]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/page_alloc.c
dt-bindings: i2c: renesas,riic: Add interrupt-names
[mirror_ubuntu-jammy-kernel.git] / mm / page_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <linux/buffer_head.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77 #include <asm/div64.h>
78 #include "internal.h"
79 #include "shuffle.h"
80 #include "page_reporting.h"
81
82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83 typedef int __bitwise fpi_t;
84
85 /* No special request */
86 #define FPI_NONE ((__force fpi_t)0)
87
88 /*
89 * Skip free page reporting notification for the (possibly merged) page.
90 * This does not hinder free page reporting from grabbing the page,
91 * reporting it and marking it "reported" - it only skips notifying
92 * the free page reporting infrastructure about a newly freed page. For
93 * example, used when temporarily pulling a page from a freelist and
94 * putting it back unmodified.
95 */
96 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
97
98 /*
99 * Place the (possibly merged) page to the tail of the freelist. Will ignore
100 * page shuffling (relevant code - e.g., memory onlining - is expected to
101 * shuffle the whole zone).
102 *
103 * Note: No code should rely on this flag for correctness - it's purely
104 * to allow for optimizations when handing back either fresh pages
105 * (memory onlining) or untouched pages (page isolation, free page
106 * reporting).
107 */
108 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
109
110 /*
111 * Don't poison memory with KASAN (only for the tag-based modes).
112 * During boot, all non-reserved memblock memory is exposed to page_alloc.
113 * Poisoning all that memory lengthens boot time, especially on systems with
114 * large amount of RAM. This flag is used to skip that poisoning.
115 * This is only done for the tag-based KASAN modes, as those are able to
116 * detect memory corruptions with the memory tags assigned by default.
117 * All memory allocated normally after boot gets poisoned as usual.
118 */
119 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
120
121 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
122 static DEFINE_MUTEX(pcp_batch_high_lock);
123 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
124
125 struct pagesets {
126 local_lock_t lock;
127 };
128 static DEFINE_PER_CPU(struct pagesets, pagesets) = {
129 .lock = INIT_LOCAL_LOCK(lock),
130 };
131
132 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
133 DEFINE_PER_CPU(int, numa_node);
134 EXPORT_PER_CPU_SYMBOL(numa_node);
135 #endif
136
137 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
138
139 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
140 /*
141 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
142 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
143 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
144 * defined in <linux/topology.h>.
145 */
146 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
147 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
148 #endif
149
150 /* work_structs for global per-cpu drains */
151 struct pcpu_drain {
152 struct zone *zone;
153 struct work_struct work;
154 };
155 static DEFINE_MUTEX(pcpu_drain_mutex);
156 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
157
158 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
159 volatile unsigned long latent_entropy __latent_entropy;
160 EXPORT_SYMBOL(latent_entropy);
161 #endif
162
163 /*
164 * Array of node states.
165 */
166 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
167 [N_POSSIBLE] = NODE_MASK_ALL,
168 [N_ONLINE] = { { [0] = 1UL } },
169 #ifndef CONFIG_NUMA
170 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
171 #ifdef CONFIG_HIGHMEM
172 [N_HIGH_MEMORY] = { { [0] = 1UL } },
173 #endif
174 [N_MEMORY] = { { [0] = 1UL } },
175 [N_CPU] = { { [0] = 1UL } },
176 #endif /* NUMA */
177 };
178 EXPORT_SYMBOL(node_states);
179
180 atomic_long_t _totalram_pages __read_mostly;
181 EXPORT_SYMBOL(_totalram_pages);
182 unsigned long totalreserve_pages __read_mostly;
183 unsigned long totalcma_pages __read_mostly;
184
185 int percpu_pagelist_high_fraction;
186 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
187 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
188 EXPORT_SYMBOL(init_on_alloc);
189
190 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
191 EXPORT_SYMBOL(init_on_free);
192
193 static bool _init_on_alloc_enabled_early __read_mostly
194 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
195 static int __init early_init_on_alloc(char *buf)
196 {
197
198 return kstrtobool(buf, &_init_on_alloc_enabled_early);
199 }
200 early_param("init_on_alloc", early_init_on_alloc);
201
202 static bool _init_on_free_enabled_early __read_mostly
203 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
204 static int __init early_init_on_free(char *buf)
205 {
206 return kstrtobool(buf, &_init_on_free_enabled_early);
207 }
208 early_param("init_on_free", early_init_on_free);
209
210 /*
211 * A cached value of the page's pageblock's migratetype, used when the page is
212 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
213 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
214 * Also the migratetype set in the page does not necessarily match the pcplist
215 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
216 * other index - this ensures that it will be put on the correct CMA freelist.
217 */
218 static inline int get_pcppage_migratetype(struct page *page)
219 {
220 return page->index;
221 }
222
223 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
224 {
225 page->index = migratetype;
226 }
227
228 #ifdef CONFIG_PM_SLEEP
229 /*
230 * The following functions are used by the suspend/hibernate code to temporarily
231 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
232 * while devices are suspended. To avoid races with the suspend/hibernate code,
233 * they should always be called with system_transition_mutex held
234 * (gfp_allowed_mask also should only be modified with system_transition_mutex
235 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
236 * with that modification).
237 */
238
239 static gfp_t saved_gfp_mask;
240
241 void pm_restore_gfp_mask(void)
242 {
243 WARN_ON(!mutex_is_locked(&system_transition_mutex));
244 if (saved_gfp_mask) {
245 gfp_allowed_mask = saved_gfp_mask;
246 saved_gfp_mask = 0;
247 }
248 }
249
250 void pm_restrict_gfp_mask(void)
251 {
252 WARN_ON(!mutex_is_locked(&system_transition_mutex));
253 WARN_ON(saved_gfp_mask);
254 saved_gfp_mask = gfp_allowed_mask;
255 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
256 }
257
258 bool pm_suspended_storage(void)
259 {
260 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
261 return false;
262 return true;
263 }
264 #endif /* CONFIG_PM_SLEEP */
265
266 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
267 unsigned int pageblock_order __read_mostly;
268 #endif
269
270 static void __free_pages_ok(struct page *page, unsigned int order,
271 fpi_t fpi_flags);
272
273 /*
274 * results with 256, 32 in the lowmem_reserve sysctl:
275 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
276 * 1G machine -> (16M dma, 784M normal, 224M high)
277 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
278 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
279 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
280 *
281 * TBD: should special case ZONE_DMA32 machines here - in those we normally
282 * don't need any ZONE_NORMAL reservation
283 */
284 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
285 #ifdef CONFIG_ZONE_DMA
286 [ZONE_DMA] = 256,
287 #endif
288 #ifdef CONFIG_ZONE_DMA32
289 [ZONE_DMA32] = 256,
290 #endif
291 [ZONE_NORMAL] = 32,
292 #ifdef CONFIG_HIGHMEM
293 [ZONE_HIGHMEM] = 0,
294 #endif
295 [ZONE_MOVABLE] = 0,
296 };
297
298 static char * const zone_names[MAX_NR_ZONES] = {
299 #ifdef CONFIG_ZONE_DMA
300 "DMA",
301 #endif
302 #ifdef CONFIG_ZONE_DMA32
303 "DMA32",
304 #endif
305 "Normal",
306 #ifdef CONFIG_HIGHMEM
307 "HighMem",
308 #endif
309 "Movable",
310 #ifdef CONFIG_ZONE_DEVICE
311 "Device",
312 #endif
313 };
314
315 const char * const migratetype_names[MIGRATE_TYPES] = {
316 "Unmovable",
317 "Movable",
318 "Reclaimable",
319 "HighAtomic",
320 #ifdef CONFIG_CMA
321 "CMA",
322 #endif
323 #ifdef CONFIG_MEMORY_ISOLATION
324 "Isolate",
325 #endif
326 };
327
328 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
329 [NULL_COMPOUND_DTOR] = NULL,
330 [COMPOUND_PAGE_DTOR] = free_compound_page,
331 #ifdef CONFIG_HUGETLB_PAGE
332 [HUGETLB_PAGE_DTOR] = free_huge_page,
333 #endif
334 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
335 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
336 #endif
337 };
338
339 int min_free_kbytes = 1024;
340 int user_min_free_kbytes = -1;
341 int watermark_boost_factor __read_mostly = 15000;
342 int watermark_scale_factor = 10;
343
344 static unsigned long nr_kernel_pages __initdata;
345 static unsigned long nr_all_pages __initdata;
346 static unsigned long dma_reserve __initdata;
347
348 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
349 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
350 static unsigned long required_kernelcore __initdata;
351 static unsigned long required_kernelcore_percent __initdata;
352 static unsigned long required_movablecore __initdata;
353 static unsigned long required_movablecore_percent __initdata;
354 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
355 static bool mirrored_kernelcore __meminitdata;
356
357 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
358 int movable_zone;
359 EXPORT_SYMBOL(movable_zone);
360
361 #if MAX_NUMNODES > 1
362 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
363 unsigned int nr_online_nodes __read_mostly = 1;
364 EXPORT_SYMBOL(nr_node_ids);
365 EXPORT_SYMBOL(nr_online_nodes);
366 #endif
367
368 int page_group_by_mobility_disabled __read_mostly;
369
370 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
371 /*
372 * During boot we initialize deferred pages on-demand, as needed, but once
373 * page_alloc_init_late() has finished, the deferred pages are all initialized,
374 * and we can permanently disable that path.
375 */
376 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
377
378 /*
379 * Calling kasan_poison_pages() only after deferred memory initialization
380 * has completed. Poisoning pages during deferred memory init will greatly
381 * lengthen the process and cause problem in large memory systems as the
382 * deferred pages initialization is done with interrupt disabled.
383 *
384 * Assuming that there will be no reference to those newly initialized
385 * pages before they are ever allocated, this should have no effect on
386 * KASAN memory tracking as the poison will be properly inserted at page
387 * allocation time. The only corner case is when pages are allocated by
388 * on-demand allocation and then freed again before the deferred pages
389 * initialization is done, but this is not likely to happen.
390 */
391 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
392 {
393 return static_branch_unlikely(&deferred_pages) ||
394 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
395 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
396 PageSkipKASanPoison(page);
397 }
398
399 /* Returns true if the struct page for the pfn is uninitialised */
400 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
401 {
402 int nid = early_pfn_to_nid(pfn);
403
404 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
405 return true;
406
407 return false;
408 }
409
410 /*
411 * Returns true when the remaining initialisation should be deferred until
412 * later in the boot cycle when it can be parallelised.
413 */
414 static bool __meminit
415 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
416 {
417 static unsigned long prev_end_pfn, nr_initialised;
418
419 /*
420 * prev_end_pfn static that contains the end of previous zone
421 * No need to protect because called very early in boot before smp_init.
422 */
423 if (prev_end_pfn != end_pfn) {
424 prev_end_pfn = end_pfn;
425 nr_initialised = 0;
426 }
427
428 /* Always populate low zones for address-constrained allocations */
429 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
430 return false;
431
432 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
433 return true;
434 /*
435 * We start only with one section of pages, more pages are added as
436 * needed until the rest of deferred pages are initialized.
437 */
438 nr_initialised++;
439 if ((nr_initialised > PAGES_PER_SECTION) &&
440 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
441 NODE_DATA(nid)->first_deferred_pfn = pfn;
442 return true;
443 }
444 return false;
445 }
446 #else
447 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
448 {
449 return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
450 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
451 PageSkipKASanPoison(page);
452 }
453
454 static inline bool early_page_uninitialised(unsigned long pfn)
455 {
456 return false;
457 }
458
459 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
460 {
461 return false;
462 }
463 #endif
464
465 /* Return a pointer to the bitmap storing bits affecting a block of pages */
466 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
467 unsigned long pfn)
468 {
469 #ifdef CONFIG_SPARSEMEM
470 return section_to_usemap(__pfn_to_section(pfn));
471 #else
472 return page_zone(page)->pageblock_flags;
473 #endif /* CONFIG_SPARSEMEM */
474 }
475
476 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
477 {
478 #ifdef CONFIG_SPARSEMEM
479 pfn &= (PAGES_PER_SECTION-1);
480 #else
481 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
482 #endif /* CONFIG_SPARSEMEM */
483 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
484 }
485
486 static __always_inline
487 unsigned long __get_pfnblock_flags_mask(const struct page *page,
488 unsigned long pfn,
489 unsigned long mask)
490 {
491 unsigned long *bitmap;
492 unsigned long bitidx, word_bitidx;
493 unsigned long word;
494
495 bitmap = get_pageblock_bitmap(page, pfn);
496 bitidx = pfn_to_bitidx(page, pfn);
497 word_bitidx = bitidx / BITS_PER_LONG;
498 bitidx &= (BITS_PER_LONG-1);
499
500 word = bitmap[word_bitidx];
501 return (word >> bitidx) & mask;
502 }
503
504 /**
505 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
506 * @page: The page within the block of interest
507 * @pfn: The target page frame number
508 * @mask: mask of bits that the caller is interested in
509 *
510 * Return: pageblock_bits flags
511 */
512 unsigned long get_pfnblock_flags_mask(const struct page *page,
513 unsigned long pfn, unsigned long mask)
514 {
515 return __get_pfnblock_flags_mask(page, pfn, mask);
516 }
517
518 static __always_inline int get_pfnblock_migratetype(const struct page *page,
519 unsigned long pfn)
520 {
521 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
522 }
523
524 /**
525 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
526 * @page: The page within the block of interest
527 * @flags: The flags to set
528 * @pfn: The target page frame number
529 * @mask: mask of bits that the caller is interested in
530 */
531 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
532 unsigned long pfn,
533 unsigned long mask)
534 {
535 unsigned long *bitmap;
536 unsigned long bitidx, word_bitidx;
537 unsigned long old_word, word;
538
539 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
540 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
541
542 bitmap = get_pageblock_bitmap(page, pfn);
543 bitidx = pfn_to_bitidx(page, pfn);
544 word_bitidx = bitidx / BITS_PER_LONG;
545 bitidx &= (BITS_PER_LONG-1);
546
547 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
548
549 mask <<= bitidx;
550 flags <<= bitidx;
551
552 word = READ_ONCE(bitmap[word_bitidx]);
553 for (;;) {
554 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
555 if (word == old_word)
556 break;
557 word = old_word;
558 }
559 }
560
561 void set_pageblock_migratetype(struct page *page, int migratetype)
562 {
563 if (unlikely(page_group_by_mobility_disabled &&
564 migratetype < MIGRATE_PCPTYPES))
565 migratetype = MIGRATE_UNMOVABLE;
566
567 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
568 page_to_pfn(page), MIGRATETYPE_MASK);
569 }
570
571 #ifdef CONFIG_DEBUG_VM
572 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
573 {
574 int ret = 0;
575 unsigned seq;
576 unsigned long pfn = page_to_pfn(page);
577 unsigned long sp, start_pfn;
578
579 do {
580 seq = zone_span_seqbegin(zone);
581 start_pfn = zone->zone_start_pfn;
582 sp = zone->spanned_pages;
583 if (!zone_spans_pfn(zone, pfn))
584 ret = 1;
585 } while (zone_span_seqretry(zone, seq));
586
587 if (ret)
588 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
589 pfn, zone_to_nid(zone), zone->name,
590 start_pfn, start_pfn + sp);
591
592 return ret;
593 }
594
595 static int page_is_consistent(struct zone *zone, struct page *page)
596 {
597 if (!pfn_valid_within(page_to_pfn(page)))
598 return 0;
599 if (zone != page_zone(page))
600 return 0;
601
602 return 1;
603 }
604 /*
605 * Temporary debugging check for pages not lying within a given zone.
606 */
607 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
608 {
609 if (page_outside_zone_boundaries(zone, page))
610 return 1;
611 if (!page_is_consistent(zone, page))
612 return 1;
613
614 return 0;
615 }
616 #else
617 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
618 {
619 return 0;
620 }
621 #endif
622
623 static void bad_page(struct page *page, const char *reason)
624 {
625 static unsigned long resume;
626 static unsigned long nr_shown;
627 static unsigned long nr_unshown;
628
629 /*
630 * Allow a burst of 60 reports, then keep quiet for that minute;
631 * or allow a steady drip of one report per second.
632 */
633 if (nr_shown == 60) {
634 if (time_before(jiffies, resume)) {
635 nr_unshown++;
636 goto out;
637 }
638 if (nr_unshown) {
639 pr_alert(
640 "BUG: Bad page state: %lu messages suppressed\n",
641 nr_unshown);
642 nr_unshown = 0;
643 }
644 nr_shown = 0;
645 }
646 if (nr_shown++ == 0)
647 resume = jiffies + 60 * HZ;
648
649 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
650 current->comm, page_to_pfn(page));
651 dump_page(page, reason);
652
653 print_modules();
654 dump_stack();
655 out:
656 /* Leave bad fields for debug, except PageBuddy could make trouble */
657 page_mapcount_reset(page); /* remove PageBuddy */
658 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
659 }
660
661 static inline unsigned int order_to_pindex(int migratetype, int order)
662 {
663 int base = order;
664
665 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
666 if (order > PAGE_ALLOC_COSTLY_ORDER) {
667 VM_BUG_ON(order != pageblock_order);
668 base = PAGE_ALLOC_COSTLY_ORDER + 1;
669 }
670 #else
671 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
672 #endif
673
674 return (MIGRATE_PCPTYPES * base) + migratetype;
675 }
676
677 static inline int pindex_to_order(unsigned int pindex)
678 {
679 int order = pindex / MIGRATE_PCPTYPES;
680
681 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
682 if (order > PAGE_ALLOC_COSTLY_ORDER) {
683 order = pageblock_order;
684 VM_BUG_ON(order != pageblock_order);
685 }
686 #else
687 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
688 #endif
689
690 return order;
691 }
692
693 static inline bool pcp_allowed_order(unsigned int order)
694 {
695 if (order <= PAGE_ALLOC_COSTLY_ORDER)
696 return true;
697 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
698 if (order == pageblock_order)
699 return true;
700 #endif
701 return false;
702 }
703
704 static inline void free_the_page(struct page *page, unsigned int order)
705 {
706 if (pcp_allowed_order(order)) /* Via pcp? */
707 free_unref_page(page, order);
708 else
709 __free_pages_ok(page, order, FPI_NONE);
710 }
711
712 /*
713 * Higher-order pages are called "compound pages". They are structured thusly:
714 *
715 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
716 *
717 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
718 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
719 *
720 * The first tail page's ->compound_dtor holds the offset in array of compound
721 * page destructors. See compound_page_dtors.
722 *
723 * The first tail page's ->compound_order holds the order of allocation.
724 * This usage means that zero-order pages may not be compound.
725 */
726
727 void free_compound_page(struct page *page)
728 {
729 mem_cgroup_uncharge(page);
730 free_the_page(page, compound_order(page));
731 }
732
733 void prep_compound_page(struct page *page, unsigned int order)
734 {
735 int i;
736 int nr_pages = 1 << order;
737
738 __SetPageHead(page);
739 for (i = 1; i < nr_pages; i++) {
740 struct page *p = page + i;
741 p->mapping = TAIL_MAPPING;
742 set_compound_head(p, page);
743 }
744
745 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
746 set_compound_order(page, order);
747 atomic_set(compound_mapcount_ptr(page), -1);
748 if (hpage_pincount_available(page))
749 atomic_set(compound_pincount_ptr(page), 0);
750 }
751
752 #ifdef CONFIG_DEBUG_PAGEALLOC
753 unsigned int _debug_guardpage_minorder;
754
755 bool _debug_pagealloc_enabled_early __read_mostly
756 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
757 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
758 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
759 EXPORT_SYMBOL(_debug_pagealloc_enabled);
760
761 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
762
763 static int __init early_debug_pagealloc(char *buf)
764 {
765 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
766 }
767 early_param("debug_pagealloc", early_debug_pagealloc);
768
769 static int __init debug_guardpage_minorder_setup(char *buf)
770 {
771 unsigned long res;
772
773 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
774 pr_err("Bad debug_guardpage_minorder value\n");
775 return 0;
776 }
777 _debug_guardpage_minorder = res;
778 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
779 return 0;
780 }
781 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
782
783 static inline bool set_page_guard(struct zone *zone, struct page *page,
784 unsigned int order, int migratetype)
785 {
786 if (!debug_guardpage_enabled())
787 return false;
788
789 if (order >= debug_guardpage_minorder())
790 return false;
791
792 __SetPageGuard(page);
793 INIT_LIST_HEAD(&page->lru);
794 set_page_private(page, order);
795 /* Guard pages are not available for any usage */
796 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
797
798 return true;
799 }
800
801 static inline void clear_page_guard(struct zone *zone, struct page *page,
802 unsigned int order, int migratetype)
803 {
804 if (!debug_guardpage_enabled())
805 return;
806
807 __ClearPageGuard(page);
808
809 set_page_private(page, 0);
810 if (!is_migrate_isolate(migratetype))
811 __mod_zone_freepage_state(zone, (1 << order), migratetype);
812 }
813 #else
814 static inline bool set_page_guard(struct zone *zone, struct page *page,
815 unsigned int order, int migratetype) { return false; }
816 static inline void clear_page_guard(struct zone *zone, struct page *page,
817 unsigned int order, int migratetype) {}
818 #endif
819
820 /*
821 * Enable static keys related to various memory debugging and hardening options.
822 * Some override others, and depend on early params that are evaluated in the
823 * order of appearance. So we need to first gather the full picture of what was
824 * enabled, and then make decisions.
825 */
826 void init_mem_debugging_and_hardening(void)
827 {
828 bool page_poisoning_requested = false;
829
830 #ifdef CONFIG_PAGE_POISONING
831 /*
832 * Page poisoning is debug page alloc for some arches. If
833 * either of those options are enabled, enable poisoning.
834 */
835 if (page_poisoning_enabled() ||
836 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
837 debug_pagealloc_enabled())) {
838 static_branch_enable(&_page_poisoning_enabled);
839 page_poisoning_requested = true;
840 }
841 #endif
842
843 if (_init_on_alloc_enabled_early) {
844 if (page_poisoning_requested)
845 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
846 "will take precedence over init_on_alloc\n");
847 else
848 static_branch_enable(&init_on_alloc);
849 }
850 if (_init_on_free_enabled_early) {
851 if (page_poisoning_requested)
852 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
853 "will take precedence over init_on_free\n");
854 else
855 static_branch_enable(&init_on_free);
856 }
857
858 #ifdef CONFIG_DEBUG_PAGEALLOC
859 if (!debug_pagealloc_enabled())
860 return;
861
862 static_branch_enable(&_debug_pagealloc_enabled);
863
864 if (!debug_guardpage_minorder())
865 return;
866
867 static_branch_enable(&_debug_guardpage_enabled);
868 #endif
869 }
870
871 static inline void set_buddy_order(struct page *page, unsigned int order)
872 {
873 set_page_private(page, order);
874 __SetPageBuddy(page);
875 }
876
877 /*
878 * This function checks whether a page is free && is the buddy
879 * we can coalesce a page and its buddy if
880 * (a) the buddy is not in a hole (check before calling!) &&
881 * (b) the buddy is in the buddy system &&
882 * (c) a page and its buddy have the same order &&
883 * (d) a page and its buddy are in the same zone.
884 *
885 * For recording whether a page is in the buddy system, we set PageBuddy.
886 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
887 *
888 * For recording page's order, we use page_private(page).
889 */
890 static inline bool page_is_buddy(struct page *page, struct page *buddy,
891 unsigned int order)
892 {
893 if (!page_is_guard(buddy) && !PageBuddy(buddy))
894 return false;
895
896 if (buddy_order(buddy) != order)
897 return false;
898
899 /*
900 * zone check is done late to avoid uselessly calculating
901 * zone/node ids for pages that could never merge.
902 */
903 if (page_zone_id(page) != page_zone_id(buddy))
904 return false;
905
906 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
907
908 return true;
909 }
910
911 #ifdef CONFIG_COMPACTION
912 static inline struct capture_control *task_capc(struct zone *zone)
913 {
914 struct capture_control *capc = current->capture_control;
915
916 return unlikely(capc) &&
917 !(current->flags & PF_KTHREAD) &&
918 !capc->page &&
919 capc->cc->zone == zone ? capc : NULL;
920 }
921
922 static inline bool
923 compaction_capture(struct capture_control *capc, struct page *page,
924 int order, int migratetype)
925 {
926 if (!capc || order != capc->cc->order)
927 return false;
928
929 /* Do not accidentally pollute CMA or isolated regions*/
930 if (is_migrate_cma(migratetype) ||
931 is_migrate_isolate(migratetype))
932 return false;
933
934 /*
935 * Do not let lower order allocations pollute a movable pageblock.
936 * This might let an unmovable request use a reclaimable pageblock
937 * and vice-versa but no more than normal fallback logic which can
938 * have trouble finding a high-order free page.
939 */
940 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
941 return false;
942
943 capc->page = page;
944 return true;
945 }
946
947 #else
948 static inline struct capture_control *task_capc(struct zone *zone)
949 {
950 return NULL;
951 }
952
953 static inline bool
954 compaction_capture(struct capture_control *capc, struct page *page,
955 int order, int migratetype)
956 {
957 return false;
958 }
959 #endif /* CONFIG_COMPACTION */
960
961 /* Used for pages not on another list */
962 static inline void add_to_free_list(struct page *page, struct zone *zone,
963 unsigned int order, int migratetype)
964 {
965 struct free_area *area = &zone->free_area[order];
966
967 list_add(&page->lru, &area->free_list[migratetype]);
968 area->nr_free++;
969 }
970
971 /* Used for pages not on another list */
972 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
973 unsigned int order, int migratetype)
974 {
975 struct free_area *area = &zone->free_area[order];
976
977 list_add_tail(&page->lru, &area->free_list[migratetype]);
978 area->nr_free++;
979 }
980
981 /*
982 * Used for pages which are on another list. Move the pages to the tail
983 * of the list - so the moved pages won't immediately be considered for
984 * allocation again (e.g., optimization for memory onlining).
985 */
986 static inline void move_to_free_list(struct page *page, struct zone *zone,
987 unsigned int order, int migratetype)
988 {
989 struct free_area *area = &zone->free_area[order];
990
991 list_move_tail(&page->lru, &area->free_list[migratetype]);
992 }
993
994 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
995 unsigned int order)
996 {
997 /* clear reported state and update reported page count */
998 if (page_reported(page))
999 __ClearPageReported(page);
1000
1001 list_del(&page->lru);
1002 __ClearPageBuddy(page);
1003 set_page_private(page, 0);
1004 zone->free_area[order].nr_free--;
1005 }
1006
1007 /*
1008 * If this is not the largest possible page, check if the buddy
1009 * of the next-highest order is free. If it is, it's possible
1010 * that pages are being freed that will coalesce soon. In case,
1011 * that is happening, add the free page to the tail of the list
1012 * so it's less likely to be used soon and more likely to be merged
1013 * as a higher order page
1014 */
1015 static inline bool
1016 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1017 struct page *page, unsigned int order)
1018 {
1019 struct page *higher_page, *higher_buddy;
1020 unsigned long combined_pfn;
1021
1022 if (order >= MAX_ORDER - 2)
1023 return false;
1024
1025 if (!pfn_valid_within(buddy_pfn))
1026 return false;
1027
1028 combined_pfn = buddy_pfn & pfn;
1029 higher_page = page + (combined_pfn - pfn);
1030 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1031 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1032
1033 return pfn_valid_within(buddy_pfn) &&
1034 page_is_buddy(higher_page, higher_buddy, order + 1);
1035 }
1036
1037 /*
1038 * Freeing function for a buddy system allocator.
1039 *
1040 * The concept of a buddy system is to maintain direct-mapped table
1041 * (containing bit values) for memory blocks of various "orders".
1042 * The bottom level table contains the map for the smallest allocatable
1043 * units of memory (here, pages), and each level above it describes
1044 * pairs of units from the levels below, hence, "buddies".
1045 * At a high level, all that happens here is marking the table entry
1046 * at the bottom level available, and propagating the changes upward
1047 * as necessary, plus some accounting needed to play nicely with other
1048 * parts of the VM system.
1049 * At each level, we keep a list of pages, which are heads of continuous
1050 * free pages of length of (1 << order) and marked with PageBuddy.
1051 * Page's order is recorded in page_private(page) field.
1052 * So when we are allocating or freeing one, we can derive the state of the
1053 * other. That is, if we allocate a small block, and both were
1054 * free, the remainder of the region must be split into blocks.
1055 * If a block is freed, and its buddy is also free, then this
1056 * triggers coalescing into a block of larger size.
1057 *
1058 * -- nyc
1059 */
1060
1061 static inline void __free_one_page(struct page *page,
1062 unsigned long pfn,
1063 struct zone *zone, unsigned int order,
1064 int migratetype, fpi_t fpi_flags)
1065 {
1066 struct capture_control *capc = task_capc(zone);
1067 unsigned long buddy_pfn;
1068 unsigned long combined_pfn;
1069 unsigned int max_order;
1070 struct page *buddy;
1071 bool to_tail;
1072
1073 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1074
1075 VM_BUG_ON(!zone_is_initialized(zone));
1076 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1077
1078 VM_BUG_ON(migratetype == -1);
1079 if (likely(!is_migrate_isolate(migratetype)))
1080 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1081
1082 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1083 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1084
1085 continue_merging:
1086 while (order < max_order) {
1087 if (compaction_capture(capc, page, order, migratetype)) {
1088 __mod_zone_freepage_state(zone, -(1 << order),
1089 migratetype);
1090 return;
1091 }
1092 buddy_pfn = __find_buddy_pfn(pfn, order);
1093 buddy = page + (buddy_pfn - pfn);
1094
1095 if (!pfn_valid_within(buddy_pfn))
1096 goto done_merging;
1097 if (!page_is_buddy(page, buddy, order))
1098 goto done_merging;
1099 /*
1100 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1101 * merge with it and move up one order.
1102 */
1103 if (page_is_guard(buddy))
1104 clear_page_guard(zone, buddy, order, migratetype);
1105 else
1106 del_page_from_free_list(buddy, zone, order);
1107 combined_pfn = buddy_pfn & pfn;
1108 page = page + (combined_pfn - pfn);
1109 pfn = combined_pfn;
1110 order++;
1111 }
1112 if (order < MAX_ORDER - 1) {
1113 /* If we are here, it means order is >= pageblock_order.
1114 * We want to prevent merge between freepages on isolate
1115 * pageblock and normal pageblock. Without this, pageblock
1116 * isolation could cause incorrect freepage or CMA accounting.
1117 *
1118 * We don't want to hit this code for the more frequent
1119 * low-order merging.
1120 */
1121 if (unlikely(has_isolate_pageblock(zone))) {
1122 int buddy_mt;
1123
1124 buddy_pfn = __find_buddy_pfn(pfn, order);
1125 buddy = page + (buddy_pfn - pfn);
1126 buddy_mt = get_pageblock_migratetype(buddy);
1127
1128 if (migratetype != buddy_mt
1129 && (is_migrate_isolate(migratetype) ||
1130 is_migrate_isolate(buddy_mt)))
1131 goto done_merging;
1132 }
1133 max_order = order + 1;
1134 goto continue_merging;
1135 }
1136
1137 done_merging:
1138 set_buddy_order(page, order);
1139
1140 if (fpi_flags & FPI_TO_TAIL)
1141 to_tail = true;
1142 else if (is_shuffle_order(order))
1143 to_tail = shuffle_pick_tail();
1144 else
1145 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1146
1147 if (to_tail)
1148 add_to_free_list_tail(page, zone, order, migratetype);
1149 else
1150 add_to_free_list(page, zone, order, migratetype);
1151
1152 /* Notify page reporting subsystem of freed page */
1153 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1154 page_reporting_notify_free(order);
1155 }
1156
1157 /*
1158 * A bad page could be due to a number of fields. Instead of multiple branches,
1159 * try and check multiple fields with one check. The caller must do a detailed
1160 * check if necessary.
1161 */
1162 static inline bool page_expected_state(struct page *page,
1163 unsigned long check_flags)
1164 {
1165 if (unlikely(atomic_read(&page->_mapcount) != -1))
1166 return false;
1167
1168 if (unlikely((unsigned long)page->mapping |
1169 page_ref_count(page) |
1170 #ifdef CONFIG_MEMCG
1171 page->memcg_data |
1172 #endif
1173 (page->flags & check_flags)))
1174 return false;
1175
1176 return true;
1177 }
1178
1179 static const char *page_bad_reason(struct page *page, unsigned long flags)
1180 {
1181 const char *bad_reason = NULL;
1182
1183 if (unlikely(atomic_read(&page->_mapcount) != -1))
1184 bad_reason = "nonzero mapcount";
1185 if (unlikely(page->mapping != NULL))
1186 bad_reason = "non-NULL mapping";
1187 if (unlikely(page_ref_count(page) != 0))
1188 bad_reason = "nonzero _refcount";
1189 if (unlikely(page->flags & flags)) {
1190 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1191 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1192 else
1193 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1194 }
1195 #ifdef CONFIG_MEMCG
1196 if (unlikely(page->memcg_data))
1197 bad_reason = "page still charged to cgroup";
1198 #endif
1199 return bad_reason;
1200 }
1201
1202 static void check_free_page_bad(struct page *page)
1203 {
1204 bad_page(page,
1205 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1206 }
1207
1208 static inline int check_free_page(struct page *page)
1209 {
1210 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1211 return 0;
1212
1213 /* Something has gone sideways, find it */
1214 check_free_page_bad(page);
1215 return 1;
1216 }
1217
1218 static int free_tail_pages_check(struct page *head_page, struct page *page)
1219 {
1220 int ret = 1;
1221
1222 /*
1223 * We rely page->lru.next never has bit 0 set, unless the page
1224 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1225 */
1226 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1227
1228 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1229 ret = 0;
1230 goto out;
1231 }
1232 switch (page - head_page) {
1233 case 1:
1234 /* the first tail page: ->mapping may be compound_mapcount() */
1235 if (unlikely(compound_mapcount(page))) {
1236 bad_page(page, "nonzero compound_mapcount");
1237 goto out;
1238 }
1239 break;
1240 case 2:
1241 /*
1242 * the second tail page: ->mapping is
1243 * deferred_list.next -- ignore value.
1244 */
1245 break;
1246 default:
1247 if (page->mapping != TAIL_MAPPING) {
1248 bad_page(page, "corrupted mapping in tail page");
1249 goto out;
1250 }
1251 break;
1252 }
1253 if (unlikely(!PageTail(page))) {
1254 bad_page(page, "PageTail not set");
1255 goto out;
1256 }
1257 if (unlikely(compound_head(page) != head_page)) {
1258 bad_page(page, "compound_head not consistent");
1259 goto out;
1260 }
1261 ret = 0;
1262 out:
1263 page->mapping = NULL;
1264 clear_compound_head(page);
1265 return ret;
1266 }
1267
1268 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
1269 {
1270 int i;
1271
1272 if (zero_tags) {
1273 for (i = 0; i < numpages; i++)
1274 tag_clear_highpage(page + i);
1275 return;
1276 }
1277
1278 /* s390's use of memset() could override KASAN redzones. */
1279 kasan_disable_current();
1280 for (i = 0; i < numpages; i++) {
1281 u8 tag = page_kasan_tag(page + i);
1282 page_kasan_tag_reset(page + i);
1283 clear_highpage(page + i);
1284 page_kasan_tag_set(page + i, tag);
1285 }
1286 kasan_enable_current();
1287 }
1288
1289 static __always_inline bool free_pages_prepare(struct page *page,
1290 unsigned int order, bool check_free, fpi_t fpi_flags)
1291 {
1292 int bad = 0;
1293 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1294
1295 VM_BUG_ON_PAGE(PageTail(page), page);
1296
1297 trace_mm_page_free(page, order);
1298
1299 if (unlikely(PageHWPoison(page)) && !order) {
1300 /*
1301 * Do not let hwpoison pages hit pcplists/buddy
1302 * Untie memcg state and reset page's owner
1303 */
1304 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1305 __memcg_kmem_uncharge_page(page, order);
1306 reset_page_owner(page, order);
1307 return false;
1308 }
1309
1310 /*
1311 * Check tail pages before head page information is cleared to
1312 * avoid checking PageCompound for order-0 pages.
1313 */
1314 if (unlikely(order)) {
1315 bool compound = PageCompound(page);
1316 int i;
1317
1318 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1319
1320 if (compound)
1321 ClearPageDoubleMap(page);
1322 for (i = 1; i < (1 << order); i++) {
1323 if (compound)
1324 bad += free_tail_pages_check(page, page + i);
1325 if (unlikely(check_free_page(page + i))) {
1326 bad++;
1327 continue;
1328 }
1329 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1330 }
1331 }
1332 if (PageMappingFlags(page))
1333 page->mapping = NULL;
1334 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1335 __memcg_kmem_uncharge_page(page, order);
1336 if (check_free)
1337 bad += check_free_page(page);
1338 if (bad)
1339 return false;
1340
1341 page_cpupid_reset_last(page);
1342 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1343 reset_page_owner(page, order);
1344
1345 if (!PageHighMem(page)) {
1346 debug_check_no_locks_freed(page_address(page),
1347 PAGE_SIZE << order);
1348 debug_check_no_obj_freed(page_address(page),
1349 PAGE_SIZE << order);
1350 }
1351
1352 kernel_poison_pages(page, 1 << order);
1353
1354 /*
1355 * As memory initialization might be integrated into KASAN,
1356 * kasan_free_pages and kernel_init_free_pages must be
1357 * kept together to avoid discrepancies in behavior.
1358 *
1359 * With hardware tag-based KASAN, memory tags must be set before the
1360 * page becomes unavailable via debug_pagealloc or arch_free_page.
1361 */
1362 if (kasan_has_integrated_init()) {
1363 if (!skip_kasan_poison)
1364 kasan_free_pages(page, order);
1365 } else {
1366 bool init = want_init_on_free();
1367
1368 if (init)
1369 kernel_init_free_pages(page, 1 << order, false);
1370 if (!skip_kasan_poison)
1371 kasan_poison_pages(page, order, init);
1372 }
1373
1374 /*
1375 * arch_free_page() can make the page's contents inaccessible. s390
1376 * does this. So nothing which can access the page's contents should
1377 * happen after this.
1378 */
1379 arch_free_page(page, order);
1380
1381 debug_pagealloc_unmap_pages(page, 1 << order);
1382
1383 return true;
1384 }
1385
1386 #ifdef CONFIG_DEBUG_VM
1387 /*
1388 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1389 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1390 * moved from pcp lists to free lists.
1391 */
1392 static bool free_pcp_prepare(struct page *page, unsigned int order)
1393 {
1394 return free_pages_prepare(page, order, true, FPI_NONE);
1395 }
1396
1397 static bool bulkfree_pcp_prepare(struct page *page)
1398 {
1399 if (debug_pagealloc_enabled_static())
1400 return check_free_page(page);
1401 else
1402 return false;
1403 }
1404 #else
1405 /*
1406 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1407 * moving from pcp lists to free list in order to reduce overhead. With
1408 * debug_pagealloc enabled, they are checked also immediately when being freed
1409 * to the pcp lists.
1410 */
1411 static bool free_pcp_prepare(struct page *page, unsigned int order)
1412 {
1413 if (debug_pagealloc_enabled_static())
1414 return free_pages_prepare(page, order, true, FPI_NONE);
1415 else
1416 return free_pages_prepare(page, order, false, FPI_NONE);
1417 }
1418
1419 static bool bulkfree_pcp_prepare(struct page *page)
1420 {
1421 return check_free_page(page);
1422 }
1423 #endif /* CONFIG_DEBUG_VM */
1424
1425 static inline void prefetch_buddy(struct page *page)
1426 {
1427 unsigned long pfn = page_to_pfn(page);
1428 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1429 struct page *buddy = page + (buddy_pfn - pfn);
1430
1431 prefetch(buddy);
1432 }
1433
1434 /*
1435 * Frees a number of pages from the PCP lists
1436 * Assumes all pages on list are in same zone, and of same order.
1437 * count is the number of pages to free.
1438 *
1439 * If the zone was previously in an "all pages pinned" state then look to
1440 * see if this freeing clears that state.
1441 *
1442 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1443 * pinned" detection logic.
1444 */
1445 static void free_pcppages_bulk(struct zone *zone, int count,
1446 struct per_cpu_pages *pcp)
1447 {
1448 int pindex = 0;
1449 int batch_free = 0;
1450 int nr_freed = 0;
1451 unsigned int order;
1452 int prefetch_nr = READ_ONCE(pcp->batch);
1453 bool isolated_pageblocks;
1454 struct page *page, *tmp;
1455 LIST_HEAD(head);
1456
1457 /*
1458 * Ensure proper count is passed which otherwise would stuck in the
1459 * below while (list_empty(list)) loop.
1460 */
1461 count = min(pcp->count, count);
1462 while (count > 0) {
1463 struct list_head *list;
1464
1465 /*
1466 * Remove pages from lists in a round-robin fashion. A
1467 * batch_free count is maintained that is incremented when an
1468 * empty list is encountered. This is so more pages are freed
1469 * off fuller lists instead of spinning excessively around empty
1470 * lists
1471 */
1472 do {
1473 batch_free++;
1474 if (++pindex == NR_PCP_LISTS)
1475 pindex = 0;
1476 list = &pcp->lists[pindex];
1477 } while (list_empty(list));
1478
1479 /* This is the only non-empty list. Free them all. */
1480 if (batch_free == NR_PCP_LISTS)
1481 batch_free = count;
1482
1483 order = pindex_to_order(pindex);
1484 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1485 do {
1486 page = list_last_entry(list, struct page, lru);
1487 /* must delete to avoid corrupting pcp list */
1488 list_del(&page->lru);
1489 nr_freed += 1 << order;
1490 count -= 1 << order;
1491
1492 if (bulkfree_pcp_prepare(page))
1493 continue;
1494
1495 /* Encode order with the migratetype */
1496 page->index <<= NR_PCP_ORDER_WIDTH;
1497 page->index |= order;
1498
1499 list_add_tail(&page->lru, &head);
1500
1501 /*
1502 * We are going to put the page back to the global
1503 * pool, prefetch its buddy to speed up later access
1504 * under zone->lock. It is believed the overhead of
1505 * an additional test and calculating buddy_pfn here
1506 * can be offset by reduced memory latency later. To
1507 * avoid excessive prefetching due to large count, only
1508 * prefetch buddy for the first pcp->batch nr of pages.
1509 */
1510 if (prefetch_nr) {
1511 prefetch_buddy(page);
1512 prefetch_nr--;
1513 }
1514 } while (count > 0 && --batch_free && !list_empty(list));
1515 }
1516 pcp->count -= nr_freed;
1517
1518 /*
1519 * local_lock_irq held so equivalent to spin_lock_irqsave for
1520 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1521 */
1522 spin_lock(&zone->lock);
1523 isolated_pageblocks = has_isolate_pageblock(zone);
1524
1525 /*
1526 * Use safe version since after __free_one_page(),
1527 * page->lru.next will not point to original list.
1528 */
1529 list_for_each_entry_safe(page, tmp, &head, lru) {
1530 int mt = get_pcppage_migratetype(page);
1531
1532 /* mt has been encoded with the order (see above) */
1533 order = mt & NR_PCP_ORDER_MASK;
1534 mt >>= NR_PCP_ORDER_WIDTH;
1535
1536 /* MIGRATE_ISOLATE page should not go to pcplists */
1537 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1538 /* Pageblock could have been isolated meanwhile */
1539 if (unlikely(isolated_pageblocks))
1540 mt = get_pageblock_migratetype(page);
1541
1542 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1543 trace_mm_page_pcpu_drain(page, order, mt);
1544 }
1545 spin_unlock(&zone->lock);
1546 }
1547
1548 static void free_one_page(struct zone *zone,
1549 struct page *page, unsigned long pfn,
1550 unsigned int order,
1551 int migratetype, fpi_t fpi_flags)
1552 {
1553 unsigned long flags;
1554
1555 spin_lock_irqsave(&zone->lock, flags);
1556 if (unlikely(has_isolate_pageblock(zone) ||
1557 is_migrate_isolate(migratetype))) {
1558 migratetype = get_pfnblock_migratetype(page, pfn);
1559 }
1560 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1561 spin_unlock_irqrestore(&zone->lock, flags);
1562 }
1563
1564 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1565 unsigned long zone, int nid)
1566 {
1567 mm_zero_struct_page(page);
1568 set_page_links(page, zone, nid, pfn);
1569 init_page_count(page);
1570 page_mapcount_reset(page);
1571 page_cpupid_reset_last(page);
1572 page_kasan_tag_reset(page);
1573
1574 INIT_LIST_HEAD(&page->lru);
1575 #ifdef WANT_PAGE_VIRTUAL
1576 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1577 if (!is_highmem_idx(zone))
1578 set_page_address(page, __va(pfn << PAGE_SHIFT));
1579 #endif
1580 }
1581
1582 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1583 static void __meminit init_reserved_page(unsigned long pfn)
1584 {
1585 pg_data_t *pgdat;
1586 int nid, zid;
1587
1588 if (!early_page_uninitialised(pfn))
1589 return;
1590
1591 nid = early_pfn_to_nid(pfn);
1592 pgdat = NODE_DATA(nid);
1593
1594 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1595 struct zone *zone = &pgdat->node_zones[zid];
1596
1597 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1598 break;
1599 }
1600 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1601 }
1602 #else
1603 static inline void init_reserved_page(unsigned long pfn)
1604 {
1605 }
1606 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1607
1608 /*
1609 * Initialised pages do not have PageReserved set. This function is
1610 * called for each range allocated by the bootmem allocator and
1611 * marks the pages PageReserved. The remaining valid pages are later
1612 * sent to the buddy page allocator.
1613 */
1614 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1615 {
1616 unsigned long start_pfn = PFN_DOWN(start);
1617 unsigned long end_pfn = PFN_UP(end);
1618
1619 for (; start_pfn < end_pfn; start_pfn++) {
1620 if (pfn_valid(start_pfn)) {
1621 struct page *page = pfn_to_page(start_pfn);
1622
1623 init_reserved_page(start_pfn);
1624
1625 /* Avoid false-positive PageTail() */
1626 INIT_LIST_HEAD(&page->lru);
1627
1628 /*
1629 * no need for atomic set_bit because the struct
1630 * page is not visible yet so nobody should
1631 * access it yet.
1632 */
1633 __SetPageReserved(page);
1634 }
1635 }
1636 }
1637
1638 static void __free_pages_ok(struct page *page, unsigned int order,
1639 fpi_t fpi_flags)
1640 {
1641 unsigned long flags;
1642 int migratetype;
1643 unsigned long pfn = page_to_pfn(page);
1644 struct zone *zone = page_zone(page);
1645
1646 if (!free_pages_prepare(page, order, true, fpi_flags))
1647 return;
1648
1649 migratetype = get_pfnblock_migratetype(page, pfn);
1650
1651 spin_lock_irqsave(&zone->lock, flags);
1652 if (unlikely(has_isolate_pageblock(zone) ||
1653 is_migrate_isolate(migratetype))) {
1654 migratetype = get_pfnblock_migratetype(page, pfn);
1655 }
1656 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1657 spin_unlock_irqrestore(&zone->lock, flags);
1658
1659 __count_vm_events(PGFREE, 1 << order);
1660 }
1661
1662 void __free_pages_core(struct page *page, unsigned int order)
1663 {
1664 unsigned int nr_pages = 1 << order;
1665 struct page *p = page;
1666 unsigned int loop;
1667
1668 /*
1669 * When initializing the memmap, __init_single_page() sets the refcount
1670 * of all pages to 1 ("allocated"/"not free"). We have to set the
1671 * refcount of all involved pages to 0.
1672 */
1673 prefetchw(p);
1674 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1675 prefetchw(p + 1);
1676 __ClearPageReserved(p);
1677 set_page_count(p, 0);
1678 }
1679 __ClearPageReserved(p);
1680 set_page_count(p, 0);
1681
1682 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1683
1684 /*
1685 * Bypass PCP and place fresh pages right to the tail, primarily
1686 * relevant for memory onlining.
1687 */
1688 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1689 }
1690
1691 #ifdef CONFIG_NUMA
1692
1693 /*
1694 * During memory init memblocks map pfns to nids. The search is expensive and
1695 * this caches recent lookups. The implementation of __early_pfn_to_nid
1696 * treats start/end as pfns.
1697 */
1698 struct mminit_pfnnid_cache {
1699 unsigned long last_start;
1700 unsigned long last_end;
1701 int last_nid;
1702 };
1703
1704 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1705
1706 /*
1707 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1708 */
1709 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1710 struct mminit_pfnnid_cache *state)
1711 {
1712 unsigned long start_pfn, end_pfn;
1713 int nid;
1714
1715 if (state->last_start <= pfn && pfn < state->last_end)
1716 return state->last_nid;
1717
1718 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1719 if (nid != NUMA_NO_NODE) {
1720 state->last_start = start_pfn;
1721 state->last_end = end_pfn;
1722 state->last_nid = nid;
1723 }
1724
1725 return nid;
1726 }
1727
1728 int __meminit early_pfn_to_nid(unsigned long pfn)
1729 {
1730 static DEFINE_SPINLOCK(early_pfn_lock);
1731 int nid;
1732
1733 spin_lock(&early_pfn_lock);
1734 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1735 if (nid < 0)
1736 nid = first_online_node;
1737 spin_unlock(&early_pfn_lock);
1738
1739 return nid;
1740 }
1741 #endif /* CONFIG_NUMA */
1742
1743 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1744 unsigned int order)
1745 {
1746 if (early_page_uninitialised(pfn))
1747 return;
1748 __free_pages_core(page, order);
1749 }
1750
1751 /*
1752 * Check that the whole (or subset of) a pageblock given by the interval of
1753 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1754 * with the migration of free compaction scanner. The scanners then need to
1755 * use only pfn_valid_within() check for arches that allow holes within
1756 * pageblocks.
1757 *
1758 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1759 *
1760 * It's possible on some configurations to have a setup like node0 node1 node0
1761 * i.e. it's possible that all pages within a zones range of pages do not
1762 * belong to a single zone. We assume that a border between node0 and node1
1763 * can occur within a single pageblock, but not a node0 node1 node0
1764 * interleaving within a single pageblock. It is therefore sufficient to check
1765 * the first and last page of a pageblock and avoid checking each individual
1766 * page in a pageblock.
1767 */
1768 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1769 unsigned long end_pfn, struct zone *zone)
1770 {
1771 struct page *start_page;
1772 struct page *end_page;
1773
1774 /* end_pfn is one past the range we are checking */
1775 end_pfn--;
1776
1777 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1778 return NULL;
1779
1780 start_page = pfn_to_online_page(start_pfn);
1781 if (!start_page)
1782 return NULL;
1783
1784 if (page_zone(start_page) != zone)
1785 return NULL;
1786
1787 end_page = pfn_to_page(end_pfn);
1788
1789 /* This gives a shorter code than deriving page_zone(end_page) */
1790 if (page_zone_id(start_page) != page_zone_id(end_page))
1791 return NULL;
1792
1793 return start_page;
1794 }
1795
1796 void set_zone_contiguous(struct zone *zone)
1797 {
1798 unsigned long block_start_pfn = zone->zone_start_pfn;
1799 unsigned long block_end_pfn;
1800
1801 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1802 for (; block_start_pfn < zone_end_pfn(zone);
1803 block_start_pfn = block_end_pfn,
1804 block_end_pfn += pageblock_nr_pages) {
1805
1806 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1807
1808 if (!__pageblock_pfn_to_page(block_start_pfn,
1809 block_end_pfn, zone))
1810 return;
1811 cond_resched();
1812 }
1813
1814 /* We confirm that there is no hole */
1815 zone->contiguous = true;
1816 }
1817
1818 void clear_zone_contiguous(struct zone *zone)
1819 {
1820 zone->contiguous = false;
1821 }
1822
1823 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1824 static void __init deferred_free_range(unsigned long pfn,
1825 unsigned long nr_pages)
1826 {
1827 struct page *page;
1828 unsigned long i;
1829
1830 if (!nr_pages)
1831 return;
1832
1833 page = pfn_to_page(pfn);
1834
1835 /* Free a large naturally-aligned chunk if possible */
1836 if (nr_pages == pageblock_nr_pages &&
1837 (pfn & (pageblock_nr_pages - 1)) == 0) {
1838 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1839 __free_pages_core(page, pageblock_order);
1840 return;
1841 }
1842
1843 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1844 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1845 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1846 __free_pages_core(page, 0);
1847 }
1848 }
1849
1850 /* Completion tracking for deferred_init_memmap() threads */
1851 static atomic_t pgdat_init_n_undone __initdata;
1852 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1853
1854 static inline void __init pgdat_init_report_one_done(void)
1855 {
1856 if (atomic_dec_and_test(&pgdat_init_n_undone))
1857 complete(&pgdat_init_all_done_comp);
1858 }
1859
1860 /*
1861 * Returns true if page needs to be initialized or freed to buddy allocator.
1862 *
1863 * First we check if pfn is valid on architectures where it is possible to have
1864 * holes within pageblock_nr_pages. On systems where it is not possible, this
1865 * function is optimized out.
1866 *
1867 * Then, we check if a current large page is valid by only checking the validity
1868 * of the head pfn.
1869 */
1870 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1871 {
1872 if (!pfn_valid_within(pfn))
1873 return false;
1874 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1875 return false;
1876 return true;
1877 }
1878
1879 /*
1880 * Free pages to buddy allocator. Try to free aligned pages in
1881 * pageblock_nr_pages sizes.
1882 */
1883 static void __init deferred_free_pages(unsigned long pfn,
1884 unsigned long end_pfn)
1885 {
1886 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1887 unsigned long nr_free = 0;
1888
1889 for (; pfn < end_pfn; pfn++) {
1890 if (!deferred_pfn_valid(pfn)) {
1891 deferred_free_range(pfn - nr_free, nr_free);
1892 nr_free = 0;
1893 } else if (!(pfn & nr_pgmask)) {
1894 deferred_free_range(pfn - nr_free, nr_free);
1895 nr_free = 1;
1896 } else {
1897 nr_free++;
1898 }
1899 }
1900 /* Free the last block of pages to allocator */
1901 deferred_free_range(pfn - nr_free, nr_free);
1902 }
1903
1904 /*
1905 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1906 * by performing it only once every pageblock_nr_pages.
1907 * Return number of pages initialized.
1908 */
1909 static unsigned long __init deferred_init_pages(struct zone *zone,
1910 unsigned long pfn,
1911 unsigned long end_pfn)
1912 {
1913 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1914 int nid = zone_to_nid(zone);
1915 unsigned long nr_pages = 0;
1916 int zid = zone_idx(zone);
1917 struct page *page = NULL;
1918
1919 for (; pfn < end_pfn; pfn++) {
1920 if (!deferred_pfn_valid(pfn)) {
1921 page = NULL;
1922 continue;
1923 } else if (!page || !(pfn & nr_pgmask)) {
1924 page = pfn_to_page(pfn);
1925 } else {
1926 page++;
1927 }
1928 __init_single_page(page, pfn, zid, nid);
1929 nr_pages++;
1930 }
1931 return (nr_pages);
1932 }
1933
1934 /*
1935 * This function is meant to pre-load the iterator for the zone init.
1936 * Specifically it walks through the ranges until we are caught up to the
1937 * first_init_pfn value and exits there. If we never encounter the value we
1938 * return false indicating there are no valid ranges left.
1939 */
1940 static bool __init
1941 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1942 unsigned long *spfn, unsigned long *epfn,
1943 unsigned long first_init_pfn)
1944 {
1945 u64 j;
1946
1947 /*
1948 * Start out by walking through the ranges in this zone that have
1949 * already been initialized. We don't need to do anything with them
1950 * so we just need to flush them out of the system.
1951 */
1952 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1953 if (*epfn <= first_init_pfn)
1954 continue;
1955 if (*spfn < first_init_pfn)
1956 *spfn = first_init_pfn;
1957 *i = j;
1958 return true;
1959 }
1960
1961 return false;
1962 }
1963
1964 /*
1965 * Initialize and free pages. We do it in two loops: first we initialize
1966 * struct page, then free to buddy allocator, because while we are
1967 * freeing pages we can access pages that are ahead (computing buddy
1968 * page in __free_one_page()).
1969 *
1970 * In order to try and keep some memory in the cache we have the loop
1971 * broken along max page order boundaries. This way we will not cause
1972 * any issues with the buddy page computation.
1973 */
1974 static unsigned long __init
1975 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1976 unsigned long *end_pfn)
1977 {
1978 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1979 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1980 unsigned long nr_pages = 0;
1981 u64 j = *i;
1982
1983 /* First we loop through and initialize the page values */
1984 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1985 unsigned long t;
1986
1987 if (mo_pfn <= *start_pfn)
1988 break;
1989
1990 t = min(mo_pfn, *end_pfn);
1991 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1992
1993 if (mo_pfn < *end_pfn) {
1994 *start_pfn = mo_pfn;
1995 break;
1996 }
1997 }
1998
1999 /* Reset values and now loop through freeing pages as needed */
2000 swap(j, *i);
2001
2002 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2003 unsigned long t;
2004
2005 if (mo_pfn <= spfn)
2006 break;
2007
2008 t = min(mo_pfn, epfn);
2009 deferred_free_pages(spfn, t);
2010
2011 if (mo_pfn <= epfn)
2012 break;
2013 }
2014
2015 return nr_pages;
2016 }
2017
2018 static void __init
2019 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2020 void *arg)
2021 {
2022 unsigned long spfn, epfn;
2023 struct zone *zone = arg;
2024 u64 i;
2025
2026 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2027
2028 /*
2029 * Initialize and free pages in MAX_ORDER sized increments so that we
2030 * can avoid introducing any issues with the buddy allocator.
2031 */
2032 while (spfn < end_pfn) {
2033 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2034 cond_resched();
2035 }
2036 }
2037
2038 /* An arch may override for more concurrency. */
2039 __weak int __init
2040 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2041 {
2042 return 1;
2043 }
2044
2045 /* Initialise remaining memory on a node */
2046 static int __init deferred_init_memmap(void *data)
2047 {
2048 pg_data_t *pgdat = data;
2049 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2050 unsigned long spfn = 0, epfn = 0;
2051 unsigned long first_init_pfn, flags;
2052 unsigned long start = jiffies;
2053 struct zone *zone;
2054 int zid, max_threads;
2055 u64 i;
2056
2057 /* Bind memory initialisation thread to a local node if possible */
2058 if (!cpumask_empty(cpumask))
2059 set_cpus_allowed_ptr(current, cpumask);
2060
2061 pgdat_resize_lock(pgdat, &flags);
2062 first_init_pfn = pgdat->first_deferred_pfn;
2063 if (first_init_pfn == ULONG_MAX) {
2064 pgdat_resize_unlock(pgdat, &flags);
2065 pgdat_init_report_one_done();
2066 return 0;
2067 }
2068
2069 /* Sanity check boundaries */
2070 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2071 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2072 pgdat->first_deferred_pfn = ULONG_MAX;
2073
2074 /*
2075 * Once we unlock here, the zone cannot be grown anymore, thus if an
2076 * interrupt thread must allocate this early in boot, zone must be
2077 * pre-grown prior to start of deferred page initialization.
2078 */
2079 pgdat_resize_unlock(pgdat, &flags);
2080
2081 /* Only the highest zone is deferred so find it */
2082 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2083 zone = pgdat->node_zones + zid;
2084 if (first_init_pfn < zone_end_pfn(zone))
2085 break;
2086 }
2087
2088 /* If the zone is empty somebody else may have cleared out the zone */
2089 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2090 first_init_pfn))
2091 goto zone_empty;
2092
2093 max_threads = deferred_page_init_max_threads(cpumask);
2094
2095 while (spfn < epfn) {
2096 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2097 struct padata_mt_job job = {
2098 .thread_fn = deferred_init_memmap_chunk,
2099 .fn_arg = zone,
2100 .start = spfn,
2101 .size = epfn_align - spfn,
2102 .align = PAGES_PER_SECTION,
2103 .min_chunk = PAGES_PER_SECTION,
2104 .max_threads = max_threads,
2105 };
2106
2107 padata_do_multithreaded(&job);
2108 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2109 epfn_align);
2110 }
2111 zone_empty:
2112 /* Sanity check that the next zone really is unpopulated */
2113 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2114
2115 pr_info("node %d deferred pages initialised in %ums\n",
2116 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2117
2118 pgdat_init_report_one_done();
2119 return 0;
2120 }
2121
2122 /*
2123 * If this zone has deferred pages, try to grow it by initializing enough
2124 * deferred pages to satisfy the allocation specified by order, rounded up to
2125 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2126 * of SECTION_SIZE bytes by initializing struct pages in increments of
2127 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2128 *
2129 * Return true when zone was grown, otherwise return false. We return true even
2130 * when we grow less than requested, to let the caller decide if there are
2131 * enough pages to satisfy the allocation.
2132 *
2133 * Note: We use noinline because this function is needed only during boot, and
2134 * it is called from a __ref function _deferred_grow_zone. This way we are
2135 * making sure that it is not inlined into permanent text section.
2136 */
2137 static noinline bool __init
2138 deferred_grow_zone(struct zone *zone, unsigned int order)
2139 {
2140 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2141 pg_data_t *pgdat = zone->zone_pgdat;
2142 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2143 unsigned long spfn, epfn, flags;
2144 unsigned long nr_pages = 0;
2145 u64 i;
2146
2147 /* Only the last zone may have deferred pages */
2148 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2149 return false;
2150
2151 pgdat_resize_lock(pgdat, &flags);
2152
2153 /*
2154 * If someone grew this zone while we were waiting for spinlock, return
2155 * true, as there might be enough pages already.
2156 */
2157 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2158 pgdat_resize_unlock(pgdat, &flags);
2159 return true;
2160 }
2161
2162 /* If the zone is empty somebody else may have cleared out the zone */
2163 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2164 first_deferred_pfn)) {
2165 pgdat->first_deferred_pfn = ULONG_MAX;
2166 pgdat_resize_unlock(pgdat, &flags);
2167 /* Retry only once. */
2168 return first_deferred_pfn != ULONG_MAX;
2169 }
2170
2171 /*
2172 * Initialize and free pages in MAX_ORDER sized increments so
2173 * that we can avoid introducing any issues with the buddy
2174 * allocator.
2175 */
2176 while (spfn < epfn) {
2177 /* update our first deferred PFN for this section */
2178 first_deferred_pfn = spfn;
2179
2180 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2181 touch_nmi_watchdog();
2182
2183 /* We should only stop along section boundaries */
2184 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2185 continue;
2186
2187 /* If our quota has been met we can stop here */
2188 if (nr_pages >= nr_pages_needed)
2189 break;
2190 }
2191
2192 pgdat->first_deferred_pfn = spfn;
2193 pgdat_resize_unlock(pgdat, &flags);
2194
2195 return nr_pages > 0;
2196 }
2197
2198 /*
2199 * deferred_grow_zone() is __init, but it is called from
2200 * get_page_from_freelist() during early boot until deferred_pages permanently
2201 * disables this call. This is why we have refdata wrapper to avoid warning,
2202 * and to ensure that the function body gets unloaded.
2203 */
2204 static bool __ref
2205 _deferred_grow_zone(struct zone *zone, unsigned int order)
2206 {
2207 return deferred_grow_zone(zone, order);
2208 }
2209
2210 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2211
2212 void __init page_alloc_init_late(void)
2213 {
2214 struct zone *zone;
2215 int nid;
2216
2217 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2218
2219 /* There will be num_node_state(N_MEMORY) threads */
2220 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2221 for_each_node_state(nid, N_MEMORY) {
2222 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2223 }
2224
2225 /* Block until all are initialised */
2226 wait_for_completion(&pgdat_init_all_done_comp);
2227
2228 /*
2229 * We initialized the rest of the deferred pages. Permanently disable
2230 * on-demand struct page initialization.
2231 */
2232 static_branch_disable(&deferred_pages);
2233
2234 /* Reinit limits that are based on free pages after the kernel is up */
2235 files_maxfiles_init();
2236 #endif
2237
2238 buffer_init();
2239
2240 /* Discard memblock private memory */
2241 memblock_discard();
2242
2243 for_each_node_state(nid, N_MEMORY)
2244 shuffle_free_memory(NODE_DATA(nid));
2245
2246 for_each_populated_zone(zone)
2247 set_zone_contiguous(zone);
2248 }
2249
2250 #ifdef CONFIG_CMA
2251 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2252 void __init init_cma_reserved_pageblock(struct page *page)
2253 {
2254 unsigned i = pageblock_nr_pages;
2255 struct page *p = page;
2256
2257 do {
2258 __ClearPageReserved(p);
2259 set_page_count(p, 0);
2260 } while (++p, --i);
2261
2262 set_pageblock_migratetype(page, MIGRATE_CMA);
2263
2264 if (pageblock_order >= MAX_ORDER) {
2265 i = pageblock_nr_pages;
2266 p = page;
2267 do {
2268 set_page_refcounted(p);
2269 __free_pages(p, MAX_ORDER - 1);
2270 p += MAX_ORDER_NR_PAGES;
2271 } while (i -= MAX_ORDER_NR_PAGES);
2272 } else {
2273 set_page_refcounted(page);
2274 __free_pages(page, pageblock_order);
2275 }
2276
2277 adjust_managed_page_count(page, pageblock_nr_pages);
2278 page_zone(page)->cma_pages += pageblock_nr_pages;
2279 }
2280 #endif
2281
2282 /*
2283 * The order of subdivision here is critical for the IO subsystem.
2284 * Please do not alter this order without good reasons and regression
2285 * testing. Specifically, as large blocks of memory are subdivided,
2286 * the order in which smaller blocks are delivered depends on the order
2287 * they're subdivided in this function. This is the primary factor
2288 * influencing the order in which pages are delivered to the IO
2289 * subsystem according to empirical testing, and this is also justified
2290 * by considering the behavior of a buddy system containing a single
2291 * large block of memory acted on by a series of small allocations.
2292 * This behavior is a critical factor in sglist merging's success.
2293 *
2294 * -- nyc
2295 */
2296 static inline void expand(struct zone *zone, struct page *page,
2297 int low, int high, int migratetype)
2298 {
2299 unsigned long size = 1 << high;
2300
2301 while (high > low) {
2302 high--;
2303 size >>= 1;
2304 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2305
2306 /*
2307 * Mark as guard pages (or page), that will allow to
2308 * merge back to allocator when buddy will be freed.
2309 * Corresponding page table entries will not be touched,
2310 * pages will stay not present in virtual address space
2311 */
2312 if (set_page_guard(zone, &page[size], high, migratetype))
2313 continue;
2314
2315 add_to_free_list(&page[size], zone, high, migratetype);
2316 set_buddy_order(&page[size], high);
2317 }
2318 }
2319
2320 static void check_new_page_bad(struct page *page)
2321 {
2322 if (unlikely(page->flags & __PG_HWPOISON)) {
2323 /* Don't complain about hwpoisoned pages */
2324 page_mapcount_reset(page); /* remove PageBuddy */
2325 return;
2326 }
2327
2328 bad_page(page,
2329 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2330 }
2331
2332 /*
2333 * This page is about to be returned from the page allocator
2334 */
2335 static inline int check_new_page(struct page *page)
2336 {
2337 if (likely(page_expected_state(page,
2338 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2339 return 0;
2340
2341 check_new_page_bad(page);
2342 return 1;
2343 }
2344
2345 #ifdef CONFIG_DEBUG_VM
2346 /*
2347 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2348 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2349 * also checked when pcp lists are refilled from the free lists.
2350 */
2351 static inline bool check_pcp_refill(struct page *page)
2352 {
2353 if (debug_pagealloc_enabled_static())
2354 return check_new_page(page);
2355 else
2356 return false;
2357 }
2358
2359 static inline bool check_new_pcp(struct page *page)
2360 {
2361 return check_new_page(page);
2362 }
2363 #else
2364 /*
2365 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2366 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2367 * enabled, they are also checked when being allocated from the pcp lists.
2368 */
2369 static inline bool check_pcp_refill(struct page *page)
2370 {
2371 return check_new_page(page);
2372 }
2373 static inline bool check_new_pcp(struct page *page)
2374 {
2375 if (debug_pagealloc_enabled_static())
2376 return check_new_page(page);
2377 else
2378 return false;
2379 }
2380 #endif /* CONFIG_DEBUG_VM */
2381
2382 static bool check_new_pages(struct page *page, unsigned int order)
2383 {
2384 int i;
2385 for (i = 0; i < (1 << order); i++) {
2386 struct page *p = page + i;
2387
2388 if (unlikely(check_new_page(p)))
2389 return true;
2390 }
2391
2392 return false;
2393 }
2394
2395 inline void post_alloc_hook(struct page *page, unsigned int order,
2396 gfp_t gfp_flags)
2397 {
2398 set_page_private(page, 0);
2399 set_page_refcounted(page);
2400
2401 arch_alloc_page(page, order);
2402 debug_pagealloc_map_pages(page, 1 << order);
2403
2404 /*
2405 * Page unpoisoning must happen before memory initialization.
2406 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2407 * allocations and the page unpoisoning code will complain.
2408 */
2409 kernel_unpoison_pages(page, 1 << order);
2410
2411 /*
2412 * As memory initialization might be integrated into KASAN,
2413 * kasan_alloc_pages and kernel_init_free_pages must be
2414 * kept together to avoid discrepancies in behavior.
2415 */
2416 if (kasan_has_integrated_init()) {
2417 kasan_alloc_pages(page, order, gfp_flags);
2418 } else {
2419 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2420
2421 kasan_unpoison_pages(page, order, init);
2422 if (init)
2423 kernel_init_free_pages(page, 1 << order,
2424 gfp_flags & __GFP_ZEROTAGS);
2425 }
2426
2427 set_page_owner(page, order, gfp_flags);
2428 }
2429
2430 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2431 unsigned int alloc_flags)
2432 {
2433 post_alloc_hook(page, order, gfp_flags);
2434
2435 if (order && (gfp_flags & __GFP_COMP))
2436 prep_compound_page(page, order);
2437
2438 /*
2439 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2440 * allocate the page. The expectation is that the caller is taking
2441 * steps that will free more memory. The caller should avoid the page
2442 * being used for !PFMEMALLOC purposes.
2443 */
2444 if (alloc_flags & ALLOC_NO_WATERMARKS)
2445 set_page_pfmemalloc(page);
2446 else
2447 clear_page_pfmemalloc(page);
2448 }
2449
2450 /*
2451 * Go through the free lists for the given migratetype and remove
2452 * the smallest available page from the freelists
2453 */
2454 static __always_inline
2455 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2456 int migratetype)
2457 {
2458 unsigned int current_order;
2459 struct free_area *area;
2460 struct page *page;
2461
2462 /* Find a page of the appropriate size in the preferred list */
2463 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2464 area = &(zone->free_area[current_order]);
2465 page = get_page_from_free_area(area, migratetype);
2466 if (!page)
2467 continue;
2468 del_page_from_free_list(page, zone, current_order);
2469 expand(zone, page, order, current_order, migratetype);
2470 set_pcppage_migratetype(page, migratetype);
2471 return page;
2472 }
2473
2474 return NULL;
2475 }
2476
2477
2478 /*
2479 * This array describes the order lists are fallen back to when
2480 * the free lists for the desirable migrate type are depleted
2481 */
2482 static int fallbacks[MIGRATE_TYPES][3] = {
2483 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2484 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2485 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2486 #ifdef CONFIG_CMA
2487 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2488 #endif
2489 #ifdef CONFIG_MEMORY_ISOLATION
2490 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2491 #endif
2492 };
2493
2494 #ifdef CONFIG_CMA
2495 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2496 unsigned int order)
2497 {
2498 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2499 }
2500 #else
2501 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2502 unsigned int order) { return NULL; }
2503 #endif
2504
2505 /*
2506 * Move the free pages in a range to the freelist tail of the requested type.
2507 * Note that start_page and end_pages are not aligned on a pageblock
2508 * boundary. If alignment is required, use move_freepages_block()
2509 */
2510 static int move_freepages(struct zone *zone,
2511 unsigned long start_pfn, unsigned long end_pfn,
2512 int migratetype, int *num_movable)
2513 {
2514 struct page *page;
2515 unsigned long pfn;
2516 unsigned int order;
2517 int pages_moved = 0;
2518
2519 for (pfn = start_pfn; pfn <= end_pfn;) {
2520 if (!pfn_valid_within(pfn)) {
2521 pfn++;
2522 continue;
2523 }
2524
2525 page = pfn_to_page(pfn);
2526 if (!PageBuddy(page)) {
2527 /*
2528 * We assume that pages that could be isolated for
2529 * migration are movable. But we don't actually try
2530 * isolating, as that would be expensive.
2531 */
2532 if (num_movable &&
2533 (PageLRU(page) || __PageMovable(page)))
2534 (*num_movable)++;
2535 pfn++;
2536 continue;
2537 }
2538
2539 /* Make sure we are not inadvertently changing nodes */
2540 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2541 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2542
2543 order = buddy_order(page);
2544 move_to_free_list(page, zone, order, migratetype);
2545 pfn += 1 << order;
2546 pages_moved += 1 << order;
2547 }
2548
2549 return pages_moved;
2550 }
2551
2552 int move_freepages_block(struct zone *zone, struct page *page,
2553 int migratetype, int *num_movable)
2554 {
2555 unsigned long start_pfn, end_pfn, pfn;
2556
2557 if (num_movable)
2558 *num_movable = 0;
2559
2560 pfn = page_to_pfn(page);
2561 start_pfn = pfn & ~(pageblock_nr_pages - 1);
2562 end_pfn = start_pfn + pageblock_nr_pages - 1;
2563
2564 /* Do not cross zone boundaries */
2565 if (!zone_spans_pfn(zone, start_pfn))
2566 start_pfn = pfn;
2567 if (!zone_spans_pfn(zone, end_pfn))
2568 return 0;
2569
2570 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2571 num_movable);
2572 }
2573
2574 static void change_pageblock_range(struct page *pageblock_page,
2575 int start_order, int migratetype)
2576 {
2577 int nr_pageblocks = 1 << (start_order - pageblock_order);
2578
2579 while (nr_pageblocks--) {
2580 set_pageblock_migratetype(pageblock_page, migratetype);
2581 pageblock_page += pageblock_nr_pages;
2582 }
2583 }
2584
2585 /*
2586 * When we are falling back to another migratetype during allocation, try to
2587 * steal extra free pages from the same pageblocks to satisfy further
2588 * allocations, instead of polluting multiple pageblocks.
2589 *
2590 * If we are stealing a relatively large buddy page, it is likely there will
2591 * be more free pages in the pageblock, so try to steal them all. For
2592 * reclaimable and unmovable allocations, we steal regardless of page size,
2593 * as fragmentation caused by those allocations polluting movable pageblocks
2594 * is worse than movable allocations stealing from unmovable and reclaimable
2595 * pageblocks.
2596 */
2597 static bool can_steal_fallback(unsigned int order, int start_mt)
2598 {
2599 /*
2600 * Leaving this order check is intended, although there is
2601 * relaxed order check in next check. The reason is that
2602 * we can actually steal whole pageblock if this condition met,
2603 * but, below check doesn't guarantee it and that is just heuristic
2604 * so could be changed anytime.
2605 */
2606 if (order >= pageblock_order)
2607 return true;
2608
2609 if (order >= pageblock_order / 2 ||
2610 start_mt == MIGRATE_RECLAIMABLE ||
2611 start_mt == MIGRATE_UNMOVABLE ||
2612 page_group_by_mobility_disabled)
2613 return true;
2614
2615 return false;
2616 }
2617
2618 static inline bool boost_watermark(struct zone *zone)
2619 {
2620 unsigned long max_boost;
2621
2622 if (!watermark_boost_factor)
2623 return false;
2624 /*
2625 * Don't bother in zones that are unlikely to produce results.
2626 * On small machines, including kdump capture kernels running
2627 * in a small area, boosting the watermark can cause an out of
2628 * memory situation immediately.
2629 */
2630 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2631 return false;
2632
2633 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2634 watermark_boost_factor, 10000);
2635
2636 /*
2637 * high watermark may be uninitialised if fragmentation occurs
2638 * very early in boot so do not boost. We do not fall
2639 * through and boost by pageblock_nr_pages as failing
2640 * allocations that early means that reclaim is not going
2641 * to help and it may even be impossible to reclaim the
2642 * boosted watermark resulting in a hang.
2643 */
2644 if (!max_boost)
2645 return false;
2646
2647 max_boost = max(pageblock_nr_pages, max_boost);
2648
2649 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2650 max_boost);
2651
2652 return true;
2653 }
2654
2655 /*
2656 * This function implements actual steal behaviour. If order is large enough,
2657 * we can steal whole pageblock. If not, we first move freepages in this
2658 * pageblock to our migratetype and determine how many already-allocated pages
2659 * are there in the pageblock with a compatible migratetype. If at least half
2660 * of pages are free or compatible, we can change migratetype of the pageblock
2661 * itself, so pages freed in the future will be put on the correct free list.
2662 */
2663 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2664 unsigned int alloc_flags, int start_type, bool whole_block)
2665 {
2666 unsigned int current_order = buddy_order(page);
2667 int free_pages, movable_pages, alike_pages;
2668 int old_block_type;
2669
2670 old_block_type = get_pageblock_migratetype(page);
2671
2672 /*
2673 * This can happen due to races and we want to prevent broken
2674 * highatomic accounting.
2675 */
2676 if (is_migrate_highatomic(old_block_type))
2677 goto single_page;
2678
2679 /* Take ownership for orders >= pageblock_order */
2680 if (current_order >= pageblock_order) {
2681 change_pageblock_range(page, current_order, start_type);
2682 goto single_page;
2683 }
2684
2685 /*
2686 * Boost watermarks to increase reclaim pressure to reduce the
2687 * likelihood of future fallbacks. Wake kswapd now as the node
2688 * may be balanced overall and kswapd will not wake naturally.
2689 */
2690 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2691 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2692
2693 /* We are not allowed to try stealing from the whole block */
2694 if (!whole_block)
2695 goto single_page;
2696
2697 free_pages = move_freepages_block(zone, page, start_type,
2698 &movable_pages);
2699 /*
2700 * Determine how many pages are compatible with our allocation.
2701 * For movable allocation, it's the number of movable pages which
2702 * we just obtained. For other types it's a bit more tricky.
2703 */
2704 if (start_type == MIGRATE_MOVABLE) {
2705 alike_pages = movable_pages;
2706 } else {
2707 /*
2708 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2709 * to MOVABLE pageblock, consider all non-movable pages as
2710 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2711 * vice versa, be conservative since we can't distinguish the
2712 * exact migratetype of non-movable pages.
2713 */
2714 if (old_block_type == MIGRATE_MOVABLE)
2715 alike_pages = pageblock_nr_pages
2716 - (free_pages + movable_pages);
2717 else
2718 alike_pages = 0;
2719 }
2720
2721 /* moving whole block can fail due to zone boundary conditions */
2722 if (!free_pages)
2723 goto single_page;
2724
2725 /*
2726 * If a sufficient number of pages in the block are either free or of
2727 * comparable migratability as our allocation, claim the whole block.
2728 */
2729 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2730 page_group_by_mobility_disabled)
2731 set_pageblock_migratetype(page, start_type);
2732
2733 return;
2734
2735 single_page:
2736 move_to_free_list(page, zone, current_order, start_type);
2737 }
2738
2739 /*
2740 * Check whether there is a suitable fallback freepage with requested order.
2741 * If only_stealable is true, this function returns fallback_mt only if
2742 * we can steal other freepages all together. This would help to reduce
2743 * fragmentation due to mixed migratetype pages in one pageblock.
2744 */
2745 int find_suitable_fallback(struct free_area *area, unsigned int order,
2746 int migratetype, bool only_stealable, bool *can_steal)
2747 {
2748 int i;
2749 int fallback_mt;
2750
2751 if (area->nr_free == 0)
2752 return -1;
2753
2754 *can_steal = false;
2755 for (i = 0;; i++) {
2756 fallback_mt = fallbacks[migratetype][i];
2757 if (fallback_mt == MIGRATE_TYPES)
2758 break;
2759
2760 if (free_area_empty(area, fallback_mt))
2761 continue;
2762
2763 if (can_steal_fallback(order, migratetype))
2764 *can_steal = true;
2765
2766 if (!only_stealable)
2767 return fallback_mt;
2768
2769 if (*can_steal)
2770 return fallback_mt;
2771 }
2772
2773 return -1;
2774 }
2775
2776 /*
2777 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2778 * there are no empty page blocks that contain a page with a suitable order
2779 */
2780 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2781 unsigned int alloc_order)
2782 {
2783 int mt;
2784 unsigned long max_managed, flags;
2785
2786 /*
2787 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2788 * Check is race-prone but harmless.
2789 */
2790 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2791 if (zone->nr_reserved_highatomic >= max_managed)
2792 return;
2793
2794 spin_lock_irqsave(&zone->lock, flags);
2795
2796 /* Recheck the nr_reserved_highatomic limit under the lock */
2797 if (zone->nr_reserved_highatomic >= max_managed)
2798 goto out_unlock;
2799
2800 /* Yoink! */
2801 mt = get_pageblock_migratetype(page);
2802 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2803 && !is_migrate_cma(mt)) {
2804 zone->nr_reserved_highatomic += pageblock_nr_pages;
2805 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2806 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2807 }
2808
2809 out_unlock:
2810 spin_unlock_irqrestore(&zone->lock, flags);
2811 }
2812
2813 /*
2814 * Used when an allocation is about to fail under memory pressure. This
2815 * potentially hurts the reliability of high-order allocations when under
2816 * intense memory pressure but failed atomic allocations should be easier
2817 * to recover from than an OOM.
2818 *
2819 * If @force is true, try to unreserve a pageblock even though highatomic
2820 * pageblock is exhausted.
2821 */
2822 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2823 bool force)
2824 {
2825 struct zonelist *zonelist = ac->zonelist;
2826 unsigned long flags;
2827 struct zoneref *z;
2828 struct zone *zone;
2829 struct page *page;
2830 int order;
2831 bool ret;
2832
2833 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2834 ac->nodemask) {
2835 /*
2836 * Preserve at least one pageblock unless memory pressure
2837 * is really high.
2838 */
2839 if (!force && zone->nr_reserved_highatomic <=
2840 pageblock_nr_pages)
2841 continue;
2842
2843 spin_lock_irqsave(&zone->lock, flags);
2844 for (order = 0; order < MAX_ORDER; order++) {
2845 struct free_area *area = &(zone->free_area[order]);
2846
2847 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2848 if (!page)
2849 continue;
2850
2851 /*
2852 * In page freeing path, migratetype change is racy so
2853 * we can counter several free pages in a pageblock
2854 * in this loop although we changed the pageblock type
2855 * from highatomic to ac->migratetype. So we should
2856 * adjust the count once.
2857 */
2858 if (is_migrate_highatomic_page(page)) {
2859 /*
2860 * It should never happen but changes to
2861 * locking could inadvertently allow a per-cpu
2862 * drain to add pages to MIGRATE_HIGHATOMIC
2863 * while unreserving so be safe and watch for
2864 * underflows.
2865 */
2866 zone->nr_reserved_highatomic -= min(
2867 pageblock_nr_pages,
2868 zone->nr_reserved_highatomic);
2869 }
2870
2871 /*
2872 * Convert to ac->migratetype and avoid the normal
2873 * pageblock stealing heuristics. Minimally, the caller
2874 * is doing the work and needs the pages. More
2875 * importantly, if the block was always converted to
2876 * MIGRATE_UNMOVABLE or another type then the number
2877 * of pageblocks that cannot be completely freed
2878 * may increase.
2879 */
2880 set_pageblock_migratetype(page, ac->migratetype);
2881 ret = move_freepages_block(zone, page, ac->migratetype,
2882 NULL);
2883 if (ret) {
2884 spin_unlock_irqrestore(&zone->lock, flags);
2885 return ret;
2886 }
2887 }
2888 spin_unlock_irqrestore(&zone->lock, flags);
2889 }
2890
2891 return false;
2892 }
2893
2894 /*
2895 * Try finding a free buddy page on the fallback list and put it on the free
2896 * list of requested migratetype, possibly along with other pages from the same
2897 * block, depending on fragmentation avoidance heuristics. Returns true if
2898 * fallback was found so that __rmqueue_smallest() can grab it.
2899 *
2900 * The use of signed ints for order and current_order is a deliberate
2901 * deviation from the rest of this file, to make the for loop
2902 * condition simpler.
2903 */
2904 static __always_inline bool
2905 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2906 unsigned int alloc_flags)
2907 {
2908 struct free_area *area;
2909 int current_order;
2910 int min_order = order;
2911 struct page *page;
2912 int fallback_mt;
2913 bool can_steal;
2914
2915 /*
2916 * Do not steal pages from freelists belonging to other pageblocks
2917 * i.e. orders < pageblock_order. If there are no local zones free,
2918 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2919 */
2920 if (alloc_flags & ALLOC_NOFRAGMENT)
2921 min_order = pageblock_order;
2922
2923 /*
2924 * Find the largest available free page in the other list. This roughly
2925 * approximates finding the pageblock with the most free pages, which
2926 * would be too costly to do exactly.
2927 */
2928 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2929 --current_order) {
2930 area = &(zone->free_area[current_order]);
2931 fallback_mt = find_suitable_fallback(area, current_order,
2932 start_migratetype, false, &can_steal);
2933 if (fallback_mt == -1)
2934 continue;
2935
2936 /*
2937 * We cannot steal all free pages from the pageblock and the
2938 * requested migratetype is movable. In that case it's better to
2939 * steal and split the smallest available page instead of the
2940 * largest available page, because even if the next movable
2941 * allocation falls back into a different pageblock than this
2942 * one, it won't cause permanent fragmentation.
2943 */
2944 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2945 && current_order > order)
2946 goto find_smallest;
2947
2948 goto do_steal;
2949 }
2950
2951 return false;
2952
2953 find_smallest:
2954 for (current_order = order; current_order < MAX_ORDER;
2955 current_order++) {
2956 area = &(zone->free_area[current_order]);
2957 fallback_mt = find_suitable_fallback(area, current_order,
2958 start_migratetype, false, &can_steal);
2959 if (fallback_mt != -1)
2960 break;
2961 }
2962
2963 /*
2964 * This should not happen - we already found a suitable fallback
2965 * when looking for the largest page.
2966 */
2967 VM_BUG_ON(current_order == MAX_ORDER);
2968
2969 do_steal:
2970 page = get_page_from_free_area(area, fallback_mt);
2971
2972 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2973 can_steal);
2974
2975 trace_mm_page_alloc_extfrag(page, order, current_order,
2976 start_migratetype, fallback_mt);
2977
2978 return true;
2979
2980 }
2981
2982 /*
2983 * Do the hard work of removing an element from the buddy allocator.
2984 * Call me with the zone->lock already held.
2985 */
2986 static __always_inline struct page *
2987 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2988 unsigned int alloc_flags)
2989 {
2990 struct page *page;
2991
2992 if (IS_ENABLED(CONFIG_CMA)) {
2993 /*
2994 * Balance movable allocations between regular and CMA areas by
2995 * allocating from CMA when over half of the zone's free memory
2996 * is in the CMA area.
2997 */
2998 if (alloc_flags & ALLOC_CMA &&
2999 zone_page_state(zone, NR_FREE_CMA_PAGES) >
3000 zone_page_state(zone, NR_FREE_PAGES) / 2) {
3001 page = __rmqueue_cma_fallback(zone, order);
3002 if (page)
3003 goto out;
3004 }
3005 }
3006 retry:
3007 page = __rmqueue_smallest(zone, order, migratetype);
3008 if (unlikely(!page)) {
3009 if (alloc_flags & ALLOC_CMA)
3010 page = __rmqueue_cma_fallback(zone, order);
3011
3012 if (!page && __rmqueue_fallback(zone, order, migratetype,
3013 alloc_flags))
3014 goto retry;
3015 }
3016 out:
3017 if (page)
3018 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3019 return page;
3020 }
3021
3022 /*
3023 * Obtain a specified number of elements from the buddy allocator, all under
3024 * a single hold of the lock, for efficiency. Add them to the supplied list.
3025 * Returns the number of new pages which were placed at *list.
3026 */
3027 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3028 unsigned long count, struct list_head *list,
3029 int migratetype, unsigned int alloc_flags)
3030 {
3031 int i, allocated = 0;
3032
3033 /*
3034 * local_lock_irq held so equivalent to spin_lock_irqsave for
3035 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3036 */
3037 spin_lock(&zone->lock);
3038 for (i = 0; i < count; ++i) {
3039 struct page *page = __rmqueue(zone, order, migratetype,
3040 alloc_flags);
3041 if (unlikely(page == NULL))
3042 break;
3043
3044 if (unlikely(check_pcp_refill(page)))
3045 continue;
3046
3047 /*
3048 * Split buddy pages returned by expand() are received here in
3049 * physical page order. The page is added to the tail of
3050 * caller's list. From the callers perspective, the linked list
3051 * is ordered by page number under some conditions. This is
3052 * useful for IO devices that can forward direction from the
3053 * head, thus also in the physical page order. This is useful
3054 * for IO devices that can merge IO requests if the physical
3055 * pages are ordered properly.
3056 */
3057 list_add_tail(&page->lru, list);
3058 allocated++;
3059 if (is_migrate_cma(get_pcppage_migratetype(page)))
3060 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3061 -(1 << order));
3062 }
3063
3064 /*
3065 * i pages were removed from the buddy list even if some leak due
3066 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3067 * on i. Do not confuse with 'allocated' which is the number of
3068 * pages added to the pcp list.
3069 */
3070 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3071 spin_unlock(&zone->lock);
3072 return allocated;
3073 }
3074
3075 #ifdef CONFIG_NUMA
3076 /*
3077 * Called from the vmstat counter updater to drain pagesets of this
3078 * currently executing processor on remote nodes after they have
3079 * expired.
3080 *
3081 * Note that this function must be called with the thread pinned to
3082 * a single processor.
3083 */
3084 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3085 {
3086 unsigned long flags;
3087 int to_drain, batch;
3088
3089 local_lock_irqsave(&pagesets.lock, flags);
3090 batch = READ_ONCE(pcp->batch);
3091 to_drain = min(pcp->count, batch);
3092 if (to_drain > 0)
3093 free_pcppages_bulk(zone, to_drain, pcp);
3094 local_unlock_irqrestore(&pagesets.lock, flags);
3095 }
3096 #endif
3097
3098 /*
3099 * Drain pcplists of the indicated processor and zone.
3100 *
3101 * The processor must either be the current processor and the
3102 * thread pinned to the current processor or a processor that
3103 * is not online.
3104 */
3105 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3106 {
3107 unsigned long flags;
3108 struct per_cpu_pages *pcp;
3109
3110 local_lock_irqsave(&pagesets.lock, flags);
3111
3112 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3113 if (pcp->count)
3114 free_pcppages_bulk(zone, pcp->count, pcp);
3115
3116 local_unlock_irqrestore(&pagesets.lock, flags);
3117 }
3118
3119 /*
3120 * Drain pcplists of all zones on the indicated processor.
3121 *
3122 * The processor must either be the current processor and the
3123 * thread pinned to the current processor or a processor that
3124 * is not online.
3125 */
3126 static void drain_pages(unsigned int cpu)
3127 {
3128 struct zone *zone;
3129
3130 for_each_populated_zone(zone) {
3131 drain_pages_zone(cpu, zone);
3132 }
3133 }
3134
3135 /*
3136 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3137 *
3138 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3139 * the single zone's pages.
3140 */
3141 void drain_local_pages(struct zone *zone)
3142 {
3143 int cpu = smp_processor_id();
3144
3145 if (zone)
3146 drain_pages_zone(cpu, zone);
3147 else
3148 drain_pages(cpu);
3149 }
3150
3151 static void drain_local_pages_wq(struct work_struct *work)
3152 {
3153 struct pcpu_drain *drain;
3154
3155 drain = container_of(work, struct pcpu_drain, work);
3156
3157 /*
3158 * drain_all_pages doesn't use proper cpu hotplug protection so
3159 * we can race with cpu offline when the WQ can move this from
3160 * a cpu pinned worker to an unbound one. We can operate on a different
3161 * cpu which is alright but we also have to make sure to not move to
3162 * a different one.
3163 */
3164 preempt_disable();
3165 drain_local_pages(drain->zone);
3166 preempt_enable();
3167 }
3168
3169 /*
3170 * The implementation of drain_all_pages(), exposing an extra parameter to
3171 * drain on all cpus.
3172 *
3173 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3174 * not empty. The check for non-emptiness can however race with a free to
3175 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3176 * that need the guarantee that every CPU has drained can disable the
3177 * optimizing racy check.
3178 */
3179 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3180 {
3181 int cpu;
3182
3183 /*
3184 * Allocate in the BSS so we won't require allocation in
3185 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3186 */
3187 static cpumask_t cpus_with_pcps;
3188
3189 /*
3190 * Make sure nobody triggers this path before mm_percpu_wq is fully
3191 * initialized.
3192 */
3193 if (WARN_ON_ONCE(!mm_percpu_wq))
3194 return;
3195
3196 /*
3197 * Do not drain if one is already in progress unless it's specific to
3198 * a zone. Such callers are primarily CMA and memory hotplug and need
3199 * the drain to be complete when the call returns.
3200 */
3201 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3202 if (!zone)
3203 return;
3204 mutex_lock(&pcpu_drain_mutex);
3205 }
3206
3207 /*
3208 * We don't care about racing with CPU hotplug event
3209 * as offline notification will cause the notified
3210 * cpu to drain that CPU pcps and on_each_cpu_mask
3211 * disables preemption as part of its processing
3212 */
3213 for_each_online_cpu(cpu) {
3214 struct per_cpu_pages *pcp;
3215 struct zone *z;
3216 bool has_pcps = false;
3217
3218 if (force_all_cpus) {
3219 /*
3220 * The pcp.count check is racy, some callers need a
3221 * guarantee that no cpu is missed.
3222 */
3223 has_pcps = true;
3224 } else if (zone) {
3225 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3226 if (pcp->count)
3227 has_pcps = true;
3228 } else {
3229 for_each_populated_zone(z) {
3230 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3231 if (pcp->count) {
3232 has_pcps = true;
3233 break;
3234 }
3235 }
3236 }
3237
3238 if (has_pcps)
3239 cpumask_set_cpu(cpu, &cpus_with_pcps);
3240 else
3241 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3242 }
3243
3244 for_each_cpu(cpu, &cpus_with_pcps) {
3245 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3246
3247 drain->zone = zone;
3248 INIT_WORK(&drain->work, drain_local_pages_wq);
3249 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3250 }
3251 for_each_cpu(cpu, &cpus_with_pcps)
3252 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3253
3254 mutex_unlock(&pcpu_drain_mutex);
3255 }
3256
3257 /*
3258 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3259 *
3260 * When zone parameter is non-NULL, spill just the single zone's pages.
3261 *
3262 * Note that this can be extremely slow as the draining happens in a workqueue.
3263 */
3264 void drain_all_pages(struct zone *zone)
3265 {
3266 __drain_all_pages(zone, false);
3267 }
3268
3269 #ifdef CONFIG_HIBERNATION
3270
3271 /*
3272 * Touch the watchdog for every WD_PAGE_COUNT pages.
3273 */
3274 #define WD_PAGE_COUNT (128*1024)
3275
3276 void mark_free_pages(struct zone *zone)
3277 {
3278 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3279 unsigned long flags;
3280 unsigned int order, t;
3281 struct page *page;
3282
3283 if (zone_is_empty(zone))
3284 return;
3285
3286 spin_lock_irqsave(&zone->lock, flags);
3287
3288 max_zone_pfn = zone_end_pfn(zone);
3289 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3290 if (pfn_valid(pfn)) {
3291 page = pfn_to_page(pfn);
3292
3293 if (!--page_count) {
3294 touch_nmi_watchdog();
3295 page_count = WD_PAGE_COUNT;
3296 }
3297
3298 if (page_zone(page) != zone)
3299 continue;
3300
3301 if (!swsusp_page_is_forbidden(page))
3302 swsusp_unset_page_free(page);
3303 }
3304
3305 for_each_migratetype_order(order, t) {
3306 list_for_each_entry(page,
3307 &zone->free_area[order].free_list[t], lru) {
3308 unsigned long i;
3309
3310 pfn = page_to_pfn(page);
3311 for (i = 0; i < (1UL << order); i++) {
3312 if (!--page_count) {
3313 touch_nmi_watchdog();
3314 page_count = WD_PAGE_COUNT;
3315 }
3316 swsusp_set_page_free(pfn_to_page(pfn + i));
3317 }
3318 }
3319 }
3320 spin_unlock_irqrestore(&zone->lock, flags);
3321 }
3322 #endif /* CONFIG_PM */
3323
3324 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3325 unsigned int order)
3326 {
3327 int migratetype;
3328
3329 if (!free_pcp_prepare(page, order))
3330 return false;
3331
3332 migratetype = get_pfnblock_migratetype(page, pfn);
3333 set_pcppage_migratetype(page, migratetype);
3334 return true;
3335 }
3336
3337 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3338 {
3339 int min_nr_free, max_nr_free;
3340
3341 /* Check for PCP disabled or boot pageset */
3342 if (unlikely(high < batch))
3343 return 1;
3344
3345 /* Leave at least pcp->batch pages on the list */
3346 min_nr_free = batch;
3347 max_nr_free = high - batch;
3348
3349 /*
3350 * Double the number of pages freed each time there is subsequent
3351 * freeing of pages without any allocation.
3352 */
3353 batch <<= pcp->free_factor;
3354 if (batch < max_nr_free)
3355 pcp->free_factor++;
3356 batch = clamp(batch, min_nr_free, max_nr_free);
3357
3358 return batch;
3359 }
3360
3361 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3362 {
3363 int high = READ_ONCE(pcp->high);
3364
3365 if (unlikely(!high))
3366 return 0;
3367
3368 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3369 return high;
3370
3371 /*
3372 * If reclaim is active, limit the number of pages that can be
3373 * stored on pcp lists
3374 */
3375 return min(READ_ONCE(pcp->batch) << 2, high);
3376 }
3377
3378 static void free_unref_page_commit(struct page *page, unsigned long pfn,
3379 int migratetype, unsigned int order)
3380 {
3381 struct zone *zone = page_zone(page);
3382 struct per_cpu_pages *pcp;
3383 int high;
3384 int pindex;
3385
3386 __count_vm_event(PGFREE);
3387 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3388 pindex = order_to_pindex(migratetype, order);
3389 list_add(&page->lru, &pcp->lists[pindex]);
3390 pcp->count += 1 << order;
3391 high = nr_pcp_high(pcp, zone);
3392 if (pcp->count >= high) {
3393 int batch = READ_ONCE(pcp->batch);
3394
3395 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3396 }
3397 }
3398
3399 /*
3400 * Free a pcp page
3401 */
3402 void free_unref_page(struct page *page, unsigned int order)
3403 {
3404 unsigned long flags;
3405 unsigned long pfn = page_to_pfn(page);
3406 int migratetype;
3407
3408 if (!free_unref_page_prepare(page, pfn, order))
3409 return;
3410
3411 /*
3412 * We only track unmovable, reclaimable and movable on pcp lists.
3413 * Place ISOLATE pages on the isolated list because they are being
3414 * offlined but treat HIGHATOMIC as movable pages so we can get those
3415 * areas back if necessary. Otherwise, we may have to free
3416 * excessively into the page allocator
3417 */
3418 migratetype = get_pcppage_migratetype(page);
3419 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3420 if (unlikely(is_migrate_isolate(migratetype))) {
3421 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3422 return;
3423 }
3424 migratetype = MIGRATE_MOVABLE;
3425 }
3426
3427 local_lock_irqsave(&pagesets.lock, flags);
3428 free_unref_page_commit(page, pfn, migratetype, order);
3429 local_unlock_irqrestore(&pagesets.lock, flags);
3430 }
3431
3432 /*
3433 * Free a list of 0-order pages
3434 */
3435 void free_unref_page_list(struct list_head *list)
3436 {
3437 struct page *page, *next;
3438 unsigned long flags, pfn;
3439 int batch_count = 0;
3440 int migratetype;
3441
3442 /* Prepare pages for freeing */
3443 list_for_each_entry_safe(page, next, list, lru) {
3444 pfn = page_to_pfn(page);
3445 if (!free_unref_page_prepare(page, pfn, 0))
3446 list_del(&page->lru);
3447
3448 /*
3449 * Free isolated pages directly to the allocator, see
3450 * comment in free_unref_page.
3451 */
3452 migratetype = get_pcppage_migratetype(page);
3453 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3454 if (unlikely(is_migrate_isolate(migratetype))) {
3455 list_del(&page->lru);
3456 free_one_page(page_zone(page), page, pfn, 0,
3457 migratetype, FPI_NONE);
3458 continue;
3459 }
3460
3461 /*
3462 * Non-isolated types over MIGRATE_PCPTYPES get added
3463 * to the MIGRATE_MOVABLE pcp list.
3464 */
3465 set_pcppage_migratetype(page, MIGRATE_MOVABLE);
3466 }
3467
3468 set_page_private(page, pfn);
3469 }
3470
3471 local_lock_irqsave(&pagesets.lock, flags);
3472 list_for_each_entry_safe(page, next, list, lru) {
3473 pfn = page_private(page);
3474 set_page_private(page, 0);
3475 migratetype = get_pcppage_migratetype(page);
3476 trace_mm_page_free_batched(page);
3477 free_unref_page_commit(page, pfn, migratetype, 0);
3478
3479 /*
3480 * Guard against excessive IRQ disabled times when we get
3481 * a large list of pages to free.
3482 */
3483 if (++batch_count == SWAP_CLUSTER_MAX) {
3484 local_unlock_irqrestore(&pagesets.lock, flags);
3485 batch_count = 0;
3486 local_lock_irqsave(&pagesets.lock, flags);
3487 }
3488 }
3489 local_unlock_irqrestore(&pagesets.lock, flags);
3490 }
3491
3492 /*
3493 * split_page takes a non-compound higher-order page, and splits it into
3494 * n (1<<order) sub-pages: page[0..n]
3495 * Each sub-page must be freed individually.
3496 *
3497 * Note: this is probably too low level an operation for use in drivers.
3498 * Please consult with lkml before using this in your driver.
3499 */
3500 void split_page(struct page *page, unsigned int order)
3501 {
3502 int i;
3503
3504 VM_BUG_ON_PAGE(PageCompound(page), page);
3505 VM_BUG_ON_PAGE(!page_count(page), page);
3506
3507 for (i = 1; i < (1 << order); i++)
3508 set_page_refcounted(page + i);
3509 split_page_owner(page, 1 << order);
3510 split_page_memcg(page, 1 << order);
3511 }
3512 EXPORT_SYMBOL_GPL(split_page);
3513
3514 int __isolate_free_page(struct page *page, unsigned int order)
3515 {
3516 unsigned long watermark;
3517 struct zone *zone;
3518 int mt;
3519
3520 BUG_ON(!PageBuddy(page));
3521
3522 zone = page_zone(page);
3523 mt = get_pageblock_migratetype(page);
3524
3525 if (!is_migrate_isolate(mt)) {
3526 /*
3527 * Obey watermarks as if the page was being allocated. We can
3528 * emulate a high-order watermark check with a raised order-0
3529 * watermark, because we already know our high-order page
3530 * exists.
3531 */
3532 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3533 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3534 return 0;
3535
3536 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3537 }
3538
3539 /* Remove page from free list */
3540
3541 del_page_from_free_list(page, zone, order);
3542
3543 /*
3544 * Set the pageblock if the isolated page is at least half of a
3545 * pageblock
3546 */
3547 if (order >= pageblock_order - 1) {
3548 struct page *endpage = page + (1 << order) - 1;
3549 for (; page < endpage; page += pageblock_nr_pages) {
3550 int mt = get_pageblock_migratetype(page);
3551 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3552 && !is_migrate_highatomic(mt))
3553 set_pageblock_migratetype(page,
3554 MIGRATE_MOVABLE);
3555 }
3556 }
3557
3558
3559 return 1UL << order;
3560 }
3561
3562 /**
3563 * __putback_isolated_page - Return a now-isolated page back where we got it
3564 * @page: Page that was isolated
3565 * @order: Order of the isolated page
3566 * @mt: The page's pageblock's migratetype
3567 *
3568 * This function is meant to return a page pulled from the free lists via
3569 * __isolate_free_page back to the free lists they were pulled from.
3570 */
3571 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3572 {
3573 struct zone *zone = page_zone(page);
3574
3575 /* zone lock should be held when this function is called */
3576 lockdep_assert_held(&zone->lock);
3577
3578 /* Return isolated page to tail of freelist. */
3579 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3580 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3581 }
3582
3583 /*
3584 * Update NUMA hit/miss statistics
3585 *
3586 * Must be called with interrupts disabled.
3587 */
3588 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3589 long nr_account)
3590 {
3591 #ifdef CONFIG_NUMA
3592 enum numa_stat_item local_stat = NUMA_LOCAL;
3593
3594 /* skip numa counters update if numa stats is disabled */
3595 if (!static_branch_likely(&vm_numa_stat_key))
3596 return;
3597
3598 if (zone_to_nid(z) != numa_node_id())
3599 local_stat = NUMA_OTHER;
3600
3601 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3602 __count_numa_events(z, NUMA_HIT, nr_account);
3603 else {
3604 __count_numa_events(z, NUMA_MISS, nr_account);
3605 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3606 }
3607 __count_numa_events(z, local_stat, nr_account);
3608 #endif
3609 }
3610
3611 /* Remove page from the per-cpu list, caller must protect the list */
3612 static inline
3613 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3614 int migratetype,
3615 unsigned int alloc_flags,
3616 struct per_cpu_pages *pcp,
3617 struct list_head *list)
3618 {
3619 struct page *page;
3620
3621 do {
3622 if (list_empty(list)) {
3623 int batch = READ_ONCE(pcp->batch);
3624 int alloced;
3625
3626 /*
3627 * Scale batch relative to order if batch implies
3628 * free pages can be stored on the PCP. Batch can
3629 * be 1 for small zones or for boot pagesets which
3630 * should never store free pages as the pages may
3631 * belong to arbitrary zones.
3632 */
3633 if (batch > 1)
3634 batch = max(batch >> order, 2);
3635 alloced = rmqueue_bulk(zone, order,
3636 batch, list,
3637 migratetype, alloc_flags);
3638
3639 pcp->count += alloced << order;
3640 if (unlikely(list_empty(list)))
3641 return NULL;
3642 }
3643
3644 page = list_first_entry(list, struct page, lru);
3645 list_del(&page->lru);
3646 pcp->count -= 1 << order;
3647 } while (check_new_pcp(page));
3648
3649 return page;
3650 }
3651
3652 /* Lock and remove page from the per-cpu list */
3653 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3654 struct zone *zone, unsigned int order,
3655 gfp_t gfp_flags, int migratetype,
3656 unsigned int alloc_flags)
3657 {
3658 struct per_cpu_pages *pcp;
3659 struct list_head *list;
3660 struct page *page;
3661 unsigned long flags;
3662
3663 local_lock_irqsave(&pagesets.lock, flags);
3664
3665 /*
3666 * On allocation, reduce the number of pages that are batch freed.
3667 * See nr_pcp_free() where free_factor is increased for subsequent
3668 * frees.
3669 */
3670 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3671 pcp->free_factor >>= 1;
3672 list = &pcp->lists[order_to_pindex(migratetype, order)];
3673 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3674 local_unlock_irqrestore(&pagesets.lock, flags);
3675 if (page) {
3676 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3677 zone_statistics(preferred_zone, zone, 1);
3678 }
3679 return page;
3680 }
3681
3682 /*
3683 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3684 */
3685 static inline
3686 struct page *rmqueue(struct zone *preferred_zone,
3687 struct zone *zone, unsigned int order,
3688 gfp_t gfp_flags, unsigned int alloc_flags,
3689 int migratetype)
3690 {
3691 unsigned long flags;
3692 struct page *page;
3693
3694 if (likely(pcp_allowed_order(order))) {
3695 /*
3696 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3697 * we need to skip it when CMA area isn't allowed.
3698 */
3699 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3700 migratetype != MIGRATE_MOVABLE) {
3701 page = rmqueue_pcplist(preferred_zone, zone, order,
3702 gfp_flags, migratetype, alloc_flags);
3703 goto out;
3704 }
3705 }
3706
3707 /*
3708 * We most definitely don't want callers attempting to
3709 * allocate greater than order-1 page units with __GFP_NOFAIL.
3710 */
3711 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3712 spin_lock_irqsave(&zone->lock, flags);
3713
3714 do {
3715 page = NULL;
3716 /*
3717 * order-0 request can reach here when the pcplist is skipped
3718 * due to non-CMA allocation context. HIGHATOMIC area is
3719 * reserved for high-order atomic allocation, so order-0
3720 * request should skip it.
3721 */
3722 if (order > 0 && alloc_flags & ALLOC_HARDER) {
3723 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3724 if (page)
3725 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3726 }
3727 if (!page)
3728 page = __rmqueue(zone, order, migratetype, alloc_flags);
3729 } while (page && check_new_pages(page, order));
3730 if (!page)
3731 goto failed;
3732
3733 __mod_zone_freepage_state(zone, -(1 << order),
3734 get_pcppage_migratetype(page));
3735 spin_unlock_irqrestore(&zone->lock, flags);
3736
3737 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3738 zone_statistics(preferred_zone, zone, 1);
3739
3740 out:
3741 /* Separate test+clear to avoid unnecessary atomics */
3742 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3743 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3744 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3745 }
3746
3747 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3748 return page;
3749
3750 failed:
3751 spin_unlock_irqrestore(&zone->lock, flags);
3752 return NULL;
3753 }
3754
3755 #ifdef CONFIG_FAIL_PAGE_ALLOC
3756
3757 static struct {
3758 struct fault_attr attr;
3759
3760 bool ignore_gfp_highmem;
3761 bool ignore_gfp_reclaim;
3762 u32 min_order;
3763 } fail_page_alloc = {
3764 .attr = FAULT_ATTR_INITIALIZER,
3765 .ignore_gfp_reclaim = true,
3766 .ignore_gfp_highmem = true,
3767 .min_order = 1,
3768 };
3769
3770 static int __init setup_fail_page_alloc(char *str)
3771 {
3772 return setup_fault_attr(&fail_page_alloc.attr, str);
3773 }
3774 __setup("fail_page_alloc=", setup_fail_page_alloc);
3775
3776 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3777 {
3778 if (order < fail_page_alloc.min_order)
3779 return false;
3780 if (gfp_mask & __GFP_NOFAIL)
3781 return false;
3782 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3783 return false;
3784 if (fail_page_alloc.ignore_gfp_reclaim &&
3785 (gfp_mask & __GFP_DIRECT_RECLAIM))
3786 return false;
3787
3788 return should_fail(&fail_page_alloc.attr, 1 << order);
3789 }
3790
3791 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3792
3793 static int __init fail_page_alloc_debugfs(void)
3794 {
3795 umode_t mode = S_IFREG | 0600;
3796 struct dentry *dir;
3797
3798 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3799 &fail_page_alloc.attr);
3800
3801 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3802 &fail_page_alloc.ignore_gfp_reclaim);
3803 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3804 &fail_page_alloc.ignore_gfp_highmem);
3805 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3806
3807 return 0;
3808 }
3809
3810 late_initcall(fail_page_alloc_debugfs);
3811
3812 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3813
3814 #else /* CONFIG_FAIL_PAGE_ALLOC */
3815
3816 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3817 {
3818 return false;
3819 }
3820
3821 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3822
3823 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3824 {
3825 return __should_fail_alloc_page(gfp_mask, order);
3826 }
3827 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3828
3829 static inline long __zone_watermark_unusable_free(struct zone *z,
3830 unsigned int order, unsigned int alloc_flags)
3831 {
3832 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3833 long unusable_free = (1 << order) - 1;
3834
3835 /*
3836 * If the caller does not have rights to ALLOC_HARDER then subtract
3837 * the high-atomic reserves. This will over-estimate the size of the
3838 * atomic reserve but it avoids a search.
3839 */
3840 if (likely(!alloc_harder))
3841 unusable_free += z->nr_reserved_highatomic;
3842
3843 #ifdef CONFIG_CMA
3844 /* If allocation can't use CMA areas don't use free CMA pages */
3845 if (!(alloc_flags & ALLOC_CMA))
3846 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3847 #endif
3848
3849 return unusable_free;
3850 }
3851
3852 /*
3853 * Return true if free base pages are above 'mark'. For high-order checks it
3854 * will return true of the order-0 watermark is reached and there is at least
3855 * one free page of a suitable size. Checking now avoids taking the zone lock
3856 * to check in the allocation paths if no pages are free.
3857 */
3858 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3859 int highest_zoneidx, unsigned int alloc_flags,
3860 long free_pages)
3861 {
3862 long min = mark;
3863 int o;
3864 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3865
3866 /* free_pages may go negative - that's OK */
3867 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3868
3869 if (alloc_flags & ALLOC_HIGH)
3870 min -= min / 2;
3871
3872 if (unlikely(alloc_harder)) {
3873 /*
3874 * OOM victims can try even harder than normal ALLOC_HARDER
3875 * users on the grounds that it's definitely going to be in
3876 * the exit path shortly and free memory. Any allocation it
3877 * makes during the free path will be small and short-lived.
3878 */
3879 if (alloc_flags & ALLOC_OOM)
3880 min -= min / 2;
3881 else
3882 min -= min / 4;
3883 }
3884
3885 /*
3886 * Check watermarks for an order-0 allocation request. If these
3887 * are not met, then a high-order request also cannot go ahead
3888 * even if a suitable page happened to be free.
3889 */
3890 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3891 return false;
3892
3893 /* If this is an order-0 request then the watermark is fine */
3894 if (!order)
3895 return true;
3896
3897 /* For a high-order request, check at least one suitable page is free */
3898 for (o = order; o < MAX_ORDER; o++) {
3899 struct free_area *area = &z->free_area[o];
3900 int mt;
3901
3902 if (!area->nr_free)
3903 continue;
3904
3905 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3906 if (!free_area_empty(area, mt))
3907 return true;
3908 }
3909
3910 #ifdef CONFIG_CMA
3911 if ((alloc_flags & ALLOC_CMA) &&
3912 !free_area_empty(area, MIGRATE_CMA)) {
3913 return true;
3914 }
3915 #endif
3916 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3917 return true;
3918 }
3919 return false;
3920 }
3921
3922 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3923 int highest_zoneidx, unsigned int alloc_flags)
3924 {
3925 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3926 zone_page_state(z, NR_FREE_PAGES));
3927 }
3928
3929 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3930 unsigned long mark, int highest_zoneidx,
3931 unsigned int alloc_flags, gfp_t gfp_mask)
3932 {
3933 long free_pages;
3934
3935 free_pages = zone_page_state(z, NR_FREE_PAGES);
3936
3937 /*
3938 * Fast check for order-0 only. If this fails then the reserves
3939 * need to be calculated.
3940 */
3941 if (!order) {
3942 long fast_free;
3943
3944 fast_free = free_pages;
3945 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3946 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3947 return true;
3948 }
3949
3950 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3951 free_pages))
3952 return true;
3953 /*
3954 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3955 * when checking the min watermark. The min watermark is the
3956 * point where boosting is ignored so that kswapd is woken up
3957 * when below the low watermark.
3958 */
3959 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3960 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3961 mark = z->_watermark[WMARK_MIN];
3962 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3963 alloc_flags, free_pages);
3964 }
3965
3966 return false;
3967 }
3968
3969 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3970 unsigned long mark, int highest_zoneidx)
3971 {
3972 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3973
3974 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3975 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3976
3977 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3978 free_pages);
3979 }
3980
3981 #ifdef CONFIG_NUMA
3982 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3983 {
3984 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3985 node_reclaim_distance;
3986 }
3987 #else /* CONFIG_NUMA */
3988 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3989 {
3990 return true;
3991 }
3992 #endif /* CONFIG_NUMA */
3993
3994 /*
3995 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3996 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3997 * premature use of a lower zone may cause lowmem pressure problems that
3998 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3999 * probably too small. It only makes sense to spread allocations to avoid
4000 * fragmentation between the Normal and DMA32 zones.
4001 */
4002 static inline unsigned int
4003 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4004 {
4005 unsigned int alloc_flags;
4006
4007 /*
4008 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4009 * to save a branch.
4010 */
4011 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4012
4013 #ifdef CONFIG_ZONE_DMA32
4014 if (!zone)
4015 return alloc_flags;
4016
4017 if (zone_idx(zone) != ZONE_NORMAL)
4018 return alloc_flags;
4019
4020 /*
4021 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4022 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4023 * on UMA that if Normal is populated then so is DMA32.
4024 */
4025 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4026 if (nr_online_nodes > 1 && !populated_zone(--zone))
4027 return alloc_flags;
4028
4029 alloc_flags |= ALLOC_NOFRAGMENT;
4030 #endif /* CONFIG_ZONE_DMA32 */
4031 return alloc_flags;
4032 }
4033
4034 /* Must be called after current_gfp_context() which can change gfp_mask */
4035 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4036 unsigned int alloc_flags)
4037 {
4038 #ifdef CONFIG_CMA
4039 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4040 alloc_flags |= ALLOC_CMA;
4041 #endif
4042 return alloc_flags;
4043 }
4044
4045 /*
4046 * get_page_from_freelist goes through the zonelist trying to allocate
4047 * a page.
4048 */
4049 static struct page *
4050 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4051 const struct alloc_context *ac)
4052 {
4053 struct zoneref *z;
4054 struct zone *zone;
4055 struct pglist_data *last_pgdat_dirty_limit = NULL;
4056 bool no_fallback;
4057
4058 retry:
4059 /*
4060 * Scan zonelist, looking for a zone with enough free.
4061 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4062 */
4063 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4064 z = ac->preferred_zoneref;
4065 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4066 ac->nodemask) {
4067 struct page *page;
4068 unsigned long mark;
4069
4070 if (cpusets_enabled() &&
4071 (alloc_flags & ALLOC_CPUSET) &&
4072 !__cpuset_zone_allowed(zone, gfp_mask))
4073 continue;
4074 /*
4075 * When allocating a page cache page for writing, we
4076 * want to get it from a node that is within its dirty
4077 * limit, such that no single node holds more than its
4078 * proportional share of globally allowed dirty pages.
4079 * The dirty limits take into account the node's
4080 * lowmem reserves and high watermark so that kswapd
4081 * should be able to balance it without having to
4082 * write pages from its LRU list.
4083 *
4084 * XXX: For now, allow allocations to potentially
4085 * exceed the per-node dirty limit in the slowpath
4086 * (spread_dirty_pages unset) before going into reclaim,
4087 * which is important when on a NUMA setup the allowed
4088 * nodes are together not big enough to reach the
4089 * global limit. The proper fix for these situations
4090 * will require awareness of nodes in the
4091 * dirty-throttling and the flusher threads.
4092 */
4093 if (ac->spread_dirty_pages) {
4094 if (last_pgdat_dirty_limit == zone->zone_pgdat)
4095 continue;
4096
4097 if (!node_dirty_ok(zone->zone_pgdat)) {
4098 last_pgdat_dirty_limit = zone->zone_pgdat;
4099 continue;
4100 }
4101 }
4102
4103 if (no_fallback && nr_online_nodes > 1 &&
4104 zone != ac->preferred_zoneref->zone) {
4105 int local_nid;
4106
4107 /*
4108 * If moving to a remote node, retry but allow
4109 * fragmenting fallbacks. Locality is more important
4110 * than fragmentation avoidance.
4111 */
4112 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4113 if (zone_to_nid(zone) != local_nid) {
4114 alloc_flags &= ~ALLOC_NOFRAGMENT;
4115 goto retry;
4116 }
4117 }
4118
4119 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4120 if (!zone_watermark_fast(zone, order, mark,
4121 ac->highest_zoneidx, alloc_flags,
4122 gfp_mask)) {
4123 int ret;
4124
4125 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4126 /*
4127 * Watermark failed for this zone, but see if we can
4128 * grow this zone if it contains deferred pages.
4129 */
4130 if (static_branch_unlikely(&deferred_pages)) {
4131 if (_deferred_grow_zone(zone, order))
4132 goto try_this_zone;
4133 }
4134 #endif
4135 /* Checked here to keep the fast path fast */
4136 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4137 if (alloc_flags & ALLOC_NO_WATERMARKS)
4138 goto try_this_zone;
4139
4140 if (!node_reclaim_enabled() ||
4141 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4142 continue;
4143
4144 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4145 switch (ret) {
4146 case NODE_RECLAIM_NOSCAN:
4147 /* did not scan */
4148 continue;
4149 case NODE_RECLAIM_FULL:
4150 /* scanned but unreclaimable */
4151 continue;
4152 default:
4153 /* did we reclaim enough */
4154 if (zone_watermark_ok(zone, order, mark,
4155 ac->highest_zoneidx, alloc_flags))
4156 goto try_this_zone;
4157
4158 continue;
4159 }
4160 }
4161
4162 try_this_zone:
4163 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4164 gfp_mask, alloc_flags, ac->migratetype);
4165 if (page) {
4166 prep_new_page(page, order, gfp_mask, alloc_flags);
4167
4168 /*
4169 * If this is a high-order atomic allocation then check
4170 * if the pageblock should be reserved for the future
4171 */
4172 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4173 reserve_highatomic_pageblock(page, zone, order);
4174
4175 return page;
4176 } else {
4177 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4178 /* Try again if zone has deferred pages */
4179 if (static_branch_unlikely(&deferred_pages)) {
4180 if (_deferred_grow_zone(zone, order))
4181 goto try_this_zone;
4182 }
4183 #endif
4184 }
4185 }
4186
4187 /*
4188 * It's possible on a UMA machine to get through all zones that are
4189 * fragmented. If avoiding fragmentation, reset and try again.
4190 */
4191 if (no_fallback) {
4192 alloc_flags &= ~ALLOC_NOFRAGMENT;
4193 goto retry;
4194 }
4195
4196 return NULL;
4197 }
4198
4199 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4200 {
4201 unsigned int filter = SHOW_MEM_FILTER_NODES;
4202
4203 /*
4204 * This documents exceptions given to allocations in certain
4205 * contexts that are allowed to allocate outside current's set
4206 * of allowed nodes.
4207 */
4208 if (!(gfp_mask & __GFP_NOMEMALLOC))
4209 if (tsk_is_oom_victim(current) ||
4210 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4211 filter &= ~SHOW_MEM_FILTER_NODES;
4212 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4213 filter &= ~SHOW_MEM_FILTER_NODES;
4214
4215 show_mem(filter, nodemask);
4216 }
4217
4218 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4219 {
4220 struct va_format vaf;
4221 va_list args;
4222 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4223
4224 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4225 return;
4226
4227 va_start(args, fmt);
4228 vaf.fmt = fmt;
4229 vaf.va = &args;
4230 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4231 current->comm, &vaf, gfp_mask, &gfp_mask,
4232 nodemask_pr_args(nodemask));
4233 va_end(args);
4234
4235 cpuset_print_current_mems_allowed();
4236 pr_cont("\n");
4237 dump_stack();
4238 warn_alloc_show_mem(gfp_mask, nodemask);
4239 }
4240
4241 static inline struct page *
4242 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4243 unsigned int alloc_flags,
4244 const struct alloc_context *ac)
4245 {
4246 struct page *page;
4247
4248 page = get_page_from_freelist(gfp_mask, order,
4249 alloc_flags|ALLOC_CPUSET, ac);
4250 /*
4251 * fallback to ignore cpuset restriction if our nodes
4252 * are depleted
4253 */
4254 if (!page)
4255 page = get_page_from_freelist(gfp_mask, order,
4256 alloc_flags, ac);
4257
4258 return page;
4259 }
4260
4261 static inline struct page *
4262 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4263 const struct alloc_context *ac, unsigned long *did_some_progress)
4264 {
4265 struct oom_control oc = {
4266 .zonelist = ac->zonelist,
4267 .nodemask = ac->nodemask,
4268 .memcg = NULL,
4269 .gfp_mask = gfp_mask,
4270 .order = order,
4271 };
4272 struct page *page;
4273
4274 *did_some_progress = 0;
4275
4276 /*
4277 * Acquire the oom lock. If that fails, somebody else is
4278 * making progress for us.
4279 */
4280 if (!mutex_trylock(&oom_lock)) {
4281 *did_some_progress = 1;
4282 schedule_timeout_uninterruptible(1);
4283 return NULL;
4284 }
4285
4286 /*
4287 * Go through the zonelist yet one more time, keep very high watermark
4288 * here, this is only to catch a parallel oom killing, we must fail if
4289 * we're still under heavy pressure. But make sure that this reclaim
4290 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4291 * allocation which will never fail due to oom_lock already held.
4292 */
4293 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4294 ~__GFP_DIRECT_RECLAIM, order,
4295 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4296 if (page)
4297 goto out;
4298
4299 /* Coredumps can quickly deplete all memory reserves */
4300 if (current->flags & PF_DUMPCORE)
4301 goto out;
4302 /* The OOM killer will not help higher order allocs */
4303 if (order > PAGE_ALLOC_COSTLY_ORDER)
4304 goto out;
4305 /*
4306 * We have already exhausted all our reclaim opportunities without any
4307 * success so it is time to admit defeat. We will skip the OOM killer
4308 * because it is very likely that the caller has a more reasonable
4309 * fallback than shooting a random task.
4310 *
4311 * The OOM killer may not free memory on a specific node.
4312 */
4313 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4314 goto out;
4315 /* The OOM killer does not needlessly kill tasks for lowmem */
4316 if (ac->highest_zoneidx < ZONE_NORMAL)
4317 goto out;
4318 if (pm_suspended_storage())
4319 goto out;
4320 /*
4321 * XXX: GFP_NOFS allocations should rather fail than rely on
4322 * other request to make a forward progress.
4323 * We are in an unfortunate situation where out_of_memory cannot
4324 * do much for this context but let's try it to at least get
4325 * access to memory reserved if the current task is killed (see
4326 * out_of_memory). Once filesystems are ready to handle allocation
4327 * failures more gracefully we should just bail out here.
4328 */
4329
4330 /* Exhausted what can be done so it's blame time */
4331 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4332 *did_some_progress = 1;
4333
4334 /*
4335 * Help non-failing allocations by giving them access to memory
4336 * reserves
4337 */
4338 if (gfp_mask & __GFP_NOFAIL)
4339 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4340 ALLOC_NO_WATERMARKS, ac);
4341 }
4342 out:
4343 mutex_unlock(&oom_lock);
4344 return page;
4345 }
4346
4347 /*
4348 * Maximum number of compaction retries with a progress before OOM
4349 * killer is consider as the only way to move forward.
4350 */
4351 #define MAX_COMPACT_RETRIES 16
4352
4353 #ifdef CONFIG_COMPACTION
4354 /* Try memory compaction for high-order allocations before reclaim */
4355 static struct page *
4356 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4357 unsigned int alloc_flags, const struct alloc_context *ac,
4358 enum compact_priority prio, enum compact_result *compact_result)
4359 {
4360 struct page *page = NULL;
4361 unsigned long pflags;
4362 unsigned int noreclaim_flag;
4363
4364 if (!order)
4365 return NULL;
4366
4367 psi_memstall_enter(&pflags);
4368 noreclaim_flag = memalloc_noreclaim_save();
4369
4370 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4371 prio, &page);
4372
4373 memalloc_noreclaim_restore(noreclaim_flag);
4374 psi_memstall_leave(&pflags);
4375
4376 if (*compact_result == COMPACT_SKIPPED)
4377 return NULL;
4378 /*
4379 * At least in one zone compaction wasn't deferred or skipped, so let's
4380 * count a compaction stall
4381 */
4382 count_vm_event(COMPACTSTALL);
4383
4384 /* Prep a captured page if available */
4385 if (page)
4386 prep_new_page(page, order, gfp_mask, alloc_flags);
4387
4388 /* Try get a page from the freelist if available */
4389 if (!page)
4390 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4391
4392 if (page) {
4393 struct zone *zone = page_zone(page);
4394
4395 zone->compact_blockskip_flush = false;
4396 compaction_defer_reset(zone, order, true);
4397 count_vm_event(COMPACTSUCCESS);
4398 return page;
4399 }
4400
4401 /*
4402 * It's bad if compaction run occurs and fails. The most likely reason
4403 * is that pages exist, but not enough to satisfy watermarks.
4404 */
4405 count_vm_event(COMPACTFAIL);
4406
4407 cond_resched();
4408
4409 return NULL;
4410 }
4411
4412 static inline bool
4413 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4414 enum compact_result compact_result,
4415 enum compact_priority *compact_priority,
4416 int *compaction_retries)
4417 {
4418 int max_retries = MAX_COMPACT_RETRIES;
4419 int min_priority;
4420 bool ret = false;
4421 int retries = *compaction_retries;
4422 enum compact_priority priority = *compact_priority;
4423
4424 if (!order)
4425 return false;
4426
4427 if (fatal_signal_pending(current))
4428 return false;
4429
4430 if (compaction_made_progress(compact_result))
4431 (*compaction_retries)++;
4432
4433 /*
4434 * compaction considers all the zone as desperately out of memory
4435 * so it doesn't really make much sense to retry except when the
4436 * failure could be caused by insufficient priority
4437 */
4438 if (compaction_failed(compact_result))
4439 goto check_priority;
4440
4441 /*
4442 * compaction was skipped because there are not enough order-0 pages
4443 * to work with, so we retry only if it looks like reclaim can help.
4444 */
4445 if (compaction_needs_reclaim(compact_result)) {
4446 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4447 goto out;
4448 }
4449
4450 /*
4451 * make sure the compaction wasn't deferred or didn't bail out early
4452 * due to locks contention before we declare that we should give up.
4453 * But the next retry should use a higher priority if allowed, so
4454 * we don't just keep bailing out endlessly.
4455 */
4456 if (compaction_withdrawn(compact_result)) {
4457 goto check_priority;
4458 }
4459
4460 /*
4461 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4462 * costly ones because they are de facto nofail and invoke OOM
4463 * killer to move on while costly can fail and users are ready
4464 * to cope with that. 1/4 retries is rather arbitrary but we
4465 * would need much more detailed feedback from compaction to
4466 * make a better decision.
4467 */
4468 if (order > PAGE_ALLOC_COSTLY_ORDER)
4469 max_retries /= 4;
4470 if (*compaction_retries <= max_retries) {
4471 ret = true;
4472 goto out;
4473 }
4474
4475 /*
4476 * Make sure there are attempts at the highest priority if we exhausted
4477 * all retries or failed at the lower priorities.
4478 */
4479 check_priority:
4480 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4481 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4482
4483 if (*compact_priority > min_priority) {
4484 (*compact_priority)--;
4485 *compaction_retries = 0;
4486 ret = true;
4487 }
4488 out:
4489 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4490 return ret;
4491 }
4492 #else
4493 static inline struct page *
4494 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4495 unsigned int alloc_flags, const struct alloc_context *ac,
4496 enum compact_priority prio, enum compact_result *compact_result)
4497 {
4498 *compact_result = COMPACT_SKIPPED;
4499 return NULL;
4500 }
4501
4502 static inline bool
4503 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4504 enum compact_result compact_result,
4505 enum compact_priority *compact_priority,
4506 int *compaction_retries)
4507 {
4508 struct zone *zone;
4509 struct zoneref *z;
4510
4511 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4512 return false;
4513
4514 /*
4515 * There are setups with compaction disabled which would prefer to loop
4516 * inside the allocator rather than hit the oom killer prematurely.
4517 * Let's give them a good hope and keep retrying while the order-0
4518 * watermarks are OK.
4519 */
4520 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4521 ac->highest_zoneidx, ac->nodemask) {
4522 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4523 ac->highest_zoneidx, alloc_flags))
4524 return true;
4525 }
4526 return false;
4527 }
4528 #endif /* CONFIG_COMPACTION */
4529
4530 #ifdef CONFIG_LOCKDEP
4531 static struct lockdep_map __fs_reclaim_map =
4532 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4533
4534 static bool __need_reclaim(gfp_t gfp_mask)
4535 {
4536 /* no reclaim without waiting on it */
4537 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4538 return false;
4539
4540 /* this guy won't enter reclaim */
4541 if (current->flags & PF_MEMALLOC)
4542 return false;
4543
4544 if (gfp_mask & __GFP_NOLOCKDEP)
4545 return false;
4546
4547 return true;
4548 }
4549
4550 void __fs_reclaim_acquire(void)
4551 {
4552 lock_map_acquire(&__fs_reclaim_map);
4553 }
4554
4555 void __fs_reclaim_release(void)
4556 {
4557 lock_map_release(&__fs_reclaim_map);
4558 }
4559
4560 void fs_reclaim_acquire(gfp_t gfp_mask)
4561 {
4562 gfp_mask = current_gfp_context(gfp_mask);
4563
4564 if (__need_reclaim(gfp_mask)) {
4565 if (gfp_mask & __GFP_FS)
4566 __fs_reclaim_acquire();
4567
4568 #ifdef CONFIG_MMU_NOTIFIER
4569 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4570 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4571 #endif
4572
4573 }
4574 }
4575 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4576
4577 void fs_reclaim_release(gfp_t gfp_mask)
4578 {
4579 gfp_mask = current_gfp_context(gfp_mask);
4580
4581 if (__need_reclaim(gfp_mask)) {
4582 if (gfp_mask & __GFP_FS)
4583 __fs_reclaim_release();
4584 }
4585 }
4586 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4587 #endif
4588
4589 /* Perform direct synchronous page reclaim */
4590 static unsigned long
4591 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4592 const struct alloc_context *ac)
4593 {
4594 unsigned int noreclaim_flag;
4595 unsigned long pflags, progress;
4596
4597 cond_resched();
4598
4599 /* We now go into synchronous reclaim */
4600 cpuset_memory_pressure_bump();
4601 psi_memstall_enter(&pflags);
4602 fs_reclaim_acquire(gfp_mask);
4603 noreclaim_flag = memalloc_noreclaim_save();
4604
4605 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4606 ac->nodemask);
4607
4608 memalloc_noreclaim_restore(noreclaim_flag);
4609 fs_reclaim_release(gfp_mask);
4610 psi_memstall_leave(&pflags);
4611
4612 cond_resched();
4613
4614 return progress;
4615 }
4616
4617 /* The really slow allocator path where we enter direct reclaim */
4618 static inline struct page *
4619 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4620 unsigned int alloc_flags, const struct alloc_context *ac,
4621 unsigned long *did_some_progress)
4622 {
4623 struct page *page = NULL;
4624 bool drained = false;
4625
4626 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4627 if (unlikely(!(*did_some_progress)))
4628 return NULL;
4629
4630 retry:
4631 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4632
4633 /*
4634 * If an allocation failed after direct reclaim, it could be because
4635 * pages are pinned on the per-cpu lists or in high alloc reserves.
4636 * Shrink them and try again
4637 */
4638 if (!page && !drained) {
4639 unreserve_highatomic_pageblock(ac, false);
4640 drain_all_pages(NULL);
4641 drained = true;
4642 goto retry;
4643 }
4644
4645 return page;
4646 }
4647
4648 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4649 const struct alloc_context *ac)
4650 {
4651 struct zoneref *z;
4652 struct zone *zone;
4653 pg_data_t *last_pgdat = NULL;
4654 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4655
4656 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4657 ac->nodemask) {
4658 if (last_pgdat != zone->zone_pgdat)
4659 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4660 last_pgdat = zone->zone_pgdat;
4661 }
4662 }
4663
4664 static inline unsigned int
4665 gfp_to_alloc_flags(gfp_t gfp_mask)
4666 {
4667 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4668
4669 /*
4670 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4671 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4672 * to save two branches.
4673 */
4674 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4675 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4676
4677 /*
4678 * The caller may dip into page reserves a bit more if the caller
4679 * cannot run direct reclaim, or if the caller has realtime scheduling
4680 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4681 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4682 */
4683 alloc_flags |= (__force int)
4684 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4685
4686 if (gfp_mask & __GFP_ATOMIC) {
4687 /*
4688 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4689 * if it can't schedule.
4690 */
4691 if (!(gfp_mask & __GFP_NOMEMALLOC))
4692 alloc_flags |= ALLOC_HARDER;
4693 /*
4694 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4695 * comment for __cpuset_node_allowed().
4696 */
4697 alloc_flags &= ~ALLOC_CPUSET;
4698 } else if (unlikely(rt_task(current)) && !in_interrupt())
4699 alloc_flags |= ALLOC_HARDER;
4700
4701 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4702
4703 return alloc_flags;
4704 }
4705
4706 static bool oom_reserves_allowed(struct task_struct *tsk)
4707 {
4708 if (!tsk_is_oom_victim(tsk))
4709 return false;
4710
4711 /*
4712 * !MMU doesn't have oom reaper so give access to memory reserves
4713 * only to the thread with TIF_MEMDIE set
4714 */
4715 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4716 return false;
4717
4718 return true;
4719 }
4720
4721 /*
4722 * Distinguish requests which really need access to full memory
4723 * reserves from oom victims which can live with a portion of it
4724 */
4725 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4726 {
4727 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4728 return 0;
4729 if (gfp_mask & __GFP_MEMALLOC)
4730 return ALLOC_NO_WATERMARKS;
4731 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4732 return ALLOC_NO_WATERMARKS;
4733 if (!in_interrupt()) {
4734 if (current->flags & PF_MEMALLOC)
4735 return ALLOC_NO_WATERMARKS;
4736 else if (oom_reserves_allowed(current))
4737 return ALLOC_OOM;
4738 }
4739
4740 return 0;
4741 }
4742
4743 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4744 {
4745 return !!__gfp_pfmemalloc_flags(gfp_mask);
4746 }
4747
4748 /*
4749 * Checks whether it makes sense to retry the reclaim to make a forward progress
4750 * for the given allocation request.
4751 *
4752 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4753 * without success, or when we couldn't even meet the watermark if we
4754 * reclaimed all remaining pages on the LRU lists.
4755 *
4756 * Returns true if a retry is viable or false to enter the oom path.
4757 */
4758 static inline bool
4759 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4760 struct alloc_context *ac, int alloc_flags,
4761 bool did_some_progress, int *no_progress_loops)
4762 {
4763 struct zone *zone;
4764 struct zoneref *z;
4765 bool ret = false;
4766
4767 /*
4768 * Costly allocations might have made a progress but this doesn't mean
4769 * their order will become available due to high fragmentation so
4770 * always increment the no progress counter for them
4771 */
4772 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4773 *no_progress_loops = 0;
4774 else
4775 (*no_progress_loops)++;
4776
4777 /*
4778 * Make sure we converge to OOM if we cannot make any progress
4779 * several times in the row.
4780 */
4781 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4782 /* Before OOM, exhaust highatomic_reserve */
4783 return unreserve_highatomic_pageblock(ac, true);
4784 }
4785
4786 /*
4787 * Keep reclaiming pages while there is a chance this will lead
4788 * somewhere. If none of the target zones can satisfy our allocation
4789 * request even if all reclaimable pages are considered then we are
4790 * screwed and have to go OOM.
4791 */
4792 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4793 ac->highest_zoneidx, ac->nodemask) {
4794 unsigned long available;
4795 unsigned long reclaimable;
4796 unsigned long min_wmark = min_wmark_pages(zone);
4797 bool wmark;
4798
4799 available = reclaimable = zone_reclaimable_pages(zone);
4800 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4801
4802 /*
4803 * Would the allocation succeed if we reclaimed all
4804 * reclaimable pages?
4805 */
4806 wmark = __zone_watermark_ok(zone, order, min_wmark,
4807 ac->highest_zoneidx, alloc_flags, available);
4808 trace_reclaim_retry_zone(z, order, reclaimable,
4809 available, min_wmark, *no_progress_loops, wmark);
4810 if (wmark) {
4811 /*
4812 * If we didn't make any progress and have a lot of
4813 * dirty + writeback pages then we should wait for
4814 * an IO to complete to slow down the reclaim and
4815 * prevent from pre mature OOM
4816 */
4817 if (!did_some_progress) {
4818 unsigned long write_pending;
4819
4820 write_pending = zone_page_state_snapshot(zone,
4821 NR_ZONE_WRITE_PENDING);
4822
4823 if (2 * write_pending > reclaimable) {
4824 congestion_wait(BLK_RW_ASYNC, HZ/10);
4825 return true;
4826 }
4827 }
4828
4829 ret = true;
4830 goto out;
4831 }
4832 }
4833
4834 out:
4835 /*
4836 * Memory allocation/reclaim might be called from a WQ context and the
4837 * current implementation of the WQ concurrency control doesn't
4838 * recognize that a particular WQ is congested if the worker thread is
4839 * looping without ever sleeping. Therefore we have to do a short sleep
4840 * here rather than calling cond_resched().
4841 */
4842 if (current->flags & PF_WQ_WORKER)
4843 schedule_timeout_uninterruptible(1);
4844 else
4845 cond_resched();
4846 return ret;
4847 }
4848
4849 static inline bool
4850 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4851 {
4852 /*
4853 * It's possible that cpuset's mems_allowed and the nodemask from
4854 * mempolicy don't intersect. This should be normally dealt with by
4855 * policy_nodemask(), but it's possible to race with cpuset update in
4856 * such a way the check therein was true, and then it became false
4857 * before we got our cpuset_mems_cookie here.
4858 * This assumes that for all allocations, ac->nodemask can come only
4859 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4860 * when it does not intersect with the cpuset restrictions) or the
4861 * caller can deal with a violated nodemask.
4862 */
4863 if (cpusets_enabled() && ac->nodemask &&
4864 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4865 ac->nodemask = NULL;
4866 return true;
4867 }
4868
4869 /*
4870 * When updating a task's mems_allowed or mempolicy nodemask, it is
4871 * possible to race with parallel threads in such a way that our
4872 * allocation can fail while the mask is being updated. If we are about
4873 * to fail, check if the cpuset changed during allocation and if so,
4874 * retry.
4875 */
4876 if (read_mems_allowed_retry(cpuset_mems_cookie))
4877 return true;
4878
4879 return false;
4880 }
4881
4882 static inline struct page *
4883 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4884 struct alloc_context *ac)
4885 {
4886 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4887 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4888 struct page *page = NULL;
4889 unsigned int alloc_flags;
4890 unsigned long did_some_progress;
4891 enum compact_priority compact_priority;
4892 enum compact_result compact_result;
4893 int compaction_retries;
4894 int no_progress_loops;
4895 unsigned int cpuset_mems_cookie;
4896 int reserve_flags;
4897
4898 /*
4899 * We also sanity check to catch abuse of atomic reserves being used by
4900 * callers that are not in atomic context.
4901 */
4902 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4903 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4904 gfp_mask &= ~__GFP_ATOMIC;
4905
4906 retry_cpuset:
4907 compaction_retries = 0;
4908 no_progress_loops = 0;
4909 compact_priority = DEF_COMPACT_PRIORITY;
4910 cpuset_mems_cookie = read_mems_allowed_begin();
4911
4912 /*
4913 * The fast path uses conservative alloc_flags to succeed only until
4914 * kswapd needs to be woken up, and to avoid the cost of setting up
4915 * alloc_flags precisely. So we do that now.
4916 */
4917 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4918
4919 /*
4920 * We need to recalculate the starting point for the zonelist iterator
4921 * because we might have used different nodemask in the fast path, or
4922 * there was a cpuset modification and we are retrying - otherwise we
4923 * could end up iterating over non-eligible zones endlessly.
4924 */
4925 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4926 ac->highest_zoneidx, ac->nodemask);
4927 if (!ac->preferred_zoneref->zone)
4928 goto nopage;
4929
4930 if (alloc_flags & ALLOC_KSWAPD)
4931 wake_all_kswapds(order, gfp_mask, ac);
4932
4933 /*
4934 * The adjusted alloc_flags might result in immediate success, so try
4935 * that first
4936 */
4937 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4938 if (page)
4939 goto got_pg;
4940
4941 /*
4942 * For costly allocations, try direct compaction first, as it's likely
4943 * that we have enough base pages and don't need to reclaim. For non-
4944 * movable high-order allocations, do that as well, as compaction will
4945 * try prevent permanent fragmentation by migrating from blocks of the
4946 * same migratetype.
4947 * Don't try this for allocations that are allowed to ignore
4948 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4949 */
4950 if (can_direct_reclaim &&
4951 (costly_order ||
4952 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4953 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4954 page = __alloc_pages_direct_compact(gfp_mask, order,
4955 alloc_flags, ac,
4956 INIT_COMPACT_PRIORITY,
4957 &compact_result);
4958 if (page)
4959 goto got_pg;
4960
4961 /*
4962 * Checks for costly allocations with __GFP_NORETRY, which
4963 * includes some THP page fault allocations
4964 */
4965 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4966 /*
4967 * If allocating entire pageblock(s) and compaction
4968 * failed because all zones are below low watermarks
4969 * or is prohibited because it recently failed at this
4970 * order, fail immediately unless the allocator has
4971 * requested compaction and reclaim retry.
4972 *
4973 * Reclaim is
4974 * - potentially very expensive because zones are far
4975 * below their low watermarks or this is part of very
4976 * bursty high order allocations,
4977 * - not guaranteed to help because isolate_freepages()
4978 * may not iterate over freed pages as part of its
4979 * linear scan, and
4980 * - unlikely to make entire pageblocks free on its
4981 * own.
4982 */
4983 if (compact_result == COMPACT_SKIPPED ||
4984 compact_result == COMPACT_DEFERRED)
4985 goto nopage;
4986
4987 /*
4988 * Looks like reclaim/compaction is worth trying, but
4989 * sync compaction could be very expensive, so keep
4990 * using async compaction.
4991 */
4992 compact_priority = INIT_COMPACT_PRIORITY;
4993 }
4994 }
4995
4996 retry:
4997 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4998 if (alloc_flags & ALLOC_KSWAPD)
4999 wake_all_kswapds(order, gfp_mask, ac);
5000
5001 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5002 if (reserve_flags)
5003 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5004
5005 /*
5006 * Reset the nodemask and zonelist iterators if memory policies can be
5007 * ignored. These allocations are high priority and system rather than
5008 * user oriented.
5009 */
5010 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5011 ac->nodemask = NULL;
5012 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5013 ac->highest_zoneidx, ac->nodemask);
5014 }
5015
5016 /* Attempt with potentially adjusted zonelist and alloc_flags */
5017 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5018 if (page)
5019 goto got_pg;
5020
5021 /* Caller is not willing to reclaim, we can't balance anything */
5022 if (!can_direct_reclaim)
5023 goto nopage;
5024
5025 /* Avoid recursion of direct reclaim */
5026 if (current->flags & PF_MEMALLOC)
5027 goto nopage;
5028
5029 /* Try direct reclaim and then allocating */
5030 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5031 &did_some_progress);
5032 if (page)
5033 goto got_pg;
5034
5035 /* Try direct compaction and then allocating */
5036 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5037 compact_priority, &compact_result);
5038 if (page)
5039 goto got_pg;
5040
5041 /* Do not loop if specifically requested */
5042 if (gfp_mask & __GFP_NORETRY)
5043 goto nopage;
5044
5045 /*
5046 * Do not retry costly high order allocations unless they are
5047 * __GFP_RETRY_MAYFAIL
5048 */
5049 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5050 goto nopage;
5051
5052 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5053 did_some_progress > 0, &no_progress_loops))
5054 goto retry;
5055
5056 /*
5057 * It doesn't make any sense to retry for the compaction if the order-0
5058 * reclaim is not able to make any progress because the current
5059 * implementation of the compaction depends on the sufficient amount
5060 * of free memory (see __compaction_suitable)
5061 */
5062 if (did_some_progress > 0 &&
5063 should_compact_retry(ac, order, alloc_flags,
5064 compact_result, &compact_priority,
5065 &compaction_retries))
5066 goto retry;
5067
5068
5069 /* Deal with possible cpuset update races before we start OOM killing */
5070 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5071 goto retry_cpuset;
5072
5073 /* Reclaim has failed us, start killing things */
5074 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5075 if (page)
5076 goto got_pg;
5077
5078 /* Avoid allocations with no watermarks from looping endlessly */
5079 if (tsk_is_oom_victim(current) &&
5080 (alloc_flags & ALLOC_OOM ||
5081 (gfp_mask & __GFP_NOMEMALLOC)))
5082 goto nopage;
5083
5084 /* Retry as long as the OOM killer is making progress */
5085 if (did_some_progress) {
5086 no_progress_loops = 0;
5087 goto retry;
5088 }
5089
5090 nopage:
5091 /* Deal with possible cpuset update races before we fail */
5092 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5093 goto retry_cpuset;
5094
5095 /*
5096 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5097 * we always retry
5098 */
5099 if (gfp_mask & __GFP_NOFAIL) {
5100 /*
5101 * All existing users of the __GFP_NOFAIL are blockable, so warn
5102 * of any new users that actually require GFP_NOWAIT
5103 */
5104 if (WARN_ON_ONCE(!can_direct_reclaim))
5105 goto fail;
5106
5107 /*
5108 * PF_MEMALLOC request from this context is rather bizarre
5109 * because we cannot reclaim anything and only can loop waiting
5110 * for somebody to do a work for us
5111 */
5112 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5113
5114 /*
5115 * non failing costly orders are a hard requirement which we
5116 * are not prepared for much so let's warn about these users
5117 * so that we can identify them and convert them to something
5118 * else.
5119 */
5120 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5121
5122 /*
5123 * Help non-failing allocations by giving them access to memory
5124 * reserves but do not use ALLOC_NO_WATERMARKS because this
5125 * could deplete whole memory reserves which would just make
5126 * the situation worse
5127 */
5128 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5129 if (page)
5130 goto got_pg;
5131
5132 cond_resched();
5133 goto retry;
5134 }
5135 fail:
5136 warn_alloc(gfp_mask, ac->nodemask,
5137 "page allocation failure: order:%u", order);
5138 got_pg:
5139 return page;
5140 }
5141
5142 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5143 int preferred_nid, nodemask_t *nodemask,
5144 struct alloc_context *ac, gfp_t *alloc_gfp,
5145 unsigned int *alloc_flags)
5146 {
5147 ac->highest_zoneidx = gfp_zone(gfp_mask);
5148 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5149 ac->nodemask = nodemask;
5150 ac->migratetype = gfp_migratetype(gfp_mask);
5151
5152 if (cpusets_enabled()) {
5153 *alloc_gfp |= __GFP_HARDWALL;
5154 /*
5155 * When we are in the interrupt context, it is irrelevant
5156 * to the current task context. It means that any node ok.
5157 */
5158 if (!in_interrupt() && !ac->nodemask)
5159 ac->nodemask = &cpuset_current_mems_allowed;
5160 else
5161 *alloc_flags |= ALLOC_CPUSET;
5162 }
5163
5164 fs_reclaim_acquire(gfp_mask);
5165 fs_reclaim_release(gfp_mask);
5166
5167 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5168
5169 if (should_fail_alloc_page(gfp_mask, order))
5170 return false;
5171
5172 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5173
5174 /* Dirty zone balancing only done in the fast path */
5175 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5176
5177 /*
5178 * The preferred zone is used for statistics but crucially it is
5179 * also used as the starting point for the zonelist iterator. It
5180 * may get reset for allocations that ignore memory policies.
5181 */
5182 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5183 ac->highest_zoneidx, ac->nodemask);
5184
5185 return true;
5186 }
5187
5188 /*
5189 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5190 * @gfp: GFP flags for the allocation
5191 * @preferred_nid: The preferred NUMA node ID to allocate from
5192 * @nodemask: Set of nodes to allocate from, may be NULL
5193 * @nr_pages: The number of pages desired on the list or array
5194 * @page_list: Optional list to store the allocated pages
5195 * @page_array: Optional array to store the pages
5196 *
5197 * This is a batched version of the page allocator that attempts to
5198 * allocate nr_pages quickly. Pages are added to page_list if page_list
5199 * is not NULL, otherwise it is assumed that the page_array is valid.
5200 *
5201 * For lists, nr_pages is the number of pages that should be allocated.
5202 *
5203 * For arrays, only NULL elements are populated with pages and nr_pages
5204 * is the maximum number of pages that will be stored in the array.
5205 *
5206 * Returns the number of pages on the list or array.
5207 */
5208 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5209 nodemask_t *nodemask, int nr_pages,
5210 struct list_head *page_list,
5211 struct page **page_array)
5212 {
5213 struct page *page;
5214 unsigned long flags;
5215 struct zone *zone;
5216 struct zoneref *z;
5217 struct per_cpu_pages *pcp;
5218 struct list_head *pcp_list;
5219 struct alloc_context ac;
5220 gfp_t alloc_gfp;
5221 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5222 int nr_populated = 0, nr_account = 0;
5223
5224 /*
5225 * Skip populated array elements to determine if any pages need
5226 * to be allocated before disabling IRQs.
5227 */
5228 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5229 nr_populated++;
5230
5231 /* No pages requested? */
5232 if (unlikely(nr_pages <= 0))
5233 goto out;
5234
5235 /* Already populated array? */
5236 if (unlikely(page_array && nr_pages - nr_populated == 0))
5237 goto out;
5238
5239 /* Use the single page allocator for one page. */
5240 if (nr_pages - nr_populated == 1)
5241 goto failed;
5242
5243 #ifdef CONFIG_PAGE_OWNER
5244 /*
5245 * PAGE_OWNER may recurse into the allocator to allocate space to
5246 * save the stack with pagesets.lock held. Releasing/reacquiring
5247 * removes much of the performance benefit of bulk allocation so
5248 * force the caller to allocate one page at a time as it'll have
5249 * similar performance to added complexity to the bulk allocator.
5250 */
5251 if (static_branch_unlikely(&page_owner_inited))
5252 goto failed;
5253 #endif
5254
5255 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5256 gfp &= gfp_allowed_mask;
5257 alloc_gfp = gfp;
5258 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5259 goto out;
5260 gfp = alloc_gfp;
5261
5262 /* Find an allowed local zone that meets the low watermark. */
5263 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5264 unsigned long mark;
5265
5266 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5267 !__cpuset_zone_allowed(zone, gfp)) {
5268 continue;
5269 }
5270
5271 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5272 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5273 goto failed;
5274 }
5275
5276 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5277 if (zone_watermark_fast(zone, 0, mark,
5278 zonelist_zone_idx(ac.preferred_zoneref),
5279 alloc_flags, gfp)) {
5280 break;
5281 }
5282 }
5283
5284 /*
5285 * If there are no allowed local zones that meets the watermarks then
5286 * try to allocate a single page and reclaim if necessary.
5287 */
5288 if (unlikely(!zone))
5289 goto failed;
5290
5291 /* Attempt the batch allocation */
5292 local_lock_irqsave(&pagesets.lock, flags);
5293 pcp = this_cpu_ptr(zone->per_cpu_pageset);
5294 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5295
5296 while (nr_populated < nr_pages) {
5297
5298 /* Skip existing pages */
5299 if (page_array && page_array[nr_populated]) {
5300 nr_populated++;
5301 continue;
5302 }
5303
5304 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5305 pcp, pcp_list);
5306 if (unlikely(!page)) {
5307 /* Try and get at least one page */
5308 if (!nr_populated)
5309 goto failed_irq;
5310 break;
5311 }
5312 nr_account++;
5313
5314 prep_new_page(page, 0, gfp, 0);
5315 if (page_list)
5316 list_add(&page->lru, page_list);
5317 else
5318 page_array[nr_populated] = page;
5319 nr_populated++;
5320 }
5321
5322 local_unlock_irqrestore(&pagesets.lock, flags);
5323
5324 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5325 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5326
5327 out:
5328 return nr_populated;
5329
5330 failed_irq:
5331 local_unlock_irqrestore(&pagesets.lock, flags);
5332
5333 failed:
5334 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5335 if (page) {
5336 if (page_list)
5337 list_add(&page->lru, page_list);
5338 else
5339 page_array[nr_populated] = page;
5340 nr_populated++;
5341 }
5342
5343 goto out;
5344 }
5345 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5346
5347 /*
5348 * This is the 'heart' of the zoned buddy allocator.
5349 */
5350 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5351 nodemask_t *nodemask)
5352 {
5353 struct page *page;
5354 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5355 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5356 struct alloc_context ac = { };
5357
5358 /*
5359 * There are several places where we assume that the order value is sane
5360 * so bail out early if the request is out of bound.
5361 */
5362 if (unlikely(order >= MAX_ORDER)) {
5363 WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5364 return NULL;
5365 }
5366
5367 gfp &= gfp_allowed_mask;
5368 /*
5369 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5370 * resp. GFP_NOIO which has to be inherited for all allocation requests
5371 * from a particular context which has been marked by
5372 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5373 * movable zones are not used during allocation.
5374 */
5375 gfp = current_gfp_context(gfp);
5376 alloc_gfp = gfp;
5377 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5378 &alloc_gfp, &alloc_flags))
5379 return NULL;
5380
5381 /*
5382 * Forbid the first pass from falling back to types that fragment
5383 * memory until all local zones are considered.
5384 */
5385 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5386
5387 /* First allocation attempt */
5388 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5389 if (likely(page))
5390 goto out;
5391
5392 alloc_gfp = gfp;
5393 ac.spread_dirty_pages = false;
5394
5395 /*
5396 * Restore the original nodemask if it was potentially replaced with
5397 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5398 */
5399 ac.nodemask = nodemask;
5400
5401 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5402
5403 out:
5404 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5405 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5406 __free_pages(page, order);
5407 page = NULL;
5408 }
5409
5410 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5411
5412 return page;
5413 }
5414 EXPORT_SYMBOL(__alloc_pages);
5415
5416 /*
5417 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5418 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5419 * you need to access high mem.
5420 */
5421 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5422 {
5423 struct page *page;
5424
5425 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5426 if (!page)
5427 return 0;
5428 return (unsigned long) page_address(page);
5429 }
5430 EXPORT_SYMBOL(__get_free_pages);
5431
5432 unsigned long get_zeroed_page(gfp_t gfp_mask)
5433 {
5434 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5435 }
5436 EXPORT_SYMBOL(get_zeroed_page);
5437
5438 /**
5439 * __free_pages - Free pages allocated with alloc_pages().
5440 * @page: The page pointer returned from alloc_pages().
5441 * @order: The order of the allocation.
5442 *
5443 * This function can free multi-page allocations that are not compound
5444 * pages. It does not check that the @order passed in matches that of
5445 * the allocation, so it is easy to leak memory. Freeing more memory
5446 * than was allocated will probably emit a warning.
5447 *
5448 * If the last reference to this page is speculative, it will be released
5449 * by put_page() which only frees the first page of a non-compound
5450 * allocation. To prevent the remaining pages from being leaked, we free
5451 * the subsequent pages here. If you want to use the page's reference
5452 * count to decide when to free the allocation, you should allocate a
5453 * compound page, and use put_page() instead of __free_pages().
5454 *
5455 * Context: May be called in interrupt context or while holding a normal
5456 * spinlock, but not in NMI context or while holding a raw spinlock.
5457 */
5458 void __free_pages(struct page *page, unsigned int order)
5459 {
5460 if (put_page_testzero(page))
5461 free_the_page(page, order);
5462 else if (!PageHead(page))
5463 while (order-- > 0)
5464 free_the_page(page + (1 << order), order);
5465 }
5466 EXPORT_SYMBOL(__free_pages);
5467
5468 void free_pages(unsigned long addr, unsigned int order)
5469 {
5470 if (addr != 0) {
5471 VM_BUG_ON(!virt_addr_valid((void *)addr));
5472 __free_pages(virt_to_page((void *)addr), order);
5473 }
5474 }
5475
5476 EXPORT_SYMBOL(free_pages);
5477
5478 /*
5479 * Page Fragment:
5480 * An arbitrary-length arbitrary-offset area of memory which resides
5481 * within a 0 or higher order page. Multiple fragments within that page
5482 * are individually refcounted, in the page's reference counter.
5483 *
5484 * The page_frag functions below provide a simple allocation framework for
5485 * page fragments. This is used by the network stack and network device
5486 * drivers to provide a backing region of memory for use as either an
5487 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5488 */
5489 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5490 gfp_t gfp_mask)
5491 {
5492 struct page *page = NULL;
5493 gfp_t gfp = gfp_mask;
5494
5495 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5496 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5497 __GFP_NOMEMALLOC;
5498 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5499 PAGE_FRAG_CACHE_MAX_ORDER);
5500 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5501 #endif
5502 if (unlikely(!page))
5503 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5504
5505 nc->va = page ? page_address(page) : NULL;
5506
5507 return page;
5508 }
5509
5510 void __page_frag_cache_drain(struct page *page, unsigned int count)
5511 {
5512 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5513
5514 if (page_ref_sub_and_test(page, count))
5515 free_the_page(page, compound_order(page));
5516 }
5517 EXPORT_SYMBOL(__page_frag_cache_drain);
5518
5519 void *page_frag_alloc_align(struct page_frag_cache *nc,
5520 unsigned int fragsz, gfp_t gfp_mask,
5521 unsigned int align_mask)
5522 {
5523 unsigned int size = PAGE_SIZE;
5524 struct page *page;
5525 int offset;
5526
5527 if (unlikely(!nc->va)) {
5528 refill:
5529 page = __page_frag_cache_refill(nc, gfp_mask);
5530 if (!page)
5531 return NULL;
5532
5533 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5534 /* if size can vary use size else just use PAGE_SIZE */
5535 size = nc->size;
5536 #endif
5537 /* Even if we own the page, we do not use atomic_set().
5538 * This would break get_page_unless_zero() users.
5539 */
5540 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5541
5542 /* reset page count bias and offset to start of new frag */
5543 nc->pfmemalloc = page_is_pfmemalloc(page);
5544 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5545 nc->offset = size;
5546 }
5547
5548 offset = nc->offset - fragsz;
5549 if (unlikely(offset < 0)) {
5550 page = virt_to_page(nc->va);
5551
5552 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5553 goto refill;
5554
5555 if (unlikely(nc->pfmemalloc)) {
5556 free_the_page(page, compound_order(page));
5557 goto refill;
5558 }
5559
5560 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5561 /* if size can vary use size else just use PAGE_SIZE */
5562 size = nc->size;
5563 #endif
5564 /* OK, page count is 0, we can safely set it */
5565 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5566
5567 /* reset page count bias and offset to start of new frag */
5568 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5569 offset = size - fragsz;
5570 }
5571
5572 nc->pagecnt_bias--;
5573 offset &= align_mask;
5574 nc->offset = offset;
5575
5576 return nc->va + offset;
5577 }
5578 EXPORT_SYMBOL(page_frag_alloc_align);
5579
5580 /*
5581 * Frees a page fragment allocated out of either a compound or order 0 page.
5582 */
5583 void page_frag_free(void *addr)
5584 {
5585 struct page *page = virt_to_head_page(addr);
5586
5587 if (unlikely(put_page_testzero(page)))
5588 free_the_page(page, compound_order(page));
5589 }
5590 EXPORT_SYMBOL(page_frag_free);
5591
5592 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5593 size_t size)
5594 {
5595 if (addr) {
5596 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5597 unsigned long used = addr + PAGE_ALIGN(size);
5598
5599 split_page(virt_to_page((void *)addr), order);
5600 while (used < alloc_end) {
5601 free_page(used);
5602 used += PAGE_SIZE;
5603 }
5604 }
5605 return (void *)addr;
5606 }
5607
5608 /**
5609 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5610 * @size: the number of bytes to allocate
5611 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5612 *
5613 * This function is similar to alloc_pages(), except that it allocates the
5614 * minimum number of pages to satisfy the request. alloc_pages() can only
5615 * allocate memory in power-of-two pages.
5616 *
5617 * This function is also limited by MAX_ORDER.
5618 *
5619 * Memory allocated by this function must be released by free_pages_exact().
5620 *
5621 * Return: pointer to the allocated area or %NULL in case of error.
5622 */
5623 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5624 {
5625 unsigned int order = get_order(size);
5626 unsigned long addr;
5627
5628 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5629 gfp_mask &= ~__GFP_COMP;
5630
5631 addr = __get_free_pages(gfp_mask, order);
5632 return make_alloc_exact(addr, order, size);
5633 }
5634 EXPORT_SYMBOL(alloc_pages_exact);
5635
5636 /**
5637 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5638 * pages on a node.
5639 * @nid: the preferred node ID where memory should be allocated
5640 * @size: the number of bytes to allocate
5641 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5642 *
5643 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5644 * back.
5645 *
5646 * Return: pointer to the allocated area or %NULL in case of error.
5647 */
5648 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5649 {
5650 unsigned int order = get_order(size);
5651 struct page *p;
5652
5653 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5654 gfp_mask &= ~__GFP_COMP;
5655
5656 p = alloc_pages_node(nid, gfp_mask, order);
5657 if (!p)
5658 return NULL;
5659 return make_alloc_exact((unsigned long)page_address(p), order, size);
5660 }
5661
5662 /**
5663 * free_pages_exact - release memory allocated via alloc_pages_exact()
5664 * @virt: the value returned by alloc_pages_exact.
5665 * @size: size of allocation, same value as passed to alloc_pages_exact().
5666 *
5667 * Release the memory allocated by a previous call to alloc_pages_exact.
5668 */
5669 void free_pages_exact(void *virt, size_t size)
5670 {
5671 unsigned long addr = (unsigned long)virt;
5672 unsigned long end = addr + PAGE_ALIGN(size);
5673
5674 while (addr < end) {
5675 free_page(addr);
5676 addr += PAGE_SIZE;
5677 }
5678 }
5679 EXPORT_SYMBOL(free_pages_exact);
5680
5681 /**
5682 * nr_free_zone_pages - count number of pages beyond high watermark
5683 * @offset: The zone index of the highest zone
5684 *
5685 * nr_free_zone_pages() counts the number of pages which are beyond the
5686 * high watermark within all zones at or below a given zone index. For each
5687 * zone, the number of pages is calculated as:
5688 *
5689 * nr_free_zone_pages = managed_pages - high_pages
5690 *
5691 * Return: number of pages beyond high watermark.
5692 */
5693 static unsigned long nr_free_zone_pages(int offset)
5694 {
5695 struct zoneref *z;
5696 struct zone *zone;
5697
5698 /* Just pick one node, since fallback list is circular */
5699 unsigned long sum = 0;
5700
5701 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5702
5703 for_each_zone_zonelist(zone, z, zonelist, offset) {
5704 unsigned long size = zone_managed_pages(zone);
5705 unsigned long high = high_wmark_pages(zone);
5706 if (size > high)
5707 sum += size - high;
5708 }
5709
5710 return sum;
5711 }
5712
5713 /**
5714 * nr_free_buffer_pages - count number of pages beyond high watermark
5715 *
5716 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5717 * watermark within ZONE_DMA and ZONE_NORMAL.
5718 *
5719 * Return: number of pages beyond high watermark within ZONE_DMA and
5720 * ZONE_NORMAL.
5721 */
5722 unsigned long nr_free_buffer_pages(void)
5723 {
5724 return nr_free_zone_pages(gfp_zone(GFP_USER));
5725 }
5726 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5727
5728 static inline void show_node(struct zone *zone)
5729 {
5730 if (IS_ENABLED(CONFIG_NUMA))
5731 printk("Node %d ", zone_to_nid(zone));
5732 }
5733
5734 long si_mem_available(void)
5735 {
5736 long available;
5737 unsigned long pagecache;
5738 unsigned long wmark_low = 0;
5739 unsigned long pages[NR_LRU_LISTS];
5740 unsigned long reclaimable;
5741 struct zone *zone;
5742 int lru;
5743
5744 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5745 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5746
5747 for_each_zone(zone)
5748 wmark_low += low_wmark_pages(zone);
5749
5750 /*
5751 * Estimate the amount of memory available for userspace allocations,
5752 * without causing swapping.
5753 */
5754 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5755
5756 /*
5757 * Not all the page cache can be freed, otherwise the system will
5758 * start swapping. Assume at least half of the page cache, or the
5759 * low watermark worth of cache, needs to stay.
5760 */
5761 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5762 pagecache -= min(pagecache / 2, wmark_low);
5763 available += pagecache;
5764
5765 /*
5766 * Part of the reclaimable slab and other kernel memory consists of
5767 * items that are in use, and cannot be freed. Cap this estimate at the
5768 * low watermark.
5769 */
5770 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5771 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5772 available += reclaimable - min(reclaimable / 2, wmark_low);
5773
5774 if (available < 0)
5775 available = 0;
5776 return available;
5777 }
5778 EXPORT_SYMBOL_GPL(si_mem_available);
5779
5780 void si_meminfo(struct sysinfo *val)
5781 {
5782 val->totalram = totalram_pages();
5783 val->sharedram = global_node_page_state(NR_SHMEM);
5784 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5785 val->bufferram = nr_blockdev_pages();
5786 val->totalhigh = totalhigh_pages();
5787 val->freehigh = nr_free_highpages();
5788 val->mem_unit = PAGE_SIZE;
5789 }
5790
5791 EXPORT_SYMBOL(si_meminfo);
5792
5793 #ifdef CONFIG_NUMA
5794 void si_meminfo_node(struct sysinfo *val, int nid)
5795 {
5796 int zone_type; /* needs to be signed */
5797 unsigned long managed_pages = 0;
5798 unsigned long managed_highpages = 0;
5799 unsigned long free_highpages = 0;
5800 pg_data_t *pgdat = NODE_DATA(nid);
5801
5802 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5803 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5804 val->totalram = managed_pages;
5805 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5806 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5807 #ifdef CONFIG_HIGHMEM
5808 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5809 struct zone *zone = &pgdat->node_zones[zone_type];
5810
5811 if (is_highmem(zone)) {
5812 managed_highpages += zone_managed_pages(zone);
5813 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5814 }
5815 }
5816 val->totalhigh = managed_highpages;
5817 val->freehigh = free_highpages;
5818 #else
5819 val->totalhigh = managed_highpages;
5820 val->freehigh = free_highpages;
5821 #endif
5822 val->mem_unit = PAGE_SIZE;
5823 }
5824 #endif
5825
5826 /*
5827 * Determine whether the node should be displayed or not, depending on whether
5828 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5829 */
5830 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5831 {
5832 if (!(flags & SHOW_MEM_FILTER_NODES))
5833 return false;
5834
5835 /*
5836 * no node mask - aka implicit memory numa policy. Do not bother with
5837 * the synchronization - read_mems_allowed_begin - because we do not
5838 * have to be precise here.
5839 */
5840 if (!nodemask)
5841 nodemask = &cpuset_current_mems_allowed;
5842
5843 return !node_isset(nid, *nodemask);
5844 }
5845
5846 #define K(x) ((x) << (PAGE_SHIFT-10))
5847
5848 static void show_migration_types(unsigned char type)
5849 {
5850 static const char types[MIGRATE_TYPES] = {
5851 [MIGRATE_UNMOVABLE] = 'U',
5852 [MIGRATE_MOVABLE] = 'M',
5853 [MIGRATE_RECLAIMABLE] = 'E',
5854 [MIGRATE_HIGHATOMIC] = 'H',
5855 #ifdef CONFIG_CMA
5856 [MIGRATE_CMA] = 'C',
5857 #endif
5858 #ifdef CONFIG_MEMORY_ISOLATION
5859 [MIGRATE_ISOLATE] = 'I',
5860 #endif
5861 };
5862 char tmp[MIGRATE_TYPES + 1];
5863 char *p = tmp;
5864 int i;
5865
5866 for (i = 0; i < MIGRATE_TYPES; i++) {
5867 if (type & (1 << i))
5868 *p++ = types[i];
5869 }
5870
5871 *p = '\0';
5872 printk(KERN_CONT "(%s) ", tmp);
5873 }
5874
5875 /*
5876 * Show free area list (used inside shift_scroll-lock stuff)
5877 * We also calculate the percentage fragmentation. We do this by counting the
5878 * memory on each free list with the exception of the first item on the list.
5879 *
5880 * Bits in @filter:
5881 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5882 * cpuset.
5883 */
5884 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5885 {
5886 unsigned long free_pcp = 0;
5887 int cpu;
5888 struct zone *zone;
5889 pg_data_t *pgdat;
5890
5891 for_each_populated_zone(zone) {
5892 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5893 continue;
5894
5895 for_each_online_cpu(cpu)
5896 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5897 }
5898
5899 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5900 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5901 " unevictable:%lu dirty:%lu writeback:%lu\n"
5902 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5903 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5904 " free:%lu free_pcp:%lu free_cma:%lu\n",
5905 global_node_page_state(NR_ACTIVE_ANON),
5906 global_node_page_state(NR_INACTIVE_ANON),
5907 global_node_page_state(NR_ISOLATED_ANON),
5908 global_node_page_state(NR_ACTIVE_FILE),
5909 global_node_page_state(NR_INACTIVE_FILE),
5910 global_node_page_state(NR_ISOLATED_FILE),
5911 global_node_page_state(NR_UNEVICTABLE),
5912 global_node_page_state(NR_FILE_DIRTY),
5913 global_node_page_state(NR_WRITEBACK),
5914 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5915 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5916 global_node_page_state(NR_FILE_MAPPED),
5917 global_node_page_state(NR_SHMEM),
5918 global_node_page_state(NR_PAGETABLE),
5919 global_zone_page_state(NR_BOUNCE),
5920 global_zone_page_state(NR_FREE_PAGES),
5921 free_pcp,
5922 global_zone_page_state(NR_FREE_CMA_PAGES));
5923
5924 for_each_online_pgdat(pgdat) {
5925 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5926 continue;
5927
5928 printk("Node %d"
5929 " active_anon:%lukB"
5930 " inactive_anon:%lukB"
5931 " active_file:%lukB"
5932 " inactive_file:%lukB"
5933 " unevictable:%lukB"
5934 " isolated(anon):%lukB"
5935 " isolated(file):%lukB"
5936 " mapped:%lukB"
5937 " dirty:%lukB"
5938 " writeback:%lukB"
5939 " shmem:%lukB"
5940 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5941 " shmem_thp: %lukB"
5942 " shmem_pmdmapped: %lukB"
5943 " anon_thp: %lukB"
5944 #endif
5945 " writeback_tmp:%lukB"
5946 " kernel_stack:%lukB"
5947 #ifdef CONFIG_SHADOW_CALL_STACK
5948 " shadow_call_stack:%lukB"
5949 #endif
5950 " pagetables:%lukB"
5951 " all_unreclaimable? %s"
5952 "\n",
5953 pgdat->node_id,
5954 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5955 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5956 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5957 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5958 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5959 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5960 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5961 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5962 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5963 K(node_page_state(pgdat, NR_WRITEBACK)),
5964 K(node_page_state(pgdat, NR_SHMEM)),
5965 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5966 K(node_page_state(pgdat, NR_SHMEM_THPS)),
5967 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5968 K(node_page_state(pgdat, NR_ANON_THPS)),
5969 #endif
5970 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5971 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5972 #ifdef CONFIG_SHADOW_CALL_STACK
5973 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5974 #endif
5975 K(node_page_state(pgdat, NR_PAGETABLE)),
5976 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5977 "yes" : "no");
5978 }
5979
5980 for_each_populated_zone(zone) {
5981 int i;
5982
5983 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5984 continue;
5985
5986 free_pcp = 0;
5987 for_each_online_cpu(cpu)
5988 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5989
5990 show_node(zone);
5991 printk(KERN_CONT
5992 "%s"
5993 " free:%lukB"
5994 " min:%lukB"
5995 " low:%lukB"
5996 " high:%lukB"
5997 " reserved_highatomic:%luKB"
5998 " active_anon:%lukB"
5999 " inactive_anon:%lukB"
6000 " active_file:%lukB"
6001 " inactive_file:%lukB"
6002 " unevictable:%lukB"
6003 " writepending:%lukB"
6004 " present:%lukB"
6005 " managed:%lukB"
6006 " mlocked:%lukB"
6007 " bounce:%lukB"
6008 " free_pcp:%lukB"
6009 " local_pcp:%ukB"
6010 " free_cma:%lukB"
6011 "\n",
6012 zone->name,
6013 K(zone_page_state(zone, NR_FREE_PAGES)),
6014 K(min_wmark_pages(zone)),
6015 K(low_wmark_pages(zone)),
6016 K(high_wmark_pages(zone)),
6017 K(zone->nr_reserved_highatomic),
6018 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6019 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6020 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6021 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6022 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6023 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6024 K(zone->present_pages),
6025 K(zone_managed_pages(zone)),
6026 K(zone_page_state(zone, NR_MLOCK)),
6027 K(zone_page_state(zone, NR_BOUNCE)),
6028 K(free_pcp),
6029 K(this_cpu_read(zone->per_cpu_pageset->count)),
6030 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6031 printk("lowmem_reserve[]:");
6032 for (i = 0; i < MAX_NR_ZONES; i++)
6033 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6034 printk(KERN_CONT "\n");
6035 }
6036
6037 for_each_populated_zone(zone) {
6038 unsigned int order;
6039 unsigned long nr[MAX_ORDER], flags, total = 0;
6040 unsigned char types[MAX_ORDER];
6041
6042 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6043 continue;
6044 show_node(zone);
6045 printk(KERN_CONT "%s: ", zone->name);
6046
6047 spin_lock_irqsave(&zone->lock, flags);
6048 for (order = 0; order < MAX_ORDER; order++) {
6049 struct free_area *area = &zone->free_area[order];
6050 int type;
6051
6052 nr[order] = area->nr_free;
6053 total += nr[order] << order;
6054
6055 types[order] = 0;
6056 for (type = 0; type < MIGRATE_TYPES; type++) {
6057 if (!free_area_empty(area, type))
6058 types[order] |= 1 << type;
6059 }
6060 }
6061 spin_unlock_irqrestore(&zone->lock, flags);
6062 for (order = 0; order < MAX_ORDER; order++) {
6063 printk(KERN_CONT "%lu*%lukB ",
6064 nr[order], K(1UL) << order);
6065 if (nr[order])
6066 show_migration_types(types[order]);
6067 }
6068 printk(KERN_CONT "= %lukB\n", K(total));
6069 }
6070
6071 hugetlb_show_meminfo();
6072
6073 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6074
6075 show_swap_cache_info();
6076 }
6077
6078 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6079 {
6080 zoneref->zone = zone;
6081 zoneref->zone_idx = zone_idx(zone);
6082 }
6083
6084 /*
6085 * Builds allocation fallback zone lists.
6086 *
6087 * Add all populated zones of a node to the zonelist.
6088 */
6089 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6090 {
6091 struct zone *zone;
6092 enum zone_type zone_type = MAX_NR_ZONES;
6093 int nr_zones = 0;
6094
6095 do {
6096 zone_type--;
6097 zone = pgdat->node_zones + zone_type;
6098 if (managed_zone(zone)) {
6099 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6100 check_highest_zone(zone_type);
6101 }
6102 } while (zone_type);
6103
6104 return nr_zones;
6105 }
6106
6107 #ifdef CONFIG_NUMA
6108
6109 static int __parse_numa_zonelist_order(char *s)
6110 {
6111 /*
6112 * We used to support different zonelists modes but they turned
6113 * out to be just not useful. Let's keep the warning in place
6114 * if somebody still use the cmd line parameter so that we do
6115 * not fail it silently
6116 */
6117 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6118 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6119 return -EINVAL;
6120 }
6121 return 0;
6122 }
6123
6124 char numa_zonelist_order[] = "Node";
6125
6126 /*
6127 * sysctl handler for numa_zonelist_order
6128 */
6129 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6130 void *buffer, size_t *length, loff_t *ppos)
6131 {
6132 if (write)
6133 return __parse_numa_zonelist_order(buffer);
6134 return proc_dostring(table, write, buffer, length, ppos);
6135 }
6136
6137
6138 #define MAX_NODE_LOAD (nr_online_nodes)
6139 static int node_load[MAX_NUMNODES];
6140
6141 /**
6142 * find_next_best_node - find the next node that should appear in a given node's fallback list
6143 * @node: node whose fallback list we're appending
6144 * @used_node_mask: nodemask_t of already used nodes
6145 *
6146 * We use a number of factors to determine which is the next node that should
6147 * appear on a given node's fallback list. The node should not have appeared
6148 * already in @node's fallback list, and it should be the next closest node
6149 * according to the distance array (which contains arbitrary distance values
6150 * from each node to each node in the system), and should also prefer nodes
6151 * with no CPUs, since presumably they'll have very little allocation pressure
6152 * on them otherwise.
6153 *
6154 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6155 */
6156 static int find_next_best_node(int node, nodemask_t *used_node_mask)
6157 {
6158 int n, val;
6159 int min_val = INT_MAX;
6160 int best_node = NUMA_NO_NODE;
6161
6162 /* Use the local node if we haven't already */
6163 if (!node_isset(node, *used_node_mask)) {
6164 node_set(node, *used_node_mask);
6165 return node;
6166 }
6167
6168 for_each_node_state(n, N_MEMORY) {
6169
6170 /* Don't want a node to appear more than once */
6171 if (node_isset(n, *used_node_mask))
6172 continue;
6173
6174 /* Use the distance array to find the distance */
6175 val = node_distance(node, n);
6176
6177 /* Penalize nodes under us ("prefer the next node") */
6178 val += (n < node);
6179
6180 /* Give preference to headless and unused nodes */
6181 if (!cpumask_empty(cpumask_of_node(n)))
6182 val += PENALTY_FOR_NODE_WITH_CPUS;
6183
6184 /* Slight preference for less loaded node */
6185 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6186 val += node_load[n];
6187
6188 if (val < min_val) {
6189 min_val = val;
6190 best_node = n;
6191 }
6192 }
6193
6194 if (best_node >= 0)
6195 node_set(best_node, *used_node_mask);
6196
6197 return best_node;
6198 }
6199
6200
6201 /*
6202 * Build zonelists ordered by node and zones within node.
6203 * This results in maximum locality--normal zone overflows into local
6204 * DMA zone, if any--but risks exhausting DMA zone.
6205 */
6206 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6207 unsigned nr_nodes)
6208 {
6209 struct zoneref *zonerefs;
6210 int i;
6211
6212 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6213
6214 for (i = 0; i < nr_nodes; i++) {
6215 int nr_zones;
6216
6217 pg_data_t *node = NODE_DATA(node_order[i]);
6218
6219 nr_zones = build_zonerefs_node(node, zonerefs);
6220 zonerefs += nr_zones;
6221 }
6222 zonerefs->zone = NULL;
6223 zonerefs->zone_idx = 0;
6224 }
6225
6226 /*
6227 * Build gfp_thisnode zonelists
6228 */
6229 static void build_thisnode_zonelists(pg_data_t *pgdat)
6230 {
6231 struct zoneref *zonerefs;
6232 int nr_zones;
6233
6234 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6235 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6236 zonerefs += nr_zones;
6237 zonerefs->zone = NULL;
6238 zonerefs->zone_idx = 0;
6239 }
6240
6241 /*
6242 * Build zonelists ordered by zone and nodes within zones.
6243 * This results in conserving DMA zone[s] until all Normal memory is
6244 * exhausted, but results in overflowing to remote node while memory
6245 * may still exist in local DMA zone.
6246 */
6247
6248 static void build_zonelists(pg_data_t *pgdat)
6249 {
6250 static int node_order[MAX_NUMNODES];
6251 int node, load, nr_nodes = 0;
6252 nodemask_t used_mask = NODE_MASK_NONE;
6253 int local_node, prev_node;
6254
6255 /* NUMA-aware ordering of nodes */
6256 local_node = pgdat->node_id;
6257 load = nr_online_nodes;
6258 prev_node = local_node;
6259
6260 memset(node_order, 0, sizeof(node_order));
6261 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6262 /*
6263 * We don't want to pressure a particular node.
6264 * So adding penalty to the first node in same
6265 * distance group to make it round-robin.
6266 */
6267 if (node_distance(local_node, node) !=
6268 node_distance(local_node, prev_node))
6269 node_load[node] = load;
6270
6271 node_order[nr_nodes++] = node;
6272 prev_node = node;
6273 load--;
6274 }
6275
6276 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6277 build_thisnode_zonelists(pgdat);
6278 }
6279
6280 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6281 /*
6282 * Return node id of node used for "local" allocations.
6283 * I.e., first node id of first zone in arg node's generic zonelist.
6284 * Used for initializing percpu 'numa_mem', which is used primarily
6285 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6286 */
6287 int local_memory_node(int node)
6288 {
6289 struct zoneref *z;
6290
6291 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6292 gfp_zone(GFP_KERNEL),
6293 NULL);
6294 return zone_to_nid(z->zone);
6295 }
6296 #endif
6297
6298 static void setup_min_unmapped_ratio(void);
6299 static void setup_min_slab_ratio(void);
6300 #else /* CONFIG_NUMA */
6301
6302 static void build_zonelists(pg_data_t *pgdat)
6303 {
6304 int node, local_node;
6305 struct zoneref *zonerefs;
6306 int nr_zones;
6307
6308 local_node = pgdat->node_id;
6309
6310 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6311 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6312 zonerefs += nr_zones;
6313
6314 /*
6315 * Now we build the zonelist so that it contains the zones
6316 * of all the other nodes.
6317 * We don't want to pressure a particular node, so when
6318 * building the zones for node N, we make sure that the
6319 * zones coming right after the local ones are those from
6320 * node N+1 (modulo N)
6321 */
6322 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6323 if (!node_online(node))
6324 continue;
6325 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6326 zonerefs += nr_zones;
6327 }
6328 for (node = 0; node < local_node; node++) {
6329 if (!node_online(node))
6330 continue;
6331 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6332 zonerefs += nr_zones;
6333 }
6334
6335 zonerefs->zone = NULL;
6336 zonerefs->zone_idx = 0;
6337 }
6338
6339 #endif /* CONFIG_NUMA */
6340
6341 /*
6342 * Boot pageset table. One per cpu which is going to be used for all
6343 * zones and all nodes. The parameters will be set in such a way
6344 * that an item put on a list will immediately be handed over to
6345 * the buddy list. This is safe since pageset manipulation is done
6346 * with interrupts disabled.
6347 *
6348 * The boot_pagesets must be kept even after bootup is complete for
6349 * unused processors and/or zones. They do play a role for bootstrapping
6350 * hotplugged processors.
6351 *
6352 * zoneinfo_show() and maybe other functions do
6353 * not check if the processor is online before following the pageset pointer.
6354 * Other parts of the kernel may not check if the zone is available.
6355 */
6356 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6357 /* These effectively disable the pcplists in the boot pageset completely */
6358 #define BOOT_PAGESET_HIGH 0
6359 #define BOOT_PAGESET_BATCH 1
6360 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6361 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6362 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6363
6364 static void __build_all_zonelists(void *data)
6365 {
6366 int nid;
6367 int __maybe_unused cpu;
6368 pg_data_t *self = data;
6369 static DEFINE_SPINLOCK(lock);
6370
6371 spin_lock(&lock);
6372
6373 #ifdef CONFIG_NUMA
6374 memset(node_load, 0, sizeof(node_load));
6375 #endif
6376
6377 /*
6378 * This node is hotadded and no memory is yet present. So just
6379 * building zonelists is fine - no need to touch other nodes.
6380 */
6381 if (self && !node_online(self->node_id)) {
6382 build_zonelists(self);
6383 } else {
6384 for_each_online_node(nid) {
6385 pg_data_t *pgdat = NODE_DATA(nid);
6386
6387 build_zonelists(pgdat);
6388 }
6389
6390 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6391 /*
6392 * We now know the "local memory node" for each node--
6393 * i.e., the node of the first zone in the generic zonelist.
6394 * Set up numa_mem percpu variable for on-line cpus. During
6395 * boot, only the boot cpu should be on-line; we'll init the
6396 * secondary cpus' numa_mem as they come on-line. During
6397 * node/memory hotplug, we'll fixup all on-line cpus.
6398 */
6399 for_each_online_cpu(cpu)
6400 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6401 #endif
6402 }
6403
6404 spin_unlock(&lock);
6405 }
6406
6407 static noinline void __init
6408 build_all_zonelists_init(void)
6409 {
6410 int cpu;
6411
6412 __build_all_zonelists(NULL);
6413
6414 /*
6415 * Initialize the boot_pagesets that are going to be used
6416 * for bootstrapping processors. The real pagesets for
6417 * each zone will be allocated later when the per cpu
6418 * allocator is available.
6419 *
6420 * boot_pagesets are used also for bootstrapping offline
6421 * cpus if the system is already booted because the pagesets
6422 * are needed to initialize allocators on a specific cpu too.
6423 * F.e. the percpu allocator needs the page allocator which
6424 * needs the percpu allocator in order to allocate its pagesets
6425 * (a chicken-egg dilemma).
6426 */
6427 for_each_possible_cpu(cpu)
6428 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6429
6430 mminit_verify_zonelist();
6431 cpuset_init_current_mems_allowed();
6432 }
6433
6434 /*
6435 * unless system_state == SYSTEM_BOOTING.
6436 *
6437 * __ref due to call of __init annotated helper build_all_zonelists_init
6438 * [protected by SYSTEM_BOOTING].
6439 */
6440 void __ref build_all_zonelists(pg_data_t *pgdat)
6441 {
6442 unsigned long vm_total_pages;
6443
6444 if (system_state == SYSTEM_BOOTING) {
6445 build_all_zonelists_init();
6446 } else {
6447 __build_all_zonelists(pgdat);
6448 /* cpuset refresh routine should be here */
6449 }
6450 /* Get the number of free pages beyond high watermark in all zones. */
6451 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6452 /*
6453 * Disable grouping by mobility if the number of pages in the
6454 * system is too low to allow the mechanism to work. It would be
6455 * more accurate, but expensive to check per-zone. This check is
6456 * made on memory-hotadd so a system can start with mobility
6457 * disabled and enable it later
6458 */
6459 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6460 page_group_by_mobility_disabled = 1;
6461 else
6462 page_group_by_mobility_disabled = 0;
6463
6464 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6465 nr_online_nodes,
6466 page_group_by_mobility_disabled ? "off" : "on",
6467 vm_total_pages);
6468 #ifdef CONFIG_NUMA
6469 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6470 #endif
6471 }
6472
6473 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6474 static bool __meminit
6475 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6476 {
6477 static struct memblock_region *r;
6478
6479 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6480 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6481 for_each_mem_region(r) {
6482 if (*pfn < memblock_region_memory_end_pfn(r))
6483 break;
6484 }
6485 }
6486 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6487 memblock_is_mirror(r)) {
6488 *pfn = memblock_region_memory_end_pfn(r);
6489 return true;
6490 }
6491 }
6492 return false;
6493 }
6494
6495 /*
6496 * Initially all pages are reserved - free ones are freed
6497 * up by memblock_free_all() once the early boot process is
6498 * done. Non-atomic initialization, single-pass.
6499 *
6500 * All aligned pageblocks are initialized to the specified migratetype
6501 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6502 * zone stats (e.g., nr_isolate_pageblock) are touched.
6503 */
6504 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6505 unsigned long start_pfn, unsigned long zone_end_pfn,
6506 enum meminit_context context,
6507 struct vmem_altmap *altmap, int migratetype)
6508 {
6509 unsigned long pfn, end_pfn = start_pfn + size;
6510 struct page *page;
6511
6512 if (highest_memmap_pfn < end_pfn - 1)
6513 highest_memmap_pfn = end_pfn - 1;
6514
6515 #ifdef CONFIG_ZONE_DEVICE
6516 /*
6517 * Honor reservation requested by the driver for this ZONE_DEVICE
6518 * memory. We limit the total number of pages to initialize to just
6519 * those that might contain the memory mapping. We will defer the
6520 * ZONE_DEVICE page initialization until after we have released
6521 * the hotplug lock.
6522 */
6523 if (zone == ZONE_DEVICE) {
6524 if (!altmap)
6525 return;
6526
6527 if (start_pfn == altmap->base_pfn)
6528 start_pfn += altmap->reserve;
6529 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6530 }
6531 #endif
6532
6533 for (pfn = start_pfn; pfn < end_pfn; ) {
6534 /*
6535 * There can be holes in boot-time mem_map[]s handed to this
6536 * function. They do not exist on hotplugged memory.
6537 */
6538 if (context == MEMINIT_EARLY) {
6539 if (overlap_memmap_init(zone, &pfn))
6540 continue;
6541 if (defer_init(nid, pfn, zone_end_pfn))
6542 break;
6543 }
6544
6545 page = pfn_to_page(pfn);
6546 __init_single_page(page, pfn, zone, nid);
6547 if (context == MEMINIT_HOTPLUG)
6548 __SetPageReserved(page);
6549
6550 /*
6551 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6552 * such that unmovable allocations won't be scattered all
6553 * over the place during system boot.
6554 */
6555 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6556 set_pageblock_migratetype(page, migratetype);
6557 cond_resched();
6558 }
6559 pfn++;
6560 }
6561 }
6562
6563 #ifdef CONFIG_ZONE_DEVICE
6564 void __ref memmap_init_zone_device(struct zone *zone,
6565 unsigned long start_pfn,
6566 unsigned long nr_pages,
6567 struct dev_pagemap *pgmap)
6568 {
6569 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6570 struct pglist_data *pgdat = zone->zone_pgdat;
6571 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6572 unsigned long zone_idx = zone_idx(zone);
6573 unsigned long start = jiffies;
6574 int nid = pgdat->node_id;
6575
6576 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6577 return;
6578
6579 /*
6580 * The call to memmap_init should have already taken care
6581 * of the pages reserved for the memmap, so we can just jump to
6582 * the end of that region and start processing the device pages.
6583 */
6584 if (altmap) {
6585 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6586 nr_pages = end_pfn - start_pfn;
6587 }
6588
6589 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6590 struct page *page = pfn_to_page(pfn);
6591
6592 __init_single_page(page, pfn, zone_idx, nid);
6593
6594 /*
6595 * Mark page reserved as it will need to wait for onlining
6596 * phase for it to be fully associated with a zone.
6597 *
6598 * We can use the non-atomic __set_bit operation for setting
6599 * the flag as we are still initializing the pages.
6600 */
6601 __SetPageReserved(page);
6602
6603 /*
6604 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6605 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6606 * ever freed or placed on a driver-private list.
6607 */
6608 page->pgmap = pgmap;
6609 page->zone_device_data = NULL;
6610
6611 /*
6612 * Mark the block movable so that blocks are reserved for
6613 * movable at startup. This will force kernel allocations
6614 * to reserve their blocks rather than leaking throughout
6615 * the address space during boot when many long-lived
6616 * kernel allocations are made.
6617 *
6618 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6619 * because this is done early in section_activate()
6620 */
6621 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6622 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6623 cond_resched();
6624 }
6625 }
6626
6627 pr_info("%s initialised %lu pages in %ums\n", __func__,
6628 nr_pages, jiffies_to_msecs(jiffies - start));
6629 }
6630
6631 #endif
6632 static void __meminit zone_init_free_lists(struct zone *zone)
6633 {
6634 unsigned int order, t;
6635 for_each_migratetype_order(order, t) {
6636 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6637 zone->free_area[order].nr_free = 0;
6638 }
6639 }
6640
6641 #if !defined(CONFIG_FLATMEM)
6642 /*
6643 * Only struct pages that correspond to ranges defined by memblock.memory
6644 * are zeroed and initialized by going through __init_single_page() during
6645 * memmap_init_zone_range().
6646 *
6647 * But, there could be struct pages that correspond to holes in
6648 * memblock.memory. This can happen because of the following reasons:
6649 * - physical memory bank size is not necessarily the exact multiple of the
6650 * arbitrary section size
6651 * - early reserved memory may not be listed in memblock.memory
6652 * - memory layouts defined with memmap= kernel parameter may not align
6653 * nicely with memmap sections
6654 *
6655 * Explicitly initialize those struct pages so that:
6656 * - PG_Reserved is set
6657 * - zone and node links point to zone and node that span the page if the
6658 * hole is in the middle of a zone
6659 * - zone and node links point to adjacent zone/node if the hole falls on
6660 * the zone boundary; the pages in such holes will be prepended to the
6661 * zone/node above the hole except for the trailing pages in the last
6662 * section that will be appended to the zone/node below.
6663 */
6664 static void __init init_unavailable_range(unsigned long spfn,
6665 unsigned long epfn,
6666 int zone, int node)
6667 {
6668 unsigned long pfn;
6669 u64 pgcnt = 0;
6670
6671 for (pfn = spfn; pfn < epfn; pfn++) {
6672 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6673 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6674 + pageblock_nr_pages - 1;
6675 continue;
6676 }
6677 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6678 __SetPageReserved(pfn_to_page(pfn));
6679 pgcnt++;
6680 }
6681
6682 if (pgcnt)
6683 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6684 node, zone_names[zone], pgcnt);
6685 }
6686 #else
6687 static inline void init_unavailable_range(unsigned long spfn,
6688 unsigned long epfn,
6689 int zone, int node)
6690 {
6691 }
6692 #endif
6693
6694 static void __init memmap_init_zone_range(struct zone *zone,
6695 unsigned long start_pfn,
6696 unsigned long end_pfn,
6697 unsigned long *hole_pfn)
6698 {
6699 unsigned long zone_start_pfn = zone->zone_start_pfn;
6700 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6701 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6702
6703 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6704 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6705
6706 if (start_pfn >= end_pfn)
6707 return;
6708
6709 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6710 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6711
6712 if (*hole_pfn < start_pfn)
6713 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6714
6715 *hole_pfn = end_pfn;
6716 }
6717
6718 static void __init memmap_init(void)
6719 {
6720 unsigned long start_pfn, end_pfn;
6721 unsigned long hole_pfn = 0;
6722 int i, j, zone_id, nid;
6723
6724 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6725 struct pglist_data *node = NODE_DATA(nid);
6726
6727 for (j = 0; j < MAX_NR_ZONES; j++) {
6728 struct zone *zone = node->node_zones + j;
6729
6730 if (!populated_zone(zone))
6731 continue;
6732
6733 memmap_init_zone_range(zone, start_pfn, end_pfn,
6734 &hole_pfn);
6735 zone_id = j;
6736 }
6737 }
6738
6739 #ifdef CONFIG_SPARSEMEM
6740 /*
6741 * Initialize the memory map for hole in the range [memory_end,
6742 * section_end].
6743 * Append the pages in this hole to the highest zone in the last
6744 * node.
6745 * The call to init_unavailable_range() is outside the ifdef to
6746 * silence the compiler warining about zone_id set but not used;
6747 * for FLATMEM it is a nop anyway
6748 */
6749 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6750 if (hole_pfn < end_pfn)
6751 #endif
6752 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6753 }
6754
6755 static int zone_batchsize(struct zone *zone)
6756 {
6757 #ifdef CONFIG_MMU
6758 int batch;
6759
6760 /*
6761 * The number of pages to batch allocate is either ~0.1%
6762 * of the zone or 1MB, whichever is smaller. The batch
6763 * size is striking a balance between allocation latency
6764 * and zone lock contention.
6765 */
6766 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6767 batch /= 4; /* We effectively *= 4 below */
6768 if (batch < 1)
6769 batch = 1;
6770
6771 /*
6772 * Clamp the batch to a 2^n - 1 value. Having a power
6773 * of 2 value was found to be more likely to have
6774 * suboptimal cache aliasing properties in some cases.
6775 *
6776 * For example if 2 tasks are alternately allocating
6777 * batches of pages, one task can end up with a lot
6778 * of pages of one half of the possible page colors
6779 * and the other with pages of the other colors.
6780 */
6781 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6782
6783 return batch;
6784
6785 #else
6786 /* The deferral and batching of frees should be suppressed under NOMMU
6787 * conditions.
6788 *
6789 * The problem is that NOMMU needs to be able to allocate large chunks
6790 * of contiguous memory as there's no hardware page translation to
6791 * assemble apparent contiguous memory from discontiguous pages.
6792 *
6793 * Queueing large contiguous runs of pages for batching, however,
6794 * causes the pages to actually be freed in smaller chunks. As there
6795 * can be a significant delay between the individual batches being
6796 * recycled, this leads to the once large chunks of space being
6797 * fragmented and becoming unavailable for high-order allocations.
6798 */
6799 return 0;
6800 #endif
6801 }
6802
6803 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6804 {
6805 #ifdef CONFIG_MMU
6806 int high;
6807 int nr_split_cpus;
6808 unsigned long total_pages;
6809
6810 if (!percpu_pagelist_high_fraction) {
6811 /*
6812 * By default, the high value of the pcp is based on the zone
6813 * low watermark so that if they are full then background
6814 * reclaim will not be started prematurely.
6815 */
6816 total_pages = low_wmark_pages(zone);
6817 } else {
6818 /*
6819 * If percpu_pagelist_high_fraction is configured, the high
6820 * value is based on a fraction of the managed pages in the
6821 * zone.
6822 */
6823 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6824 }
6825
6826 /*
6827 * Split the high value across all online CPUs local to the zone. Note
6828 * that early in boot that CPUs may not be online yet and that during
6829 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6830 * onlined. For memory nodes that have no CPUs, split pcp->high across
6831 * all online CPUs to mitigate the risk that reclaim is triggered
6832 * prematurely due to pages stored on pcp lists.
6833 */
6834 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6835 if (!nr_split_cpus)
6836 nr_split_cpus = num_online_cpus();
6837 high = total_pages / nr_split_cpus;
6838
6839 /*
6840 * Ensure high is at least batch*4. The multiple is based on the
6841 * historical relationship between high and batch.
6842 */
6843 high = max(high, batch << 2);
6844
6845 return high;
6846 #else
6847 return 0;
6848 #endif
6849 }
6850
6851 /*
6852 * pcp->high and pcp->batch values are related and generally batch is lower
6853 * than high. They are also related to pcp->count such that count is lower
6854 * than high, and as soon as it reaches high, the pcplist is flushed.
6855 *
6856 * However, guaranteeing these relations at all times would require e.g. write
6857 * barriers here but also careful usage of read barriers at the read side, and
6858 * thus be prone to error and bad for performance. Thus the update only prevents
6859 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6860 * can cope with those fields changing asynchronously, and fully trust only the
6861 * pcp->count field on the local CPU with interrupts disabled.
6862 *
6863 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6864 * outside of boot time (or some other assurance that no concurrent updaters
6865 * exist).
6866 */
6867 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6868 unsigned long batch)
6869 {
6870 WRITE_ONCE(pcp->batch, batch);
6871 WRITE_ONCE(pcp->high, high);
6872 }
6873
6874 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6875 {
6876 int pindex;
6877
6878 memset(pcp, 0, sizeof(*pcp));
6879 memset(pzstats, 0, sizeof(*pzstats));
6880
6881 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6882 INIT_LIST_HEAD(&pcp->lists[pindex]);
6883
6884 /*
6885 * Set batch and high values safe for a boot pageset. A true percpu
6886 * pageset's initialization will update them subsequently. Here we don't
6887 * need to be as careful as pageset_update() as nobody can access the
6888 * pageset yet.
6889 */
6890 pcp->high = BOOT_PAGESET_HIGH;
6891 pcp->batch = BOOT_PAGESET_BATCH;
6892 pcp->free_factor = 0;
6893 }
6894
6895 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6896 unsigned long batch)
6897 {
6898 struct per_cpu_pages *pcp;
6899 int cpu;
6900
6901 for_each_possible_cpu(cpu) {
6902 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6903 pageset_update(pcp, high, batch);
6904 }
6905 }
6906
6907 /*
6908 * Calculate and set new high and batch values for all per-cpu pagesets of a
6909 * zone based on the zone's size.
6910 */
6911 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6912 {
6913 int new_high, new_batch;
6914
6915 new_batch = max(1, zone_batchsize(zone));
6916 new_high = zone_highsize(zone, new_batch, cpu_online);
6917
6918 if (zone->pageset_high == new_high &&
6919 zone->pageset_batch == new_batch)
6920 return;
6921
6922 zone->pageset_high = new_high;
6923 zone->pageset_batch = new_batch;
6924
6925 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6926 }
6927
6928 void __meminit setup_zone_pageset(struct zone *zone)
6929 {
6930 int cpu;
6931
6932 /* Size may be 0 on !SMP && !NUMA */
6933 if (sizeof(struct per_cpu_zonestat) > 0)
6934 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6935
6936 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6937 for_each_possible_cpu(cpu) {
6938 struct per_cpu_pages *pcp;
6939 struct per_cpu_zonestat *pzstats;
6940
6941 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6942 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6943 per_cpu_pages_init(pcp, pzstats);
6944 }
6945
6946 zone_set_pageset_high_and_batch(zone, 0);
6947 }
6948
6949 /*
6950 * Allocate per cpu pagesets and initialize them.
6951 * Before this call only boot pagesets were available.
6952 */
6953 void __init setup_per_cpu_pageset(void)
6954 {
6955 struct pglist_data *pgdat;
6956 struct zone *zone;
6957 int __maybe_unused cpu;
6958
6959 for_each_populated_zone(zone)
6960 setup_zone_pageset(zone);
6961
6962 #ifdef CONFIG_NUMA
6963 /*
6964 * Unpopulated zones continue using the boot pagesets.
6965 * The numa stats for these pagesets need to be reset.
6966 * Otherwise, they will end up skewing the stats of
6967 * the nodes these zones are associated with.
6968 */
6969 for_each_possible_cpu(cpu) {
6970 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6971 memset(pzstats->vm_numa_event, 0,
6972 sizeof(pzstats->vm_numa_event));
6973 }
6974 #endif
6975
6976 for_each_online_pgdat(pgdat)
6977 pgdat->per_cpu_nodestats =
6978 alloc_percpu(struct per_cpu_nodestat);
6979 }
6980
6981 static __meminit void zone_pcp_init(struct zone *zone)
6982 {
6983 /*
6984 * per cpu subsystem is not up at this point. The following code
6985 * relies on the ability of the linker to provide the
6986 * offset of a (static) per cpu variable into the per cpu area.
6987 */
6988 zone->per_cpu_pageset = &boot_pageset;
6989 zone->per_cpu_zonestats = &boot_zonestats;
6990 zone->pageset_high = BOOT_PAGESET_HIGH;
6991 zone->pageset_batch = BOOT_PAGESET_BATCH;
6992
6993 if (populated_zone(zone))
6994 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
6995 zone->present_pages, zone_batchsize(zone));
6996 }
6997
6998 void __meminit init_currently_empty_zone(struct zone *zone,
6999 unsigned long zone_start_pfn,
7000 unsigned long size)
7001 {
7002 struct pglist_data *pgdat = zone->zone_pgdat;
7003 int zone_idx = zone_idx(zone) + 1;
7004
7005 if (zone_idx > pgdat->nr_zones)
7006 pgdat->nr_zones = zone_idx;
7007
7008 zone->zone_start_pfn = zone_start_pfn;
7009
7010 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7011 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7012 pgdat->node_id,
7013 (unsigned long)zone_idx(zone),
7014 zone_start_pfn, (zone_start_pfn + size));
7015
7016 zone_init_free_lists(zone);
7017 zone->initialized = 1;
7018 }
7019
7020 /**
7021 * get_pfn_range_for_nid - Return the start and end page frames for a node
7022 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7023 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7024 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7025 *
7026 * It returns the start and end page frame of a node based on information
7027 * provided by memblock_set_node(). If called for a node
7028 * with no available memory, a warning is printed and the start and end
7029 * PFNs will be 0.
7030 */
7031 void __init get_pfn_range_for_nid(unsigned int nid,
7032 unsigned long *start_pfn, unsigned long *end_pfn)
7033 {
7034 unsigned long this_start_pfn, this_end_pfn;
7035 int i;
7036
7037 *start_pfn = -1UL;
7038 *end_pfn = 0;
7039
7040 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7041 *start_pfn = min(*start_pfn, this_start_pfn);
7042 *end_pfn = max(*end_pfn, this_end_pfn);
7043 }
7044
7045 if (*start_pfn == -1UL)
7046 *start_pfn = 0;
7047 }
7048
7049 /*
7050 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7051 * assumption is made that zones within a node are ordered in monotonic
7052 * increasing memory addresses so that the "highest" populated zone is used
7053 */
7054 static void __init find_usable_zone_for_movable(void)
7055 {
7056 int zone_index;
7057 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7058 if (zone_index == ZONE_MOVABLE)
7059 continue;
7060
7061 if (arch_zone_highest_possible_pfn[zone_index] >
7062 arch_zone_lowest_possible_pfn[zone_index])
7063 break;
7064 }
7065
7066 VM_BUG_ON(zone_index == -1);
7067 movable_zone = zone_index;
7068 }
7069
7070 /*
7071 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7072 * because it is sized independent of architecture. Unlike the other zones,
7073 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7074 * in each node depending on the size of each node and how evenly kernelcore
7075 * is distributed. This helper function adjusts the zone ranges
7076 * provided by the architecture for a given node by using the end of the
7077 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7078 * zones within a node are in order of monotonic increases memory addresses
7079 */
7080 static void __init adjust_zone_range_for_zone_movable(int nid,
7081 unsigned long zone_type,
7082 unsigned long node_start_pfn,
7083 unsigned long node_end_pfn,
7084 unsigned long *zone_start_pfn,
7085 unsigned long *zone_end_pfn)
7086 {
7087 /* Only adjust if ZONE_MOVABLE is on this node */
7088 if (zone_movable_pfn[nid]) {
7089 /* Size ZONE_MOVABLE */
7090 if (zone_type == ZONE_MOVABLE) {
7091 *zone_start_pfn = zone_movable_pfn[nid];
7092 *zone_end_pfn = min(node_end_pfn,
7093 arch_zone_highest_possible_pfn[movable_zone]);
7094
7095 /* Adjust for ZONE_MOVABLE starting within this range */
7096 } else if (!mirrored_kernelcore &&
7097 *zone_start_pfn < zone_movable_pfn[nid] &&
7098 *zone_end_pfn > zone_movable_pfn[nid]) {
7099 *zone_end_pfn = zone_movable_pfn[nid];
7100
7101 /* Check if this whole range is within ZONE_MOVABLE */
7102 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7103 *zone_start_pfn = *zone_end_pfn;
7104 }
7105 }
7106
7107 /*
7108 * Return the number of pages a zone spans in a node, including holes
7109 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7110 */
7111 static unsigned long __init zone_spanned_pages_in_node(int nid,
7112 unsigned long zone_type,
7113 unsigned long node_start_pfn,
7114 unsigned long node_end_pfn,
7115 unsigned long *zone_start_pfn,
7116 unsigned long *zone_end_pfn)
7117 {
7118 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7119 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7120 /* When hotadd a new node from cpu_up(), the node should be empty */
7121 if (!node_start_pfn && !node_end_pfn)
7122 return 0;
7123
7124 /* Get the start and end of the zone */
7125 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7126 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7127 adjust_zone_range_for_zone_movable(nid, zone_type,
7128 node_start_pfn, node_end_pfn,
7129 zone_start_pfn, zone_end_pfn);
7130
7131 /* Check that this node has pages within the zone's required range */
7132 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7133 return 0;
7134
7135 /* Move the zone boundaries inside the node if necessary */
7136 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7137 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7138
7139 /* Return the spanned pages */
7140 return *zone_end_pfn - *zone_start_pfn;
7141 }
7142
7143 /*
7144 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7145 * then all holes in the requested range will be accounted for.
7146 */
7147 unsigned long __init __absent_pages_in_range(int nid,
7148 unsigned long range_start_pfn,
7149 unsigned long range_end_pfn)
7150 {
7151 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7152 unsigned long start_pfn, end_pfn;
7153 int i;
7154
7155 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7156 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7157 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7158 nr_absent -= end_pfn - start_pfn;
7159 }
7160 return nr_absent;
7161 }
7162
7163 /**
7164 * absent_pages_in_range - Return number of page frames in holes within a range
7165 * @start_pfn: The start PFN to start searching for holes
7166 * @end_pfn: The end PFN to stop searching for holes
7167 *
7168 * Return: the number of pages frames in memory holes within a range.
7169 */
7170 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7171 unsigned long end_pfn)
7172 {
7173 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7174 }
7175
7176 /* Return the number of page frames in holes in a zone on a node */
7177 static unsigned long __init zone_absent_pages_in_node(int nid,
7178 unsigned long zone_type,
7179 unsigned long node_start_pfn,
7180 unsigned long node_end_pfn)
7181 {
7182 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7183 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7184 unsigned long zone_start_pfn, zone_end_pfn;
7185 unsigned long nr_absent;
7186
7187 /* When hotadd a new node from cpu_up(), the node should be empty */
7188 if (!node_start_pfn && !node_end_pfn)
7189 return 0;
7190
7191 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7192 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7193
7194 adjust_zone_range_for_zone_movable(nid, zone_type,
7195 node_start_pfn, node_end_pfn,
7196 &zone_start_pfn, &zone_end_pfn);
7197 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7198
7199 /*
7200 * ZONE_MOVABLE handling.
7201 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7202 * and vice versa.
7203 */
7204 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7205 unsigned long start_pfn, end_pfn;
7206 struct memblock_region *r;
7207
7208 for_each_mem_region(r) {
7209 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7210 zone_start_pfn, zone_end_pfn);
7211 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7212 zone_start_pfn, zone_end_pfn);
7213
7214 if (zone_type == ZONE_MOVABLE &&
7215 memblock_is_mirror(r))
7216 nr_absent += end_pfn - start_pfn;
7217
7218 if (zone_type == ZONE_NORMAL &&
7219 !memblock_is_mirror(r))
7220 nr_absent += end_pfn - start_pfn;
7221 }
7222 }
7223
7224 return nr_absent;
7225 }
7226
7227 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7228 unsigned long node_start_pfn,
7229 unsigned long node_end_pfn)
7230 {
7231 unsigned long realtotalpages = 0, totalpages = 0;
7232 enum zone_type i;
7233
7234 for (i = 0; i < MAX_NR_ZONES; i++) {
7235 struct zone *zone = pgdat->node_zones + i;
7236 unsigned long zone_start_pfn, zone_end_pfn;
7237 unsigned long spanned, absent;
7238 unsigned long size, real_size;
7239
7240 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7241 node_start_pfn,
7242 node_end_pfn,
7243 &zone_start_pfn,
7244 &zone_end_pfn);
7245 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7246 node_start_pfn,
7247 node_end_pfn);
7248
7249 size = spanned;
7250 real_size = size - absent;
7251
7252 if (size)
7253 zone->zone_start_pfn = zone_start_pfn;
7254 else
7255 zone->zone_start_pfn = 0;
7256 zone->spanned_pages = size;
7257 zone->present_pages = real_size;
7258
7259 totalpages += size;
7260 realtotalpages += real_size;
7261 }
7262
7263 pgdat->node_spanned_pages = totalpages;
7264 pgdat->node_present_pages = realtotalpages;
7265 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7266 }
7267
7268 #ifndef CONFIG_SPARSEMEM
7269 /*
7270 * Calculate the size of the zone->blockflags rounded to an unsigned long
7271 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7272 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7273 * round what is now in bits to nearest long in bits, then return it in
7274 * bytes.
7275 */
7276 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7277 {
7278 unsigned long usemapsize;
7279
7280 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7281 usemapsize = roundup(zonesize, pageblock_nr_pages);
7282 usemapsize = usemapsize >> pageblock_order;
7283 usemapsize *= NR_PAGEBLOCK_BITS;
7284 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7285
7286 return usemapsize / 8;
7287 }
7288
7289 static void __ref setup_usemap(struct zone *zone)
7290 {
7291 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7292 zone->spanned_pages);
7293 zone->pageblock_flags = NULL;
7294 if (usemapsize) {
7295 zone->pageblock_flags =
7296 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7297 zone_to_nid(zone));
7298 if (!zone->pageblock_flags)
7299 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7300 usemapsize, zone->name, zone_to_nid(zone));
7301 }
7302 }
7303 #else
7304 static inline void setup_usemap(struct zone *zone) {}
7305 #endif /* CONFIG_SPARSEMEM */
7306
7307 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7308
7309 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7310 void __init set_pageblock_order(void)
7311 {
7312 unsigned int order;
7313
7314 /* Check that pageblock_nr_pages has not already been setup */
7315 if (pageblock_order)
7316 return;
7317
7318 if (HPAGE_SHIFT > PAGE_SHIFT)
7319 order = HUGETLB_PAGE_ORDER;
7320 else
7321 order = MAX_ORDER - 1;
7322
7323 /*
7324 * Assume the largest contiguous order of interest is a huge page.
7325 * This value may be variable depending on boot parameters on IA64 and
7326 * powerpc.
7327 */
7328 pageblock_order = order;
7329 }
7330 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7331
7332 /*
7333 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7334 * is unused as pageblock_order is set at compile-time. See
7335 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7336 * the kernel config
7337 */
7338 void __init set_pageblock_order(void)
7339 {
7340 }
7341
7342 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7343
7344 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7345 unsigned long present_pages)
7346 {
7347 unsigned long pages = spanned_pages;
7348
7349 /*
7350 * Provide a more accurate estimation if there are holes within
7351 * the zone and SPARSEMEM is in use. If there are holes within the
7352 * zone, each populated memory region may cost us one or two extra
7353 * memmap pages due to alignment because memmap pages for each
7354 * populated regions may not be naturally aligned on page boundary.
7355 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7356 */
7357 if (spanned_pages > present_pages + (present_pages >> 4) &&
7358 IS_ENABLED(CONFIG_SPARSEMEM))
7359 pages = present_pages;
7360
7361 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7362 }
7363
7364 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7365 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7366 {
7367 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7368
7369 spin_lock_init(&ds_queue->split_queue_lock);
7370 INIT_LIST_HEAD(&ds_queue->split_queue);
7371 ds_queue->split_queue_len = 0;
7372 }
7373 #else
7374 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7375 #endif
7376
7377 #ifdef CONFIG_COMPACTION
7378 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7379 {
7380 init_waitqueue_head(&pgdat->kcompactd_wait);
7381 }
7382 #else
7383 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7384 #endif
7385
7386 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7387 {
7388 pgdat_resize_init(pgdat);
7389
7390 pgdat_init_split_queue(pgdat);
7391 pgdat_init_kcompactd(pgdat);
7392
7393 init_waitqueue_head(&pgdat->kswapd_wait);
7394 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7395
7396 pgdat_page_ext_init(pgdat);
7397 lruvec_init(&pgdat->__lruvec);
7398 }
7399
7400 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7401 unsigned long remaining_pages)
7402 {
7403 atomic_long_set(&zone->managed_pages, remaining_pages);
7404 zone_set_nid(zone, nid);
7405 zone->name = zone_names[idx];
7406 zone->zone_pgdat = NODE_DATA(nid);
7407 spin_lock_init(&zone->lock);
7408 zone_seqlock_init(zone);
7409 zone_pcp_init(zone);
7410 }
7411
7412 /*
7413 * Set up the zone data structures
7414 * - init pgdat internals
7415 * - init all zones belonging to this node
7416 *
7417 * NOTE: this function is only called during memory hotplug
7418 */
7419 #ifdef CONFIG_MEMORY_HOTPLUG
7420 void __ref free_area_init_core_hotplug(int nid)
7421 {
7422 enum zone_type z;
7423 pg_data_t *pgdat = NODE_DATA(nid);
7424
7425 pgdat_init_internals(pgdat);
7426 for (z = 0; z < MAX_NR_ZONES; z++)
7427 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7428 }
7429 #endif
7430
7431 /*
7432 * Set up the zone data structures:
7433 * - mark all pages reserved
7434 * - mark all memory queues empty
7435 * - clear the memory bitmaps
7436 *
7437 * NOTE: pgdat should get zeroed by caller.
7438 * NOTE: this function is only called during early init.
7439 */
7440 static void __init free_area_init_core(struct pglist_data *pgdat)
7441 {
7442 enum zone_type j;
7443 int nid = pgdat->node_id;
7444
7445 pgdat_init_internals(pgdat);
7446 pgdat->per_cpu_nodestats = &boot_nodestats;
7447
7448 for (j = 0; j < MAX_NR_ZONES; j++) {
7449 struct zone *zone = pgdat->node_zones + j;
7450 unsigned long size, freesize, memmap_pages;
7451
7452 size = zone->spanned_pages;
7453 freesize = zone->present_pages;
7454
7455 /*
7456 * Adjust freesize so that it accounts for how much memory
7457 * is used by this zone for memmap. This affects the watermark
7458 * and per-cpu initialisations
7459 */
7460 memmap_pages = calc_memmap_size(size, freesize);
7461 if (!is_highmem_idx(j)) {
7462 if (freesize >= memmap_pages) {
7463 freesize -= memmap_pages;
7464 if (memmap_pages)
7465 pr_debug(" %s zone: %lu pages used for memmap\n",
7466 zone_names[j], memmap_pages);
7467 } else
7468 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7469 zone_names[j], memmap_pages, freesize);
7470 }
7471
7472 /* Account for reserved pages */
7473 if (j == 0 && freesize > dma_reserve) {
7474 freesize -= dma_reserve;
7475 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7476 }
7477
7478 if (!is_highmem_idx(j))
7479 nr_kernel_pages += freesize;
7480 /* Charge for highmem memmap if there are enough kernel pages */
7481 else if (nr_kernel_pages > memmap_pages * 2)
7482 nr_kernel_pages -= memmap_pages;
7483 nr_all_pages += freesize;
7484
7485 /*
7486 * Set an approximate value for lowmem here, it will be adjusted
7487 * when the bootmem allocator frees pages into the buddy system.
7488 * And all highmem pages will be managed by the buddy system.
7489 */
7490 zone_init_internals(zone, j, nid, freesize);
7491
7492 if (!size)
7493 continue;
7494
7495 set_pageblock_order();
7496 setup_usemap(zone);
7497 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7498 }
7499 }
7500
7501 #ifdef CONFIG_FLATMEM
7502 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
7503 {
7504 unsigned long __maybe_unused start = 0;
7505 unsigned long __maybe_unused offset = 0;
7506
7507 /* Skip empty nodes */
7508 if (!pgdat->node_spanned_pages)
7509 return;
7510
7511 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7512 offset = pgdat->node_start_pfn - start;
7513 /* ia64 gets its own node_mem_map, before this, without bootmem */
7514 if (!pgdat->node_mem_map) {
7515 unsigned long size, end;
7516 struct page *map;
7517
7518 /*
7519 * The zone's endpoints aren't required to be MAX_ORDER
7520 * aligned but the node_mem_map endpoints must be in order
7521 * for the buddy allocator to function correctly.
7522 */
7523 end = pgdat_end_pfn(pgdat);
7524 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7525 size = (end - start) * sizeof(struct page);
7526 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7527 pgdat->node_id);
7528 if (!map)
7529 panic("Failed to allocate %ld bytes for node %d memory map\n",
7530 size, pgdat->node_id);
7531 pgdat->node_mem_map = map + offset;
7532 }
7533 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7534 __func__, pgdat->node_id, (unsigned long)pgdat,
7535 (unsigned long)pgdat->node_mem_map);
7536 #ifndef CONFIG_NUMA
7537 /*
7538 * With no DISCONTIG, the global mem_map is just set as node 0's
7539 */
7540 if (pgdat == NODE_DATA(0)) {
7541 mem_map = NODE_DATA(0)->node_mem_map;
7542 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7543 mem_map -= offset;
7544 }
7545 #endif
7546 }
7547 #else
7548 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7549 #endif /* CONFIG_FLATMEM */
7550
7551 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7552 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7553 {
7554 pgdat->first_deferred_pfn = ULONG_MAX;
7555 }
7556 #else
7557 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7558 #endif
7559
7560 static void __init free_area_init_node(int nid)
7561 {
7562 pg_data_t *pgdat = NODE_DATA(nid);
7563 unsigned long start_pfn = 0;
7564 unsigned long end_pfn = 0;
7565
7566 /* pg_data_t should be reset to zero when it's allocated */
7567 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7568
7569 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7570
7571 pgdat->node_id = nid;
7572 pgdat->node_start_pfn = start_pfn;
7573 pgdat->per_cpu_nodestats = NULL;
7574
7575 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7576 (u64)start_pfn << PAGE_SHIFT,
7577 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7578 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7579
7580 alloc_node_mem_map(pgdat);
7581 pgdat_set_deferred_range(pgdat);
7582
7583 free_area_init_core(pgdat);
7584 }
7585
7586 void __init free_area_init_memoryless_node(int nid)
7587 {
7588 free_area_init_node(nid);
7589 }
7590
7591 #if MAX_NUMNODES > 1
7592 /*
7593 * Figure out the number of possible node ids.
7594 */
7595 void __init setup_nr_node_ids(void)
7596 {
7597 unsigned int highest;
7598
7599 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7600 nr_node_ids = highest + 1;
7601 }
7602 #endif
7603
7604 /**
7605 * node_map_pfn_alignment - determine the maximum internode alignment
7606 *
7607 * This function should be called after node map is populated and sorted.
7608 * It calculates the maximum power of two alignment which can distinguish
7609 * all the nodes.
7610 *
7611 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7612 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7613 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7614 * shifted, 1GiB is enough and this function will indicate so.
7615 *
7616 * This is used to test whether pfn -> nid mapping of the chosen memory
7617 * model has fine enough granularity to avoid incorrect mapping for the
7618 * populated node map.
7619 *
7620 * Return: the determined alignment in pfn's. 0 if there is no alignment
7621 * requirement (single node).
7622 */
7623 unsigned long __init node_map_pfn_alignment(void)
7624 {
7625 unsigned long accl_mask = 0, last_end = 0;
7626 unsigned long start, end, mask;
7627 int last_nid = NUMA_NO_NODE;
7628 int i, nid;
7629
7630 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7631 if (!start || last_nid < 0 || last_nid == nid) {
7632 last_nid = nid;
7633 last_end = end;
7634 continue;
7635 }
7636
7637 /*
7638 * Start with a mask granular enough to pin-point to the
7639 * start pfn and tick off bits one-by-one until it becomes
7640 * too coarse to separate the current node from the last.
7641 */
7642 mask = ~((1 << __ffs(start)) - 1);
7643 while (mask && last_end <= (start & (mask << 1)))
7644 mask <<= 1;
7645
7646 /* accumulate all internode masks */
7647 accl_mask |= mask;
7648 }
7649
7650 /* convert mask to number of pages */
7651 return ~accl_mask + 1;
7652 }
7653
7654 /**
7655 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7656 *
7657 * Return: the minimum PFN based on information provided via
7658 * memblock_set_node().
7659 */
7660 unsigned long __init find_min_pfn_with_active_regions(void)
7661 {
7662 return PHYS_PFN(memblock_start_of_DRAM());
7663 }
7664
7665 /*
7666 * early_calculate_totalpages()
7667 * Sum pages in active regions for movable zone.
7668 * Populate N_MEMORY for calculating usable_nodes.
7669 */
7670 static unsigned long __init early_calculate_totalpages(void)
7671 {
7672 unsigned long totalpages = 0;
7673 unsigned long start_pfn, end_pfn;
7674 int i, nid;
7675
7676 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7677 unsigned long pages = end_pfn - start_pfn;
7678
7679 totalpages += pages;
7680 if (pages)
7681 node_set_state(nid, N_MEMORY);
7682 }
7683 return totalpages;
7684 }
7685
7686 /*
7687 * Find the PFN the Movable zone begins in each node. Kernel memory
7688 * is spread evenly between nodes as long as the nodes have enough
7689 * memory. When they don't, some nodes will have more kernelcore than
7690 * others
7691 */
7692 static void __init find_zone_movable_pfns_for_nodes(void)
7693 {
7694 int i, nid;
7695 unsigned long usable_startpfn;
7696 unsigned long kernelcore_node, kernelcore_remaining;
7697 /* save the state before borrow the nodemask */
7698 nodemask_t saved_node_state = node_states[N_MEMORY];
7699 unsigned long totalpages = early_calculate_totalpages();
7700 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7701 struct memblock_region *r;
7702
7703 /* Need to find movable_zone earlier when movable_node is specified. */
7704 find_usable_zone_for_movable();
7705
7706 /*
7707 * If movable_node is specified, ignore kernelcore and movablecore
7708 * options.
7709 */
7710 if (movable_node_is_enabled()) {
7711 for_each_mem_region(r) {
7712 if (!memblock_is_hotpluggable(r))
7713 continue;
7714
7715 nid = memblock_get_region_node(r);
7716
7717 usable_startpfn = PFN_DOWN(r->base);
7718 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7719 min(usable_startpfn, zone_movable_pfn[nid]) :
7720 usable_startpfn;
7721 }
7722
7723 goto out2;
7724 }
7725
7726 /*
7727 * If kernelcore=mirror is specified, ignore movablecore option
7728 */
7729 if (mirrored_kernelcore) {
7730 bool mem_below_4gb_not_mirrored = false;
7731
7732 for_each_mem_region(r) {
7733 if (memblock_is_mirror(r))
7734 continue;
7735
7736 nid = memblock_get_region_node(r);
7737
7738 usable_startpfn = memblock_region_memory_base_pfn(r);
7739
7740 if (usable_startpfn < 0x100000) {
7741 mem_below_4gb_not_mirrored = true;
7742 continue;
7743 }
7744
7745 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7746 min(usable_startpfn, zone_movable_pfn[nid]) :
7747 usable_startpfn;
7748 }
7749
7750 if (mem_below_4gb_not_mirrored)
7751 pr_warn("This configuration results in unmirrored kernel memory.\n");
7752
7753 goto out2;
7754 }
7755
7756 /*
7757 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7758 * amount of necessary memory.
7759 */
7760 if (required_kernelcore_percent)
7761 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7762 10000UL;
7763 if (required_movablecore_percent)
7764 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7765 10000UL;
7766
7767 /*
7768 * If movablecore= was specified, calculate what size of
7769 * kernelcore that corresponds so that memory usable for
7770 * any allocation type is evenly spread. If both kernelcore
7771 * and movablecore are specified, then the value of kernelcore
7772 * will be used for required_kernelcore if it's greater than
7773 * what movablecore would have allowed.
7774 */
7775 if (required_movablecore) {
7776 unsigned long corepages;
7777
7778 /*
7779 * Round-up so that ZONE_MOVABLE is at least as large as what
7780 * was requested by the user
7781 */
7782 required_movablecore =
7783 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7784 required_movablecore = min(totalpages, required_movablecore);
7785 corepages = totalpages - required_movablecore;
7786
7787 required_kernelcore = max(required_kernelcore, corepages);
7788 }
7789
7790 /*
7791 * If kernelcore was not specified or kernelcore size is larger
7792 * than totalpages, there is no ZONE_MOVABLE.
7793 */
7794 if (!required_kernelcore || required_kernelcore >= totalpages)
7795 goto out;
7796
7797 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7798 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7799
7800 restart:
7801 /* Spread kernelcore memory as evenly as possible throughout nodes */
7802 kernelcore_node = required_kernelcore / usable_nodes;
7803 for_each_node_state(nid, N_MEMORY) {
7804 unsigned long start_pfn, end_pfn;
7805
7806 /*
7807 * Recalculate kernelcore_node if the division per node
7808 * now exceeds what is necessary to satisfy the requested
7809 * amount of memory for the kernel
7810 */
7811 if (required_kernelcore < kernelcore_node)
7812 kernelcore_node = required_kernelcore / usable_nodes;
7813
7814 /*
7815 * As the map is walked, we track how much memory is usable
7816 * by the kernel using kernelcore_remaining. When it is
7817 * 0, the rest of the node is usable by ZONE_MOVABLE
7818 */
7819 kernelcore_remaining = kernelcore_node;
7820
7821 /* Go through each range of PFNs within this node */
7822 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7823 unsigned long size_pages;
7824
7825 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7826 if (start_pfn >= end_pfn)
7827 continue;
7828
7829 /* Account for what is only usable for kernelcore */
7830 if (start_pfn < usable_startpfn) {
7831 unsigned long kernel_pages;
7832 kernel_pages = min(end_pfn, usable_startpfn)
7833 - start_pfn;
7834
7835 kernelcore_remaining -= min(kernel_pages,
7836 kernelcore_remaining);
7837 required_kernelcore -= min(kernel_pages,
7838 required_kernelcore);
7839
7840 /* Continue if range is now fully accounted */
7841 if (end_pfn <= usable_startpfn) {
7842
7843 /*
7844 * Push zone_movable_pfn to the end so
7845 * that if we have to rebalance
7846 * kernelcore across nodes, we will
7847 * not double account here
7848 */
7849 zone_movable_pfn[nid] = end_pfn;
7850 continue;
7851 }
7852 start_pfn = usable_startpfn;
7853 }
7854
7855 /*
7856 * The usable PFN range for ZONE_MOVABLE is from
7857 * start_pfn->end_pfn. Calculate size_pages as the
7858 * number of pages used as kernelcore
7859 */
7860 size_pages = end_pfn - start_pfn;
7861 if (size_pages > kernelcore_remaining)
7862 size_pages = kernelcore_remaining;
7863 zone_movable_pfn[nid] = start_pfn + size_pages;
7864
7865 /*
7866 * Some kernelcore has been met, update counts and
7867 * break if the kernelcore for this node has been
7868 * satisfied
7869 */
7870 required_kernelcore -= min(required_kernelcore,
7871 size_pages);
7872 kernelcore_remaining -= size_pages;
7873 if (!kernelcore_remaining)
7874 break;
7875 }
7876 }
7877
7878 /*
7879 * If there is still required_kernelcore, we do another pass with one
7880 * less node in the count. This will push zone_movable_pfn[nid] further
7881 * along on the nodes that still have memory until kernelcore is
7882 * satisfied
7883 */
7884 usable_nodes--;
7885 if (usable_nodes && required_kernelcore > usable_nodes)
7886 goto restart;
7887
7888 out2:
7889 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7890 for (nid = 0; nid < MAX_NUMNODES; nid++)
7891 zone_movable_pfn[nid] =
7892 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7893
7894 out:
7895 /* restore the node_state */
7896 node_states[N_MEMORY] = saved_node_state;
7897 }
7898
7899 /* Any regular or high memory on that node ? */
7900 static void check_for_memory(pg_data_t *pgdat, int nid)
7901 {
7902 enum zone_type zone_type;
7903
7904 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7905 struct zone *zone = &pgdat->node_zones[zone_type];
7906 if (populated_zone(zone)) {
7907 if (IS_ENABLED(CONFIG_HIGHMEM))
7908 node_set_state(nid, N_HIGH_MEMORY);
7909 if (zone_type <= ZONE_NORMAL)
7910 node_set_state(nid, N_NORMAL_MEMORY);
7911 break;
7912 }
7913 }
7914 }
7915
7916 /*
7917 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7918 * such cases we allow max_zone_pfn sorted in the descending order
7919 */
7920 bool __weak arch_has_descending_max_zone_pfns(void)
7921 {
7922 return false;
7923 }
7924
7925 /**
7926 * free_area_init - Initialise all pg_data_t and zone data
7927 * @max_zone_pfn: an array of max PFNs for each zone
7928 *
7929 * This will call free_area_init_node() for each active node in the system.
7930 * Using the page ranges provided by memblock_set_node(), the size of each
7931 * zone in each node and their holes is calculated. If the maximum PFN
7932 * between two adjacent zones match, it is assumed that the zone is empty.
7933 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7934 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7935 * starts where the previous one ended. For example, ZONE_DMA32 starts
7936 * at arch_max_dma_pfn.
7937 */
7938 void __init free_area_init(unsigned long *max_zone_pfn)
7939 {
7940 unsigned long start_pfn, end_pfn;
7941 int i, nid, zone;
7942 bool descending;
7943
7944 /* Record where the zone boundaries are */
7945 memset(arch_zone_lowest_possible_pfn, 0,
7946 sizeof(arch_zone_lowest_possible_pfn));
7947 memset(arch_zone_highest_possible_pfn, 0,
7948 sizeof(arch_zone_highest_possible_pfn));
7949
7950 start_pfn = find_min_pfn_with_active_regions();
7951 descending = arch_has_descending_max_zone_pfns();
7952
7953 for (i = 0; i < MAX_NR_ZONES; i++) {
7954 if (descending)
7955 zone = MAX_NR_ZONES - i - 1;
7956 else
7957 zone = i;
7958
7959 if (zone == ZONE_MOVABLE)
7960 continue;
7961
7962 end_pfn = max(max_zone_pfn[zone], start_pfn);
7963 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7964 arch_zone_highest_possible_pfn[zone] = end_pfn;
7965
7966 start_pfn = end_pfn;
7967 }
7968
7969 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7970 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7971 find_zone_movable_pfns_for_nodes();
7972
7973 /* Print out the zone ranges */
7974 pr_info("Zone ranges:\n");
7975 for (i = 0; i < MAX_NR_ZONES; i++) {
7976 if (i == ZONE_MOVABLE)
7977 continue;
7978 pr_info(" %-8s ", zone_names[i]);
7979 if (arch_zone_lowest_possible_pfn[i] ==
7980 arch_zone_highest_possible_pfn[i])
7981 pr_cont("empty\n");
7982 else
7983 pr_cont("[mem %#018Lx-%#018Lx]\n",
7984 (u64)arch_zone_lowest_possible_pfn[i]
7985 << PAGE_SHIFT,
7986 ((u64)arch_zone_highest_possible_pfn[i]
7987 << PAGE_SHIFT) - 1);
7988 }
7989
7990 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7991 pr_info("Movable zone start for each node\n");
7992 for (i = 0; i < MAX_NUMNODES; i++) {
7993 if (zone_movable_pfn[i])
7994 pr_info(" Node %d: %#018Lx\n", i,
7995 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7996 }
7997
7998 /*
7999 * Print out the early node map, and initialize the
8000 * subsection-map relative to active online memory ranges to
8001 * enable future "sub-section" extensions of the memory map.
8002 */
8003 pr_info("Early memory node ranges\n");
8004 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8005 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8006 (u64)start_pfn << PAGE_SHIFT,
8007 ((u64)end_pfn << PAGE_SHIFT) - 1);
8008 subsection_map_init(start_pfn, end_pfn - start_pfn);
8009 }
8010
8011 /* Initialise every node */
8012 mminit_verify_pageflags_layout();
8013 setup_nr_node_ids();
8014 for_each_online_node(nid) {
8015 pg_data_t *pgdat = NODE_DATA(nid);
8016 free_area_init_node(nid);
8017
8018 /* Any memory on that node */
8019 if (pgdat->node_present_pages)
8020 node_set_state(nid, N_MEMORY);
8021 check_for_memory(pgdat, nid);
8022 }
8023
8024 memmap_init();
8025 }
8026
8027 static int __init cmdline_parse_core(char *p, unsigned long *core,
8028 unsigned long *percent)
8029 {
8030 unsigned long long coremem;
8031 char *endptr;
8032
8033 if (!p)
8034 return -EINVAL;
8035
8036 /* Value may be a percentage of total memory, otherwise bytes */
8037 coremem = simple_strtoull(p, &endptr, 0);
8038 if (*endptr == '%') {
8039 /* Paranoid check for percent values greater than 100 */
8040 WARN_ON(coremem > 100);
8041
8042 *percent = coremem;
8043 } else {
8044 coremem = memparse(p, &p);
8045 /* Paranoid check that UL is enough for the coremem value */
8046 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8047
8048 *core = coremem >> PAGE_SHIFT;
8049 *percent = 0UL;
8050 }
8051 return 0;
8052 }
8053
8054 /*
8055 * kernelcore=size sets the amount of memory for use for allocations that
8056 * cannot be reclaimed or migrated.
8057 */
8058 static int __init cmdline_parse_kernelcore(char *p)
8059 {
8060 /* parse kernelcore=mirror */
8061 if (parse_option_str(p, "mirror")) {
8062 mirrored_kernelcore = true;
8063 return 0;
8064 }
8065
8066 return cmdline_parse_core(p, &required_kernelcore,
8067 &required_kernelcore_percent);
8068 }
8069
8070 /*
8071 * movablecore=size sets the amount of memory for use for allocations that
8072 * can be reclaimed or migrated.
8073 */
8074 static int __init cmdline_parse_movablecore(char *p)
8075 {
8076 return cmdline_parse_core(p, &required_movablecore,
8077 &required_movablecore_percent);
8078 }
8079
8080 early_param("kernelcore", cmdline_parse_kernelcore);
8081 early_param("movablecore", cmdline_parse_movablecore);
8082
8083 void adjust_managed_page_count(struct page *page, long count)
8084 {
8085 atomic_long_add(count, &page_zone(page)->managed_pages);
8086 totalram_pages_add(count);
8087 #ifdef CONFIG_HIGHMEM
8088 if (PageHighMem(page))
8089 totalhigh_pages_add(count);
8090 #endif
8091 }
8092 EXPORT_SYMBOL(adjust_managed_page_count);
8093
8094 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8095 {
8096 void *pos;
8097 unsigned long pages = 0;
8098
8099 start = (void *)PAGE_ALIGN((unsigned long)start);
8100 end = (void *)((unsigned long)end & PAGE_MASK);
8101 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8102 struct page *page = virt_to_page(pos);
8103 void *direct_map_addr;
8104
8105 /*
8106 * 'direct_map_addr' might be different from 'pos'
8107 * because some architectures' virt_to_page()
8108 * work with aliases. Getting the direct map
8109 * address ensures that we get a _writeable_
8110 * alias for the memset().
8111 */
8112 direct_map_addr = page_address(page);
8113 /*
8114 * Perform a kasan-unchecked memset() since this memory
8115 * has not been initialized.
8116 */
8117 direct_map_addr = kasan_reset_tag(direct_map_addr);
8118 if ((unsigned int)poison <= 0xFF)
8119 memset(direct_map_addr, poison, PAGE_SIZE);
8120
8121 free_reserved_page(page);
8122 }
8123
8124 if (pages && s)
8125 pr_info("Freeing %s memory: %ldK\n",
8126 s, pages << (PAGE_SHIFT - 10));
8127
8128 return pages;
8129 }
8130
8131 void __init mem_init_print_info(void)
8132 {
8133 unsigned long physpages, codesize, datasize, rosize, bss_size;
8134 unsigned long init_code_size, init_data_size;
8135
8136 physpages = get_num_physpages();
8137 codesize = _etext - _stext;
8138 datasize = _edata - _sdata;
8139 rosize = __end_rodata - __start_rodata;
8140 bss_size = __bss_stop - __bss_start;
8141 init_data_size = __init_end - __init_begin;
8142 init_code_size = _einittext - _sinittext;
8143
8144 /*
8145 * Detect special cases and adjust section sizes accordingly:
8146 * 1) .init.* may be embedded into .data sections
8147 * 2) .init.text.* may be out of [__init_begin, __init_end],
8148 * please refer to arch/tile/kernel/vmlinux.lds.S.
8149 * 3) .rodata.* may be embedded into .text or .data sections.
8150 */
8151 #define adj_init_size(start, end, size, pos, adj) \
8152 do { \
8153 if (start <= pos && pos < end && size > adj) \
8154 size -= adj; \
8155 } while (0)
8156
8157 adj_init_size(__init_begin, __init_end, init_data_size,
8158 _sinittext, init_code_size);
8159 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8160 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8161 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8162 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8163
8164 #undef adj_init_size
8165
8166 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8167 #ifdef CONFIG_HIGHMEM
8168 ", %luK highmem"
8169 #endif
8170 ")\n",
8171 nr_free_pages() << (PAGE_SHIFT - 10),
8172 physpages << (PAGE_SHIFT - 10),
8173 codesize >> 10, datasize >> 10, rosize >> 10,
8174 (init_data_size + init_code_size) >> 10, bss_size >> 10,
8175 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
8176 totalcma_pages << (PAGE_SHIFT - 10)
8177 #ifdef CONFIG_HIGHMEM
8178 , totalhigh_pages() << (PAGE_SHIFT - 10)
8179 #endif
8180 );
8181 }
8182
8183 /**
8184 * set_dma_reserve - set the specified number of pages reserved in the first zone
8185 * @new_dma_reserve: The number of pages to mark reserved
8186 *
8187 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8188 * In the DMA zone, a significant percentage may be consumed by kernel image
8189 * and other unfreeable allocations which can skew the watermarks badly. This
8190 * function may optionally be used to account for unfreeable pages in the
8191 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8192 * smaller per-cpu batchsize.
8193 */
8194 void __init set_dma_reserve(unsigned long new_dma_reserve)
8195 {
8196 dma_reserve = new_dma_reserve;
8197 }
8198
8199 static int page_alloc_cpu_dead(unsigned int cpu)
8200 {
8201 struct zone *zone;
8202
8203 lru_add_drain_cpu(cpu);
8204 drain_pages(cpu);
8205
8206 /*
8207 * Spill the event counters of the dead processor
8208 * into the current processors event counters.
8209 * This artificially elevates the count of the current
8210 * processor.
8211 */
8212 vm_events_fold_cpu(cpu);
8213
8214 /*
8215 * Zero the differential counters of the dead processor
8216 * so that the vm statistics are consistent.
8217 *
8218 * This is only okay since the processor is dead and cannot
8219 * race with what we are doing.
8220 */
8221 cpu_vm_stats_fold(cpu);
8222
8223 for_each_populated_zone(zone)
8224 zone_pcp_update(zone, 0);
8225
8226 return 0;
8227 }
8228
8229 static int page_alloc_cpu_online(unsigned int cpu)
8230 {
8231 struct zone *zone;
8232
8233 for_each_populated_zone(zone)
8234 zone_pcp_update(zone, 1);
8235 return 0;
8236 }
8237
8238 #ifdef CONFIG_NUMA
8239 int hashdist = HASHDIST_DEFAULT;
8240
8241 static int __init set_hashdist(char *str)
8242 {
8243 if (!str)
8244 return 0;
8245 hashdist = simple_strtoul(str, &str, 0);
8246 return 1;
8247 }
8248 __setup("hashdist=", set_hashdist);
8249 #endif
8250
8251 void __init page_alloc_init(void)
8252 {
8253 int ret;
8254
8255 #ifdef CONFIG_NUMA
8256 if (num_node_state(N_MEMORY) == 1)
8257 hashdist = 0;
8258 #endif
8259
8260 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8261 "mm/page_alloc:pcp",
8262 page_alloc_cpu_online,
8263 page_alloc_cpu_dead);
8264 WARN_ON(ret < 0);
8265 }
8266
8267 /*
8268 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8269 * or min_free_kbytes changes.
8270 */
8271 static void calculate_totalreserve_pages(void)
8272 {
8273 struct pglist_data *pgdat;
8274 unsigned long reserve_pages = 0;
8275 enum zone_type i, j;
8276
8277 for_each_online_pgdat(pgdat) {
8278
8279 pgdat->totalreserve_pages = 0;
8280
8281 for (i = 0; i < MAX_NR_ZONES; i++) {
8282 struct zone *zone = pgdat->node_zones + i;
8283 long max = 0;
8284 unsigned long managed_pages = zone_managed_pages(zone);
8285
8286 /* Find valid and maximum lowmem_reserve in the zone */
8287 for (j = i; j < MAX_NR_ZONES; j++) {
8288 if (zone->lowmem_reserve[j] > max)
8289 max = zone->lowmem_reserve[j];
8290 }
8291
8292 /* we treat the high watermark as reserved pages. */
8293 max += high_wmark_pages(zone);
8294
8295 if (max > managed_pages)
8296 max = managed_pages;
8297
8298 pgdat->totalreserve_pages += max;
8299
8300 reserve_pages += max;
8301 }
8302 }
8303 totalreserve_pages = reserve_pages;
8304 }
8305
8306 /*
8307 * setup_per_zone_lowmem_reserve - called whenever
8308 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8309 * has a correct pages reserved value, so an adequate number of
8310 * pages are left in the zone after a successful __alloc_pages().
8311 */
8312 static void setup_per_zone_lowmem_reserve(void)
8313 {
8314 struct pglist_data *pgdat;
8315 enum zone_type i, j;
8316
8317 for_each_online_pgdat(pgdat) {
8318 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8319 struct zone *zone = &pgdat->node_zones[i];
8320 int ratio = sysctl_lowmem_reserve_ratio[i];
8321 bool clear = !ratio || !zone_managed_pages(zone);
8322 unsigned long managed_pages = 0;
8323
8324 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8325 struct zone *upper_zone = &pgdat->node_zones[j];
8326
8327 managed_pages += zone_managed_pages(upper_zone);
8328
8329 if (clear)
8330 zone->lowmem_reserve[j] = 0;
8331 else
8332 zone->lowmem_reserve[j] = managed_pages / ratio;
8333 }
8334 }
8335 }
8336
8337 /* update totalreserve_pages */
8338 calculate_totalreserve_pages();
8339 }
8340
8341 static void __setup_per_zone_wmarks(void)
8342 {
8343 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8344 unsigned long lowmem_pages = 0;
8345 struct zone *zone;
8346 unsigned long flags;
8347
8348 /* Calculate total number of !ZONE_HIGHMEM pages */
8349 for_each_zone(zone) {
8350 if (!is_highmem(zone))
8351 lowmem_pages += zone_managed_pages(zone);
8352 }
8353
8354 for_each_zone(zone) {
8355 u64 tmp;
8356
8357 spin_lock_irqsave(&zone->lock, flags);
8358 tmp = (u64)pages_min * zone_managed_pages(zone);
8359 do_div(tmp, lowmem_pages);
8360 if (is_highmem(zone)) {
8361 /*
8362 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8363 * need highmem pages, so cap pages_min to a small
8364 * value here.
8365 *
8366 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8367 * deltas control async page reclaim, and so should
8368 * not be capped for highmem.
8369 */
8370 unsigned long min_pages;
8371
8372 min_pages = zone_managed_pages(zone) / 1024;
8373 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8374 zone->_watermark[WMARK_MIN] = min_pages;
8375 } else {
8376 /*
8377 * If it's a lowmem zone, reserve a number of pages
8378 * proportionate to the zone's size.
8379 */
8380 zone->_watermark[WMARK_MIN] = tmp;
8381 }
8382
8383 /*
8384 * Set the kswapd watermarks distance according to the
8385 * scale factor in proportion to available memory, but
8386 * ensure a minimum size on small systems.
8387 */
8388 tmp = max_t(u64, tmp >> 2,
8389 mult_frac(zone_managed_pages(zone),
8390 watermark_scale_factor, 10000));
8391
8392 zone->watermark_boost = 0;
8393 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8394 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8395
8396 spin_unlock_irqrestore(&zone->lock, flags);
8397 }
8398
8399 /* update totalreserve_pages */
8400 calculate_totalreserve_pages();
8401 }
8402
8403 /**
8404 * setup_per_zone_wmarks - called when min_free_kbytes changes
8405 * or when memory is hot-{added|removed}
8406 *
8407 * Ensures that the watermark[min,low,high] values for each zone are set
8408 * correctly with respect to min_free_kbytes.
8409 */
8410 void setup_per_zone_wmarks(void)
8411 {
8412 struct zone *zone;
8413 static DEFINE_SPINLOCK(lock);
8414
8415 spin_lock(&lock);
8416 __setup_per_zone_wmarks();
8417 spin_unlock(&lock);
8418
8419 /*
8420 * The watermark size have changed so update the pcpu batch
8421 * and high limits or the limits may be inappropriate.
8422 */
8423 for_each_zone(zone)
8424 zone_pcp_update(zone, 0);
8425 }
8426
8427 /*
8428 * Initialise min_free_kbytes.
8429 *
8430 * For small machines we want it small (128k min). For large machines
8431 * we want it large (256MB max). But it is not linear, because network
8432 * bandwidth does not increase linearly with machine size. We use
8433 *
8434 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8435 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8436 *
8437 * which yields
8438 *
8439 * 16MB: 512k
8440 * 32MB: 724k
8441 * 64MB: 1024k
8442 * 128MB: 1448k
8443 * 256MB: 2048k
8444 * 512MB: 2896k
8445 * 1024MB: 4096k
8446 * 2048MB: 5792k
8447 * 4096MB: 8192k
8448 * 8192MB: 11584k
8449 * 16384MB: 16384k
8450 */
8451 int __meminit init_per_zone_wmark_min(void)
8452 {
8453 unsigned long lowmem_kbytes;
8454 int new_min_free_kbytes;
8455
8456 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8457 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8458
8459 if (new_min_free_kbytes > user_min_free_kbytes) {
8460 min_free_kbytes = new_min_free_kbytes;
8461 if (min_free_kbytes < 128)
8462 min_free_kbytes = 128;
8463 if (min_free_kbytes > 262144)
8464 min_free_kbytes = 262144;
8465 } else {
8466 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8467 new_min_free_kbytes, user_min_free_kbytes);
8468 }
8469 setup_per_zone_wmarks();
8470 refresh_zone_stat_thresholds();
8471 setup_per_zone_lowmem_reserve();
8472
8473 #ifdef CONFIG_NUMA
8474 setup_min_unmapped_ratio();
8475 setup_min_slab_ratio();
8476 #endif
8477
8478 khugepaged_min_free_kbytes_update();
8479
8480 return 0;
8481 }
8482 postcore_initcall(init_per_zone_wmark_min)
8483
8484 /*
8485 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8486 * that we can call two helper functions whenever min_free_kbytes
8487 * changes.
8488 */
8489 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8490 void *buffer, size_t *length, loff_t *ppos)
8491 {
8492 int rc;
8493
8494 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8495 if (rc)
8496 return rc;
8497
8498 if (write) {
8499 user_min_free_kbytes = min_free_kbytes;
8500 setup_per_zone_wmarks();
8501 }
8502 return 0;
8503 }
8504
8505 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8506 void *buffer, size_t *length, loff_t *ppos)
8507 {
8508 int rc;
8509
8510 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8511 if (rc)
8512 return rc;
8513
8514 if (write)
8515 setup_per_zone_wmarks();
8516
8517 return 0;
8518 }
8519
8520 #ifdef CONFIG_NUMA
8521 static void setup_min_unmapped_ratio(void)
8522 {
8523 pg_data_t *pgdat;
8524 struct zone *zone;
8525
8526 for_each_online_pgdat(pgdat)
8527 pgdat->min_unmapped_pages = 0;
8528
8529 for_each_zone(zone)
8530 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8531 sysctl_min_unmapped_ratio) / 100;
8532 }
8533
8534
8535 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8536 void *buffer, size_t *length, loff_t *ppos)
8537 {
8538 int rc;
8539
8540 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8541 if (rc)
8542 return rc;
8543
8544 setup_min_unmapped_ratio();
8545
8546 return 0;
8547 }
8548
8549 static void setup_min_slab_ratio(void)
8550 {
8551 pg_data_t *pgdat;
8552 struct zone *zone;
8553
8554 for_each_online_pgdat(pgdat)
8555 pgdat->min_slab_pages = 0;
8556
8557 for_each_zone(zone)
8558 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8559 sysctl_min_slab_ratio) / 100;
8560 }
8561
8562 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8563 void *buffer, size_t *length, loff_t *ppos)
8564 {
8565 int rc;
8566
8567 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8568 if (rc)
8569 return rc;
8570
8571 setup_min_slab_ratio();
8572
8573 return 0;
8574 }
8575 #endif
8576
8577 /*
8578 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8579 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8580 * whenever sysctl_lowmem_reserve_ratio changes.
8581 *
8582 * The reserve ratio obviously has absolutely no relation with the
8583 * minimum watermarks. The lowmem reserve ratio can only make sense
8584 * if in function of the boot time zone sizes.
8585 */
8586 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8587 void *buffer, size_t *length, loff_t *ppos)
8588 {
8589 int i;
8590
8591 proc_dointvec_minmax(table, write, buffer, length, ppos);
8592
8593 for (i = 0; i < MAX_NR_ZONES; i++) {
8594 if (sysctl_lowmem_reserve_ratio[i] < 1)
8595 sysctl_lowmem_reserve_ratio[i] = 0;
8596 }
8597
8598 setup_per_zone_lowmem_reserve();
8599 return 0;
8600 }
8601
8602 /*
8603 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8604 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8605 * pagelist can have before it gets flushed back to buddy allocator.
8606 */
8607 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8608 int write, void *buffer, size_t *length, loff_t *ppos)
8609 {
8610 struct zone *zone;
8611 int old_percpu_pagelist_high_fraction;
8612 int ret;
8613
8614 mutex_lock(&pcp_batch_high_lock);
8615 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8616
8617 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8618 if (!write || ret < 0)
8619 goto out;
8620
8621 /* Sanity checking to avoid pcp imbalance */
8622 if (percpu_pagelist_high_fraction &&
8623 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8624 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8625 ret = -EINVAL;
8626 goto out;
8627 }
8628
8629 /* No change? */
8630 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8631 goto out;
8632
8633 for_each_populated_zone(zone)
8634 zone_set_pageset_high_and_batch(zone, 0);
8635 out:
8636 mutex_unlock(&pcp_batch_high_lock);
8637 return ret;
8638 }
8639
8640 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8641 /*
8642 * Returns the number of pages that arch has reserved but
8643 * is not known to alloc_large_system_hash().
8644 */
8645 static unsigned long __init arch_reserved_kernel_pages(void)
8646 {
8647 return 0;
8648 }
8649 #endif
8650
8651 /*
8652 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8653 * machines. As memory size is increased the scale is also increased but at
8654 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8655 * quadruples the scale is increased by one, which means the size of hash table
8656 * only doubles, instead of quadrupling as well.
8657 * Because 32-bit systems cannot have large physical memory, where this scaling
8658 * makes sense, it is disabled on such platforms.
8659 */
8660 #if __BITS_PER_LONG > 32
8661 #define ADAPT_SCALE_BASE (64ul << 30)
8662 #define ADAPT_SCALE_SHIFT 2
8663 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8664 #endif
8665
8666 /*
8667 * allocate a large system hash table from bootmem
8668 * - it is assumed that the hash table must contain an exact power-of-2
8669 * quantity of entries
8670 * - limit is the number of hash buckets, not the total allocation size
8671 */
8672 void *__init alloc_large_system_hash(const char *tablename,
8673 unsigned long bucketsize,
8674 unsigned long numentries,
8675 int scale,
8676 int flags,
8677 unsigned int *_hash_shift,
8678 unsigned int *_hash_mask,
8679 unsigned long low_limit,
8680 unsigned long high_limit)
8681 {
8682 unsigned long long max = high_limit;
8683 unsigned long log2qty, size;
8684 void *table = NULL;
8685 gfp_t gfp_flags;
8686 bool virt;
8687 bool huge;
8688
8689 /* allow the kernel cmdline to have a say */
8690 if (!numentries) {
8691 /* round applicable memory size up to nearest megabyte */
8692 numentries = nr_kernel_pages;
8693 numentries -= arch_reserved_kernel_pages();
8694
8695 /* It isn't necessary when PAGE_SIZE >= 1MB */
8696 if (PAGE_SHIFT < 20)
8697 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8698
8699 #if __BITS_PER_LONG > 32
8700 if (!high_limit) {
8701 unsigned long adapt;
8702
8703 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8704 adapt <<= ADAPT_SCALE_SHIFT)
8705 scale++;
8706 }
8707 #endif
8708
8709 /* limit to 1 bucket per 2^scale bytes of low memory */
8710 if (scale > PAGE_SHIFT)
8711 numentries >>= (scale - PAGE_SHIFT);
8712 else
8713 numentries <<= (PAGE_SHIFT - scale);
8714
8715 /* Make sure we've got at least a 0-order allocation.. */
8716 if (unlikely(flags & HASH_SMALL)) {
8717 /* Makes no sense without HASH_EARLY */
8718 WARN_ON(!(flags & HASH_EARLY));
8719 if (!(numentries >> *_hash_shift)) {
8720 numentries = 1UL << *_hash_shift;
8721 BUG_ON(!numentries);
8722 }
8723 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8724 numentries = PAGE_SIZE / bucketsize;
8725 }
8726 numentries = roundup_pow_of_two(numentries);
8727
8728 /* limit allocation size to 1/16 total memory by default */
8729 if (max == 0) {
8730 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8731 do_div(max, bucketsize);
8732 }
8733 max = min(max, 0x80000000ULL);
8734
8735 if (numentries < low_limit)
8736 numentries = low_limit;
8737 if (numentries > max)
8738 numentries = max;
8739
8740 log2qty = ilog2(numentries);
8741
8742 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8743 do {
8744 virt = false;
8745 size = bucketsize << log2qty;
8746 if (flags & HASH_EARLY) {
8747 if (flags & HASH_ZERO)
8748 table = memblock_alloc(size, SMP_CACHE_BYTES);
8749 else
8750 table = memblock_alloc_raw(size,
8751 SMP_CACHE_BYTES);
8752 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8753 table = __vmalloc(size, gfp_flags);
8754 virt = true;
8755 huge = is_vm_area_hugepages(table);
8756 } else {
8757 /*
8758 * If bucketsize is not a power-of-two, we may free
8759 * some pages at the end of hash table which
8760 * alloc_pages_exact() automatically does
8761 */
8762 table = alloc_pages_exact(size, gfp_flags);
8763 kmemleak_alloc(table, size, 1, gfp_flags);
8764 }
8765 } while (!table && size > PAGE_SIZE && --log2qty);
8766
8767 if (!table)
8768 panic("Failed to allocate %s hash table\n", tablename);
8769
8770 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8771 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8772 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8773
8774 if (_hash_shift)
8775 *_hash_shift = log2qty;
8776 if (_hash_mask)
8777 *_hash_mask = (1 << log2qty) - 1;
8778
8779 return table;
8780 }
8781
8782 /*
8783 * This function checks whether pageblock includes unmovable pages or not.
8784 *
8785 * PageLRU check without isolation or lru_lock could race so that
8786 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8787 * check without lock_page also may miss some movable non-lru pages at
8788 * race condition. So you can't expect this function should be exact.
8789 *
8790 * Returns a page without holding a reference. If the caller wants to
8791 * dereference that page (e.g., dumping), it has to make sure that it
8792 * cannot get removed (e.g., via memory unplug) concurrently.
8793 *
8794 */
8795 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8796 int migratetype, int flags)
8797 {
8798 unsigned long iter = 0;
8799 unsigned long pfn = page_to_pfn(page);
8800 unsigned long offset = pfn % pageblock_nr_pages;
8801
8802 if (is_migrate_cma_page(page)) {
8803 /*
8804 * CMA allocations (alloc_contig_range) really need to mark
8805 * isolate CMA pageblocks even when they are not movable in fact
8806 * so consider them movable here.
8807 */
8808 if (is_migrate_cma(migratetype))
8809 return NULL;
8810
8811 return page;
8812 }
8813
8814 for (; iter < pageblock_nr_pages - offset; iter++) {
8815 if (!pfn_valid_within(pfn + iter))
8816 continue;
8817
8818 page = pfn_to_page(pfn + iter);
8819
8820 /*
8821 * Both, bootmem allocations and memory holes are marked
8822 * PG_reserved and are unmovable. We can even have unmovable
8823 * allocations inside ZONE_MOVABLE, for example when
8824 * specifying "movablecore".
8825 */
8826 if (PageReserved(page))
8827 return page;
8828
8829 /*
8830 * If the zone is movable and we have ruled out all reserved
8831 * pages then it should be reasonably safe to assume the rest
8832 * is movable.
8833 */
8834 if (zone_idx(zone) == ZONE_MOVABLE)
8835 continue;
8836
8837 /*
8838 * Hugepages are not in LRU lists, but they're movable.
8839 * THPs are on the LRU, but need to be counted as #small pages.
8840 * We need not scan over tail pages because we don't
8841 * handle each tail page individually in migration.
8842 */
8843 if (PageHuge(page) || PageTransCompound(page)) {
8844 struct page *head = compound_head(page);
8845 unsigned int skip_pages;
8846
8847 if (PageHuge(page)) {
8848 if (!hugepage_migration_supported(page_hstate(head)))
8849 return page;
8850 } else if (!PageLRU(head) && !__PageMovable(head)) {
8851 return page;
8852 }
8853
8854 skip_pages = compound_nr(head) - (page - head);
8855 iter += skip_pages - 1;
8856 continue;
8857 }
8858
8859 /*
8860 * We can't use page_count without pin a page
8861 * because another CPU can free compound page.
8862 * This check already skips compound tails of THP
8863 * because their page->_refcount is zero at all time.
8864 */
8865 if (!page_ref_count(page)) {
8866 if (PageBuddy(page))
8867 iter += (1 << buddy_order(page)) - 1;
8868 continue;
8869 }
8870
8871 /*
8872 * The HWPoisoned page may be not in buddy system, and
8873 * page_count() is not 0.
8874 */
8875 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8876 continue;
8877
8878 /*
8879 * We treat all PageOffline() pages as movable when offlining
8880 * to give drivers a chance to decrement their reference count
8881 * in MEM_GOING_OFFLINE in order to indicate that these pages
8882 * can be offlined as there are no direct references anymore.
8883 * For actually unmovable PageOffline() where the driver does
8884 * not support this, we will fail later when trying to actually
8885 * move these pages that still have a reference count > 0.
8886 * (false negatives in this function only)
8887 */
8888 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8889 continue;
8890
8891 if (__PageMovable(page) || PageLRU(page))
8892 continue;
8893
8894 /*
8895 * If there are RECLAIMABLE pages, we need to check
8896 * it. But now, memory offline itself doesn't call
8897 * shrink_node_slabs() and it still to be fixed.
8898 */
8899 return page;
8900 }
8901 return NULL;
8902 }
8903
8904 #ifdef CONFIG_CONTIG_ALLOC
8905 static unsigned long pfn_max_align_down(unsigned long pfn)
8906 {
8907 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8908 pageblock_nr_pages) - 1);
8909 }
8910
8911 static unsigned long pfn_max_align_up(unsigned long pfn)
8912 {
8913 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8914 pageblock_nr_pages));
8915 }
8916
8917 #if defined(CONFIG_DYNAMIC_DEBUG) || \
8918 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8919 /* Usage: See admin-guide/dynamic-debug-howto.rst */
8920 static void alloc_contig_dump_pages(struct list_head *page_list)
8921 {
8922 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8923
8924 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8925 struct page *page;
8926
8927 dump_stack();
8928 list_for_each_entry(page, page_list, lru)
8929 dump_page(page, "migration failure");
8930 }
8931 }
8932 #else
8933 static inline void alloc_contig_dump_pages(struct list_head *page_list)
8934 {
8935 }
8936 #endif
8937
8938 /* [start, end) must belong to a single zone. */
8939 static int __alloc_contig_migrate_range(struct compact_control *cc,
8940 unsigned long start, unsigned long end)
8941 {
8942 /* This function is based on compact_zone() from compaction.c. */
8943 unsigned int nr_reclaimed;
8944 unsigned long pfn = start;
8945 unsigned int tries = 0;
8946 int ret = 0;
8947 struct migration_target_control mtc = {
8948 .nid = zone_to_nid(cc->zone),
8949 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8950 };
8951
8952 lru_cache_disable();
8953
8954 while (pfn < end || !list_empty(&cc->migratepages)) {
8955 if (fatal_signal_pending(current)) {
8956 ret = -EINTR;
8957 break;
8958 }
8959
8960 if (list_empty(&cc->migratepages)) {
8961 cc->nr_migratepages = 0;
8962 ret = isolate_migratepages_range(cc, pfn, end);
8963 if (ret && ret != -EAGAIN)
8964 break;
8965 pfn = cc->migrate_pfn;
8966 tries = 0;
8967 } else if (++tries == 5) {
8968 ret = -EBUSY;
8969 break;
8970 }
8971
8972 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8973 &cc->migratepages);
8974 cc->nr_migratepages -= nr_reclaimed;
8975
8976 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8977 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8978
8979 /*
8980 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
8981 * to retry again over this error, so do the same here.
8982 */
8983 if (ret == -ENOMEM)
8984 break;
8985 }
8986
8987 lru_cache_enable();
8988 if (ret < 0) {
8989 if (ret == -EBUSY)
8990 alloc_contig_dump_pages(&cc->migratepages);
8991 putback_movable_pages(&cc->migratepages);
8992 return ret;
8993 }
8994 return 0;
8995 }
8996
8997 /**
8998 * alloc_contig_range() -- tries to allocate given range of pages
8999 * @start: start PFN to allocate
9000 * @end: one-past-the-last PFN to allocate
9001 * @migratetype: migratetype of the underlying pageblocks (either
9002 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9003 * in range must have the same migratetype and it must
9004 * be either of the two.
9005 * @gfp_mask: GFP mask to use during compaction
9006 *
9007 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9008 * aligned. The PFN range must belong to a single zone.
9009 *
9010 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9011 * pageblocks in the range. Once isolated, the pageblocks should not
9012 * be modified by others.
9013 *
9014 * Return: zero on success or negative error code. On success all
9015 * pages which PFN is in [start, end) are allocated for the caller and
9016 * need to be freed with free_contig_range().
9017 */
9018 int alloc_contig_range(unsigned long start, unsigned long end,
9019 unsigned migratetype, gfp_t gfp_mask)
9020 {
9021 unsigned long outer_start, outer_end;
9022 unsigned int order;
9023 int ret = 0;
9024
9025 struct compact_control cc = {
9026 .nr_migratepages = 0,
9027 .order = -1,
9028 .zone = page_zone(pfn_to_page(start)),
9029 .mode = MIGRATE_SYNC,
9030 .ignore_skip_hint = true,
9031 .no_set_skip_hint = true,
9032 .gfp_mask = current_gfp_context(gfp_mask),
9033 .alloc_contig = true,
9034 };
9035 INIT_LIST_HEAD(&cc.migratepages);
9036
9037 /*
9038 * What we do here is we mark all pageblocks in range as
9039 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9040 * have different sizes, and due to the way page allocator
9041 * work, we align the range to biggest of the two pages so
9042 * that page allocator won't try to merge buddies from
9043 * different pageblocks and change MIGRATE_ISOLATE to some
9044 * other migration type.
9045 *
9046 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9047 * migrate the pages from an unaligned range (ie. pages that
9048 * we are interested in). This will put all the pages in
9049 * range back to page allocator as MIGRATE_ISOLATE.
9050 *
9051 * When this is done, we take the pages in range from page
9052 * allocator removing them from the buddy system. This way
9053 * page allocator will never consider using them.
9054 *
9055 * This lets us mark the pageblocks back as
9056 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9057 * aligned range but not in the unaligned, original range are
9058 * put back to page allocator so that buddy can use them.
9059 */
9060
9061 ret = start_isolate_page_range(pfn_max_align_down(start),
9062 pfn_max_align_up(end), migratetype, 0);
9063 if (ret)
9064 return ret;
9065
9066 drain_all_pages(cc.zone);
9067
9068 /*
9069 * In case of -EBUSY, we'd like to know which page causes problem.
9070 * So, just fall through. test_pages_isolated() has a tracepoint
9071 * which will report the busy page.
9072 *
9073 * It is possible that busy pages could become available before
9074 * the call to test_pages_isolated, and the range will actually be
9075 * allocated. So, if we fall through be sure to clear ret so that
9076 * -EBUSY is not accidentally used or returned to caller.
9077 */
9078 ret = __alloc_contig_migrate_range(&cc, start, end);
9079 if (ret && ret != -EBUSY)
9080 goto done;
9081 ret = 0;
9082
9083 /*
9084 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9085 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9086 * more, all pages in [start, end) are free in page allocator.
9087 * What we are going to do is to allocate all pages from
9088 * [start, end) (that is remove them from page allocator).
9089 *
9090 * The only problem is that pages at the beginning and at the
9091 * end of interesting range may be not aligned with pages that
9092 * page allocator holds, ie. they can be part of higher order
9093 * pages. Because of this, we reserve the bigger range and
9094 * once this is done free the pages we are not interested in.
9095 *
9096 * We don't have to hold zone->lock here because the pages are
9097 * isolated thus they won't get removed from buddy.
9098 */
9099
9100 order = 0;
9101 outer_start = start;
9102 while (!PageBuddy(pfn_to_page(outer_start))) {
9103 if (++order >= MAX_ORDER) {
9104 outer_start = start;
9105 break;
9106 }
9107 outer_start &= ~0UL << order;
9108 }
9109
9110 if (outer_start != start) {
9111 order = buddy_order(pfn_to_page(outer_start));
9112
9113 /*
9114 * outer_start page could be small order buddy page and
9115 * it doesn't include start page. Adjust outer_start
9116 * in this case to report failed page properly
9117 * on tracepoint in test_pages_isolated()
9118 */
9119 if (outer_start + (1UL << order) <= start)
9120 outer_start = start;
9121 }
9122
9123 /* Make sure the range is really isolated. */
9124 if (test_pages_isolated(outer_start, end, 0)) {
9125 ret = -EBUSY;
9126 goto done;
9127 }
9128
9129 /* Grab isolated pages from freelists. */
9130 outer_end = isolate_freepages_range(&cc, outer_start, end);
9131 if (!outer_end) {
9132 ret = -EBUSY;
9133 goto done;
9134 }
9135
9136 /* Free head and tail (if any) */
9137 if (start != outer_start)
9138 free_contig_range(outer_start, start - outer_start);
9139 if (end != outer_end)
9140 free_contig_range(end, outer_end - end);
9141
9142 done:
9143 undo_isolate_page_range(pfn_max_align_down(start),
9144 pfn_max_align_up(end), migratetype);
9145 return ret;
9146 }
9147 EXPORT_SYMBOL(alloc_contig_range);
9148
9149 static int __alloc_contig_pages(unsigned long start_pfn,
9150 unsigned long nr_pages, gfp_t gfp_mask)
9151 {
9152 unsigned long end_pfn = start_pfn + nr_pages;
9153
9154 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9155 gfp_mask);
9156 }
9157
9158 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9159 unsigned long nr_pages)
9160 {
9161 unsigned long i, end_pfn = start_pfn + nr_pages;
9162 struct page *page;
9163
9164 for (i = start_pfn; i < end_pfn; i++) {
9165 page = pfn_to_online_page(i);
9166 if (!page)
9167 return false;
9168
9169 if (page_zone(page) != z)
9170 return false;
9171
9172 if (PageReserved(page))
9173 return false;
9174 }
9175 return true;
9176 }
9177
9178 static bool zone_spans_last_pfn(const struct zone *zone,
9179 unsigned long start_pfn, unsigned long nr_pages)
9180 {
9181 unsigned long last_pfn = start_pfn + nr_pages - 1;
9182
9183 return zone_spans_pfn(zone, last_pfn);
9184 }
9185
9186 /**
9187 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9188 * @nr_pages: Number of contiguous pages to allocate
9189 * @gfp_mask: GFP mask to limit search and used during compaction
9190 * @nid: Target node
9191 * @nodemask: Mask for other possible nodes
9192 *
9193 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9194 * on an applicable zonelist to find a contiguous pfn range which can then be
9195 * tried for allocation with alloc_contig_range(). This routine is intended
9196 * for allocation requests which can not be fulfilled with the buddy allocator.
9197 *
9198 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9199 * power of two then the alignment is guaranteed to be to the given nr_pages
9200 * (e.g. 1GB request would be aligned to 1GB).
9201 *
9202 * Allocated pages can be freed with free_contig_range() or by manually calling
9203 * __free_page() on each allocated page.
9204 *
9205 * Return: pointer to contiguous pages on success, or NULL if not successful.
9206 */
9207 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9208 int nid, nodemask_t *nodemask)
9209 {
9210 unsigned long ret, pfn, flags;
9211 struct zonelist *zonelist;
9212 struct zone *zone;
9213 struct zoneref *z;
9214
9215 zonelist = node_zonelist(nid, gfp_mask);
9216 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9217 gfp_zone(gfp_mask), nodemask) {
9218 spin_lock_irqsave(&zone->lock, flags);
9219
9220 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9221 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9222 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9223 /*
9224 * We release the zone lock here because
9225 * alloc_contig_range() will also lock the zone
9226 * at some point. If there's an allocation
9227 * spinning on this lock, it may win the race
9228 * and cause alloc_contig_range() to fail...
9229 */
9230 spin_unlock_irqrestore(&zone->lock, flags);
9231 ret = __alloc_contig_pages(pfn, nr_pages,
9232 gfp_mask);
9233 if (!ret)
9234 return pfn_to_page(pfn);
9235 spin_lock_irqsave(&zone->lock, flags);
9236 }
9237 pfn += nr_pages;
9238 }
9239 spin_unlock_irqrestore(&zone->lock, flags);
9240 }
9241 return NULL;
9242 }
9243 #endif /* CONFIG_CONTIG_ALLOC */
9244
9245 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9246 {
9247 unsigned long count = 0;
9248
9249 for (; nr_pages--; pfn++) {
9250 struct page *page = pfn_to_page(pfn);
9251
9252 count += page_count(page) != 1;
9253 __free_page(page);
9254 }
9255 WARN(count != 0, "%lu pages are still in use!\n", count);
9256 }
9257 EXPORT_SYMBOL(free_contig_range);
9258
9259 /*
9260 * The zone indicated has a new number of managed_pages; batch sizes and percpu
9261 * page high values need to be recalculated.
9262 */
9263 void zone_pcp_update(struct zone *zone, int cpu_online)
9264 {
9265 mutex_lock(&pcp_batch_high_lock);
9266 zone_set_pageset_high_and_batch(zone, cpu_online);
9267 mutex_unlock(&pcp_batch_high_lock);
9268 }
9269
9270 /*
9271 * Effectively disable pcplists for the zone by setting the high limit to 0
9272 * and draining all cpus. A concurrent page freeing on another CPU that's about
9273 * to put the page on pcplist will either finish before the drain and the page
9274 * will be drained, or observe the new high limit and skip the pcplist.
9275 *
9276 * Must be paired with a call to zone_pcp_enable().
9277 */
9278 void zone_pcp_disable(struct zone *zone)
9279 {
9280 mutex_lock(&pcp_batch_high_lock);
9281 __zone_set_pageset_high_and_batch(zone, 0, 1);
9282 __drain_all_pages(zone, true);
9283 }
9284
9285 void zone_pcp_enable(struct zone *zone)
9286 {
9287 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9288 mutex_unlock(&pcp_batch_high_lock);
9289 }
9290
9291 void zone_pcp_reset(struct zone *zone)
9292 {
9293 int cpu;
9294 struct per_cpu_zonestat *pzstats;
9295
9296 if (zone->per_cpu_pageset != &boot_pageset) {
9297 for_each_online_cpu(cpu) {
9298 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9299 drain_zonestat(zone, pzstats);
9300 }
9301 free_percpu(zone->per_cpu_pageset);
9302 free_percpu(zone->per_cpu_zonestats);
9303 zone->per_cpu_pageset = &boot_pageset;
9304 zone->per_cpu_zonestats = &boot_zonestats;
9305 }
9306 }
9307
9308 #ifdef CONFIG_MEMORY_HOTREMOVE
9309 /*
9310 * All pages in the range must be in a single zone, must not contain holes,
9311 * must span full sections, and must be isolated before calling this function.
9312 */
9313 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9314 {
9315 unsigned long pfn = start_pfn;
9316 struct page *page;
9317 struct zone *zone;
9318 unsigned int order;
9319 unsigned long flags;
9320
9321 offline_mem_sections(pfn, end_pfn);
9322 zone = page_zone(pfn_to_page(pfn));
9323 spin_lock_irqsave(&zone->lock, flags);
9324 while (pfn < end_pfn) {
9325 page = pfn_to_page(pfn);
9326 /*
9327 * The HWPoisoned page may be not in buddy system, and
9328 * page_count() is not 0.
9329 */
9330 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9331 pfn++;
9332 continue;
9333 }
9334 /*
9335 * At this point all remaining PageOffline() pages have a
9336 * reference count of 0 and can simply be skipped.
9337 */
9338 if (PageOffline(page)) {
9339 BUG_ON(page_count(page));
9340 BUG_ON(PageBuddy(page));
9341 pfn++;
9342 continue;
9343 }
9344
9345 BUG_ON(page_count(page));
9346 BUG_ON(!PageBuddy(page));
9347 order = buddy_order(page);
9348 del_page_from_free_list(page, zone, order);
9349 pfn += (1 << order);
9350 }
9351 spin_unlock_irqrestore(&zone->lock, flags);
9352 }
9353 #endif
9354
9355 bool is_free_buddy_page(struct page *page)
9356 {
9357 struct zone *zone = page_zone(page);
9358 unsigned long pfn = page_to_pfn(page);
9359 unsigned long flags;
9360 unsigned int order;
9361
9362 spin_lock_irqsave(&zone->lock, flags);
9363 for (order = 0; order < MAX_ORDER; order++) {
9364 struct page *page_head = page - (pfn & ((1 << order) - 1));
9365
9366 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9367 break;
9368 }
9369 spin_unlock_irqrestore(&zone->lock, flags);
9370
9371 return order < MAX_ORDER;
9372 }
9373
9374 #ifdef CONFIG_MEMORY_FAILURE
9375 /*
9376 * Break down a higher-order page in sub-pages, and keep our target out of
9377 * buddy allocator.
9378 */
9379 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9380 struct page *target, int low, int high,
9381 int migratetype)
9382 {
9383 unsigned long size = 1 << high;
9384 struct page *current_buddy, *next_page;
9385
9386 while (high > low) {
9387 high--;
9388 size >>= 1;
9389
9390 if (target >= &page[size]) {
9391 next_page = page + size;
9392 current_buddy = page;
9393 } else {
9394 next_page = page;
9395 current_buddy = page + size;
9396 }
9397
9398 if (set_page_guard(zone, current_buddy, high, migratetype))
9399 continue;
9400
9401 if (current_buddy != target) {
9402 add_to_free_list(current_buddy, zone, high, migratetype);
9403 set_buddy_order(current_buddy, high);
9404 page = next_page;
9405 }
9406 }
9407 }
9408
9409 /*
9410 * Take a page that will be marked as poisoned off the buddy allocator.
9411 */
9412 bool take_page_off_buddy(struct page *page)
9413 {
9414 struct zone *zone = page_zone(page);
9415 unsigned long pfn = page_to_pfn(page);
9416 unsigned long flags;
9417 unsigned int order;
9418 bool ret = false;
9419
9420 spin_lock_irqsave(&zone->lock, flags);
9421 for (order = 0; order < MAX_ORDER; order++) {
9422 struct page *page_head = page - (pfn & ((1 << order) - 1));
9423 int page_order = buddy_order(page_head);
9424
9425 if (PageBuddy(page_head) && page_order >= order) {
9426 unsigned long pfn_head = page_to_pfn(page_head);
9427 int migratetype = get_pfnblock_migratetype(page_head,
9428 pfn_head);
9429
9430 del_page_from_free_list(page_head, zone, page_order);
9431 break_down_buddy_pages(zone, page_head, page, 0,
9432 page_order, migratetype);
9433 if (!is_migrate_isolate(migratetype))
9434 __mod_zone_freepage_state(zone, -1, migratetype);
9435 ret = true;
9436 break;
9437 }
9438 if (page_count(page_head) > 0)
9439 break;
9440 }
9441 spin_unlock_irqrestore(&zone->lock, flags);
9442 return ret;
9443 }
9444 #endif