458 if (current->flags & PF_MEMALLOC)
4459 goto nopage;
4460
4461 /* Try direct reclaim and then allocating */
4462 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4463 &did_some_progress);
4464 if (page)
4465 goto got_pg;
4466
4467 /* Try direct compaction and then allocating */
4468 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4469 compact_priority, &compact_result);
4470 if (page)
4471 goto got_pg;
4472
4473 /* Do not loop if specifically requested */
4474 if (gfp_mask & __GFP_NORETRY)
4475 goto nopage;
4476
4477 /*
4478 * Do not retry costly high order allocations unless they are
4479 * __GFP_RETRY_MAYFAIL
4480 */
4481 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4482 goto nopage;
4483
4484 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4485 did_some_progress > 0, &no_progress_loops))
4486 goto retry;
4487
4488 /*
4489 * It doesn't make any sense to retry for the compaction if the order-0
4490 * reclaim is not able to make any progress because the current
4491 * implementation of the compaction depends on the sufficient amount
4492 * of free memory (see __compaction_suitable)
4493 */
4494 if (did_some_progress > 0 &&
4495 should_compact_retry(ac, order, alloc_flags,
4496 compact_result, &compact_priority,
4497 &compaction_retries))
4498 goto retry;
4499
4500
4501 /* Deal with possible cpuset update races before we start OOM killing */
4502 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4503 goto retry_cpuset;
4504
4505 /* Reclaim has failed us, start killing things */
4506 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4507 if (page)
4508 goto got_pg;
4509
4510 /* Avoid allocations with no watermarks from looping endlessly */
4511 if (tsk_is_oom_victim(current) &&
4512 (alloc_flags == ALLOC_OOM ||
4513 (gfp_mask & __GFP_NOMEMALLOC)))
4514 goto nopage;
4515
4516 /* Retry as long as the OOM killer is making progress */
4517 if (did_some_progress) {
4518 no_progress_loops = 0;
4519 goto retry;
4520 }
4521
4522 nopage:
4523 /* Deal with possible cpuset update races before we fail */
4524 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4525 goto retry_cpuset;
4526
4527 /*
4528 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4529 * we always retry
4530 */
4531 if (gfp_mask & __GFP_NOFAIL) {
4532 /*
4533 * All existing users of the __GFP_NOFAIL are blockable, so warn
4534 * of any new users that actually require GFP_NOWAIT
4535 */
4536 if (WARN_ON_ONCE(!can_direct_reclaim))
4537 goto fail;
4538
4539 /*
4540 * PF_MEMALLOC request from this context is rather bizarre
4541 * because we cannot reclaim anything and only can loop waiting
4542 * for somebody to do a work for us
4543 */
4544 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4545
4546 /*
4547 * non failing costly orders are a hard requirement which we
4548 * are not prepared for much so let's warn about these users
4549 * so that we can identify them and convert them to something
4550 * else.
4551 */
4552 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4553
4554 /*
4555 * Help non-failing allocations by giving them access to memory
4556 * reserves but do not use ALLOC_NO_WATERMARKS because this
4557 * could deplete whole memory reserves which would just make
4558 * the situation worse
4559 */
4560 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4561 if (page)
4562 goto got_pg;
4563
4564 cond_resched();
4565 goto retry;
4566 }
4567 fail:
4568 warn_alloc(gfp_mask, ac->nodemask,
4569 "page allocation failure: order:%u", order);
4570 got_pg:
4571 return page;
4572 }
4573
4574 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4575 int preferred_nid, nodemask_t *nodemask,
4576 struct alloc_context *ac, gfp_t *alloc_mask,
4577 unsigned int *alloc_flags)
4578 {
4579 ac->high_zoneidx = gfp_zone(gfp_mask);
4580 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4581 ac->nodemask = nodemask;
4582 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4583
4584 if (cpusets_enabled()) {
4585 *alloc_mask |= __GFP_HARDWALL;
4586 if (!ac->nodemask)
4587 ac->nodemask = &cpuset_current_mems_allowed;
4588 else
4589 *alloc_flags |= ALLOC_CPUSET;
4590 }
4591
4592 fs_reclaim_acquire(gfp_mask);
4593 fs_reclaim_release(gfp_mask);
4594
4595 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4596
4597 if (should_fail_alloc_page(gfp_mask, order))
4598 return false;
4599
4600 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4601 *alloc_flags |= ALLOC_CMA;
4602
4603 return true;
4604 }
4605
4606 /* Determine whether to spread dirty pages and what the first usable zone */
4607 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4608 {
4609 /* Dirty zone balancing only done in the fast path */
4610 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4611
4612 /*
4613 * The preferred zone is used for statistics but crucially it is
4614 * also used as the starting point for the zonelist iterator. It
4615 * may get reset for allocations that ignore memory policies.
4616 */
4617 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4618 ac->high_zoneidx, ac->nodemask);
4619 }
4620
4621 /*
4622 * This is the 'heart' of the zoned buddy allocator.
4623 */
4624 struct page *
4625 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4626 nodemask_t *nodemask)
4627 {
4628 struct page *page;
4629 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4630 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4631 struct alloc_context ac = { };
4632
4633 /*
4634 * There are several places where we assume that the order value is sane
4635 * so bail out early if the request is out of bound.
4636 */
4637 if (unlikely(order >= MAX_ORDER)) {
4638 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4639 return NULL;
4640 }
4641
4642 gfp_mask &= gfp_allowed_mask;
4643 alloc_mask = gfp_mask;
4644 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4645 return NULL;
4646
4647 finalise_ac(gfp_mask, &ac);
4648
4649 /*
4650 * Forbid the first pass from falling back to types that fragment
4651 * memory until all local zones are considered.
4652 */
4653 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4654
4655 /* First allocation attempt */
4656 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4657 if (likely(page))
4658 goto out;
4659
4660 /*
4661 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4662 * resp. GFP_NOIO which has to be inherited for all allocation requests
4663 * from a particular context which has been marked by
4664 * memalloc_no{fs,io}_{save,restore}.
4665 */
4666 alloc_mask = current_gfp_context(gfp_mask);
4667 ac.spread_dirty_pages = false;
4668
4669 /*
4670 * Restore the original nodemask if it was potentially replaced with
4671 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4672 */
4673 if (unlikely(ac.nodemask != nodemask))
4674 ac.nodemask = nodemask;
4675
4676 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4677
4678 out:
4679 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4680 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4681 __free_pages(page, order);
4682 page = NULL;
4683 }
4684
4685 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4686
4687 return page;
4688 }
4689 EXPORT_SYMBOL(__alloc_pages_nodemask);
4690
4691 /*
4692 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4693 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4694 * you need to access high mem.
4695 */
4696 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4697 {
4698 struct page *page;
4699
4700 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4701 if (!page)
4702 return 0;
4703 return (unsigned long) page_address(page);
4704 }
4705 EXPORT_SYMBOL(__get_free_pages);
4706
4707 unsigned long get_zeroed_page(gfp_t gfp_mask)
4708 {
4709 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4710 }
4711 EXPORT_SYMBOL(get_zeroed_page);
4712
4713 static inline void free_the_page(struct page *page, unsigned int order)
4714 {
4715 if (order == 0) /* Via pcp? */
4716 free_unref_page(page);
4717 else
4718 __free_pages_ok(page, order);
4719 }
4720
4721 void __free_pages(struct page *page, unsigned int order)
4722 {
4723 if (put_page_testzero(page))
4724 free_the_page(page, order);
4725 }
4726 EXPORT_SYMBOL(__free_pages);
4727
4728 void free_pages(unsigned long addr, unsigned int order)
4729 {
4730 if (addr != 0) {
4731 VM_BUG_ON(!virt_addr_valid((void *)addr));
4732 __free_pages(virt_to_page((void *)addr), order);
4733 }
4734 }
4735
4736 EXPORT_SYMBOL(free_pages);
4737
4738 /*
4739 * Page Fragment:
4740 * An arbitrary-length arbitrary-offset area of memory which resides
4741 * within a 0 or higher order page. Multiple fragments within that page
4742 * are individually refcounted, in the page's reference counter.
4743 *
4744 * The page_frag functions below provide a simple allocation framework for
4745 * page fragments. This is used by the network stack and network device
4746 * drivers to provide a backing region of memory for use as either an
4747 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4748 */
4749 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4750 gfp_t gfp_mask)
4751 {
4752 struct page *page = NULL;
4753 gfp_t gfp = gfp_mask;
4754
4755 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4756 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4757 __GFP_NOMEMALLOC;
4758 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4759 PAGE_FRAG_CACHE_MAX_ORDER);
4760 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4761 #endif
4762 if (unlikely(!page))
4763 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4764
4765 nc->va = page ? page_address(page) : NULL;
4766
4767 return page;
4768 }
4769
4770 void __page_frag_cache_drain(struct page *page, unsigned int count)
4771 {
4772 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4773
4774 if (page_ref_sub_and_test(page, count))
4775 free_the_page(page, compound_order(page));
4776 }
4777 EXPORT_SYMBOL(__page_frag_cache_drain);
4778
4779 void *page_frag_alloc(struct page_frag_cache *nc,
4780 unsigned int fragsz, gfp_t gfp_mask)
4781 {
4782 unsigned int size = PAGE_SIZE;
4783 struct page *page;
4784 int offset;
4785
4786 if (unlikely(!nc->va)) {
4787 refill:
4788 page = __page_frag_cache_refill(nc, gfp_mask);
4789 if (!page)
4790 return NULL;
4791
4792 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4793 /* if size can vary use size else just use PAGE_SIZE */
4794 size = nc->size;
4795 #endif
4796 /* Even if we own the page, we do not use atomic_set().
4797 * This would break get_page_unless_zero() users.
4798 */
4799 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4800
4801 /* reset page count bias and offset to start of new frag */
4802 nc->pfmemalloc = page_is_pfmemalloc(page);
4803 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4804 nc->offset = size;
4805 }
4806
4807 offset = nc->offset - fragsz;
4808 if (unlikely(offset < 0)) {
4809 page = virt_to_page(nc->va);
4810
4811 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4812 goto refill;
4813
4814 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4815 /* if size can vary use size else just use PAGE_SIZE */
4816 size = nc->size;
4817 #endif
4818 /* OK, page count is 0, we can safely set it */
4819 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4820
4821 /* reset page count bias and offset to start of new frag */
4822 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4823 offset = size - fragsz;
4824 }
4825
4826 nc->pagecnt_bias--;
4827 nc->offset = offset;
4828
4829 return nc->va + offset;
4830 }
4831 EXPORT_SYMBOL(page_frag_alloc);
4832
4833 /*
4834 * Frees a page fragment allocated out of either a compound or order 0 page.
4835 */
4836 void page_frag_free(void *addr)
4837 {
4838 struct page *page = virt_to_head_page(addr);
4839
4840 if (unlikely(put_page_testzero(page)))
4841 free_the_page(page, compound_order(page));
4842 }
4843 EXPORT_SYMBOL(page_frag_free);
4844
4845 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4846 size_t size)
4847 {
4848 if (addr) {
4849 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4850 unsigned long used = addr + PAGE_ALIGN(size);
4851
4852 split_page(virt_to_page((void *)addr), order);
4853 while (used < alloc_end) {
4854 free_page(used);
4855 used += PAGE_SIZE;
4856 }
4857 }
4858 return (void *)addr;
4859 }
4860
4861 /**
4862 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4863 * @size: the number of bytes to allocate
4864 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4865 *
4866 * This function is similar to alloc_pages(), except that it allocates the
4867 * minimum number of pages to satisfy the request. alloc_pages() can only
4868 * allocate memory in power-of-two pages.
4869 *
4870 * This function is also limited by MAX_ORDER.
4871 *
4872 * Memory allocated by this function must be released by free_pages_exact().
4873 *
4874 * Return: pointer to the allocated area or %NULL in case of error.
4875 */
4876 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4877 {
4878 unsigned int order = get_order(size);
4879 unsigned long addr;
4880
4881 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4882 gfp_mask &= ~__GFP_COMP;
4883
4884 addr = __get_free_pages(gfp_mask, order);
4885 return make_alloc_exact(addr, order, size);
4886 }
4887 EXPORT_SYMBOL(alloc_pages_exact);
4888
4889 /**
4890 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4891 * pages on a node.
4892 * @nid: the preferred node ID where memory should be allocated
4893 * @size: the number of bytes to allocate
4894 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4895 *
4896 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4897 * back.
4898 *
4899 * Return: pointer to the allocated area or %NULL in case of error.
4900 */
4901 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4902 {
4903 unsigned int order = get_order(size);
4904 struct page *p;
4905
4906 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4907 gfp_mask &= ~__GFP_COMP;
4908
4909 p = alloc_pages_node(nid, gfp_mask, order);
4910 if (!p)
4911 return NULL;
4912 return make_alloc_exact((unsigned long)page_address(p), order, size);
4913 }
4914
4915 /**
4916 * free_pages_exact - release memory allocated via alloc_pages_exact()
4917 * @virt: the value returned by alloc_pages_exact.
4918 * @size: size of allocation, same value as passed to alloc_pages_exact().
4919 *
4920 * Release the memory allocated by a previous call to alloc_pages_exact.
4921 */
4922 void free_pages_exact(void *virt, size_t size)
4923 {
4924 unsigned long addr = (unsigned long)virt;
4925 unsigned long end = addr + PAGE_ALIGN(size);
4926
4927 while (addr < end) {
4928 free_page(addr);
4929 addr += PAGE_SIZE;
4930 }
4931 }
4932 EXPORT_SYMBOL(free_pages_exact);
4933
4934 /**
4935 * nr_free_zone_pages - count number of pages beyond high watermark
4936 * @offset: The zone index of the highest zone
4937 *
4938 * nr_free_zone_pages() counts the number of pages which are beyond the
4939 * high watermark within all zones at or below a given zone index. For each
4940 * zone, the number of pages is calculated as:
4941 *
4942 * nr_free_zone_pages = managed_pages - high_pages
4943 *
4944 * Return: number of pages beyond high watermark.
4945 */
4946 static unsigned long nr_free_zone_pages(int offset)
4947 {
4948 struct zoneref *z;
4949 struct zone *zone;
4950
4951 /* Just pick one node, since fallback list is circular */
4952 unsigned long sum = 0;
4953
4954 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4955
4956 for_each_zone_zonelist(zone, z, zonelist, offset) {
4957 unsigned long size = zone_managed_pages(zone);
4958 unsigned long high = high_wmark_pages(zone);
4959 if (size > high)
4960 sum += size - high;
4961 }
4962
4963 return sum;
4964 }
4965
4966 /**
4967 * nr_free_buffer_pages - count number of pages beyond high watermark
4968 *
4969 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4970 * watermark within ZONE_DMA and ZONE_NORMAL.
4971 *
4972 * Return: number of pages beyond high watermark within ZONE_DMA and
4973 * ZONE_NORMAL.
4974 */
4975 unsigned long nr_free_buffer_pages(void)
4976 {
4977 return nr_free_zone_pages(gfp_zone(GFP_USER));
4978 }
4979 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4980
4981 /**
4982 * nr_free_pagecache_pages - count number of pages beyond high watermark
4983 *
4984 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4985 * high watermark within all zones.
4986 *
4987 * Return: number of pages beyond high watermark within all zones.
4988 */
4989 unsigned long nr_free_pagecache_pages(void)
4990 {
4991 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4992 }
4993
4994 static inline void show_node(struct zone *zone)
4995 {
4996 if (IS_ENABLED(CONFIG_NUMA))
4997 printk("Node %d ", zone_to_nid(zone));
4998 }
4999
5000 long si_mem_available(void)
5001 {
5002 long available;
5003 unsigned long pagecache;
5004 unsigned long wmark_low = 0;
5005 unsigned long pages[NR_LRU_LISTS];
5006 unsigned long reclaimable;
5007 struct zone *zone;
5008 int lru;
5009
5010 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5011 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5012
5013 for_each_zone(zone)
5014 wmark_low += low_wmark_pages(zone);
5015
5016 /*
5017 * Estimate the amount of memory available for userspace allocations,
5018 * without causing swapping.
5019 */
5020 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5021
5022 /*
5023 * Not all the page cache can be freed, otherwise the system will
5024 * start swapping. Assume at least half of the page cache, or the
5025 * low watermark worth of cache, needs to stay.
5026 */
5027 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5028 pagecache -= min(pagecache / 2, wmark_low);
5029 available += pagecache;
5030
5031 /*
5032 * Part of the reclaimable slab and other kernel memory consists of
5033 * items that are in use, and cannot be freed. Cap this estimate at the
5034 * low watermark.
5035 */
5036 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5037 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5038 available += reclaimable - min(reclaimable / 2, wmark_low);
5039
5040 if (available < 0)
5041 available = 0;
5042 return available;
5043 }
5044 EXPORT_SYMBOL_GPL(si_mem_available);
5045
5046 void si_meminfo(struct sysinfo *val)
5047 {
5048 val->totalram = totalram_pages();
5049 val->sharedram = global_node_page_state(NR_SHMEM);
5050 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5051 val->bufferram = nr_blockdev_pages();
5052 val->totalhigh = totalhigh_pages();
5053 val->freehigh = nr_free_highpages();
5054 val->mem_unit = PAGE_SIZE;
5055 }
5056
5057 EXPORT_SYMBOL(si_meminfo);
5058
5059 #ifdef CONFIG_NUMA
5060 void si_meminfo_node(struct sysinfo *val, int nid)
5061 {
5062 int zone_type; /* needs to be signed */
5063 unsigned long managed_pages = 0;
5064 unsigned long managed_highpages = 0;
5065 unsigned long free_highpages = 0;
5066 pg_data_t *pgdat = NODE_DATA(nid);
5067
5068 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5069 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5070 val->totalram = managed_pages;
5071 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5072 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5073 #ifdef CONFIG_HIGHMEM
5074 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5075 struct zone *zone = &pgdat->node_zones[zone_type];
5076
5077 if (is_highmem(zone)) {
5078 managed_highpages += zone_managed_pages(zone);
5079 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5080 }
5081 }
5082 val->totalhigh = managed_highpages;
5083 val->freehigh = free_highpages;
5084 #else
5085 val->totalhigh = managed_highpages;
5086 val->freehigh = free_highpages;
5087 #endif
5088 val->mem_unit = PAGE_SIZE;
5089 }
5090 #endif
5091
5092 /*
5093 * Determine whether the node should be displayed or not, depending on whether
5094 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5095 */
5096 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5097 {
5098 if (!(flags & SHOW_MEM_FILTER_NODES))
5099 return false;
5100
5101 /*
5102 * no node mask - aka implicit memory numa policy. Do not bother with
5103 * the synchronization - read_mems_allowed_begin - because we do not
5104 * have to be precise here.
5105 */
5106 if (!nodemask)
5107 nodemask = &cpuset_current_mems_allowed;
5108
5109 return !node_isset(nid, *nodemask);
5110 }
5111
5112 #define K(x) ((x) << (PAGE_SHIFT-10))
5113
5114 static void show_migration_types(unsigned char type)
5115 {
5116 static const char types[MIGRATE_TYPES] = {
5117 [MIGRATE_UNMOVABLE] = 'U',
5118 [MIGRATE_MOVABLE] = 'M',
5119 [MIGRATE_RECLAIMABLE] = 'E',
5120 [MIGRATE_HIGHATOMIC] = 'H',
5121 #ifdef CONFIG_CMA
5122 [MIGRATE_CMA] = 'C',
5123 #endif
5124 #ifdef CONFIG_MEMORY_ISOLATION
5125 [MIGRATE_ISOLATE] = 'I',
5126 #endif
5127 };
5128 char tmp[MIGRATE_TYPES + 1];
5129 char *p = tmp;
5130 int i;
5131
5132 for (i = 0; i < MIGRATE_TYPES; i++) {
5133 if (type & (1 << i))
5134 *p++ = types[i];
5135 }
5136
5137 *p = '\0';
5138 printk(KERN_CONT "(%s) ", tmp);
5139 }
5140
5141 /*
5142 * Show free area list (used inside shift_scroll-lock stuff)
5143 * We also calculate the percentage fragmentation. We do this by counting the
5144 * memory on each free list with the exception of the first item on the list.
5145 *
5146 * Bits in @filter:
5147 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5148 * cpuset.
5149 */
5150 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5151 {
5152 unsigned long free_pcp = 0;
5153 int cpu;
5154 struct zone *zone;
5155 pg_data_t *pgdat;
5156
5157 for_each_populated_zone(zone) {
5158 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5159 continue;
5160
5161 for_each_online_cpu(cpu)
5162 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5163 }
5164
5165 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5166 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5167 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5168 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5169 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5170 " free:%lu free_pcp:%lu free_cma:%lu\n",
5171 global_node_page_state(NR_ACTIVE_ANON),
5172 global_node_page_state(NR_INACTIVE_ANON),
5173 global_node_page_state(NR_ISOLATED_ANON),
5174 global_node_page_state(NR_ACTIVE_FILE),
5175 global_node_page_state(NR_INACTIVE_FILE),
5176 global_node_page_state(NR_ISOLATED_FILE),
5177 global_node_page_state(NR_UNEVICTABLE),
5178 global_node_page_state(NR_FILE_DIRTY),
5179 global_node_page_state(NR_WRITEBACK),
5180 global_node_page_state(NR_UNSTABLE_NFS),
5181 global_node_page_state(NR_SLAB_RECLAIMABLE),
5182 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5183 global_node_page_state(NR_FILE_MAPPED),
5184 global_node_page_state(NR_SHMEM),
5185 global_zone_page_state(NR_PAGETABLE),
5186 global_zone_page_state(NR_BOUNCE),
5187 global_zone_page_state(NR_FREE_PAGES),
5188 free_pcp,
5189 global_zone_page_state(NR_FREE_CMA_PAGES));
5190
5191 for_each_online_pgdat(pgdat) {
5192 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5193 continue;
5194
5195 printk("Node %d"
5196 " active_anon:%lukB"
5197 " inactive_anon:%lukB"
5198 " active_file:%lukB"
5199 " inactive_file:%lukB"
5200 " unevictable:%lukB"
5201 " isolated(anon):%lukB"
5202 " isolated(file):%lukB"
5203 " mapped:%lukB"
5204 " dirty:%lukB"
5205 " writeback:%lukB"
5206 " shmem:%lukB"
5207 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5208 " shmem_thp: %lukB"
5209 " shmem_pmdmapped: %lukB"
5210 " anon_thp: %lukB"
5211 #endif
5212 " writeback_tmp:%lukB"
5213 " unstable:%lukB"
5214 " all_unreclaimable? %s"
5215 "\n",
5216 pgdat->node_id,
5217 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5218 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5219 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5220 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5221 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5222 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5223 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5224 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5225 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5226 K(node_page_state(pgdat, NR_WRITEBACK)),
5227 K(node_page_state(pgdat, NR_SHMEM)),
5228 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5229 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5230 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5231 * HPAGE_PMD_NR),
5232 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5233 #endif
5234 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5235 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5236 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5237 "yes" : "no");
5238 }
5239
5240 for_each_populated_zone(zone) {
5241 int i;
5242
5243 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5244 continue;
5245
5246 free_pcp = 0;
5247 for_each_online_cpu(cpu)
5248 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5249
5250 show_node(zone);
5251 printk(KERN_CONT
5252 "%s"
5253 " free:%lukB"
5254 " min:%lukB"
5255 " low:%lukB"
5256 " high:%lukB"
5257 " active_anon:%lukB"
5258 " inactive_anon:%lukB"
5259 " active_file:%lukB"
5260 " inactive_file:%lukB"
5261 " unevictable:%lukB"
5262 " writepending:%lukB"
5263 " present:%lukB"
5264 " managed:%lukB"
5265 " mlocked:%lukB"
5266 " kernel_stack:%lukB"
5267 " pagetables:%lukB"
5268 " bounce:%lukB"
5269 " free_pcp:%lukB"
5270 " local_pcp:%ukB"
5271 " free_cma:%lukB"
5272 "\n",
5273 zone->name,
5274 K(zone_page_state(zone, NR_FREE_PAGES)),
5275 K(min_wmark_pages(zone)),
5276 K(low_wmark_pages(zone)),
5277 K(high_wmark_pages(zone)),
5278 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5279 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5280 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5281 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5282 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5283 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5284 K(zone->present_pages),
5285 K(zone_managed_pages(zone)),
5286 K(zone_page_state(zone, NR_MLOCK)),
5287 zone_page_state(zone, NR_KERNEL_STACK_KB),
5288 K(zone_page_state(zone, NR_PAGETABLE)),
5289 K(zone_page_state(zone, NR_BOUNCE)),
5290 K(free_pcp),
5291 K(this_cpu_read(zone->pageset->pcp.count)),
5292 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5293 printk("lowmem_reserve[]:");
5294 for (i = 0; i < MAX_NR_ZONES; i++)
5295 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5296 printk(KERN_CONT "\n");
5297 }
5298
5299 for_each_populated_zone(zone) {
5300 unsigned int order;
5301 unsigned long nr[MAX_ORDER], flags, total = 0;
5302 unsigned char types[MAX_ORDER];
5303
5304 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5305 continue;
5306 show_node(zone);
5307 printk(KERN_CONT "%s: ", zone->name);
5308
5309 spin_lock_irqsave(&zone->lock, flags);
5310 for (order = 0; order < MAX_ORDER; order++) {
5311 struct free_area *area = &zone->free_area[order];
5312 int type;
5313
5314 nr[order] = area->nr_free;
5315 total += nr[order] << order;
5316
5317 types[order] = 0;
5318 for (type = 0; type < MIGRATE_TYPES; type++) {
5319 if (!free_area_empty(area, type))
5320 types[order] |= 1 << type;
5321 }
5322 }
5323 spin_unlock_irqrestore(&zone->lock, flags);
5324 for (order = 0; order < MAX_ORDER; order++) {
5325 printk(KERN_CONT "%lu*%lukB ",
5326 nr[order], K(1UL) << order);
5327 if (nr[order])
5328 show_migration_types(types[order]);
5329 }
5330 printk(KERN_CONT "= %lukB\n", K(total));
5331 }
5332
5333 hugetlb_show_meminfo();
5334
5335 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5336
5337 show_swap_cache_info();
5338 }
5339
5340 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5341 {
5342 zoneref->zone = zone;
5343 zoneref->zone_idx = zone_idx(zone);
5344 }
5345
5346 /*
5347 * Builds allocation fallback zone lists.
5348 *
5349 * Add all populated zones of a node to the zonelist.
5350 */
5351 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5352 {
5353 struct zone *zone;
5354 enum zone_type zone_type = MAX_NR_ZONES;
5355 int nr_zones = 0;
5356
5357 do {
5358 zone_type--;
5359 zone = pgdat->node_zones + zone_type;
5360 if (managed_zone(zone)) {
5361 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5362 check_highest_zone(zone_type);
5363 }
5364 } while (zone_type);
5365
5366 return nr_zones;
5367 }
5368
5369 #ifdef CONFIG_NUMA
5370
5371 static int __parse_numa_zonelist_order(char *s)
5372 {
5373 /*
5374 * We used to support different zonlists modes but they turned
5375 * out to be just not useful. Let's keep the warning in place
5376 * if somebody still use the cmd line parameter so that we do
5377 * not fail it silently
5378 */
5379 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5380 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5381 return -EINVAL;
5382 }
5383 return 0;
5384 }
5385
5386 static __init int setup_numa_zonelist_order(char *s)
5387 {
5388 if (!s)
5389 return 0;
5390
5391 return __parse_numa_zonelist_order(s);
5392 }
5393 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5394
5395 char numa_zonelist_order[] = "Node";
5396
5397 /*
5398 * sysctl handler for numa_zonelist_order
5399 */
5400 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5401 void __user *buffer, size_t *length,
5402 loff_t *ppos)
5403 {
5404 char *str;
5405 int ret;
5406
5407 if (!write)
5408 return proc_dostring(table, write, buffer, length, ppos);
5409 str = memdup_user_nul(buffer, 16);
5410 if (IS_ERR(str))
5411 return PTR_ERR(str);
5412
5413 ret = __parse_numa_zonelist_order(str);
5414 kfree(str);
5415 return ret;
5416 }
5417
5418
5419 #define MAX_NODE_LOAD (nr_online_nodes)
5420 static int node_load[MAX_NUMNODES];
5421
5422 /**
5423 * find_next_best_node - find the next node that should appear in a given node's fallback list
5424 * @node: node whose fallback list we're appending
5425 * @used_node_mask: nodemask_t of already used nodes
5426 *
5427 * We use a number of factors to determine which is the next node that should
5428 * appear on a given node's fallback list. The node should not have appeared
5429 * already in @node's fallback list, and it should be the next closest node
5430 * according to the distance array (which contains arbitrary distance values
5431 * from each node to each node in the system), and should also prefer nodes
5432 * with no CPUs, since presumably they'll have very little allocation pressure
5433 * on them otherwise.
5434 *
5435 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5436 */
5437 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5438 {
5439 int n, val;
5440 int min_val = INT_MAX;
5441 int best_node = NUMA_NO_NODE;
5442 const struct cpumask *tmp = cpumask_of_node(0);
5443
5444 /* Use the local node if we haven't already */
5445 if (!node_isset(node, *used_node_mask)) {
5446 node_set(node, *used_node_mask);
5447 return node;
5448 }
5449
5450 for_each_node_state(n, N_MEMORY) {
5451
5452 /* Don't want a node to appear more than once */
5453 if (node_isset(n, *used_node_mask))
5454 continue;
5455
5456 /* Use the distance array to find the distance */
5457 val = node_distance(node, n);
5458
5459 /* Penalize nodes under us ("prefer the next node") */
5460 val += (n < node);
5461
5462 /* Give preference to headless and unused nodes */
5463 tmp = cpumask_of_node(n);
5464 if (!cpumask_empty(tmp))
5465 val += PENALTY_FOR_NODE_WITH_CPUS;
5466
5467 /* Slight preference for less loaded node */
5468 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5469 val += node_load[n];
5470
5471 if (val < min_val) {
5472 min_val = val;
5473 best_node = n;
5474 }
5475 }
5476
5477 if (best_node >= 0)
5478 node_set(best_node, *used_node_mask);
5479
5480 return best_node;
5481 }
5482
5483
5484 /*
5485 * Build zonelists ordered by node and zones within node.
5486 * This results in maximum locality--normal zone overflows into local
5487 * DMA zone, if any--but risks exhausting DMA zone.
5488 */
5489 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5490 unsigned nr_nodes)
5491 {
5492 struct zoneref *zonerefs;
5493 int i;
5494
5495 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5496
5497 for (i = 0; i < nr_nodes; i++) {
5498 int nr_zones;
5499
5500 pg_data_t *node = NODE_DATA(node_order[i]);
5501
5502 nr_zones = build_zonerefs_node(node, zonerefs);
5503 zonerefs += nr_zones;
5504 }
5505 zonerefs->zone = NULL;
5506 zonerefs->zone_idx = 0;
5507 }
5508
5509 /*
5510 * Build gfp_thisnode zonelists
5511 */
5512 static void build_thisnode_zonelists(pg_data_t *pgdat)
5513 {
5514 struct zoneref *zonerefs;
5515 int nr_zones;
5516
5517 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5518 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5519 zonerefs += nr_zones;
5520 zonerefs->zone = NULL;
5521 zonerefs->zone_idx = 0;
5522 }
5523
5524 /*
5525 * Build zonelists ordered by zone and nodes within zones.
5526 * This results in conserving DMA zone[s] until all Normal memory is
5527 * exhausted, but results in overflowing to remote node while memory
5528 * may still exist in local DMA zone.
5529 */
5530
5531 static void build_zonelists(pg_data_t *pgdat)
5532 {
5533 static int node_order[MAX_NUMNODES];
5534 int node, load, nr_nodes = 0;
5535 nodemask_t used_mask;
5536 int local_node, prev_node;
5537
5538 /* NUMA-aware ordering of nodes */
5539 local_node = pgdat->node_id;
5540 load = nr_online_nodes;
5541 prev_node = local_node;
5542 nodes_clear(used_mask);
5543
5544 memset(node_order, 0, sizeof(node_order));
5545 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5546 /*
5547 * We don't want to pressure a particular node.
5548 * So adding penalty to the first node in same
5549 * distance group to make it round-robin.
5550 */
5551 if (node_distance(local_node, node) !=
5552 node_distance(local_node, prev_node))
5553 node_load[node] = load;
5554
5555 node_order[nr_nodes++] = node;
5556 prev_node = node;
5557 load--;
5558 }
5559
5560 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5561 build_thisnode_zonelists(pgdat);
5562 }
5563
5564 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5565 /*
5566 * Return node id of node used for "local" allocations.
5567 * I.e., first node id of first zone in arg node's generic zonelist.
5568 * Used for initializing percpu 'numa_mem', which is used primarily
5569 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5570 */
5571 int local_memory_node(int node)
5572 {
5573 struct zoneref *z;
5574
5575 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5576 gfp_zone(GFP_KERNEL),
5577 NULL);
5578 return zone_to_nid(z->zone);
5579 }
5580 #endif
5581
5582 static void setup_min_unmapped_ratio(void);
5583 static void setup_min_slab_ratio(void);
5584 #else /* CONFIG_NUMA */
5585
5586 static void build_zonelists(pg_data_t *pgdat)
5587 {
5588 int node, local_node;
5589 struct zoneref *zonerefs;
5590 int nr_zones;
5591
5592 local_node = pgdat->node_id;
5593
5594 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5595 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5596 zonerefs += nr_zones;
5597
5598 /*
5599 * Now we build the zonelist so that it contains the zones
5600 * of all the other nodes.
5601 * We don't want to pressure a particular node, so when
5602 * building the zones for node N, we make sure that the
5603 * zones coming right after the local ones are those from
5604 * node N+1 (modulo N)
5605 */
5606 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5607 if (!node_online(node))
5608 continue;
5609 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5610 zonerefs += nr_zones;
5611 }
5612 for (node = 0; node < local_node; node++) {
5613 if (!node_online(node))
5614 continue;
5615 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5616 zonerefs += nr_zones;
5617 }
5618
5619 zonerefs->zone = NULL;
5620 zonerefs->zone_idx = 0;
5621 }
5622
5623 #endif /* CONFIG_NUMA */
5624
5625 /*
5626 * Boot pageset table. One per cpu which is going to be used for all
5627 * zones and all nodes. The parameters will be set in such a way
5628 * that an item put on a list will immediately be handed over to
5629 * the buddy list. This is safe since pageset manipulation is done
5630 * with interrupts disabled.
5631 *
5632 * The boot_pagesets must be kept even after bootup is complete for
5633 * unused processors and/or zones. They do play a role for bootstrapping
5634 * hotplugged processors.
5635 *
5636 * zoneinfo_show() and maybe other functions do
5637 * not check if the processor is online before following the pageset pointer.
5638 * Other parts of the kernel may not check if the zone is available.
5639 */
5640 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5641 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5642 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5643
5644 static void __build_all_zonelists(void *data)
5645 {
5646 int nid;
5647 int __maybe_unused cpu;
5648 pg_data_t *self = data;
5649 static DEFINE_SPINLOCK(lock);
5650
5651 spin_lock(&lock);
5652
5653 #ifdef CONFIG_NUMA
5654 memset(node_load, 0, sizeof(node_load));
5655 #endif
5656
5657 /*
5658 * This node is hotadded and no memory is yet present. So just
5659 * building zonelists is fine - no need to touch other nodes.
5660 */
5661 if (self && !node_online(self->node_id)) {
5662 build_zonelists(self);
5663 } else {
5664 for_each_online_node(nid) {
5665 pg_data_t *pgdat = NODE_DATA(nid);
5666
5667 build_zonelists(pgdat);
5668 }
5669
5670 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5671 /*
5672 * We now know the "local memory node" for each node--
5673 * i.e., the node of the first zone in the generic zonelist.
5674 * Set up numa_mem percpu variable for on-line cpus. During
5675 * boot, only the boot cpu should be on-line; we'll init the
5676 * secondary cpus' numa_mem as they come on-line. During
5677 * node/memory hotplug, we'll fixup all on-line cpus.
5678 */
5679 for_each_online_cpu(cpu)
5680 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5681 #endif
5682 }
5683
5684 spin_unlock(&lock);
5685 }
5686
5687 static noinline void __init
5688 build_all_zonelists_init(void)
5689 {
5690 int cpu;
5691
5692 __build_all_zonelists(NULL);
5693
5694 /*
5695 * Initialize the boot_pagesets that are going to be used
5696 * for bootstrapping processors. The real pagesets for
5697 * each zone will be allocated later when the per cpu
5698 * allocator is available.
5699 *
5700 * boot_pagesets are used also for bootstrapping offline
5701 * cpus if the system is already booted because the pagesets
5702 * are needed to initialize allocators on a specific cpu too.
5703 * F.e. the percpu allocator needs the page allocator which
5704 * needs the percpu allocator in order to allocate its pagesets
5705 * (a chicken-egg dilemma).
5706 */
5707 for_each_possible_cpu(cpu)
5708 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5709
5710 mminit_verify_zonelist();
5711 cpuset_init_current_mems_allowed();
5712 }
5713
5714 /*
5715 * unless system_state == SYSTEM_BOOTING.
5716 *
5717 * __ref due to call of __init annotated helper build_all_zonelists_init
5718 * [protected by SYSTEM_BOOTING].
5719 */
5720 void __ref build_all_zonelists(pg_data_t *pgdat)
5721 {
5722 if (system_state == SYSTEM_BOOTING) {
5723 build_all_zonelists_init();
5724 } else {
5725 __build_all_zonelists(pgdat);
5726 /* cpuset refresh routine should be here */
5727 }
5728 vm_total_pages = nr_free_pagecache_pages();
5729 /*
5730 * Disable grouping by mobility if the number of pages in the
5731 * system is too low to allow the mechanism to work. It would be
5732 * more accurate, but expensive to check per-zone. This check is
5733 * made on memory-hotadd so a system can start with mobility
5734 * disabled and enable it later
5735 */
5736 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5737 page_group_by_mobility_disabled = 1;
5738 else
5739 page_group_by_mobility_disabled = 0;
5740
5741 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5742 nr_online_nodes,
5743 page_group_by_mobility_disabled ? "off" : "on",
5744 vm_total_pages);
5745 #ifdef CONFIG_NUMA
5746 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5747 #endif
5748 }
5749
5750 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5751 static bool __meminit
5752 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5753 {
5754 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5755 static struct memblock_region *r;
5756
5757 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5758 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5759 for_each_memblock(memory, r) {
5760 if (*pfn < memblock_region_memory_end_pfn(r))
5761 break;
5762 }
5763 }
5764 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5765 memblock_is_mirror(r)) {
5766 *pfn = memblock_region_memory_end_pfn(r);
5767 return true;
5768 }
5769 }
5770 #endif
5771 return false;
5772 }
5773
5774 /*
5775 * Initially all pages are reserved - free ones are freed
5776 * up by memblock_free_all() once the early boot process is
5777 * done. Non-atomic initialization, single-pass.
5778 */
5779 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5780 unsigned long start_pfn, enum memmap_context context,
5781 struct vmem_altmap *altmap)
5782 {
5783 unsigned long pfn, end_pfn = start_pfn + size;
5784 struct page *page;
5785
5786 if (highest_memmap_pfn < end_pfn - 1)
5787 highest_memmap_pfn = end_pfn - 1;
5788
5789 #ifdef CONFIG_ZONE_DEVICE
5790 /*
5791 * Honor reservation requested by the driver for this ZONE_DEVICE
5792 * memory. We limit the total number of pages to initialize to just
5793 * those that might contain the memory mapping. We will defer the
5794 * ZONE_DEVICE page initialization until after we have released
5795 * the hotplug lock.
5796 */
5797 if (zone == ZONE_DEVICE) {
5798 if (!altmap)
5799 return;
5800
5801 if (start_pfn == altmap->base_pfn)
5802 start_pfn += altmap->reserve;
5803 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5804 }
5805 #endif
5806
5807 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5808 /*
5809 * There can be holes in boot-time mem_map[]s handed to this
5810 * function. They do not exist on hotplugged memory.
5811 */
5812 if (context == MEMMAP_EARLY) {
5813 if (!early_pfn_valid(pfn))
5814 continue;
5815 if (!early_pfn_in_nid(pfn, nid))
5816 continue;
5817 if (overlap_memmap_init(zone, &pfn))
5818 continue;
5819 if (defer_init(nid, pfn, end_pfn))
5820 break;
5821 }
5822
5823 page = pfn_to_page(pfn);
5824 __init_single_page(page, pfn, zone, nid);
5825 if (context == MEMMAP_HOTPLUG)
5826 __SetPageReserved(page);
5827
5828 /*
5829 * Mark the block movable so that blocks are reserved for
5830 * movable at startup. This will force kernel allocations
5831 * to reserve their blocks rather than leaking throughout
5832 * the address space during boot when many long-lived
5833 * kernel allocations are made.
5834 *
5835 * bitmap is created for zone's valid pfn range. but memmap
5836 * can be created for invalid pages (for alignment)
5837 * check here not to call set_pageblock_migratetype() against
5838 * pfn out of zone.
5839 */
5840 if (!(pfn & (pageblock_nr_pages - 1))) {
5841 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5842 cond_resched();
5843 }
5844 }
5845 }
5846
5847 #ifdef CONFIG_ZONE_DEVICE
5848 void __ref memmap_init_zone_device(struct zone *zone,
5849 unsigned long start_pfn,
5850 unsigned long size,
5851 struct dev_pagemap *pgmap)
5852 {
5853 unsigned long pfn, end_pfn = start_pfn + size;
5854 struct pglist_data *pgdat = zone->zone_pgdat;
5855 unsigned long zone_idx = zone_idx(zone);
5856 unsigned long start = jiffies;
5857 int nid = pgdat->node_id;
5858
5859 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5860 return;
5861
5862 /*
5863 * The call to memmap_init_zone should have already taken care
5864 * of the pages reserved for the memmap, so we can just jump to
5865 * the end of that region and start processing the device pages.
5866 */
5867 if (pgmap->altmap_valid) {
5868 struct vmem_altmap *altmap = &pgmap->altmap;
5869
5870 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5871 size = end_pfn - start_pfn;
5872 }
5873
5874 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5875 struct page *page = pfn_to_page(pfn);
5876
5877 __init_single_page(page, pfn, zone_idx, nid);
5878
5879 /*
5880 * Mark page reserved as it will need to wait for onlining
5881 * phase for it to be fully associated with a zone.
5882 *
5883 * We can use the non-atomic __set_bit operation for setting
5884 * the flag as we are still initializing the pages.
5885 */
5886 __SetPageReserved(page);
5887
5888 /*
5889 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5890 * pointer and hmm_data. It is a bug if a ZONE_DEVICE
5891 * page is ever freed or placed on a driver-private list.
5892 */
5893 page->pgmap = pgmap;
5894 page->hmm_data = 0;
5895
5896 /*
5897 * Mark the block movable so that blocks are reserved for
5898 * movable at startup. This will force kernel allocations
5899 * to reserve their blocks rather than leaking throughout
5900 * the address space during boot when many long-lived
5901 * kernel allocations are made.
5902 *
5903 * bitmap is created for zone's valid pfn range. but memmap
5904 * can be created for invalid pages (for alignment)
5905 * check here not to call set_pageblock_migratetype() against
5906 * pfn out of zone.
5907 *
5908 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5909 * because this is done early in sparse_add_one_section
5910 */
5911 if (!(pfn & (pageblock_nr_pages - 1))) {
5912 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5913 cond_resched();
5914 }
5915 }
5916
5917 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5918 size, jiffies_to_msecs(jiffies - start));
5919 }
5920
5921 #endif
5922 static void __meminit zone_init_free_lists(struct zone *zone)
5923 {
5924 unsigned int order, t;
5925 for_each_migratetype_order(order, t) {
5926 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5927 zone->free_area[order].nr_free = 0;
5928 }
5929 }
5930
5931 void __meminit __weak memmap_init(unsigned long size, int nid,
5932 unsigned long zone, unsigned long start_pfn)
5933 {
5934 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5935 }
5936
5937 static int zone_batchsize(struct zone *zone)
5938 {
5939 #ifdef CONFIG_MMU
5940 int batch;
5941
5942 /*
5943 * The per-cpu-pages pools are set to around 1000th of the
5944 * size of the zone.
5945 */
5946 batch = zone_managed_pages(zone) / 1024;
5947 /* But no more than a meg. */
5948 if (batch * PAGE_SIZE > 1024 * 1024)
5949 batch = (1024 * 1024) / PAGE_SIZE;
5950 batch /= 4; /* We effectively *= 4 below */
5951 if (batch < 1)
5952 batch = 1;
5953
5954 /*
5955 * Clamp the batch to a 2^n - 1 value. Having a power
5956 * of 2 value was found to be more likely to have
5957 * suboptimal cache aliasing properties in some cases.
5958 *
5959 * For example if 2 tasks are alternately allocating
5960 * batches of pages, one task can end up with a lot
5961 * of pages of one half of the possible page colors
5962 * and the other with pages of the other colors.
5963 */
5964 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5965
5966 return batch;
5967
5968 #else
5969 /* The deferral and batching of frees should be suppressed under NOMMU
5970 * conditions.
5971 *
5972 * The problem is that NOMMU needs to be able to allocate large chunks
5973 * of contiguous memory as there's no hardware page translation to
5974 * assemble apparent contiguous memory from discontiguous pages.
5975 *
5976 * Queueing large contiguous runs of pages for batching, however,
5977 * causes the pages to actually be freed in smaller chunks. As there
5978 * can be a significant delay between the individual batches being
5979 * recycled, this leads to the once large chunks of space being
5980 * fragmented and becoming unavailable for high-order allocations.
5981 */
5982 return 0;
5983 #endif
5984 }
5985
5986 /*
5987 * pcp->high and pcp->batch values are related and dependent on one another:
5988 * ->batch must never be higher then ->high.
5989 * The following function updates them in a safe manner without read side
5990 * locking.
5991 *
5992 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5993 * those fields changing asynchronously (acording the the above rule).
5994 *
5995 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5996 * outside of boot time (or some other assurance that no concurrent updaters
5997 * exist).
5998 */
5999 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6000 unsigned long batch)
6001 {
6002 /* start with a fail safe value for batch */
6003 pcp->batch = 1;
6004 smp_wmb();
6005
6006 /* Update high, then batch, in order */
6007 pcp->high = high;
6008 smp_wmb();
6009
6010 pcp->batch = batch;
6011 }
6012
6013 /* a companion to pageset_set_high() */
6014 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6015 {
6016 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6017 }
6018
6019 static void pageset_init(struct per_cpu_pageset *p)
6020 {
6021 struct per_cpu_pages *pcp;
6022 int migratetype;
6023
6024 memset(p, 0, sizeof(*p));
6025
6026 pcp = &p->pcp;
6027 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6028 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6029 }
6030
6031 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6032 {
6033 pageset_init(p);
6034 pageset_set_batch(p, batch);
6035 }
6036
6037 /*
6038 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6039 * to the value high for the pageset p.
6040 */
6041 static void pageset_set_high(struct per_cpu_pageset *p,
6042 unsigned long high)
6043 {
6044 unsigned long batch = max(1UL, high / 4);
6045 if ((high / 4) > (PAGE_SHIFT * 8))
6046 batch = PAGE_SHIFT * 8;
6047
6048 pageset_update(&p->pcp, high, batch);
6049 }
6050
6051 static void pageset_set_high_and_batch(struct zone *zone,
6052 struct per_cpu_pageset *pcp)
6053 {
6054 if (percpu_pagelist_fraction)
6055 pageset_set_high(pcp,
6056 (zone_managed_pages(zone) /
6057 percpu_pagelist_fraction));
6058 else
6059 pageset_set_batch(pcp, zone_batchsize(zone));
6060 }
6061
6062 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6063 {
6064 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6065
6066 pageset_init(pcp);
6067 pageset_set_high_and_batch(zone, pcp);
6068 }
6069
6070 void __meminit setup_zone_pageset(struct zone *zone)
6071 {
6072 int cpu;
6073 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6074 for_each_possible_cpu(cpu)
6075 zone_pageset_init(zone, cpu);
6076 }
6077
6078 /*
6079 * Allocate per cpu pagesets and initialize them.
6080 * Before this call only boot pagesets were available.
6081 */
6082 void __init setup_per_cpu_pageset(void)
6083 {
6084 struct pglist_data *pgdat;
6085 struct zone *zone;
6086
6087 for_each_populated_zone(zone)
6088 setup_zone_pageset(zone);
6089
6090 for_each_online_pgdat(pgdat)
6091 pgdat->per_cpu_nodestats =
6092 alloc_percpu(struct per_cpu_nodestat);
6093 }
6094
6095 static __meminit void zone_pcp_init(struct zone *zone)
6096 {
6097 /*
6098 * per cpu subsystem is not up at this point. The following code
6099 * relies on the ability of the linker to provide the
6100 * offset of a (static) per cpu variable into the per cpu area.
6101 */
6102 zone->pageset = &boot_pageset;
6103
6104 if (populated_zone(zone))
6105 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6106 zone->name, zone->present_pages,
6107 zone_batchsize(zone));
6108 }
6109
6110 void __meminit init_currently_empty_zone(struct zone *zone,
6111 unsigned long zone_start_pfn,
6112 unsigned long size)
6113 {
6114 struct pglist_data *pgdat = zone->zone_pgdat;
6115 int zone_idx = zone_idx(zone) + 1;
6116
6117 if (zone_idx > pgdat->nr_zones)
6118 pgdat->nr_zones = zone_idx;
6119
6120 zone->zone_start_pfn = zone_start_pfn;
6121
6122 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6123 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6124 pgdat->node_id,
6125 (unsigned long)zone_idx(zone),
6126 zone_start_pfn, (zone_start_pfn + size));
6127
6128 zone_init_free_lists(zone);
6129 zone->initialized = 1;
6130 }
6131
6132 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6133 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6134
6135 /*
6136 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6137 */
6138 int __meminit __early_pfn_to_nid(unsigned long pfn,
6139 struct mminit_pfnnid_cache *state)
6140 {
6141 unsigned long start_pfn, end_pfn;
6142 int nid;
6143
6144 if (state->last_start <= pfn && pfn < state->last_end)
6145 return state->last_nid;
6146
6147 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6148 if (nid != NUMA_NO_NODE) {
6149 state->last_start = start_pfn;
6150 state->last_end = end_pfn;
6151 state->last_nid = nid;
6152 }
6153
6154 return nid;
6155 }
6156 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6157
6158 /**
6159 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6160 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6161 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6162 *
6163 * If an architecture guarantees that all ranges registered contain no holes
6164 * and may be freed, this this function may be used instead of calling
6165 * memblock_free_early_nid() manually.
6166 */
6167 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6168 {
6169 unsigned long start_pfn, end_pfn;
6170 int i, this_nid;
6171
6172 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6173 start_pfn = min(start_pfn, max_low_pfn);
6174 end_pfn = min(end_pfn, max_low_pfn);
6175
6176 if (start_pfn < end_pfn)
6177 memblock_free_early_nid(PFN_PHYS(start_pfn),
6178 (end_pfn - start_pfn) << PAGE_SHIFT,
6179 this_nid);
6180 }
6181 }
6182
6183 /**
6184 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6185 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6186 *
6187 * If an architecture guarantees that all ranges registered contain no holes and may
6188 * be freed, this function may be used instead of calling memory_present() manually.
6189 */
6190 void __init sparse_memory_present_with_active_regions(int nid)
6191 {
6192 unsigned long start_pfn, end_pfn;
6193 int i, this_nid;
6194
6195 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6196 memory_present(this_nid, start_pfn, end_pfn);
6197 }
6198
6199 /**
6200 * get_pfn_range_for_nid - Return the start and end page frames for a node
6201 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6202 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6203 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6204 *
6205 * It returns the start and end page frame of a node based on information
6206 * provided by memblock_set_node(). If called for a node
6207 * with no available memory, a warning is printed and the start and end
6208 * PFNs will be 0.
6209 */
6210 void __init get_pfn_range_for_nid(unsigned int nid,
6211 unsigned long *start_pfn, unsigned long *end_pfn)
6212 {
6213 unsigned long this_start_pfn, this_end_pfn;
6214 int i;
6215
6216 *start_pfn = -1UL;
6217 *end_pfn = 0;
6218
6219 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6220 *start_pfn = min(*start_pfn, this_start_pfn);
6221 *end_pfn = max(*end_pfn, this_end_pfn);
6222 }
6223
6224 if (*start_pfn == -1UL)
6225 *start_pfn = 0;
6226 }
6227
6228 /*
6229 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6230 * assumption is made that zones within a node are ordered in monotonic
6231 * increasing memory addresses so that the "highest" populated zone is used
6232 */
6233 static void __init find_usable_zone_for_movable(void)
6234 {
6235 int zone_index;
6236 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6237 if (zone_index == ZONE_MOVABLE)
6238 continue;
6239
6240 if (arch_zone_highest_possible_pfn[zone_index] >
6241 arch_zone_lowest_possible_pfn[zone_index])
6242 break;
6243 }
6244
6245 VM_BUG_ON(zone_index == -1);
6246 movable_zone = zone_index;
6247 }
6248
6249 /*
6250 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6251 * because it is sized independent of architecture. Unlike the other zones,
6252 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6253 * in each node depending on the size of each node and how evenly kernelcore
6254 * is distributed. This helper function adjusts the zone ranges
6255 * provided by the architecture for a given node by using the end of the
6256 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6257 * zones within a node are in order of monotonic increases memory addresses
6258 */
6259 static void __init adjust_zone_range_for_zone_movable(int nid,
6260 unsigned long zone_type,
6261 unsigned long node_start_pfn,
6262 unsigned long node_end_pfn,
6263 unsigned long *zone_start_pfn,
6264 unsigned long *zone_end_pfn)
6265 {
6266 /* Only adjust if ZONE_MOVABLE is on this node */
6267 if (zone_movable_pfn[nid]) {
6268 /* Size ZONE_MOVABLE */
6269 if (zone_type == ZONE_MOVABLE) {
6270 *zone_start_pfn = zone_movable_pfn[nid];
6271 *zone_end_pfn = min(node_end_pfn,
6272 arch_zone_highest_possible_pfn[movable_zone]);
6273
6274 /* Adjust for ZONE_MOVABLE starting within this range */
6275 } else if (!mirrored_kernelcore &&
6276 *zone_start_pfn < zone_movable_pfn[nid] &&
6277 *zone_end_pfn > zone_movable_pfn[nid]) {
6278 *zone_end_pfn = zone_movable_pfn[nid];
6279
6280 /* Check if this whole range is within ZONE_MOVABLE */
6281 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6282 *zone_start_pfn = *zone_end_pfn;
6283 }
6284 }
6285
6286 /*
6287 * Return the number of pages a zone spans in a node, including holes
6288 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6289 */
6290 static unsigned long __init zone_spanned_pages_in_node(int nid,
6291 unsigned long zone_type,
6292 unsigned long node_start_pfn,
6293 unsigned long node_end_pfn,
6294 unsigned long *zone_start_pfn,
6295 unsigned long *zone_end_pfn,
6296 unsigned long *ignored)
6297 {
6298 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6299 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6300 /* When hotadd a new node from cpu_up(), the node should be empty */
6301 if (!node_start_pfn && !node_end_pfn)
6302 return 0;
6303
6304 /* Get the start and end of the zone */
6305 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6306 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6307 adjust_zone_range_for_zone_movable(nid, zone_type,
6308 node_start_pfn, node_end_pfn,
6309 zone_start_pfn, zone_end_pfn);
6310
6311 /* Check that this node has pages within the zone's required range */
6312 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6313 return 0;
6314
6315 /* Move the zone boundaries inside the node if necessary */
6316 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6317 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6318
6319 /* Return the spanned pages */
6320 return *zone_end_pfn - *zone_start_pfn;
6321 }
6322
6323 /*
6324 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6325 * then all holes in the requested range will be accounted for.
6326 */
6327 unsigned long __init __absent_pages_in_range(int nid,
6328 unsigned long range_start_pfn,
6329 unsigned long range_end_pfn)
6330 {
6331 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6332 unsigned long start_pfn, end_pfn;
6333 int i;
6334
6335 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6336 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6337 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6338 nr_absent -= end_pfn - start_pfn;
6339 }
6340 return nr_absent;
6341 }
6342
6343 /**
6344 * absent_pages_in_range - Return number of page frames in holes within a range
6345 * @start_pfn: The start PFN to start searching for holes
6346 * @end_pfn: The end PFN to stop searching for holes
6347 *
6348 * Return: the number of pages frames in memory holes within a range.
6349 */
6350 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6351 unsigned long end_pfn)
6352 {
6353 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6354 }
6355
6356 /* Return the number of page frames in holes in a zone on a node */
6357 static unsigned long __init zone_absent_pages_in_node(int nid,
6358 unsigned long zone_type,
6359 unsigned long node_start_pfn,
6360 unsigned long node_end_pfn,
6361 unsigned long *ignored)
6362 {
6363 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6364 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6365 unsigned long zone_start_pfn, zone_end_pfn;
6366 unsigned long nr_absent;
6367
6368 /* When hotadd a new node from cpu_up(), the node should be empty */
6369 if (!node_start_pfn && !node_end_pfn)
6370 return 0;
6371
6372 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6373 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6374
6375 adjust_zone_range_for_zone_movable(nid, zone_type,
6376 node_start_pfn, node_end_pfn,
6377 &zone_start_pfn, &zone_end_pfn);
6378 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6379
6380 /*
6381 * ZONE_MOVABLE handling.
6382 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6383 * and vice versa.
6384 */
6385 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6386 unsigned long start_pfn, end_pfn;
6387 struct memblock_region *r;
6388
6389 for_each_memblock(memory, r) {
6390 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6391 zone_start_pfn, zone_end_pfn);
6392 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6393 zone_start_pfn, zone_end_pfn);
6394
6395 if (zone_type == ZONE_MOVABLE &&
6396 memblock_is_mirror(r))
6397 nr_absent += end_pfn - start_pfn;
6398
6399 if (zone_type == ZONE_NORMAL &&
6400 !memblock_is_mirror(r))
6401 nr_absent += end_pfn - start_pfn;
6402 }
6403 }
6404
6405 return nr_absent;
6406 }
6407
6408 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6409 static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6410 unsigned long zone_type,
6411 unsigned long node_start_pfn,
6412 unsigned long node_end_pfn,
6413 unsigned long *zone_start_pfn,
6414 unsigned long *zone_end_pfn,
6415 unsigned long *zones_size)
6416 {
6417 unsigned int zone;
6418
6419 *zone_start_pfn = node_start_pfn;
6420 for (zone = 0; zone < zone_type; zone++)
6421 *zone_start_pfn += zones_size[zone];
6422
6423 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6424
6425 return zones_size[zone_type];
6426 }
6427
6428 static inline unsigned long __init zone_absent_pages_in_node(int nid,
6429 unsigned long zone_type,
6430 unsigned long node_start_pfn,
6431 unsigned long node_end_pfn,
6432 unsigned long *zholes_size)
6433 {
6434 if (!zholes_size)
6435 return 0;
6436
6437 return zholes_size[zone_type];
6438 }
6439
6440 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6441
6442 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6443 unsigned long node_start_pfn,
6444 unsigned long node_end_pfn,
6445 unsigned long *zones_size,
6446 unsigned long *zholes_size)
6447 {
6448 unsigned long realtotalpages = 0, totalpages = 0;
6449 enum zone_type i;
6450
6451 for (i = 0; i < MAX_NR_ZONES; i++) {
6452 struct zone *zone = pgdat->node_zones + i;
6453 unsigned long zone_start_pfn, zone_end_pfn;
6454 unsigned long size, real_size;
6455
6456 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6457 node_start_pfn,
6458 node_end_pfn,
6459 &zone_start_pfn,
6460 &zone_end_pfn,
6461 zones_size);
6462 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6463 node_start_pfn, node_end_pfn,
6464 zholes_size);
6465 if (size)
6466 zone->zone_start_pfn = zone_start_pfn;
6467 else
6468 zone->zone_start_pfn = 0;
6469 zone->spanned_pages = size;
6470 zone->present_pages = real_size;
6471
6472 totalpages += size;
6473 realtotalpages += real_size;
6474 }
6475
6476 pgdat->node_spanned_pages = totalpages;
6477 pgdat->node_present_pages = realtotalpages;
6478 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6479 realtotalpages);
6480 }
6481
6482 #ifndef CONFIG_SPARSEMEM
6483 /*
6484 * Calculate the size of the zone->blockflags rounded to an unsigned long
6485 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6486 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6487 * round what is now in bits to nearest long in bits, then return it in
6488 * bytes.
6489 */
6490 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6491 {
6492 unsigned long usemapsize;
6493
6494 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6495 usemapsize = roundup(zonesize, pageblock_nr_pages);
6496 usemapsize = usemapsize >> pageblock_order;
6497 usemapsize *= NR_PAGEBLOCK_BITS;
6498 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6499
6500 return usemapsize / 8;
6501 }
6502
6503 static void __ref setup_usemap(struct pglist_data *pgdat,
6504 struct zone *zone,
6505 unsigned long zone_start_pfn,
6506 unsigned long zonesize)
6507 {
6508 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6509 zone->pageblock_flags = NULL;
6510 if (usemapsize) {
6511 zone->pageblock_flags =
6512 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6513 pgdat->node_id);
6514 if (!zone->pageblock_flags)
6515 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6516 usemapsize, zone->name, pgdat->node_id);
6517 }
6518 }
6519 #else
6520 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6521 unsigned long zone_start_pfn, unsigned long zonesize) {}
6522 #endif /* CONFIG_SPARSEMEM */
6523
6524 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6525
6526 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6527 void __init set_pageblock_order(void)
6528 {
6529 unsigned int order;
6530
6531 /* Check that pageblock_nr_pages has not already been setup */
6532 if (pageblock_order)
6533 return;
6534
6535 if (HPAGE_SHIFT > PAGE_SHIFT)
6536 order = HUGETLB_PAGE_ORDER;
6537 else
6538 order = MAX_ORDER - 1;
6539
6540 /*
6541 * Assume the largest contiguous order of interest is a huge page.
6542 * This value may be variable depending on boot parameters on IA64 and
6543 * powerpc.
6544 */
6545 pageblock_order = order;
6546 }
6547 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6548
6549 /*
6550 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6551 * is unused as pageblock_order is set at compile-time. See
6552 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6553 * the kernel config
6554 */
6555 void __init set_pageblock_order(void)
6556 {
6557 }
6558
6559 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6560
6561 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6562 unsigned long present_pages)
6563 {
6564 unsigned long pages = spanned_pages;
6565
6566 /*
6567 * Provide a more accurate estimation if there are holes within
6568 * the zone and SPARSEMEM is in use. If there are holes within the
6569 * zone, each populated memory region may cost us one or two extra
6570 * memmap pages due to alignment because memmap pages for each
6571 * populated regions may not be naturally aligned on page boundary.
6572 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6573 */
6574 if (spanned_pages > present_pages + (present_pages >> 4) &&
6575 IS_ENABLED(CONFIG_SPARSEMEM))
6576 pages = present_pages;
6577
6578 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6579 }
6580
6581 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6582 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6583 {
6584 spin_lock_init(&pgdat->split_queue_lock);
6585 INIT_LIST_HEAD(&pgdat->split_queue);
6586 pgdat->split_queue_len = 0;
6587 }
6588 #else
6589 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6590 #endif
6591
6592 #ifdef CONFIG_COMPACTION
6593 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6594 {
6595 init_waitqueue_head(&pgdat->kcompactd_wait);
6596 }
6597 #else
6598 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6599 #endif
6600
6601 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6602 {
6603 pgdat_resize_init(pgdat);
6604
6605 pgdat_init_split_queue(pgdat);
6606 pgdat_init_kcompactd(pgdat);
6607
6608 init_waitqueue_head(&pgdat->kswapd_wait);
6609 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6610
6611 pgdat_page_ext_init(pgdat);
6612 spin_lock_init(&pgdat->lru_lock);
6613 lruvec_init(node_lruvec(pgdat));
6614 }
6615
6616 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6617 unsigned long remaining_pages)
6618 {
6619 atomic_long_set(&zone->managed_pages, remaining_pages);
6620 zone_set_nid(zone, nid);
6621 zone->name = zone_names[idx];
6622 zone->zone_pgdat = NODE_DATA(nid);
6623 spin_lock_init(&zone->lock);
6624 zone_seqlock_init(zone);
6625 zone_pcp_init(zone);
6626 }
6627
6628 /*
6629 * Set up the zone data structures
6630 * - init pgdat internals
6631 * - init all zones belonging to this node
6632 *
6633 * NOTE: this function is only called during memory hotplug
6634 */
6635 #ifdef CONFIG_MEMORY_HOTPLUG
6636 void __ref free_area_init_core_hotplug(int nid)
6637 {
6638 enum zone_type z;
6639 pg_data_t *pgdat = NODE_DATA(nid);
6640
6641 pgdat_init_internals(pgdat);
6642 for (z = 0; z < MAX_NR_ZONES; z++)
6643 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6644 }
6645 #endif
6646
6647 /*
6648 * Set up the zone data structures:
6649 * - mark all pages reserved
6650 * - mark all memory queues empty
6651 * - clear the memory bitmaps
6652 *
6653 * NOTE: pgdat should get zeroed by caller.
6654 * NOTE: this function is only called during early init.
6655 */
6656 static void __init free_area_init_core(struct pglist_data *pgdat)
6657 {
6658 enum zone_type j;
6659 int nid = pgdat->node_id;
6660
6661 pgdat_init_internals(pgdat);
6662 pgdat->per_cpu_nodestats = &boot_nodestats;
6663
6664 for (j = 0; j < MAX_NR_ZONES; j++) {
6665 struct zone *zone = pgdat->node_zones + j;
6666 unsigned long size, freesize, memmap_pages;
6667 unsigned long zone_start_pfn = zone->zone_start_pfn;
6668
6669 size = zone->spanned_pages;
6670 freesize = zone->present_pages;
6671
6672 /*
6673 * Adjust freesize so that it accounts for how much memory
6674 * is used by this zone for memmap. This affects the watermark
6675 * and per-cpu initialisations
6676 */
6677 memmap_pages = calc_memmap_size(size, freesize);
6678 if (!is_highmem_idx(j)) {
6679 if (freesize >= memmap_pages) {
6680 freesize -= memmap_pages;
6681 if (memmap_pages)
6682 printk(KERN_DEBUG
6683 " %s zone: %lu pages used for memmap\n",
6684 zone_names[j], memmap_pages);
6685 } else
6686 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6687 zone_names[j], memmap_pages, freesize);
6688 }
6689
6690 /* Account for reserved pages */
6691 if (j == 0 && freesize > dma_reserve) {
6692 freesize -= dma_reserve;
6693 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6694 zone_names[0], dma_reserve);
6695 }
6696
6697 if (!is_highmem_idx(j))
6698 nr_kernel_pages += freesize;
6699 /* Charge for highmem memmap if there are enough kernel pages */
6700 else if (nr_kernel_pages > memmap_pages * 2)
6701 nr_kernel_pages -= memmap_pages;
6702 nr_all_pages += freesize;
6703
6704 /*
6705 * Set an approximate value for lowmem here, it will be adjusted
6706 * when the bootmem allocator frees pages into the buddy system.
6707 * And all highmem pages will be managed by the buddy system.
6708 */
6709 zone_init_internals(zone, j, nid, freesize);
6710
6711 if (!size)
6712 continue;
6713
6714 set_pageblock_order();
6715 setup_usemap(pgdat, zone, zone_start_pfn, size);
6716 init_currently_empty_zone(zone, zone_start_pfn, size);
6717 memmap_init(size, nid, j, zone_start_pfn);
6718 }
6719 }
6720
6721 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6722 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6723 {
6724 unsigned long __maybe_unused start = 0;
6725 unsigned long __maybe_unused offset = 0;
6726
6727 /* Skip empty nodes */
6728 if (!pgdat->node_spanned_pages)
6729 return;
6730
6731 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6732 offset = pgdat->node_start_pfn - start;
6733 /* ia64 gets its own node_mem_map, before this, without bootmem */
6734 if (!pgdat->node_mem_map) {
6735 unsigned long size, end;
6736 struct page *map;
6737
6738 /*
6739 * The zone's endpoints aren't required to be MAX_ORDER
6740 * aligned but the node_mem_map endpoints must be in order
6741 * for the buddy allocator to function correctly.
6742 */
6743 end = pgdat_end_pfn(pgdat);
6744 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6745 size = (end - start) * sizeof(struct page);
6746 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6747 pgdat->node_id);
6748 if (!map)
6749 panic("Failed to allocate %ld bytes for node %d memory map\n",
6750 size, pgdat->node_id);
6751 pgdat->node_mem_map = map + offset;
6752 }
6753 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6754 __func__, pgdat->node_id, (unsigned long)pgdat,
6755 (unsigned long)pgdat->node_mem_map);
6756 #ifndef CONFIG_NEED_MULTIPLE_NODES
6757 /*
6758 * With no DISCONTIG, the global mem_map is just set as node 0's
6759 */
6760 if (pgdat == NODE_DATA(0)) {
6761 mem_map = NODE_DATA(0)->node_mem_map;
6762 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6763 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6764 mem_map -= offset;
6765 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6766 }
6767 #endif
6768 }
6769 #else
6770 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6771 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6772
6773 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6774 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6775 {
6776 pgdat->first_deferred_pfn = ULONG_MAX;
6777 }
6778 #else
6779 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6780 #endif
6781
6782 void __init free_area_init_node(int nid, unsigned long *zones_size,
6783 unsigned long node_start_pfn,
6784 unsigned long *zholes_size)
6785 {
6786 pg_data_t *pgdat = NODE_DATA(nid);
6787 unsigned long start_pfn = 0;
6788 unsigned long end_pfn = 0;
6789
6790 /* pg_data_t should be reset to zero when it's allocated */
6791 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6792
6793 pgdat->node_id = nid;
6794 pgdat->node_start_pfn = node_start_pfn;
6795 pgdat->per_cpu_nodestats = NULL;
6796 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6797 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6798 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6799 (u64)start_pfn << PAGE_SHIFT,
6800 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6801 #else
6802 start_pfn = node_start_pfn;
6803 #endif
6804 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6805 zones_size, zholes_size);
6806
6807 alloc_node_mem_map(pgdat);
6808 pgdat_set_deferred_range(pgdat);
6809
6810 free_area_init_core(pgdat);
6811 }
6812
6813 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6814 /*
6815 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6816 * pages zeroed
6817 */
6818 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6819 {
6820 unsigned long pfn;
6821 u64 pgcnt = 0;
6822
6823 for (pfn = spfn; pfn < epfn; pfn++) {
6824 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6825 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6826 + pageblock_nr_pages - 1;
6827 continue;
6828 }
6829 mm_zero_struct_page(pfn_to_page(pfn));
6830 pgcnt++;
6831 }
6832
6833 return pgcnt;
6834 }
6835
6836 /*
6837 * Only struct pages that are backed by physical memory are zeroed and
6838 * initialized by going through __init_single_page(). But, there are some
6839 * struct pages which are reserved in memblock allocator and their fields
6840 * may be accessed (for example page_to_pfn() on some configuration accesses
6841 * flags). We must explicitly zero those struct pages.
6842 *
6843 * This function also addresses a similar issue where struct pages are left
6844 * uninitialized because the physical address range is not covered by
6845 * memblock.memory or memblock.reserved. That could happen when memblock
6846 * layout is manually configured via memmap=.
6847 */
6848 void __init zero_resv_unavail(void)
6849 {
6850 phys_addr_t start, end;
6851 u64 i, pgcnt;
6852 phys_addr_t next = 0;
6853
6854 /*
6855 * Loop through unavailable ranges not covered by memblock.memory.
6856 */
6857 pgcnt = 0;
6858 for_each_mem_range(i, &memblock.memory, NULL,
6859 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6860 if (next < start)
6861 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6862 next = end;
6863 }
6864 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6865
6866 /*
6867 * Struct pages that do not have backing memory. This could be because
6868 * firmware is using some of this memory, or for some other reasons.
6869 */
6870 if (pgcnt)
6871 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6872 }
6873 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6874
6875 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6876
6877 #if MAX_NUMNODES > 1
6878 /*
6879 * Figure out the number of possible node ids.
6880 */
6881 void __init setup_nr_node_ids(void)
6882 {
6883 unsigned int highest;
6884
6885 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6886 nr_node_ids = highest + 1;
6887 }
6888 #endif
6889
6890 /**
6891 * node_map_pfn_alignment - determine the maximum internode alignment
6892 *
6893 * This function should be called after node map is populated and sorted.
6894 * It calculates the maximum power of two alignment which can distinguish
6895 * all the nodes.
6896 *
6897 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6898 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6899 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6900 * shifted, 1GiB is enough and this function will indicate so.
6901 *
6902 * This is used to test whether pfn -> nid mapping of the chosen memory
6903 * model has fine enough granularity to avoid incorrect mapping for the
6904 * populated node map.
6905 *
6906 * Return: the determined alignment in pfn's. 0 if there is no alignment
6907 * requirement (single node).
6908 */
6909 unsigned long __init node_map_pfn_alignment(void)
6910 {
6911 unsigned long accl_mask = 0, last_end = 0;
6912 unsigned long start, end, mask;
6913 int last_nid = NUMA_NO_NODE;
6914 int i, nid;
6915
6916 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6917 if (!start || last_nid < 0 || last_nid == nid) {
6918 last_nid = nid;
6919 last_end = end;
6920 continue;
6921 }
6922
6923 /*
6924 * Start with a mask granular enough to pin-point to the
6925 * start pfn and tick off bits one-by-one until it becomes
6926 * too coarse to separate the current node from the last.
6927 */
6928 mask = ~((1 << __ffs(start)) - 1);
6929 while (mask && last_end <= (start & (mask << 1)))
6930 mask <<= 1;
6931
6932 /* accumulate all internode masks */
6933 accl_mask |= mask;
6934 }
6935
6936 /* convert mask to number of pages */
6937 return ~accl_mask + 1;
6938 }
6939
6940 /* Find the lowest pfn for a node */
6941 static unsigned long __init find_min_pfn_for_node(int nid)
6942 {
6943 unsigned long min_pfn = ULONG_MAX;
6944 unsigned long start_pfn;
6945 int i;
6946
6947 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6948 min_pfn = min(min_pfn, start_pfn);
6949
6950 if (min_pfn == ULONG_MAX) {
6951 pr_warn("Could not find start_pfn for node %d\n", nid);
6952 return 0;
6953 }
6954
6955 return min_pfn;
6956 }
6957
6958 /**
6959 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6960 *
6961 * Return: the minimum PFN based on information provided via
6962 * memblock_set_node().
6963 */
6964 unsigned long __init find_min_pfn_with_active_regions(void)
6965 {
6966 return find_min_pfn_for_node(MAX_NUMNODES);
6967 }
6968
6969 /*
6970 * early_calculate_totalpages()
6971 * Sum pages in active regions for movable zone.
6972 * Populate N_MEMORY for calculating usable_nodes.
6973 */
6974 static unsigned long __init early_calculate_totalpages(void)
6975 {
6976 unsigned long totalpages = 0;
6977 unsigned long start_pfn, end_pfn;
6978 int i, nid;
6979
6980 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6981 unsigned long pages = end_pfn - start_pfn;
6982
6983 totalpages += pages;
6984 if (pages)
6985 node_set_state(nid, N_MEMORY);
6986 }
6987 return totalpages;
6988 }
6989
6990 /*
6991 * Find the PFN the Movable zone begins in each node. Kernel memory
6992 * is spread evenly between nodes as long as the nodes have enough
6993 * memory. When they don't, some nodes will have more kernelcore than
6994 * others
6995 */
6996 static void __init find_zone_movable_pfns_for_nodes(void)
6997 {
6998 int i, nid;
6999 unsigned long usable_startpfn;
7000 unsigned long kernelcore_node, kernelcore_remaining;
7001 /* save the state before borrow the nodemask */
7002 nodemask_t saved_node_state = node_states[N_MEMORY];
7003 unsigned long totalpages = early_calculate_totalpages();
7004 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7005 struct memblock_region *r;
7006
7007 /* Need to find movable_zone earlier when movable_node is specified. */
7008 find_usable_zone_for_movable();
7009
7010 /*
7011 * If movable_node is specified, ignore kernelcore and movablecore
7012 * options.
7013 */
7014 if (movable_node_is_enabled()) {
7015 for_each_memblock(memory, r) {
7016 if (!memblock_is_hotpluggable(r))
7017 continue;
7018
7019 nid = r->nid;
7020
7021 usable_startpfn = PFN_DOWN(r->base);
7022 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7023 min(usable_startpfn, zone_movable_pfn[nid]) :
7024 usable_startpfn;
7025 }
7026
7027 goto out2;
7028 }
7029
7030 /*
7031 * If kernelcore=mirror is specified, ignore movablecore option
7032 */
7033 if (mirrored_kernelcore) {
7034 bool mem_below_4gb_not_mirrored = false;
7035
7036 for_each_memblock(memory, r) {
7037 if (memblock_is_mirror(r))
7038 continue;
7039
7040 nid = r->nid;
7041
7042 usable_startpfn = memblock_region_memory_base_pfn(r);
7043
7044 if (usable_startpfn < 0x100000) {
7045 mem_below_4gb_not_mirrored = true;
7046 continue;
7047 }
7048
7049 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7050 min(usable_startpfn, zone_movable_pfn[nid]) :
7051 usable_startpfn;
7052 }
7053
7054 if (mem_below_4gb_not_mirrored)
7055 pr_warn("This configuration results in unmirrored kernel memory.");
7056
7057 goto out2;
7058 }
7059
7060 /*
7061 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7062 * amount of necessary memory.
7063 */
7064 if (required_kernelcore_percent)
7065 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7066 10000UL;
7067 if (required_movablecore_percent)
7068 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7069 10000UL;
7070
7071 /*
7072 * If movablecore= was specified, calculate what size of
7073 * kernelcore that corresponds so that memory usable for
7074 * any allocation type is evenly spread. If both kernelcore
7075 * and movablecore are specified, then the value of kernelcore
7076 * will be used for required_kernelcore if it's greater than
7077 * what movablecore would have allowed.
7078 */
7079 if (required_movablecore) {
7080 unsigned long corepages;
7081
7082 /*
7083 * Round-up so that ZONE_MOVABLE is at least as large as what
7084 * was requested by the user
7085 */
7086 required_movablecore =
7087 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7088 required_movablecore = min(totalpages, required_movablecore);
7089 corepages = totalpages - required_movablecore;
7090
7091 required_kernelcore = max(required_kernelcore, corepages);
7092 }
7093
7094 /*
7095 * If kernelcore was not specified or kernelcore size is larger
7096 * than totalpages, there is no ZONE_MOVABLE.
7097 */
7098 if (!required_kernelcore || required_kernelcore >= totalpages)
7099 goto out;
7100
7101 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7102 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7103
7104 restart:
7105 /* Spread kernelcore memory as evenly as possible throughout nodes */
7106 kernelcore_node = required_kernelcore / usable_nodes;
7107 for_each_node_state(nid, N_MEMORY) {
7108 unsigned long start_pfn, end_pfn;
7109
7110 /*
7111 * Recalculate kernelcore_node if the division per node
7112 * now exceeds what is necessary to satisfy the requested
7113 * amount of memory for the kernel
7114 */
7115 if (required_kernelcore < kernelcore_node)
7116 kernelcore_node = required_kernelcore / usable_nodes;
7117
7118 /*
7119 * As the map is walked, we track how much memory is usable
7120 * by the kernel using kernelcore_remaining. When it is
7121 * 0, the rest of the node is usable by ZONE_MOVABLE
7122 */
7123 kernelcore_remaining = kernelcore_node;
7124
7125 /* Go through each range of PFNs within this node */
7126 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7127 unsigned long size_pages;
7128
7129 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7130 if (start_pfn >= end_pfn)
7131 continue;
7132
7133 /* Account for what is only usable for kernelcore */
7134 if (start_pfn < usable_startpfn) {
7135 unsigned long kernel_pages;
7136 kernel_pages = min(end_pfn, usable_startpfn)
7137 - start_pfn;
7138
7139 kernelcore_remaining -= min(kernel_pages,
7140 kernelcore_remaining);
7141 required_kernelcore -= min(kernel_pages,
7142 required_kernelcore);
7143
7144 /* Continue if range is now fully accounted */
7145 if (end_pfn <= usable_startpfn) {
7146
7147 /*
7148 * Push zone_movable_pfn to the end so
7149 * that if we have to rebalance
7150 * kernelcore across nodes, we will
7151 * not double account here
7152 */
7153 zone_movable_pfn[nid] = end_pfn;
7154 continue;
7155 }
7156 start_pfn = usable_startpfn;
7157 }
7158
7159 /*
7160 * The usable PFN range for ZONE_MOVABLE is from
7161 * start_pfn->end_pfn. Calculate size_pages as the
7162 * number of pages used as kernelcore
7163 */
7164 size_pages = end_pfn - start_pfn;
7165 if (size_pages > kernelcore_remaining)
7166 size_pages = kernelcore_remaining;
7167 zone_movable_pfn[nid] = start_pfn + size_pages;
7168
7169 /*
7170 * Some kernelcore has been met, update counts and
7171 * break if the kernelcore for this node has been
7172 * satisfied
7173 */
7174 required_kernelcore -= min(required_kernelcore,
7175 size_pages);
7176 kernelcore_remaining -= size_pages;
7177 if (!kernelcore_remaining)
7178 break;
7179 }
7180 }
7181
7182 /*
7183 * If there is still required_kernelcore, we do another pass with one
7184 * less node in the count. This will push zone_movable_pfn[nid] further
7185 * along on the nodes that still have memory until kernelcore is
7186 * satisfied
7187 */
7188 usable_nodes--;
7189 if (usable_nodes && required_kernelcore > usable_nodes)
7190 goto restart;
7191
7192 out2:
7193 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7194 for (nid = 0; nid < MAX_NUMNODES; nid++)
7195 zone_movable_pfn[nid] =
7196 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7197
7198 out:
7199 /* restore the node_state */
7200 node_states[N_MEMORY] = saved_node_state;
7201 }
7202
7203 /* Any regular or high memory on that node ? */
7204 static void check_for_memory(pg_data_t *pgdat, int nid)
7205 {
7206 enum zone_type zone_type;
7207
7208 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7209 struct zone *zone = &pgdat->node_zones[zone_type];
7210 if (populated_zone(zone)) {
7211 if (IS_ENABLED(CONFIG_HIGHMEM))
7212 node_set_state(nid, N_HIGH_MEMORY);
7213 if (zone_type <= ZONE_NORMAL)
7214 node_set_state(nid, N_NORMAL_MEMORY);
7215 break;
7216 }
7217 }
7218 }
7219
7220 /**
7221 * free_area_init_nodes - Initialise all pg_data_t and zone data
7222 * @max_zone_pfn: an array of max PFNs for each zone
7223 *
7224 * This will call free_area_init_node() for each active node in the system.
7225 * Using the page ranges provided by memblock_set_node(), the size of each
7226 * zone in each node and their holes is calculated. If the maximum PFN
7227 * between two adjacent zones match, it is assumed that the zone is empty.
7228 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7229 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7230 * starts where the previous one ended. For example, ZONE_DMA32 starts
7231 * at arch_max_dma_pfn.
7232 */
7233 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7234 {
7235 unsigned long start_pfn, end_pfn;
7236 int i, nid;
7237
7238 /* Record where the zone boundaries are */
7239 memset(arch_zone_lowest_possible_pfn, 0,
7240 sizeof(arch_zone_lowest_possible_pfn));
7241 memset(arch_zone_highest_possible_pfn, 0,
7242 sizeof(arch_zone_highest_possible_pfn));
7243
7244 start_pfn = find_min_pfn_with_active_regions();
7245
7246 for (i = 0; i < MAX_NR_ZONES; i++) {
7247 if (i == ZONE_MOVABLE)
7248 continue;
7249
7250 end_pfn = max(max_zone_pfn[i], start_pfn);
7251 arch_zone_lowest_possible_pfn[i] = start_pfn;
7252 arch_zone_highest_possible_pfn[i] = end_pfn;
7253
7254 start_pfn = end_pfn;
7255 }
7256
7257 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7258 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7259 find_zone_movable_pfns_for_nodes();
7260
7261 /* Print out the zone ranges */
7262 pr_info("Zone ranges:\n");
7263 for (i = 0; i < MAX_NR_ZONES; i++) {
7264 if (i == ZONE_MOVABLE)
7265 continue;
7266 pr_info(" %-8s ", zone_names[i]);
7267 if (arch_zone_lowest_possible_pfn[i] ==
7268 arch_zone_highest_possible_pfn[i])
7269 pr_cont("empty\n");
7270 else
7271 pr_cont("[mem %#018Lx-%#018Lx]\n",
7272 (u64)arch_zone_lowest_possible_pfn[i]
7273 << PAGE_SHIFT,
7274 ((u64)arch_zone_highest_possible_pfn[i]
7275 << PAGE_SHIFT) - 1);
7276 }
7277
7278 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7279 pr_info("Movable zone start for each node\n");
7280 for (i = 0; i < MAX_NUMNODES; i++) {
7281 if (zone_movable_pfn[i])
7282 pr_info(" Node %d: %#018Lx\n", i,
7283 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7284 }
7285
7286 /* Print out the early node map */
7287 pr_info("Early memory node ranges\n");
7288 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7289 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7290 (u64)start_pfn << PAGE_SHIFT,
7291 ((u64)end_pfn << PAGE_SHIFT) - 1);
7292
7293 /* Initialise every node */
7294 mminit_verify_pageflags_layout();
7295 setup_nr_node_ids();
7296 zero_resv_unavail();
7297 for_each_online_node(nid) {
7298 pg_data_t *pgdat = NODE_DATA(nid);
7299 free_area_init_node(nid, NULL,
7300 find_min_pfn_for_node(nid), NULL);
7301
7302 /* Any memory on that node */
7303 if (pgdat->node_present_pages)
7304 node_set_state(nid, N_MEMORY);
7305 check_for_memory(pgdat, nid);
7306 }
7307 }
7308
7309 static int __init cmdline_parse_core(char *p, unsigned long *core,
7310 unsigned long *percent)
7311 {
7312 unsigned long long coremem;
7313 char *endptr;
7314
7315 if (!p)
7316 return -EINVAL;
7317
7318 /* Value may be a percentage of total memory, otherwise bytes */
7319 coremem = simple_strtoull(p, &endptr, 0);
7320 if (*endptr == '%') {
7321 /* Paranoid check for percent values greater than 100 */
7322 WARN_ON(coremem > 100);
7323
7324 *percent = coremem;
7325 } else {
7326 coremem = memparse(p, &p);
7327 /* Paranoid check that UL is enough for the coremem value */
7328 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7329
7330 *core = coremem >> PAGE_SHIFT;
7331 *percent = 0UL;
7332 }
7333 return 0;
7334 }
7335
7336 /*
7337 * kernelcore=size sets the amount of memory for use for allocations that
7338 * cannot be reclaimed or migrated.
7339 */
7340 static int __init cmdline_parse_kernelcore(char *p)
7341 {
7342 /* parse kernelcore=mirror */
7343 if (parse_option_str(p, "mirror")) {
7344 mirrored_kernelcore = true;
7345 return 0;
7346 }
7347
7348 return cmdline_parse_core(p, &required_kernelcore,
7349 &required_kernelcore_percent);
7350 }
7351
7352 /*
7353 * movablecore=size sets the amount of memory for use for allocations that
7354 * can be reclaimed or migrated.
7355 */
7356 static int __init cmdline_parse_movablecore(char *p)
7357 {
7358 return cmdline_parse_core(p, &required_movablecore,
7359 &required_movablecore_percent);
7360 }
7361
7362 early_param("kernelcore", cmdline_parse_kernelcore);
7363 early_param("movablecore", cmdline_parse_movablecore);
7364
7365 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7366
7367 void adjust_managed_page_count(struct page *page, long count)
7368 {
7369 atomic_long_add(count, &page_zone(page)->managed_pages);
7370 totalram_pages_add(count);
7371 #ifdef CONFIG_HIGHMEM
7372 if (PageHighMem(page))
7373 totalhigh_pages_add(count);
7374 #endif
7375 }
7376 EXPORT_SYMBOL(adjust_managed_page_count);
7377
7378 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7379 {
7380 void *pos;
7381 unsigned long pages = 0;
7382
7383 start = (void *)PAGE_ALIGN((unsigned long)start);
7384 end = (void *)((unsigned long)end & PAGE_MASK);
7385 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7386 struct page *page = virt_to_page(pos);
7387 void *direct_map_addr;
7388
7389 /*
7390 * 'direct_map_addr' might be different from 'pos'
7391 * because some architectures' virt_to_page()
7392 * work with aliases. Getting the direct map
7393 * address ensures that we get a _writeable_
7394 * alias for the memset().
7395 */
7396 direct_map_addr = page_address(page);
7397 if ((unsigned int)poison <= 0xFF)
7398 memset(direct_map_addr, poison, PAGE_SIZE);
7399
7400 free_reserved_page(page);
7401 }
7402
7403 if (pages && s)
7404 pr_info("Freeing %s memory: %ldK\n",
7405 s, pages << (PAGE_SHIFT - 10));
7406
7407 return pages;
7408 }
7409
7410 #ifdef CONFIG_HIGHMEM
7411 void free_highmem_page(struct page *page)
7412 {
7413 __free_reserved_page(page);
7414 totalram_pages_inc();
7415 atomic_long_inc(&page_zone(page)->managed_pages);
7416 totalhigh_pages_inc();
7417 }
7418 #endif
7419
7420
7421 void __init mem_init_print_info(const char *str)
7422 {
7423 unsigned long physpages, codesize, datasize, rosize, bss_size;
7424 unsigned long init_code_size, init_data_size;
7425
7426 physpages = get_num_physpages();
7427 codesize = _etext - _stext;
7428 datasize = _edata - _sdata;
7429 rosize = __end_rodata - __start_rodata;
7430 bss_size = __bss_stop - __bss_start;
7431 init_data_size = __init_end - __init_begin;
7432 init_code_size = _einittext - _sinittext;
7433
7434 /*
7435 * Detect special cases and adjust section sizes accordingly:
7436 * 1) .init.* may be embedded into .data sections
7437 * 2) .init.text.* may be out of [__init_begin, __init_end],
7438 * please refer to arch/tile/kernel/vmlinux.lds.S.
7439 * 3) .rodata.* may be embedded into .text or .data sections.
7440 */
7441 #define adj_init_size(start, end, size, pos, adj) \
7442 do { \
7443 if (start <= pos && pos < end && size > adj) \
7444 size -= adj; \
7445 } while (0)
7446
7447 adj_init_size(__init_begin, __init_end, init_data_size,
7448 _sinittext, init_code_size);
7449 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7450 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7451 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7452 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7453
7454 #undef adj_init_size
7455
7456 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7457 #ifdef CONFIG_HIGHMEM
7458 ", %luK highmem"
7459 #endif
7460 "%s%s)\n",
7461 nr_free_pages() << (PAGE_SHIFT - 10),
7462 physpages << (PAGE_SHIFT - 10),
7463 codesize >> 10, datasize >> 10, rosize >> 10,
7464 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7465 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7466 totalcma_pages << (PAGE_SHIFT - 10),
7467 #ifdef CONFIG_HIGHMEM
7468 totalhigh_pages() << (PAGE_SHIFT - 10),
7469 #endif
7470 str ? ", " : "", str ? str : "");
7471 }
7472
7473 /**
7474 * set_dma_reserve - set the specified number of pages reserved in the first zone
7475 * @new_dma_reserve: The number of pages to mark reserved
7476 *
7477 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7478 * In the DMA zone, a significant percentage may be consumed by kernel image
7479 * and other unfreeable allocations which can skew the watermarks badly. This
7480 * function may optionally be used to account for unfreeable pages in the
7481 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7482 * smaller per-cpu batchsize.
7483 */
7484 void __init set_dma_reserve(unsigned long new_dma_reserve)
7485 {
7486 dma_reserve = new_dma_reserve;
7487 }
7488
7489 void __init free_area_init(unsigned long *zones_size)
7490 {
7491 zero_resv_unavail();
7492 free_area_init_node(0, zones_size,
7493 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7494 }
7495
7496 static int page_alloc_cpu_dead(unsigned int cpu)
7497 {
7498
7499 lru_add_drain_cpu(cpu);
7500 drain_pages(cpu);
7501
7502 /*
7503 * Spill the event counters of the dead processor
7504 * into the current processors event counters.
7505 * This artificially elevates the count of the current
7506 * processor.
7507 */
7508 vm_events_fold_cpu(cpu);
7509
7510 /*
7511 * Zero the differential counters of the dead processor
7512 * so that the vm statistics are consistent.
7513 *
7514 * This is only okay since the processor is dead and cannot
7515 * race with what we are doing.
7516 */
7517 cpu_vm_stats_fold(cpu);
7518 return 0;
7519 }
7520
7521 void __init page_alloc_init(void)
7522 {
7523 int ret;
7524
7525 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7526 "mm/page_alloc:dead", NULL,
7527 page_alloc_cpu_dead);
7528 WARN_ON(ret < 0);
7529 }
7530
7531 /*
7532 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7533 * or min_free_kbytes changes.
7534 */
7535 static void calculate_totalreserve_pages(void)
7536 {
7537 struct pglist_data *pgdat;
7538 unsigned long reserve_pages = 0;
7539 enum zone_type i, j;
7540
7541 for_each_online_pgdat(pgdat) {
7542
7543 pgdat->totalreserve_pages = 0;
7544
7545 for (i = 0; i < MAX_NR_ZONES; i++) {
7546 struct zone *zone = pgdat->node_zones + i;
7547 long max = 0;
7548 unsigned long managed_pages = zone_managed_pages(zone);
7549
7550 /* Find valid and maximum lowmem_reserve in the zone */
7551 for (j = i; j < MAX_NR_ZONES; j++) {
7552 if (zone->lowmem_reserve[j] > max)
7553 max = zone->lowmem_reserve[j];
7554 }
7555
7556 /* we treat the high watermark as reserved pages. */
7557 max += high_wmark_pages(zone);
7558
7559 if (max > managed_pages)
7560 max = managed_pages;
7561
7562 pgdat->totalreserve_pages += max;
7563
7564 reserve_pages += max;
7565 }
7566 }
7567 totalreserve_pages = reserve_pages;
7568 }
7569
7570 /*
7571 * setup_per_zone_lowmem_reserve - called whenever
7572 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7573 * has a correct pages reserved value, so an adequate number of
7574 * pages are left in the zone after a successful __alloc_pages().
7575 */
7576 static void setup_per_zone_lowmem_reserve(void)
7577 {
7578 struct pglist_data *pgdat;
7579 enum zone_type j, idx;
7580
7581 for_each_online_pgdat(pgdat) {
7582 for (j = 0; j < MAX_NR_ZONES; j++) {
7583 struct zone *zone = pgdat->node_zones + j;
7584 unsigned long managed_pages = zone_managed_pages(zone);
7585
7586 zone->lowmem_reserve[j] = 0;
7587
7588 idx = j;
7589 while (idx) {
7590 struct zone *lower_zone;
7591
7592 idx--;
7593 lower_zone = pgdat->node_zones + idx;
7594
7595 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7596 sysctl_lowmem_reserve_ratio[idx] = 0;
7597 lower_zone->lowmem_reserve[j] = 0;
7598 } else {
7599 lower_zone->lowmem_reserve[j] =
7600 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7601 }
7602 managed_pages += zone_managed_pages(lower_zone);
7603 }
7604 }
7605 }
7606
7607 /* update totalreserve_pages */
7608 calculate_totalreserve_pages();
7609 }
7610
7611 static void __setup_per_zone_wmarks(void)
7612 {
7613 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7614 unsigned long lowmem_pages = 0;
7615 struct zone *zone;
7616 unsigned long flags;
7617
7618 /* Calculate total number of !ZONE_HIGHMEM pages */
7619 for_each_zone(zone) {
7620 if (!is_highmem(zone))
7621 lowmem_pages += zone_managed_pages(zone);
7622 }
7623
7624 for_each_zone(zone) {
7625 u64 tmp;
7626
7627 spin_lock_irqsave(&zone->lock, flags);
7628 tmp = (u64)pages_min * zone_managed_pages(zone);
7629 do_div(tmp, lowmem_pages);
7630 if (is_highmem(zone)) {
7631 /*
7632 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7633 * need highmem pages, so cap pages_min to a small
7634 * value here.
7635 *
7636 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7637 * deltas control async page reclaim, and so should
7638 * not be capped for highmem.
7639 */
7640 unsigned long min_pages;
7641
7642 min_pages = zone_managed_pages(zone) / 1024;
7643 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7644 zone->_watermark[WMARK_MIN] = min_pages;
7645 } else {
7646 /*
7647 * If it's a lowmem zone, reserve a number of pages
7648 * proportionate to the zone's size.
7649 */
7650 zone->_watermark[WMARK_MIN] = tmp;
7651 }
7652
7653 /*
7654 * Set the kswapd watermarks distance according to the
7655 * scale factor in proportion to available memory, but
7656 * ensure a minimum size on small systems.
7657 */
7658 tmp = max_t(u64, tmp >> 2,
7659 mult_frac(zone_managed_pages(zone),
7660 watermark_scale_factor, 10000));
7661
7662 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7663 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7664 zone->watermark_boost = 0;
7665
7666 spin_unlock_irqrestore(&zone->lock, flags);
7667 }
7668
7669 /* update totalreserve_pages */
7670 calculate_totalreserve_pages();
7671 }
7672
7673 /**
7674 * setup_per_zone_wmarks - called when min_free_kbytes changes
7675 * or when memory is hot-{added|removed}
7676 *
7677 * Ensures that the watermark[min,low,high] values for each zone are set
7678 * correctly with respect to min_free_kbytes.
7679 */
7680 void setup_per_zone_wmarks(void)
7681 {
7682 static DEFINE_SPINLOCK(lock);
7683
7684 spin_lock(&lock);
7685 __setup_per_zone_wmarks();
7686 spin_unlock(&lock);
7687 }
7688
7689 /*
7690 * Initialise min_free_kbytes.
7691 *
7692 * For small machines we want it small (128k min). For large machines
7693 * we want it large (64MB max). But it is not linear, because network
7694 * bandwidth does not increase linearly with machine size. We use
7695 *
7696 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7697 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7698 *
7699 * which yields
7700 *
7701 * 16MB: 512k
7702 * 32MB: 724k
7703 * 64MB: 1024k
7704 * 128MB: 1448k
7705 * 256MB: 2048k
7706 * 512MB: 2896k
7707 * 1024MB: 4096k
7708 * 2048MB: 5792k
7709 * 4096MB: 8192k
7710 * 8192MB: 11584k
7711 * 16384MB: 16384k
7712 */
7713 int __meminit init_per_zone_wmark_min(void)
7714 {
7715 unsigned long lowmem_kbytes;
7716 int new_min_free_kbytes;
7717
7718 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7719 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7720
7721 if (new_min_free_kbytes > user_min_free_kbytes) {
7722 min_free_kbytes = new_min_free_kbytes;
7723 if (min_free_kbytes < 128)
7724 min_free_kbytes = 128;
7725 if (min_free_kbytes > 65536)
7726 min_free_kbytes = 65536;
7727 } else {
7728 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7729 new_min_free_kbytes, user_min_free_kbytes);
7730 }
7731 setup_per_zone_wmarks();
7732 refresh_zone_stat_thresholds();
7733 setup_per_zone_lowmem_reserve();
7734
7735 #ifdef CONFIG_NUMA
7736 setup_min_unmapped_ratio();
7737 setup_min_slab_ratio();
7738 #endif
7739
7740 return 0;
7741 }
7742 core_initcall(init_per_zone_wmark_min)
7743
7744 /*
7745 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7746 * that we can call two helper functions whenever min_free_kbytes
7747 * changes.
7748 */
7749 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7750 void __user *buffer, size_t *length, loff_t *ppos)
7751 {
7752 int rc;
7753
7754 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7755 if (rc)
7756 return rc;
7757
7758 if (write) {
7759 user_min_free_kbytes = min_free_kbytes;
7760 setup_per_zone_wmarks();
7761 }
7762 return 0;
7763 }
7764
7765 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7766 void __user *buffer, size_t *length, loff_t *ppos)
7767 {
7768 int rc;
7769
7770 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7771 if (rc)
7772 return rc;
7773
7774 return 0;
7775 }
7776
7777 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7778 void __user *buffer, size_t *length, loff_t *ppos)
7779 {
7780 int rc;
7781
7782 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7783 if (rc)
7784 return rc;
7785
7786 if (write)
7787 setup_per_zone_wmarks();
7788
7789 return 0;
7790 }
7791
7792 #ifdef CONFIG_NUMA
7793 static void setup_min_unmapped_ratio(void)
7794 {
7795 pg_data_t *pgdat;
7796 struct zone *zone;
7797
7798 for_each_online_pgdat(pgdat)
7799 pgdat->min_unmapped_pages = 0;
7800
7801 for_each_zone(zone)
7802 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7803 sysctl_min_unmapped_ratio) / 100;
7804 }
7805
7806
7807 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7808 void __user *buffer, size_t *length, loff_t *ppos)
7809 {
7810 int rc;
7811
7812 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7813 if (rc)
7814 return rc;
7815
7816 setup_min_unmapped_ratio();
7817
7818 return 0;
7819 }
7820
7821 static void setup_min_slab_ratio(void)
7822 {
7823 pg_data_t *pgdat;
7824 struct zone *zone;
7825
7826 for_each_online_pgdat(pgdat)
7827 pgdat->min_slab_pages = 0;
7828
7829 for_each_zone(zone)
7830 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7831 sysctl_min_slab_ratio) / 100;
7832 }
7833
7834 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7835 void __user *buffer, size_t *length, loff_t *ppos)
7836 {
7837 int rc;
7838
7839 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7840 if (rc)
7841 return rc;
7842
7843 setup_min_slab_ratio();
7844
7845 return 0;
7846 }
7847 #endif
7848
7849 /*
7850 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7851 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7852 * whenever sysctl_lowmem_reserve_ratio changes.
7853 *
7854 * The reserve ratio obviously has absolutely no relation with the
7855 * minimum watermarks. The lowmem reserve ratio can only make sense
7856 * if in function of the boot time zone sizes.
7857 */
7858 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7859 void __user *buffer, size_t *length, loff_t *ppos)
7860 {
7861 proc_dointvec_minmax(table, write, buffer, length, ppos);
7862 setup_per_zone_lowmem_reserve();
7863 return 0;
7864 }
7865
7866 /*
7867 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7868 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7869 * pagelist can have before it gets flushed back to buddy allocator.
7870 */
7871 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7872 void __user *buffer, size_t *length, loff_t *ppos)
7873 {
7874 struct zone *zone;
7875 int old_percpu_pagelist_fraction;
7876 int ret;
7877
7878 mutex_lock(&pcp_batch_high_lock);
7879 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7880
7881 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7882 if (!write || ret < 0)
7883 goto out;
7884
7885 /* Sanity checking to avoid pcp imbalance */
7886 if (percpu_pagelist_fraction &&
7887 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7888 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7889 ret = -EINVAL;
7890 goto out;
7891 }
7892
7893 /* No change? */
7894 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7895 goto out;
7896
7897 for_each_populated_zone(zone) {
7898 unsigned int cpu;
7899
7900 for_each_possible_cpu(cpu)
7901 pageset_set_high_and_batch(zone,
7902 per_cpu_ptr(zone->pageset, cpu));
7903 }
7904 out:
7905 mutex_unlock(&pcp_batch_high_lock);
7906 return ret;
7907 }
7908
7909 #ifdef CONFIG_NUMA
7910 int hashdist = HASHDIST_DEFAULT;
7911
7912 static int __init set_hashdist(char *str)
7913 {
7914 if (!str)
7915 return 0;
7916 hashdist = simple_strtoul(str, &str, 0);
7917 return 1;
7918 }
7919 __setup("hashdist=", set_hashdist);
7920 #endif
7921
7922 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7923 /*
7924 * Returns the number of pages that arch has reserved but
7925 * is not known to alloc_large_system_hash().
7926 */
7927 static unsigned long __init arch_reserved_kernel_pages(void)
7928 {
7929 return 0;
7930 }
7931 #endif
7932
7933 /*
7934 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7935 * machines. As memory size is increased the scale is also increased but at
7936 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7937 * quadruples the scale is increased by one, which means the size of hash table
7938 * only doubles, instead of quadrupling as well.
7939 * Because 32-bit systems cannot have large physical memory, where this scaling
7940 * makes sense, it is disabled on such platforms.
7941 */
7942 #if __BITS_PER_LONG > 32
7943 #define ADAPT_SCALE_BASE (64ul << 30)
7944 #define ADAPT_SCALE_SHIFT 2
7945 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7946 #endif
7947
7948 /*
7949 * allocate a large system hash table from bootmem
7950 * - it is assumed that the hash table must contain an exact power-of-2
7951 * quantity of entries
7952 * - limit is the number of hash buckets, not the total allocation size
7953 */
7954 void *__init alloc_large_system_hash(const char *tablename,
7955 unsigned long bucketsize,
7956 unsigned long numentries,
7957 int scale,
7958 int flags,
7959 unsigned int *_hash_shift,
7960 unsigned int *_hash_mask,
7961 unsigned long low_limit,
7962 unsigned long high_limit)
7963 {
7964 unsigned long long max = high_limit;
7965 unsigned long log2qty, size;
7966 void *table = NULL;
7967 gfp_t gfp_flags;
7968
7969 /* allow the kernel cmdline to have a say */
7970 if (!numentries) {
7971 /* round applicable memory size up to nearest megabyte */
7972 numentries = nr_kernel_pages;
7973 numentries -= arch_reserved_kernel_pages();
7974
7975 /* It isn't necessary when PAGE_SIZE >= 1MB */
7976 if (PAGE_SHIFT < 20)
7977 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7978
7979 #if __BITS_PER_LONG > 32
7980 if (!high_limit) {
7981 unsigned long adapt;
7982
7983 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7984 adapt <<= ADAPT_SCALE_SHIFT)
7985 scale++;
7986 }
7987 #endif
7988
7989 /* limit to 1 bucket per 2^scale bytes of low memory */
7990 if (scale > PAGE_SHIFT)
7991 numentries >>= (scale - PAGE_SHIFT);
7992 else
7993 numentries <<= (PAGE_SHIFT - scale);
7994
7995 /* Make sure we've got at least a 0-order allocation.. */
7996 if (unlikely(flags & HASH_SMALL)) {
7997 /* Makes no sense without HASH_EARLY */
7998 WARN_ON(!(flags & HASH_EARLY));
7999 if (!(numentries >> *_hash_shift)) {
8000 numentries = 1UL << *_hash_shift;
8001 BUG_ON(!numentries);
8002 }
8003 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8004 numentries = PAGE_SIZE / bucketsize;
8005 }
8006 numentries = roundup_pow_of_two(numentries);
8007
8008 /* limit allocation size to 1/16 total memory by default */
8009 if (max == 0) {
8010 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8011 do_div(max, bucketsize);
8012 }
8013 max = min(max, 0x80000000ULL);
8014
8015 if (numentries < low_limit)
8016 numentries = low_limit;
8017 if (numentries > max)
8018 numentries = max;
8019
8020 log2qty = ilog2(numentries);
8021
8022 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8023 do {
8024 size = bucketsize << log2qty;
8025 if (flags & HASH_EARLY) {
8026 if (flags & HASH_ZERO)
8027 table = memblock_alloc(size, SMP_CACHE_BYTES);
8028 else
8029 table = memblock_alloc_raw(size,
8030 SMP_CACHE_BYTES);
8031 } else if (hashdist) {
8032 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8033 } else {
8034 /*
8035 * If bucketsize is not a power-of-two, we may free
8036 * some pages at the end of hash table which
8037 * alloc_pages_exact() automatically does
8038 */
8039 if (get_order(size) < MAX_ORDER) {
8040 table = alloc_pages_exact(size, gfp_flags);
8041 kmemleak_alloc(table, size, 1, gfp_flags);
8042 }
8043 }
8044 } while (!table && size > PAGE_SIZE && --log2qty);
8045
8046 if (!table)
8047 panic("Failed to allocate %s hash table\n", tablename);
8048
8049 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
8050 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
8051
8052 if (_hash_shift)
8053 *_hash_shift = log2qty;
8054 if (_hash_mask)
8055 *_hash_mask = (1 << log2qty) - 1;
8056
8057 return table;
8058 }
8059
8060 /*
8061 * This function checks whether pageblock includes unmovable pages or not.
8062 * If @count is not zero, it is okay to include less @count unmovable pages
8063 *
8064 * PageLRU check without isolation or lru_lock could race so that
8065 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8066 * check without lock_page also may miss some movable non-lru pages at
8067 * race condition. So you can't expect this function should be exact.
8068 */
8069 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8070 int migratetype, int flags)
8071 {
8072 unsigned long found;
8073 unsigned long iter = 0;
8074 unsigned long pfn = page_to_pfn(page);
8075 const char *reason = "unmovable page";
8076
8077 /*
8078 * TODO we could make this much more efficient by not checking every
8079 * page in the range if we know all of them are in MOVABLE_ZONE and
8080 * that the movable zone guarantees that pages are migratable but
8081 * the later is not the case right now unfortunatelly. E.g. movablecore
8082 * can still lead to having bootmem allocations in zone_movable.
8083 */
8084
8085 if (is_migrate_cma_page(page)) {
8086 /*
8087 * CMA allocations (alloc_contig_range) really need to mark
8088 * isolate CMA pageblocks even when they are not movable in fact
8089 * so consider them movable here.
8090 */
8091 if (is_migrate_cma(migratetype))
8092 return false;
8093
8094 reason = "CMA page";
8095 goto unmovable;
8096 }
8097
8098 for (found = 0; iter < pageblock_nr_pages; iter++) {
8099 unsigned long check = pfn + iter;
8100
8101 if (!pfn_valid_within(check))
8102 continue;
8103
8104 page = pfn_to_page(check);
8105
8106 if (PageReserved(page))
8107 goto unmovable;
8108
8109 /*
8110 * If the zone is movable and we have ruled out all reserved
8111 * pages then it should be reasonably safe to assume the rest
8112 * is movable.
8113 */
8114 if (zone_idx(zone) == ZONE_MOVABLE)
8115 continue;
8116
8117 /*
8118 * Hugepages are not in LRU lists, but they're movable.
8119 * We need not scan over tail pages because we don't
8120 * handle each tail page individually in migration.
8121 */
8122 if (PageHuge(page)) {
8123 struct page *head = compound_head(page);
8124 unsigned int skip_pages;
8125
8126 if (!hugepage_migration_supported(page_hstate(head)))
8127 goto unmovable;
8128
8129 skip_pages = (1 << compound_order(head)) - (page - head);
8130 iter += skip_pages - 1;
8131 continue;
8132 }
8133
8134 /*
8135 * We can't use page_count without pin a page
8136 * because another CPU can free compound page.
8137 * This check already skips compound tails of THP
8138 * because their page->_refcount is zero at all time.
8139 */
8140 if (!page_ref_count(page)) {
8141 if (PageBuddy(page))
8142 iter += (1 << page_order(page)) - 1;
8143 continue;
8144 }
8145
8146 /*
8147 * The HWPoisoned page may be not in buddy system, and
8148 * page_count() is not 0.
8149 */
8150 if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8151 continue;
8152
8153 if (__PageMovable(page))
8154 continue;
8155
8156 if (!PageLRU(page))
8157 found++;
8158 /*
8159 * If there are RECLAIMABLE pages, we need to check
8160 * it. But now, memory offline itself doesn't call
8161 * shrink_node_slabs() and it still to be fixed.
8162 */
8163 /*
8164 * If the page is not RAM, page_count()should be 0.
8165 * we don't need more check. This is an _used_ not-movable page.
8166 *
8167 * The problematic thing here is PG_reserved pages. PG_reserved
8168 * is set to both of a memory hole page and a _used_ kernel
8169 * page at boot.
8170 */
8171 if (found > count)
8172 goto unmovable;
8173 }
8174 return false;
8175 unmovable:
8176 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8177 if (flags & REPORT_FAILURE)
8178 dump_page(pfn_to_page(pfn + iter), reason);
8179 return true;
8180 }
8181
8182 #ifdef CONFIG_CONTIG_ALLOC
8183 static unsigned long pfn_max_align_down(unsigned long pfn)
8184 {
8185 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8186 pageblock_nr_pages) - 1);
8187 }
8188
8189 static unsigned long pfn_max_align_up(unsigned long pfn)
8190 {
8191 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8192 pageblock_nr_pages));
8193 }
8194
8195 /* [start, end) must belong to a single zone. */
8196 static int __alloc_contig_migrate_range(struct compact_control *cc,
8197 unsigned long start, unsigned long end)
8198 {
8199 /* This function is based on compact_zone() from compaction.c. */
8200 unsigned long nr_reclaimed;
8201 unsigned long pfn = start;
8202 unsigned int tries = 0;
8203 int ret = 0;
8204
8205 migrate_prep();
8206
8207 while (pfn < end || !list_empty(&cc->migratepages)) {
8208 if (fatal_signal_pending(current)) {
8209 ret = -EINTR;
8210 break;
8211 }
8212
8213 if (list_empty(&cc->migratepages)) {
8214 cc->nr_migratepages = 0;
8215 pfn = isolate_migratepages_range(cc, pfn, end);
8216 if (!pfn) {
8217 ret = -EINTR;
8218 break;
8219 }
8220 tries = 0;
8221 } else if (++tries == 5) {
8222 ret = ret < 0 ? ret : -EBUSY;
8223 break;
8224 }
8225
8226 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8227 &cc->migratepages);
8228 cc->nr_migratepages -= nr_reclaimed;
8229
8230 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8231 NULL, 0, cc->mode, MR_CONTIG_RANGE);
8232 }
8233 if (ret < 0) {
8234 putback_movable_pages(&cc->migratepages);
8235 return ret;
8236 }
8237 return 0;
8238 }
8239
8240 /**
8241 * alloc_contig_range() -- tries to allocate given range of pages
8242 * @start: start PFN to allocate
8243 * @end: one-past-the-last PFN to allocate
8244 * @migratetype: migratetype of the underlaying pageblocks (either
8245 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8246 * in range must have the same migratetype and it must
8247 * be either of the two.
8248 * @gfp_mask: GFP mask to use during compaction
8249 *
8250 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8251 * aligned. The PFN range must belong to a single zone.
8252 *
8253 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8254 * pageblocks in the range. Once isolated, the pageblocks should not
8255 * be modified by others.
8256 *
8257 * Return: zero on success or negative error code. On success all
8258 * pages which PFN is in [start, end) are allocated for the caller and
8259 * need to be freed with free_contig_range().
8260 */
8261 int alloc_contig_range(unsigned long start, unsigned long end,
8262 unsigned migratetype, gfp_t gfp_mask)
8263 {
8264 unsigned long outer_start, outer_end;
8265 unsigned int order;
8266 int ret = 0;
8267
8268 struct compact_control cc = {
8269 .nr_migratepages = 0,
8270 .order = -1,
8271 .zone = page_zone(pfn_to_page(start)),
8272 .mode = MIGRATE_SYNC,
8273 .ignore_skip_hint = true,
8274 .no_set_skip_hint = true,
8275 .gfp_mask = current_gfp_context(gfp_mask),
8276 };
8277 INIT_LIST_HEAD(&cc.migratepages);
8278
8279 /*
8280 * What we do here is we mark all pageblocks in range as
8281 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8282 * have different sizes, and due to the way page allocator
8283 * work, we align the range to biggest of the two pages so
8284 * that page allocator won't try to merge buddies from
8285 * different pageblocks and change MIGRATE_ISOLATE to some
8286 * other migration type.
8287 *
8288 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8289 * migrate the pages from an unaligned range (ie. pages that
8290 * we are interested in). This will put all the pages in
8291 * range back to page allocator as MIGRATE_ISOLATE.
8292 *
8293 * When this is done, we take the pages in range from page
8294 * allocator removing them from the buddy system. This way
8295 * page allocator will never consider using them.
8296 *
8297 * This lets us mark the pageblocks back as
8298 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8299 * aligned range but not in the unaligned, original range are
8300 * put back to page allocator so that buddy can use them.
8301 */
8302
8303 ret = start_isolate_page_range(pfn_max_align_down(start),
8304 pfn_max_align_up(end), migratetype, 0);
8305 if (ret < 0)
8306 return ret;
8307
8308 /*
8309 * In case of -EBUSY, we'd like to know which page causes problem.
8310 * So, just fall through. test_pages_isolated() has a tracepoint
8311 * which will report the busy page.
8312 *
8313 * It is possible that busy pages could become available before
8314 * the call to test_pages_isolated, and the range will actually be
8315 * allocated. So, if we fall through be sure to clear ret so that
8316 * -EBUSY is not accidentally used or returned to caller.
8317 */
8318 ret = __alloc_contig_migrate_range(&cc, start, end);
8319 if (ret && ret != -EBUSY)
8320 goto done;
8321 ret =0;
8322
8323 /*
8324 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8325 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8326 * more, all pages in [start, end) are free in page allocator.
8327 * What we are going to do is to allocate all pages from
8328 * [start, end) (that is remove them from page allocator).
8329 *
8330 * The only problem is that pages at the beginning and at the
8331 * end of interesting range may be not aligned with pages that
8332 * page allocator holds, ie. they can be part of higher order
8333 * pages. Because of this, we reserve the bigger range and
8334 * once this is done free the pages we are not interested in.
8335 *
8336 * We don't have to hold zone->lock here because the pages are
8337 * isolated thus they won't get removed from buddy.
8338 */
8339
8340 lru_add_drain_all();
8341
8342 order = 0;
8343 outer_start = start;
8344 while (!PageBuddy(pfn_to_page(outer_start))) {
8345 if (++order >= MAX_ORDER) {
8346 outer_start = start;
8347 break;
8348 }
8349 outer_start &= ~0UL << order;
8350 }
8351
8352 if (outer_start != start) {
8353 order = page_order(pfn_to_page(outer_start));
8354
8355 /*
8356 * outer_start page could be small order buddy page and
8357 * it doesn't include start page. Adjust outer_start
8358 * in this case to report failed page properly
8359 * on tracepoint in test_pages_isolated()
8360 */
8361 if (outer_start + (1UL << order) <= start)
8362 outer_start = start;
8363 }
8364
8365 /* Make sure the range is really isolated. */
8366 if (test_pages_isolated(outer_start, end, false)) {
8367 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8368 __func__, outer_start, end);
8369 ret = -EBUSY;
8370 goto done;
8371 }
8372
8373 /* Grab isolated pages from freelists. */
8374 outer_end = isolate_freepages_range(&cc, outer_start, end);
8375 if (!outer_end) {
8376 ret = -EBUSY;
8377 goto done;
8378 }
8379
8380 /* Free head and tail (if any) */
8381 if (start != outer_start)
8382 free_contig_range(outer_start, start - outer_start);
8383 if (end != outer_end)
8384 free_contig_range(end, outer_end - end);
8385
8386 done:
8387 undo_isolate_page_range(pfn_max_align_down(start),
8388 pfn_max_align_up(end), migratetype);
8389 return ret;
8390 }
8391 #endif /* CONFIG_CONTIG_ALLOC */
8392
8393 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8394 {
8395 unsigned int count = 0;
8396
8397 for (; nr_pages--; pfn++) {
8398 struct page *page = pfn_to_page(pfn);
8399
8400 count += page_count(page) != 1;
8401 __free_page(page);
8402 }
8403 WARN(count != 0, "%d pages are still in use!\n", count);
8404 }
8405
8406 #ifdef CONFIG_MEMORY_HOTPLUG
8407 /*
8408 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8409 * page high values need to be recalulated.
8410 */
8411 void __meminit zone_pcp_update(struct zone *zone)
8412 {
8413 unsigned cpu;
8414 mutex_lock(&pcp_batch_high_lock);
8415 for_each_possible_cpu(cpu)
8416 pageset_set_high_and_batch(zone,
8417 per_cpu_ptr(zone->pageset, cpu));
8418 mutex_unlock(&pcp_batch_high_lock);
8419 }
8420 #endif
8421
8422 void zone_pcp_reset(struct zone *zone)
8423 {
8424 unsigned long flags;
8425 int cpu;
8426 struct per_cpu_pageset *pset;
8427
8428 /* avoid races with drain_pages() */
8429 local_irq_save(flags);
8430 if (zone->pageset != &boot_pageset) {
8431 for_each_online_cpu(cpu) {
8432 pset = per_cpu_ptr(zone->pageset, cpu);
8433 drain_zonestat(zone, pset);
8434 }
8435 free_percpu(zone->pageset);
8436 zone->pageset = &boot_pageset;
8437 }
8438 local_irq_restore(flags);
8439 }
8440
8441 #ifdef CONFIG_MEMORY_HOTREMOVE
8442 /*
8443 * All pages in the range must be in a single zone and isolated
8444 * before calling this.
8445 */
8446 unsigned long
8447 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8448 {
8449 struct page *page;
8450 struct zone *zone;
8451 unsigned int order, i;
8452 unsigned long pfn;
8453 unsigned long flags;
8454 unsigned long offlined_pages = 0;
8455
8456 /* find the first valid pfn */
8457 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8458 if (pfn_valid(pfn))
8459 break;
8460 if (pfn == end_pfn)
8461 return offlined_pages;
8462
8463 offline_mem_sections(pfn, end_pfn);
8464 zone = page_zone(pfn_to_page(pfn));
8465 spin_lock_irqsave(&zone->lock, flags);
8466 pfn = start_pfn;
8467 while (pfn < end_pfn) {
8468 if (!pfn_valid(pfn)) {
8469 pfn++;
8470 continue;
8471 }
8472 page = pfn_to_page(pfn);
8473 /*
8474 * The HWPoisoned page may be not in buddy system, and
8475 * page_count() is not 0.
8476 */
8477 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8478 pfn++;
8479 SetPageReserved(page);
8480 offlined_pages++;
8481 continue;
8482 }
8483
8484 BUG_ON(page_count(page));
8485 BUG_ON(!PageBuddy(page));
8486 order = page_order(page);
8487 offlined_pages += 1 << order;
8488 #ifdef CONFIG_DEBUG_VM
8489 pr_info("remove from free list %lx %d %lx\n",
8490 pfn, 1 << order, end_pfn);
8491 #endif
8492 del_page_from_free_area(page, &zone->free_area[order]);
8493 for (i = 0; i < (1 << order); i++)
8494 SetPageReserved((page+i));
8495 pfn += (1 << order);
8496 }
8497 spin_unlock_irqrestore(&zone->lock, flags);
8498
8499 return offlined_pages;
8500 }
8501 #endif
8502
8503 bool is_free_buddy_page(struct page *page)
8504 {
8505 struct zone *zone = page_zone(page);
8506 unsigned long pfn = page_to_pfn(page);
8507 unsigned long flags;
8508 unsigned int order;
8509
8510 spin_lock_irqsave(&zone->lock, flags);
8511 for (order = 0; order < MAX_ORDER; order++) {
8512 struct page *page_head = page - (pfn & ((1 << order) - 1));
8513
8514 if (PageBuddy(page_head) && page_order(page_head) >= order)
8515 break;
8516 }
8517 spin_unlock_irqrestore(&zone->lock, flags);
8518
8519 return order < MAX_ORDER;
8520 }
8521
8522 #ifdef CONFIG_MEMORY_FAILURE
8523 /*
8524 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8525 * test is performed under the zone lock to prevent a race against page
8526 * allocation.
8527 */
8528 bool set_hwpoison_free_buddy_page(struct page *page)
8529 {
8530 struct zone *zone = page_zone(page);
8531 unsigned long pfn = page_to_pfn(page);
8532 unsigned long flags;
8533 unsigned int order;
8534 bool hwpoisoned = false;
8535
8536 spin_lock_irqsave(&zone->lock, flags);
8537 for (order = 0; order < MAX_ORDER; order++) {
8538 struct page *page_head = page - (pfn & ((1 << order) - 1));
8539
8540 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8541 if (!TestSetPageHWPoison(page))
8542 hwpoisoned = true;
8543 break;
8544 }
8545 }
8546 spin_unlock_irqrestore(&zone->lock, flags);
8547
8548 return hwpoisoned;
8549 }
8550 #endif