]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/page_alloc.c
lib/ida: document locking requirements a bit better
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67
68 #include <asm/sections.h>
69 #include <asm/tlbflush.h>
70 #include <asm/div64.h>
71 #include "internal.h"
72
73 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74 static DEFINE_MUTEX(pcp_batch_high_lock);
75 #define MIN_PERCPU_PAGELIST_FRACTION (8)
76
77 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78 DEFINE_PER_CPU(int, numa_node);
79 EXPORT_PER_CPU_SYMBOL(numa_node);
80 #endif
81
82 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
83 /*
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
88 */
89 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
90 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
91 int _node_numa_mem_[MAX_NUMNODES];
92 #endif
93
94 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
95 volatile unsigned long latent_entropy __latent_entropy;
96 EXPORT_SYMBOL(latent_entropy);
97 #endif
98
99 /*
100 * Array of node states.
101 */
102 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
103 [N_POSSIBLE] = NODE_MASK_ALL,
104 [N_ONLINE] = { { [0] = 1UL } },
105 #ifndef CONFIG_NUMA
106 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
107 #ifdef CONFIG_HIGHMEM
108 [N_HIGH_MEMORY] = { { [0] = 1UL } },
109 #endif
110 #ifdef CONFIG_MOVABLE_NODE
111 [N_MEMORY] = { { [0] = 1UL } },
112 #endif
113 [N_CPU] = { { [0] = 1UL } },
114 #endif /* NUMA */
115 };
116 EXPORT_SYMBOL(node_states);
117
118 /* Protect totalram_pages and zone->managed_pages */
119 static DEFINE_SPINLOCK(managed_page_count_lock);
120
121 unsigned long totalram_pages __read_mostly;
122 unsigned long totalreserve_pages __read_mostly;
123 unsigned long totalcma_pages __read_mostly;
124
125 int percpu_pagelist_fraction;
126 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
127
128 /*
129 * A cached value of the page's pageblock's migratetype, used when the page is
130 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132 * Also the migratetype set in the page does not necessarily match the pcplist
133 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134 * other index - this ensures that it will be put on the correct CMA freelist.
135 */
136 static inline int get_pcppage_migratetype(struct page *page)
137 {
138 return page->index;
139 }
140
141 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
142 {
143 page->index = migratetype;
144 }
145
146 #ifdef CONFIG_PM_SLEEP
147 /*
148 * The following functions are used by the suspend/hibernate code to temporarily
149 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150 * while devices are suspended. To avoid races with the suspend/hibernate code,
151 * they should always be called with pm_mutex held (gfp_allowed_mask also should
152 * only be modified with pm_mutex held, unless the suspend/hibernate code is
153 * guaranteed not to run in parallel with that modification).
154 */
155
156 static gfp_t saved_gfp_mask;
157
158 void pm_restore_gfp_mask(void)
159 {
160 WARN_ON(!mutex_is_locked(&pm_mutex));
161 if (saved_gfp_mask) {
162 gfp_allowed_mask = saved_gfp_mask;
163 saved_gfp_mask = 0;
164 }
165 }
166
167 void pm_restrict_gfp_mask(void)
168 {
169 WARN_ON(!mutex_is_locked(&pm_mutex));
170 WARN_ON(saved_gfp_mask);
171 saved_gfp_mask = gfp_allowed_mask;
172 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
173 }
174
175 bool pm_suspended_storage(void)
176 {
177 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
178 return false;
179 return true;
180 }
181 #endif /* CONFIG_PM_SLEEP */
182
183 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
184 unsigned int pageblock_order __read_mostly;
185 #endif
186
187 static void __free_pages_ok(struct page *page, unsigned int order);
188
189 /*
190 * results with 256, 32 in the lowmem_reserve sysctl:
191 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192 * 1G machine -> (16M dma, 784M normal, 224M high)
193 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
195 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
196 *
197 * TBD: should special case ZONE_DMA32 machines here - in those we normally
198 * don't need any ZONE_NORMAL reservation
199 */
200 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
201 #ifdef CONFIG_ZONE_DMA
202 256,
203 #endif
204 #ifdef CONFIG_ZONE_DMA32
205 256,
206 #endif
207 #ifdef CONFIG_HIGHMEM
208 32,
209 #endif
210 32,
211 };
212
213 EXPORT_SYMBOL(totalram_pages);
214
215 static char * const zone_names[MAX_NR_ZONES] = {
216 #ifdef CONFIG_ZONE_DMA
217 "DMA",
218 #endif
219 #ifdef CONFIG_ZONE_DMA32
220 "DMA32",
221 #endif
222 "Normal",
223 #ifdef CONFIG_HIGHMEM
224 "HighMem",
225 #endif
226 "Movable",
227 #ifdef CONFIG_ZONE_DEVICE
228 "Device",
229 #endif
230 };
231
232 char * const migratetype_names[MIGRATE_TYPES] = {
233 "Unmovable",
234 "Movable",
235 "Reclaimable",
236 "HighAtomic",
237 #ifdef CONFIG_CMA
238 "CMA",
239 #endif
240 #ifdef CONFIG_MEMORY_ISOLATION
241 "Isolate",
242 #endif
243 };
244
245 compound_page_dtor * const compound_page_dtors[] = {
246 NULL,
247 free_compound_page,
248 #ifdef CONFIG_HUGETLB_PAGE
249 free_huge_page,
250 #endif
251 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
252 free_transhuge_page,
253 #endif
254 };
255
256 int min_free_kbytes = 1024;
257 int user_min_free_kbytes = -1;
258 int watermark_scale_factor = 10;
259
260 static unsigned long __meminitdata nr_kernel_pages;
261 static unsigned long __meminitdata nr_all_pages;
262 static unsigned long __meminitdata dma_reserve;
263
264 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
265 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
266 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
267 static unsigned long __initdata required_kernelcore;
268 static unsigned long __initdata required_movablecore;
269 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
270 static bool mirrored_kernelcore;
271
272 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
273 int movable_zone;
274 EXPORT_SYMBOL(movable_zone);
275 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
276
277 #if MAX_NUMNODES > 1
278 int nr_node_ids __read_mostly = MAX_NUMNODES;
279 int nr_online_nodes __read_mostly = 1;
280 EXPORT_SYMBOL(nr_node_ids);
281 EXPORT_SYMBOL(nr_online_nodes);
282 #endif
283
284 int page_group_by_mobility_disabled __read_mostly;
285
286 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
287 static inline void reset_deferred_meminit(pg_data_t *pgdat)
288 {
289 pgdat->first_deferred_pfn = ULONG_MAX;
290 }
291
292 /* Returns true if the struct page for the pfn is uninitialised */
293 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
294 {
295 int nid = early_pfn_to_nid(pfn);
296
297 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301 }
302
303 /*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307 static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310 {
311 unsigned long max_initialise;
312
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
322
323 (*nr_initialised)++;
324 if ((*nr_initialised > max_initialise) &&
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331 }
332 #else
333 static inline void reset_deferred_meminit(pg_data_t *pgdat)
334 {
335 }
336
337 static inline bool early_page_uninitialised(unsigned long pfn)
338 {
339 return false;
340 }
341
342 static inline bool update_defer_init(pg_data_t *pgdat,
343 unsigned long pfn, unsigned long zone_end,
344 unsigned long *nr_initialised)
345 {
346 return true;
347 }
348 #endif
349
350 /* Return a pointer to the bitmap storing bits affecting a block of pages */
351 static inline unsigned long *get_pageblock_bitmap(struct page *page,
352 unsigned long pfn)
353 {
354 #ifdef CONFIG_SPARSEMEM
355 return __pfn_to_section(pfn)->pageblock_flags;
356 #else
357 return page_zone(page)->pageblock_flags;
358 #endif /* CONFIG_SPARSEMEM */
359 }
360
361 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
362 {
363 #ifdef CONFIG_SPARSEMEM
364 pfn &= (PAGES_PER_SECTION-1);
365 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
366 #else
367 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
368 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
369 #endif /* CONFIG_SPARSEMEM */
370 }
371
372 /**
373 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
374 * @page: The page within the block of interest
375 * @pfn: The target page frame number
376 * @end_bitidx: The last bit of interest to retrieve
377 * @mask: mask of bits that the caller is interested in
378 *
379 * Return: pageblock_bits flags
380 */
381 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
382 unsigned long pfn,
383 unsigned long end_bitidx,
384 unsigned long mask)
385 {
386 unsigned long *bitmap;
387 unsigned long bitidx, word_bitidx;
388 unsigned long word;
389
390 bitmap = get_pageblock_bitmap(page, pfn);
391 bitidx = pfn_to_bitidx(page, pfn);
392 word_bitidx = bitidx / BITS_PER_LONG;
393 bitidx &= (BITS_PER_LONG-1);
394
395 word = bitmap[word_bitidx];
396 bitidx += end_bitidx;
397 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
398 }
399
400 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
401 unsigned long end_bitidx,
402 unsigned long mask)
403 {
404 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
405 }
406
407 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
408 {
409 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
410 }
411
412 /**
413 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
414 * @page: The page within the block of interest
415 * @flags: The flags to set
416 * @pfn: The target page frame number
417 * @end_bitidx: The last bit of interest
418 * @mask: mask of bits that the caller is interested in
419 */
420 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
421 unsigned long pfn,
422 unsigned long end_bitidx,
423 unsigned long mask)
424 {
425 unsigned long *bitmap;
426 unsigned long bitidx, word_bitidx;
427 unsigned long old_word, word;
428
429 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
430
431 bitmap = get_pageblock_bitmap(page, pfn);
432 bitidx = pfn_to_bitidx(page, pfn);
433 word_bitidx = bitidx / BITS_PER_LONG;
434 bitidx &= (BITS_PER_LONG-1);
435
436 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
437
438 bitidx += end_bitidx;
439 mask <<= (BITS_PER_LONG - bitidx - 1);
440 flags <<= (BITS_PER_LONG - bitidx - 1);
441
442 word = READ_ONCE(bitmap[word_bitidx]);
443 for (;;) {
444 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
445 if (word == old_word)
446 break;
447 word = old_word;
448 }
449 }
450
451 void set_pageblock_migratetype(struct page *page, int migratetype)
452 {
453 if (unlikely(page_group_by_mobility_disabled &&
454 migratetype < MIGRATE_PCPTYPES))
455 migratetype = MIGRATE_UNMOVABLE;
456
457 set_pageblock_flags_group(page, (unsigned long)migratetype,
458 PB_migrate, PB_migrate_end);
459 }
460
461 #ifdef CONFIG_DEBUG_VM
462 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
463 {
464 int ret = 0;
465 unsigned seq;
466 unsigned long pfn = page_to_pfn(page);
467 unsigned long sp, start_pfn;
468
469 do {
470 seq = zone_span_seqbegin(zone);
471 start_pfn = zone->zone_start_pfn;
472 sp = zone->spanned_pages;
473 if (!zone_spans_pfn(zone, pfn))
474 ret = 1;
475 } while (zone_span_seqretry(zone, seq));
476
477 if (ret)
478 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
479 pfn, zone_to_nid(zone), zone->name,
480 start_pfn, start_pfn + sp);
481
482 return ret;
483 }
484
485 static int page_is_consistent(struct zone *zone, struct page *page)
486 {
487 if (!pfn_valid_within(page_to_pfn(page)))
488 return 0;
489 if (zone != page_zone(page))
490 return 0;
491
492 return 1;
493 }
494 /*
495 * Temporary debugging check for pages not lying within a given zone.
496 */
497 static int bad_range(struct zone *zone, struct page *page)
498 {
499 if (page_outside_zone_boundaries(zone, page))
500 return 1;
501 if (!page_is_consistent(zone, page))
502 return 1;
503
504 return 0;
505 }
506 #else
507 static inline int bad_range(struct zone *zone, struct page *page)
508 {
509 return 0;
510 }
511 #endif
512
513 static void bad_page(struct page *page, const char *reason,
514 unsigned long bad_flags)
515 {
516 static unsigned long resume;
517 static unsigned long nr_shown;
518 static unsigned long nr_unshown;
519
520 /*
521 * Allow a burst of 60 reports, then keep quiet for that minute;
522 * or allow a steady drip of one report per second.
523 */
524 if (nr_shown == 60) {
525 if (time_before(jiffies, resume)) {
526 nr_unshown++;
527 goto out;
528 }
529 if (nr_unshown) {
530 pr_alert(
531 "BUG: Bad page state: %lu messages suppressed\n",
532 nr_unshown);
533 nr_unshown = 0;
534 }
535 nr_shown = 0;
536 }
537 if (nr_shown++ == 0)
538 resume = jiffies + 60 * HZ;
539
540 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
541 current->comm, page_to_pfn(page));
542 __dump_page(page, reason);
543 bad_flags &= page->flags;
544 if (bad_flags)
545 pr_alert("bad because of flags: %#lx(%pGp)\n",
546 bad_flags, &bad_flags);
547 dump_page_owner(page);
548
549 print_modules();
550 dump_stack();
551 out:
552 /* Leave bad fields for debug, except PageBuddy could make trouble */
553 page_mapcount_reset(page); /* remove PageBuddy */
554 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
555 }
556
557 /*
558 * Higher-order pages are called "compound pages". They are structured thusly:
559 *
560 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
561 *
562 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
563 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
564 *
565 * The first tail page's ->compound_dtor holds the offset in array of compound
566 * page destructors. See compound_page_dtors.
567 *
568 * The first tail page's ->compound_order holds the order of allocation.
569 * This usage means that zero-order pages may not be compound.
570 */
571
572 void free_compound_page(struct page *page)
573 {
574 __free_pages_ok(page, compound_order(page));
575 }
576
577 void prep_compound_page(struct page *page, unsigned int order)
578 {
579 int i;
580 int nr_pages = 1 << order;
581
582 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
583 set_compound_order(page, order);
584 __SetPageHead(page);
585 for (i = 1; i < nr_pages; i++) {
586 struct page *p = page + i;
587 set_page_count(p, 0);
588 p->mapping = TAIL_MAPPING;
589 set_compound_head(p, page);
590 }
591 atomic_set(compound_mapcount_ptr(page), -1);
592 }
593
594 #ifdef CONFIG_DEBUG_PAGEALLOC
595 unsigned int _debug_guardpage_minorder;
596 bool _debug_pagealloc_enabled __read_mostly
597 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
598 EXPORT_SYMBOL(_debug_pagealloc_enabled);
599 bool _debug_guardpage_enabled __read_mostly;
600
601 static int __init early_debug_pagealloc(char *buf)
602 {
603 if (!buf)
604 return -EINVAL;
605 return kstrtobool(buf, &_debug_pagealloc_enabled);
606 }
607 early_param("debug_pagealloc", early_debug_pagealloc);
608
609 static bool need_debug_guardpage(void)
610 {
611 /* If we don't use debug_pagealloc, we don't need guard page */
612 if (!debug_pagealloc_enabled())
613 return false;
614
615 if (!debug_guardpage_minorder())
616 return false;
617
618 return true;
619 }
620
621 static void init_debug_guardpage(void)
622 {
623 if (!debug_pagealloc_enabled())
624 return;
625
626 if (!debug_guardpage_minorder())
627 return;
628
629 _debug_guardpage_enabled = true;
630 }
631
632 struct page_ext_operations debug_guardpage_ops = {
633 .need = need_debug_guardpage,
634 .init = init_debug_guardpage,
635 };
636
637 static int __init debug_guardpage_minorder_setup(char *buf)
638 {
639 unsigned long res;
640
641 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
642 pr_err("Bad debug_guardpage_minorder value\n");
643 return 0;
644 }
645 _debug_guardpage_minorder = res;
646 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
647 return 0;
648 }
649 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
650
651 static inline bool set_page_guard(struct zone *zone, struct page *page,
652 unsigned int order, int migratetype)
653 {
654 struct page_ext *page_ext;
655
656 if (!debug_guardpage_enabled())
657 return false;
658
659 if (order >= debug_guardpage_minorder())
660 return false;
661
662 page_ext = lookup_page_ext(page);
663 if (unlikely(!page_ext))
664 return false;
665
666 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
667
668 INIT_LIST_HEAD(&page->lru);
669 set_page_private(page, order);
670 /* Guard pages are not available for any usage */
671 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
672
673 return true;
674 }
675
676 static inline void clear_page_guard(struct zone *zone, struct page *page,
677 unsigned int order, int migratetype)
678 {
679 struct page_ext *page_ext;
680
681 if (!debug_guardpage_enabled())
682 return;
683
684 page_ext = lookup_page_ext(page);
685 if (unlikely(!page_ext))
686 return;
687
688 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
689
690 set_page_private(page, 0);
691 if (!is_migrate_isolate(migratetype))
692 __mod_zone_freepage_state(zone, (1 << order), migratetype);
693 }
694 #else
695 struct page_ext_operations debug_guardpage_ops;
696 static inline bool set_page_guard(struct zone *zone, struct page *page,
697 unsigned int order, int migratetype) { return false; }
698 static inline void clear_page_guard(struct zone *zone, struct page *page,
699 unsigned int order, int migratetype) {}
700 #endif
701
702 static inline void set_page_order(struct page *page, unsigned int order)
703 {
704 set_page_private(page, order);
705 __SetPageBuddy(page);
706 }
707
708 static inline void rmv_page_order(struct page *page)
709 {
710 __ClearPageBuddy(page);
711 set_page_private(page, 0);
712 }
713
714 /*
715 * This function checks whether a page is free && is the buddy
716 * we can do coalesce a page and its buddy if
717 * (a) the buddy is not in a hole &&
718 * (b) the buddy is in the buddy system &&
719 * (c) a page and its buddy have the same order &&
720 * (d) a page and its buddy are in the same zone.
721 *
722 * For recording whether a page is in the buddy system, we set ->_mapcount
723 * PAGE_BUDDY_MAPCOUNT_VALUE.
724 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
725 * serialized by zone->lock.
726 *
727 * For recording page's order, we use page_private(page).
728 */
729 static inline int page_is_buddy(struct page *page, struct page *buddy,
730 unsigned int order)
731 {
732 if (!pfn_valid_within(page_to_pfn(buddy)))
733 return 0;
734
735 if (page_is_guard(buddy) && page_order(buddy) == order) {
736 if (page_zone_id(page) != page_zone_id(buddy))
737 return 0;
738
739 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
740
741 return 1;
742 }
743
744 if (PageBuddy(buddy) && page_order(buddy) == order) {
745 /*
746 * zone check is done late to avoid uselessly
747 * calculating zone/node ids for pages that could
748 * never merge.
749 */
750 if (page_zone_id(page) != page_zone_id(buddy))
751 return 0;
752
753 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
754
755 return 1;
756 }
757 return 0;
758 }
759
760 /*
761 * Freeing function for a buddy system allocator.
762 *
763 * The concept of a buddy system is to maintain direct-mapped table
764 * (containing bit values) for memory blocks of various "orders".
765 * The bottom level table contains the map for the smallest allocatable
766 * units of memory (here, pages), and each level above it describes
767 * pairs of units from the levels below, hence, "buddies".
768 * At a high level, all that happens here is marking the table entry
769 * at the bottom level available, and propagating the changes upward
770 * as necessary, plus some accounting needed to play nicely with other
771 * parts of the VM system.
772 * At each level, we keep a list of pages, which are heads of continuous
773 * free pages of length of (1 << order) and marked with _mapcount
774 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
775 * field.
776 * So when we are allocating or freeing one, we can derive the state of the
777 * other. That is, if we allocate a small block, and both were
778 * free, the remainder of the region must be split into blocks.
779 * If a block is freed, and its buddy is also free, then this
780 * triggers coalescing into a block of larger size.
781 *
782 * -- nyc
783 */
784
785 static inline void __free_one_page(struct page *page,
786 unsigned long pfn,
787 struct zone *zone, unsigned int order,
788 int migratetype)
789 {
790 unsigned long page_idx;
791 unsigned long combined_idx;
792 unsigned long uninitialized_var(buddy_idx);
793 struct page *buddy;
794 unsigned int max_order;
795
796 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
797
798 VM_BUG_ON(!zone_is_initialized(zone));
799 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
800
801 VM_BUG_ON(migratetype == -1);
802 if (likely(!is_migrate_isolate(migratetype)))
803 __mod_zone_freepage_state(zone, 1 << order, migratetype);
804
805 page_idx = pfn & ((1 << MAX_ORDER) - 1);
806
807 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
808 VM_BUG_ON_PAGE(bad_range(zone, page), page);
809
810 continue_merging:
811 while (order < max_order - 1) {
812 buddy_idx = __find_buddy_index(page_idx, order);
813 buddy = page + (buddy_idx - page_idx);
814 if (!page_is_buddy(page, buddy, order))
815 goto done_merging;
816 /*
817 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
818 * merge with it and move up one order.
819 */
820 if (page_is_guard(buddy)) {
821 clear_page_guard(zone, buddy, order, migratetype);
822 } else {
823 list_del(&buddy->lru);
824 zone->free_area[order].nr_free--;
825 rmv_page_order(buddy);
826 }
827 combined_idx = buddy_idx & page_idx;
828 page = page + (combined_idx - page_idx);
829 page_idx = combined_idx;
830 order++;
831 }
832 if (max_order < MAX_ORDER) {
833 /* If we are here, it means order is >= pageblock_order.
834 * We want to prevent merge between freepages on isolate
835 * pageblock and normal pageblock. Without this, pageblock
836 * isolation could cause incorrect freepage or CMA accounting.
837 *
838 * We don't want to hit this code for the more frequent
839 * low-order merging.
840 */
841 if (unlikely(has_isolate_pageblock(zone))) {
842 int buddy_mt;
843
844 buddy_idx = __find_buddy_index(page_idx, order);
845 buddy = page + (buddy_idx - page_idx);
846 buddy_mt = get_pageblock_migratetype(buddy);
847
848 if (migratetype != buddy_mt
849 && (is_migrate_isolate(migratetype) ||
850 is_migrate_isolate(buddy_mt)))
851 goto done_merging;
852 }
853 max_order++;
854 goto continue_merging;
855 }
856
857 done_merging:
858 set_page_order(page, order);
859
860 /*
861 * If this is not the largest possible page, check if the buddy
862 * of the next-highest order is free. If it is, it's possible
863 * that pages are being freed that will coalesce soon. In case,
864 * that is happening, add the free page to the tail of the list
865 * so it's less likely to be used soon and more likely to be merged
866 * as a higher order page
867 */
868 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
869 struct page *higher_page, *higher_buddy;
870 combined_idx = buddy_idx & page_idx;
871 higher_page = page + (combined_idx - page_idx);
872 buddy_idx = __find_buddy_index(combined_idx, order + 1);
873 higher_buddy = higher_page + (buddy_idx - combined_idx);
874 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
875 list_add_tail(&page->lru,
876 &zone->free_area[order].free_list[migratetype]);
877 goto out;
878 }
879 }
880
881 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
882 out:
883 zone->free_area[order].nr_free++;
884 }
885
886 /*
887 * A bad page could be due to a number of fields. Instead of multiple branches,
888 * try and check multiple fields with one check. The caller must do a detailed
889 * check if necessary.
890 */
891 static inline bool page_expected_state(struct page *page,
892 unsigned long check_flags)
893 {
894 if (unlikely(atomic_read(&page->_mapcount) != -1))
895 return false;
896
897 if (unlikely((unsigned long)page->mapping |
898 page_ref_count(page) |
899 #ifdef CONFIG_MEMCG
900 (unsigned long)page->mem_cgroup |
901 #endif
902 (page->flags & check_flags)))
903 return false;
904
905 return true;
906 }
907
908 static void free_pages_check_bad(struct page *page)
909 {
910 const char *bad_reason;
911 unsigned long bad_flags;
912
913 bad_reason = NULL;
914 bad_flags = 0;
915
916 if (unlikely(atomic_read(&page->_mapcount) != -1))
917 bad_reason = "nonzero mapcount";
918 if (unlikely(page->mapping != NULL))
919 bad_reason = "non-NULL mapping";
920 if (unlikely(page_ref_count(page) != 0))
921 bad_reason = "nonzero _refcount";
922 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
923 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
924 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
925 }
926 #ifdef CONFIG_MEMCG
927 if (unlikely(page->mem_cgroup))
928 bad_reason = "page still charged to cgroup";
929 #endif
930 bad_page(page, bad_reason, bad_flags);
931 }
932
933 static inline int free_pages_check(struct page *page)
934 {
935 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
936 return 0;
937
938 /* Something has gone sideways, find it */
939 free_pages_check_bad(page);
940 return 1;
941 }
942
943 static int free_tail_pages_check(struct page *head_page, struct page *page)
944 {
945 int ret = 1;
946
947 /*
948 * We rely page->lru.next never has bit 0 set, unless the page
949 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
950 */
951 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
952
953 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
954 ret = 0;
955 goto out;
956 }
957 switch (page - head_page) {
958 case 1:
959 /* the first tail page: ->mapping is compound_mapcount() */
960 if (unlikely(compound_mapcount(page))) {
961 bad_page(page, "nonzero compound_mapcount", 0);
962 goto out;
963 }
964 break;
965 case 2:
966 /*
967 * the second tail page: ->mapping is
968 * page_deferred_list().next -- ignore value.
969 */
970 break;
971 default:
972 if (page->mapping != TAIL_MAPPING) {
973 bad_page(page, "corrupted mapping in tail page", 0);
974 goto out;
975 }
976 break;
977 }
978 if (unlikely(!PageTail(page))) {
979 bad_page(page, "PageTail not set", 0);
980 goto out;
981 }
982 if (unlikely(compound_head(page) != head_page)) {
983 bad_page(page, "compound_head not consistent", 0);
984 goto out;
985 }
986 ret = 0;
987 out:
988 page->mapping = NULL;
989 clear_compound_head(page);
990 return ret;
991 }
992
993 static __always_inline bool free_pages_prepare(struct page *page,
994 unsigned int order, bool check_free)
995 {
996 int bad = 0;
997
998 VM_BUG_ON_PAGE(PageTail(page), page);
999
1000 trace_mm_page_free(page, order);
1001 kmemcheck_free_shadow(page, order);
1002
1003 /*
1004 * Check tail pages before head page information is cleared to
1005 * avoid checking PageCompound for order-0 pages.
1006 */
1007 if (unlikely(order)) {
1008 bool compound = PageCompound(page);
1009 int i;
1010
1011 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1012
1013 if (compound)
1014 ClearPageDoubleMap(page);
1015 for (i = 1; i < (1 << order); i++) {
1016 if (compound)
1017 bad += free_tail_pages_check(page, page + i);
1018 if (unlikely(free_pages_check(page + i))) {
1019 bad++;
1020 continue;
1021 }
1022 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1023 }
1024 }
1025 if (PageMappingFlags(page))
1026 page->mapping = NULL;
1027 if (memcg_kmem_enabled() && PageKmemcg(page))
1028 memcg_kmem_uncharge(page, order);
1029 if (check_free)
1030 bad += free_pages_check(page);
1031 if (bad)
1032 return false;
1033
1034 page_cpupid_reset_last(page);
1035 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1036 reset_page_owner(page, order);
1037
1038 if (!PageHighMem(page)) {
1039 debug_check_no_locks_freed(page_address(page),
1040 PAGE_SIZE << order);
1041 debug_check_no_obj_freed(page_address(page),
1042 PAGE_SIZE << order);
1043 }
1044 arch_free_page(page, order);
1045 kernel_poison_pages(page, 1 << order, 0);
1046 kernel_map_pages(page, 1 << order, 0);
1047 kasan_free_pages(page, order);
1048
1049 return true;
1050 }
1051
1052 #ifdef CONFIG_DEBUG_VM
1053 static inline bool free_pcp_prepare(struct page *page)
1054 {
1055 return free_pages_prepare(page, 0, true);
1056 }
1057
1058 static inline bool bulkfree_pcp_prepare(struct page *page)
1059 {
1060 return false;
1061 }
1062 #else
1063 static bool free_pcp_prepare(struct page *page)
1064 {
1065 return free_pages_prepare(page, 0, false);
1066 }
1067
1068 static bool bulkfree_pcp_prepare(struct page *page)
1069 {
1070 return free_pages_check(page);
1071 }
1072 #endif /* CONFIG_DEBUG_VM */
1073
1074 /*
1075 * Frees a number of pages from the PCP lists
1076 * Assumes all pages on list are in same zone, and of same order.
1077 * count is the number of pages to free.
1078 *
1079 * If the zone was previously in an "all pages pinned" state then look to
1080 * see if this freeing clears that state.
1081 *
1082 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1083 * pinned" detection logic.
1084 */
1085 static void free_pcppages_bulk(struct zone *zone, int count,
1086 struct per_cpu_pages *pcp)
1087 {
1088 int migratetype = 0;
1089 int batch_free = 0;
1090 unsigned long nr_scanned;
1091 bool isolated_pageblocks;
1092
1093 spin_lock(&zone->lock);
1094 isolated_pageblocks = has_isolate_pageblock(zone);
1095 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1096 if (nr_scanned)
1097 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1098
1099 while (count) {
1100 struct page *page;
1101 struct list_head *list;
1102
1103 /*
1104 * Remove pages from lists in a round-robin fashion. A
1105 * batch_free count is maintained that is incremented when an
1106 * empty list is encountered. This is so more pages are freed
1107 * off fuller lists instead of spinning excessively around empty
1108 * lists
1109 */
1110 do {
1111 batch_free++;
1112 if (++migratetype == MIGRATE_PCPTYPES)
1113 migratetype = 0;
1114 list = &pcp->lists[migratetype];
1115 } while (list_empty(list));
1116
1117 /* This is the only non-empty list. Free them all. */
1118 if (batch_free == MIGRATE_PCPTYPES)
1119 batch_free = count;
1120
1121 do {
1122 int mt; /* migratetype of the to-be-freed page */
1123
1124 page = list_last_entry(list, struct page, lru);
1125 /* must delete as __free_one_page list manipulates */
1126 list_del(&page->lru);
1127
1128 mt = get_pcppage_migratetype(page);
1129 /* MIGRATE_ISOLATE page should not go to pcplists */
1130 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1131 /* Pageblock could have been isolated meanwhile */
1132 if (unlikely(isolated_pageblocks))
1133 mt = get_pageblock_migratetype(page);
1134
1135 if (bulkfree_pcp_prepare(page))
1136 continue;
1137
1138 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1139 trace_mm_page_pcpu_drain(page, 0, mt);
1140 } while (--count && --batch_free && !list_empty(list));
1141 }
1142 spin_unlock(&zone->lock);
1143 }
1144
1145 static void free_one_page(struct zone *zone,
1146 struct page *page, unsigned long pfn,
1147 unsigned int order,
1148 int migratetype)
1149 {
1150 unsigned long nr_scanned;
1151 spin_lock(&zone->lock);
1152 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1153 if (nr_scanned)
1154 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1155
1156 if (unlikely(has_isolate_pageblock(zone) ||
1157 is_migrate_isolate(migratetype))) {
1158 migratetype = get_pfnblock_migratetype(page, pfn);
1159 }
1160 __free_one_page(page, pfn, zone, order, migratetype);
1161 spin_unlock(&zone->lock);
1162 }
1163
1164 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1165 unsigned long zone, int nid)
1166 {
1167 set_page_links(page, zone, nid, pfn);
1168 init_page_count(page);
1169 page_mapcount_reset(page);
1170 page_cpupid_reset_last(page);
1171
1172 INIT_LIST_HEAD(&page->lru);
1173 #ifdef WANT_PAGE_VIRTUAL
1174 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1175 if (!is_highmem_idx(zone))
1176 set_page_address(page, __va(pfn << PAGE_SHIFT));
1177 #endif
1178 }
1179
1180 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1181 int nid)
1182 {
1183 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1184 }
1185
1186 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1187 static void init_reserved_page(unsigned long pfn)
1188 {
1189 pg_data_t *pgdat;
1190 int nid, zid;
1191
1192 if (!early_page_uninitialised(pfn))
1193 return;
1194
1195 nid = early_pfn_to_nid(pfn);
1196 pgdat = NODE_DATA(nid);
1197
1198 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1199 struct zone *zone = &pgdat->node_zones[zid];
1200
1201 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1202 break;
1203 }
1204 __init_single_pfn(pfn, zid, nid);
1205 }
1206 #else
1207 static inline void init_reserved_page(unsigned long pfn)
1208 {
1209 }
1210 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1211
1212 /*
1213 * Initialised pages do not have PageReserved set. This function is
1214 * called for each range allocated by the bootmem allocator and
1215 * marks the pages PageReserved. The remaining valid pages are later
1216 * sent to the buddy page allocator.
1217 */
1218 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1219 {
1220 unsigned long start_pfn = PFN_DOWN(start);
1221 unsigned long end_pfn = PFN_UP(end);
1222
1223 for (; start_pfn < end_pfn; start_pfn++) {
1224 if (pfn_valid(start_pfn)) {
1225 struct page *page = pfn_to_page(start_pfn);
1226
1227 init_reserved_page(start_pfn);
1228
1229 /* Avoid false-positive PageTail() */
1230 INIT_LIST_HEAD(&page->lru);
1231
1232 SetPageReserved(page);
1233 }
1234 }
1235 }
1236
1237 static void __free_pages_ok(struct page *page, unsigned int order)
1238 {
1239 unsigned long flags;
1240 int migratetype;
1241 unsigned long pfn = page_to_pfn(page);
1242
1243 if (!free_pages_prepare(page, order, true))
1244 return;
1245
1246 migratetype = get_pfnblock_migratetype(page, pfn);
1247 local_irq_save(flags);
1248 __count_vm_events(PGFREE, 1 << order);
1249 free_one_page(page_zone(page), page, pfn, order, migratetype);
1250 local_irq_restore(flags);
1251 }
1252
1253 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1254 {
1255 unsigned int nr_pages = 1 << order;
1256 struct page *p = page;
1257 unsigned int loop;
1258
1259 prefetchw(p);
1260 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1261 prefetchw(p + 1);
1262 __ClearPageReserved(p);
1263 set_page_count(p, 0);
1264 }
1265 __ClearPageReserved(p);
1266 set_page_count(p, 0);
1267
1268 page_zone(page)->managed_pages += nr_pages;
1269 set_page_refcounted(page);
1270 __free_pages(page, order);
1271 }
1272
1273 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1274 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1275
1276 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1277
1278 int __meminit early_pfn_to_nid(unsigned long pfn)
1279 {
1280 static DEFINE_SPINLOCK(early_pfn_lock);
1281 int nid;
1282
1283 spin_lock(&early_pfn_lock);
1284 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1285 if (nid < 0)
1286 nid = first_online_node;
1287 spin_unlock(&early_pfn_lock);
1288
1289 return nid;
1290 }
1291 #endif
1292
1293 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1294 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1295 struct mminit_pfnnid_cache *state)
1296 {
1297 int nid;
1298
1299 nid = __early_pfn_to_nid(pfn, state);
1300 if (nid >= 0 && nid != node)
1301 return false;
1302 return true;
1303 }
1304
1305 /* Only safe to use early in boot when initialisation is single-threaded */
1306 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1307 {
1308 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1309 }
1310
1311 #else
1312
1313 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1314 {
1315 return true;
1316 }
1317 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1318 struct mminit_pfnnid_cache *state)
1319 {
1320 return true;
1321 }
1322 #endif
1323
1324
1325 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1326 unsigned int order)
1327 {
1328 if (early_page_uninitialised(pfn))
1329 return;
1330 return __free_pages_boot_core(page, order);
1331 }
1332
1333 /*
1334 * Check that the whole (or subset of) a pageblock given by the interval of
1335 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1336 * with the migration of free compaction scanner. The scanners then need to
1337 * use only pfn_valid_within() check for arches that allow holes within
1338 * pageblocks.
1339 *
1340 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1341 *
1342 * It's possible on some configurations to have a setup like node0 node1 node0
1343 * i.e. it's possible that all pages within a zones range of pages do not
1344 * belong to a single zone. We assume that a border between node0 and node1
1345 * can occur within a single pageblock, but not a node0 node1 node0
1346 * interleaving within a single pageblock. It is therefore sufficient to check
1347 * the first and last page of a pageblock and avoid checking each individual
1348 * page in a pageblock.
1349 */
1350 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1351 unsigned long end_pfn, struct zone *zone)
1352 {
1353 struct page *start_page;
1354 struct page *end_page;
1355
1356 /* end_pfn is one past the range we are checking */
1357 end_pfn--;
1358
1359 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1360 return NULL;
1361
1362 start_page = pfn_to_page(start_pfn);
1363
1364 if (page_zone(start_page) != zone)
1365 return NULL;
1366
1367 end_page = pfn_to_page(end_pfn);
1368
1369 /* This gives a shorter code than deriving page_zone(end_page) */
1370 if (page_zone_id(start_page) != page_zone_id(end_page))
1371 return NULL;
1372
1373 return start_page;
1374 }
1375
1376 void set_zone_contiguous(struct zone *zone)
1377 {
1378 unsigned long block_start_pfn = zone->zone_start_pfn;
1379 unsigned long block_end_pfn;
1380
1381 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1382 for (; block_start_pfn < zone_end_pfn(zone);
1383 block_start_pfn = block_end_pfn,
1384 block_end_pfn += pageblock_nr_pages) {
1385
1386 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1387
1388 if (!__pageblock_pfn_to_page(block_start_pfn,
1389 block_end_pfn, zone))
1390 return;
1391 }
1392
1393 /* We confirm that there is no hole */
1394 zone->contiguous = true;
1395 }
1396
1397 void clear_zone_contiguous(struct zone *zone)
1398 {
1399 zone->contiguous = false;
1400 }
1401
1402 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1403 static void __init deferred_free_range(struct page *page,
1404 unsigned long pfn, int nr_pages)
1405 {
1406 int i;
1407
1408 if (!page)
1409 return;
1410
1411 /* Free a large naturally-aligned chunk if possible */
1412 if (nr_pages == pageblock_nr_pages &&
1413 (pfn & (pageblock_nr_pages - 1)) == 0) {
1414 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1415 __free_pages_boot_core(page, pageblock_order);
1416 return;
1417 }
1418
1419 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1420 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1421 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1422 __free_pages_boot_core(page, 0);
1423 }
1424 }
1425
1426 /* Completion tracking for deferred_init_memmap() threads */
1427 static atomic_t pgdat_init_n_undone __initdata;
1428 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1429
1430 static inline void __init pgdat_init_report_one_done(void)
1431 {
1432 if (atomic_dec_and_test(&pgdat_init_n_undone))
1433 complete(&pgdat_init_all_done_comp);
1434 }
1435
1436 /* Initialise remaining memory on a node */
1437 static int __init deferred_init_memmap(void *data)
1438 {
1439 pg_data_t *pgdat = data;
1440 int nid = pgdat->node_id;
1441 struct mminit_pfnnid_cache nid_init_state = { };
1442 unsigned long start = jiffies;
1443 unsigned long nr_pages = 0;
1444 unsigned long walk_start, walk_end;
1445 int i, zid;
1446 struct zone *zone;
1447 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1448 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1449
1450 if (first_init_pfn == ULONG_MAX) {
1451 pgdat_init_report_one_done();
1452 return 0;
1453 }
1454
1455 /* Bind memory initialisation thread to a local node if possible */
1456 if (!cpumask_empty(cpumask))
1457 set_cpus_allowed_ptr(current, cpumask);
1458
1459 /* Sanity check boundaries */
1460 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1461 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1462 pgdat->first_deferred_pfn = ULONG_MAX;
1463
1464 /* Only the highest zone is deferred so find it */
1465 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1466 zone = pgdat->node_zones + zid;
1467 if (first_init_pfn < zone_end_pfn(zone))
1468 break;
1469 }
1470
1471 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1472 unsigned long pfn, end_pfn;
1473 struct page *page = NULL;
1474 struct page *free_base_page = NULL;
1475 unsigned long free_base_pfn = 0;
1476 int nr_to_free = 0;
1477
1478 end_pfn = min(walk_end, zone_end_pfn(zone));
1479 pfn = first_init_pfn;
1480 if (pfn < walk_start)
1481 pfn = walk_start;
1482 if (pfn < zone->zone_start_pfn)
1483 pfn = zone->zone_start_pfn;
1484
1485 for (; pfn < end_pfn; pfn++) {
1486 if (!pfn_valid_within(pfn))
1487 goto free_range;
1488
1489 /*
1490 * Ensure pfn_valid is checked every
1491 * pageblock_nr_pages for memory holes
1492 */
1493 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1494 if (!pfn_valid(pfn)) {
1495 page = NULL;
1496 goto free_range;
1497 }
1498 }
1499
1500 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1501 page = NULL;
1502 goto free_range;
1503 }
1504
1505 /* Minimise pfn page lookups and scheduler checks */
1506 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1507 page++;
1508 } else {
1509 nr_pages += nr_to_free;
1510 deferred_free_range(free_base_page,
1511 free_base_pfn, nr_to_free);
1512 free_base_page = NULL;
1513 free_base_pfn = nr_to_free = 0;
1514
1515 page = pfn_to_page(pfn);
1516 cond_resched();
1517 }
1518
1519 if (page->flags) {
1520 VM_BUG_ON(page_zone(page) != zone);
1521 goto free_range;
1522 }
1523
1524 __init_single_page(page, pfn, zid, nid);
1525 if (!free_base_page) {
1526 free_base_page = page;
1527 free_base_pfn = pfn;
1528 nr_to_free = 0;
1529 }
1530 nr_to_free++;
1531
1532 /* Where possible, batch up pages for a single free */
1533 continue;
1534 free_range:
1535 /* Free the current block of pages to allocator */
1536 nr_pages += nr_to_free;
1537 deferred_free_range(free_base_page, free_base_pfn,
1538 nr_to_free);
1539 free_base_page = NULL;
1540 free_base_pfn = nr_to_free = 0;
1541 }
1542 /* Free the last block of pages to allocator */
1543 nr_pages += nr_to_free;
1544 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1545
1546 first_init_pfn = max(end_pfn, first_init_pfn);
1547 }
1548
1549 /* Sanity check that the next zone really is unpopulated */
1550 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1551
1552 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1553 jiffies_to_msecs(jiffies - start));
1554
1555 pgdat_init_report_one_done();
1556 return 0;
1557 }
1558 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1559
1560 void __init page_alloc_init_late(void)
1561 {
1562 struct zone *zone;
1563
1564 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1565 int nid;
1566
1567 /* There will be num_node_state(N_MEMORY) threads */
1568 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1569 for_each_node_state(nid, N_MEMORY) {
1570 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1571 }
1572
1573 /* Block until all are initialised */
1574 wait_for_completion(&pgdat_init_all_done_comp);
1575
1576 /* Reinit limits that are based on free pages after the kernel is up */
1577 files_maxfiles_init();
1578 #endif
1579
1580 for_each_populated_zone(zone)
1581 set_zone_contiguous(zone);
1582 }
1583
1584 #ifdef CONFIG_CMA
1585 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1586 void __init init_cma_reserved_pageblock(struct page *page)
1587 {
1588 unsigned i = pageblock_nr_pages;
1589 struct page *p = page;
1590
1591 do {
1592 __ClearPageReserved(p);
1593 set_page_count(p, 0);
1594 } while (++p, --i);
1595
1596 set_pageblock_migratetype(page, MIGRATE_CMA);
1597
1598 if (pageblock_order >= MAX_ORDER) {
1599 i = pageblock_nr_pages;
1600 p = page;
1601 do {
1602 set_page_refcounted(p);
1603 __free_pages(p, MAX_ORDER - 1);
1604 p += MAX_ORDER_NR_PAGES;
1605 } while (i -= MAX_ORDER_NR_PAGES);
1606 } else {
1607 set_page_refcounted(page);
1608 __free_pages(page, pageblock_order);
1609 }
1610
1611 adjust_managed_page_count(page, pageblock_nr_pages);
1612 }
1613 #endif
1614
1615 /*
1616 * The order of subdivision here is critical for the IO subsystem.
1617 * Please do not alter this order without good reasons and regression
1618 * testing. Specifically, as large blocks of memory are subdivided,
1619 * the order in which smaller blocks are delivered depends on the order
1620 * they're subdivided in this function. This is the primary factor
1621 * influencing the order in which pages are delivered to the IO
1622 * subsystem according to empirical testing, and this is also justified
1623 * by considering the behavior of a buddy system containing a single
1624 * large block of memory acted on by a series of small allocations.
1625 * This behavior is a critical factor in sglist merging's success.
1626 *
1627 * -- nyc
1628 */
1629 static inline void expand(struct zone *zone, struct page *page,
1630 int low, int high, struct free_area *area,
1631 int migratetype)
1632 {
1633 unsigned long size = 1 << high;
1634
1635 while (high > low) {
1636 area--;
1637 high--;
1638 size >>= 1;
1639 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1640
1641 /*
1642 * Mark as guard pages (or page), that will allow to
1643 * merge back to allocator when buddy will be freed.
1644 * Corresponding page table entries will not be touched,
1645 * pages will stay not present in virtual address space
1646 */
1647 if (set_page_guard(zone, &page[size], high, migratetype))
1648 continue;
1649
1650 list_add(&page[size].lru, &area->free_list[migratetype]);
1651 area->nr_free++;
1652 set_page_order(&page[size], high);
1653 }
1654 }
1655
1656 static void check_new_page_bad(struct page *page)
1657 {
1658 const char *bad_reason = NULL;
1659 unsigned long bad_flags = 0;
1660
1661 if (unlikely(atomic_read(&page->_mapcount) != -1))
1662 bad_reason = "nonzero mapcount";
1663 if (unlikely(page->mapping != NULL))
1664 bad_reason = "non-NULL mapping";
1665 if (unlikely(page_ref_count(page) != 0))
1666 bad_reason = "nonzero _count";
1667 if (unlikely(page->flags & __PG_HWPOISON)) {
1668 bad_reason = "HWPoisoned (hardware-corrupted)";
1669 bad_flags = __PG_HWPOISON;
1670 /* Don't complain about hwpoisoned pages */
1671 page_mapcount_reset(page); /* remove PageBuddy */
1672 return;
1673 }
1674 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1675 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1676 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1677 }
1678 #ifdef CONFIG_MEMCG
1679 if (unlikely(page->mem_cgroup))
1680 bad_reason = "page still charged to cgroup";
1681 #endif
1682 bad_page(page, bad_reason, bad_flags);
1683 }
1684
1685 /*
1686 * This page is about to be returned from the page allocator
1687 */
1688 static inline int check_new_page(struct page *page)
1689 {
1690 if (likely(page_expected_state(page,
1691 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1692 return 0;
1693
1694 check_new_page_bad(page);
1695 return 1;
1696 }
1697
1698 static inline bool free_pages_prezeroed(bool poisoned)
1699 {
1700 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1701 page_poisoning_enabled() && poisoned;
1702 }
1703
1704 #ifdef CONFIG_DEBUG_VM
1705 static bool check_pcp_refill(struct page *page)
1706 {
1707 return false;
1708 }
1709
1710 static bool check_new_pcp(struct page *page)
1711 {
1712 return check_new_page(page);
1713 }
1714 #else
1715 static bool check_pcp_refill(struct page *page)
1716 {
1717 return check_new_page(page);
1718 }
1719 static bool check_new_pcp(struct page *page)
1720 {
1721 return false;
1722 }
1723 #endif /* CONFIG_DEBUG_VM */
1724
1725 static bool check_new_pages(struct page *page, unsigned int order)
1726 {
1727 int i;
1728 for (i = 0; i < (1 << order); i++) {
1729 struct page *p = page + i;
1730
1731 if (unlikely(check_new_page(p)))
1732 return true;
1733 }
1734
1735 return false;
1736 }
1737
1738 inline void post_alloc_hook(struct page *page, unsigned int order,
1739 gfp_t gfp_flags)
1740 {
1741 set_page_private(page, 0);
1742 set_page_refcounted(page);
1743
1744 arch_alloc_page(page, order);
1745 kernel_map_pages(page, 1 << order, 1);
1746 kernel_poison_pages(page, 1 << order, 1);
1747 kasan_alloc_pages(page, order);
1748 set_page_owner(page, order, gfp_flags);
1749 }
1750
1751 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1752 unsigned int alloc_flags)
1753 {
1754 int i;
1755 bool poisoned = true;
1756
1757 for (i = 0; i < (1 << order); i++) {
1758 struct page *p = page + i;
1759 if (poisoned)
1760 poisoned &= page_is_poisoned(p);
1761 }
1762
1763 post_alloc_hook(page, order, gfp_flags);
1764
1765 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1766 for (i = 0; i < (1 << order); i++)
1767 clear_highpage(page + i);
1768
1769 if (order && (gfp_flags & __GFP_COMP))
1770 prep_compound_page(page, order);
1771
1772 /*
1773 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1774 * allocate the page. The expectation is that the caller is taking
1775 * steps that will free more memory. The caller should avoid the page
1776 * being used for !PFMEMALLOC purposes.
1777 */
1778 if (alloc_flags & ALLOC_NO_WATERMARKS)
1779 set_page_pfmemalloc(page);
1780 else
1781 clear_page_pfmemalloc(page);
1782 }
1783
1784 /*
1785 * Go through the free lists for the given migratetype and remove
1786 * the smallest available page from the freelists
1787 */
1788 static inline
1789 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1790 int migratetype)
1791 {
1792 unsigned int current_order;
1793 struct free_area *area;
1794 struct page *page;
1795
1796 /* Find a page of the appropriate size in the preferred list */
1797 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1798 area = &(zone->free_area[current_order]);
1799 page = list_first_entry_or_null(&area->free_list[migratetype],
1800 struct page, lru);
1801 if (!page)
1802 continue;
1803 list_del(&page->lru);
1804 rmv_page_order(page);
1805 area->nr_free--;
1806 expand(zone, page, order, current_order, area, migratetype);
1807 set_pcppage_migratetype(page, migratetype);
1808 return page;
1809 }
1810
1811 return NULL;
1812 }
1813
1814
1815 /*
1816 * This array describes the order lists are fallen back to when
1817 * the free lists for the desirable migrate type are depleted
1818 */
1819 static int fallbacks[MIGRATE_TYPES][4] = {
1820 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1821 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1822 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1823 #ifdef CONFIG_CMA
1824 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1825 #endif
1826 #ifdef CONFIG_MEMORY_ISOLATION
1827 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1828 #endif
1829 };
1830
1831 #ifdef CONFIG_CMA
1832 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1833 unsigned int order)
1834 {
1835 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1836 }
1837 #else
1838 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1839 unsigned int order) { return NULL; }
1840 #endif
1841
1842 /*
1843 * Move the free pages in a range to the free lists of the requested type.
1844 * Note that start_page and end_pages are not aligned on a pageblock
1845 * boundary. If alignment is required, use move_freepages_block()
1846 */
1847 int move_freepages(struct zone *zone,
1848 struct page *start_page, struct page *end_page,
1849 int migratetype)
1850 {
1851 struct page *page;
1852 unsigned int order;
1853 int pages_moved = 0;
1854
1855 #ifndef CONFIG_HOLES_IN_ZONE
1856 /*
1857 * page_zone is not safe to call in this context when
1858 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1859 * anyway as we check zone boundaries in move_freepages_block().
1860 * Remove at a later date when no bug reports exist related to
1861 * grouping pages by mobility
1862 */
1863 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1864 #endif
1865
1866 for (page = start_page; page <= end_page;) {
1867 /* Make sure we are not inadvertently changing nodes */
1868 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1869
1870 if (!pfn_valid_within(page_to_pfn(page))) {
1871 page++;
1872 continue;
1873 }
1874
1875 if (!PageBuddy(page)) {
1876 page++;
1877 continue;
1878 }
1879
1880 order = page_order(page);
1881 list_move(&page->lru,
1882 &zone->free_area[order].free_list[migratetype]);
1883 page += 1 << order;
1884 pages_moved += 1 << order;
1885 }
1886
1887 return pages_moved;
1888 }
1889
1890 int move_freepages_block(struct zone *zone, struct page *page,
1891 int migratetype)
1892 {
1893 unsigned long start_pfn, end_pfn;
1894 struct page *start_page, *end_page;
1895
1896 start_pfn = page_to_pfn(page);
1897 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1898 start_page = pfn_to_page(start_pfn);
1899 end_page = start_page + pageblock_nr_pages - 1;
1900 end_pfn = start_pfn + pageblock_nr_pages - 1;
1901
1902 /* Do not cross zone boundaries */
1903 if (!zone_spans_pfn(zone, start_pfn))
1904 start_page = page;
1905 if (!zone_spans_pfn(zone, end_pfn))
1906 return 0;
1907
1908 return move_freepages(zone, start_page, end_page, migratetype);
1909 }
1910
1911 static void change_pageblock_range(struct page *pageblock_page,
1912 int start_order, int migratetype)
1913 {
1914 int nr_pageblocks = 1 << (start_order - pageblock_order);
1915
1916 while (nr_pageblocks--) {
1917 set_pageblock_migratetype(pageblock_page, migratetype);
1918 pageblock_page += pageblock_nr_pages;
1919 }
1920 }
1921
1922 /*
1923 * When we are falling back to another migratetype during allocation, try to
1924 * steal extra free pages from the same pageblocks to satisfy further
1925 * allocations, instead of polluting multiple pageblocks.
1926 *
1927 * If we are stealing a relatively large buddy page, it is likely there will
1928 * be more free pages in the pageblock, so try to steal them all. For
1929 * reclaimable and unmovable allocations, we steal regardless of page size,
1930 * as fragmentation caused by those allocations polluting movable pageblocks
1931 * is worse than movable allocations stealing from unmovable and reclaimable
1932 * pageblocks.
1933 */
1934 static bool can_steal_fallback(unsigned int order, int start_mt)
1935 {
1936 /*
1937 * Leaving this order check is intended, although there is
1938 * relaxed order check in next check. The reason is that
1939 * we can actually steal whole pageblock if this condition met,
1940 * but, below check doesn't guarantee it and that is just heuristic
1941 * so could be changed anytime.
1942 */
1943 if (order >= pageblock_order)
1944 return true;
1945
1946 if (order >= pageblock_order / 2 ||
1947 start_mt == MIGRATE_RECLAIMABLE ||
1948 start_mt == MIGRATE_UNMOVABLE ||
1949 page_group_by_mobility_disabled)
1950 return true;
1951
1952 return false;
1953 }
1954
1955 /*
1956 * This function implements actual steal behaviour. If order is large enough,
1957 * we can steal whole pageblock. If not, we first move freepages in this
1958 * pageblock and check whether half of pages are moved or not. If half of
1959 * pages are moved, we can change migratetype of pageblock and permanently
1960 * use it's pages as requested migratetype in the future.
1961 */
1962 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1963 int start_type)
1964 {
1965 unsigned int current_order = page_order(page);
1966 int pages;
1967
1968 /* Take ownership for orders >= pageblock_order */
1969 if (current_order >= pageblock_order) {
1970 change_pageblock_range(page, current_order, start_type);
1971 return;
1972 }
1973
1974 pages = move_freepages_block(zone, page, start_type);
1975
1976 /* Claim the whole block if over half of it is free */
1977 if (pages >= (1 << (pageblock_order-1)) ||
1978 page_group_by_mobility_disabled)
1979 set_pageblock_migratetype(page, start_type);
1980 }
1981
1982 /*
1983 * Check whether there is a suitable fallback freepage with requested order.
1984 * If only_stealable is true, this function returns fallback_mt only if
1985 * we can steal other freepages all together. This would help to reduce
1986 * fragmentation due to mixed migratetype pages in one pageblock.
1987 */
1988 int find_suitable_fallback(struct free_area *area, unsigned int order,
1989 int migratetype, bool only_stealable, bool *can_steal)
1990 {
1991 int i;
1992 int fallback_mt;
1993
1994 if (area->nr_free == 0)
1995 return -1;
1996
1997 *can_steal = false;
1998 for (i = 0;; i++) {
1999 fallback_mt = fallbacks[migratetype][i];
2000 if (fallback_mt == MIGRATE_TYPES)
2001 break;
2002
2003 if (list_empty(&area->free_list[fallback_mt]))
2004 continue;
2005
2006 if (can_steal_fallback(order, migratetype))
2007 *can_steal = true;
2008
2009 if (!only_stealable)
2010 return fallback_mt;
2011
2012 if (*can_steal)
2013 return fallback_mt;
2014 }
2015
2016 return -1;
2017 }
2018
2019 /*
2020 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2021 * there are no empty page blocks that contain a page with a suitable order
2022 */
2023 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2024 unsigned int alloc_order)
2025 {
2026 int mt;
2027 unsigned long max_managed, flags;
2028
2029 /*
2030 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2031 * Check is race-prone but harmless.
2032 */
2033 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2034 if (zone->nr_reserved_highatomic >= max_managed)
2035 return;
2036
2037 spin_lock_irqsave(&zone->lock, flags);
2038
2039 /* Recheck the nr_reserved_highatomic limit under the lock */
2040 if (zone->nr_reserved_highatomic >= max_managed)
2041 goto out_unlock;
2042
2043 /* Yoink! */
2044 mt = get_pageblock_migratetype(page);
2045 if (mt != MIGRATE_HIGHATOMIC &&
2046 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2047 zone->nr_reserved_highatomic += pageblock_nr_pages;
2048 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2049 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2050 }
2051
2052 out_unlock:
2053 spin_unlock_irqrestore(&zone->lock, flags);
2054 }
2055
2056 /*
2057 * Used when an allocation is about to fail under memory pressure. This
2058 * potentially hurts the reliability of high-order allocations when under
2059 * intense memory pressure but failed atomic allocations should be easier
2060 * to recover from than an OOM.
2061 *
2062 * If @force is true, try to unreserve a pageblock even though highatomic
2063 * pageblock is exhausted.
2064 */
2065 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2066 bool force)
2067 {
2068 struct zonelist *zonelist = ac->zonelist;
2069 unsigned long flags;
2070 struct zoneref *z;
2071 struct zone *zone;
2072 struct page *page;
2073 int order;
2074 bool ret;
2075
2076 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2077 ac->nodemask) {
2078 /*
2079 * Preserve at least one pageblock unless memory pressure
2080 * is really high.
2081 */
2082 if (!force && zone->nr_reserved_highatomic <=
2083 pageblock_nr_pages)
2084 continue;
2085
2086 spin_lock_irqsave(&zone->lock, flags);
2087 for (order = 0; order < MAX_ORDER; order++) {
2088 struct free_area *area = &(zone->free_area[order]);
2089
2090 page = list_first_entry_or_null(
2091 &area->free_list[MIGRATE_HIGHATOMIC],
2092 struct page, lru);
2093 if (!page)
2094 continue;
2095
2096 /*
2097 * In page freeing path, migratetype change is racy so
2098 * we can counter several free pages in a pageblock
2099 * in this loop althoug we changed the pageblock type
2100 * from highatomic to ac->migratetype. So we should
2101 * adjust the count once.
2102 */
2103 if (get_pageblock_migratetype(page) ==
2104 MIGRATE_HIGHATOMIC) {
2105 /*
2106 * It should never happen but changes to
2107 * locking could inadvertently allow a per-cpu
2108 * drain to add pages to MIGRATE_HIGHATOMIC
2109 * while unreserving so be safe and watch for
2110 * underflows.
2111 */
2112 zone->nr_reserved_highatomic -= min(
2113 pageblock_nr_pages,
2114 zone->nr_reserved_highatomic);
2115 }
2116
2117 /*
2118 * Convert to ac->migratetype and avoid the normal
2119 * pageblock stealing heuristics. Minimally, the caller
2120 * is doing the work and needs the pages. More
2121 * importantly, if the block was always converted to
2122 * MIGRATE_UNMOVABLE or another type then the number
2123 * of pageblocks that cannot be completely freed
2124 * may increase.
2125 */
2126 set_pageblock_migratetype(page, ac->migratetype);
2127 ret = move_freepages_block(zone, page, ac->migratetype);
2128 if (ret) {
2129 spin_unlock_irqrestore(&zone->lock, flags);
2130 return ret;
2131 }
2132 }
2133 spin_unlock_irqrestore(&zone->lock, flags);
2134 }
2135
2136 return false;
2137 }
2138
2139 /* Remove an element from the buddy allocator from the fallback list */
2140 static inline struct page *
2141 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2142 {
2143 struct free_area *area;
2144 unsigned int current_order;
2145 struct page *page;
2146 int fallback_mt;
2147 bool can_steal;
2148
2149 /* Find the largest possible block of pages in the other list */
2150 for (current_order = MAX_ORDER-1;
2151 current_order >= order && current_order <= MAX_ORDER-1;
2152 --current_order) {
2153 area = &(zone->free_area[current_order]);
2154 fallback_mt = find_suitable_fallback(area, current_order,
2155 start_migratetype, false, &can_steal);
2156 if (fallback_mt == -1)
2157 continue;
2158
2159 page = list_first_entry(&area->free_list[fallback_mt],
2160 struct page, lru);
2161 if (can_steal &&
2162 get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
2163 steal_suitable_fallback(zone, page, start_migratetype);
2164
2165 /* Remove the page from the freelists */
2166 area->nr_free--;
2167 list_del(&page->lru);
2168 rmv_page_order(page);
2169
2170 expand(zone, page, order, current_order, area,
2171 start_migratetype);
2172 /*
2173 * The pcppage_migratetype may differ from pageblock's
2174 * migratetype depending on the decisions in
2175 * find_suitable_fallback(). This is OK as long as it does not
2176 * differ for MIGRATE_CMA pageblocks. Those can be used as
2177 * fallback only via special __rmqueue_cma_fallback() function
2178 */
2179 set_pcppage_migratetype(page, start_migratetype);
2180
2181 trace_mm_page_alloc_extfrag(page, order, current_order,
2182 start_migratetype, fallback_mt);
2183
2184 return page;
2185 }
2186
2187 return NULL;
2188 }
2189
2190 /*
2191 * Do the hard work of removing an element from the buddy allocator.
2192 * Call me with the zone->lock already held.
2193 */
2194 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2195 int migratetype)
2196 {
2197 struct page *page;
2198
2199 page = __rmqueue_smallest(zone, order, migratetype);
2200 if (unlikely(!page)) {
2201 if (migratetype == MIGRATE_MOVABLE)
2202 page = __rmqueue_cma_fallback(zone, order);
2203
2204 if (!page)
2205 page = __rmqueue_fallback(zone, order, migratetype);
2206 }
2207
2208 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2209 return page;
2210 }
2211
2212 /*
2213 * Obtain a specified number of elements from the buddy allocator, all under
2214 * a single hold of the lock, for efficiency. Add them to the supplied list.
2215 * Returns the number of new pages which were placed at *list.
2216 */
2217 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2218 unsigned long count, struct list_head *list,
2219 int migratetype, bool cold)
2220 {
2221 int i, alloced = 0;
2222
2223 spin_lock(&zone->lock);
2224 for (i = 0; i < count; ++i) {
2225 struct page *page = __rmqueue(zone, order, migratetype);
2226 if (unlikely(page == NULL))
2227 break;
2228
2229 if (unlikely(check_pcp_refill(page)))
2230 continue;
2231
2232 /*
2233 * Split buddy pages returned by expand() are received here
2234 * in physical page order. The page is added to the callers and
2235 * list and the list head then moves forward. From the callers
2236 * perspective, the linked list is ordered by page number in
2237 * some conditions. This is useful for IO devices that can
2238 * merge IO requests if the physical pages are ordered
2239 * properly.
2240 */
2241 if (likely(!cold))
2242 list_add(&page->lru, list);
2243 else
2244 list_add_tail(&page->lru, list);
2245 list = &page->lru;
2246 alloced++;
2247 if (is_migrate_cma(get_pcppage_migratetype(page)))
2248 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2249 -(1 << order));
2250 }
2251
2252 /*
2253 * i pages were removed from the buddy list even if some leak due
2254 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2255 * on i. Do not confuse with 'alloced' which is the number of
2256 * pages added to the pcp list.
2257 */
2258 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2259 spin_unlock(&zone->lock);
2260 return alloced;
2261 }
2262
2263 #ifdef CONFIG_NUMA
2264 /*
2265 * Called from the vmstat counter updater to drain pagesets of this
2266 * currently executing processor on remote nodes after they have
2267 * expired.
2268 *
2269 * Note that this function must be called with the thread pinned to
2270 * a single processor.
2271 */
2272 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2273 {
2274 unsigned long flags;
2275 int to_drain, batch;
2276
2277 local_irq_save(flags);
2278 batch = READ_ONCE(pcp->batch);
2279 to_drain = min(pcp->count, batch);
2280 if (to_drain > 0) {
2281 free_pcppages_bulk(zone, to_drain, pcp);
2282 pcp->count -= to_drain;
2283 }
2284 local_irq_restore(flags);
2285 }
2286 #endif
2287
2288 /*
2289 * Drain pcplists of the indicated processor and zone.
2290 *
2291 * The processor must either be the current processor and the
2292 * thread pinned to the current processor or a processor that
2293 * is not online.
2294 */
2295 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2296 {
2297 unsigned long flags;
2298 struct per_cpu_pageset *pset;
2299 struct per_cpu_pages *pcp;
2300
2301 local_irq_save(flags);
2302 pset = per_cpu_ptr(zone->pageset, cpu);
2303
2304 pcp = &pset->pcp;
2305 if (pcp->count) {
2306 free_pcppages_bulk(zone, pcp->count, pcp);
2307 pcp->count = 0;
2308 }
2309 local_irq_restore(flags);
2310 }
2311
2312 /*
2313 * Drain pcplists of all zones on the indicated processor.
2314 *
2315 * The processor must either be the current processor and the
2316 * thread pinned to the current processor or a processor that
2317 * is not online.
2318 */
2319 static void drain_pages(unsigned int cpu)
2320 {
2321 struct zone *zone;
2322
2323 for_each_populated_zone(zone) {
2324 drain_pages_zone(cpu, zone);
2325 }
2326 }
2327
2328 /*
2329 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2330 *
2331 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2332 * the single zone's pages.
2333 */
2334 void drain_local_pages(struct zone *zone)
2335 {
2336 int cpu = smp_processor_id();
2337
2338 if (zone)
2339 drain_pages_zone(cpu, zone);
2340 else
2341 drain_pages(cpu);
2342 }
2343
2344 /*
2345 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2346 *
2347 * When zone parameter is non-NULL, spill just the single zone's pages.
2348 *
2349 * Note that this code is protected against sending an IPI to an offline
2350 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2351 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2352 * nothing keeps CPUs from showing up after we populated the cpumask and
2353 * before the call to on_each_cpu_mask().
2354 */
2355 void drain_all_pages(struct zone *zone)
2356 {
2357 int cpu;
2358
2359 /*
2360 * Allocate in the BSS so we wont require allocation in
2361 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2362 */
2363 static cpumask_t cpus_with_pcps;
2364
2365 /*
2366 * We don't care about racing with CPU hotplug event
2367 * as offline notification will cause the notified
2368 * cpu to drain that CPU pcps and on_each_cpu_mask
2369 * disables preemption as part of its processing
2370 */
2371 for_each_online_cpu(cpu) {
2372 struct per_cpu_pageset *pcp;
2373 struct zone *z;
2374 bool has_pcps = false;
2375
2376 if (zone) {
2377 pcp = per_cpu_ptr(zone->pageset, cpu);
2378 if (pcp->pcp.count)
2379 has_pcps = true;
2380 } else {
2381 for_each_populated_zone(z) {
2382 pcp = per_cpu_ptr(z->pageset, cpu);
2383 if (pcp->pcp.count) {
2384 has_pcps = true;
2385 break;
2386 }
2387 }
2388 }
2389
2390 if (has_pcps)
2391 cpumask_set_cpu(cpu, &cpus_with_pcps);
2392 else
2393 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2394 }
2395 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2396 zone, 1);
2397 }
2398
2399 #ifdef CONFIG_HIBERNATION
2400
2401 void mark_free_pages(struct zone *zone)
2402 {
2403 unsigned long pfn, max_zone_pfn;
2404 unsigned long flags;
2405 unsigned int order, t;
2406 struct page *page;
2407
2408 if (zone_is_empty(zone))
2409 return;
2410
2411 spin_lock_irqsave(&zone->lock, flags);
2412
2413 max_zone_pfn = zone_end_pfn(zone);
2414 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2415 if (pfn_valid(pfn)) {
2416 page = pfn_to_page(pfn);
2417
2418 if (page_zone(page) != zone)
2419 continue;
2420
2421 if (!swsusp_page_is_forbidden(page))
2422 swsusp_unset_page_free(page);
2423 }
2424
2425 for_each_migratetype_order(order, t) {
2426 list_for_each_entry(page,
2427 &zone->free_area[order].free_list[t], lru) {
2428 unsigned long i;
2429
2430 pfn = page_to_pfn(page);
2431 for (i = 0; i < (1UL << order); i++)
2432 swsusp_set_page_free(pfn_to_page(pfn + i));
2433 }
2434 }
2435 spin_unlock_irqrestore(&zone->lock, flags);
2436 }
2437 #endif /* CONFIG_PM */
2438
2439 /*
2440 * Free a 0-order page
2441 * cold == true ? free a cold page : free a hot page
2442 */
2443 void free_hot_cold_page(struct page *page, bool cold)
2444 {
2445 struct zone *zone = page_zone(page);
2446 struct per_cpu_pages *pcp;
2447 unsigned long flags;
2448 unsigned long pfn = page_to_pfn(page);
2449 int migratetype;
2450
2451 if (!free_pcp_prepare(page))
2452 return;
2453
2454 migratetype = get_pfnblock_migratetype(page, pfn);
2455 set_pcppage_migratetype(page, migratetype);
2456 local_irq_save(flags);
2457 __count_vm_event(PGFREE);
2458
2459 /*
2460 * We only track unmovable, reclaimable and movable on pcp lists.
2461 * Free ISOLATE pages back to the allocator because they are being
2462 * offlined but treat RESERVE as movable pages so we can get those
2463 * areas back if necessary. Otherwise, we may have to free
2464 * excessively into the page allocator
2465 */
2466 if (migratetype >= MIGRATE_PCPTYPES) {
2467 if (unlikely(is_migrate_isolate(migratetype))) {
2468 free_one_page(zone, page, pfn, 0, migratetype);
2469 goto out;
2470 }
2471 migratetype = MIGRATE_MOVABLE;
2472 }
2473
2474 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2475 if (!cold)
2476 list_add(&page->lru, &pcp->lists[migratetype]);
2477 else
2478 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2479 pcp->count++;
2480 if (pcp->count >= pcp->high) {
2481 unsigned long batch = READ_ONCE(pcp->batch);
2482 free_pcppages_bulk(zone, batch, pcp);
2483 pcp->count -= batch;
2484 }
2485
2486 out:
2487 local_irq_restore(flags);
2488 }
2489
2490 /*
2491 * Free a list of 0-order pages
2492 */
2493 void free_hot_cold_page_list(struct list_head *list, bool cold)
2494 {
2495 struct page *page, *next;
2496
2497 list_for_each_entry_safe(page, next, list, lru) {
2498 trace_mm_page_free_batched(page, cold);
2499 free_hot_cold_page(page, cold);
2500 }
2501 }
2502
2503 /*
2504 * split_page takes a non-compound higher-order page, and splits it into
2505 * n (1<<order) sub-pages: page[0..n]
2506 * Each sub-page must be freed individually.
2507 *
2508 * Note: this is probably too low level an operation for use in drivers.
2509 * Please consult with lkml before using this in your driver.
2510 */
2511 void split_page(struct page *page, unsigned int order)
2512 {
2513 int i;
2514
2515 VM_BUG_ON_PAGE(PageCompound(page), page);
2516 VM_BUG_ON_PAGE(!page_count(page), page);
2517
2518 #ifdef CONFIG_KMEMCHECK
2519 /*
2520 * Split shadow pages too, because free(page[0]) would
2521 * otherwise free the whole shadow.
2522 */
2523 if (kmemcheck_page_is_tracked(page))
2524 split_page(virt_to_page(page[0].shadow), order);
2525 #endif
2526
2527 for (i = 1; i < (1 << order); i++)
2528 set_page_refcounted(page + i);
2529 split_page_owner(page, order);
2530 }
2531 EXPORT_SYMBOL_GPL(split_page);
2532
2533 int __isolate_free_page(struct page *page, unsigned int order)
2534 {
2535 unsigned long watermark;
2536 struct zone *zone;
2537 int mt;
2538
2539 BUG_ON(!PageBuddy(page));
2540
2541 zone = page_zone(page);
2542 mt = get_pageblock_migratetype(page);
2543
2544 if (!is_migrate_isolate(mt)) {
2545 /*
2546 * Obey watermarks as if the page was being allocated. We can
2547 * emulate a high-order watermark check with a raised order-0
2548 * watermark, because we already know our high-order page
2549 * exists.
2550 */
2551 watermark = min_wmark_pages(zone) + (1UL << order);
2552 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2553 return 0;
2554
2555 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2556 }
2557
2558 /* Remove page from free list */
2559 list_del(&page->lru);
2560 zone->free_area[order].nr_free--;
2561 rmv_page_order(page);
2562
2563 /*
2564 * Set the pageblock if the isolated page is at least half of a
2565 * pageblock
2566 */
2567 if (order >= pageblock_order - 1) {
2568 struct page *endpage = page + (1 << order) - 1;
2569 for (; page < endpage; page += pageblock_nr_pages) {
2570 int mt = get_pageblock_migratetype(page);
2571 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2572 && mt != MIGRATE_HIGHATOMIC)
2573 set_pageblock_migratetype(page,
2574 MIGRATE_MOVABLE);
2575 }
2576 }
2577
2578
2579 return 1UL << order;
2580 }
2581
2582 /*
2583 * Update NUMA hit/miss statistics
2584 *
2585 * Must be called with interrupts disabled.
2586 *
2587 * When __GFP_OTHER_NODE is set assume the node of the preferred
2588 * zone is the local node. This is useful for daemons who allocate
2589 * memory on behalf of other processes.
2590 */
2591 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2592 gfp_t flags)
2593 {
2594 #ifdef CONFIG_NUMA
2595 int local_nid = numa_node_id();
2596 enum zone_stat_item local_stat = NUMA_LOCAL;
2597
2598 if (unlikely(flags & __GFP_OTHER_NODE)) {
2599 local_stat = NUMA_OTHER;
2600 local_nid = preferred_zone->node;
2601 }
2602
2603 if (z->node == local_nid) {
2604 __inc_zone_state(z, NUMA_HIT);
2605 __inc_zone_state(z, local_stat);
2606 } else {
2607 __inc_zone_state(z, NUMA_MISS);
2608 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2609 }
2610 #endif
2611 }
2612
2613 /*
2614 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2615 */
2616 static inline
2617 struct page *buffered_rmqueue(struct zone *preferred_zone,
2618 struct zone *zone, unsigned int order,
2619 gfp_t gfp_flags, unsigned int alloc_flags,
2620 int migratetype)
2621 {
2622 unsigned long flags;
2623 struct page *page;
2624 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2625
2626 if (likely(order == 0)) {
2627 struct per_cpu_pages *pcp;
2628 struct list_head *list;
2629
2630 local_irq_save(flags);
2631 do {
2632 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2633 list = &pcp->lists[migratetype];
2634 if (list_empty(list)) {
2635 pcp->count += rmqueue_bulk(zone, 0,
2636 pcp->batch, list,
2637 migratetype, cold);
2638 if (unlikely(list_empty(list)))
2639 goto failed;
2640 }
2641
2642 if (cold)
2643 page = list_last_entry(list, struct page, lru);
2644 else
2645 page = list_first_entry(list, struct page, lru);
2646
2647 list_del(&page->lru);
2648 pcp->count--;
2649
2650 } while (check_new_pcp(page));
2651 } else {
2652 /*
2653 * We most definitely don't want callers attempting to
2654 * allocate greater than order-1 page units with __GFP_NOFAIL.
2655 */
2656 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2657 spin_lock_irqsave(&zone->lock, flags);
2658
2659 do {
2660 page = NULL;
2661 if (alloc_flags & ALLOC_HARDER) {
2662 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2663 if (page)
2664 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2665 }
2666 if (!page)
2667 page = __rmqueue(zone, order, migratetype);
2668 } while (page && check_new_pages(page, order));
2669 spin_unlock(&zone->lock);
2670 if (!page)
2671 goto failed;
2672 __mod_zone_freepage_state(zone, -(1 << order),
2673 get_pcppage_migratetype(page));
2674 }
2675
2676 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2677 zone_statistics(preferred_zone, zone, gfp_flags);
2678 local_irq_restore(flags);
2679
2680 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2681 return page;
2682
2683 failed:
2684 local_irq_restore(flags);
2685 return NULL;
2686 }
2687
2688 #ifdef CONFIG_FAIL_PAGE_ALLOC
2689
2690 static struct {
2691 struct fault_attr attr;
2692
2693 bool ignore_gfp_highmem;
2694 bool ignore_gfp_reclaim;
2695 u32 min_order;
2696 } fail_page_alloc = {
2697 .attr = FAULT_ATTR_INITIALIZER,
2698 .ignore_gfp_reclaim = true,
2699 .ignore_gfp_highmem = true,
2700 .min_order = 1,
2701 };
2702
2703 static int __init setup_fail_page_alloc(char *str)
2704 {
2705 return setup_fault_attr(&fail_page_alloc.attr, str);
2706 }
2707 __setup("fail_page_alloc=", setup_fail_page_alloc);
2708
2709 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2710 {
2711 if (order < fail_page_alloc.min_order)
2712 return false;
2713 if (gfp_mask & __GFP_NOFAIL)
2714 return false;
2715 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2716 return false;
2717 if (fail_page_alloc.ignore_gfp_reclaim &&
2718 (gfp_mask & __GFP_DIRECT_RECLAIM))
2719 return false;
2720
2721 return should_fail(&fail_page_alloc.attr, 1 << order);
2722 }
2723
2724 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2725
2726 static int __init fail_page_alloc_debugfs(void)
2727 {
2728 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2729 struct dentry *dir;
2730
2731 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2732 &fail_page_alloc.attr);
2733 if (IS_ERR(dir))
2734 return PTR_ERR(dir);
2735
2736 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2737 &fail_page_alloc.ignore_gfp_reclaim))
2738 goto fail;
2739 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2740 &fail_page_alloc.ignore_gfp_highmem))
2741 goto fail;
2742 if (!debugfs_create_u32("min-order", mode, dir,
2743 &fail_page_alloc.min_order))
2744 goto fail;
2745
2746 return 0;
2747 fail:
2748 debugfs_remove_recursive(dir);
2749
2750 return -ENOMEM;
2751 }
2752
2753 late_initcall(fail_page_alloc_debugfs);
2754
2755 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2756
2757 #else /* CONFIG_FAIL_PAGE_ALLOC */
2758
2759 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2760 {
2761 return false;
2762 }
2763
2764 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2765
2766 /*
2767 * Return true if free base pages are above 'mark'. For high-order checks it
2768 * will return true of the order-0 watermark is reached and there is at least
2769 * one free page of a suitable size. Checking now avoids taking the zone lock
2770 * to check in the allocation paths if no pages are free.
2771 */
2772 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2773 int classzone_idx, unsigned int alloc_flags,
2774 long free_pages)
2775 {
2776 long min = mark;
2777 int o;
2778 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2779
2780 /* free_pages may go negative - that's OK */
2781 free_pages -= (1 << order) - 1;
2782
2783 if (alloc_flags & ALLOC_HIGH)
2784 min -= min / 2;
2785
2786 /*
2787 * If the caller does not have rights to ALLOC_HARDER then subtract
2788 * the high-atomic reserves. This will over-estimate the size of the
2789 * atomic reserve but it avoids a search.
2790 */
2791 if (likely(!alloc_harder))
2792 free_pages -= z->nr_reserved_highatomic;
2793 else
2794 min -= min / 4;
2795
2796 #ifdef CONFIG_CMA
2797 /* If allocation can't use CMA areas don't use free CMA pages */
2798 if (!(alloc_flags & ALLOC_CMA))
2799 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2800 #endif
2801
2802 /*
2803 * Check watermarks for an order-0 allocation request. If these
2804 * are not met, then a high-order request also cannot go ahead
2805 * even if a suitable page happened to be free.
2806 */
2807 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2808 return false;
2809
2810 /* If this is an order-0 request then the watermark is fine */
2811 if (!order)
2812 return true;
2813
2814 /* For a high-order request, check at least one suitable page is free */
2815 for (o = order; o < MAX_ORDER; o++) {
2816 struct free_area *area = &z->free_area[o];
2817 int mt;
2818
2819 if (!area->nr_free)
2820 continue;
2821
2822 if (alloc_harder)
2823 return true;
2824
2825 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2826 if (!list_empty(&area->free_list[mt]))
2827 return true;
2828 }
2829
2830 #ifdef CONFIG_CMA
2831 if ((alloc_flags & ALLOC_CMA) &&
2832 !list_empty(&area->free_list[MIGRATE_CMA])) {
2833 return true;
2834 }
2835 #endif
2836 }
2837 return false;
2838 }
2839
2840 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2841 int classzone_idx, unsigned int alloc_flags)
2842 {
2843 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2844 zone_page_state(z, NR_FREE_PAGES));
2845 }
2846
2847 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2848 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2849 {
2850 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2851 long cma_pages = 0;
2852
2853 #ifdef CONFIG_CMA
2854 /* If allocation can't use CMA areas don't use free CMA pages */
2855 if (!(alloc_flags & ALLOC_CMA))
2856 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2857 #endif
2858
2859 /*
2860 * Fast check for order-0 only. If this fails then the reserves
2861 * need to be calculated. There is a corner case where the check
2862 * passes but only the high-order atomic reserve are free. If
2863 * the caller is !atomic then it'll uselessly search the free
2864 * list. That corner case is then slower but it is harmless.
2865 */
2866 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2867 return true;
2868
2869 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2870 free_pages);
2871 }
2872
2873 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2874 unsigned long mark, int classzone_idx)
2875 {
2876 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2877
2878 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2879 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2880
2881 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2882 free_pages);
2883 }
2884
2885 #ifdef CONFIG_NUMA
2886 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2887 {
2888 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2889 RECLAIM_DISTANCE;
2890 }
2891 #else /* CONFIG_NUMA */
2892 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2893 {
2894 return true;
2895 }
2896 #endif /* CONFIG_NUMA */
2897
2898 /*
2899 * get_page_from_freelist goes through the zonelist trying to allocate
2900 * a page.
2901 */
2902 static struct page *
2903 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2904 const struct alloc_context *ac)
2905 {
2906 struct zoneref *z = ac->preferred_zoneref;
2907 struct zone *zone;
2908 struct pglist_data *last_pgdat_dirty_limit = NULL;
2909
2910 /*
2911 * Scan zonelist, looking for a zone with enough free.
2912 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2913 */
2914 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2915 ac->nodemask) {
2916 struct page *page;
2917 unsigned long mark;
2918
2919 if (cpusets_enabled() &&
2920 (alloc_flags & ALLOC_CPUSET) &&
2921 !__cpuset_zone_allowed(zone, gfp_mask))
2922 continue;
2923 /*
2924 * When allocating a page cache page for writing, we
2925 * want to get it from a node that is within its dirty
2926 * limit, such that no single node holds more than its
2927 * proportional share of globally allowed dirty pages.
2928 * The dirty limits take into account the node's
2929 * lowmem reserves and high watermark so that kswapd
2930 * should be able to balance it without having to
2931 * write pages from its LRU list.
2932 *
2933 * XXX: For now, allow allocations to potentially
2934 * exceed the per-node dirty limit in the slowpath
2935 * (spread_dirty_pages unset) before going into reclaim,
2936 * which is important when on a NUMA setup the allowed
2937 * nodes are together not big enough to reach the
2938 * global limit. The proper fix for these situations
2939 * will require awareness of nodes in the
2940 * dirty-throttling and the flusher threads.
2941 */
2942 if (ac->spread_dirty_pages) {
2943 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2944 continue;
2945
2946 if (!node_dirty_ok(zone->zone_pgdat)) {
2947 last_pgdat_dirty_limit = zone->zone_pgdat;
2948 continue;
2949 }
2950 }
2951
2952 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2953 if (!zone_watermark_fast(zone, order, mark,
2954 ac_classzone_idx(ac), alloc_flags)) {
2955 int ret;
2956
2957 /* Checked here to keep the fast path fast */
2958 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2959 if (alloc_flags & ALLOC_NO_WATERMARKS)
2960 goto try_this_zone;
2961
2962 if (node_reclaim_mode == 0 ||
2963 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2964 continue;
2965
2966 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
2967 switch (ret) {
2968 case NODE_RECLAIM_NOSCAN:
2969 /* did not scan */
2970 continue;
2971 case NODE_RECLAIM_FULL:
2972 /* scanned but unreclaimable */
2973 continue;
2974 default:
2975 /* did we reclaim enough */
2976 if (zone_watermark_ok(zone, order, mark,
2977 ac_classzone_idx(ac), alloc_flags))
2978 goto try_this_zone;
2979
2980 continue;
2981 }
2982 }
2983
2984 try_this_zone:
2985 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
2986 gfp_mask, alloc_flags, ac->migratetype);
2987 if (page) {
2988 prep_new_page(page, order, gfp_mask, alloc_flags);
2989
2990 /*
2991 * If this is a high-order atomic allocation then check
2992 * if the pageblock should be reserved for the future
2993 */
2994 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2995 reserve_highatomic_pageblock(page, zone, order);
2996
2997 return page;
2998 }
2999 }
3000
3001 return NULL;
3002 }
3003
3004 /*
3005 * Large machines with many possible nodes should not always dump per-node
3006 * meminfo in irq context.
3007 */
3008 static inline bool should_suppress_show_mem(void)
3009 {
3010 bool ret = false;
3011
3012 #if NODES_SHIFT > 8
3013 ret = in_interrupt();
3014 #endif
3015 return ret;
3016 }
3017
3018 static DEFINE_RATELIMIT_STATE(nopage_rs,
3019 DEFAULT_RATELIMIT_INTERVAL,
3020 DEFAULT_RATELIMIT_BURST);
3021
3022 void warn_alloc(gfp_t gfp_mask, const char *fmt, ...)
3023 {
3024 unsigned int filter = SHOW_MEM_FILTER_NODES;
3025 struct va_format vaf;
3026 va_list args;
3027
3028 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3029 debug_guardpage_minorder() > 0)
3030 return;
3031
3032 /*
3033 * This documents exceptions given to allocations in certain
3034 * contexts that are allowed to allocate outside current's set
3035 * of allowed nodes.
3036 */
3037 if (!(gfp_mask & __GFP_NOMEMALLOC))
3038 if (test_thread_flag(TIF_MEMDIE) ||
3039 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3040 filter &= ~SHOW_MEM_FILTER_NODES;
3041 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3042 filter &= ~SHOW_MEM_FILTER_NODES;
3043
3044 pr_warn("%s: ", current->comm);
3045
3046 va_start(args, fmt);
3047 vaf.fmt = fmt;
3048 vaf.va = &args;
3049 pr_cont("%pV", &vaf);
3050 va_end(args);
3051
3052 pr_cont(", mode:%#x(%pGg)\n", gfp_mask, &gfp_mask);
3053
3054 dump_stack();
3055 if (!should_suppress_show_mem())
3056 show_mem(filter);
3057 }
3058
3059 static inline struct page *
3060 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3061 const struct alloc_context *ac, unsigned long *did_some_progress)
3062 {
3063 struct oom_control oc = {
3064 .zonelist = ac->zonelist,
3065 .nodemask = ac->nodemask,
3066 .memcg = NULL,
3067 .gfp_mask = gfp_mask,
3068 .order = order,
3069 };
3070 struct page *page;
3071
3072 *did_some_progress = 0;
3073
3074 /*
3075 * Acquire the oom lock. If that fails, somebody else is
3076 * making progress for us.
3077 */
3078 if (!mutex_trylock(&oom_lock)) {
3079 *did_some_progress = 1;
3080 schedule_timeout_uninterruptible(1);
3081 return NULL;
3082 }
3083
3084 /*
3085 * Go through the zonelist yet one more time, keep very high watermark
3086 * here, this is only to catch a parallel oom killing, we must fail if
3087 * we're still under heavy pressure.
3088 */
3089 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3090 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3091 if (page)
3092 goto out;
3093
3094 if (!(gfp_mask & __GFP_NOFAIL)) {
3095 /* Coredumps can quickly deplete all memory reserves */
3096 if (current->flags & PF_DUMPCORE)
3097 goto out;
3098 /* The OOM killer will not help higher order allocs */
3099 if (order > PAGE_ALLOC_COSTLY_ORDER)
3100 goto out;
3101 /* The OOM killer does not needlessly kill tasks for lowmem */
3102 if (ac->high_zoneidx < ZONE_NORMAL)
3103 goto out;
3104 if (pm_suspended_storage())
3105 goto out;
3106 /*
3107 * XXX: GFP_NOFS allocations should rather fail than rely on
3108 * other request to make a forward progress.
3109 * We are in an unfortunate situation where out_of_memory cannot
3110 * do much for this context but let's try it to at least get
3111 * access to memory reserved if the current task is killed (see
3112 * out_of_memory). Once filesystems are ready to handle allocation
3113 * failures more gracefully we should just bail out here.
3114 */
3115
3116 /* The OOM killer may not free memory on a specific node */
3117 if (gfp_mask & __GFP_THISNODE)
3118 goto out;
3119 }
3120 /* Exhausted what can be done so it's blamo time */
3121 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3122 *did_some_progress = 1;
3123
3124 if (gfp_mask & __GFP_NOFAIL) {
3125 page = get_page_from_freelist(gfp_mask, order,
3126 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3127 /*
3128 * fallback to ignore cpuset restriction if our nodes
3129 * are depleted
3130 */
3131 if (!page)
3132 page = get_page_from_freelist(gfp_mask, order,
3133 ALLOC_NO_WATERMARKS, ac);
3134 }
3135 }
3136 out:
3137 mutex_unlock(&oom_lock);
3138 return page;
3139 }
3140
3141 /*
3142 * Maximum number of compaction retries wit a progress before OOM
3143 * killer is consider as the only way to move forward.
3144 */
3145 #define MAX_COMPACT_RETRIES 16
3146
3147 #ifdef CONFIG_COMPACTION
3148 /* Try memory compaction for high-order allocations before reclaim */
3149 static struct page *
3150 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3151 unsigned int alloc_flags, const struct alloc_context *ac,
3152 enum compact_priority prio, enum compact_result *compact_result)
3153 {
3154 struct page *page;
3155
3156 if (!order)
3157 return NULL;
3158
3159 current->flags |= PF_MEMALLOC;
3160 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3161 prio);
3162 current->flags &= ~PF_MEMALLOC;
3163
3164 if (*compact_result <= COMPACT_INACTIVE)
3165 return NULL;
3166
3167 /*
3168 * At least in one zone compaction wasn't deferred or skipped, so let's
3169 * count a compaction stall
3170 */
3171 count_vm_event(COMPACTSTALL);
3172
3173 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3174
3175 if (page) {
3176 struct zone *zone = page_zone(page);
3177
3178 zone->compact_blockskip_flush = false;
3179 compaction_defer_reset(zone, order, true);
3180 count_vm_event(COMPACTSUCCESS);
3181 return page;
3182 }
3183
3184 /*
3185 * It's bad if compaction run occurs and fails. The most likely reason
3186 * is that pages exist, but not enough to satisfy watermarks.
3187 */
3188 count_vm_event(COMPACTFAIL);
3189
3190 cond_resched();
3191
3192 return NULL;
3193 }
3194
3195 static inline bool
3196 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3197 enum compact_result compact_result,
3198 enum compact_priority *compact_priority,
3199 int *compaction_retries)
3200 {
3201 int max_retries = MAX_COMPACT_RETRIES;
3202 int min_priority;
3203
3204 if (!order)
3205 return false;
3206
3207 if (compaction_made_progress(compact_result))
3208 (*compaction_retries)++;
3209
3210 /*
3211 * compaction considers all the zone as desperately out of memory
3212 * so it doesn't really make much sense to retry except when the
3213 * failure could be caused by insufficient priority
3214 */
3215 if (compaction_failed(compact_result))
3216 goto check_priority;
3217
3218 /*
3219 * make sure the compaction wasn't deferred or didn't bail out early
3220 * due to locks contention before we declare that we should give up.
3221 * But do not retry if the given zonelist is not suitable for
3222 * compaction.
3223 */
3224 if (compaction_withdrawn(compact_result))
3225 return compaction_zonelist_suitable(ac, order, alloc_flags);
3226
3227 /*
3228 * !costly requests are much more important than __GFP_REPEAT
3229 * costly ones because they are de facto nofail and invoke OOM
3230 * killer to move on while costly can fail and users are ready
3231 * to cope with that. 1/4 retries is rather arbitrary but we
3232 * would need much more detailed feedback from compaction to
3233 * make a better decision.
3234 */
3235 if (order > PAGE_ALLOC_COSTLY_ORDER)
3236 max_retries /= 4;
3237 if (*compaction_retries <= max_retries)
3238 return true;
3239
3240 /*
3241 * Make sure there are attempts at the highest priority if we exhausted
3242 * all retries or failed at the lower priorities.
3243 */
3244 check_priority:
3245 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3246 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3247 if (*compact_priority > min_priority) {
3248 (*compact_priority)--;
3249 *compaction_retries = 0;
3250 return true;
3251 }
3252 return false;
3253 }
3254 #else
3255 static inline struct page *
3256 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3257 unsigned int alloc_flags, const struct alloc_context *ac,
3258 enum compact_priority prio, enum compact_result *compact_result)
3259 {
3260 *compact_result = COMPACT_SKIPPED;
3261 return NULL;
3262 }
3263
3264 static inline bool
3265 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3266 enum compact_result compact_result,
3267 enum compact_priority *compact_priority,
3268 int *compaction_retries)
3269 {
3270 struct zone *zone;
3271 struct zoneref *z;
3272
3273 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3274 return false;
3275
3276 /*
3277 * There are setups with compaction disabled which would prefer to loop
3278 * inside the allocator rather than hit the oom killer prematurely.
3279 * Let's give them a good hope and keep retrying while the order-0
3280 * watermarks are OK.
3281 */
3282 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3283 ac->nodemask) {
3284 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3285 ac_classzone_idx(ac), alloc_flags))
3286 return true;
3287 }
3288 return false;
3289 }
3290 #endif /* CONFIG_COMPACTION */
3291
3292 /* Perform direct synchronous page reclaim */
3293 static int
3294 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3295 const struct alloc_context *ac)
3296 {
3297 struct reclaim_state reclaim_state;
3298 int progress;
3299
3300 cond_resched();
3301
3302 /* We now go into synchronous reclaim */
3303 cpuset_memory_pressure_bump();
3304 current->flags |= PF_MEMALLOC;
3305 lockdep_set_current_reclaim_state(gfp_mask);
3306 reclaim_state.reclaimed_slab = 0;
3307 current->reclaim_state = &reclaim_state;
3308
3309 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3310 ac->nodemask);
3311
3312 current->reclaim_state = NULL;
3313 lockdep_clear_current_reclaim_state();
3314 current->flags &= ~PF_MEMALLOC;
3315
3316 cond_resched();
3317
3318 return progress;
3319 }
3320
3321 /* The really slow allocator path where we enter direct reclaim */
3322 static inline struct page *
3323 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3324 unsigned int alloc_flags, const struct alloc_context *ac,
3325 unsigned long *did_some_progress)
3326 {
3327 struct page *page = NULL;
3328 bool drained = false;
3329
3330 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3331 if (unlikely(!(*did_some_progress)))
3332 return NULL;
3333
3334 retry:
3335 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3336
3337 /*
3338 * If an allocation failed after direct reclaim, it could be because
3339 * pages are pinned on the per-cpu lists or in high alloc reserves.
3340 * Shrink them them and try again
3341 */
3342 if (!page && !drained) {
3343 unreserve_highatomic_pageblock(ac, false);
3344 drain_all_pages(NULL);
3345 drained = true;
3346 goto retry;
3347 }
3348
3349 return page;
3350 }
3351
3352 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3353 {
3354 struct zoneref *z;
3355 struct zone *zone;
3356 pg_data_t *last_pgdat = NULL;
3357
3358 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3359 ac->high_zoneidx, ac->nodemask) {
3360 if (last_pgdat != zone->zone_pgdat)
3361 wakeup_kswapd(zone, order, ac->high_zoneidx);
3362 last_pgdat = zone->zone_pgdat;
3363 }
3364 }
3365
3366 static inline unsigned int
3367 gfp_to_alloc_flags(gfp_t gfp_mask)
3368 {
3369 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3370
3371 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3372 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3373
3374 /*
3375 * The caller may dip into page reserves a bit more if the caller
3376 * cannot run direct reclaim, or if the caller has realtime scheduling
3377 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3378 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3379 */
3380 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3381
3382 if (gfp_mask & __GFP_ATOMIC) {
3383 /*
3384 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3385 * if it can't schedule.
3386 */
3387 if (!(gfp_mask & __GFP_NOMEMALLOC))
3388 alloc_flags |= ALLOC_HARDER;
3389 /*
3390 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3391 * comment for __cpuset_node_allowed().
3392 */
3393 alloc_flags &= ~ALLOC_CPUSET;
3394 } else if (unlikely(rt_task(current)) && !in_interrupt())
3395 alloc_flags |= ALLOC_HARDER;
3396
3397 #ifdef CONFIG_CMA
3398 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3399 alloc_flags |= ALLOC_CMA;
3400 #endif
3401 return alloc_flags;
3402 }
3403
3404 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3405 {
3406 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3407 return false;
3408
3409 if (gfp_mask & __GFP_MEMALLOC)
3410 return true;
3411 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3412 return true;
3413 if (!in_interrupt() &&
3414 ((current->flags & PF_MEMALLOC) ||
3415 unlikely(test_thread_flag(TIF_MEMDIE))))
3416 return true;
3417
3418 return false;
3419 }
3420
3421 /*
3422 * Maximum number of reclaim retries without any progress before OOM killer
3423 * is consider as the only way to move forward.
3424 */
3425 #define MAX_RECLAIM_RETRIES 16
3426
3427 /*
3428 * Checks whether it makes sense to retry the reclaim to make a forward progress
3429 * for the given allocation request.
3430 * The reclaim feedback represented by did_some_progress (any progress during
3431 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3432 * any progress in a row) is considered as well as the reclaimable pages on the
3433 * applicable zone list (with a backoff mechanism which is a function of
3434 * no_progress_loops).
3435 *
3436 * Returns true if a retry is viable or false to enter the oom path.
3437 */
3438 static inline bool
3439 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3440 struct alloc_context *ac, int alloc_flags,
3441 bool did_some_progress, int *no_progress_loops)
3442 {
3443 struct zone *zone;
3444 struct zoneref *z;
3445
3446 /*
3447 * Costly allocations might have made a progress but this doesn't mean
3448 * their order will become available due to high fragmentation so
3449 * always increment the no progress counter for them
3450 */
3451 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3452 *no_progress_loops = 0;
3453 else
3454 (*no_progress_loops)++;
3455
3456 /*
3457 * Make sure we converge to OOM if we cannot make any progress
3458 * several times in the row.
3459 */
3460 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3461 /* Before OOM, exhaust highatomic_reserve */
3462 return unreserve_highatomic_pageblock(ac, true);
3463 }
3464
3465 /*
3466 * Keep reclaiming pages while there is a chance this will lead
3467 * somewhere. If none of the target zones can satisfy our allocation
3468 * request even if all reclaimable pages are considered then we are
3469 * screwed and have to go OOM.
3470 */
3471 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3472 ac->nodemask) {
3473 unsigned long available;
3474 unsigned long reclaimable;
3475
3476 available = reclaimable = zone_reclaimable_pages(zone);
3477 available -= DIV_ROUND_UP((*no_progress_loops) * available,
3478 MAX_RECLAIM_RETRIES);
3479 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3480
3481 /*
3482 * Would the allocation succeed if we reclaimed the whole
3483 * available?
3484 */
3485 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3486 ac_classzone_idx(ac), alloc_flags, available)) {
3487 /*
3488 * If we didn't make any progress and have a lot of
3489 * dirty + writeback pages then we should wait for
3490 * an IO to complete to slow down the reclaim and
3491 * prevent from pre mature OOM
3492 */
3493 if (!did_some_progress) {
3494 unsigned long write_pending;
3495
3496 write_pending = zone_page_state_snapshot(zone,
3497 NR_ZONE_WRITE_PENDING);
3498
3499 if (2 * write_pending > reclaimable) {
3500 congestion_wait(BLK_RW_ASYNC, HZ/10);
3501 return true;
3502 }
3503 }
3504
3505 /*
3506 * Memory allocation/reclaim might be called from a WQ
3507 * context and the current implementation of the WQ
3508 * concurrency control doesn't recognize that
3509 * a particular WQ is congested if the worker thread is
3510 * looping without ever sleeping. Therefore we have to
3511 * do a short sleep here rather than calling
3512 * cond_resched().
3513 */
3514 if (current->flags & PF_WQ_WORKER)
3515 schedule_timeout_uninterruptible(1);
3516 else
3517 cond_resched();
3518
3519 return true;
3520 }
3521 }
3522
3523 return false;
3524 }
3525
3526 static inline struct page *
3527 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3528 struct alloc_context *ac)
3529 {
3530 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3531 struct page *page = NULL;
3532 unsigned int alloc_flags;
3533 unsigned long did_some_progress;
3534 enum compact_priority compact_priority = DEF_COMPACT_PRIORITY;
3535 enum compact_result compact_result;
3536 int compaction_retries = 0;
3537 int no_progress_loops = 0;
3538 unsigned long alloc_start = jiffies;
3539 unsigned int stall_timeout = 10 * HZ;
3540
3541 /*
3542 * In the slowpath, we sanity check order to avoid ever trying to
3543 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3544 * be using allocators in order of preference for an area that is
3545 * too large.
3546 */
3547 if (order >= MAX_ORDER) {
3548 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3549 return NULL;
3550 }
3551
3552 /*
3553 * We also sanity check to catch abuse of atomic reserves being used by
3554 * callers that are not in atomic context.
3555 */
3556 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3557 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3558 gfp_mask &= ~__GFP_ATOMIC;
3559
3560 /*
3561 * The fast path uses conservative alloc_flags to succeed only until
3562 * kswapd needs to be woken up, and to avoid the cost of setting up
3563 * alloc_flags precisely. So we do that now.
3564 */
3565 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3566
3567 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3568 wake_all_kswapds(order, ac);
3569
3570 /*
3571 * The adjusted alloc_flags might result in immediate success, so try
3572 * that first
3573 */
3574 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3575 if (page)
3576 goto got_pg;
3577
3578 /*
3579 * For costly allocations, try direct compaction first, as it's likely
3580 * that we have enough base pages and don't need to reclaim. Don't try
3581 * that for allocations that are allowed to ignore watermarks, as the
3582 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3583 */
3584 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3585 !gfp_pfmemalloc_allowed(gfp_mask)) {
3586 page = __alloc_pages_direct_compact(gfp_mask, order,
3587 alloc_flags, ac,
3588 INIT_COMPACT_PRIORITY,
3589 &compact_result);
3590 if (page)
3591 goto got_pg;
3592
3593 /*
3594 * Checks for costly allocations with __GFP_NORETRY, which
3595 * includes THP page fault allocations
3596 */
3597 if (gfp_mask & __GFP_NORETRY) {
3598 /*
3599 * If compaction is deferred for high-order allocations,
3600 * it is because sync compaction recently failed. If
3601 * this is the case and the caller requested a THP
3602 * allocation, we do not want to heavily disrupt the
3603 * system, so we fail the allocation instead of entering
3604 * direct reclaim.
3605 */
3606 if (compact_result == COMPACT_DEFERRED)
3607 goto nopage;
3608
3609 /*
3610 * Looks like reclaim/compaction is worth trying, but
3611 * sync compaction could be very expensive, so keep
3612 * using async compaction.
3613 */
3614 compact_priority = INIT_COMPACT_PRIORITY;
3615 }
3616 }
3617
3618 retry:
3619 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3620 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3621 wake_all_kswapds(order, ac);
3622
3623 if (gfp_pfmemalloc_allowed(gfp_mask))
3624 alloc_flags = ALLOC_NO_WATERMARKS;
3625
3626 /*
3627 * Reset the zonelist iterators if memory policies can be ignored.
3628 * These allocations are high priority and system rather than user
3629 * orientated.
3630 */
3631 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3632 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3633 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3634 ac->high_zoneidx, ac->nodemask);
3635 }
3636
3637 /* Attempt with potentially adjusted zonelist and alloc_flags */
3638 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3639 if (page)
3640 goto got_pg;
3641
3642 /* Caller is not willing to reclaim, we can't balance anything */
3643 if (!can_direct_reclaim) {
3644 /*
3645 * All existing users of the __GFP_NOFAIL are blockable, so warn
3646 * of any new users that actually allow this type of allocation
3647 * to fail.
3648 */
3649 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3650 goto nopage;
3651 }
3652
3653 /* Avoid recursion of direct reclaim */
3654 if (current->flags & PF_MEMALLOC) {
3655 /*
3656 * __GFP_NOFAIL request from this context is rather bizarre
3657 * because we cannot reclaim anything and only can loop waiting
3658 * for somebody to do a work for us.
3659 */
3660 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3661 cond_resched();
3662 goto retry;
3663 }
3664 goto nopage;
3665 }
3666
3667 /* Avoid allocations with no watermarks from looping endlessly */
3668 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3669 goto nopage;
3670
3671
3672 /* Try direct reclaim and then allocating */
3673 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3674 &did_some_progress);
3675 if (page)
3676 goto got_pg;
3677
3678 /* Try direct compaction and then allocating */
3679 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3680 compact_priority, &compact_result);
3681 if (page)
3682 goto got_pg;
3683
3684 /* Do not loop if specifically requested */
3685 if (gfp_mask & __GFP_NORETRY)
3686 goto nopage;
3687
3688 /*
3689 * Do not retry costly high order allocations unless they are
3690 * __GFP_REPEAT
3691 */
3692 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3693 goto nopage;
3694
3695 /* Make sure we know about allocations which stall for too long */
3696 if (time_after(jiffies, alloc_start + stall_timeout)) {
3697 warn_alloc(gfp_mask,
3698 "page allocation stalls for %ums, order:%u",
3699 jiffies_to_msecs(jiffies-alloc_start), order);
3700 stall_timeout += 10 * HZ;
3701 }
3702
3703 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3704 did_some_progress > 0, &no_progress_loops))
3705 goto retry;
3706
3707 /*
3708 * It doesn't make any sense to retry for the compaction if the order-0
3709 * reclaim is not able to make any progress because the current
3710 * implementation of the compaction depends on the sufficient amount
3711 * of free memory (see __compaction_suitable)
3712 */
3713 if (did_some_progress > 0 &&
3714 should_compact_retry(ac, order, alloc_flags,
3715 compact_result, &compact_priority,
3716 &compaction_retries))
3717 goto retry;
3718
3719 /* Reclaim has failed us, start killing things */
3720 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3721 if (page)
3722 goto got_pg;
3723
3724 /* Retry as long as the OOM killer is making progress */
3725 if (did_some_progress) {
3726 no_progress_loops = 0;
3727 goto retry;
3728 }
3729
3730 nopage:
3731 warn_alloc(gfp_mask,
3732 "page allocation failure: order:%u", order);
3733 got_pg:
3734 return page;
3735 }
3736
3737 /*
3738 * This is the 'heart' of the zoned buddy allocator.
3739 */
3740 struct page *
3741 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3742 struct zonelist *zonelist, nodemask_t *nodemask)
3743 {
3744 struct page *page;
3745 unsigned int cpuset_mems_cookie;
3746 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3747 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3748 struct alloc_context ac = {
3749 .high_zoneidx = gfp_zone(gfp_mask),
3750 .zonelist = zonelist,
3751 .nodemask = nodemask,
3752 .migratetype = gfpflags_to_migratetype(gfp_mask),
3753 };
3754
3755 if (cpusets_enabled()) {
3756 alloc_mask |= __GFP_HARDWALL;
3757 alloc_flags |= ALLOC_CPUSET;
3758 if (!ac.nodemask)
3759 ac.nodemask = &cpuset_current_mems_allowed;
3760 }
3761
3762 gfp_mask &= gfp_allowed_mask;
3763
3764 lockdep_trace_alloc(gfp_mask);
3765
3766 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3767
3768 if (should_fail_alloc_page(gfp_mask, order))
3769 return NULL;
3770
3771 /*
3772 * Check the zones suitable for the gfp_mask contain at least one
3773 * valid zone. It's possible to have an empty zonelist as a result
3774 * of __GFP_THISNODE and a memoryless node
3775 */
3776 if (unlikely(!zonelist->_zonerefs->zone))
3777 return NULL;
3778
3779 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3780 alloc_flags |= ALLOC_CMA;
3781
3782 retry_cpuset:
3783 cpuset_mems_cookie = read_mems_allowed_begin();
3784
3785 /* Dirty zone balancing only done in the fast path */
3786 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3787
3788 /*
3789 * The preferred zone is used for statistics but crucially it is
3790 * also used as the starting point for the zonelist iterator. It
3791 * may get reset for allocations that ignore memory policies.
3792 */
3793 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3794 ac.high_zoneidx, ac.nodemask);
3795 if (!ac.preferred_zoneref) {
3796 page = NULL;
3797 goto no_zone;
3798 }
3799
3800 /* First allocation attempt */
3801 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3802 if (likely(page))
3803 goto out;
3804
3805 /*
3806 * Runtime PM, block IO and its error handling path can deadlock
3807 * because I/O on the device might not complete.
3808 */
3809 alloc_mask = memalloc_noio_flags(gfp_mask);
3810 ac.spread_dirty_pages = false;
3811
3812 /*
3813 * Restore the original nodemask if it was potentially replaced with
3814 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3815 */
3816 if (cpusets_enabled())
3817 ac.nodemask = nodemask;
3818 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3819
3820 no_zone:
3821 /*
3822 * When updating a task's mems_allowed, it is possible to race with
3823 * parallel threads in such a way that an allocation can fail while
3824 * the mask is being updated. If a page allocation is about to fail,
3825 * check if the cpuset changed during allocation and if so, retry.
3826 */
3827 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3828 alloc_mask = gfp_mask;
3829 goto retry_cpuset;
3830 }
3831
3832 out:
3833 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3834 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3835 __free_pages(page, order);
3836 page = NULL;
3837 }
3838
3839 if (kmemcheck_enabled && page)
3840 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3841
3842 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3843
3844 return page;
3845 }
3846 EXPORT_SYMBOL(__alloc_pages_nodemask);
3847
3848 /*
3849 * Common helper functions.
3850 */
3851 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3852 {
3853 struct page *page;
3854
3855 /*
3856 * __get_free_pages() returns a 32-bit address, which cannot represent
3857 * a highmem page
3858 */
3859 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3860
3861 page = alloc_pages(gfp_mask, order);
3862 if (!page)
3863 return 0;
3864 return (unsigned long) page_address(page);
3865 }
3866 EXPORT_SYMBOL(__get_free_pages);
3867
3868 unsigned long get_zeroed_page(gfp_t gfp_mask)
3869 {
3870 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3871 }
3872 EXPORT_SYMBOL(get_zeroed_page);
3873
3874 void __free_pages(struct page *page, unsigned int order)
3875 {
3876 if (put_page_testzero(page)) {
3877 if (order == 0)
3878 free_hot_cold_page(page, false);
3879 else
3880 __free_pages_ok(page, order);
3881 }
3882 }
3883
3884 EXPORT_SYMBOL(__free_pages);
3885
3886 void free_pages(unsigned long addr, unsigned int order)
3887 {
3888 if (addr != 0) {
3889 VM_BUG_ON(!virt_addr_valid((void *)addr));
3890 __free_pages(virt_to_page((void *)addr), order);
3891 }
3892 }
3893
3894 EXPORT_SYMBOL(free_pages);
3895
3896 /*
3897 * Page Fragment:
3898 * An arbitrary-length arbitrary-offset area of memory which resides
3899 * within a 0 or higher order page. Multiple fragments within that page
3900 * are individually refcounted, in the page's reference counter.
3901 *
3902 * The page_frag functions below provide a simple allocation framework for
3903 * page fragments. This is used by the network stack and network device
3904 * drivers to provide a backing region of memory for use as either an
3905 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3906 */
3907 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3908 gfp_t gfp_mask)
3909 {
3910 struct page *page = NULL;
3911 gfp_t gfp = gfp_mask;
3912
3913 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3914 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3915 __GFP_NOMEMALLOC;
3916 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3917 PAGE_FRAG_CACHE_MAX_ORDER);
3918 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3919 #endif
3920 if (unlikely(!page))
3921 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3922
3923 nc->va = page ? page_address(page) : NULL;
3924
3925 return page;
3926 }
3927
3928 void *__alloc_page_frag(struct page_frag_cache *nc,
3929 unsigned int fragsz, gfp_t gfp_mask)
3930 {
3931 unsigned int size = PAGE_SIZE;
3932 struct page *page;
3933 int offset;
3934
3935 if (unlikely(!nc->va)) {
3936 refill:
3937 page = __page_frag_refill(nc, gfp_mask);
3938 if (!page)
3939 return NULL;
3940
3941 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3942 /* if size can vary use size else just use PAGE_SIZE */
3943 size = nc->size;
3944 #endif
3945 /* Even if we own the page, we do not use atomic_set().
3946 * This would break get_page_unless_zero() users.
3947 */
3948 page_ref_add(page, size - 1);
3949
3950 /* reset page count bias and offset to start of new frag */
3951 nc->pfmemalloc = page_is_pfmemalloc(page);
3952 nc->pagecnt_bias = size;
3953 nc->offset = size;
3954 }
3955
3956 offset = nc->offset - fragsz;
3957 if (unlikely(offset < 0)) {
3958 page = virt_to_page(nc->va);
3959
3960 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3961 goto refill;
3962
3963 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3964 /* if size can vary use size else just use PAGE_SIZE */
3965 size = nc->size;
3966 #endif
3967 /* OK, page count is 0, we can safely set it */
3968 set_page_count(page, size);
3969
3970 /* reset page count bias and offset to start of new frag */
3971 nc->pagecnt_bias = size;
3972 offset = size - fragsz;
3973 }
3974
3975 nc->pagecnt_bias--;
3976 nc->offset = offset;
3977
3978 return nc->va + offset;
3979 }
3980 EXPORT_SYMBOL(__alloc_page_frag);
3981
3982 /*
3983 * Frees a page fragment allocated out of either a compound or order 0 page.
3984 */
3985 void __free_page_frag(void *addr)
3986 {
3987 struct page *page = virt_to_head_page(addr);
3988
3989 if (unlikely(put_page_testzero(page)))
3990 __free_pages_ok(page, compound_order(page));
3991 }
3992 EXPORT_SYMBOL(__free_page_frag);
3993
3994 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3995 size_t size)
3996 {
3997 if (addr) {
3998 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3999 unsigned long used = addr + PAGE_ALIGN(size);
4000
4001 split_page(virt_to_page((void *)addr), order);
4002 while (used < alloc_end) {
4003 free_page(used);
4004 used += PAGE_SIZE;
4005 }
4006 }
4007 return (void *)addr;
4008 }
4009
4010 /**
4011 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4012 * @size: the number of bytes to allocate
4013 * @gfp_mask: GFP flags for the allocation
4014 *
4015 * This function is similar to alloc_pages(), except that it allocates the
4016 * minimum number of pages to satisfy the request. alloc_pages() can only
4017 * allocate memory in power-of-two pages.
4018 *
4019 * This function is also limited by MAX_ORDER.
4020 *
4021 * Memory allocated by this function must be released by free_pages_exact().
4022 */
4023 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4024 {
4025 unsigned int order = get_order(size);
4026 unsigned long addr;
4027
4028 addr = __get_free_pages(gfp_mask, order);
4029 return make_alloc_exact(addr, order, size);
4030 }
4031 EXPORT_SYMBOL(alloc_pages_exact);
4032
4033 /**
4034 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4035 * pages on a node.
4036 * @nid: the preferred node ID where memory should be allocated
4037 * @size: the number of bytes to allocate
4038 * @gfp_mask: GFP flags for the allocation
4039 *
4040 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4041 * back.
4042 */
4043 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4044 {
4045 unsigned int order = get_order(size);
4046 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4047 if (!p)
4048 return NULL;
4049 return make_alloc_exact((unsigned long)page_address(p), order, size);
4050 }
4051
4052 /**
4053 * free_pages_exact - release memory allocated via alloc_pages_exact()
4054 * @virt: the value returned by alloc_pages_exact.
4055 * @size: size of allocation, same value as passed to alloc_pages_exact().
4056 *
4057 * Release the memory allocated by a previous call to alloc_pages_exact.
4058 */
4059 void free_pages_exact(void *virt, size_t size)
4060 {
4061 unsigned long addr = (unsigned long)virt;
4062 unsigned long end = addr + PAGE_ALIGN(size);
4063
4064 while (addr < end) {
4065 free_page(addr);
4066 addr += PAGE_SIZE;
4067 }
4068 }
4069 EXPORT_SYMBOL(free_pages_exact);
4070
4071 /**
4072 * nr_free_zone_pages - count number of pages beyond high watermark
4073 * @offset: The zone index of the highest zone
4074 *
4075 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4076 * high watermark within all zones at or below a given zone index. For each
4077 * zone, the number of pages is calculated as:
4078 * managed_pages - high_pages
4079 */
4080 static unsigned long nr_free_zone_pages(int offset)
4081 {
4082 struct zoneref *z;
4083 struct zone *zone;
4084
4085 /* Just pick one node, since fallback list is circular */
4086 unsigned long sum = 0;
4087
4088 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4089
4090 for_each_zone_zonelist(zone, z, zonelist, offset) {
4091 unsigned long size = zone->managed_pages;
4092 unsigned long high = high_wmark_pages(zone);
4093 if (size > high)
4094 sum += size - high;
4095 }
4096
4097 return sum;
4098 }
4099
4100 /**
4101 * nr_free_buffer_pages - count number of pages beyond high watermark
4102 *
4103 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4104 * watermark within ZONE_DMA and ZONE_NORMAL.
4105 */
4106 unsigned long nr_free_buffer_pages(void)
4107 {
4108 return nr_free_zone_pages(gfp_zone(GFP_USER));
4109 }
4110 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4111
4112 /**
4113 * nr_free_pagecache_pages - count number of pages beyond high watermark
4114 *
4115 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4116 * high watermark within all zones.
4117 */
4118 unsigned long nr_free_pagecache_pages(void)
4119 {
4120 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4121 }
4122
4123 static inline void show_node(struct zone *zone)
4124 {
4125 if (IS_ENABLED(CONFIG_NUMA))
4126 printk("Node %d ", zone_to_nid(zone));
4127 }
4128
4129 long si_mem_available(void)
4130 {
4131 long available;
4132 unsigned long pagecache;
4133 unsigned long wmark_low = 0;
4134 unsigned long pages[NR_LRU_LISTS];
4135 struct zone *zone;
4136 int lru;
4137
4138 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4139 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4140
4141 for_each_zone(zone)
4142 wmark_low += zone->watermark[WMARK_LOW];
4143
4144 /*
4145 * Estimate the amount of memory available for userspace allocations,
4146 * without causing swapping.
4147 */
4148 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4149
4150 /*
4151 * Not all the page cache can be freed, otherwise the system will
4152 * start swapping. Assume at least half of the page cache, or the
4153 * low watermark worth of cache, needs to stay.
4154 */
4155 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4156 pagecache -= min(pagecache / 2, wmark_low);
4157 available += pagecache;
4158
4159 /*
4160 * Part of the reclaimable slab consists of items that are in use,
4161 * and cannot be freed. Cap this estimate at the low watermark.
4162 */
4163 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4164 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4165
4166 if (available < 0)
4167 available = 0;
4168 return available;
4169 }
4170 EXPORT_SYMBOL_GPL(si_mem_available);
4171
4172 void si_meminfo(struct sysinfo *val)
4173 {
4174 val->totalram = totalram_pages;
4175 val->sharedram = global_node_page_state(NR_SHMEM);
4176 val->freeram = global_page_state(NR_FREE_PAGES);
4177 val->bufferram = nr_blockdev_pages();
4178 val->totalhigh = totalhigh_pages;
4179 val->freehigh = nr_free_highpages();
4180 val->mem_unit = PAGE_SIZE;
4181 }
4182
4183 EXPORT_SYMBOL(si_meminfo);
4184
4185 #ifdef CONFIG_NUMA
4186 void si_meminfo_node(struct sysinfo *val, int nid)
4187 {
4188 int zone_type; /* needs to be signed */
4189 unsigned long managed_pages = 0;
4190 unsigned long managed_highpages = 0;
4191 unsigned long free_highpages = 0;
4192 pg_data_t *pgdat = NODE_DATA(nid);
4193
4194 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4195 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4196 val->totalram = managed_pages;
4197 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4198 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4199 #ifdef CONFIG_HIGHMEM
4200 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4201 struct zone *zone = &pgdat->node_zones[zone_type];
4202
4203 if (is_highmem(zone)) {
4204 managed_highpages += zone->managed_pages;
4205 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4206 }
4207 }
4208 val->totalhigh = managed_highpages;
4209 val->freehigh = free_highpages;
4210 #else
4211 val->totalhigh = managed_highpages;
4212 val->freehigh = free_highpages;
4213 #endif
4214 val->mem_unit = PAGE_SIZE;
4215 }
4216 #endif
4217
4218 /*
4219 * Determine whether the node should be displayed or not, depending on whether
4220 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4221 */
4222 bool skip_free_areas_node(unsigned int flags, int nid)
4223 {
4224 bool ret = false;
4225 unsigned int cpuset_mems_cookie;
4226
4227 if (!(flags & SHOW_MEM_FILTER_NODES))
4228 goto out;
4229
4230 do {
4231 cpuset_mems_cookie = read_mems_allowed_begin();
4232 ret = !node_isset(nid, cpuset_current_mems_allowed);
4233 } while (read_mems_allowed_retry(cpuset_mems_cookie));
4234 out:
4235 return ret;
4236 }
4237
4238 #define K(x) ((x) << (PAGE_SHIFT-10))
4239
4240 static void show_migration_types(unsigned char type)
4241 {
4242 static const char types[MIGRATE_TYPES] = {
4243 [MIGRATE_UNMOVABLE] = 'U',
4244 [MIGRATE_MOVABLE] = 'M',
4245 [MIGRATE_RECLAIMABLE] = 'E',
4246 [MIGRATE_HIGHATOMIC] = 'H',
4247 #ifdef CONFIG_CMA
4248 [MIGRATE_CMA] = 'C',
4249 #endif
4250 #ifdef CONFIG_MEMORY_ISOLATION
4251 [MIGRATE_ISOLATE] = 'I',
4252 #endif
4253 };
4254 char tmp[MIGRATE_TYPES + 1];
4255 char *p = tmp;
4256 int i;
4257
4258 for (i = 0; i < MIGRATE_TYPES; i++) {
4259 if (type & (1 << i))
4260 *p++ = types[i];
4261 }
4262
4263 *p = '\0';
4264 printk(KERN_CONT "(%s) ", tmp);
4265 }
4266
4267 /*
4268 * Show free area list (used inside shift_scroll-lock stuff)
4269 * We also calculate the percentage fragmentation. We do this by counting the
4270 * memory on each free list with the exception of the first item on the list.
4271 *
4272 * Bits in @filter:
4273 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4274 * cpuset.
4275 */
4276 void show_free_areas(unsigned int filter)
4277 {
4278 unsigned long free_pcp = 0;
4279 int cpu;
4280 struct zone *zone;
4281 pg_data_t *pgdat;
4282
4283 for_each_populated_zone(zone) {
4284 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4285 continue;
4286
4287 for_each_online_cpu(cpu)
4288 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4289 }
4290
4291 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4292 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4293 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4294 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4295 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4296 " free:%lu free_pcp:%lu free_cma:%lu\n",
4297 global_node_page_state(NR_ACTIVE_ANON),
4298 global_node_page_state(NR_INACTIVE_ANON),
4299 global_node_page_state(NR_ISOLATED_ANON),
4300 global_node_page_state(NR_ACTIVE_FILE),
4301 global_node_page_state(NR_INACTIVE_FILE),
4302 global_node_page_state(NR_ISOLATED_FILE),
4303 global_node_page_state(NR_UNEVICTABLE),
4304 global_node_page_state(NR_FILE_DIRTY),
4305 global_node_page_state(NR_WRITEBACK),
4306 global_node_page_state(NR_UNSTABLE_NFS),
4307 global_page_state(NR_SLAB_RECLAIMABLE),
4308 global_page_state(NR_SLAB_UNRECLAIMABLE),
4309 global_node_page_state(NR_FILE_MAPPED),
4310 global_node_page_state(NR_SHMEM),
4311 global_page_state(NR_PAGETABLE),
4312 global_page_state(NR_BOUNCE),
4313 global_page_state(NR_FREE_PAGES),
4314 free_pcp,
4315 global_page_state(NR_FREE_CMA_PAGES));
4316
4317 for_each_online_pgdat(pgdat) {
4318 printk("Node %d"
4319 " active_anon:%lukB"
4320 " inactive_anon:%lukB"
4321 " active_file:%lukB"
4322 " inactive_file:%lukB"
4323 " unevictable:%lukB"
4324 " isolated(anon):%lukB"
4325 " isolated(file):%lukB"
4326 " mapped:%lukB"
4327 " dirty:%lukB"
4328 " writeback:%lukB"
4329 " shmem:%lukB"
4330 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4331 " shmem_thp: %lukB"
4332 " shmem_pmdmapped: %lukB"
4333 " anon_thp: %lukB"
4334 #endif
4335 " writeback_tmp:%lukB"
4336 " unstable:%lukB"
4337 " pages_scanned:%lu"
4338 " all_unreclaimable? %s"
4339 "\n",
4340 pgdat->node_id,
4341 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4342 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4343 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4344 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4345 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4346 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4347 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4348 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4349 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4350 K(node_page_state(pgdat, NR_WRITEBACK)),
4351 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4352 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4353 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4354 * HPAGE_PMD_NR),
4355 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4356 #endif
4357 K(node_page_state(pgdat, NR_SHMEM)),
4358 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4359 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4360 node_page_state(pgdat, NR_PAGES_SCANNED),
4361 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4362 }
4363
4364 for_each_populated_zone(zone) {
4365 int i;
4366
4367 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4368 continue;
4369
4370 free_pcp = 0;
4371 for_each_online_cpu(cpu)
4372 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4373
4374 show_node(zone);
4375 printk(KERN_CONT
4376 "%s"
4377 " free:%lukB"
4378 " min:%lukB"
4379 " low:%lukB"
4380 " high:%lukB"
4381 " active_anon:%lukB"
4382 " inactive_anon:%lukB"
4383 " active_file:%lukB"
4384 " inactive_file:%lukB"
4385 " unevictable:%lukB"
4386 " writepending:%lukB"
4387 " present:%lukB"
4388 " managed:%lukB"
4389 " mlocked:%lukB"
4390 " slab_reclaimable:%lukB"
4391 " slab_unreclaimable:%lukB"
4392 " kernel_stack:%lukB"
4393 " pagetables:%lukB"
4394 " bounce:%lukB"
4395 " free_pcp:%lukB"
4396 " local_pcp:%ukB"
4397 " free_cma:%lukB"
4398 "\n",
4399 zone->name,
4400 K(zone_page_state(zone, NR_FREE_PAGES)),
4401 K(min_wmark_pages(zone)),
4402 K(low_wmark_pages(zone)),
4403 K(high_wmark_pages(zone)),
4404 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4405 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4406 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4407 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4408 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4409 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4410 K(zone->present_pages),
4411 K(zone->managed_pages),
4412 K(zone_page_state(zone, NR_MLOCK)),
4413 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4414 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4415 zone_page_state(zone, NR_KERNEL_STACK_KB),
4416 K(zone_page_state(zone, NR_PAGETABLE)),
4417 K(zone_page_state(zone, NR_BOUNCE)),
4418 K(free_pcp),
4419 K(this_cpu_read(zone->pageset->pcp.count)),
4420 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4421 printk("lowmem_reserve[]:");
4422 for (i = 0; i < MAX_NR_ZONES; i++)
4423 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4424 printk(KERN_CONT "\n");
4425 }
4426
4427 for_each_populated_zone(zone) {
4428 unsigned int order;
4429 unsigned long nr[MAX_ORDER], flags, total = 0;
4430 unsigned char types[MAX_ORDER];
4431
4432 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4433 continue;
4434 show_node(zone);
4435 printk(KERN_CONT "%s: ", zone->name);
4436
4437 spin_lock_irqsave(&zone->lock, flags);
4438 for (order = 0; order < MAX_ORDER; order++) {
4439 struct free_area *area = &zone->free_area[order];
4440 int type;
4441
4442 nr[order] = area->nr_free;
4443 total += nr[order] << order;
4444
4445 types[order] = 0;
4446 for (type = 0; type < MIGRATE_TYPES; type++) {
4447 if (!list_empty(&area->free_list[type]))
4448 types[order] |= 1 << type;
4449 }
4450 }
4451 spin_unlock_irqrestore(&zone->lock, flags);
4452 for (order = 0; order < MAX_ORDER; order++) {
4453 printk(KERN_CONT "%lu*%lukB ",
4454 nr[order], K(1UL) << order);
4455 if (nr[order])
4456 show_migration_types(types[order]);
4457 }
4458 printk(KERN_CONT "= %lukB\n", K(total));
4459 }
4460
4461 hugetlb_show_meminfo();
4462
4463 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4464
4465 show_swap_cache_info();
4466 }
4467
4468 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4469 {
4470 zoneref->zone = zone;
4471 zoneref->zone_idx = zone_idx(zone);
4472 }
4473
4474 /*
4475 * Builds allocation fallback zone lists.
4476 *
4477 * Add all populated zones of a node to the zonelist.
4478 */
4479 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4480 int nr_zones)
4481 {
4482 struct zone *zone;
4483 enum zone_type zone_type = MAX_NR_ZONES;
4484
4485 do {
4486 zone_type--;
4487 zone = pgdat->node_zones + zone_type;
4488 if (managed_zone(zone)) {
4489 zoneref_set_zone(zone,
4490 &zonelist->_zonerefs[nr_zones++]);
4491 check_highest_zone(zone_type);
4492 }
4493 } while (zone_type);
4494
4495 return nr_zones;
4496 }
4497
4498
4499 /*
4500 * zonelist_order:
4501 * 0 = automatic detection of better ordering.
4502 * 1 = order by ([node] distance, -zonetype)
4503 * 2 = order by (-zonetype, [node] distance)
4504 *
4505 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4506 * the same zonelist. So only NUMA can configure this param.
4507 */
4508 #define ZONELIST_ORDER_DEFAULT 0
4509 #define ZONELIST_ORDER_NODE 1
4510 #define ZONELIST_ORDER_ZONE 2
4511
4512 /* zonelist order in the kernel.
4513 * set_zonelist_order() will set this to NODE or ZONE.
4514 */
4515 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4516 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4517
4518
4519 #ifdef CONFIG_NUMA
4520 /* The value user specified ....changed by config */
4521 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4522 /* string for sysctl */
4523 #define NUMA_ZONELIST_ORDER_LEN 16
4524 char numa_zonelist_order[16] = "default";
4525
4526 /*
4527 * interface for configure zonelist ordering.
4528 * command line option "numa_zonelist_order"
4529 * = "[dD]efault - default, automatic configuration.
4530 * = "[nN]ode - order by node locality, then by zone within node
4531 * = "[zZ]one - order by zone, then by locality within zone
4532 */
4533
4534 static int __parse_numa_zonelist_order(char *s)
4535 {
4536 if (*s == 'd' || *s == 'D') {
4537 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4538 } else if (*s == 'n' || *s == 'N') {
4539 user_zonelist_order = ZONELIST_ORDER_NODE;
4540 } else if (*s == 'z' || *s == 'Z') {
4541 user_zonelist_order = ZONELIST_ORDER_ZONE;
4542 } else {
4543 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4544 return -EINVAL;
4545 }
4546 return 0;
4547 }
4548
4549 static __init int setup_numa_zonelist_order(char *s)
4550 {
4551 int ret;
4552
4553 if (!s)
4554 return 0;
4555
4556 ret = __parse_numa_zonelist_order(s);
4557 if (ret == 0)
4558 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4559
4560 return ret;
4561 }
4562 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4563
4564 /*
4565 * sysctl handler for numa_zonelist_order
4566 */
4567 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4568 void __user *buffer, size_t *length,
4569 loff_t *ppos)
4570 {
4571 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4572 int ret;
4573 static DEFINE_MUTEX(zl_order_mutex);
4574
4575 mutex_lock(&zl_order_mutex);
4576 if (write) {
4577 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4578 ret = -EINVAL;
4579 goto out;
4580 }
4581 strcpy(saved_string, (char *)table->data);
4582 }
4583 ret = proc_dostring(table, write, buffer, length, ppos);
4584 if (ret)
4585 goto out;
4586 if (write) {
4587 int oldval = user_zonelist_order;
4588
4589 ret = __parse_numa_zonelist_order((char *)table->data);
4590 if (ret) {
4591 /*
4592 * bogus value. restore saved string
4593 */
4594 strncpy((char *)table->data, saved_string,
4595 NUMA_ZONELIST_ORDER_LEN);
4596 user_zonelist_order = oldval;
4597 } else if (oldval != user_zonelist_order) {
4598 mutex_lock(&zonelists_mutex);
4599 build_all_zonelists(NULL, NULL);
4600 mutex_unlock(&zonelists_mutex);
4601 }
4602 }
4603 out:
4604 mutex_unlock(&zl_order_mutex);
4605 return ret;
4606 }
4607
4608
4609 #define MAX_NODE_LOAD (nr_online_nodes)
4610 static int node_load[MAX_NUMNODES];
4611
4612 /**
4613 * find_next_best_node - find the next node that should appear in a given node's fallback list
4614 * @node: node whose fallback list we're appending
4615 * @used_node_mask: nodemask_t of already used nodes
4616 *
4617 * We use a number of factors to determine which is the next node that should
4618 * appear on a given node's fallback list. The node should not have appeared
4619 * already in @node's fallback list, and it should be the next closest node
4620 * according to the distance array (which contains arbitrary distance values
4621 * from each node to each node in the system), and should also prefer nodes
4622 * with no CPUs, since presumably they'll have very little allocation pressure
4623 * on them otherwise.
4624 * It returns -1 if no node is found.
4625 */
4626 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4627 {
4628 int n, val;
4629 int min_val = INT_MAX;
4630 int best_node = NUMA_NO_NODE;
4631 const struct cpumask *tmp = cpumask_of_node(0);
4632
4633 /* Use the local node if we haven't already */
4634 if (!node_isset(node, *used_node_mask)) {
4635 node_set(node, *used_node_mask);
4636 return node;
4637 }
4638
4639 for_each_node_state(n, N_MEMORY) {
4640
4641 /* Don't want a node to appear more than once */
4642 if (node_isset(n, *used_node_mask))
4643 continue;
4644
4645 /* Use the distance array to find the distance */
4646 val = node_distance(node, n);
4647
4648 /* Penalize nodes under us ("prefer the next node") */
4649 val += (n < node);
4650
4651 /* Give preference to headless and unused nodes */
4652 tmp = cpumask_of_node(n);
4653 if (!cpumask_empty(tmp))
4654 val += PENALTY_FOR_NODE_WITH_CPUS;
4655
4656 /* Slight preference for less loaded node */
4657 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4658 val += node_load[n];
4659
4660 if (val < min_val) {
4661 min_val = val;
4662 best_node = n;
4663 }
4664 }
4665
4666 if (best_node >= 0)
4667 node_set(best_node, *used_node_mask);
4668
4669 return best_node;
4670 }
4671
4672
4673 /*
4674 * Build zonelists ordered by node and zones within node.
4675 * This results in maximum locality--normal zone overflows into local
4676 * DMA zone, if any--but risks exhausting DMA zone.
4677 */
4678 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4679 {
4680 int j;
4681 struct zonelist *zonelist;
4682
4683 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4684 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4685 ;
4686 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4687 zonelist->_zonerefs[j].zone = NULL;
4688 zonelist->_zonerefs[j].zone_idx = 0;
4689 }
4690
4691 /*
4692 * Build gfp_thisnode zonelists
4693 */
4694 static void build_thisnode_zonelists(pg_data_t *pgdat)
4695 {
4696 int j;
4697 struct zonelist *zonelist;
4698
4699 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4700 j = build_zonelists_node(pgdat, zonelist, 0);
4701 zonelist->_zonerefs[j].zone = NULL;
4702 zonelist->_zonerefs[j].zone_idx = 0;
4703 }
4704
4705 /*
4706 * Build zonelists ordered by zone and nodes within zones.
4707 * This results in conserving DMA zone[s] until all Normal memory is
4708 * exhausted, but results in overflowing to remote node while memory
4709 * may still exist in local DMA zone.
4710 */
4711 static int node_order[MAX_NUMNODES];
4712
4713 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4714 {
4715 int pos, j, node;
4716 int zone_type; /* needs to be signed */
4717 struct zone *z;
4718 struct zonelist *zonelist;
4719
4720 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4721 pos = 0;
4722 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4723 for (j = 0; j < nr_nodes; j++) {
4724 node = node_order[j];
4725 z = &NODE_DATA(node)->node_zones[zone_type];
4726 if (managed_zone(z)) {
4727 zoneref_set_zone(z,
4728 &zonelist->_zonerefs[pos++]);
4729 check_highest_zone(zone_type);
4730 }
4731 }
4732 }
4733 zonelist->_zonerefs[pos].zone = NULL;
4734 zonelist->_zonerefs[pos].zone_idx = 0;
4735 }
4736
4737 #if defined(CONFIG_64BIT)
4738 /*
4739 * Devices that require DMA32/DMA are relatively rare and do not justify a
4740 * penalty to every machine in case the specialised case applies. Default
4741 * to Node-ordering on 64-bit NUMA machines
4742 */
4743 static int default_zonelist_order(void)
4744 {
4745 return ZONELIST_ORDER_NODE;
4746 }
4747 #else
4748 /*
4749 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4750 * by the kernel. If processes running on node 0 deplete the low memory zone
4751 * then reclaim will occur more frequency increasing stalls and potentially
4752 * be easier to OOM if a large percentage of the zone is under writeback or
4753 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4754 * Hence, default to zone ordering on 32-bit.
4755 */
4756 static int default_zonelist_order(void)
4757 {
4758 return ZONELIST_ORDER_ZONE;
4759 }
4760 #endif /* CONFIG_64BIT */
4761
4762 static void set_zonelist_order(void)
4763 {
4764 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4765 current_zonelist_order = default_zonelist_order();
4766 else
4767 current_zonelist_order = user_zonelist_order;
4768 }
4769
4770 static void build_zonelists(pg_data_t *pgdat)
4771 {
4772 int i, node, load;
4773 nodemask_t used_mask;
4774 int local_node, prev_node;
4775 struct zonelist *zonelist;
4776 unsigned int order = current_zonelist_order;
4777
4778 /* initialize zonelists */
4779 for (i = 0; i < MAX_ZONELISTS; i++) {
4780 zonelist = pgdat->node_zonelists + i;
4781 zonelist->_zonerefs[0].zone = NULL;
4782 zonelist->_zonerefs[0].zone_idx = 0;
4783 }
4784
4785 /* NUMA-aware ordering of nodes */
4786 local_node = pgdat->node_id;
4787 load = nr_online_nodes;
4788 prev_node = local_node;
4789 nodes_clear(used_mask);
4790
4791 memset(node_order, 0, sizeof(node_order));
4792 i = 0;
4793
4794 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4795 /*
4796 * We don't want to pressure a particular node.
4797 * So adding penalty to the first node in same
4798 * distance group to make it round-robin.
4799 */
4800 if (node_distance(local_node, node) !=
4801 node_distance(local_node, prev_node))
4802 node_load[node] = load;
4803
4804 prev_node = node;
4805 load--;
4806 if (order == ZONELIST_ORDER_NODE)
4807 build_zonelists_in_node_order(pgdat, node);
4808 else
4809 node_order[i++] = node; /* remember order */
4810 }
4811
4812 if (order == ZONELIST_ORDER_ZONE) {
4813 /* calculate node order -- i.e., DMA last! */
4814 build_zonelists_in_zone_order(pgdat, i);
4815 }
4816
4817 build_thisnode_zonelists(pgdat);
4818 }
4819
4820 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4821 /*
4822 * Return node id of node used for "local" allocations.
4823 * I.e., first node id of first zone in arg node's generic zonelist.
4824 * Used for initializing percpu 'numa_mem', which is used primarily
4825 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4826 */
4827 int local_memory_node(int node)
4828 {
4829 struct zoneref *z;
4830
4831 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4832 gfp_zone(GFP_KERNEL),
4833 NULL);
4834 return z->zone->node;
4835 }
4836 #endif
4837
4838 static void setup_min_unmapped_ratio(void);
4839 static void setup_min_slab_ratio(void);
4840 #else /* CONFIG_NUMA */
4841
4842 static void set_zonelist_order(void)
4843 {
4844 current_zonelist_order = ZONELIST_ORDER_ZONE;
4845 }
4846
4847 static void build_zonelists(pg_data_t *pgdat)
4848 {
4849 int node, local_node;
4850 enum zone_type j;
4851 struct zonelist *zonelist;
4852
4853 local_node = pgdat->node_id;
4854
4855 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4856 j = build_zonelists_node(pgdat, zonelist, 0);
4857
4858 /*
4859 * Now we build the zonelist so that it contains the zones
4860 * of all the other nodes.
4861 * We don't want to pressure a particular node, so when
4862 * building the zones for node N, we make sure that the
4863 * zones coming right after the local ones are those from
4864 * node N+1 (modulo N)
4865 */
4866 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4867 if (!node_online(node))
4868 continue;
4869 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4870 }
4871 for (node = 0; node < local_node; node++) {
4872 if (!node_online(node))
4873 continue;
4874 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4875 }
4876
4877 zonelist->_zonerefs[j].zone = NULL;
4878 zonelist->_zonerefs[j].zone_idx = 0;
4879 }
4880
4881 #endif /* CONFIG_NUMA */
4882
4883 /*
4884 * Boot pageset table. One per cpu which is going to be used for all
4885 * zones and all nodes. The parameters will be set in such a way
4886 * that an item put on a list will immediately be handed over to
4887 * the buddy list. This is safe since pageset manipulation is done
4888 * with interrupts disabled.
4889 *
4890 * The boot_pagesets must be kept even after bootup is complete for
4891 * unused processors and/or zones. They do play a role for bootstrapping
4892 * hotplugged processors.
4893 *
4894 * zoneinfo_show() and maybe other functions do
4895 * not check if the processor is online before following the pageset pointer.
4896 * Other parts of the kernel may not check if the zone is available.
4897 */
4898 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4899 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4900 static void setup_zone_pageset(struct zone *zone);
4901
4902 /*
4903 * Global mutex to protect against size modification of zonelists
4904 * as well as to serialize pageset setup for the new populated zone.
4905 */
4906 DEFINE_MUTEX(zonelists_mutex);
4907
4908 /* return values int ....just for stop_machine() */
4909 static int __build_all_zonelists(void *data)
4910 {
4911 int nid;
4912 int cpu;
4913 pg_data_t *self = data;
4914
4915 #ifdef CONFIG_NUMA
4916 memset(node_load, 0, sizeof(node_load));
4917 #endif
4918
4919 if (self && !node_online(self->node_id)) {
4920 build_zonelists(self);
4921 }
4922
4923 for_each_online_node(nid) {
4924 pg_data_t *pgdat = NODE_DATA(nid);
4925
4926 build_zonelists(pgdat);
4927 }
4928
4929 /*
4930 * Initialize the boot_pagesets that are going to be used
4931 * for bootstrapping processors. The real pagesets for
4932 * each zone will be allocated later when the per cpu
4933 * allocator is available.
4934 *
4935 * boot_pagesets are used also for bootstrapping offline
4936 * cpus if the system is already booted because the pagesets
4937 * are needed to initialize allocators on a specific cpu too.
4938 * F.e. the percpu allocator needs the page allocator which
4939 * needs the percpu allocator in order to allocate its pagesets
4940 * (a chicken-egg dilemma).
4941 */
4942 for_each_possible_cpu(cpu) {
4943 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4944
4945 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4946 /*
4947 * We now know the "local memory node" for each node--
4948 * i.e., the node of the first zone in the generic zonelist.
4949 * Set up numa_mem percpu variable for on-line cpus. During
4950 * boot, only the boot cpu should be on-line; we'll init the
4951 * secondary cpus' numa_mem as they come on-line. During
4952 * node/memory hotplug, we'll fixup all on-line cpus.
4953 */
4954 if (cpu_online(cpu))
4955 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4956 #endif
4957 }
4958
4959 return 0;
4960 }
4961
4962 static noinline void __init
4963 build_all_zonelists_init(void)
4964 {
4965 __build_all_zonelists(NULL);
4966 mminit_verify_zonelist();
4967 cpuset_init_current_mems_allowed();
4968 }
4969
4970 /*
4971 * Called with zonelists_mutex held always
4972 * unless system_state == SYSTEM_BOOTING.
4973 *
4974 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4975 * [we're only called with non-NULL zone through __meminit paths] and
4976 * (2) call of __init annotated helper build_all_zonelists_init
4977 * [protected by SYSTEM_BOOTING].
4978 */
4979 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4980 {
4981 set_zonelist_order();
4982
4983 if (system_state == SYSTEM_BOOTING) {
4984 build_all_zonelists_init();
4985 } else {
4986 #ifdef CONFIG_MEMORY_HOTPLUG
4987 if (zone)
4988 setup_zone_pageset(zone);
4989 #endif
4990 /* we have to stop all cpus to guarantee there is no user
4991 of zonelist */
4992 stop_machine(__build_all_zonelists, pgdat, NULL);
4993 /* cpuset refresh routine should be here */
4994 }
4995 vm_total_pages = nr_free_pagecache_pages();
4996 /*
4997 * Disable grouping by mobility if the number of pages in the
4998 * system is too low to allow the mechanism to work. It would be
4999 * more accurate, but expensive to check per-zone. This check is
5000 * made on memory-hotadd so a system can start with mobility
5001 * disabled and enable it later
5002 */
5003 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5004 page_group_by_mobility_disabled = 1;
5005 else
5006 page_group_by_mobility_disabled = 0;
5007
5008 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5009 nr_online_nodes,
5010 zonelist_order_name[current_zonelist_order],
5011 page_group_by_mobility_disabled ? "off" : "on",
5012 vm_total_pages);
5013 #ifdef CONFIG_NUMA
5014 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5015 #endif
5016 }
5017
5018 /*
5019 * Initially all pages are reserved - free ones are freed
5020 * up by free_all_bootmem() once the early boot process is
5021 * done. Non-atomic initialization, single-pass.
5022 */
5023 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5024 unsigned long start_pfn, enum memmap_context context)
5025 {
5026 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5027 unsigned long end_pfn = start_pfn + size;
5028 pg_data_t *pgdat = NODE_DATA(nid);
5029 unsigned long pfn;
5030 unsigned long nr_initialised = 0;
5031 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5032 struct memblock_region *r = NULL, *tmp;
5033 #endif
5034
5035 if (highest_memmap_pfn < end_pfn - 1)
5036 highest_memmap_pfn = end_pfn - 1;
5037
5038 /*
5039 * Honor reservation requested by the driver for this ZONE_DEVICE
5040 * memory
5041 */
5042 if (altmap && start_pfn == altmap->base_pfn)
5043 start_pfn += altmap->reserve;
5044
5045 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5046 /*
5047 * There can be holes in boot-time mem_map[]s handed to this
5048 * function. They do not exist on hotplugged memory.
5049 */
5050 if (context != MEMMAP_EARLY)
5051 goto not_early;
5052
5053 if (!early_pfn_valid(pfn))
5054 continue;
5055 if (!early_pfn_in_nid(pfn, nid))
5056 continue;
5057 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5058 break;
5059
5060 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5061 /*
5062 * Check given memblock attribute by firmware which can affect
5063 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5064 * mirrored, it's an overlapped memmap init. skip it.
5065 */
5066 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5067 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5068 for_each_memblock(memory, tmp)
5069 if (pfn < memblock_region_memory_end_pfn(tmp))
5070 break;
5071 r = tmp;
5072 }
5073 if (pfn >= memblock_region_memory_base_pfn(r) &&
5074 memblock_is_mirror(r)) {
5075 /* already initialized as NORMAL */
5076 pfn = memblock_region_memory_end_pfn(r);
5077 continue;
5078 }
5079 }
5080 #endif
5081
5082 not_early:
5083 /*
5084 * Mark the block movable so that blocks are reserved for
5085 * movable at startup. This will force kernel allocations
5086 * to reserve their blocks rather than leaking throughout
5087 * the address space during boot when many long-lived
5088 * kernel allocations are made.
5089 *
5090 * bitmap is created for zone's valid pfn range. but memmap
5091 * can be created for invalid pages (for alignment)
5092 * check here not to call set_pageblock_migratetype() against
5093 * pfn out of zone.
5094 */
5095 if (!(pfn & (pageblock_nr_pages - 1))) {
5096 struct page *page = pfn_to_page(pfn);
5097
5098 __init_single_page(page, pfn, zone, nid);
5099 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5100 } else {
5101 __init_single_pfn(pfn, zone, nid);
5102 }
5103 }
5104 }
5105
5106 static void __meminit zone_init_free_lists(struct zone *zone)
5107 {
5108 unsigned int order, t;
5109 for_each_migratetype_order(order, t) {
5110 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5111 zone->free_area[order].nr_free = 0;
5112 }
5113 }
5114
5115 #ifndef __HAVE_ARCH_MEMMAP_INIT
5116 #define memmap_init(size, nid, zone, start_pfn) \
5117 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5118 #endif
5119
5120 static int zone_batchsize(struct zone *zone)
5121 {
5122 #ifdef CONFIG_MMU
5123 int batch;
5124
5125 /*
5126 * The per-cpu-pages pools are set to around 1000th of the
5127 * size of the zone. But no more than 1/2 of a meg.
5128 *
5129 * OK, so we don't know how big the cache is. So guess.
5130 */
5131 batch = zone->managed_pages / 1024;
5132 if (batch * PAGE_SIZE > 512 * 1024)
5133 batch = (512 * 1024) / PAGE_SIZE;
5134 batch /= 4; /* We effectively *= 4 below */
5135 if (batch < 1)
5136 batch = 1;
5137
5138 /*
5139 * Clamp the batch to a 2^n - 1 value. Having a power
5140 * of 2 value was found to be more likely to have
5141 * suboptimal cache aliasing properties in some cases.
5142 *
5143 * For example if 2 tasks are alternately allocating
5144 * batches of pages, one task can end up with a lot
5145 * of pages of one half of the possible page colors
5146 * and the other with pages of the other colors.
5147 */
5148 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5149
5150 return batch;
5151
5152 #else
5153 /* The deferral and batching of frees should be suppressed under NOMMU
5154 * conditions.
5155 *
5156 * The problem is that NOMMU needs to be able to allocate large chunks
5157 * of contiguous memory as there's no hardware page translation to
5158 * assemble apparent contiguous memory from discontiguous pages.
5159 *
5160 * Queueing large contiguous runs of pages for batching, however,
5161 * causes the pages to actually be freed in smaller chunks. As there
5162 * can be a significant delay between the individual batches being
5163 * recycled, this leads to the once large chunks of space being
5164 * fragmented and becoming unavailable for high-order allocations.
5165 */
5166 return 0;
5167 #endif
5168 }
5169
5170 /*
5171 * pcp->high and pcp->batch values are related and dependent on one another:
5172 * ->batch must never be higher then ->high.
5173 * The following function updates them in a safe manner without read side
5174 * locking.
5175 *
5176 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5177 * those fields changing asynchronously (acording the the above rule).
5178 *
5179 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5180 * outside of boot time (or some other assurance that no concurrent updaters
5181 * exist).
5182 */
5183 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5184 unsigned long batch)
5185 {
5186 /* start with a fail safe value for batch */
5187 pcp->batch = 1;
5188 smp_wmb();
5189
5190 /* Update high, then batch, in order */
5191 pcp->high = high;
5192 smp_wmb();
5193
5194 pcp->batch = batch;
5195 }
5196
5197 /* a companion to pageset_set_high() */
5198 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5199 {
5200 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5201 }
5202
5203 static void pageset_init(struct per_cpu_pageset *p)
5204 {
5205 struct per_cpu_pages *pcp;
5206 int migratetype;
5207
5208 memset(p, 0, sizeof(*p));
5209
5210 pcp = &p->pcp;
5211 pcp->count = 0;
5212 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5213 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5214 }
5215
5216 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5217 {
5218 pageset_init(p);
5219 pageset_set_batch(p, batch);
5220 }
5221
5222 /*
5223 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5224 * to the value high for the pageset p.
5225 */
5226 static void pageset_set_high(struct per_cpu_pageset *p,
5227 unsigned long high)
5228 {
5229 unsigned long batch = max(1UL, high / 4);
5230 if ((high / 4) > (PAGE_SHIFT * 8))
5231 batch = PAGE_SHIFT * 8;
5232
5233 pageset_update(&p->pcp, high, batch);
5234 }
5235
5236 static void pageset_set_high_and_batch(struct zone *zone,
5237 struct per_cpu_pageset *pcp)
5238 {
5239 if (percpu_pagelist_fraction)
5240 pageset_set_high(pcp,
5241 (zone->managed_pages /
5242 percpu_pagelist_fraction));
5243 else
5244 pageset_set_batch(pcp, zone_batchsize(zone));
5245 }
5246
5247 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5248 {
5249 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5250
5251 pageset_init(pcp);
5252 pageset_set_high_and_batch(zone, pcp);
5253 }
5254
5255 static void __meminit setup_zone_pageset(struct zone *zone)
5256 {
5257 int cpu;
5258 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5259 for_each_possible_cpu(cpu)
5260 zone_pageset_init(zone, cpu);
5261 }
5262
5263 /*
5264 * Allocate per cpu pagesets and initialize them.
5265 * Before this call only boot pagesets were available.
5266 */
5267 void __init setup_per_cpu_pageset(void)
5268 {
5269 struct pglist_data *pgdat;
5270 struct zone *zone;
5271
5272 for_each_populated_zone(zone)
5273 setup_zone_pageset(zone);
5274
5275 for_each_online_pgdat(pgdat)
5276 pgdat->per_cpu_nodestats =
5277 alloc_percpu(struct per_cpu_nodestat);
5278 }
5279
5280 static __meminit void zone_pcp_init(struct zone *zone)
5281 {
5282 /*
5283 * per cpu subsystem is not up at this point. The following code
5284 * relies on the ability of the linker to provide the
5285 * offset of a (static) per cpu variable into the per cpu area.
5286 */
5287 zone->pageset = &boot_pageset;
5288
5289 if (populated_zone(zone))
5290 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5291 zone->name, zone->present_pages,
5292 zone_batchsize(zone));
5293 }
5294
5295 int __meminit init_currently_empty_zone(struct zone *zone,
5296 unsigned long zone_start_pfn,
5297 unsigned long size)
5298 {
5299 struct pglist_data *pgdat = zone->zone_pgdat;
5300
5301 pgdat->nr_zones = zone_idx(zone) + 1;
5302
5303 zone->zone_start_pfn = zone_start_pfn;
5304
5305 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5306 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5307 pgdat->node_id,
5308 (unsigned long)zone_idx(zone),
5309 zone_start_pfn, (zone_start_pfn + size));
5310
5311 zone_init_free_lists(zone);
5312 zone->initialized = 1;
5313
5314 return 0;
5315 }
5316
5317 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5318 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5319
5320 /*
5321 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5322 */
5323 int __meminit __early_pfn_to_nid(unsigned long pfn,
5324 struct mminit_pfnnid_cache *state)
5325 {
5326 unsigned long start_pfn, end_pfn;
5327 int nid;
5328
5329 if (state->last_start <= pfn && pfn < state->last_end)
5330 return state->last_nid;
5331
5332 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5333 if (nid != -1) {
5334 state->last_start = start_pfn;
5335 state->last_end = end_pfn;
5336 state->last_nid = nid;
5337 }
5338
5339 return nid;
5340 }
5341 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5342
5343 /**
5344 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5345 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5346 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5347 *
5348 * If an architecture guarantees that all ranges registered contain no holes
5349 * and may be freed, this this function may be used instead of calling
5350 * memblock_free_early_nid() manually.
5351 */
5352 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5353 {
5354 unsigned long start_pfn, end_pfn;
5355 int i, this_nid;
5356
5357 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5358 start_pfn = min(start_pfn, max_low_pfn);
5359 end_pfn = min(end_pfn, max_low_pfn);
5360
5361 if (start_pfn < end_pfn)
5362 memblock_free_early_nid(PFN_PHYS(start_pfn),
5363 (end_pfn - start_pfn) << PAGE_SHIFT,
5364 this_nid);
5365 }
5366 }
5367
5368 /**
5369 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5370 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5371 *
5372 * If an architecture guarantees that all ranges registered contain no holes and may
5373 * be freed, this function may be used instead of calling memory_present() manually.
5374 */
5375 void __init sparse_memory_present_with_active_regions(int nid)
5376 {
5377 unsigned long start_pfn, end_pfn;
5378 int i, this_nid;
5379
5380 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5381 memory_present(this_nid, start_pfn, end_pfn);
5382 }
5383
5384 /**
5385 * get_pfn_range_for_nid - Return the start and end page frames for a node
5386 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5387 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5388 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5389 *
5390 * It returns the start and end page frame of a node based on information
5391 * provided by memblock_set_node(). If called for a node
5392 * with no available memory, a warning is printed and the start and end
5393 * PFNs will be 0.
5394 */
5395 void __meminit get_pfn_range_for_nid(unsigned int nid,
5396 unsigned long *start_pfn, unsigned long *end_pfn)
5397 {
5398 unsigned long this_start_pfn, this_end_pfn;
5399 int i;
5400
5401 *start_pfn = -1UL;
5402 *end_pfn = 0;
5403
5404 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5405 *start_pfn = min(*start_pfn, this_start_pfn);
5406 *end_pfn = max(*end_pfn, this_end_pfn);
5407 }
5408
5409 if (*start_pfn == -1UL)
5410 *start_pfn = 0;
5411 }
5412
5413 /*
5414 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5415 * assumption is made that zones within a node are ordered in monotonic
5416 * increasing memory addresses so that the "highest" populated zone is used
5417 */
5418 static void __init find_usable_zone_for_movable(void)
5419 {
5420 int zone_index;
5421 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5422 if (zone_index == ZONE_MOVABLE)
5423 continue;
5424
5425 if (arch_zone_highest_possible_pfn[zone_index] >
5426 arch_zone_lowest_possible_pfn[zone_index])
5427 break;
5428 }
5429
5430 VM_BUG_ON(zone_index == -1);
5431 movable_zone = zone_index;
5432 }
5433
5434 /*
5435 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5436 * because it is sized independent of architecture. Unlike the other zones,
5437 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5438 * in each node depending on the size of each node and how evenly kernelcore
5439 * is distributed. This helper function adjusts the zone ranges
5440 * provided by the architecture for a given node by using the end of the
5441 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5442 * zones within a node are in order of monotonic increases memory addresses
5443 */
5444 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5445 unsigned long zone_type,
5446 unsigned long node_start_pfn,
5447 unsigned long node_end_pfn,
5448 unsigned long *zone_start_pfn,
5449 unsigned long *zone_end_pfn)
5450 {
5451 /* Only adjust if ZONE_MOVABLE is on this node */
5452 if (zone_movable_pfn[nid]) {
5453 /* Size ZONE_MOVABLE */
5454 if (zone_type == ZONE_MOVABLE) {
5455 *zone_start_pfn = zone_movable_pfn[nid];
5456 *zone_end_pfn = min(node_end_pfn,
5457 arch_zone_highest_possible_pfn[movable_zone]);
5458
5459 /* Adjust for ZONE_MOVABLE starting within this range */
5460 } else if (!mirrored_kernelcore &&
5461 *zone_start_pfn < zone_movable_pfn[nid] &&
5462 *zone_end_pfn > zone_movable_pfn[nid]) {
5463 *zone_end_pfn = zone_movable_pfn[nid];
5464
5465 /* Check if this whole range is within ZONE_MOVABLE */
5466 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5467 *zone_start_pfn = *zone_end_pfn;
5468 }
5469 }
5470
5471 /*
5472 * Return the number of pages a zone spans in a node, including holes
5473 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5474 */
5475 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5476 unsigned long zone_type,
5477 unsigned long node_start_pfn,
5478 unsigned long node_end_pfn,
5479 unsigned long *zone_start_pfn,
5480 unsigned long *zone_end_pfn,
5481 unsigned long *ignored)
5482 {
5483 /* When hotadd a new node from cpu_up(), the node should be empty */
5484 if (!node_start_pfn && !node_end_pfn)
5485 return 0;
5486
5487 /* Get the start and end of the zone */
5488 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5489 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5490 adjust_zone_range_for_zone_movable(nid, zone_type,
5491 node_start_pfn, node_end_pfn,
5492 zone_start_pfn, zone_end_pfn);
5493
5494 /* Check that this node has pages within the zone's required range */
5495 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5496 return 0;
5497
5498 /* Move the zone boundaries inside the node if necessary */
5499 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5500 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5501
5502 /* Return the spanned pages */
5503 return *zone_end_pfn - *zone_start_pfn;
5504 }
5505
5506 /*
5507 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5508 * then all holes in the requested range will be accounted for.
5509 */
5510 unsigned long __meminit __absent_pages_in_range(int nid,
5511 unsigned long range_start_pfn,
5512 unsigned long range_end_pfn)
5513 {
5514 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5515 unsigned long start_pfn, end_pfn;
5516 int i;
5517
5518 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5519 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5520 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5521 nr_absent -= end_pfn - start_pfn;
5522 }
5523 return nr_absent;
5524 }
5525
5526 /**
5527 * absent_pages_in_range - Return number of page frames in holes within a range
5528 * @start_pfn: The start PFN to start searching for holes
5529 * @end_pfn: The end PFN to stop searching for holes
5530 *
5531 * It returns the number of pages frames in memory holes within a range.
5532 */
5533 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5534 unsigned long end_pfn)
5535 {
5536 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5537 }
5538
5539 /* Return the number of page frames in holes in a zone on a node */
5540 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5541 unsigned long zone_type,
5542 unsigned long node_start_pfn,
5543 unsigned long node_end_pfn,
5544 unsigned long *ignored)
5545 {
5546 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5547 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5548 unsigned long zone_start_pfn, zone_end_pfn;
5549 unsigned long nr_absent;
5550
5551 /* When hotadd a new node from cpu_up(), the node should be empty */
5552 if (!node_start_pfn && !node_end_pfn)
5553 return 0;
5554
5555 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5556 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5557
5558 adjust_zone_range_for_zone_movable(nid, zone_type,
5559 node_start_pfn, node_end_pfn,
5560 &zone_start_pfn, &zone_end_pfn);
5561 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5562
5563 /*
5564 * ZONE_MOVABLE handling.
5565 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5566 * and vice versa.
5567 */
5568 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5569 unsigned long start_pfn, end_pfn;
5570 struct memblock_region *r;
5571
5572 for_each_memblock(memory, r) {
5573 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5574 zone_start_pfn, zone_end_pfn);
5575 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5576 zone_start_pfn, zone_end_pfn);
5577
5578 if (zone_type == ZONE_MOVABLE &&
5579 memblock_is_mirror(r))
5580 nr_absent += end_pfn - start_pfn;
5581
5582 if (zone_type == ZONE_NORMAL &&
5583 !memblock_is_mirror(r))
5584 nr_absent += end_pfn - start_pfn;
5585 }
5586 }
5587
5588 return nr_absent;
5589 }
5590
5591 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5592 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5593 unsigned long zone_type,
5594 unsigned long node_start_pfn,
5595 unsigned long node_end_pfn,
5596 unsigned long *zone_start_pfn,
5597 unsigned long *zone_end_pfn,
5598 unsigned long *zones_size)
5599 {
5600 unsigned int zone;
5601
5602 *zone_start_pfn = node_start_pfn;
5603 for (zone = 0; zone < zone_type; zone++)
5604 *zone_start_pfn += zones_size[zone];
5605
5606 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5607
5608 return zones_size[zone_type];
5609 }
5610
5611 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5612 unsigned long zone_type,
5613 unsigned long node_start_pfn,
5614 unsigned long node_end_pfn,
5615 unsigned long *zholes_size)
5616 {
5617 if (!zholes_size)
5618 return 0;
5619
5620 return zholes_size[zone_type];
5621 }
5622
5623 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5624
5625 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5626 unsigned long node_start_pfn,
5627 unsigned long node_end_pfn,
5628 unsigned long *zones_size,
5629 unsigned long *zholes_size)
5630 {
5631 unsigned long realtotalpages = 0, totalpages = 0;
5632 enum zone_type i;
5633
5634 for (i = 0; i < MAX_NR_ZONES; i++) {
5635 struct zone *zone = pgdat->node_zones + i;
5636 unsigned long zone_start_pfn, zone_end_pfn;
5637 unsigned long size, real_size;
5638
5639 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5640 node_start_pfn,
5641 node_end_pfn,
5642 &zone_start_pfn,
5643 &zone_end_pfn,
5644 zones_size);
5645 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5646 node_start_pfn, node_end_pfn,
5647 zholes_size);
5648 if (size)
5649 zone->zone_start_pfn = zone_start_pfn;
5650 else
5651 zone->zone_start_pfn = 0;
5652 zone->spanned_pages = size;
5653 zone->present_pages = real_size;
5654
5655 totalpages += size;
5656 realtotalpages += real_size;
5657 }
5658
5659 pgdat->node_spanned_pages = totalpages;
5660 pgdat->node_present_pages = realtotalpages;
5661 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5662 realtotalpages);
5663 }
5664
5665 #ifndef CONFIG_SPARSEMEM
5666 /*
5667 * Calculate the size of the zone->blockflags rounded to an unsigned long
5668 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5669 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5670 * round what is now in bits to nearest long in bits, then return it in
5671 * bytes.
5672 */
5673 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5674 {
5675 unsigned long usemapsize;
5676
5677 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5678 usemapsize = roundup(zonesize, pageblock_nr_pages);
5679 usemapsize = usemapsize >> pageblock_order;
5680 usemapsize *= NR_PAGEBLOCK_BITS;
5681 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5682
5683 return usemapsize / 8;
5684 }
5685
5686 static void __init setup_usemap(struct pglist_data *pgdat,
5687 struct zone *zone,
5688 unsigned long zone_start_pfn,
5689 unsigned long zonesize)
5690 {
5691 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5692 zone->pageblock_flags = NULL;
5693 if (usemapsize)
5694 zone->pageblock_flags =
5695 memblock_virt_alloc_node_nopanic(usemapsize,
5696 pgdat->node_id);
5697 }
5698 #else
5699 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5700 unsigned long zone_start_pfn, unsigned long zonesize) {}
5701 #endif /* CONFIG_SPARSEMEM */
5702
5703 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5704
5705 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5706 void __paginginit set_pageblock_order(void)
5707 {
5708 unsigned int order;
5709
5710 /* Check that pageblock_nr_pages has not already been setup */
5711 if (pageblock_order)
5712 return;
5713
5714 if (HPAGE_SHIFT > PAGE_SHIFT)
5715 order = HUGETLB_PAGE_ORDER;
5716 else
5717 order = MAX_ORDER - 1;
5718
5719 /*
5720 * Assume the largest contiguous order of interest is a huge page.
5721 * This value may be variable depending on boot parameters on IA64 and
5722 * powerpc.
5723 */
5724 pageblock_order = order;
5725 }
5726 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5727
5728 /*
5729 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5730 * is unused as pageblock_order is set at compile-time. See
5731 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5732 * the kernel config
5733 */
5734 void __paginginit set_pageblock_order(void)
5735 {
5736 }
5737
5738 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5739
5740 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5741 unsigned long present_pages)
5742 {
5743 unsigned long pages = spanned_pages;
5744
5745 /*
5746 * Provide a more accurate estimation if there are holes within
5747 * the zone and SPARSEMEM is in use. If there are holes within the
5748 * zone, each populated memory region may cost us one or two extra
5749 * memmap pages due to alignment because memmap pages for each
5750 * populated regions may not naturally algined on page boundary.
5751 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5752 */
5753 if (spanned_pages > present_pages + (present_pages >> 4) &&
5754 IS_ENABLED(CONFIG_SPARSEMEM))
5755 pages = present_pages;
5756
5757 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5758 }
5759
5760 /*
5761 * Set up the zone data structures:
5762 * - mark all pages reserved
5763 * - mark all memory queues empty
5764 * - clear the memory bitmaps
5765 *
5766 * NOTE: pgdat should get zeroed by caller.
5767 */
5768 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5769 {
5770 enum zone_type j;
5771 int nid = pgdat->node_id;
5772 int ret;
5773
5774 pgdat_resize_init(pgdat);
5775 #ifdef CONFIG_NUMA_BALANCING
5776 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5777 pgdat->numabalancing_migrate_nr_pages = 0;
5778 pgdat->numabalancing_migrate_next_window = jiffies;
5779 #endif
5780 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5781 spin_lock_init(&pgdat->split_queue_lock);
5782 INIT_LIST_HEAD(&pgdat->split_queue);
5783 pgdat->split_queue_len = 0;
5784 #endif
5785 init_waitqueue_head(&pgdat->kswapd_wait);
5786 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5787 #ifdef CONFIG_COMPACTION
5788 init_waitqueue_head(&pgdat->kcompactd_wait);
5789 #endif
5790 pgdat_page_ext_init(pgdat);
5791 spin_lock_init(&pgdat->lru_lock);
5792 lruvec_init(node_lruvec(pgdat));
5793
5794 for (j = 0; j < MAX_NR_ZONES; j++) {
5795 struct zone *zone = pgdat->node_zones + j;
5796 unsigned long size, realsize, freesize, memmap_pages;
5797 unsigned long zone_start_pfn = zone->zone_start_pfn;
5798
5799 size = zone->spanned_pages;
5800 realsize = freesize = zone->present_pages;
5801
5802 /*
5803 * Adjust freesize so that it accounts for how much memory
5804 * is used by this zone for memmap. This affects the watermark
5805 * and per-cpu initialisations
5806 */
5807 memmap_pages = calc_memmap_size(size, realsize);
5808 if (!is_highmem_idx(j)) {
5809 if (freesize >= memmap_pages) {
5810 freesize -= memmap_pages;
5811 if (memmap_pages)
5812 printk(KERN_DEBUG
5813 " %s zone: %lu pages used for memmap\n",
5814 zone_names[j], memmap_pages);
5815 } else
5816 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5817 zone_names[j], memmap_pages, freesize);
5818 }
5819
5820 /* Account for reserved pages */
5821 if (j == 0 && freesize > dma_reserve) {
5822 freesize -= dma_reserve;
5823 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5824 zone_names[0], dma_reserve);
5825 }
5826
5827 if (!is_highmem_idx(j))
5828 nr_kernel_pages += freesize;
5829 /* Charge for highmem memmap if there are enough kernel pages */
5830 else if (nr_kernel_pages > memmap_pages * 2)
5831 nr_kernel_pages -= memmap_pages;
5832 nr_all_pages += freesize;
5833
5834 /*
5835 * Set an approximate value for lowmem here, it will be adjusted
5836 * when the bootmem allocator frees pages into the buddy system.
5837 * And all highmem pages will be managed by the buddy system.
5838 */
5839 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5840 #ifdef CONFIG_NUMA
5841 zone->node = nid;
5842 #endif
5843 zone->name = zone_names[j];
5844 zone->zone_pgdat = pgdat;
5845 spin_lock_init(&zone->lock);
5846 zone_seqlock_init(zone);
5847 zone_pcp_init(zone);
5848
5849 if (!size)
5850 continue;
5851
5852 set_pageblock_order();
5853 setup_usemap(pgdat, zone, zone_start_pfn, size);
5854 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5855 BUG_ON(ret);
5856 memmap_init(size, nid, j, zone_start_pfn);
5857 }
5858 }
5859
5860 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
5861 {
5862 unsigned long __maybe_unused start = 0;
5863 unsigned long __maybe_unused offset = 0;
5864
5865 /* Skip empty nodes */
5866 if (!pgdat->node_spanned_pages)
5867 return;
5868
5869 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5870 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5871 offset = pgdat->node_start_pfn - start;
5872 /* ia64 gets its own node_mem_map, before this, without bootmem */
5873 if (!pgdat->node_mem_map) {
5874 unsigned long size, end;
5875 struct page *map;
5876
5877 /*
5878 * The zone's endpoints aren't required to be MAX_ORDER
5879 * aligned but the node_mem_map endpoints must be in order
5880 * for the buddy allocator to function correctly.
5881 */
5882 end = pgdat_end_pfn(pgdat);
5883 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5884 size = (end - start) * sizeof(struct page);
5885 map = alloc_remap(pgdat->node_id, size);
5886 if (!map)
5887 map = memblock_virt_alloc_node_nopanic(size,
5888 pgdat->node_id);
5889 pgdat->node_mem_map = map + offset;
5890 }
5891 #ifndef CONFIG_NEED_MULTIPLE_NODES
5892 /*
5893 * With no DISCONTIG, the global mem_map is just set as node 0's
5894 */
5895 if (pgdat == NODE_DATA(0)) {
5896 mem_map = NODE_DATA(0)->node_mem_map;
5897 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5898 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5899 mem_map -= offset;
5900 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5901 }
5902 #endif
5903 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5904 }
5905
5906 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5907 unsigned long node_start_pfn, unsigned long *zholes_size)
5908 {
5909 pg_data_t *pgdat = NODE_DATA(nid);
5910 unsigned long start_pfn = 0;
5911 unsigned long end_pfn = 0;
5912
5913 /* pg_data_t should be reset to zero when it's allocated */
5914 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
5915
5916 reset_deferred_meminit(pgdat);
5917 pgdat->node_id = nid;
5918 pgdat->node_start_pfn = node_start_pfn;
5919 pgdat->per_cpu_nodestats = NULL;
5920 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5921 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5922 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5923 (u64)start_pfn << PAGE_SHIFT,
5924 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5925 #else
5926 start_pfn = node_start_pfn;
5927 #endif
5928 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5929 zones_size, zholes_size);
5930
5931 alloc_node_mem_map(pgdat);
5932 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5933 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5934 nid, (unsigned long)pgdat,
5935 (unsigned long)pgdat->node_mem_map);
5936 #endif
5937
5938 free_area_init_core(pgdat);
5939 }
5940
5941 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5942
5943 #if MAX_NUMNODES > 1
5944 /*
5945 * Figure out the number of possible node ids.
5946 */
5947 void __init setup_nr_node_ids(void)
5948 {
5949 unsigned int highest;
5950
5951 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5952 nr_node_ids = highest + 1;
5953 }
5954 #endif
5955
5956 /**
5957 * node_map_pfn_alignment - determine the maximum internode alignment
5958 *
5959 * This function should be called after node map is populated and sorted.
5960 * It calculates the maximum power of two alignment which can distinguish
5961 * all the nodes.
5962 *
5963 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5964 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5965 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5966 * shifted, 1GiB is enough and this function will indicate so.
5967 *
5968 * This is used to test whether pfn -> nid mapping of the chosen memory
5969 * model has fine enough granularity to avoid incorrect mapping for the
5970 * populated node map.
5971 *
5972 * Returns the determined alignment in pfn's. 0 if there is no alignment
5973 * requirement (single node).
5974 */
5975 unsigned long __init node_map_pfn_alignment(void)
5976 {
5977 unsigned long accl_mask = 0, last_end = 0;
5978 unsigned long start, end, mask;
5979 int last_nid = -1;
5980 int i, nid;
5981
5982 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5983 if (!start || last_nid < 0 || last_nid == nid) {
5984 last_nid = nid;
5985 last_end = end;
5986 continue;
5987 }
5988
5989 /*
5990 * Start with a mask granular enough to pin-point to the
5991 * start pfn and tick off bits one-by-one until it becomes
5992 * too coarse to separate the current node from the last.
5993 */
5994 mask = ~((1 << __ffs(start)) - 1);
5995 while (mask && last_end <= (start & (mask << 1)))
5996 mask <<= 1;
5997
5998 /* accumulate all internode masks */
5999 accl_mask |= mask;
6000 }
6001
6002 /* convert mask to number of pages */
6003 return ~accl_mask + 1;
6004 }
6005
6006 /* Find the lowest pfn for a node */
6007 static unsigned long __init find_min_pfn_for_node(int nid)
6008 {
6009 unsigned long min_pfn = ULONG_MAX;
6010 unsigned long start_pfn;
6011 int i;
6012
6013 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6014 min_pfn = min(min_pfn, start_pfn);
6015
6016 if (min_pfn == ULONG_MAX) {
6017 pr_warn("Could not find start_pfn for node %d\n", nid);
6018 return 0;
6019 }
6020
6021 return min_pfn;
6022 }
6023
6024 /**
6025 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6026 *
6027 * It returns the minimum PFN based on information provided via
6028 * memblock_set_node().
6029 */
6030 unsigned long __init find_min_pfn_with_active_regions(void)
6031 {
6032 return find_min_pfn_for_node(MAX_NUMNODES);
6033 }
6034
6035 /*
6036 * early_calculate_totalpages()
6037 * Sum pages in active regions for movable zone.
6038 * Populate N_MEMORY for calculating usable_nodes.
6039 */
6040 static unsigned long __init early_calculate_totalpages(void)
6041 {
6042 unsigned long totalpages = 0;
6043 unsigned long start_pfn, end_pfn;
6044 int i, nid;
6045
6046 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6047 unsigned long pages = end_pfn - start_pfn;
6048
6049 totalpages += pages;
6050 if (pages)
6051 node_set_state(nid, N_MEMORY);
6052 }
6053 return totalpages;
6054 }
6055
6056 /*
6057 * Find the PFN the Movable zone begins in each node. Kernel memory
6058 * is spread evenly between nodes as long as the nodes have enough
6059 * memory. When they don't, some nodes will have more kernelcore than
6060 * others
6061 */
6062 static void __init find_zone_movable_pfns_for_nodes(void)
6063 {
6064 int i, nid;
6065 unsigned long usable_startpfn;
6066 unsigned long kernelcore_node, kernelcore_remaining;
6067 /* save the state before borrow the nodemask */
6068 nodemask_t saved_node_state = node_states[N_MEMORY];
6069 unsigned long totalpages = early_calculate_totalpages();
6070 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6071 struct memblock_region *r;
6072
6073 /* Need to find movable_zone earlier when movable_node is specified. */
6074 find_usable_zone_for_movable();
6075
6076 /*
6077 * If movable_node is specified, ignore kernelcore and movablecore
6078 * options.
6079 */
6080 if (movable_node_is_enabled()) {
6081 for_each_memblock(memory, r) {
6082 if (!memblock_is_hotpluggable(r))
6083 continue;
6084
6085 nid = r->nid;
6086
6087 usable_startpfn = PFN_DOWN(r->base);
6088 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6089 min(usable_startpfn, zone_movable_pfn[nid]) :
6090 usable_startpfn;
6091 }
6092
6093 goto out2;
6094 }
6095
6096 /*
6097 * If kernelcore=mirror is specified, ignore movablecore option
6098 */
6099 if (mirrored_kernelcore) {
6100 bool mem_below_4gb_not_mirrored = false;
6101
6102 for_each_memblock(memory, r) {
6103 if (memblock_is_mirror(r))
6104 continue;
6105
6106 nid = r->nid;
6107
6108 usable_startpfn = memblock_region_memory_base_pfn(r);
6109
6110 if (usable_startpfn < 0x100000) {
6111 mem_below_4gb_not_mirrored = true;
6112 continue;
6113 }
6114
6115 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6116 min(usable_startpfn, zone_movable_pfn[nid]) :
6117 usable_startpfn;
6118 }
6119
6120 if (mem_below_4gb_not_mirrored)
6121 pr_warn("This configuration results in unmirrored kernel memory.");
6122
6123 goto out2;
6124 }
6125
6126 /*
6127 * If movablecore=nn[KMG] was specified, calculate what size of
6128 * kernelcore that corresponds so that memory usable for
6129 * any allocation type is evenly spread. If both kernelcore
6130 * and movablecore are specified, then the value of kernelcore
6131 * will be used for required_kernelcore if it's greater than
6132 * what movablecore would have allowed.
6133 */
6134 if (required_movablecore) {
6135 unsigned long corepages;
6136
6137 /*
6138 * Round-up so that ZONE_MOVABLE is at least as large as what
6139 * was requested by the user
6140 */
6141 required_movablecore =
6142 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6143 required_movablecore = min(totalpages, required_movablecore);
6144 corepages = totalpages - required_movablecore;
6145
6146 required_kernelcore = max(required_kernelcore, corepages);
6147 }
6148
6149 /*
6150 * If kernelcore was not specified or kernelcore size is larger
6151 * than totalpages, there is no ZONE_MOVABLE.
6152 */
6153 if (!required_kernelcore || required_kernelcore >= totalpages)
6154 goto out;
6155
6156 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6157 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6158
6159 restart:
6160 /* Spread kernelcore memory as evenly as possible throughout nodes */
6161 kernelcore_node = required_kernelcore / usable_nodes;
6162 for_each_node_state(nid, N_MEMORY) {
6163 unsigned long start_pfn, end_pfn;
6164
6165 /*
6166 * Recalculate kernelcore_node if the division per node
6167 * now exceeds what is necessary to satisfy the requested
6168 * amount of memory for the kernel
6169 */
6170 if (required_kernelcore < kernelcore_node)
6171 kernelcore_node = required_kernelcore / usable_nodes;
6172
6173 /*
6174 * As the map is walked, we track how much memory is usable
6175 * by the kernel using kernelcore_remaining. When it is
6176 * 0, the rest of the node is usable by ZONE_MOVABLE
6177 */
6178 kernelcore_remaining = kernelcore_node;
6179
6180 /* Go through each range of PFNs within this node */
6181 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6182 unsigned long size_pages;
6183
6184 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6185 if (start_pfn >= end_pfn)
6186 continue;
6187
6188 /* Account for what is only usable for kernelcore */
6189 if (start_pfn < usable_startpfn) {
6190 unsigned long kernel_pages;
6191 kernel_pages = min(end_pfn, usable_startpfn)
6192 - start_pfn;
6193
6194 kernelcore_remaining -= min(kernel_pages,
6195 kernelcore_remaining);
6196 required_kernelcore -= min(kernel_pages,
6197 required_kernelcore);
6198
6199 /* Continue if range is now fully accounted */
6200 if (end_pfn <= usable_startpfn) {
6201
6202 /*
6203 * Push zone_movable_pfn to the end so
6204 * that if we have to rebalance
6205 * kernelcore across nodes, we will
6206 * not double account here
6207 */
6208 zone_movable_pfn[nid] = end_pfn;
6209 continue;
6210 }
6211 start_pfn = usable_startpfn;
6212 }
6213
6214 /*
6215 * The usable PFN range for ZONE_MOVABLE is from
6216 * start_pfn->end_pfn. Calculate size_pages as the
6217 * number of pages used as kernelcore
6218 */
6219 size_pages = end_pfn - start_pfn;
6220 if (size_pages > kernelcore_remaining)
6221 size_pages = kernelcore_remaining;
6222 zone_movable_pfn[nid] = start_pfn + size_pages;
6223
6224 /*
6225 * Some kernelcore has been met, update counts and
6226 * break if the kernelcore for this node has been
6227 * satisfied
6228 */
6229 required_kernelcore -= min(required_kernelcore,
6230 size_pages);
6231 kernelcore_remaining -= size_pages;
6232 if (!kernelcore_remaining)
6233 break;
6234 }
6235 }
6236
6237 /*
6238 * If there is still required_kernelcore, we do another pass with one
6239 * less node in the count. This will push zone_movable_pfn[nid] further
6240 * along on the nodes that still have memory until kernelcore is
6241 * satisfied
6242 */
6243 usable_nodes--;
6244 if (usable_nodes && required_kernelcore > usable_nodes)
6245 goto restart;
6246
6247 out2:
6248 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6249 for (nid = 0; nid < MAX_NUMNODES; nid++)
6250 zone_movable_pfn[nid] =
6251 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6252
6253 out:
6254 /* restore the node_state */
6255 node_states[N_MEMORY] = saved_node_state;
6256 }
6257
6258 /* Any regular or high memory on that node ? */
6259 static void check_for_memory(pg_data_t *pgdat, int nid)
6260 {
6261 enum zone_type zone_type;
6262
6263 if (N_MEMORY == N_NORMAL_MEMORY)
6264 return;
6265
6266 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6267 struct zone *zone = &pgdat->node_zones[zone_type];
6268 if (populated_zone(zone)) {
6269 node_set_state(nid, N_HIGH_MEMORY);
6270 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6271 zone_type <= ZONE_NORMAL)
6272 node_set_state(nid, N_NORMAL_MEMORY);
6273 break;
6274 }
6275 }
6276 }
6277
6278 /**
6279 * free_area_init_nodes - Initialise all pg_data_t and zone data
6280 * @max_zone_pfn: an array of max PFNs for each zone
6281 *
6282 * This will call free_area_init_node() for each active node in the system.
6283 * Using the page ranges provided by memblock_set_node(), the size of each
6284 * zone in each node and their holes is calculated. If the maximum PFN
6285 * between two adjacent zones match, it is assumed that the zone is empty.
6286 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6287 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6288 * starts where the previous one ended. For example, ZONE_DMA32 starts
6289 * at arch_max_dma_pfn.
6290 */
6291 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6292 {
6293 unsigned long start_pfn, end_pfn;
6294 int i, nid;
6295
6296 /* Record where the zone boundaries are */
6297 memset(arch_zone_lowest_possible_pfn, 0,
6298 sizeof(arch_zone_lowest_possible_pfn));
6299 memset(arch_zone_highest_possible_pfn, 0,
6300 sizeof(arch_zone_highest_possible_pfn));
6301
6302 start_pfn = find_min_pfn_with_active_regions();
6303
6304 for (i = 0; i < MAX_NR_ZONES; i++) {
6305 if (i == ZONE_MOVABLE)
6306 continue;
6307
6308 end_pfn = max(max_zone_pfn[i], start_pfn);
6309 arch_zone_lowest_possible_pfn[i] = start_pfn;
6310 arch_zone_highest_possible_pfn[i] = end_pfn;
6311
6312 start_pfn = end_pfn;
6313 }
6314 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6315 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6316
6317 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6318 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6319 find_zone_movable_pfns_for_nodes();
6320
6321 /* Print out the zone ranges */
6322 pr_info("Zone ranges:\n");
6323 for (i = 0; i < MAX_NR_ZONES; i++) {
6324 if (i == ZONE_MOVABLE)
6325 continue;
6326 pr_info(" %-8s ", zone_names[i]);
6327 if (arch_zone_lowest_possible_pfn[i] ==
6328 arch_zone_highest_possible_pfn[i])
6329 pr_cont("empty\n");
6330 else
6331 pr_cont("[mem %#018Lx-%#018Lx]\n",
6332 (u64)arch_zone_lowest_possible_pfn[i]
6333 << PAGE_SHIFT,
6334 ((u64)arch_zone_highest_possible_pfn[i]
6335 << PAGE_SHIFT) - 1);
6336 }
6337
6338 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6339 pr_info("Movable zone start for each node\n");
6340 for (i = 0; i < MAX_NUMNODES; i++) {
6341 if (zone_movable_pfn[i])
6342 pr_info(" Node %d: %#018Lx\n", i,
6343 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6344 }
6345
6346 /* Print out the early node map */
6347 pr_info("Early memory node ranges\n");
6348 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6349 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6350 (u64)start_pfn << PAGE_SHIFT,
6351 ((u64)end_pfn << PAGE_SHIFT) - 1);
6352
6353 /* Initialise every node */
6354 mminit_verify_pageflags_layout();
6355 setup_nr_node_ids();
6356 for_each_online_node(nid) {
6357 pg_data_t *pgdat = NODE_DATA(nid);
6358 free_area_init_node(nid, NULL,
6359 find_min_pfn_for_node(nid), NULL);
6360
6361 /* Any memory on that node */
6362 if (pgdat->node_present_pages)
6363 node_set_state(nid, N_MEMORY);
6364 check_for_memory(pgdat, nid);
6365 }
6366 }
6367
6368 static int __init cmdline_parse_core(char *p, unsigned long *core)
6369 {
6370 unsigned long long coremem;
6371 if (!p)
6372 return -EINVAL;
6373
6374 coremem = memparse(p, &p);
6375 *core = coremem >> PAGE_SHIFT;
6376
6377 /* Paranoid check that UL is enough for the coremem value */
6378 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6379
6380 return 0;
6381 }
6382
6383 /*
6384 * kernelcore=size sets the amount of memory for use for allocations that
6385 * cannot be reclaimed or migrated.
6386 */
6387 static int __init cmdline_parse_kernelcore(char *p)
6388 {
6389 /* parse kernelcore=mirror */
6390 if (parse_option_str(p, "mirror")) {
6391 mirrored_kernelcore = true;
6392 return 0;
6393 }
6394
6395 return cmdline_parse_core(p, &required_kernelcore);
6396 }
6397
6398 /*
6399 * movablecore=size sets the amount of memory for use for allocations that
6400 * can be reclaimed or migrated.
6401 */
6402 static int __init cmdline_parse_movablecore(char *p)
6403 {
6404 return cmdline_parse_core(p, &required_movablecore);
6405 }
6406
6407 early_param("kernelcore", cmdline_parse_kernelcore);
6408 early_param("movablecore", cmdline_parse_movablecore);
6409
6410 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6411
6412 void adjust_managed_page_count(struct page *page, long count)
6413 {
6414 spin_lock(&managed_page_count_lock);
6415 page_zone(page)->managed_pages += count;
6416 totalram_pages += count;
6417 #ifdef CONFIG_HIGHMEM
6418 if (PageHighMem(page))
6419 totalhigh_pages += count;
6420 #endif
6421 spin_unlock(&managed_page_count_lock);
6422 }
6423 EXPORT_SYMBOL(adjust_managed_page_count);
6424
6425 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6426 {
6427 void *pos;
6428 unsigned long pages = 0;
6429
6430 start = (void *)PAGE_ALIGN((unsigned long)start);
6431 end = (void *)((unsigned long)end & PAGE_MASK);
6432 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6433 if ((unsigned int)poison <= 0xFF)
6434 memset(pos, poison, PAGE_SIZE);
6435 free_reserved_page(virt_to_page(pos));
6436 }
6437
6438 if (pages && s)
6439 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6440 s, pages << (PAGE_SHIFT - 10), start, end);
6441
6442 return pages;
6443 }
6444 EXPORT_SYMBOL(free_reserved_area);
6445
6446 #ifdef CONFIG_HIGHMEM
6447 void free_highmem_page(struct page *page)
6448 {
6449 __free_reserved_page(page);
6450 totalram_pages++;
6451 page_zone(page)->managed_pages++;
6452 totalhigh_pages++;
6453 }
6454 #endif
6455
6456
6457 void __init mem_init_print_info(const char *str)
6458 {
6459 unsigned long physpages, codesize, datasize, rosize, bss_size;
6460 unsigned long init_code_size, init_data_size;
6461
6462 physpages = get_num_physpages();
6463 codesize = _etext - _stext;
6464 datasize = _edata - _sdata;
6465 rosize = __end_rodata - __start_rodata;
6466 bss_size = __bss_stop - __bss_start;
6467 init_data_size = __init_end - __init_begin;
6468 init_code_size = _einittext - _sinittext;
6469
6470 /*
6471 * Detect special cases and adjust section sizes accordingly:
6472 * 1) .init.* may be embedded into .data sections
6473 * 2) .init.text.* may be out of [__init_begin, __init_end],
6474 * please refer to arch/tile/kernel/vmlinux.lds.S.
6475 * 3) .rodata.* may be embedded into .text or .data sections.
6476 */
6477 #define adj_init_size(start, end, size, pos, adj) \
6478 do { \
6479 if (start <= pos && pos < end && size > adj) \
6480 size -= adj; \
6481 } while (0)
6482
6483 adj_init_size(__init_begin, __init_end, init_data_size,
6484 _sinittext, init_code_size);
6485 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6486 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6487 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6488 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6489
6490 #undef adj_init_size
6491
6492 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6493 #ifdef CONFIG_HIGHMEM
6494 ", %luK highmem"
6495 #endif
6496 "%s%s)\n",
6497 nr_free_pages() << (PAGE_SHIFT - 10),
6498 physpages << (PAGE_SHIFT - 10),
6499 codesize >> 10, datasize >> 10, rosize >> 10,
6500 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6501 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6502 totalcma_pages << (PAGE_SHIFT - 10),
6503 #ifdef CONFIG_HIGHMEM
6504 totalhigh_pages << (PAGE_SHIFT - 10),
6505 #endif
6506 str ? ", " : "", str ? str : "");
6507 }
6508
6509 /**
6510 * set_dma_reserve - set the specified number of pages reserved in the first zone
6511 * @new_dma_reserve: The number of pages to mark reserved
6512 *
6513 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6514 * In the DMA zone, a significant percentage may be consumed by kernel image
6515 * and other unfreeable allocations which can skew the watermarks badly. This
6516 * function may optionally be used to account for unfreeable pages in the
6517 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6518 * smaller per-cpu batchsize.
6519 */
6520 void __init set_dma_reserve(unsigned long new_dma_reserve)
6521 {
6522 dma_reserve = new_dma_reserve;
6523 }
6524
6525 void __init free_area_init(unsigned long *zones_size)
6526 {
6527 free_area_init_node(0, zones_size,
6528 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6529 }
6530
6531 static int page_alloc_cpu_notify(struct notifier_block *self,
6532 unsigned long action, void *hcpu)
6533 {
6534 int cpu = (unsigned long)hcpu;
6535
6536 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6537 lru_add_drain_cpu(cpu);
6538 drain_pages(cpu);
6539
6540 /*
6541 * Spill the event counters of the dead processor
6542 * into the current processors event counters.
6543 * This artificially elevates the count of the current
6544 * processor.
6545 */
6546 vm_events_fold_cpu(cpu);
6547
6548 /*
6549 * Zero the differential counters of the dead processor
6550 * so that the vm statistics are consistent.
6551 *
6552 * This is only okay since the processor is dead and cannot
6553 * race with what we are doing.
6554 */
6555 cpu_vm_stats_fold(cpu);
6556 }
6557 return NOTIFY_OK;
6558 }
6559
6560 void __init page_alloc_init(void)
6561 {
6562 hotcpu_notifier(page_alloc_cpu_notify, 0);
6563 }
6564
6565 /*
6566 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6567 * or min_free_kbytes changes.
6568 */
6569 static void calculate_totalreserve_pages(void)
6570 {
6571 struct pglist_data *pgdat;
6572 unsigned long reserve_pages = 0;
6573 enum zone_type i, j;
6574
6575 for_each_online_pgdat(pgdat) {
6576
6577 pgdat->totalreserve_pages = 0;
6578
6579 for (i = 0; i < MAX_NR_ZONES; i++) {
6580 struct zone *zone = pgdat->node_zones + i;
6581 long max = 0;
6582
6583 /* Find valid and maximum lowmem_reserve in the zone */
6584 for (j = i; j < MAX_NR_ZONES; j++) {
6585 if (zone->lowmem_reserve[j] > max)
6586 max = zone->lowmem_reserve[j];
6587 }
6588
6589 /* we treat the high watermark as reserved pages. */
6590 max += high_wmark_pages(zone);
6591
6592 if (max > zone->managed_pages)
6593 max = zone->managed_pages;
6594
6595 pgdat->totalreserve_pages += max;
6596
6597 reserve_pages += max;
6598 }
6599 }
6600 totalreserve_pages = reserve_pages;
6601 }
6602
6603 /*
6604 * setup_per_zone_lowmem_reserve - called whenever
6605 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6606 * has a correct pages reserved value, so an adequate number of
6607 * pages are left in the zone after a successful __alloc_pages().
6608 */
6609 static void setup_per_zone_lowmem_reserve(void)
6610 {
6611 struct pglist_data *pgdat;
6612 enum zone_type j, idx;
6613
6614 for_each_online_pgdat(pgdat) {
6615 for (j = 0; j < MAX_NR_ZONES; j++) {
6616 struct zone *zone = pgdat->node_zones + j;
6617 unsigned long managed_pages = zone->managed_pages;
6618
6619 zone->lowmem_reserve[j] = 0;
6620
6621 idx = j;
6622 while (idx) {
6623 struct zone *lower_zone;
6624
6625 idx--;
6626
6627 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6628 sysctl_lowmem_reserve_ratio[idx] = 1;
6629
6630 lower_zone = pgdat->node_zones + idx;
6631 lower_zone->lowmem_reserve[j] = managed_pages /
6632 sysctl_lowmem_reserve_ratio[idx];
6633 managed_pages += lower_zone->managed_pages;
6634 }
6635 }
6636 }
6637
6638 /* update totalreserve_pages */
6639 calculate_totalreserve_pages();
6640 }
6641
6642 static void __setup_per_zone_wmarks(void)
6643 {
6644 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6645 unsigned long lowmem_pages = 0;
6646 struct zone *zone;
6647 unsigned long flags;
6648
6649 /* Calculate total number of !ZONE_HIGHMEM pages */
6650 for_each_zone(zone) {
6651 if (!is_highmem(zone))
6652 lowmem_pages += zone->managed_pages;
6653 }
6654
6655 for_each_zone(zone) {
6656 u64 tmp;
6657
6658 spin_lock_irqsave(&zone->lock, flags);
6659 tmp = (u64)pages_min * zone->managed_pages;
6660 do_div(tmp, lowmem_pages);
6661 if (is_highmem(zone)) {
6662 /*
6663 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6664 * need highmem pages, so cap pages_min to a small
6665 * value here.
6666 *
6667 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6668 * deltas control asynch page reclaim, and so should
6669 * not be capped for highmem.
6670 */
6671 unsigned long min_pages;
6672
6673 min_pages = zone->managed_pages / 1024;
6674 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6675 zone->watermark[WMARK_MIN] = min_pages;
6676 } else {
6677 /*
6678 * If it's a lowmem zone, reserve a number of pages
6679 * proportionate to the zone's size.
6680 */
6681 zone->watermark[WMARK_MIN] = tmp;
6682 }
6683
6684 /*
6685 * Set the kswapd watermarks distance according to the
6686 * scale factor in proportion to available memory, but
6687 * ensure a minimum size on small systems.
6688 */
6689 tmp = max_t(u64, tmp >> 2,
6690 mult_frac(zone->managed_pages,
6691 watermark_scale_factor, 10000));
6692
6693 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6694 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6695
6696 spin_unlock_irqrestore(&zone->lock, flags);
6697 }
6698
6699 /* update totalreserve_pages */
6700 calculate_totalreserve_pages();
6701 }
6702
6703 /**
6704 * setup_per_zone_wmarks - called when min_free_kbytes changes
6705 * or when memory is hot-{added|removed}
6706 *
6707 * Ensures that the watermark[min,low,high] values for each zone are set
6708 * correctly with respect to min_free_kbytes.
6709 */
6710 void setup_per_zone_wmarks(void)
6711 {
6712 mutex_lock(&zonelists_mutex);
6713 __setup_per_zone_wmarks();
6714 mutex_unlock(&zonelists_mutex);
6715 }
6716
6717 /*
6718 * Initialise min_free_kbytes.
6719 *
6720 * For small machines we want it small (128k min). For large machines
6721 * we want it large (64MB max). But it is not linear, because network
6722 * bandwidth does not increase linearly with machine size. We use
6723 *
6724 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6725 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6726 *
6727 * which yields
6728 *
6729 * 16MB: 512k
6730 * 32MB: 724k
6731 * 64MB: 1024k
6732 * 128MB: 1448k
6733 * 256MB: 2048k
6734 * 512MB: 2896k
6735 * 1024MB: 4096k
6736 * 2048MB: 5792k
6737 * 4096MB: 8192k
6738 * 8192MB: 11584k
6739 * 16384MB: 16384k
6740 */
6741 int __meminit init_per_zone_wmark_min(void)
6742 {
6743 unsigned long lowmem_kbytes;
6744 int new_min_free_kbytes;
6745
6746 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6747 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6748
6749 if (new_min_free_kbytes > user_min_free_kbytes) {
6750 min_free_kbytes = new_min_free_kbytes;
6751 if (min_free_kbytes < 128)
6752 min_free_kbytes = 128;
6753 if (min_free_kbytes > 65536)
6754 min_free_kbytes = 65536;
6755 } else {
6756 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6757 new_min_free_kbytes, user_min_free_kbytes);
6758 }
6759 setup_per_zone_wmarks();
6760 refresh_zone_stat_thresholds();
6761 setup_per_zone_lowmem_reserve();
6762
6763 #ifdef CONFIG_NUMA
6764 setup_min_unmapped_ratio();
6765 setup_min_slab_ratio();
6766 #endif
6767
6768 return 0;
6769 }
6770 core_initcall(init_per_zone_wmark_min)
6771
6772 /*
6773 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6774 * that we can call two helper functions whenever min_free_kbytes
6775 * changes.
6776 */
6777 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6778 void __user *buffer, size_t *length, loff_t *ppos)
6779 {
6780 int rc;
6781
6782 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6783 if (rc)
6784 return rc;
6785
6786 if (write) {
6787 user_min_free_kbytes = min_free_kbytes;
6788 setup_per_zone_wmarks();
6789 }
6790 return 0;
6791 }
6792
6793 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6794 void __user *buffer, size_t *length, loff_t *ppos)
6795 {
6796 int rc;
6797
6798 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6799 if (rc)
6800 return rc;
6801
6802 if (write)
6803 setup_per_zone_wmarks();
6804
6805 return 0;
6806 }
6807
6808 #ifdef CONFIG_NUMA
6809 static void setup_min_unmapped_ratio(void)
6810 {
6811 pg_data_t *pgdat;
6812 struct zone *zone;
6813
6814 for_each_online_pgdat(pgdat)
6815 pgdat->min_unmapped_pages = 0;
6816
6817 for_each_zone(zone)
6818 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6819 sysctl_min_unmapped_ratio) / 100;
6820 }
6821
6822
6823 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6824 void __user *buffer, size_t *length, loff_t *ppos)
6825 {
6826 int rc;
6827
6828 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6829 if (rc)
6830 return rc;
6831
6832 setup_min_unmapped_ratio();
6833
6834 return 0;
6835 }
6836
6837 static void setup_min_slab_ratio(void)
6838 {
6839 pg_data_t *pgdat;
6840 struct zone *zone;
6841
6842 for_each_online_pgdat(pgdat)
6843 pgdat->min_slab_pages = 0;
6844
6845 for_each_zone(zone)
6846 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
6847 sysctl_min_slab_ratio) / 100;
6848 }
6849
6850 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6851 void __user *buffer, size_t *length, loff_t *ppos)
6852 {
6853 int rc;
6854
6855 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6856 if (rc)
6857 return rc;
6858
6859 setup_min_slab_ratio();
6860
6861 return 0;
6862 }
6863 #endif
6864
6865 /*
6866 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6867 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6868 * whenever sysctl_lowmem_reserve_ratio changes.
6869 *
6870 * The reserve ratio obviously has absolutely no relation with the
6871 * minimum watermarks. The lowmem reserve ratio can only make sense
6872 * if in function of the boot time zone sizes.
6873 */
6874 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6875 void __user *buffer, size_t *length, loff_t *ppos)
6876 {
6877 proc_dointvec_minmax(table, write, buffer, length, ppos);
6878 setup_per_zone_lowmem_reserve();
6879 return 0;
6880 }
6881
6882 /*
6883 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6884 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6885 * pagelist can have before it gets flushed back to buddy allocator.
6886 */
6887 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6888 void __user *buffer, size_t *length, loff_t *ppos)
6889 {
6890 struct zone *zone;
6891 int old_percpu_pagelist_fraction;
6892 int ret;
6893
6894 mutex_lock(&pcp_batch_high_lock);
6895 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6896
6897 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6898 if (!write || ret < 0)
6899 goto out;
6900
6901 /* Sanity checking to avoid pcp imbalance */
6902 if (percpu_pagelist_fraction &&
6903 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6904 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6905 ret = -EINVAL;
6906 goto out;
6907 }
6908
6909 /* No change? */
6910 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6911 goto out;
6912
6913 for_each_populated_zone(zone) {
6914 unsigned int cpu;
6915
6916 for_each_possible_cpu(cpu)
6917 pageset_set_high_and_batch(zone,
6918 per_cpu_ptr(zone->pageset, cpu));
6919 }
6920 out:
6921 mutex_unlock(&pcp_batch_high_lock);
6922 return ret;
6923 }
6924
6925 #ifdef CONFIG_NUMA
6926 int hashdist = HASHDIST_DEFAULT;
6927
6928 static int __init set_hashdist(char *str)
6929 {
6930 if (!str)
6931 return 0;
6932 hashdist = simple_strtoul(str, &str, 0);
6933 return 1;
6934 }
6935 __setup("hashdist=", set_hashdist);
6936 #endif
6937
6938 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
6939 /*
6940 * Returns the number of pages that arch has reserved but
6941 * is not known to alloc_large_system_hash().
6942 */
6943 static unsigned long __init arch_reserved_kernel_pages(void)
6944 {
6945 return 0;
6946 }
6947 #endif
6948
6949 /*
6950 * allocate a large system hash table from bootmem
6951 * - it is assumed that the hash table must contain an exact power-of-2
6952 * quantity of entries
6953 * - limit is the number of hash buckets, not the total allocation size
6954 */
6955 void *__init alloc_large_system_hash(const char *tablename,
6956 unsigned long bucketsize,
6957 unsigned long numentries,
6958 int scale,
6959 int flags,
6960 unsigned int *_hash_shift,
6961 unsigned int *_hash_mask,
6962 unsigned long low_limit,
6963 unsigned long high_limit)
6964 {
6965 unsigned long long max = high_limit;
6966 unsigned long log2qty, size;
6967 void *table = NULL;
6968
6969 /* allow the kernel cmdline to have a say */
6970 if (!numentries) {
6971 /* round applicable memory size up to nearest megabyte */
6972 numentries = nr_kernel_pages;
6973 numentries -= arch_reserved_kernel_pages();
6974
6975 /* It isn't necessary when PAGE_SIZE >= 1MB */
6976 if (PAGE_SHIFT < 20)
6977 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6978
6979 /* limit to 1 bucket per 2^scale bytes of low memory */
6980 if (scale > PAGE_SHIFT)
6981 numentries >>= (scale - PAGE_SHIFT);
6982 else
6983 numentries <<= (PAGE_SHIFT - scale);
6984
6985 /* Make sure we've got at least a 0-order allocation.. */
6986 if (unlikely(flags & HASH_SMALL)) {
6987 /* Makes no sense without HASH_EARLY */
6988 WARN_ON(!(flags & HASH_EARLY));
6989 if (!(numentries >> *_hash_shift)) {
6990 numentries = 1UL << *_hash_shift;
6991 BUG_ON(!numentries);
6992 }
6993 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6994 numentries = PAGE_SIZE / bucketsize;
6995 }
6996 numentries = roundup_pow_of_two(numentries);
6997
6998 /* limit allocation size to 1/16 total memory by default */
6999 if (max == 0) {
7000 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7001 do_div(max, bucketsize);
7002 }
7003 max = min(max, 0x80000000ULL);
7004
7005 if (numentries < low_limit)
7006 numentries = low_limit;
7007 if (numentries > max)
7008 numentries = max;
7009
7010 log2qty = ilog2(numentries);
7011
7012 do {
7013 size = bucketsize << log2qty;
7014 if (flags & HASH_EARLY)
7015 table = memblock_virt_alloc_nopanic(size, 0);
7016 else if (hashdist)
7017 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7018 else {
7019 /*
7020 * If bucketsize is not a power-of-two, we may free
7021 * some pages at the end of hash table which
7022 * alloc_pages_exact() automatically does
7023 */
7024 if (get_order(size) < MAX_ORDER) {
7025 table = alloc_pages_exact(size, GFP_ATOMIC);
7026 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7027 }
7028 }
7029 } while (!table && size > PAGE_SIZE && --log2qty);
7030
7031 if (!table)
7032 panic("Failed to allocate %s hash table\n", tablename);
7033
7034 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7035 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7036
7037 if (_hash_shift)
7038 *_hash_shift = log2qty;
7039 if (_hash_mask)
7040 *_hash_mask = (1 << log2qty) - 1;
7041
7042 return table;
7043 }
7044
7045 /*
7046 * This function checks whether pageblock includes unmovable pages or not.
7047 * If @count is not zero, it is okay to include less @count unmovable pages
7048 *
7049 * PageLRU check without isolation or lru_lock could race so that
7050 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7051 * expect this function should be exact.
7052 */
7053 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7054 bool skip_hwpoisoned_pages)
7055 {
7056 unsigned long pfn, iter, found;
7057 int mt;
7058
7059 /*
7060 * For avoiding noise data, lru_add_drain_all() should be called
7061 * If ZONE_MOVABLE, the zone never contains unmovable pages
7062 */
7063 if (zone_idx(zone) == ZONE_MOVABLE)
7064 return false;
7065 mt = get_pageblock_migratetype(page);
7066 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7067 return false;
7068
7069 pfn = page_to_pfn(page);
7070 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7071 unsigned long check = pfn + iter;
7072
7073 if (!pfn_valid_within(check))
7074 continue;
7075
7076 page = pfn_to_page(check);
7077
7078 /*
7079 * Hugepages are not in LRU lists, but they're movable.
7080 * We need not scan over tail pages bacause we don't
7081 * handle each tail page individually in migration.
7082 */
7083 if (PageHuge(page)) {
7084 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7085 continue;
7086 }
7087
7088 /*
7089 * We can't use page_count without pin a page
7090 * because another CPU can free compound page.
7091 * This check already skips compound tails of THP
7092 * because their page->_refcount is zero at all time.
7093 */
7094 if (!page_ref_count(page)) {
7095 if (PageBuddy(page))
7096 iter += (1 << page_order(page)) - 1;
7097 continue;
7098 }
7099
7100 /*
7101 * The HWPoisoned page may be not in buddy system, and
7102 * page_count() is not 0.
7103 */
7104 if (skip_hwpoisoned_pages && PageHWPoison(page))
7105 continue;
7106
7107 if (!PageLRU(page))
7108 found++;
7109 /*
7110 * If there are RECLAIMABLE pages, we need to check
7111 * it. But now, memory offline itself doesn't call
7112 * shrink_node_slabs() and it still to be fixed.
7113 */
7114 /*
7115 * If the page is not RAM, page_count()should be 0.
7116 * we don't need more check. This is an _used_ not-movable page.
7117 *
7118 * The problematic thing here is PG_reserved pages. PG_reserved
7119 * is set to both of a memory hole page and a _used_ kernel
7120 * page at boot.
7121 */
7122 if (found > count)
7123 return true;
7124 }
7125 return false;
7126 }
7127
7128 bool is_pageblock_removable_nolock(struct page *page)
7129 {
7130 struct zone *zone;
7131 unsigned long pfn;
7132
7133 /*
7134 * We have to be careful here because we are iterating over memory
7135 * sections which are not zone aware so we might end up outside of
7136 * the zone but still within the section.
7137 * We have to take care about the node as well. If the node is offline
7138 * its NODE_DATA will be NULL - see page_zone.
7139 */
7140 if (!node_online(page_to_nid(page)))
7141 return false;
7142
7143 zone = page_zone(page);
7144 pfn = page_to_pfn(page);
7145 if (!zone_spans_pfn(zone, pfn))
7146 return false;
7147
7148 return !has_unmovable_pages(zone, page, 0, true);
7149 }
7150
7151 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7152
7153 static unsigned long pfn_max_align_down(unsigned long pfn)
7154 {
7155 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7156 pageblock_nr_pages) - 1);
7157 }
7158
7159 static unsigned long pfn_max_align_up(unsigned long pfn)
7160 {
7161 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7162 pageblock_nr_pages));
7163 }
7164
7165 /* [start, end) must belong to a single zone. */
7166 static int __alloc_contig_migrate_range(struct compact_control *cc,
7167 unsigned long start, unsigned long end)
7168 {
7169 /* This function is based on compact_zone() from compaction.c. */
7170 unsigned long nr_reclaimed;
7171 unsigned long pfn = start;
7172 unsigned int tries = 0;
7173 int ret = 0;
7174
7175 migrate_prep();
7176
7177 while (pfn < end || !list_empty(&cc->migratepages)) {
7178 if (fatal_signal_pending(current)) {
7179 ret = -EINTR;
7180 break;
7181 }
7182
7183 if (list_empty(&cc->migratepages)) {
7184 cc->nr_migratepages = 0;
7185 pfn = isolate_migratepages_range(cc, pfn, end);
7186 if (!pfn) {
7187 ret = -EINTR;
7188 break;
7189 }
7190 tries = 0;
7191 } else if (++tries == 5) {
7192 ret = ret < 0 ? ret : -EBUSY;
7193 break;
7194 }
7195
7196 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7197 &cc->migratepages);
7198 cc->nr_migratepages -= nr_reclaimed;
7199
7200 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7201 NULL, 0, cc->mode, MR_CMA);
7202 }
7203 if (ret < 0) {
7204 putback_movable_pages(&cc->migratepages);
7205 return ret;
7206 }
7207 return 0;
7208 }
7209
7210 /**
7211 * alloc_contig_range() -- tries to allocate given range of pages
7212 * @start: start PFN to allocate
7213 * @end: one-past-the-last PFN to allocate
7214 * @migratetype: migratetype of the underlaying pageblocks (either
7215 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7216 * in range must have the same migratetype and it must
7217 * be either of the two.
7218 *
7219 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7220 * aligned, however it's the caller's responsibility to guarantee that
7221 * we are the only thread that changes migrate type of pageblocks the
7222 * pages fall in.
7223 *
7224 * The PFN range must belong to a single zone.
7225 *
7226 * Returns zero on success or negative error code. On success all
7227 * pages which PFN is in [start, end) are allocated for the caller and
7228 * need to be freed with free_contig_range().
7229 */
7230 int alloc_contig_range(unsigned long start, unsigned long end,
7231 unsigned migratetype)
7232 {
7233 unsigned long outer_start, outer_end;
7234 unsigned int order;
7235 int ret = 0;
7236
7237 struct compact_control cc = {
7238 .nr_migratepages = 0,
7239 .order = -1,
7240 .zone = page_zone(pfn_to_page(start)),
7241 .mode = MIGRATE_SYNC,
7242 .ignore_skip_hint = true,
7243 };
7244 INIT_LIST_HEAD(&cc.migratepages);
7245
7246 /*
7247 * What we do here is we mark all pageblocks in range as
7248 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7249 * have different sizes, and due to the way page allocator
7250 * work, we align the range to biggest of the two pages so
7251 * that page allocator won't try to merge buddies from
7252 * different pageblocks and change MIGRATE_ISOLATE to some
7253 * other migration type.
7254 *
7255 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7256 * migrate the pages from an unaligned range (ie. pages that
7257 * we are interested in). This will put all the pages in
7258 * range back to page allocator as MIGRATE_ISOLATE.
7259 *
7260 * When this is done, we take the pages in range from page
7261 * allocator removing them from the buddy system. This way
7262 * page allocator will never consider using them.
7263 *
7264 * This lets us mark the pageblocks back as
7265 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7266 * aligned range but not in the unaligned, original range are
7267 * put back to page allocator so that buddy can use them.
7268 */
7269
7270 ret = start_isolate_page_range(pfn_max_align_down(start),
7271 pfn_max_align_up(end), migratetype,
7272 false);
7273 if (ret)
7274 return ret;
7275
7276 /*
7277 * In case of -EBUSY, we'd like to know which page causes problem.
7278 * So, just fall through. We will check it in test_pages_isolated().
7279 */
7280 ret = __alloc_contig_migrate_range(&cc, start, end);
7281 if (ret && ret != -EBUSY)
7282 goto done;
7283
7284 /*
7285 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7286 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7287 * more, all pages in [start, end) are free in page allocator.
7288 * What we are going to do is to allocate all pages from
7289 * [start, end) (that is remove them from page allocator).
7290 *
7291 * The only problem is that pages at the beginning and at the
7292 * end of interesting range may be not aligned with pages that
7293 * page allocator holds, ie. they can be part of higher order
7294 * pages. Because of this, we reserve the bigger range and
7295 * once this is done free the pages we are not interested in.
7296 *
7297 * We don't have to hold zone->lock here because the pages are
7298 * isolated thus they won't get removed from buddy.
7299 */
7300
7301 lru_add_drain_all();
7302 drain_all_pages(cc.zone);
7303
7304 order = 0;
7305 outer_start = start;
7306 while (!PageBuddy(pfn_to_page(outer_start))) {
7307 if (++order >= MAX_ORDER) {
7308 outer_start = start;
7309 break;
7310 }
7311 outer_start &= ~0UL << order;
7312 }
7313
7314 if (outer_start != start) {
7315 order = page_order(pfn_to_page(outer_start));
7316
7317 /*
7318 * outer_start page could be small order buddy page and
7319 * it doesn't include start page. Adjust outer_start
7320 * in this case to report failed page properly
7321 * on tracepoint in test_pages_isolated()
7322 */
7323 if (outer_start + (1UL << order) <= start)
7324 outer_start = start;
7325 }
7326
7327 /* Make sure the range is really isolated. */
7328 if (test_pages_isolated(outer_start, end, false)) {
7329 pr_info("%s: [%lx, %lx) PFNs busy\n",
7330 __func__, outer_start, end);
7331 ret = -EBUSY;
7332 goto done;
7333 }
7334
7335 /* Grab isolated pages from freelists. */
7336 outer_end = isolate_freepages_range(&cc, outer_start, end);
7337 if (!outer_end) {
7338 ret = -EBUSY;
7339 goto done;
7340 }
7341
7342 /* Free head and tail (if any) */
7343 if (start != outer_start)
7344 free_contig_range(outer_start, start - outer_start);
7345 if (end != outer_end)
7346 free_contig_range(end, outer_end - end);
7347
7348 done:
7349 undo_isolate_page_range(pfn_max_align_down(start),
7350 pfn_max_align_up(end), migratetype);
7351 return ret;
7352 }
7353
7354 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7355 {
7356 unsigned int count = 0;
7357
7358 for (; nr_pages--; pfn++) {
7359 struct page *page = pfn_to_page(pfn);
7360
7361 count += page_count(page) != 1;
7362 __free_page(page);
7363 }
7364 WARN(count != 0, "%d pages are still in use!\n", count);
7365 }
7366 #endif
7367
7368 #ifdef CONFIG_MEMORY_HOTPLUG
7369 /*
7370 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7371 * page high values need to be recalulated.
7372 */
7373 void __meminit zone_pcp_update(struct zone *zone)
7374 {
7375 unsigned cpu;
7376 mutex_lock(&pcp_batch_high_lock);
7377 for_each_possible_cpu(cpu)
7378 pageset_set_high_and_batch(zone,
7379 per_cpu_ptr(zone->pageset, cpu));
7380 mutex_unlock(&pcp_batch_high_lock);
7381 }
7382 #endif
7383
7384 void zone_pcp_reset(struct zone *zone)
7385 {
7386 unsigned long flags;
7387 int cpu;
7388 struct per_cpu_pageset *pset;
7389
7390 /* avoid races with drain_pages() */
7391 local_irq_save(flags);
7392 if (zone->pageset != &boot_pageset) {
7393 for_each_online_cpu(cpu) {
7394 pset = per_cpu_ptr(zone->pageset, cpu);
7395 drain_zonestat(zone, pset);
7396 }
7397 free_percpu(zone->pageset);
7398 zone->pageset = &boot_pageset;
7399 }
7400 local_irq_restore(flags);
7401 }
7402
7403 #ifdef CONFIG_MEMORY_HOTREMOVE
7404 /*
7405 * All pages in the range must be in a single zone and isolated
7406 * before calling this.
7407 */
7408 void
7409 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7410 {
7411 struct page *page;
7412 struct zone *zone;
7413 unsigned int order, i;
7414 unsigned long pfn;
7415 unsigned long flags;
7416 /* find the first valid pfn */
7417 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7418 if (pfn_valid(pfn))
7419 break;
7420 if (pfn == end_pfn)
7421 return;
7422 zone = page_zone(pfn_to_page(pfn));
7423 spin_lock_irqsave(&zone->lock, flags);
7424 pfn = start_pfn;
7425 while (pfn < end_pfn) {
7426 if (!pfn_valid(pfn)) {
7427 pfn++;
7428 continue;
7429 }
7430 page = pfn_to_page(pfn);
7431 /*
7432 * The HWPoisoned page may be not in buddy system, and
7433 * page_count() is not 0.
7434 */
7435 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7436 pfn++;
7437 SetPageReserved(page);
7438 continue;
7439 }
7440
7441 BUG_ON(page_count(page));
7442 BUG_ON(!PageBuddy(page));
7443 order = page_order(page);
7444 #ifdef CONFIG_DEBUG_VM
7445 pr_info("remove from free list %lx %d %lx\n",
7446 pfn, 1 << order, end_pfn);
7447 #endif
7448 list_del(&page->lru);
7449 rmv_page_order(page);
7450 zone->free_area[order].nr_free--;
7451 for (i = 0; i < (1 << order); i++)
7452 SetPageReserved((page+i));
7453 pfn += (1 << order);
7454 }
7455 spin_unlock_irqrestore(&zone->lock, flags);
7456 }
7457 #endif
7458
7459 bool is_free_buddy_page(struct page *page)
7460 {
7461 struct zone *zone = page_zone(page);
7462 unsigned long pfn = page_to_pfn(page);
7463 unsigned long flags;
7464 unsigned int order;
7465
7466 spin_lock_irqsave(&zone->lock, flags);
7467 for (order = 0; order < MAX_ORDER; order++) {
7468 struct page *page_head = page - (pfn & ((1 << order) - 1));
7469
7470 if (PageBuddy(page_head) && page_order(page_head) >= order)
7471 break;
7472 }
7473 spin_unlock_irqrestore(&zone->lock, flags);
7474
7475 return order < MAX_ORDER;
7476 }