]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/page_alloc.c
Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72 #define MIN_PERCPU_PAGELIST_FRACTION (8)
73
74 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75 DEFINE_PER_CPU(int, numa_node);
76 EXPORT_PER_CPU_SYMBOL(numa_node);
77 #endif
78
79 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
80 /*
81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84 * defined in <linux/topology.h>.
85 */
86 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
87 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
88 int _node_numa_mem_[MAX_NUMNODES];
89 #endif
90
91 /*
92 * Array of node states.
93 */
94 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
95 [N_POSSIBLE] = NODE_MASK_ALL,
96 [N_ONLINE] = { { [0] = 1UL } },
97 #ifndef CONFIG_NUMA
98 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
99 #ifdef CONFIG_HIGHMEM
100 [N_HIGH_MEMORY] = { { [0] = 1UL } },
101 #endif
102 #ifdef CONFIG_MOVABLE_NODE
103 [N_MEMORY] = { { [0] = 1UL } },
104 #endif
105 [N_CPU] = { { [0] = 1UL } },
106 #endif /* NUMA */
107 };
108 EXPORT_SYMBOL(node_states);
109
110 /* Protect totalram_pages and zone->managed_pages */
111 static DEFINE_SPINLOCK(managed_page_count_lock);
112
113 unsigned long totalram_pages __read_mostly;
114 unsigned long totalreserve_pages __read_mostly;
115 unsigned long totalcma_pages __read_mostly;
116 /*
117 * When calculating the number of globally allowed dirty pages, there
118 * is a certain number of per-zone reserves that should not be
119 * considered dirtyable memory. This is the sum of those reserves
120 * over all existing zones that contribute dirtyable memory.
121 */
122 unsigned long dirty_balance_reserve __read_mostly;
123
124 int percpu_pagelist_fraction;
125 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
126
127 #ifdef CONFIG_PM_SLEEP
128 /*
129 * The following functions are used by the suspend/hibernate code to temporarily
130 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
131 * while devices are suspended. To avoid races with the suspend/hibernate code,
132 * they should always be called with pm_mutex held (gfp_allowed_mask also should
133 * only be modified with pm_mutex held, unless the suspend/hibernate code is
134 * guaranteed not to run in parallel with that modification).
135 */
136
137 static gfp_t saved_gfp_mask;
138
139 void pm_restore_gfp_mask(void)
140 {
141 WARN_ON(!mutex_is_locked(&pm_mutex));
142 if (saved_gfp_mask) {
143 gfp_allowed_mask = saved_gfp_mask;
144 saved_gfp_mask = 0;
145 }
146 }
147
148 void pm_restrict_gfp_mask(void)
149 {
150 WARN_ON(!mutex_is_locked(&pm_mutex));
151 WARN_ON(saved_gfp_mask);
152 saved_gfp_mask = gfp_allowed_mask;
153 gfp_allowed_mask &= ~GFP_IOFS;
154 }
155
156 bool pm_suspended_storage(void)
157 {
158 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
159 return false;
160 return true;
161 }
162 #endif /* CONFIG_PM_SLEEP */
163
164 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
165 int pageblock_order __read_mostly;
166 #endif
167
168 static void __free_pages_ok(struct page *page, unsigned int order);
169
170 /*
171 * results with 256, 32 in the lowmem_reserve sysctl:
172 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
173 * 1G machine -> (16M dma, 784M normal, 224M high)
174 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
175 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
176 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
177 *
178 * TBD: should special case ZONE_DMA32 machines here - in those we normally
179 * don't need any ZONE_NORMAL reservation
180 */
181 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
182 #ifdef CONFIG_ZONE_DMA
183 256,
184 #endif
185 #ifdef CONFIG_ZONE_DMA32
186 256,
187 #endif
188 #ifdef CONFIG_HIGHMEM
189 32,
190 #endif
191 32,
192 };
193
194 EXPORT_SYMBOL(totalram_pages);
195
196 static char * const zone_names[MAX_NR_ZONES] = {
197 #ifdef CONFIG_ZONE_DMA
198 "DMA",
199 #endif
200 #ifdef CONFIG_ZONE_DMA32
201 "DMA32",
202 #endif
203 "Normal",
204 #ifdef CONFIG_HIGHMEM
205 "HighMem",
206 #endif
207 "Movable",
208 };
209
210 int min_free_kbytes = 1024;
211 int user_min_free_kbytes = -1;
212
213 static unsigned long __meminitdata nr_kernel_pages;
214 static unsigned long __meminitdata nr_all_pages;
215 static unsigned long __meminitdata dma_reserve;
216
217 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
218 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
219 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
220 static unsigned long __initdata required_kernelcore;
221 static unsigned long __initdata required_movablecore;
222 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
223
224 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
225 int movable_zone;
226 EXPORT_SYMBOL(movable_zone);
227 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
228
229 #if MAX_NUMNODES > 1
230 int nr_node_ids __read_mostly = MAX_NUMNODES;
231 int nr_online_nodes __read_mostly = 1;
232 EXPORT_SYMBOL(nr_node_ids);
233 EXPORT_SYMBOL(nr_online_nodes);
234 #endif
235
236 int page_group_by_mobility_disabled __read_mostly;
237
238 void set_pageblock_migratetype(struct page *page, int migratetype)
239 {
240 if (unlikely(page_group_by_mobility_disabled &&
241 migratetype < MIGRATE_PCPTYPES))
242 migratetype = MIGRATE_UNMOVABLE;
243
244 set_pageblock_flags_group(page, (unsigned long)migratetype,
245 PB_migrate, PB_migrate_end);
246 }
247
248 #ifdef CONFIG_DEBUG_VM
249 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
250 {
251 int ret = 0;
252 unsigned seq;
253 unsigned long pfn = page_to_pfn(page);
254 unsigned long sp, start_pfn;
255
256 do {
257 seq = zone_span_seqbegin(zone);
258 start_pfn = zone->zone_start_pfn;
259 sp = zone->spanned_pages;
260 if (!zone_spans_pfn(zone, pfn))
261 ret = 1;
262 } while (zone_span_seqretry(zone, seq));
263
264 if (ret)
265 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
266 pfn, zone_to_nid(zone), zone->name,
267 start_pfn, start_pfn + sp);
268
269 return ret;
270 }
271
272 static int page_is_consistent(struct zone *zone, struct page *page)
273 {
274 if (!pfn_valid_within(page_to_pfn(page)))
275 return 0;
276 if (zone != page_zone(page))
277 return 0;
278
279 return 1;
280 }
281 /*
282 * Temporary debugging check for pages not lying within a given zone.
283 */
284 static int bad_range(struct zone *zone, struct page *page)
285 {
286 if (page_outside_zone_boundaries(zone, page))
287 return 1;
288 if (!page_is_consistent(zone, page))
289 return 1;
290
291 return 0;
292 }
293 #else
294 static inline int bad_range(struct zone *zone, struct page *page)
295 {
296 return 0;
297 }
298 #endif
299
300 static void bad_page(struct page *page, const char *reason,
301 unsigned long bad_flags)
302 {
303 static unsigned long resume;
304 static unsigned long nr_shown;
305 static unsigned long nr_unshown;
306
307 /* Don't complain about poisoned pages */
308 if (PageHWPoison(page)) {
309 page_mapcount_reset(page); /* remove PageBuddy */
310 return;
311 }
312
313 /*
314 * Allow a burst of 60 reports, then keep quiet for that minute;
315 * or allow a steady drip of one report per second.
316 */
317 if (nr_shown == 60) {
318 if (time_before(jiffies, resume)) {
319 nr_unshown++;
320 goto out;
321 }
322 if (nr_unshown) {
323 printk(KERN_ALERT
324 "BUG: Bad page state: %lu messages suppressed\n",
325 nr_unshown);
326 nr_unshown = 0;
327 }
328 nr_shown = 0;
329 }
330 if (nr_shown++ == 0)
331 resume = jiffies + 60 * HZ;
332
333 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
334 current->comm, page_to_pfn(page));
335 dump_page_badflags(page, reason, bad_flags);
336
337 print_modules();
338 dump_stack();
339 out:
340 /* Leave bad fields for debug, except PageBuddy could make trouble */
341 page_mapcount_reset(page); /* remove PageBuddy */
342 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
343 }
344
345 /*
346 * Higher-order pages are called "compound pages". They are structured thusly:
347 *
348 * The first PAGE_SIZE page is called the "head page".
349 *
350 * The remaining PAGE_SIZE pages are called "tail pages".
351 *
352 * All pages have PG_compound set. All tail pages have their ->first_page
353 * pointing at the head page.
354 *
355 * The first tail page's ->lru.next holds the address of the compound page's
356 * put_page() function. Its ->lru.prev holds the order of allocation.
357 * This usage means that zero-order pages may not be compound.
358 */
359
360 static void free_compound_page(struct page *page)
361 {
362 __free_pages_ok(page, compound_order(page));
363 }
364
365 void prep_compound_page(struct page *page, unsigned long order)
366 {
367 int i;
368 int nr_pages = 1 << order;
369
370 set_compound_page_dtor(page, free_compound_page);
371 set_compound_order(page, order);
372 __SetPageHead(page);
373 for (i = 1; i < nr_pages; i++) {
374 struct page *p = page + i;
375 set_page_count(p, 0);
376 p->first_page = page;
377 /* Make sure p->first_page is always valid for PageTail() */
378 smp_wmb();
379 __SetPageTail(p);
380 }
381 }
382
383 static inline void prep_zero_page(struct page *page, unsigned int order,
384 gfp_t gfp_flags)
385 {
386 int i;
387
388 /*
389 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
390 * and __GFP_HIGHMEM from hard or soft interrupt context.
391 */
392 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
393 for (i = 0; i < (1 << order); i++)
394 clear_highpage(page + i);
395 }
396
397 #ifdef CONFIG_DEBUG_PAGEALLOC
398 unsigned int _debug_guardpage_minorder;
399 bool _debug_pagealloc_enabled __read_mostly;
400 bool _debug_guardpage_enabled __read_mostly;
401
402 static int __init early_debug_pagealloc(char *buf)
403 {
404 if (!buf)
405 return -EINVAL;
406
407 if (strcmp(buf, "on") == 0)
408 _debug_pagealloc_enabled = true;
409
410 return 0;
411 }
412 early_param("debug_pagealloc", early_debug_pagealloc);
413
414 static bool need_debug_guardpage(void)
415 {
416 /* If we don't use debug_pagealloc, we don't need guard page */
417 if (!debug_pagealloc_enabled())
418 return false;
419
420 return true;
421 }
422
423 static void init_debug_guardpage(void)
424 {
425 if (!debug_pagealloc_enabled())
426 return;
427
428 _debug_guardpage_enabled = true;
429 }
430
431 struct page_ext_operations debug_guardpage_ops = {
432 .need = need_debug_guardpage,
433 .init = init_debug_guardpage,
434 };
435
436 static int __init debug_guardpage_minorder_setup(char *buf)
437 {
438 unsigned long res;
439
440 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
441 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
442 return 0;
443 }
444 _debug_guardpage_minorder = res;
445 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
446 return 0;
447 }
448 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
449
450 static inline void set_page_guard(struct zone *zone, struct page *page,
451 unsigned int order, int migratetype)
452 {
453 struct page_ext *page_ext;
454
455 if (!debug_guardpage_enabled())
456 return;
457
458 page_ext = lookup_page_ext(page);
459 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
460
461 INIT_LIST_HEAD(&page->lru);
462 set_page_private(page, order);
463 /* Guard pages are not available for any usage */
464 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
465 }
466
467 static inline void clear_page_guard(struct zone *zone, struct page *page,
468 unsigned int order, int migratetype)
469 {
470 struct page_ext *page_ext;
471
472 if (!debug_guardpage_enabled())
473 return;
474
475 page_ext = lookup_page_ext(page);
476 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
477
478 set_page_private(page, 0);
479 if (!is_migrate_isolate(migratetype))
480 __mod_zone_freepage_state(zone, (1 << order), migratetype);
481 }
482 #else
483 struct page_ext_operations debug_guardpage_ops = { NULL, };
484 static inline void set_page_guard(struct zone *zone, struct page *page,
485 unsigned int order, int migratetype) {}
486 static inline void clear_page_guard(struct zone *zone, struct page *page,
487 unsigned int order, int migratetype) {}
488 #endif
489
490 static inline void set_page_order(struct page *page, unsigned int order)
491 {
492 set_page_private(page, order);
493 __SetPageBuddy(page);
494 }
495
496 static inline void rmv_page_order(struct page *page)
497 {
498 __ClearPageBuddy(page);
499 set_page_private(page, 0);
500 }
501
502 /*
503 * This function checks whether a page is free && is the buddy
504 * we can do coalesce a page and its buddy if
505 * (a) the buddy is not in a hole &&
506 * (b) the buddy is in the buddy system &&
507 * (c) a page and its buddy have the same order &&
508 * (d) a page and its buddy are in the same zone.
509 *
510 * For recording whether a page is in the buddy system, we set ->_mapcount
511 * PAGE_BUDDY_MAPCOUNT_VALUE.
512 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
513 * serialized by zone->lock.
514 *
515 * For recording page's order, we use page_private(page).
516 */
517 static inline int page_is_buddy(struct page *page, struct page *buddy,
518 unsigned int order)
519 {
520 if (!pfn_valid_within(page_to_pfn(buddy)))
521 return 0;
522
523 if (page_is_guard(buddy) && page_order(buddy) == order) {
524 if (page_zone_id(page) != page_zone_id(buddy))
525 return 0;
526
527 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
528
529 return 1;
530 }
531
532 if (PageBuddy(buddy) && page_order(buddy) == order) {
533 /*
534 * zone check is done late to avoid uselessly
535 * calculating zone/node ids for pages that could
536 * never merge.
537 */
538 if (page_zone_id(page) != page_zone_id(buddy))
539 return 0;
540
541 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
542
543 return 1;
544 }
545 return 0;
546 }
547
548 /*
549 * Freeing function for a buddy system allocator.
550 *
551 * The concept of a buddy system is to maintain direct-mapped table
552 * (containing bit values) for memory blocks of various "orders".
553 * The bottom level table contains the map for the smallest allocatable
554 * units of memory (here, pages), and each level above it describes
555 * pairs of units from the levels below, hence, "buddies".
556 * At a high level, all that happens here is marking the table entry
557 * at the bottom level available, and propagating the changes upward
558 * as necessary, plus some accounting needed to play nicely with other
559 * parts of the VM system.
560 * At each level, we keep a list of pages, which are heads of continuous
561 * free pages of length of (1 << order) and marked with _mapcount
562 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
563 * field.
564 * So when we are allocating or freeing one, we can derive the state of the
565 * other. That is, if we allocate a small block, and both were
566 * free, the remainder of the region must be split into blocks.
567 * If a block is freed, and its buddy is also free, then this
568 * triggers coalescing into a block of larger size.
569 *
570 * -- nyc
571 */
572
573 static inline void __free_one_page(struct page *page,
574 unsigned long pfn,
575 struct zone *zone, unsigned int order,
576 int migratetype)
577 {
578 unsigned long page_idx;
579 unsigned long combined_idx;
580 unsigned long uninitialized_var(buddy_idx);
581 struct page *buddy;
582 int max_order = MAX_ORDER;
583
584 VM_BUG_ON(!zone_is_initialized(zone));
585 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
586
587 VM_BUG_ON(migratetype == -1);
588 if (is_migrate_isolate(migratetype)) {
589 /*
590 * We restrict max order of merging to prevent merge
591 * between freepages on isolate pageblock and normal
592 * pageblock. Without this, pageblock isolation
593 * could cause incorrect freepage accounting.
594 */
595 max_order = min(MAX_ORDER, pageblock_order + 1);
596 } else {
597 __mod_zone_freepage_state(zone, 1 << order, migratetype);
598 }
599
600 page_idx = pfn & ((1 << max_order) - 1);
601
602 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
603 VM_BUG_ON_PAGE(bad_range(zone, page), page);
604
605 while (order < max_order - 1) {
606 buddy_idx = __find_buddy_index(page_idx, order);
607 buddy = page + (buddy_idx - page_idx);
608 if (!page_is_buddy(page, buddy, order))
609 break;
610 /*
611 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
612 * merge with it and move up one order.
613 */
614 if (page_is_guard(buddy)) {
615 clear_page_guard(zone, buddy, order, migratetype);
616 } else {
617 list_del(&buddy->lru);
618 zone->free_area[order].nr_free--;
619 rmv_page_order(buddy);
620 }
621 combined_idx = buddy_idx & page_idx;
622 page = page + (combined_idx - page_idx);
623 page_idx = combined_idx;
624 order++;
625 }
626 set_page_order(page, order);
627
628 /*
629 * If this is not the largest possible page, check if the buddy
630 * of the next-highest order is free. If it is, it's possible
631 * that pages are being freed that will coalesce soon. In case,
632 * that is happening, add the free page to the tail of the list
633 * so it's less likely to be used soon and more likely to be merged
634 * as a higher order page
635 */
636 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
637 struct page *higher_page, *higher_buddy;
638 combined_idx = buddy_idx & page_idx;
639 higher_page = page + (combined_idx - page_idx);
640 buddy_idx = __find_buddy_index(combined_idx, order + 1);
641 higher_buddy = higher_page + (buddy_idx - combined_idx);
642 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
643 list_add_tail(&page->lru,
644 &zone->free_area[order].free_list[migratetype]);
645 goto out;
646 }
647 }
648
649 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
650 out:
651 zone->free_area[order].nr_free++;
652 }
653
654 static inline int free_pages_check(struct page *page)
655 {
656 const char *bad_reason = NULL;
657 unsigned long bad_flags = 0;
658
659 if (unlikely(page_mapcount(page)))
660 bad_reason = "nonzero mapcount";
661 if (unlikely(page->mapping != NULL))
662 bad_reason = "non-NULL mapping";
663 if (unlikely(atomic_read(&page->_count) != 0))
664 bad_reason = "nonzero _count";
665 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
666 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
667 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
668 }
669 #ifdef CONFIG_MEMCG
670 if (unlikely(page->mem_cgroup))
671 bad_reason = "page still charged to cgroup";
672 #endif
673 if (unlikely(bad_reason)) {
674 bad_page(page, bad_reason, bad_flags);
675 return 1;
676 }
677 page_cpupid_reset_last(page);
678 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
679 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
680 return 0;
681 }
682
683 /*
684 * Frees a number of pages from the PCP lists
685 * Assumes all pages on list are in same zone, and of same order.
686 * count is the number of pages to free.
687 *
688 * If the zone was previously in an "all pages pinned" state then look to
689 * see if this freeing clears that state.
690 *
691 * And clear the zone's pages_scanned counter, to hold off the "all pages are
692 * pinned" detection logic.
693 */
694 static void free_pcppages_bulk(struct zone *zone, int count,
695 struct per_cpu_pages *pcp)
696 {
697 int migratetype = 0;
698 int batch_free = 0;
699 int to_free = count;
700 unsigned long nr_scanned;
701
702 spin_lock(&zone->lock);
703 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
704 if (nr_scanned)
705 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
706
707 while (to_free) {
708 struct page *page;
709 struct list_head *list;
710
711 /*
712 * Remove pages from lists in a round-robin fashion. A
713 * batch_free count is maintained that is incremented when an
714 * empty list is encountered. This is so more pages are freed
715 * off fuller lists instead of spinning excessively around empty
716 * lists
717 */
718 do {
719 batch_free++;
720 if (++migratetype == MIGRATE_PCPTYPES)
721 migratetype = 0;
722 list = &pcp->lists[migratetype];
723 } while (list_empty(list));
724
725 /* This is the only non-empty list. Free them all. */
726 if (batch_free == MIGRATE_PCPTYPES)
727 batch_free = to_free;
728
729 do {
730 int mt; /* migratetype of the to-be-freed page */
731
732 page = list_entry(list->prev, struct page, lru);
733 /* must delete as __free_one_page list manipulates */
734 list_del(&page->lru);
735 mt = get_freepage_migratetype(page);
736 if (unlikely(has_isolate_pageblock(zone)))
737 mt = get_pageblock_migratetype(page);
738
739 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
740 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
741 trace_mm_page_pcpu_drain(page, 0, mt);
742 } while (--to_free && --batch_free && !list_empty(list));
743 }
744 spin_unlock(&zone->lock);
745 }
746
747 static void free_one_page(struct zone *zone,
748 struct page *page, unsigned long pfn,
749 unsigned int order,
750 int migratetype)
751 {
752 unsigned long nr_scanned;
753 spin_lock(&zone->lock);
754 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
755 if (nr_scanned)
756 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
757
758 if (unlikely(has_isolate_pageblock(zone) ||
759 is_migrate_isolate(migratetype))) {
760 migratetype = get_pfnblock_migratetype(page, pfn);
761 }
762 __free_one_page(page, pfn, zone, order, migratetype);
763 spin_unlock(&zone->lock);
764 }
765
766 static int free_tail_pages_check(struct page *head_page, struct page *page)
767 {
768 if (!IS_ENABLED(CONFIG_DEBUG_VM))
769 return 0;
770 if (unlikely(!PageTail(page))) {
771 bad_page(page, "PageTail not set", 0);
772 return 1;
773 }
774 if (unlikely(page->first_page != head_page)) {
775 bad_page(page, "first_page not consistent", 0);
776 return 1;
777 }
778 return 0;
779 }
780
781 static bool free_pages_prepare(struct page *page, unsigned int order)
782 {
783 bool compound = PageCompound(page);
784 int i, bad = 0;
785
786 VM_BUG_ON_PAGE(PageTail(page), page);
787 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
788
789 trace_mm_page_free(page, order);
790 kmemcheck_free_shadow(page, order);
791 kasan_free_pages(page, order);
792
793 if (PageAnon(page))
794 page->mapping = NULL;
795 bad += free_pages_check(page);
796 for (i = 1; i < (1 << order); i++) {
797 if (compound)
798 bad += free_tail_pages_check(page, page + i);
799 bad += free_pages_check(page + i);
800 }
801 if (bad)
802 return false;
803
804 reset_page_owner(page, order);
805
806 if (!PageHighMem(page)) {
807 debug_check_no_locks_freed(page_address(page),
808 PAGE_SIZE << order);
809 debug_check_no_obj_freed(page_address(page),
810 PAGE_SIZE << order);
811 }
812 arch_free_page(page, order);
813 kernel_map_pages(page, 1 << order, 0);
814
815 return true;
816 }
817
818 static void __free_pages_ok(struct page *page, unsigned int order)
819 {
820 unsigned long flags;
821 int migratetype;
822 unsigned long pfn = page_to_pfn(page);
823
824 if (!free_pages_prepare(page, order))
825 return;
826
827 migratetype = get_pfnblock_migratetype(page, pfn);
828 local_irq_save(flags);
829 __count_vm_events(PGFREE, 1 << order);
830 set_freepage_migratetype(page, migratetype);
831 free_one_page(page_zone(page), page, pfn, order, migratetype);
832 local_irq_restore(flags);
833 }
834
835 void __init __free_pages_bootmem(struct page *page, unsigned int order)
836 {
837 unsigned int nr_pages = 1 << order;
838 struct page *p = page;
839 unsigned int loop;
840
841 prefetchw(p);
842 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
843 prefetchw(p + 1);
844 __ClearPageReserved(p);
845 set_page_count(p, 0);
846 }
847 __ClearPageReserved(p);
848 set_page_count(p, 0);
849
850 page_zone(page)->managed_pages += nr_pages;
851 set_page_refcounted(page);
852 __free_pages(page, order);
853 }
854
855 #ifdef CONFIG_CMA
856 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
857 void __init init_cma_reserved_pageblock(struct page *page)
858 {
859 unsigned i = pageblock_nr_pages;
860 struct page *p = page;
861
862 do {
863 __ClearPageReserved(p);
864 set_page_count(p, 0);
865 } while (++p, --i);
866
867 set_pageblock_migratetype(page, MIGRATE_CMA);
868
869 if (pageblock_order >= MAX_ORDER) {
870 i = pageblock_nr_pages;
871 p = page;
872 do {
873 set_page_refcounted(p);
874 __free_pages(p, MAX_ORDER - 1);
875 p += MAX_ORDER_NR_PAGES;
876 } while (i -= MAX_ORDER_NR_PAGES);
877 } else {
878 set_page_refcounted(page);
879 __free_pages(page, pageblock_order);
880 }
881
882 adjust_managed_page_count(page, pageblock_nr_pages);
883 }
884 #endif
885
886 /*
887 * The order of subdivision here is critical for the IO subsystem.
888 * Please do not alter this order without good reasons and regression
889 * testing. Specifically, as large blocks of memory are subdivided,
890 * the order in which smaller blocks are delivered depends on the order
891 * they're subdivided in this function. This is the primary factor
892 * influencing the order in which pages are delivered to the IO
893 * subsystem according to empirical testing, and this is also justified
894 * by considering the behavior of a buddy system containing a single
895 * large block of memory acted on by a series of small allocations.
896 * This behavior is a critical factor in sglist merging's success.
897 *
898 * -- nyc
899 */
900 static inline void expand(struct zone *zone, struct page *page,
901 int low, int high, struct free_area *area,
902 int migratetype)
903 {
904 unsigned long size = 1 << high;
905
906 while (high > low) {
907 area--;
908 high--;
909 size >>= 1;
910 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
911
912 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
913 debug_guardpage_enabled() &&
914 high < debug_guardpage_minorder()) {
915 /*
916 * Mark as guard pages (or page), that will allow to
917 * merge back to allocator when buddy will be freed.
918 * Corresponding page table entries will not be touched,
919 * pages will stay not present in virtual address space
920 */
921 set_page_guard(zone, &page[size], high, migratetype);
922 continue;
923 }
924 list_add(&page[size].lru, &area->free_list[migratetype]);
925 area->nr_free++;
926 set_page_order(&page[size], high);
927 }
928 }
929
930 /*
931 * This page is about to be returned from the page allocator
932 */
933 static inline int check_new_page(struct page *page)
934 {
935 const char *bad_reason = NULL;
936 unsigned long bad_flags = 0;
937
938 if (unlikely(page_mapcount(page)))
939 bad_reason = "nonzero mapcount";
940 if (unlikely(page->mapping != NULL))
941 bad_reason = "non-NULL mapping";
942 if (unlikely(atomic_read(&page->_count) != 0))
943 bad_reason = "nonzero _count";
944 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
945 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
946 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
947 }
948 #ifdef CONFIG_MEMCG
949 if (unlikely(page->mem_cgroup))
950 bad_reason = "page still charged to cgroup";
951 #endif
952 if (unlikely(bad_reason)) {
953 bad_page(page, bad_reason, bad_flags);
954 return 1;
955 }
956 return 0;
957 }
958
959 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
960 int alloc_flags)
961 {
962 int i;
963
964 for (i = 0; i < (1 << order); i++) {
965 struct page *p = page + i;
966 if (unlikely(check_new_page(p)))
967 return 1;
968 }
969
970 set_page_private(page, 0);
971 set_page_refcounted(page);
972
973 arch_alloc_page(page, order);
974 kernel_map_pages(page, 1 << order, 1);
975 kasan_alloc_pages(page, order);
976
977 if (gfp_flags & __GFP_ZERO)
978 prep_zero_page(page, order, gfp_flags);
979
980 if (order && (gfp_flags & __GFP_COMP))
981 prep_compound_page(page, order);
982
983 set_page_owner(page, order, gfp_flags);
984
985 /*
986 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
987 * allocate the page. The expectation is that the caller is taking
988 * steps that will free more memory. The caller should avoid the page
989 * being used for !PFMEMALLOC purposes.
990 */
991 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
992
993 return 0;
994 }
995
996 /*
997 * Go through the free lists for the given migratetype and remove
998 * the smallest available page from the freelists
999 */
1000 static inline
1001 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1002 int migratetype)
1003 {
1004 unsigned int current_order;
1005 struct free_area *area;
1006 struct page *page;
1007
1008 /* Find a page of the appropriate size in the preferred list */
1009 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1010 area = &(zone->free_area[current_order]);
1011 if (list_empty(&area->free_list[migratetype]))
1012 continue;
1013
1014 page = list_entry(area->free_list[migratetype].next,
1015 struct page, lru);
1016 list_del(&page->lru);
1017 rmv_page_order(page);
1018 area->nr_free--;
1019 expand(zone, page, order, current_order, area, migratetype);
1020 set_freepage_migratetype(page, migratetype);
1021 return page;
1022 }
1023
1024 return NULL;
1025 }
1026
1027
1028 /*
1029 * This array describes the order lists are fallen back to when
1030 * the free lists for the desirable migrate type are depleted
1031 */
1032 static int fallbacks[MIGRATE_TYPES][4] = {
1033 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1034 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1035 #ifdef CONFIG_CMA
1036 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1037 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
1038 #else
1039 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1040 #endif
1041 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
1042 #ifdef CONFIG_MEMORY_ISOLATION
1043 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
1044 #endif
1045 };
1046
1047 /*
1048 * Move the free pages in a range to the free lists of the requested type.
1049 * Note that start_page and end_pages are not aligned on a pageblock
1050 * boundary. If alignment is required, use move_freepages_block()
1051 */
1052 int move_freepages(struct zone *zone,
1053 struct page *start_page, struct page *end_page,
1054 int migratetype)
1055 {
1056 struct page *page;
1057 unsigned long order;
1058 int pages_moved = 0;
1059
1060 #ifndef CONFIG_HOLES_IN_ZONE
1061 /*
1062 * page_zone is not safe to call in this context when
1063 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1064 * anyway as we check zone boundaries in move_freepages_block().
1065 * Remove at a later date when no bug reports exist related to
1066 * grouping pages by mobility
1067 */
1068 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1069 #endif
1070
1071 for (page = start_page; page <= end_page;) {
1072 /* Make sure we are not inadvertently changing nodes */
1073 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1074
1075 if (!pfn_valid_within(page_to_pfn(page))) {
1076 page++;
1077 continue;
1078 }
1079
1080 if (!PageBuddy(page)) {
1081 page++;
1082 continue;
1083 }
1084
1085 order = page_order(page);
1086 list_move(&page->lru,
1087 &zone->free_area[order].free_list[migratetype]);
1088 set_freepage_migratetype(page, migratetype);
1089 page += 1 << order;
1090 pages_moved += 1 << order;
1091 }
1092
1093 return pages_moved;
1094 }
1095
1096 int move_freepages_block(struct zone *zone, struct page *page,
1097 int migratetype)
1098 {
1099 unsigned long start_pfn, end_pfn;
1100 struct page *start_page, *end_page;
1101
1102 start_pfn = page_to_pfn(page);
1103 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1104 start_page = pfn_to_page(start_pfn);
1105 end_page = start_page + pageblock_nr_pages - 1;
1106 end_pfn = start_pfn + pageblock_nr_pages - 1;
1107
1108 /* Do not cross zone boundaries */
1109 if (!zone_spans_pfn(zone, start_pfn))
1110 start_page = page;
1111 if (!zone_spans_pfn(zone, end_pfn))
1112 return 0;
1113
1114 return move_freepages(zone, start_page, end_page, migratetype);
1115 }
1116
1117 static void change_pageblock_range(struct page *pageblock_page,
1118 int start_order, int migratetype)
1119 {
1120 int nr_pageblocks = 1 << (start_order - pageblock_order);
1121
1122 while (nr_pageblocks--) {
1123 set_pageblock_migratetype(pageblock_page, migratetype);
1124 pageblock_page += pageblock_nr_pages;
1125 }
1126 }
1127
1128 /*
1129 * When we are falling back to another migratetype during allocation, try to
1130 * steal extra free pages from the same pageblocks to satisfy further
1131 * allocations, instead of polluting multiple pageblocks.
1132 *
1133 * If we are stealing a relatively large buddy page, it is likely there will
1134 * be more free pages in the pageblock, so try to steal them all. For
1135 * reclaimable and unmovable allocations, we steal regardless of page size,
1136 * as fragmentation caused by those allocations polluting movable pageblocks
1137 * is worse than movable allocations stealing from unmovable and reclaimable
1138 * pageblocks.
1139 *
1140 * If we claim more than half of the pageblock, change pageblock's migratetype
1141 * as well.
1142 */
1143 static void try_to_steal_freepages(struct zone *zone, struct page *page,
1144 int start_type, int fallback_type)
1145 {
1146 int current_order = page_order(page);
1147
1148 /* Take ownership for orders >= pageblock_order */
1149 if (current_order >= pageblock_order) {
1150 change_pageblock_range(page, current_order, start_type);
1151 return;
1152 }
1153
1154 if (current_order >= pageblock_order / 2 ||
1155 start_type == MIGRATE_RECLAIMABLE ||
1156 start_type == MIGRATE_UNMOVABLE ||
1157 page_group_by_mobility_disabled) {
1158 int pages;
1159
1160 pages = move_freepages_block(zone, page, start_type);
1161
1162 /* Claim the whole block if over half of it is free */
1163 if (pages >= (1 << (pageblock_order-1)) ||
1164 page_group_by_mobility_disabled)
1165 set_pageblock_migratetype(page, start_type);
1166 }
1167 }
1168
1169 /* Remove an element from the buddy allocator from the fallback list */
1170 static inline struct page *
1171 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1172 {
1173 struct free_area *area;
1174 unsigned int current_order;
1175 struct page *page;
1176
1177 /* Find the largest possible block of pages in the other list */
1178 for (current_order = MAX_ORDER-1;
1179 current_order >= order && current_order <= MAX_ORDER-1;
1180 --current_order) {
1181 int i;
1182 for (i = 0;; i++) {
1183 int migratetype = fallbacks[start_migratetype][i];
1184 int buddy_type = start_migratetype;
1185
1186 /* MIGRATE_RESERVE handled later if necessary */
1187 if (migratetype == MIGRATE_RESERVE)
1188 break;
1189
1190 area = &(zone->free_area[current_order]);
1191 if (list_empty(&area->free_list[migratetype]))
1192 continue;
1193
1194 page = list_entry(area->free_list[migratetype].next,
1195 struct page, lru);
1196 area->nr_free--;
1197
1198 if (!is_migrate_cma(migratetype)) {
1199 try_to_steal_freepages(zone, page,
1200 start_migratetype,
1201 migratetype);
1202 } else {
1203 /*
1204 * When borrowing from MIGRATE_CMA, we need to
1205 * release the excess buddy pages to CMA
1206 * itself, and we do not try to steal extra
1207 * free pages.
1208 */
1209 buddy_type = migratetype;
1210 }
1211
1212 /* Remove the page from the freelists */
1213 list_del(&page->lru);
1214 rmv_page_order(page);
1215
1216 expand(zone, page, order, current_order, area,
1217 buddy_type);
1218
1219 /*
1220 * The freepage_migratetype may differ from pageblock's
1221 * migratetype depending on the decisions in
1222 * try_to_steal_freepages(). This is OK as long as it
1223 * does not differ for MIGRATE_CMA pageblocks. For CMA
1224 * we need to make sure unallocated pages flushed from
1225 * pcp lists are returned to the correct freelist.
1226 */
1227 set_freepage_migratetype(page, buddy_type);
1228
1229 trace_mm_page_alloc_extfrag(page, order, current_order,
1230 start_migratetype, migratetype);
1231
1232 return page;
1233 }
1234 }
1235
1236 return NULL;
1237 }
1238
1239 /*
1240 * Do the hard work of removing an element from the buddy allocator.
1241 * Call me with the zone->lock already held.
1242 */
1243 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1244 int migratetype)
1245 {
1246 struct page *page;
1247
1248 retry_reserve:
1249 page = __rmqueue_smallest(zone, order, migratetype);
1250
1251 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1252 page = __rmqueue_fallback(zone, order, migratetype);
1253
1254 /*
1255 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1256 * is used because __rmqueue_smallest is an inline function
1257 * and we want just one call site
1258 */
1259 if (!page) {
1260 migratetype = MIGRATE_RESERVE;
1261 goto retry_reserve;
1262 }
1263 }
1264
1265 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1266 return page;
1267 }
1268
1269 /*
1270 * Obtain a specified number of elements from the buddy allocator, all under
1271 * a single hold of the lock, for efficiency. Add them to the supplied list.
1272 * Returns the number of new pages which were placed at *list.
1273 */
1274 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1275 unsigned long count, struct list_head *list,
1276 int migratetype, bool cold)
1277 {
1278 int i;
1279
1280 spin_lock(&zone->lock);
1281 for (i = 0; i < count; ++i) {
1282 struct page *page = __rmqueue(zone, order, migratetype);
1283 if (unlikely(page == NULL))
1284 break;
1285
1286 /*
1287 * Split buddy pages returned by expand() are received here
1288 * in physical page order. The page is added to the callers and
1289 * list and the list head then moves forward. From the callers
1290 * perspective, the linked list is ordered by page number in
1291 * some conditions. This is useful for IO devices that can
1292 * merge IO requests if the physical pages are ordered
1293 * properly.
1294 */
1295 if (likely(!cold))
1296 list_add(&page->lru, list);
1297 else
1298 list_add_tail(&page->lru, list);
1299 list = &page->lru;
1300 if (is_migrate_cma(get_freepage_migratetype(page)))
1301 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1302 -(1 << order));
1303 }
1304 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1305 spin_unlock(&zone->lock);
1306 return i;
1307 }
1308
1309 #ifdef CONFIG_NUMA
1310 /*
1311 * Called from the vmstat counter updater to drain pagesets of this
1312 * currently executing processor on remote nodes after they have
1313 * expired.
1314 *
1315 * Note that this function must be called with the thread pinned to
1316 * a single processor.
1317 */
1318 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1319 {
1320 unsigned long flags;
1321 int to_drain, batch;
1322
1323 local_irq_save(flags);
1324 batch = ACCESS_ONCE(pcp->batch);
1325 to_drain = min(pcp->count, batch);
1326 if (to_drain > 0) {
1327 free_pcppages_bulk(zone, to_drain, pcp);
1328 pcp->count -= to_drain;
1329 }
1330 local_irq_restore(flags);
1331 }
1332 #endif
1333
1334 /*
1335 * Drain pcplists of the indicated processor and zone.
1336 *
1337 * The processor must either be the current processor and the
1338 * thread pinned to the current processor or a processor that
1339 * is not online.
1340 */
1341 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1342 {
1343 unsigned long flags;
1344 struct per_cpu_pageset *pset;
1345 struct per_cpu_pages *pcp;
1346
1347 local_irq_save(flags);
1348 pset = per_cpu_ptr(zone->pageset, cpu);
1349
1350 pcp = &pset->pcp;
1351 if (pcp->count) {
1352 free_pcppages_bulk(zone, pcp->count, pcp);
1353 pcp->count = 0;
1354 }
1355 local_irq_restore(flags);
1356 }
1357
1358 /*
1359 * Drain pcplists of all zones on the indicated processor.
1360 *
1361 * The processor must either be the current processor and the
1362 * thread pinned to the current processor or a processor that
1363 * is not online.
1364 */
1365 static void drain_pages(unsigned int cpu)
1366 {
1367 struct zone *zone;
1368
1369 for_each_populated_zone(zone) {
1370 drain_pages_zone(cpu, zone);
1371 }
1372 }
1373
1374 /*
1375 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1376 *
1377 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1378 * the single zone's pages.
1379 */
1380 void drain_local_pages(struct zone *zone)
1381 {
1382 int cpu = smp_processor_id();
1383
1384 if (zone)
1385 drain_pages_zone(cpu, zone);
1386 else
1387 drain_pages(cpu);
1388 }
1389
1390 /*
1391 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1392 *
1393 * When zone parameter is non-NULL, spill just the single zone's pages.
1394 *
1395 * Note that this code is protected against sending an IPI to an offline
1396 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1397 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1398 * nothing keeps CPUs from showing up after we populated the cpumask and
1399 * before the call to on_each_cpu_mask().
1400 */
1401 void drain_all_pages(struct zone *zone)
1402 {
1403 int cpu;
1404
1405 /*
1406 * Allocate in the BSS so we wont require allocation in
1407 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1408 */
1409 static cpumask_t cpus_with_pcps;
1410
1411 /*
1412 * We don't care about racing with CPU hotplug event
1413 * as offline notification will cause the notified
1414 * cpu to drain that CPU pcps and on_each_cpu_mask
1415 * disables preemption as part of its processing
1416 */
1417 for_each_online_cpu(cpu) {
1418 struct per_cpu_pageset *pcp;
1419 struct zone *z;
1420 bool has_pcps = false;
1421
1422 if (zone) {
1423 pcp = per_cpu_ptr(zone->pageset, cpu);
1424 if (pcp->pcp.count)
1425 has_pcps = true;
1426 } else {
1427 for_each_populated_zone(z) {
1428 pcp = per_cpu_ptr(z->pageset, cpu);
1429 if (pcp->pcp.count) {
1430 has_pcps = true;
1431 break;
1432 }
1433 }
1434 }
1435
1436 if (has_pcps)
1437 cpumask_set_cpu(cpu, &cpus_with_pcps);
1438 else
1439 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1440 }
1441 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1442 zone, 1);
1443 }
1444
1445 #ifdef CONFIG_HIBERNATION
1446
1447 void mark_free_pages(struct zone *zone)
1448 {
1449 unsigned long pfn, max_zone_pfn;
1450 unsigned long flags;
1451 unsigned int order, t;
1452 struct list_head *curr;
1453
1454 if (zone_is_empty(zone))
1455 return;
1456
1457 spin_lock_irqsave(&zone->lock, flags);
1458
1459 max_zone_pfn = zone_end_pfn(zone);
1460 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1461 if (pfn_valid(pfn)) {
1462 struct page *page = pfn_to_page(pfn);
1463
1464 if (!swsusp_page_is_forbidden(page))
1465 swsusp_unset_page_free(page);
1466 }
1467
1468 for_each_migratetype_order(order, t) {
1469 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1470 unsigned long i;
1471
1472 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1473 for (i = 0; i < (1UL << order); i++)
1474 swsusp_set_page_free(pfn_to_page(pfn + i));
1475 }
1476 }
1477 spin_unlock_irqrestore(&zone->lock, flags);
1478 }
1479 #endif /* CONFIG_PM */
1480
1481 /*
1482 * Free a 0-order page
1483 * cold == true ? free a cold page : free a hot page
1484 */
1485 void free_hot_cold_page(struct page *page, bool cold)
1486 {
1487 struct zone *zone = page_zone(page);
1488 struct per_cpu_pages *pcp;
1489 unsigned long flags;
1490 unsigned long pfn = page_to_pfn(page);
1491 int migratetype;
1492
1493 if (!free_pages_prepare(page, 0))
1494 return;
1495
1496 migratetype = get_pfnblock_migratetype(page, pfn);
1497 set_freepage_migratetype(page, migratetype);
1498 local_irq_save(flags);
1499 __count_vm_event(PGFREE);
1500
1501 /*
1502 * We only track unmovable, reclaimable and movable on pcp lists.
1503 * Free ISOLATE pages back to the allocator because they are being
1504 * offlined but treat RESERVE as movable pages so we can get those
1505 * areas back if necessary. Otherwise, we may have to free
1506 * excessively into the page allocator
1507 */
1508 if (migratetype >= MIGRATE_PCPTYPES) {
1509 if (unlikely(is_migrate_isolate(migratetype))) {
1510 free_one_page(zone, page, pfn, 0, migratetype);
1511 goto out;
1512 }
1513 migratetype = MIGRATE_MOVABLE;
1514 }
1515
1516 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1517 if (!cold)
1518 list_add(&page->lru, &pcp->lists[migratetype]);
1519 else
1520 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1521 pcp->count++;
1522 if (pcp->count >= pcp->high) {
1523 unsigned long batch = ACCESS_ONCE(pcp->batch);
1524 free_pcppages_bulk(zone, batch, pcp);
1525 pcp->count -= batch;
1526 }
1527
1528 out:
1529 local_irq_restore(flags);
1530 }
1531
1532 /*
1533 * Free a list of 0-order pages
1534 */
1535 void free_hot_cold_page_list(struct list_head *list, bool cold)
1536 {
1537 struct page *page, *next;
1538
1539 list_for_each_entry_safe(page, next, list, lru) {
1540 trace_mm_page_free_batched(page, cold);
1541 free_hot_cold_page(page, cold);
1542 }
1543 }
1544
1545 /*
1546 * split_page takes a non-compound higher-order page, and splits it into
1547 * n (1<<order) sub-pages: page[0..n]
1548 * Each sub-page must be freed individually.
1549 *
1550 * Note: this is probably too low level an operation for use in drivers.
1551 * Please consult with lkml before using this in your driver.
1552 */
1553 void split_page(struct page *page, unsigned int order)
1554 {
1555 int i;
1556
1557 VM_BUG_ON_PAGE(PageCompound(page), page);
1558 VM_BUG_ON_PAGE(!page_count(page), page);
1559
1560 #ifdef CONFIG_KMEMCHECK
1561 /*
1562 * Split shadow pages too, because free(page[0]) would
1563 * otherwise free the whole shadow.
1564 */
1565 if (kmemcheck_page_is_tracked(page))
1566 split_page(virt_to_page(page[0].shadow), order);
1567 #endif
1568
1569 set_page_owner(page, 0, 0);
1570 for (i = 1; i < (1 << order); i++) {
1571 set_page_refcounted(page + i);
1572 set_page_owner(page + i, 0, 0);
1573 }
1574 }
1575 EXPORT_SYMBOL_GPL(split_page);
1576
1577 int __isolate_free_page(struct page *page, unsigned int order)
1578 {
1579 unsigned long watermark;
1580 struct zone *zone;
1581 int mt;
1582
1583 BUG_ON(!PageBuddy(page));
1584
1585 zone = page_zone(page);
1586 mt = get_pageblock_migratetype(page);
1587
1588 if (!is_migrate_isolate(mt)) {
1589 /* Obey watermarks as if the page was being allocated */
1590 watermark = low_wmark_pages(zone) + (1 << order);
1591 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1592 return 0;
1593
1594 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1595 }
1596
1597 /* Remove page from free list */
1598 list_del(&page->lru);
1599 zone->free_area[order].nr_free--;
1600 rmv_page_order(page);
1601
1602 /* Set the pageblock if the isolated page is at least a pageblock */
1603 if (order >= pageblock_order - 1) {
1604 struct page *endpage = page + (1 << order) - 1;
1605 for (; page < endpage; page += pageblock_nr_pages) {
1606 int mt = get_pageblock_migratetype(page);
1607 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1608 set_pageblock_migratetype(page,
1609 MIGRATE_MOVABLE);
1610 }
1611 }
1612
1613 set_page_owner(page, order, 0);
1614 return 1UL << order;
1615 }
1616
1617 /*
1618 * Similar to split_page except the page is already free. As this is only
1619 * being used for migration, the migratetype of the block also changes.
1620 * As this is called with interrupts disabled, the caller is responsible
1621 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1622 * are enabled.
1623 *
1624 * Note: this is probably too low level an operation for use in drivers.
1625 * Please consult with lkml before using this in your driver.
1626 */
1627 int split_free_page(struct page *page)
1628 {
1629 unsigned int order;
1630 int nr_pages;
1631
1632 order = page_order(page);
1633
1634 nr_pages = __isolate_free_page(page, order);
1635 if (!nr_pages)
1636 return 0;
1637
1638 /* Split into individual pages */
1639 set_page_refcounted(page);
1640 split_page(page, order);
1641 return nr_pages;
1642 }
1643
1644 /*
1645 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1646 */
1647 static inline
1648 struct page *buffered_rmqueue(struct zone *preferred_zone,
1649 struct zone *zone, unsigned int order,
1650 gfp_t gfp_flags, int migratetype)
1651 {
1652 unsigned long flags;
1653 struct page *page;
1654 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1655
1656 if (likely(order == 0)) {
1657 struct per_cpu_pages *pcp;
1658 struct list_head *list;
1659
1660 local_irq_save(flags);
1661 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1662 list = &pcp->lists[migratetype];
1663 if (list_empty(list)) {
1664 pcp->count += rmqueue_bulk(zone, 0,
1665 pcp->batch, list,
1666 migratetype, cold);
1667 if (unlikely(list_empty(list)))
1668 goto failed;
1669 }
1670
1671 if (cold)
1672 page = list_entry(list->prev, struct page, lru);
1673 else
1674 page = list_entry(list->next, struct page, lru);
1675
1676 list_del(&page->lru);
1677 pcp->count--;
1678 } else {
1679 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1680 /*
1681 * __GFP_NOFAIL is not to be used in new code.
1682 *
1683 * All __GFP_NOFAIL callers should be fixed so that they
1684 * properly detect and handle allocation failures.
1685 *
1686 * We most definitely don't want callers attempting to
1687 * allocate greater than order-1 page units with
1688 * __GFP_NOFAIL.
1689 */
1690 WARN_ON_ONCE(order > 1);
1691 }
1692 spin_lock_irqsave(&zone->lock, flags);
1693 page = __rmqueue(zone, order, migratetype);
1694 spin_unlock(&zone->lock);
1695 if (!page)
1696 goto failed;
1697 __mod_zone_freepage_state(zone, -(1 << order),
1698 get_freepage_migratetype(page));
1699 }
1700
1701 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1702 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1703 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1704 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1705
1706 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1707 zone_statistics(preferred_zone, zone, gfp_flags);
1708 local_irq_restore(flags);
1709
1710 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1711 return page;
1712
1713 failed:
1714 local_irq_restore(flags);
1715 return NULL;
1716 }
1717
1718 #ifdef CONFIG_FAIL_PAGE_ALLOC
1719
1720 static struct {
1721 struct fault_attr attr;
1722
1723 u32 ignore_gfp_highmem;
1724 u32 ignore_gfp_wait;
1725 u32 min_order;
1726 } fail_page_alloc = {
1727 .attr = FAULT_ATTR_INITIALIZER,
1728 .ignore_gfp_wait = 1,
1729 .ignore_gfp_highmem = 1,
1730 .min_order = 1,
1731 };
1732
1733 static int __init setup_fail_page_alloc(char *str)
1734 {
1735 return setup_fault_attr(&fail_page_alloc.attr, str);
1736 }
1737 __setup("fail_page_alloc=", setup_fail_page_alloc);
1738
1739 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1740 {
1741 if (order < fail_page_alloc.min_order)
1742 return false;
1743 if (gfp_mask & __GFP_NOFAIL)
1744 return false;
1745 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1746 return false;
1747 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1748 return false;
1749
1750 return should_fail(&fail_page_alloc.attr, 1 << order);
1751 }
1752
1753 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1754
1755 static int __init fail_page_alloc_debugfs(void)
1756 {
1757 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1758 struct dentry *dir;
1759
1760 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1761 &fail_page_alloc.attr);
1762 if (IS_ERR(dir))
1763 return PTR_ERR(dir);
1764
1765 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1766 &fail_page_alloc.ignore_gfp_wait))
1767 goto fail;
1768 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1769 &fail_page_alloc.ignore_gfp_highmem))
1770 goto fail;
1771 if (!debugfs_create_u32("min-order", mode, dir,
1772 &fail_page_alloc.min_order))
1773 goto fail;
1774
1775 return 0;
1776 fail:
1777 debugfs_remove_recursive(dir);
1778
1779 return -ENOMEM;
1780 }
1781
1782 late_initcall(fail_page_alloc_debugfs);
1783
1784 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1785
1786 #else /* CONFIG_FAIL_PAGE_ALLOC */
1787
1788 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1789 {
1790 return false;
1791 }
1792
1793 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1794
1795 /*
1796 * Return true if free pages are above 'mark'. This takes into account the order
1797 * of the allocation.
1798 */
1799 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1800 unsigned long mark, int classzone_idx, int alloc_flags,
1801 long free_pages)
1802 {
1803 /* free_pages may go negative - that's OK */
1804 long min = mark;
1805 int o;
1806 long free_cma = 0;
1807
1808 free_pages -= (1 << order) - 1;
1809 if (alloc_flags & ALLOC_HIGH)
1810 min -= min / 2;
1811 if (alloc_flags & ALLOC_HARDER)
1812 min -= min / 4;
1813 #ifdef CONFIG_CMA
1814 /* If allocation can't use CMA areas don't use free CMA pages */
1815 if (!(alloc_flags & ALLOC_CMA))
1816 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1817 #endif
1818
1819 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1820 return false;
1821 for (o = 0; o < order; o++) {
1822 /* At the next order, this order's pages become unavailable */
1823 free_pages -= z->free_area[o].nr_free << o;
1824
1825 /* Require fewer higher order pages to be free */
1826 min >>= 1;
1827
1828 if (free_pages <= min)
1829 return false;
1830 }
1831 return true;
1832 }
1833
1834 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1835 int classzone_idx, int alloc_flags)
1836 {
1837 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1838 zone_page_state(z, NR_FREE_PAGES));
1839 }
1840
1841 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1842 unsigned long mark, int classzone_idx, int alloc_flags)
1843 {
1844 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1845
1846 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1847 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1848
1849 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1850 free_pages);
1851 }
1852
1853 #ifdef CONFIG_NUMA
1854 /*
1855 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1856 * skip over zones that are not allowed by the cpuset, or that have
1857 * been recently (in last second) found to be nearly full. See further
1858 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1859 * that have to skip over a lot of full or unallowed zones.
1860 *
1861 * If the zonelist cache is present in the passed zonelist, then
1862 * returns a pointer to the allowed node mask (either the current
1863 * tasks mems_allowed, or node_states[N_MEMORY].)
1864 *
1865 * If the zonelist cache is not available for this zonelist, does
1866 * nothing and returns NULL.
1867 *
1868 * If the fullzones BITMAP in the zonelist cache is stale (more than
1869 * a second since last zap'd) then we zap it out (clear its bits.)
1870 *
1871 * We hold off even calling zlc_setup, until after we've checked the
1872 * first zone in the zonelist, on the theory that most allocations will
1873 * be satisfied from that first zone, so best to examine that zone as
1874 * quickly as we can.
1875 */
1876 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1877 {
1878 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1879 nodemask_t *allowednodes; /* zonelist_cache approximation */
1880
1881 zlc = zonelist->zlcache_ptr;
1882 if (!zlc)
1883 return NULL;
1884
1885 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1886 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1887 zlc->last_full_zap = jiffies;
1888 }
1889
1890 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1891 &cpuset_current_mems_allowed :
1892 &node_states[N_MEMORY];
1893 return allowednodes;
1894 }
1895
1896 /*
1897 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1898 * if it is worth looking at further for free memory:
1899 * 1) Check that the zone isn't thought to be full (doesn't have its
1900 * bit set in the zonelist_cache fullzones BITMAP).
1901 * 2) Check that the zones node (obtained from the zonelist_cache
1902 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1903 * Return true (non-zero) if zone is worth looking at further, or
1904 * else return false (zero) if it is not.
1905 *
1906 * This check -ignores- the distinction between various watermarks,
1907 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1908 * found to be full for any variation of these watermarks, it will
1909 * be considered full for up to one second by all requests, unless
1910 * we are so low on memory on all allowed nodes that we are forced
1911 * into the second scan of the zonelist.
1912 *
1913 * In the second scan we ignore this zonelist cache and exactly
1914 * apply the watermarks to all zones, even it is slower to do so.
1915 * We are low on memory in the second scan, and should leave no stone
1916 * unturned looking for a free page.
1917 */
1918 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1919 nodemask_t *allowednodes)
1920 {
1921 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1922 int i; /* index of *z in zonelist zones */
1923 int n; /* node that zone *z is on */
1924
1925 zlc = zonelist->zlcache_ptr;
1926 if (!zlc)
1927 return 1;
1928
1929 i = z - zonelist->_zonerefs;
1930 n = zlc->z_to_n[i];
1931
1932 /* This zone is worth trying if it is allowed but not full */
1933 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1934 }
1935
1936 /*
1937 * Given 'z' scanning a zonelist, set the corresponding bit in
1938 * zlc->fullzones, so that subsequent attempts to allocate a page
1939 * from that zone don't waste time re-examining it.
1940 */
1941 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1942 {
1943 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1944 int i; /* index of *z in zonelist zones */
1945
1946 zlc = zonelist->zlcache_ptr;
1947 if (!zlc)
1948 return;
1949
1950 i = z - zonelist->_zonerefs;
1951
1952 set_bit(i, zlc->fullzones);
1953 }
1954
1955 /*
1956 * clear all zones full, called after direct reclaim makes progress so that
1957 * a zone that was recently full is not skipped over for up to a second
1958 */
1959 static void zlc_clear_zones_full(struct zonelist *zonelist)
1960 {
1961 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1962
1963 zlc = zonelist->zlcache_ptr;
1964 if (!zlc)
1965 return;
1966
1967 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1968 }
1969
1970 static bool zone_local(struct zone *local_zone, struct zone *zone)
1971 {
1972 return local_zone->node == zone->node;
1973 }
1974
1975 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1976 {
1977 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1978 RECLAIM_DISTANCE;
1979 }
1980
1981 #else /* CONFIG_NUMA */
1982
1983 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1984 {
1985 return NULL;
1986 }
1987
1988 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1989 nodemask_t *allowednodes)
1990 {
1991 return 1;
1992 }
1993
1994 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1995 {
1996 }
1997
1998 static void zlc_clear_zones_full(struct zonelist *zonelist)
1999 {
2000 }
2001
2002 static bool zone_local(struct zone *local_zone, struct zone *zone)
2003 {
2004 return true;
2005 }
2006
2007 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2008 {
2009 return true;
2010 }
2011
2012 #endif /* CONFIG_NUMA */
2013
2014 static void reset_alloc_batches(struct zone *preferred_zone)
2015 {
2016 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2017
2018 do {
2019 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2020 high_wmark_pages(zone) - low_wmark_pages(zone) -
2021 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2022 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2023 } while (zone++ != preferred_zone);
2024 }
2025
2026 /*
2027 * get_page_from_freelist goes through the zonelist trying to allocate
2028 * a page.
2029 */
2030 static struct page *
2031 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2032 const struct alloc_context *ac)
2033 {
2034 struct zonelist *zonelist = ac->zonelist;
2035 struct zoneref *z;
2036 struct page *page = NULL;
2037 struct zone *zone;
2038 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2039 int zlc_active = 0; /* set if using zonelist_cache */
2040 int did_zlc_setup = 0; /* just call zlc_setup() one time */
2041 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2042 (gfp_mask & __GFP_WRITE);
2043 int nr_fair_skipped = 0;
2044 bool zonelist_rescan;
2045
2046 zonelist_scan:
2047 zonelist_rescan = false;
2048
2049 /*
2050 * Scan zonelist, looking for a zone with enough free.
2051 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2052 */
2053 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2054 ac->nodemask) {
2055 unsigned long mark;
2056
2057 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2058 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2059 continue;
2060 if (cpusets_enabled() &&
2061 (alloc_flags & ALLOC_CPUSET) &&
2062 !cpuset_zone_allowed(zone, gfp_mask))
2063 continue;
2064 /*
2065 * Distribute pages in proportion to the individual
2066 * zone size to ensure fair page aging. The zone a
2067 * page was allocated in should have no effect on the
2068 * time the page has in memory before being reclaimed.
2069 */
2070 if (alloc_flags & ALLOC_FAIR) {
2071 if (!zone_local(ac->preferred_zone, zone))
2072 break;
2073 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2074 nr_fair_skipped++;
2075 continue;
2076 }
2077 }
2078 /*
2079 * When allocating a page cache page for writing, we
2080 * want to get it from a zone that is within its dirty
2081 * limit, such that no single zone holds more than its
2082 * proportional share of globally allowed dirty pages.
2083 * The dirty limits take into account the zone's
2084 * lowmem reserves and high watermark so that kswapd
2085 * should be able to balance it without having to
2086 * write pages from its LRU list.
2087 *
2088 * This may look like it could increase pressure on
2089 * lower zones by failing allocations in higher zones
2090 * before they are full. But the pages that do spill
2091 * over are limited as the lower zones are protected
2092 * by this very same mechanism. It should not become
2093 * a practical burden to them.
2094 *
2095 * XXX: For now, allow allocations to potentially
2096 * exceed the per-zone dirty limit in the slowpath
2097 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2098 * which is important when on a NUMA setup the allowed
2099 * zones are together not big enough to reach the
2100 * global limit. The proper fix for these situations
2101 * will require awareness of zones in the
2102 * dirty-throttling and the flusher threads.
2103 */
2104 if (consider_zone_dirty && !zone_dirty_ok(zone))
2105 continue;
2106
2107 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2108 if (!zone_watermark_ok(zone, order, mark,
2109 ac->classzone_idx, alloc_flags)) {
2110 int ret;
2111
2112 /* Checked here to keep the fast path fast */
2113 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2114 if (alloc_flags & ALLOC_NO_WATERMARKS)
2115 goto try_this_zone;
2116
2117 if (IS_ENABLED(CONFIG_NUMA) &&
2118 !did_zlc_setup && nr_online_nodes > 1) {
2119 /*
2120 * we do zlc_setup if there are multiple nodes
2121 * and before considering the first zone allowed
2122 * by the cpuset.
2123 */
2124 allowednodes = zlc_setup(zonelist, alloc_flags);
2125 zlc_active = 1;
2126 did_zlc_setup = 1;
2127 }
2128
2129 if (zone_reclaim_mode == 0 ||
2130 !zone_allows_reclaim(ac->preferred_zone, zone))
2131 goto this_zone_full;
2132
2133 /*
2134 * As we may have just activated ZLC, check if the first
2135 * eligible zone has failed zone_reclaim recently.
2136 */
2137 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2138 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2139 continue;
2140
2141 ret = zone_reclaim(zone, gfp_mask, order);
2142 switch (ret) {
2143 case ZONE_RECLAIM_NOSCAN:
2144 /* did not scan */
2145 continue;
2146 case ZONE_RECLAIM_FULL:
2147 /* scanned but unreclaimable */
2148 continue;
2149 default:
2150 /* did we reclaim enough */
2151 if (zone_watermark_ok(zone, order, mark,
2152 ac->classzone_idx, alloc_flags))
2153 goto try_this_zone;
2154
2155 /*
2156 * Failed to reclaim enough to meet watermark.
2157 * Only mark the zone full if checking the min
2158 * watermark or if we failed to reclaim just
2159 * 1<<order pages or else the page allocator
2160 * fastpath will prematurely mark zones full
2161 * when the watermark is between the low and
2162 * min watermarks.
2163 */
2164 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2165 ret == ZONE_RECLAIM_SOME)
2166 goto this_zone_full;
2167
2168 continue;
2169 }
2170 }
2171
2172 try_this_zone:
2173 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2174 gfp_mask, ac->migratetype);
2175 if (page) {
2176 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2177 goto try_this_zone;
2178 return page;
2179 }
2180 this_zone_full:
2181 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2182 zlc_mark_zone_full(zonelist, z);
2183 }
2184
2185 /*
2186 * The first pass makes sure allocations are spread fairly within the
2187 * local node. However, the local node might have free pages left
2188 * after the fairness batches are exhausted, and remote zones haven't
2189 * even been considered yet. Try once more without fairness, and
2190 * include remote zones now, before entering the slowpath and waking
2191 * kswapd: prefer spilling to a remote zone over swapping locally.
2192 */
2193 if (alloc_flags & ALLOC_FAIR) {
2194 alloc_flags &= ~ALLOC_FAIR;
2195 if (nr_fair_skipped) {
2196 zonelist_rescan = true;
2197 reset_alloc_batches(ac->preferred_zone);
2198 }
2199 if (nr_online_nodes > 1)
2200 zonelist_rescan = true;
2201 }
2202
2203 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2204 /* Disable zlc cache for second zonelist scan */
2205 zlc_active = 0;
2206 zonelist_rescan = true;
2207 }
2208
2209 if (zonelist_rescan)
2210 goto zonelist_scan;
2211
2212 return NULL;
2213 }
2214
2215 /*
2216 * Large machines with many possible nodes should not always dump per-node
2217 * meminfo in irq context.
2218 */
2219 static inline bool should_suppress_show_mem(void)
2220 {
2221 bool ret = false;
2222
2223 #if NODES_SHIFT > 8
2224 ret = in_interrupt();
2225 #endif
2226 return ret;
2227 }
2228
2229 static DEFINE_RATELIMIT_STATE(nopage_rs,
2230 DEFAULT_RATELIMIT_INTERVAL,
2231 DEFAULT_RATELIMIT_BURST);
2232
2233 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2234 {
2235 unsigned int filter = SHOW_MEM_FILTER_NODES;
2236
2237 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2238 debug_guardpage_minorder() > 0)
2239 return;
2240
2241 /*
2242 * This documents exceptions given to allocations in certain
2243 * contexts that are allowed to allocate outside current's set
2244 * of allowed nodes.
2245 */
2246 if (!(gfp_mask & __GFP_NOMEMALLOC))
2247 if (test_thread_flag(TIF_MEMDIE) ||
2248 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2249 filter &= ~SHOW_MEM_FILTER_NODES;
2250 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2251 filter &= ~SHOW_MEM_FILTER_NODES;
2252
2253 if (fmt) {
2254 struct va_format vaf;
2255 va_list args;
2256
2257 va_start(args, fmt);
2258
2259 vaf.fmt = fmt;
2260 vaf.va = &args;
2261
2262 pr_warn("%pV", &vaf);
2263
2264 va_end(args);
2265 }
2266
2267 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2268 current->comm, order, gfp_mask);
2269
2270 dump_stack();
2271 if (!should_suppress_show_mem())
2272 show_mem(filter);
2273 }
2274
2275 static inline int
2276 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2277 unsigned long did_some_progress,
2278 unsigned long pages_reclaimed)
2279 {
2280 /* Do not loop if specifically requested */
2281 if (gfp_mask & __GFP_NORETRY)
2282 return 0;
2283
2284 /* Always retry if specifically requested */
2285 if (gfp_mask & __GFP_NOFAIL)
2286 return 1;
2287
2288 /*
2289 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2290 * making forward progress without invoking OOM. Suspend also disables
2291 * storage devices so kswapd will not help. Bail if we are suspending.
2292 */
2293 if (!did_some_progress && pm_suspended_storage())
2294 return 0;
2295
2296 /*
2297 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2298 * means __GFP_NOFAIL, but that may not be true in other
2299 * implementations.
2300 */
2301 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2302 return 1;
2303
2304 /*
2305 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2306 * specified, then we retry until we no longer reclaim any pages
2307 * (above), or we've reclaimed an order of pages at least as
2308 * large as the allocation's order. In both cases, if the
2309 * allocation still fails, we stop retrying.
2310 */
2311 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2312 return 1;
2313
2314 return 0;
2315 }
2316
2317 static inline struct page *
2318 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2319 const struct alloc_context *ac, unsigned long *did_some_progress)
2320 {
2321 struct page *page;
2322
2323 *did_some_progress = 0;
2324
2325 /*
2326 * Acquire the per-zone oom lock for each zone. If that
2327 * fails, somebody else is making progress for us.
2328 */
2329 if (!oom_zonelist_trylock(ac->zonelist, gfp_mask)) {
2330 *did_some_progress = 1;
2331 schedule_timeout_uninterruptible(1);
2332 return NULL;
2333 }
2334
2335 /*
2336 * Go through the zonelist yet one more time, keep very high watermark
2337 * here, this is only to catch a parallel oom killing, we must fail if
2338 * we're still under heavy pressure.
2339 */
2340 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2341 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2342 if (page)
2343 goto out;
2344
2345 if (!(gfp_mask & __GFP_NOFAIL)) {
2346 /* Coredumps can quickly deplete all memory reserves */
2347 if (current->flags & PF_DUMPCORE)
2348 goto out;
2349 /* The OOM killer will not help higher order allocs */
2350 if (order > PAGE_ALLOC_COSTLY_ORDER)
2351 goto out;
2352 /* The OOM killer does not needlessly kill tasks for lowmem */
2353 if (ac->high_zoneidx < ZONE_NORMAL)
2354 goto out;
2355 /* The OOM killer does not compensate for light reclaim */
2356 if (!(gfp_mask & __GFP_FS)) {
2357 /*
2358 * XXX: Page reclaim didn't yield anything,
2359 * and the OOM killer can't be invoked, but
2360 * keep looping as per should_alloc_retry().
2361 */
2362 *did_some_progress = 1;
2363 goto out;
2364 }
2365 /*
2366 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2367 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2368 * The caller should handle page allocation failure by itself if
2369 * it specifies __GFP_THISNODE.
2370 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2371 */
2372 if (gfp_mask & __GFP_THISNODE)
2373 goto out;
2374 }
2375 /* Exhausted what can be done so it's blamo time */
2376 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)
2377 || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2378 *did_some_progress = 1;
2379 out:
2380 oom_zonelist_unlock(ac->zonelist, gfp_mask);
2381 return page;
2382 }
2383
2384 #ifdef CONFIG_COMPACTION
2385 /* Try memory compaction for high-order allocations before reclaim */
2386 static struct page *
2387 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2388 int alloc_flags, const struct alloc_context *ac,
2389 enum migrate_mode mode, int *contended_compaction,
2390 bool *deferred_compaction)
2391 {
2392 unsigned long compact_result;
2393 struct page *page;
2394
2395 if (!order)
2396 return NULL;
2397
2398 current->flags |= PF_MEMALLOC;
2399 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2400 mode, contended_compaction);
2401 current->flags &= ~PF_MEMALLOC;
2402
2403 switch (compact_result) {
2404 case COMPACT_DEFERRED:
2405 *deferred_compaction = true;
2406 /* fall-through */
2407 case COMPACT_SKIPPED:
2408 return NULL;
2409 default:
2410 break;
2411 }
2412
2413 /*
2414 * At least in one zone compaction wasn't deferred or skipped, so let's
2415 * count a compaction stall
2416 */
2417 count_vm_event(COMPACTSTALL);
2418
2419 page = get_page_from_freelist(gfp_mask, order,
2420 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2421
2422 if (page) {
2423 struct zone *zone = page_zone(page);
2424
2425 zone->compact_blockskip_flush = false;
2426 compaction_defer_reset(zone, order, true);
2427 count_vm_event(COMPACTSUCCESS);
2428 return page;
2429 }
2430
2431 /*
2432 * It's bad if compaction run occurs and fails. The most likely reason
2433 * is that pages exist, but not enough to satisfy watermarks.
2434 */
2435 count_vm_event(COMPACTFAIL);
2436
2437 cond_resched();
2438
2439 return NULL;
2440 }
2441 #else
2442 static inline struct page *
2443 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2444 int alloc_flags, const struct alloc_context *ac,
2445 enum migrate_mode mode, int *contended_compaction,
2446 bool *deferred_compaction)
2447 {
2448 return NULL;
2449 }
2450 #endif /* CONFIG_COMPACTION */
2451
2452 /* Perform direct synchronous page reclaim */
2453 static int
2454 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2455 const struct alloc_context *ac)
2456 {
2457 struct reclaim_state reclaim_state;
2458 int progress;
2459
2460 cond_resched();
2461
2462 /* We now go into synchronous reclaim */
2463 cpuset_memory_pressure_bump();
2464 current->flags |= PF_MEMALLOC;
2465 lockdep_set_current_reclaim_state(gfp_mask);
2466 reclaim_state.reclaimed_slab = 0;
2467 current->reclaim_state = &reclaim_state;
2468
2469 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2470 ac->nodemask);
2471
2472 current->reclaim_state = NULL;
2473 lockdep_clear_current_reclaim_state();
2474 current->flags &= ~PF_MEMALLOC;
2475
2476 cond_resched();
2477
2478 return progress;
2479 }
2480
2481 /* The really slow allocator path where we enter direct reclaim */
2482 static inline struct page *
2483 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2484 int alloc_flags, const struct alloc_context *ac,
2485 unsigned long *did_some_progress)
2486 {
2487 struct page *page = NULL;
2488 bool drained = false;
2489
2490 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2491 if (unlikely(!(*did_some_progress)))
2492 return NULL;
2493
2494 /* After successful reclaim, reconsider all zones for allocation */
2495 if (IS_ENABLED(CONFIG_NUMA))
2496 zlc_clear_zones_full(ac->zonelist);
2497
2498 retry:
2499 page = get_page_from_freelist(gfp_mask, order,
2500 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2501
2502 /*
2503 * If an allocation failed after direct reclaim, it could be because
2504 * pages are pinned on the per-cpu lists. Drain them and try again
2505 */
2506 if (!page && !drained) {
2507 drain_all_pages(NULL);
2508 drained = true;
2509 goto retry;
2510 }
2511
2512 return page;
2513 }
2514
2515 /*
2516 * This is called in the allocator slow-path if the allocation request is of
2517 * sufficient urgency to ignore watermarks and take other desperate measures
2518 */
2519 static inline struct page *
2520 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2521 const struct alloc_context *ac)
2522 {
2523 struct page *page;
2524
2525 do {
2526 page = get_page_from_freelist(gfp_mask, order,
2527 ALLOC_NO_WATERMARKS, ac);
2528
2529 if (!page && gfp_mask & __GFP_NOFAIL)
2530 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2531 HZ/50);
2532 } while (!page && (gfp_mask & __GFP_NOFAIL));
2533
2534 return page;
2535 }
2536
2537 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2538 {
2539 struct zoneref *z;
2540 struct zone *zone;
2541
2542 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2543 ac->high_zoneidx, ac->nodemask)
2544 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2545 }
2546
2547 static inline int
2548 gfp_to_alloc_flags(gfp_t gfp_mask)
2549 {
2550 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2551 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2552
2553 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2554 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2555
2556 /*
2557 * The caller may dip into page reserves a bit more if the caller
2558 * cannot run direct reclaim, or if the caller has realtime scheduling
2559 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2560 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2561 */
2562 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2563
2564 if (atomic) {
2565 /*
2566 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2567 * if it can't schedule.
2568 */
2569 if (!(gfp_mask & __GFP_NOMEMALLOC))
2570 alloc_flags |= ALLOC_HARDER;
2571 /*
2572 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2573 * comment for __cpuset_node_allowed().
2574 */
2575 alloc_flags &= ~ALLOC_CPUSET;
2576 } else if (unlikely(rt_task(current)) && !in_interrupt())
2577 alloc_flags |= ALLOC_HARDER;
2578
2579 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2580 if (gfp_mask & __GFP_MEMALLOC)
2581 alloc_flags |= ALLOC_NO_WATERMARKS;
2582 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2583 alloc_flags |= ALLOC_NO_WATERMARKS;
2584 else if (!in_interrupt() &&
2585 ((current->flags & PF_MEMALLOC) ||
2586 unlikely(test_thread_flag(TIF_MEMDIE))))
2587 alloc_flags |= ALLOC_NO_WATERMARKS;
2588 }
2589 #ifdef CONFIG_CMA
2590 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2591 alloc_flags |= ALLOC_CMA;
2592 #endif
2593 return alloc_flags;
2594 }
2595
2596 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2597 {
2598 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2599 }
2600
2601 static inline struct page *
2602 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2603 struct alloc_context *ac)
2604 {
2605 const gfp_t wait = gfp_mask & __GFP_WAIT;
2606 struct page *page = NULL;
2607 int alloc_flags;
2608 unsigned long pages_reclaimed = 0;
2609 unsigned long did_some_progress;
2610 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2611 bool deferred_compaction = false;
2612 int contended_compaction = COMPACT_CONTENDED_NONE;
2613
2614 /*
2615 * In the slowpath, we sanity check order to avoid ever trying to
2616 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2617 * be using allocators in order of preference for an area that is
2618 * too large.
2619 */
2620 if (order >= MAX_ORDER) {
2621 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2622 return NULL;
2623 }
2624
2625 /*
2626 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2627 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2628 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2629 * using a larger set of nodes after it has established that the
2630 * allowed per node queues are empty and that nodes are
2631 * over allocated.
2632 */
2633 if (IS_ENABLED(CONFIG_NUMA) &&
2634 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2635 goto nopage;
2636
2637 retry:
2638 if (!(gfp_mask & __GFP_NO_KSWAPD))
2639 wake_all_kswapds(order, ac);
2640
2641 /*
2642 * OK, we're below the kswapd watermark and have kicked background
2643 * reclaim. Now things get more complex, so set up alloc_flags according
2644 * to how we want to proceed.
2645 */
2646 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2647
2648 /*
2649 * Find the true preferred zone if the allocation is unconstrained by
2650 * cpusets.
2651 */
2652 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
2653 struct zoneref *preferred_zoneref;
2654 preferred_zoneref = first_zones_zonelist(ac->zonelist,
2655 ac->high_zoneidx, NULL, &ac->preferred_zone);
2656 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
2657 }
2658
2659 /* This is the last chance, in general, before the goto nopage. */
2660 page = get_page_from_freelist(gfp_mask, order,
2661 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2662 if (page)
2663 goto got_pg;
2664
2665 /* Allocate without watermarks if the context allows */
2666 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2667 /*
2668 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2669 * the allocation is high priority and these type of
2670 * allocations are system rather than user orientated
2671 */
2672 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
2673
2674 page = __alloc_pages_high_priority(gfp_mask, order, ac);
2675
2676 if (page) {
2677 goto got_pg;
2678 }
2679 }
2680
2681 /* Atomic allocations - we can't balance anything */
2682 if (!wait) {
2683 /*
2684 * All existing users of the deprecated __GFP_NOFAIL are
2685 * blockable, so warn of any new users that actually allow this
2686 * type of allocation to fail.
2687 */
2688 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2689 goto nopage;
2690 }
2691
2692 /* Avoid recursion of direct reclaim */
2693 if (current->flags & PF_MEMALLOC)
2694 goto nopage;
2695
2696 /* Avoid allocations with no watermarks from looping endlessly */
2697 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2698 goto nopage;
2699
2700 /*
2701 * Try direct compaction. The first pass is asynchronous. Subsequent
2702 * attempts after direct reclaim are synchronous
2703 */
2704 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
2705 migration_mode,
2706 &contended_compaction,
2707 &deferred_compaction);
2708 if (page)
2709 goto got_pg;
2710
2711 /* Checks for THP-specific high-order allocations */
2712 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2713 /*
2714 * If compaction is deferred for high-order allocations, it is
2715 * because sync compaction recently failed. If this is the case
2716 * and the caller requested a THP allocation, we do not want
2717 * to heavily disrupt the system, so we fail the allocation
2718 * instead of entering direct reclaim.
2719 */
2720 if (deferred_compaction)
2721 goto nopage;
2722
2723 /*
2724 * In all zones where compaction was attempted (and not
2725 * deferred or skipped), lock contention has been detected.
2726 * For THP allocation we do not want to disrupt the others
2727 * so we fallback to base pages instead.
2728 */
2729 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2730 goto nopage;
2731
2732 /*
2733 * If compaction was aborted due to need_resched(), we do not
2734 * want to further increase allocation latency, unless it is
2735 * khugepaged trying to collapse.
2736 */
2737 if (contended_compaction == COMPACT_CONTENDED_SCHED
2738 && !(current->flags & PF_KTHREAD))
2739 goto nopage;
2740 }
2741
2742 /*
2743 * It can become very expensive to allocate transparent hugepages at
2744 * fault, so use asynchronous memory compaction for THP unless it is
2745 * khugepaged trying to collapse.
2746 */
2747 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2748 (current->flags & PF_KTHREAD))
2749 migration_mode = MIGRATE_SYNC_LIGHT;
2750
2751 /* Try direct reclaim and then allocating */
2752 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
2753 &did_some_progress);
2754 if (page)
2755 goto got_pg;
2756
2757 /* Check if we should retry the allocation */
2758 pages_reclaimed += did_some_progress;
2759 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2760 pages_reclaimed)) {
2761 /*
2762 * If we fail to make progress by freeing individual
2763 * pages, but the allocation wants us to keep going,
2764 * start OOM killing tasks.
2765 */
2766 if (!did_some_progress) {
2767 page = __alloc_pages_may_oom(gfp_mask, order, ac,
2768 &did_some_progress);
2769 if (page)
2770 goto got_pg;
2771 if (!did_some_progress)
2772 goto nopage;
2773 }
2774 /* Wait for some write requests to complete then retry */
2775 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
2776 goto retry;
2777 } else {
2778 /*
2779 * High-order allocations do not necessarily loop after
2780 * direct reclaim and reclaim/compaction depends on compaction
2781 * being called after reclaim so call directly if necessary
2782 */
2783 page = __alloc_pages_direct_compact(gfp_mask, order,
2784 alloc_flags, ac, migration_mode,
2785 &contended_compaction,
2786 &deferred_compaction);
2787 if (page)
2788 goto got_pg;
2789 }
2790
2791 nopage:
2792 warn_alloc_failed(gfp_mask, order, NULL);
2793 got_pg:
2794 return page;
2795 }
2796
2797 /*
2798 * This is the 'heart' of the zoned buddy allocator.
2799 */
2800 struct page *
2801 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2802 struct zonelist *zonelist, nodemask_t *nodemask)
2803 {
2804 struct zoneref *preferred_zoneref;
2805 struct page *page = NULL;
2806 unsigned int cpuset_mems_cookie;
2807 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2808 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
2809 struct alloc_context ac = {
2810 .high_zoneidx = gfp_zone(gfp_mask),
2811 .nodemask = nodemask,
2812 .migratetype = gfpflags_to_migratetype(gfp_mask),
2813 };
2814
2815 gfp_mask &= gfp_allowed_mask;
2816
2817 lockdep_trace_alloc(gfp_mask);
2818
2819 might_sleep_if(gfp_mask & __GFP_WAIT);
2820
2821 if (should_fail_alloc_page(gfp_mask, order))
2822 return NULL;
2823
2824 /*
2825 * Check the zones suitable for the gfp_mask contain at least one
2826 * valid zone. It's possible to have an empty zonelist as a result
2827 * of GFP_THISNODE and a memoryless node
2828 */
2829 if (unlikely(!zonelist->_zonerefs->zone))
2830 return NULL;
2831
2832 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
2833 alloc_flags |= ALLOC_CMA;
2834
2835 retry_cpuset:
2836 cpuset_mems_cookie = read_mems_allowed_begin();
2837
2838 /* We set it here, as __alloc_pages_slowpath might have changed it */
2839 ac.zonelist = zonelist;
2840 /* The preferred zone is used for statistics later */
2841 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
2842 ac.nodemask ? : &cpuset_current_mems_allowed,
2843 &ac.preferred_zone);
2844 if (!ac.preferred_zone)
2845 goto out;
2846 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
2847
2848 /* First allocation attempt */
2849 alloc_mask = gfp_mask|__GFP_HARDWALL;
2850 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
2851 if (unlikely(!page)) {
2852 /*
2853 * Runtime PM, block IO and its error handling path
2854 * can deadlock because I/O on the device might not
2855 * complete.
2856 */
2857 alloc_mask = memalloc_noio_flags(gfp_mask);
2858
2859 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
2860 }
2861
2862 if (kmemcheck_enabled && page)
2863 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2864
2865 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
2866
2867 out:
2868 /*
2869 * When updating a task's mems_allowed, it is possible to race with
2870 * parallel threads in such a way that an allocation can fail while
2871 * the mask is being updated. If a page allocation is about to fail,
2872 * check if the cpuset changed during allocation and if so, retry.
2873 */
2874 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2875 goto retry_cpuset;
2876
2877 return page;
2878 }
2879 EXPORT_SYMBOL(__alloc_pages_nodemask);
2880
2881 /*
2882 * Common helper functions.
2883 */
2884 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2885 {
2886 struct page *page;
2887
2888 /*
2889 * __get_free_pages() returns a 32-bit address, which cannot represent
2890 * a highmem page
2891 */
2892 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2893
2894 page = alloc_pages(gfp_mask, order);
2895 if (!page)
2896 return 0;
2897 return (unsigned long) page_address(page);
2898 }
2899 EXPORT_SYMBOL(__get_free_pages);
2900
2901 unsigned long get_zeroed_page(gfp_t gfp_mask)
2902 {
2903 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2904 }
2905 EXPORT_SYMBOL(get_zeroed_page);
2906
2907 void __free_pages(struct page *page, unsigned int order)
2908 {
2909 if (put_page_testzero(page)) {
2910 if (order == 0)
2911 free_hot_cold_page(page, false);
2912 else
2913 __free_pages_ok(page, order);
2914 }
2915 }
2916
2917 EXPORT_SYMBOL(__free_pages);
2918
2919 void free_pages(unsigned long addr, unsigned int order)
2920 {
2921 if (addr != 0) {
2922 VM_BUG_ON(!virt_addr_valid((void *)addr));
2923 __free_pages(virt_to_page((void *)addr), order);
2924 }
2925 }
2926
2927 EXPORT_SYMBOL(free_pages);
2928
2929 /*
2930 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2931 * of the current memory cgroup.
2932 *
2933 * It should be used when the caller would like to use kmalloc, but since the
2934 * allocation is large, it has to fall back to the page allocator.
2935 */
2936 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2937 {
2938 struct page *page;
2939 struct mem_cgroup *memcg = NULL;
2940
2941 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2942 return NULL;
2943 page = alloc_pages(gfp_mask, order);
2944 memcg_kmem_commit_charge(page, memcg, order);
2945 return page;
2946 }
2947
2948 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2949 {
2950 struct page *page;
2951 struct mem_cgroup *memcg = NULL;
2952
2953 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2954 return NULL;
2955 page = alloc_pages_node(nid, gfp_mask, order);
2956 memcg_kmem_commit_charge(page, memcg, order);
2957 return page;
2958 }
2959
2960 /*
2961 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2962 * alloc_kmem_pages.
2963 */
2964 void __free_kmem_pages(struct page *page, unsigned int order)
2965 {
2966 memcg_kmem_uncharge_pages(page, order);
2967 __free_pages(page, order);
2968 }
2969
2970 void free_kmem_pages(unsigned long addr, unsigned int order)
2971 {
2972 if (addr != 0) {
2973 VM_BUG_ON(!virt_addr_valid((void *)addr));
2974 __free_kmem_pages(virt_to_page((void *)addr), order);
2975 }
2976 }
2977
2978 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2979 {
2980 if (addr) {
2981 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2982 unsigned long used = addr + PAGE_ALIGN(size);
2983
2984 split_page(virt_to_page((void *)addr), order);
2985 while (used < alloc_end) {
2986 free_page(used);
2987 used += PAGE_SIZE;
2988 }
2989 }
2990 return (void *)addr;
2991 }
2992
2993 /**
2994 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2995 * @size: the number of bytes to allocate
2996 * @gfp_mask: GFP flags for the allocation
2997 *
2998 * This function is similar to alloc_pages(), except that it allocates the
2999 * minimum number of pages to satisfy the request. alloc_pages() can only
3000 * allocate memory in power-of-two pages.
3001 *
3002 * This function is also limited by MAX_ORDER.
3003 *
3004 * Memory allocated by this function must be released by free_pages_exact().
3005 */
3006 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3007 {
3008 unsigned int order = get_order(size);
3009 unsigned long addr;
3010
3011 addr = __get_free_pages(gfp_mask, order);
3012 return make_alloc_exact(addr, order, size);
3013 }
3014 EXPORT_SYMBOL(alloc_pages_exact);
3015
3016 /**
3017 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3018 * pages on a node.
3019 * @nid: the preferred node ID where memory should be allocated
3020 * @size: the number of bytes to allocate
3021 * @gfp_mask: GFP flags for the allocation
3022 *
3023 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3024 * back.
3025 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3026 * but is not exact.
3027 */
3028 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3029 {
3030 unsigned order = get_order(size);
3031 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3032 if (!p)
3033 return NULL;
3034 return make_alloc_exact((unsigned long)page_address(p), order, size);
3035 }
3036
3037 /**
3038 * free_pages_exact - release memory allocated via alloc_pages_exact()
3039 * @virt: the value returned by alloc_pages_exact.
3040 * @size: size of allocation, same value as passed to alloc_pages_exact().
3041 *
3042 * Release the memory allocated by a previous call to alloc_pages_exact.
3043 */
3044 void free_pages_exact(void *virt, size_t size)
3045 {
3046 unsigned long addr = (unsigned long)virt;
3047 unsigned long end = addr + PAGE_ALIGN(size);
3048
3049 while (addr < end) {
3050 free_page(addr);
3051 addr += PAGE_SIZE;
3052 }
3053 }
3054 EXPORT_SYMBOL(free_pages_exact);
3055
3056 /**
3057 * nr_free_zone_pages - count number of pages beyond high watermark
3058 * @offset: The zone index of the highest zone
3059 *
3060 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3061 * high watermark within all zones at or below a given zone index. For each
3062 * zone, the number of pages is calculated as:
3063 * managed_pages - high_pages
3064 */
3065 static unsigned long nr_free_zone_pages(int offset)
3066 {
3067 struct zoneref *z;
3068 struct zone *zone;
3069
3070 /* Just pick one node, since fallback list is circular */
3071 unsigned long sum = 0;
3072
3073 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3074
3075 for_each_zone_zonelist(zone, z, zonelist, offset) {
3076 unsigned long size = zone->managed_pages;
3077 unsigned long high = high_wmark_pages(zone);
3078 if (size > high)
3079 sum += size - high;
3080 }
3081
3082 return sum;
3083 }
3084
3085 /**
3086 * nr_free_buffer_pages - count number of pages beyond high watermark
3087 *
3088 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3089 * watermark within ZONE_DMA and ZONE_NORMAL.
3090 */
3091 unsigned long nr_free_buffer_pages(void)
3092 {
3093 return nr_free_zone_pages(gfp_zone(GFP_USER));
3094 }
3095 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3096
3097 /**
3098 * nr_free_pagecache_pages - count number of pages beyond high watermark
3099 *
3100 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3101 * high watermark within all zones.
3102 */
3103 unsigned long nr_free_pagecache_pages(void)
3104 {
3105 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3106 }
3107
3108 static inline void show_node(struct zone *zone)
3109 {
3110 if (IS_ENABLED(CONFIG_NUMA))
3111 printk("Node %d ", zone_to_nid(zone));
3112 }
3113
3114 void si_meminfo(struct sysinfo *val)
3115 {
3116 val->totalram = totalram_pages;
3117 val->sharedram = global_page_state(NR_SHMEM);
3118 val->freeram = global_page_state(NR_FREE_PAGES);
3119 val->bufferram = nr_blockdev_pages();
3120 val->totalhigh = totalhigh_pages;
3121 val->freehigh = nr_free_highpages();
3122 val->mem_unit = PAGE_SIZE;
3123 }
3124
3125 EXPORT_SYMBOL(si_meminfo);
3126
3127 #ifdef CONFIG_NUMA
3128 void si_meminfo_node(struct sysinfo *val, int nid)
3129 {
3130 int zone_type; /* needs to be signed */
3131 unsigned long managed_pages = 0;
3132 pg_data_t *pgdat = NODE_DATA(nid);
3133
3134 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3135 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3136 val->totalram = managed_pages;
3137 val->sharedram = node_page_state(nid, NR_SHMEM);
3138 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3139 #ifdef CONFIG_HIGHMEM
3140 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3141 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3142 NR_FREE_PAGES);
3143 #else
3144 val->totalhigh = 0;
3145 val->freehigh = 0;
3146 #endif
3147 val->mem_unit = PAGE_SIZE;
3148 }
3149 #endif
3150
3151 /*
3152 * Determine whether the node should be displayed or not, depending on whether
3153 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3154 */
3155 bool skip_free_areas_node(unsigned int flags, int nid)
3156 {
3157 bool ret = false;
3158 unsigned int cpuset_mems_cookie;
3159
3160 if (!(flags & SHOW_MEM_FILTER_NODES))
3161 goto out;
3162
3163 do {
3164 cpuset_mems_cookie = read_mems_allowed_begin();
3165 ret = !node_isset(nid, cpuset_current_mems_allowed);
3166 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3167 out:
3168 return ret;
3169 }
3170
3171 #define K(x) ((x) << (PAGE_SHIFT-10))
3172
3173 static void show_migration_types(unsigned char type)
3174 {
3175 static const char types[MIGRATE_TYPES] = {
3176 [MIGRATE_UNMOVABLE] = 'U',
3177 [MIGRATE_RECLAIMABLE] = 'E',
3178 [MIGRATE_MOVABLE] = 'M',
3179 [MIGRATE_RESERVE] = 'R',
3180 #ifdef CONFIG_CMA
3181 [MIGRATE_CMA] = 'C',
3182 #endif
3183 #ifdef CONFIG_MEMORY_ISOLATION
3184 [MIGRATE_ISOLATE] = 'I',
3185 #endif
3186 };
3187 char tmp[MIGRATE_TYPES + 1];
3188 char *p = tmp;
3189 int i;
3190
3191 for (i = 0; i < MIGRATE_TYPES; i++) {
3192 if (type & (1 << i))
3193 *p++ = types[i];
3194 }
3195
3196 *p = '\0';
3197 printk("(%s) ", tmp);
3198 }
3199
3200 /*
3201 * Show free area list (used inside shift_scroll-lock stuff)
3202 * We also calculate the percentage fragmentation. We do this by counting the
3203 * memory on each free list with the exception of the first item on the list.
3204 * Suppresses nodes that are not allowed by current's cpuset if
3205 * SHOW_MEM_FILTER_NODES is passed.
3206 */
3207 void show_free_areas(unsigned int filter)
3208 {
3209 int cpu;
3210 struct zone *zone;
3211
3212 for_each_populated_zone(zone) {
3213 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3214 continue;
3215 show_node(zone);
3216 printk("%s per-cpu:\n", zone->name);
3217
3218 for_each_online_cpu(cpu) {
3219 struct per_cpu_pageset *pageset;
3220
3221 pageset = per_cpu_ptr(zone->pageset, cpu);
3222
3223 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3224 cpu, pageset->pcp.high,
3225 pageset->pcp.batch, pageset->pcp.count);
3226 }
3227 }
3228
3229 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3230 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3231 " unevictable:%lu"
3232 " dirty:%lu writeback:%lu unstable:%lu\n"
3233 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3234 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3235 " free_cma:%lu\n",
3236 global_page_state(NR_ACTIVE_ANON),
3237 global_page_state(NR_INACTIVE_ANON),
3238 global_page_state(NR_ISOLATED_ANON),
3239 global_page_state(NR_ACTIVE_FILE),
3240 global_page_state(NR_INACTIVE_FILE),
3241 global_page_state(NR_ISOLATED_FILE),
3242 global_page_state(NR_UNEVICTABLE),
3243 global_page_state(NR_FILE_DIRTY),
3244 global_page_state(NR_WRITEBACK),
3245 global_page_state(NR_UNSTABLE_NFS),
3246 global_page_state(NR_FREE_PAGES),
3247 global_page_state(NR_SLAB_RECLAIMABLE),
3248 global_page_state(NR_SLAB_UNRECLAIMABLE),
3249 global_page_state(NR_FILE_MAPPED),
3250 global_page_state(NR_SHMEM),
3251 global_page_state(NR_PAGETABLE),
3252 global_page_state(NR_BOUNCE),
3253 global_page_state(NR_FREE_CMA_PAGES));
3254
3255 for_each_populated_zone(zone) {
3256 int i;
3257
3258 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3259 continue;
3260 show_node(zone);
3261 printk("%s"
3262 " free:%lukB"
3263 " min:%lukB"
3264 " low:%lukB"
3265 " high:%lukB"
3266 " active_anon:%lukB"
3267 " inactive_anon:%lukB"
3268 " active_file:%lukB"
3269 " inactive_file:%lukB"
3270 " unevictable:%lukB"
3271 " isolated(anon):%lukB"
3272 " isolated(file):%lukB"
3273 " present:%lukB"
3274 " managed:%lukB"
3275 " mlocked:%lukB"
3276 " dirty:%lukB"
3277 " writeback:%lukB"
3278 " mapped:%lukB"
3279 " shmem:%lukB"
3280 " slab_reclaimable:%lukB"
3281 " slab_unreclaimable:%lukB"
3282 " kernel_stack:%lukB"
3283 " pagetables:%lukB"
3284 " unstable:%lukB"
3285 " bounce:%lukB"
3286 " free_cma:%lukB"
3287 " writeback_tmp:%lukB"
3288 " pages_scanned:%lu"
3289 " all_unreclaimable? %s"
3290 "\n",
3291 zone->name,
3292 K(zone_page_state(zone, NR_FREE_PAGES)),
3293 K(min_wmark_pages(zone)),
3294 K(low_wmark_pages(zone)),
3295 K(high_wmark_pages(zone)),
3296 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3297 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3298 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3299 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3300 K(zone_page_state(zone, NR_UNEVICTABLE)),
3301 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3302 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3303 K(zone->present_pages),
3304 K(zone->managed_pages),
3305 K(zone_page_state(zone, NR_MLOCK)),
3306 K(zone_page_state(zone, NR_FILE_DIRTY)),
3307 K(zone_page_state(zone, NR_WRITEBACK)),
3308 K(zone_page_state(zone, NR_FILE_MAPPED)),
3309 K(zone_page_state(zone, NR_SHMEM)),
3310 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3311 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3312 zone_page_state(zone, NR_KERNEL_STACK) *
3313 THREAD_SIZE / 1024,
3314 K(zone_page_state(zone, NR_PAGETABLE)),
3315 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3316 K(zone_page_state(zone, NR_BOUNCE)),
3317 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3318 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3319 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3320 (!zone_reclaimable(zone) ? "yes" : "no")
3321 );
3322 printk("lowmem_reserve[]:");
3323 for (i = 0; i < MAX_NR_ZONES; i++)
3324 printk(" %ld", zone->lowmem_reserve[i]);
3325 printk("\n");
3326 }
3327
3328 for_each_populated_zone(zone) {
3329 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3330 unsigned char types[MAX_ORDER];
3331
3332 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3333 continue;
3334 show_node(zone);
3335 printk("%s: ", zone->name);
3336
3337 spin_lock_irqsave(&zone->lock, flags);
3338 for (order = 0; order < MAX_ORDER; order++) {
3339 struct free_area *area = &zone->free_area[order];
3340 int type;
3341
3342 nr[order] = area->nr_free;
3343 total += nr[order] << order;
3344
3345 types[order] = 0;
3346 for (type = 0; type < MIGRATE_TYPES; type++) {
3347 if (!list_empty(&area->free_list[type]))
3348 types[order] |= 1 << type;
3349 }
3350 }
3351 spin_unlock_irqrestore(&zone->lock, flags);
3352 for (order = 0; order < MAX_ORDER; order++) {
3353 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3354 if (nr[order])
3355 show_migration_types(types[order]);
3356 }
3357 printk("= %lukB\n", K(total));
3358 }
3359
3360 hugetlb_show_meminfo();
3361
3362 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3363
3364 show_swap_cache_info();
3365 }
3366
3367 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3368 {
3369 zoneref->zone = zone;
3370 zoneref->zone_idx = zone_idx(zone);
3371 }
3372
3373 /*
3374 * Builds allocation fallback zone lists.
3375 *
3376 * Add all populated zones of a node to the zonelist.
3377 */
3378 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3379 int nr_zones)
3380 {
3381 struct zone *zone;
3382 enum zone_type zone_type = MAX_NR_ZONES;
3383
3384 do {
3385 zone_type--;
3386 zone = pgdat->node_zones + zone_type;
3387 if (populated_zone(zone)) {
3388 zoneref_set_zone(zone,
3389 &zonelist->_zonerefs[nr_zones++]);
3390 check_highest_zone(zone_type);
3391 }
3392 } while (zone_type);
3393
3394 return nr_zones;
3395 }
3396
3397
3398 /*
3399 * zonelist_order:
3400 * 0 = automatic detection of better ordering.
3401 * 1 = order by ([node] distance, -zonetype)
3402 * 2 = order by (-zonetype, [node] distance)
3403 *
3404 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3405 * the same zonelist. So only NUMA can configure this param.
3406 */
3407 #define ZONELIST_ORDER_DEFAULT 0
3408 #define ZONELIST_ORDER_NODE 1
3409 #define ZONELIST_ORDER_ZONE 2
3410
3411 /* zonelist order in the kernel.
3412 * set_zonelist_order() will set this to NODE or ZONE.
3413 */
3414 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3415 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3416
3417
3418 #ifdef CONFIG_NUMA
3419 /* The value user specified ....changed by config */
3420 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3421 /* string for sysctl */
3422 #define NUMA_ZONELIST_ORDER_LEN 16
3423 char numa_zonelist_order[16] = "default";
3424
3425 /*
3426 * interface for configure zonelist ordering.
3427 * command line option "numa_zonelist_order"
3428 * = "[dD]efault - default, automatic configuration.
3429 * = "[nN]ode - order by node locality, then by zone within node
3430 * = "[zZ]one - order by zone, then by locality within zone
3431 */
3432
3433 static int __parse_numa_zonelist_order(char *s)
3434 {
3435 if (*s == 'd' || *s == 'D') {
3436 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3437 } else if (*s == 'n' || *s == 'N') {
3438 user_zonelist_order = ZONELIST_ORDER_NODE;
3439 } else if (*s == 'z' || *s == 'Z') {
3440 user_zonelist_order = ZONELIST_ORDER_ZONE;
3441 } else {
3442 printk(KERN_WARNING
3443 "Ignoring invalid numa_zonelist_order value: "
3444 "%s\n", s);
3445 return -EINVAL;
3446 }
3447 return 0;
3448 }
3449
3450 static __init int setup_numa_zonelist_order(char *s)
3451 {
3452 int ret;
3453
3454 if (!s)
3455 return 0;
3456
3457 ret = __parse_numa_zonelist_order(s);
3458 if (ret == 0)
3459 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3460
3461 return ret;
3462 }
3463 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3464
3465 /*
3466 * sysctl handler for numa_zonelist_order
3467 */
3468 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3469 void __user *buffer, size_t *length,
3470 loff_t *ppos)
3471 {
3472 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3473 int ret;
3474 static DEFINE_MUTEX(zl_order_mutex);
3475
3476 mutex_lock(&zl_order_mutex);
3477 if (write) {
3478 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3479 ret = -EINVAL;
3480 goto out;
3481 }
3482 strcpy(saved_string, (char *)table->data);
3483 }
3484 ret = proc_dostring(table, write, buffer, length, ppos);
3485 if (ret)
3486 goto out;
3487 if (write) {
3488 int oldval = user_zonelist_order;
3489
3490 ret = __parse_numa_zonelist_order((char *)table->data);
3491 if (ret) {
3492 /*
3493 * bogus value. restore saved string
3494 */
3495 strncpy((char *)table->data, saved_string,
3496 NUMA_ZONELIST_ORDER_LEN);
3497 user_zonelist_order = oldval;
3498 } else if (oldval != user_zonelist_order) {
3499 mutex_lock(&zonelists_mutex);
3500 build_all_zonelists(NULL, NULL);
3501 mutex_unlock(&zonelists_mutex);
3502 }
3503 }
3504 out:
3505 mutex_unlock(&zl_order_mutex);
3506 return ret;
3507 }
3508
3509
3510 #define MAX_NODE_LOAD (nr_online_nodes)
3511 static int node_load[MAX_NUMNODES];
3512
3513 /**
3514 * find_next_best_node - find the next node that should appear in a given node's fallback list
3515 * @node: node whose fallback list we're appending
3516 * @used_node_mask: nodemask_t of already used nodes
3517 *
3518 * We use a number of factors to determine which is the next node that should
3519 * appear on a given node's fallback list. The node should not have appeared
3520 * already in @node's fallback list, and it should be the next closest node
3521 * according to the distance array (which contains arbitrary distance values
3522 * from each node to each node in the system), and should also prefer nodes
3523 * with no CPUs, since presumably they'll have very little allocation pressure
3524 * on them otherwise.
3525 * It returns -1 if no node is found.
3526 */
3527 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3528 {
3529 int n, val;
3530 int min_val = INT_MAX;
3531 int best_node = NUMA_NO_NODE;
3532 const struct cpumask *tmp = cpumask_of_node(0);
3533
3534 /* Use the local node if we haven't already */
3535 if (!node_isset(node, *used_node_mask)) {
3536 node_set(node, *used_node_mask);
3537 return node;
3538 }
3539
3540 for_each_node_state(n, N_MEMORY) {
3541
3542 /* Don't want a node to appear more than once */
3543 if (node_isset(n, *used_node_mask))
3544 continue;
3545
3546 /* Use the distance array to find the distance */
3547 val = node_distance(node, n);
3548
3549 /* Penalize nodes under us ("prefer the next node") */
3550 val += (n < node);
3551
3552 /* Give preference to headless and unused nodes */
3553 tmp = cpumask_of_node(n);
3554 if (!cpumask_empty(tmp))
3555 val += PENALTY_FOR_NODE_WITH_CPUS;
3556
3557 /* Slight preference for less loaded node */
3558 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3559 val += node_load[n];
3560
3561 if (val < min_val) {
3562 min_val = val;
3563 best_node = n;
3564 }
3565 }
3566
3567 if (best_node >= 0)
3568 node_set(best_node, *used_node_mask);
3569
3570 return best_node;
3571 }
3572
3573
3574 /*
3575 * Build zonelists ordered by node and zones within node.
3576 * This results in maximum locality--normal zone overflows into local
3577 * DMA zone, if any--but risks exhausting DMA zone.
3578 */
3579 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3580 {
3581 int j;
3582 struct zonelist *zonelist;
3583
3584 zonelist = &pgdat->node_zonelists[0];
3585 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3586 ;
3587 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3588 zonelist->_zonerefs[j].zone = NULL;
3589 zonelist->_zonerefs[j].zone_idx = 0;
3590 }
3591
3592 /*
3593 * Build gfp_thisnode zonelists
3594 */
3595 static void build_thisnode_zonelists(pg_data_t *pgdat)
3596 {
3597 int j;
3598 struct zonelist *zonelist;
3599
3600 zonelist = &pgdat->node_zonelists[1];
3601 j = build_zonelists_node(pgdat, zonelist, 0);
3602 zonelist->_zonerefs[j].zone = NULL;
3603 zonelist->_zonerefs[j].zone_idx = 0;
3604 }
3605
3606 /*
3607 * Build zonelists ordered by zone and nodes within zones.
3608 * This results in conserving DMA zone[s] until all Normal memory is
3609 * exhausted, but results in overflowing to remote node while memory
3610 * may still exist in local DMA zone.
3611 */
3612 static int node_order[MAX_NUMNODES];
3613
3614 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3615 {
3616 int pos, j, node;
3617 int zone_type; /* needs to be signed */
3618 struct zone *z;
3619 struct zonelist *zonelist;
3620
3621 zonelist = &pgdat->node_zonelists[0];
3622 pos = 0;
3623 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3624 for (j = 0; j < nr_nodes; j++) {
3625 node = node_order[j];
3626 z = &NODE_DATA(node)->node_zones[zone_type];
3627 if (populated_zone(z)) {
3628 zoneref_set_zone(z,
3629 &zonelist->_zonerefs[pos++]);
3630 check_highest_zone(zone_type);
3631 }
3632 }
3633 }
3634 zonelist->_zonerefs[pos].zone = NULL;
3635 zonelist->_zonerefs[pos].zone_idx = 0;
3636 }
3637
3638 #if defined(CONFIG_64BIT)
3639 /*
3640 * Devices that require DMA32/DMA are relatively rare and do not justify a
3641 * penalty to every machine in case the specialised case applies. Default
3642 * to Node-ordering on 64-bit NUMA machines
3643 */
3644 static int default_zonelist_order(void)
3645 {
3646 return ZONELIST_ORDER_NODE;
3647 }
3648 #else
3649 /*
3650 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3651 * by the kernel. If processes running on node 0 deplete the low memory zone
3652 * then reclaim will occur more frequency increasing stalls and potentially
3653 * be easier to OOM if a large percentage of the zone is under writeback or
3654 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3655 * Hence, default to zone ordering on 32-bit.
3656 */
3657 static int default_zonelist_order(void)
3658 {
3659 return ZONELIST_ORDER_ZONE;
3660 }
3661 #endif /* CONFIG_64BIT */
3662
3663 static void set_zonelist_order(void)
3664 {
3665 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3666 current_zonelist_order = default_zonelist_order();
3667 else
3668 current_zonelist_order = user_zonelist_order;
3669 }
3670
3671 static void build_zonelists(pg_data_t *pgdat)
3672 {
3673 int j, node, load;
3674 enum zone_type i;
3675 nodemask_t used_mask;
3676 int local_node, prev_node;
3677 struct zonelist *zonelist;
3678 int order = current_zonelist_order;
3679
3680 /* initialize zonelists */
3681 for (i = 0; i < MAX_ZONELISTS; i++) {
3682 zonelist = pgdat->node_zonelists + i;
3683 zonelist->_zonerefs[0].zone = NULL;
3684 zonelist->_zonerefs[0].zone_idx = 0;
3685 }
3686
3687 /* NUMA-aware ordering of nodes */
3688 local_node = pgdat->node_id;
3689 load = nr_online_nodes;
3690 prev_node = local_node;
3691 nodes_clear(used_mask);
3692
3693 memset(node_order, 0, sizeof(node_order));
3694 j = 0;
3695
3696 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3697 /*
3698 * We don't want to pressure a particular node.
3699 * So adding penalty to the first node in same
3700 * distance group to make it round-robin.
3701 */
3702 if (node_distance(local_node, node) !=
3703 node_distance(local_node, prev_node))
3704 node_load[node] = load;
3705
3706 prev_node = node;
3707 load--;
3708 if (order == ZONELIST_ORDER_NODE)
3709 build_zonelists_in_node_order(pgdat, node);
3710 else
3711 node_order[j++] = node; /* remember order */
3712 }
3713
3714 if (order == ZONELIST_ORDER_ZONE) {
3715 /* calculate node order -- i.e., DMA last! */
3716 build_zonelists_in_zone_order(pgdat, j);
3717 }
3718
3719 build_thisnode_zonelists(pgdat);
3720 }
3721
3722 /* Construct the zonelist performance cache - see further mmzone.h */
3723 static void build_zonelist_cache(pg_data_t *pgdat)
3724 {
3725 struct zonelist *zonelist;
3726 struct zonelist_cache *zlc;
3727 struct zoneref *z;
3728
3729 zonelist = &pgdat->node_zonelists[0];
3730 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3731 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3732 for (z = zonelist->_zonerefs; z->zone; z++)
3733 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3734 }
3735
3736 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3737 /*
3738 * Return node id of node used for "local" allocations.
3739 * I.e., first node id of first zone in arg node's generic zonelist.
3740 * Used for initializing percpu 'numa_mem', which is used primarily
3741 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3742 */
3743 int local_memory_node(int node)
3744 {
3745 struct zone *zone;
3746
3747 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3748 gfp_zone(GFP_KERNEL),
3749 NULL,
3750 &zone);
3751 return zone->node;
3752 }
3753 #endif
3754
3755 #else /* CONFIG_NUMA */
3756
3757 static void set_zonelist_order(void)
3758 {
3759 current_zonelist_order = ZONELIST_ORDER_ZONE;
3760 }
3761
3762 static void build_zonelists(pg_data_t *pgdat)
3763 {
3764 int node, local_node;
3765 enum zone_type j;
3766 struct zonelist *zonelist;
3767
3768 local_node = pgdat->node_id;
3769
3770 zonelist = &pgdat->node_zonelists[0];
3771 j = build_zonelists_node(pgdat, zonelist, 0);
3772
3773 /*
3774 * Now we build the zonelist so that it contains the zones
3775 * of all the other nodes.
3776 * We don't want to pressure a particular node, so when
3777 * building the zones for node N, we make sure that the
3778 * zones coming right after the local ones are those from
3779 * node N+1 (modulo N)
3780 */
3781 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3782 if (!node_online(node))
3783 continue;
3784 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3785 }
3786 for (node = 0; node < local_node; node++) {
3787 if (!node_online(node))
3788 continue;
3789 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3790 }
3791
3792 zonelist->_zonerefs[j].zone = NULL;
3793 zonelist->_zonerefs[j].zone_idx = 0;
3794 }
3795
3796 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3797 static void build_zonelist_cache(pg_data_t *pgdat)
3798 {
3799 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3800 }
3801
3802 #endif /* CONFIG_NUMA */
3803
3804 /*
3805 * Boot pageset table. One per cpu which is going to be used for all
3806 * zones and all nodes. The parameters will be set in such a way
3807 * that an item put on a list will immediately be handed over to
3808 * the buddy list. This is safe since pageset manipulation is done
3809 * with interrupts disabled.
3810 *
3811 * The boot_pagesets must be kept even after bootup is complete for
3812 * unused processors and/or zones. They do play a role for bootstrapping
3813 * hotplugged processors.
3814 *
3815 * zoneinfo_show() and maybe other functions do
3816 * not check if the processor is online before following the pageset pointer.
3817 * Other parts of the kernel may not check if the zone is available.
3818 */
3819 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3820 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3821 static void setup_zone_pageset(struct zone *zone);
3822
3823 /*
3824 * Global mutex to protect against size modification of zonelists
3825 * as well as to serialize pageset setup for the new populated zone.
3826 */
3827 DEFINE_MUTEX(zonelists_mutex);
3828
3829 /* return values int ....just for stop_machine() */
3830 static int __build_all_zonelists(void *data)
3831 {
3832 int nid;
3833 int cpu;
3834 pg_data_t *self = data;
3835
3836 #ifdef CONFIG_NUMA
3837 memset(node_load, 0, sizeof(node_load));
3838 #endif
3839
3840 if (self && !node_online(self->node_id)) {
3841 build_zonelists(self);
3842 build_zonelist_cache(self);
3843 }
3844
3845 for_each_online_node(nid) {
3846 pg_data_t *pgdat = NODE_DATA(nid);
3847
3848 build_zonelists(pgdat);
3849 build_zonelist_cache(pgdat);
3850 }
3851
3852 /*
3853 * Initialize the boot_pagesets that are going to be used
3854 * for bootstrapping processors. The real pagesets for
3855 * each zone will be allocated later when the per cpu
3856 * allocator is available.
3857 *
3858 * boot_pagesets are used also for bootstrapping offline
3859 * cpus if the system is already booted because the pagesets
3860 * are needed to initialize allocators on a specific cpu too.
3861 * F.e. the percpu allocator needs the page allocator which
3862 * needs the percpu allocator in order to allocate its pagesets
3863 * (a chicken-egg dilemma).
3864 */
3865 for_each_possible_cpu(cpu) {
3866 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3867
3868 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3869 /*
3870 * We now know the "local memory node" for each node--
3871 * i.e., the node of the first zone in the generic zonelist.
3872 * Set up numa_mem percpu variable for on-line cpus. During
3873 * boot, only the boot cpu should be on-line; we'll init the
3874 * secondary cpus' numa_mem as they come on-line. During
3875 * node/memory hotplug, we'll fixup all on-line cpus.
3876 */
3877 if (cpu_online(cpu))
3878 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3879 #endif
3880 }
3881
3882 return 0;
3883 }
3884
3885 static noinline void __init
3886 build_all_zonelists_init(void)
3887 {
3888 __build_all_zonelists(NULL);
3889 mminit_verify_zonelist();
3890 cpuset_init_current_mems_allowed();
3891 }
3892
3893 /*
3894 * Called with zonelists_mutex held always
3895 * unless system_state == SYSTEM_BOOTING.
3896 *
3897 * __ref due to (1) call of __meminit annotated setup_zone_pageset
3898 * [we're only called with non-NULL zone through __meminit paths] and
3899 * (2) call of __init annotated helper build_all_zonelists_init
3900 * [protected by SYSTEM_BOOTING].
3901 */
3902 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3903 {
3904 set_zonelist_order();
3905
3906 if (system_state == SYSTEM_BOOTING) {
3907 build_all_zonelists_init();
3908 } else {
3909 #ifdef CONFIG_MEMORY_HOTPLUG
3910 if (zone)
3911 setup_zone_pageset(zone);
3912 #endif
3913 /* we have to stop all cpus to guarantee there is no user
3914 of zonelist */
3915 stop_machine(__build_all_zonelists, pgdat, NULL);
3916 /* cpuset refresh routine should be here */
3917 }
3918 vm_total_pages = nr_free_pagecache_pages();
3919 /*
3920 * Disable grouping by mobility if the number of pages in the
3921 * system is too low to allow the mechanism to work. It would be
3922 * more accurate, but expensive to check per-zone. This check is
3923 * made on memory-hotadd so a system can start with mobility
3924 * disabled and enable it later
3925 */
3926 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3927 page_group_by_mobility_disabled = 1;
3928 else
3929 page_group_by_mobility_disabled = 0;
3930
3931 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
3932 "Total pages: %ld\n",
3933 nr_online_nodes,
3934 zonelist_order_name[current_zonelist_order],
3935 page_group_by_mobility_disabled ? "off" : "on",
3936 vm_total_pages);
3937 #ifdef CONFIG_NUMA
3938 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
3939 #endif
3940 }
3941
3942 /*
3943 * Helper functions to size the waitqueue hash table.
3944 * Essentially these want to choose hash table sizes sufficiently
3945 * large so that collisions trying to wait on pages are rare.
3946 * But in fact, the number of active page waitqueues on typical
3947 * systems is ridiculously low, less than 200. So this is even
3948 * conservative, even though it seems large.
3949 *
3950 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3951 * waitqueues, i.e. the size of the waitq table given the number of pages.
3952 */
3953 #define PAGES_PER_WAITQUEUE 256
3954
3955 #ifndef CONFIG_MEMORY_HOTPLUG
3956 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3957 {
3958 unsigned long size = 1;
3959
3960 pages /= PAGES_PER_WAITQUEUE;
3961
3962 while (size < pages)
3963 size <<= 1;
3964
3965 /*
3966 * Once we have dozens or even hundreds of threads sleeping
3967 * on IO we've got bigger problems than wait queue collision.
3968 * Limit the size of the wait table to a reasonable size.
3969 */
3970 size = min(size, 4096UL);
3971
3972 return max(size, 4UL);
3973 }
3974 #else
3975 /*
3976 * A zone's size might be changed by hot-add, so it is not possible to determine
3977 * a suitable size for its wait_table. So we use the maximum size now.
3978 *
3979 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3980 *
3981 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3982 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3983 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3984 *
3985 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3986 * or more by the traditional way. (See above). It equals:
3987 *
3988 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3989 * ia64(16K page size) : = ( 8G + 4M)byte.
3990 * powerpc (64K page size) : = (32G +16M)byte.
3991 */
3992 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3993 {
3994 return 4096UL;
3995 }
3996 #endif
3997
3998 /*
3999 * This is an integer logarithm so that shifts can be used later
4000 * to extract the more random high bits from the multiplicative
4001 * hash function before the remainder is taken.
4002 */
4003 static inline unsigned long wait_table_bits(unsigned long size)
4004 {
4005 return ffz(~size);
4006 }
4007
4008 /*
4009 * Check if a pageblock contains reserved pages
4010 */
4011 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4012 {
4013 unsigned long pfn;
4014
4015 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4016 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4017 return 1;
4018 }
4019 return 0;
4020 }
4021
4022 /*
4023 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4024 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4025 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4026 * higher will lead to a bigger reserve which will get freed as contiguous
4027 * blocks as reclaim kicks in
4028 */
4029 static void setup_zone_migrate_reserve(struct zone *zone)
4030 {
4031 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4032 struct page *page;
4033 unsigned long block_migratetype;
4034 int reserve;
4035 int old_reserve;
4036
4037 /*
4038 * Get the start pfn, end pfn and the number of blocks to reserve
4039 * We have to be careful to be aligned to pageblock_nr_pages to
4040 * make sure that we always check pfn_valid for the first page in
4041 * the block.
4042 */
4043 start_pfn = zone->zone_start_pfn;
4044 end_pfn = zone_end_pfn(zone);
4045 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4046 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4047 pageblock_order;
4048
4049 /*
4050 * Reserve blocks are generally in place to help high-order atomic
4051 * allocations that are short-lived. A min_free_kbytes value that
4052 * would result in more than 2 reserve blocks for atomic allocations
4053 * is assumed to be in place to help anti-fragmentation for the
4054 * future allocation of hugepages at runtime.
4055 */
4056 reserve = min(2, reserve);
4057 old_reserve = zone->nr_migrate_reserve_block;
4058
4059 /* When memory hot-add, we almost always need to do nothing */
4060 if (reserve == old_reserve)
4061 return;
4062 zone->nr_migrate_reserve_block = reserve;
4063
4064 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4065 if (!pfn_valid(pfn))
4066 continue;
4067 page = pfn_to_page(pfn);
4068
4069 /* Watch out for overlapping nodes */
4070 if (page_to_nid(page) != zone_to_nid(zone))
4071 continue;
4072
4073 block_migratetype = get_pageblock_migratetype(page);
4074
4075 /* Only test what is necessary when the reserves are not met */
4076 if (reserve > 0) {
4077 /*
4078 * Blocks with reserved pages will never free, skip
4079 * them.
4080 */
4081 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4082 if (pageblock_is_reserved(pfn, block_end_pfn))
4083 continue;
4084
4085 /* If this block is reserved, account for it */
4086 if (block_migratetype == MIGRATE_RESERVE) {
4087 reserve--;
4088 continue;
4089 }
4090
4091 /* Suitable for reserving if this block is movable */
4092 if (block_migratetype == MIGRATE_MOVABLE) {
4093 set_pageblock_migratetype(page,
4094 MIGRATE_RESERVE);
4095 move_freepages_block(zone, page,
4096 MIGRATE_RESERVE);
4097 reserve--;
4098 continue;
4099 }
4100 } else if (!old_reserve) {
4101 /*
4102 * At boot time we don't need to scan the whole zone
4103 * for turning off MIGRATE_RESERVE.
4104 */
4105 break;
4106 }
4107
4108 /*
4109 * If the reserve is met and this is a previous reserved block,
4110 * take it back
4111 */
4112 if (block_migratetype == MIGRATE_RESERVE) {
4113 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4114 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4115 }
4116 }
4117 }
4118
4119 /*
4120 * Initially all pages are reserved - free ones are freed
4121 * up by free_all_bootmem() once the early boot process is
4122 * done. Non-atomic initialization, single-pass.
4123 */
4124 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4125 unsigned long start_pfn, enum memmap_context context)
4126 {
4127 struct page *page;
4128 unsigned long end_pfn = start_pfn + size;
4129 unsigned long pfn;
4130 struct zone *z;
4131
4132 if (highest_memmap_pfn < end_pfn - 1)
4133 highest_memmap_pfn = end_pfn - 1;
4134
4135 z = &NODE_DATA(nid)->node_zones[zone];
4136 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4137 /*
4138 * There can be holes in boot-time mem_map[]s
4139 * handed to this function. They do not
4140 * exist on hotplugged memory.
4141 */
4142 if (context == MEMMAP_EARLY) {
4143 if (!early_pfn_valid(pfn))
4144 continue;
4145 if (!early_pfn_in_nid(pfn, nid))
4146 continue;
4147 }
4148 page = pfn_to_page(pfn);
4149 set_page_links(page, zone, nid, pfn);
4150 mminit_verify_page_links(page, zone, nid, pfn);
4151 init_page_count(page);
4152 page_mapcount_reset(page);
4153 page_cpupid_reset_last(page);
4154 SetPageReserved(page);
4155 /*
4156 * Mark the block movable so that blocks are reserved for
4157 * movable at startup. This will force kernel allocations
4158 * to reserve their blocks rather than leaking throughout
4159 * the address space during boot when many long-lived
4160 * kernel allocations are made. Later some blocks near
4161 * the start are marked MIGRATE_RESERVE by
4162 * setup_zone_migrate_reserve()
4163 *
4164 * bitmap is created for zone's valid pfn range. but memmap
4165 * can be created for invalid pages (for alignment)
4166 * check here not to call set_pageblock_migratetype() against
4167 * pfn out of zone.
4168 */
4169 if ((z->zone_start_pfn <= pfn)
4170 && (pfn < zone_end_pfn(z))
4171 && !(pfn & (pageblock_nr_pages - 1)))
4172 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4173
4174 INIT_LIST_HEAD(&page->lru);
4175 #ifdef WANT_PAGE_VIRTUAL
4176 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4177 if (!is_highmem_idx(zone))
4178 set_page_address(page, __va(pfn << PAGE_SHIFT));
4179 #endif
4180 }
4181 }
4182
4183 static void __meminit zone_init_free_lists(struct zone *zone)
4184 {
4185 unsigned int order, t;
4186 for_each_migratetype_order(order, t) {
4187 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4188 zone->free_area[order].nr_free = 0;
4189 }
4190 }
4191
4192 #ifndef __HAVE_ARCH_MEMMAP_INIT
4193 #define memmap_init(size, nid, zone, start_pfn) \
4194 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4195 #endif
4196
4197 static int zone_batchsize(struct zone *zone)
4198 {
4199 #ifdef CONFIG_MMU
4200 int batch;
4201
4202 /*
4203 * The per-cpu-pages pools are set to around 1000th of the
4204 * size of the zone. But no more than 1/2 of a meg.
4205 *
4206 * OK, so we don't know how big the cache is. So guess.
4207 */
4208 batch = zone->managed_pages / 1024;
4209 if (batch * PAGE_SIZE > 512 * 1024)
4210 batch = (512 * 1024) / PAGE_SIZE;
4211 batch /= 4; /* We effectively *= 4 below */
4212 if (batch < 1)
4213 batch = 1;
4214
4215 /*
4216 * Clamp the batch to a 2^n - 1 value. Having a power
4217 * of 2 value was found to be more likely to have
4218 * suboptimal cache aliasing properties in some cases.
4219 *
4220 * For example if 2 tasks are alternately allocating
4221 * batches of pages, one task can end up with a lot
4222 * of pages of one half of the possible page colors
4223 * and the other with pages of the other colors.
4224 */
4225 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4226
4227 return batch;
4228
4229 #else
4230 /* The deferral and batching of frees should be suppressed under NOMMU
4231 * conditions.
4232 *
4233 * The problem is that NOMMU needs to be able to allocate large chunks
4234 * of contiguous memory as there's no hardware page translation to
4235 * assemble apparent contiguous memory from discontiguous pages.
4236 *
4237 * Queueing large contiguous runs of pages for batching, however,
4238 * causes the pages to actually be freed in smaller chunks. As there
4239 * can be a significant delay between the individual batches being
4240 * recycled, this leads to the once large chunks of space being
4241 * fragmented and becoming unavailable for high-order allocations.
4242 */
4243 return 0;
4244 #endif
4245 }
4246
4247 /*
4248 * pcp->high and pcp->batch values are related and dependent on one another:
4249 * ->batch must never be higher then ->high.
4250 * The following function updates them in a safe manner without read side
4251 * locking.
4252 *
4253 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4254 * those fields changing asynchronously (acording the the above rule).
4255 *
4256 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4257 * outside of boot time (or some other assurance that no concurrent updaters
4258 * exist).
4259 */
4260 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4261 unsigned long batch)
4262 {
4263 /* start with a fail safe value for batch */
4264 pcp->batch = 1;
4265 smp_wmb();
4266
4267 /* Update high, then batch, in order */
4268 pcp->high = high;
4269 smp_wmb();
4270
4271 pcp->batch = batch;
4272 }
4273
4274 /* a companion to pageset_set_high() */
4275 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4276 {
4277 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4278 }
4279
4280 static void pageset_init(struct per_cpu_pageset *p)
4281 {
4282 struct per_cpu_pages *pcp;
4283 int migratetype;
4284
4285 memset(p, 0, sizeof(*p));
4286
4287 pcp = &p->pcp;
4288 pcp->count = 0;
4289 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4290 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4291 }
4292
4293 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4294 {
4295 pageset_init(p);
4296 pageset_set_batch(p, batch);
4297 }
4298
4299 /*
4300 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4301 * to the value high for the pageset p.
4302 */
4303 static void pageset_set_high(struct per_cpu_pageset *p,
4304 unsigned long high)
4305 {
4306 unsigned long batch = max(1UL, high / 4);
4307 if ((high / 4) > (PAGE_SHIFT * 8))
4308 batch = PAGE_SHIFT * 8;
4309
4310 pageset_update(&p->pcp, high, batch);
4311 }
4312
4313 static void pageset_set_high_and_batch(struct zone *zone,
4314 struct per_cpu_pageset *pcp)
4315 {
4316 if (percpu_pagelist_fraction)
4317 pageset_set_high(pcp,
4318 (zone->managed_pages /
4319 percpu_pagelist_fraction));
4320 else
4321 pageset_set_batch(pcp, zone_batchsize(zone));
4322 }
4323
4324 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4325 {
4326 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4327
4328 pageset_init(pcp);
4329 pageset_set_high_and_batch(zone, pcp);
4330 }
4331
4332 static void __meminit setup_zone_pageset(struct zone *zone)
4333 {
4334 int cpu;
4335 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4336 for_each_possible_cpu(cpu)
4337 zone_pageset_init(zone, cpu);
4338 }
4339
4340 /*
4341 * Allocate per cpu pagesets and initialize them.
4342 * Before this call only boot pagesets were available.
4343 */
4344 void __init setup_per_cpu_pageset(void)
4345 {
4346 struct zone *zone;
4347
4348 for_each_populated_zone(zone)
4349 setup_zone_pageset(zone);
4350 }
4351
4352 static noinline __init_refok
4353 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4354 {
4355 int i;
4356 size_t alloc_size;
4357
4358 /*
4359 * The per-page waitqueue mechanism uses hashed waitqueues
4360 * per zone.
4361 */
4362 zone->wait_table_hash_nr_entries =
4363 wait_table_hash_nr_entries(zone_size_pages);
4364 zone->wait_table_bits =
4365 wait_table_bits(zone->wait_table_hash_nr_entries);
4366 alloc_size = zone->wait_table_hash_nr_entries
4367 * sizeof(wait_queue_head_t);
4368
4369 if (!slab_is_available()) {
4370 zone->wait_table = (wait_queue_head_t *)
4371 memblock_virt_alloc_node_nopanic(
4372 alloc_size, zone->zone_pgdat->node_id);
4373 } else {
4374 /*
4375 * This case means that a zone whose size was 0 gets new memory
4376 * via memory hot-add.
4377 * But it may be the case that a new node was hot-added. In
4378 * this case vmalloc() will not be able to use this new node's
4379 * memory - this wait_table must be initialized to use this new
4380 * node itself as well.
4381 * To use this new node's memory, further consideration will be
4382 * necessary.
4383 */
4384 zone->wait_table = vmalloc(alloc_size);
4385 }
4386 if (!zone->wait_table)
4387 return -ENOMEM;
4388
4389 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4390 init_waitqueue_head(zone->wait_table + i);
4391
4392 return 0;
4393 }
4394
4395 static __meminit void zone_pcp_init(struct zone *zone)
4396 {
4397 /*
4398 * per cpu subsystem is not up at this point. The following code
4399 * relies on the ability of the linker to provide the
4400 * offset of a (static) per cpu variable into the per cpu area.
4401 */
4402 zone->pageset = &boot_pageset;
4403
4404 if (populated_zone(zone))
4405 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4406 zone->name, zone->present_pages,
4407 zone_batchsize(zone));
4408 }
4409
4410 int __meminit init_currently_empty_zone(struct zone *zone,
4411 unsigned long zone_start_pfn,
4412 unsigned long size,
4413 enum memmap_context context)
4414 {
4415 struct pglist_data *pgdat = zone->zone_pgdat;
4416 int ret;
4417 ret = zone_wait_table_init(zone, size);
4418 if (ret)
4419 return ret;
4420 pgdat->nr_zones = zone_idx(zone) + 1;
4421
4422 zone->zone_start_pfn = zone_start_pfn;
4423
4424 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4425 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4426 pgdat->node_id,
4427 (unsigned long)zone_idx(zone),
4428 zone_start_pfn, (zone_start_pfn + size));
4429
4430 zone_init_free_lists(zone);
4431
4432 return 0;
4433 }
4434
4435 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4436 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4437 /*
4438 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4439 */
4440 int __meminit __early_pfn_to_nid(unsigned long pfn)
4441 {
4442 unsigned long start_pfn, end_pfn;
4443 int nid;
4444 /*
4445 * NOTE: The following SMP-unsafe globals are only used early in boot
4446 * when the kernel is running single-threaded.
4447 */
4448 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4449 static int __meminitdata last_nid;
4450
4451 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4452 return last_nid;
4453
4454 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4455 if (nid != -1) {
4456 last_start_pfn = start_pfn;
4457 last_end_pfn = end_pfn;
4458 last_nid = nid;
4459 }
4460
4461 return nid;
4462 }
4463 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4464
4465 int __meminit early_pfn_to_nid(unsigned long pfn)
4466 {
4467 int nid;
4468
4469 nid = __early_pfn_to_nid(pfn);
4470 if (nid >= 0)
4471 return nid;
4472 /* just returns 0 */
4473 return 0;
4474 }
4475
4476 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4477 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4478 {
4479 int nid;
4480
4481 nid = __early_pfn_to_nid(pfn);
4482 if (nid >= 0 && nid != node)
4483 return false;
4484 return true;
4485 }
4486 #endif
4487
4488 /**
4489 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4490 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4491 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4492 *
4493 * If an architecture guarantees that all ranges registered contain no holes
4494 * and may be freed, this this function may be used instead of calling
4495 * memblock_free_early_nid() manually.
4496 */
4497 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4498 {
4499 unsigned long start_pfn, end_pfn;
4500 int i, this_nid;
4501
4502 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4503 start_pfn = min(start_pfn, max_low_pfn);
4504 end_pfn = min(end_pfn, max_low_pfn);
4505
4506 if (start_pfn < end_pfn)
4507 memblock_free_early_nid(PFN_PHYS(start_pfn),
4508 (end_pfn - start_pfn) << PAGE_SHIFT,
4509 this_nid);
4510 }
4511 }
4512
4513 /**
4514 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4515 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4516 *
4517 * If an architecture guarantees that all ranges registered contain no holes and may
4518 * be freed, this function may be used instead of calling memory_present() manually.
4519 */
4520 void __init sparse_memory_present_with_active_regions(int nid)
4521 {
4522 unsigned long start_pfn, end_pfn;
4523 int i, this_nid;
4524
4525 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4526 memory_present(this_nid, start_pfn, end_pfn);
4527 }
4528
4529 /**
4530 * get_pfn_range_for_nid - Return the start and end page frames for a node
4531 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4532 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4533 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4534 *
4535 * It returns the start and end page frame of a node based on information
4536 * provided by memblock_set_node(). If called for a node
4537 * with no available memory, a warning is printed and the start and end
4538 * PFNs will be 0.
4539 */
4540 void __meminit get_pfn_range_for_nid(unsigned int nid,
4541 unsigned long *start_pfn, unsigned long *end_pfn)
4542 {
4543 unsigned long this_start_pfn, this_end_pfn;
4544 int i;
4545
4546 *start_pfn = -1UL;
4547 *end_pfn = 0;
4548
4549 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4550 *start_pfn = min(*start_pfn, this_start_pfn);
4551 *end_pfn = max(*end_pfn, this_end_pfn);
4552 }
4553
4554 if (*start_pfn == -1UL)
4555 *start_pfn = 0;
4556 }
4557
4558 /*
4559 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4560 * assumption is made that zones within a node are ordered in monotonic
4561 * increasing memory addresses so that the "highest" populated zone is used
4562 */
4563 static void __init find_usable_zone_for_movable(void)
4564 {
4565 int zone_index;
4566 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4567 if (zone_index == ZONE_MOVABLE)
4568 continue;
4569
4570 if (arch_zone_highest_possible_pfn[zone_index] >
4571 arch_zone_lowest_possible_pfn[zone_index])
4572 break;
4573 }
4574
4575 VM_BUG_ON(zone_index == -1);
4576 movable_zone = zone_index;
4577 }
4578
4579 /*
4580 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4581 * because it is sized independent of architecture. Unlike the other zones,
4582 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4583 * in each node depending on the size of each node and how evenly kernelcore
4584 * is distributed. This helper function adjusts the zone ranges
4585 * provided by the architecture for a given node by using the end of the
4586 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4587 * zones within a node are in order of monotonic increases memory addresses
4588 */
4589 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4590 unsigned long zone_type,
4591 unsigned long node_start_pfn,
4592 unsigned long node_end_pfn,
4593 unsigned long *zone_start_pfn,
4594 unsigned long *zone_end_pfn)
4595 {
4596 /* Only adjust if ZONE_MOVABLE is on this node */
4597 if (zone_movable_pfn[nid]) {
4598 /* Size ZONE_MOVABLE */
4599 if (zone_type == ZONE_MOVABLE) {
4600 *zone_start_pfn = zone_movable_pfn[nid];
4601 *zone_end_pfn = min(node_end_pfn,
4602 arch_zone_highest_possible_pfn[movable_zone]);
4603
4604 /* Adjust for ZONE_MOVABLE starting within this range */
4605 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4606 *zone_end_pfn > zone_movable_pfn[nid]) {
4607 *zone_end_pfn = zone_movable_pfn[nid];
4608
4609 /* Check if this whole range is within ZONE_MOVABLE */
4610 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4611 *zone_start_pfn = *zone_end_pfn;
4612 }
4613 }
4614
4615 /*
4616 * Return the number of pages a zone spans in a node, including holes
4617 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4618 */
4619 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4620 unsigned long zone_type,
4621 unsigned long node_start_pfn,
4622 unsigned long node_end_pfn,
4623 unsigned long *ignored)
4624 {
4625 unsigned long zone_start_pfn, zone_end_pfn;
4626
4627 /* Get the start and end of the zone */
4628 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4629 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4630 adjust_zone_range_for_zone_movable(nid, zone_type,
4631 node_start_pfn, node_end_pfn,
4632 &zone_start_pfn, &zone_end_pfn);
4633
4634 /* Check that this node has pages within the zone's required range */
4635 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4636 return 0;
4637
4638 /* Move the zone boundaries inside the node if necessary */
4639 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4640 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4641
4642 /* Return the spanned pages */
4643 return zone_end_pfn - zone_start_pfn;
4644 }
4645
4646 /*
4647 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4648 * then all holes in the requested range will be accounted for.
4649 */
4650 unsigned long __meminit __absent_pages_in_range(int nid,
4651 unsigned long range_start_pfn,
4652 unsigned long range_end_pfn)
4653 {
4654 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4655 unsigned long start_pfn, end_pfn;
4656 int i;
4657
4658 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4659 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4660 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4661 nr_absent -= end_pfn - start_pfn;
4662 }
4663 return nr_absent;
4664 }
4665
4666 /**
4667 * absent_pages_in_range - Return number of page frames in holes within a range
4668 * @start_pfn: The start PFN to start searching for holes
4669 * @end_pfn: The end PFN to stop searching for holes
4670 *
4671 * It returns the number of pages frames in memory holes within a range.
4672 */
4673 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4674 unsigned long end_pfn)
4675 {
4676 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4677 }
4678
4679 /* Return the number of page frames in holes in a zone on a node */
4680 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4681 unsigned long zone_type,
4682 unsigned long node_start_pfn,
4683 unsigned long node_end_pfn,
4684 unsigned long *ignored)
4685 {
4686 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4687 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4688 unsigned long zone_start_pfn, zone_end_pfn;
4689
4690 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4691 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4692
4693 adjust_zone_range_for_zone_movable(nid, zone_type,
4694 node_start_pfn, node_end_pfn,
4695 &zone_start_pfn, &zone_end_pfn);
4696 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4697 }
4698
4699 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4700 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4701 unsigned long zone_type,
4702 unsigned long node_start_pfn,
4703 unsigned long node_end_pfn,
4704 unsigned long *zones_size)
4705 {
4706 return zones_size[zone_type];
4707 }
4708
4709 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4710 unsigned long zone_type,
4711 unsigned long node_start_pfn,
4712 unsigned long node_end_pfn,
4713 unsigned long *zholes_size)
4714 {
4715 if (!zholes_size)
4716 return 0;
4717
4718 return zholes_size[zone_type];
4719 }
4720
4721 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4722
4723 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4724 unsigned long node_start_pfn,
4725 unsigned long node_end_pfn,
4726 unsigned long *zones_size,
4727 unsigned long *zholes_size)
4728 {
4729 unsigned long realtotalpages, totalpages = 0;
4730 enum zone_type i;
4731
4732 for (i = 0; i < MAX_NR_ZONES; i++)
4733 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4734 node_start_pfn,
4735 node_end_pfn,
4736 zones_size);
4737 pgdat->node_spanned_pages = totalpages;
4738
4739 realtotalpages = totalpages;
4740 for (i = 0; i < MAX_NR_ZONES; i++)
4741 realtotalpages -=
4742 zone_absent_pages_in_node(pgdat->node_id, i,
4743 node_start_pfn, node_end_pfn,
4744 zholes_size);
4745 pgdat->node_present_pages = realtotalpages;
4746 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4747 realtotalpages);
4748 }
4749
4750 #ifndef CONFIG_SPARSEMEM
4751 /*
4752 * Calculate the size of the zone->blockflags rounded to an unsigned long
4753 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4754 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4755 * round what is now in bits to nearest long in bits, then return it in
4756 * bytes.
4757 */
4758 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4759 {
4760 unsigned long usemapsize;
4761
4762 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4763 usemapsize = roundup(zonesize, pageblock_nr_pages);
4764 usemapsize = usemapsize >> pageblock_order;
4765 usemapsize *= NR_PAGEBLOCK_BITS;
4766 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4767
4768 return usemapsize / 8;
4769 }
4770
4771 static void __init setup_usemap(struct pglist_data *pgdat,
4772 struct zone *zone,
4773 unsigned long zone_start_pfn,
4774 unsigned long zonesize)
4775 {
4776 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4777 zone->pageblock_flags = NULL;
4778 if (usemapsize)
4779 zone->pageblock_flags =
4780 memblock_virt_alloc_node_nopanic(usemapsize,
4781 pgdat->node_id);
4782 }
4783 #else
4784 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4785 unsigned long zone_start_pfn, unsigned long zonesize) {}
4786 #endif /* CONFIG_SPARSEMEM */
4787
4788 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4789
4790 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4791 void __paginginit set_pageblock_order(void)
4792 {
4793 unsigned int order;
4794
4795 /* Check that pageblock_nr_pages has not already been setup */
4796 if (pageblock_order)
4797 return;
4798
4799 if (HPAGE_SHIFT > PAGE_SHIFT)
4800 order = HUGETLB_PAGE_ORDER;
4801 else
4802 order = MAX_ORDER - 1;
4803
4804 /*
4805 * Assume the largest contiguous order of interest is a huge page.
4806 * This value may be variable depending on boot parameters on IA64 and
4807 * powerpc.
4808 */
4809 pageblock_order = order;
4810 }
4811 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4812
4813 /*
4814 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4815 * is unused as pageblock_order is set at compile-time. See
4816 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4817 * the kernel config
4818 */
4819 void __paginginit set_pageblock_order(void)
4820 {
4821 }
4822
4823 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4824
4825 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4826 unsigned long present_pages)
4827 {
4828 unsigned long pages = spanned_pages;
4829
4830 /*
4831 * Provide a more accurate estimation if there are holes within
4832 * the zone and SPARSEMEM is in use. If there are holes within the
4833 * zone, each populated memory region may cost us one or two extra
4834 * memmap pages due to alignment because memmap pages for each
4835 * populated regions may not naturally algined on page boundary.
4836 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4837 */
4838 if (spanned_pages > present_pages + (present_pages >> 4) &&
4839 IS_ENABLED(CONFIG_SPARSEMEM))
4840 pages = present_pages;
4841
4842 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4843 }
4844
4845 /*
4846 * Set up the zone data structures:
4847 * - mark all pages reserved
4848 * - mark all memory queues empty
4849 * - clear the memory bitmaps
4850 *
4851 * NOTE: pgdat should get zeroed by caller.
4852 */
4853 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4854 unsigned long node_start_pfn, unsigned long node_end_pfn,
4855 unsigned long *zones_size, unsigned long *zholes_size)
4856 {
4857 enum zone_type j;
4858 int nid = pgdat->node_id;
4859 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4860 int ret;
4861
4862 pgdat_resize_init(pgdat);
4863 #ifdef CONFIG_NUMA_BALANCING
4864 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4865 pgdat->numabalancing_migrate_nr_pages = 0;
4866 pgdat->numabalancing_migrate_next_window = jiffies;
4867 #endif
4868 init_waitqueue_head(&pgdat->kswapd_wait);
4869 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4870 pgdat_page_ext_init(pgdat);
4871
4872 for (j = 0; j < MAX_NR_ZONES; j++) {
4873 struct zone *zone = pgdat->node_zones + j;
4874 unsigned long size, realsize, freesize, memmap_pages;
4875
4876 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4877 node_end_pfn, zones_size);
4878 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4879 node_start_pfn,
4880 node_end_pfn,
4881 zholes_size);
4882
4883 /*
4884 * Adjust freesize so that it accounts for how much memory
4885 * is used by this zone for memmap. This affects the watermark
4886 * and per-cpu initialisations
4887 */
4888 memmap_pages = calc_memmap_size(size, realsize);
4889 if (!is_highmem_idx(j)) {
4890 if (freesize >= memmap_pages) {
4891 freesize -= memmap_pages;
4892 if (memmap_pages)
4893 printk(KERN_DEBUG
4894 " %s zone: %lu pages used for memmap\n",
4895 zone_names[j], memmap_pages);
4896 } else
4897 printk(KERN_WARNING
4898 " %s zone: %lu pages exceeds freesize %lu\n",
4899 zone_names[j], memmap_pages, freesize);
4900 }
4901
4902 /* Account for reserved pages */
4903 if (j == 0 && freesize > dma_reserve) {
4904 freesize -= dma_reserve;
4905 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4906 zone_names[0], dma_reserve);
4907 }
4908
4909 if (!is_highmem_idx(j))
4910 nr_kernel_pages += freesize;
4911 /* Charge for highmem memmap if there are enough kernel pages */
4912 else if (nr_kernel_pages > memmap_pages * 2)
4913 nr_kernel_pages -= memmap_pages;
4914 nr_all_pages += freesize;
4915
4916 zone->spanned_pages = size;
4917 zone->present_pages = realsize;
4918 /*
4919 * Set an approximate value for lowmem here, it will be adjusted
4920 * when the bootmem allocator frees pages into the buddy system.
4921 * And all highmem pages will be managed by the buddy system.
4922 */
4923 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4924 #ifdef CONFIG_NUMA
4925 zone->node = nid;
4926 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4927 / 100;
4928 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4929 #endif
4930 zone->name = zone_names[j];
4931 spin_lock_init(&zone->lock);
4932 spin_lock_init(&zone->lru_lock);
4933 zone_seqlock_init(zone);
4934 zone->zone_pgdat = pgdat;
4935 zone_pcp_init(zone);
4936
4937 /* For bootup, initialized properly in watermark setup */
4938 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4939
4940 lruvec_init(&zone->lruvec);
4941 if (!size)
4942 continue;
4943
4944 set_pageblock_order();
4945 setup_usemap(pgdat, zone, zone_start_pfn, size);
4946 ret = init_currently_empty_zone(zone, zone_start_pfn,
4947 size, MEMMAP_EARLY);
4948 BUG_ON(ret);
4949 memmap_init(size, nid, j, zone_start_pfn);
4950 zone_start_pfn += size;
4951 }
4952 }
4953
4954 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4955 {
4956 /* Skip empty nodes */
4957 if (!pgdat->node_spanned_pages)
4958 return;
4959
4960 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4961 /* ia64 gets its own node_mem_map, before this, without bootmem */
4962 if (!pgdat->node_mem_map) {
4963 unsigned long size, start, end;
4964 struct page *map;
4965
4966 /*
4967 * The zone's endpoints aren't required to be MAX_ORDER
4968 * aligned but the node_mem_map endpoints must be in order
4969 * for the buddy allocator to function correctly.
4970 */
4971 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4972 end = pgdat_end_pfn(pgdat);
4973 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4974 size = (end - start) * sizeof(struct page);
4975 map = alloc_remap(pgdat->node_id, size);
4976 if (!map)
4977 map = memblock_virt_alloc_node_nopanic(size,
4978 pgdat->node_id);
4979 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4980 }
4981 #ifndef CONFIG_NEED_MULTIPLE_NODES
4982 /*
4983 * With no DISCONTIG, the global mem_map is just set as node 0's
4984 */
4985 if (pgdat == NODE_DATA(0)) {
4986 mem_map = NODE_DATA(0)->node_mem_map;
4987 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4988 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4989 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4990 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4991 }
4992 #endif
4993 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4994 }
4995
4996 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4997 unsigned long node_start_pfn, unsigned long *zholes_size)
4998 {
4999 pg_data_t *pgdat = NODE_DATA(nid);
5000 unsigned long start_pfn = 0;
5001 unsigned long end_pfn = 0;
5002
5003 /* pg_data_t should be reset to zero when it's allocated */
5004 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5005
5006 pgdat->node_id = nid;
5007 pgdat->node_start_pfn = node_start_pfn;
5008 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5009 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5010 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5011 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
5012 #endif
5013 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5014 zones_size, zholes_size);
5015
5016 alloc_node_mem_map(pgdat);
5017 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5018 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5019 nid, (unsigned long)pgdat,
5020 (unsigned long)pgdat->node_mem_map);
5021 #endif
5022
5023 free_area_init_core(pgdat, start_pfn, end_pfn,
5024 zones_size, zholes_size);
5025 }
5026
5027 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5028
5029 #if MAX_NUMNODES > 1
5030 /*
5031 * Figure out the number of possible node ids.
5032 */
5033 void __init setup_nr_node_ids(void)
5034 {
5035 unsigned int node;
5036 unsigned int highest = 0;
5037
5038 for_each_node_mask(node, node_possible_map)
5039 highest = node;
5040 nr_node_ids = highest + 1;
5041 }
5042 #endif
5043
5044 /**
5045 * node_map_pfn_alignment - determine the maximum internode alignment
5046 *
5047 * This function should be called after node map is populated and sorted.
5048 * It calculates the maximum power of two alignment which can distinguish
5049 * all the nodes.
5050 *
5051 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5052 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5053 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5054 * shifted, 1GiB is enough and this function will indicate so.
5055 *
5056 * This is used to test whether pfn -> nid mapping of the chosen memory
5057 * model has fine enough granularity to avoid incorrect mapping for the
5058 * populated node map.
5059 *
5060 * Returns the determined alignment in pfn's. 0 if there is no alignment
5061 * requirement (single node).
5062 */
5063 unsigned long __init node_map_pfn_alignment(void)
5064 {
5065 unsigned long accl_mask = 0, last_end = 0;
5066 unsigned long start, end, mask;
5067 int last_nid = -1;
5068 int i, nid;
5069
5070 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5071 if (!start || last_nid < 0 || last_nid == nid) {
5072 last_nid = nid;
5073 last_end = end;
5074 continue;
5075 }
5076
5077 /*
5078 * Start with a mask granular enough to pin-point to the
5079 * start pfn and tick off bits one-by-one until it becomes
5080 * too coarse to separate the current node from the last.
5081 */
5082 mask = ~((1 << __ffs(start)) - 1);
5083 while (mask && last_end <= (start & (mask << 1)))
5084 mask <<= 1;
5085
5086 /* accumulate all internode masks */
5087 accl_mask |= mask;
5088 }
5089
5090 /* convert mask to number of pages */
5091 return ~accl_mask + 1;
5092 }
5093
5094 /* Find the lowest pfn for a node */
5095 static unsigned long __init find_min_pfn_for_node(int nid)
5096 {
5097 unsigned long min_pfn = ULONG_MAX;
5098 unsigned long start_pfn;
5099 int i;
5100
5101 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5102 min_pfn = min(min_pfn, start_pfn);
5103
5104 if (min_pfn == ULONG_MAX) {
5105 printk(KERN_WARNING
5106 "Could not find start_pfn for node %d\n", nid);
5107 return 0;
5108 }
5109
5110 return min_pfn;
5111 }
5112
5113 /**
5114 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5115 *
5116 * It returns the minimum PFN based on information provided via
5117 * memblock_set_node().
5118 */
5119 unsigned long __init find_min_pfn_with_active_regions(void)
5120 {
5121 return find_min_pfn_for_node(MAX_NUMNODES);
5122 }
5123
5124 /*
5125 * early_calculate_totalpages()
5126 * Sum pages in active regions for movable zone.
5127 * Populate N_MEMORY for calculating usable_nodes.
5128 */
5129 static unsigned long __init early_calculate_totalpages(void)
5130 {
5131 unsigned long totalpages = 0;
5132 unsigned long start_pfn, end_pfn;
5133 int i, nid;
5134
5135 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5136 unsigned long pages = end_pfn - start_pfn;
5137
5138 totalpages += pages;
5139 if (pages)
5140 node_set_state(nid, N_MEMORY);
5141 }
5142 return totalpages;
5143 }
5144
5145 /*
5146 * Find the PFN the Movable zone begins in each node. Kernel memory
5147 * is spread evenly between nodes as long as the nodes have enough
5148 * memory. When they don't, some nodes will have more kernelcore than
5149 * others
5150 */
5151 static void __init find_zone_movable_pfns_for_nodes(void)
5152 {
5153 int i, nid;
5154 unsigned long usable_startpfn;
5155 unsigned long kernelcore_node, kernelcore_remaining;
5156 /* save the state before borrow the nodemask */
5157 nodemask_t saved_node_state = node_states[N_MEMORY];
5158 unsigned long totalpages = early_calculate_totalpages();
5159 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5160 struct memblock_region *r;
5161
5162 /* Need to find movable_zone earlier when movable_node is specified. */
5163 find_usable_zone_for_movable();
5164
5165 /*
5166 * If movable_node is specified, ignore kernelcore and movablecore
5167 * options.
5168 */
5169 if (movable_node_is_enabled()) {
5170 for_each_memblock(memory, r) {
5171 if (!memblock_is_hotpluggable(r))
5172 continue;
5173
5174 nid = r->nid;
5175
5176 usable_startpfn = PFN_DOWN(r->base);
5177 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5178 min(usable_startpfn, zone_movable_pfn[nid]) :
5179 usable_startpfn;
5180 }
5181
5182 goto out2;
5183 }
5184
5185 /*
5186 * If movablecore=nn[KMG] was specified, calculate what size of
5187 * kernelcore that corresponds so that memory usable for
5188 * any allocation type is evenly spread. If both kernelcore
5189 * and movablecore are specified, then the value of kernelcore
5190 * will be used for required_kernelcore if it's greater than
5191 * what movablecore would have allowed.
5192 */
5193 if (required_movablecore) {
5194 unsigned long corepages;
5195
5196 /*
5197 * Round-up so that ZONE_MOVABLE is at least as large as what
5198 * was requested by the user
5199 */
5200 required_movablecore =
5201 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5202 corepages = totalpages - required_movablecore;
5203
5204 required_kernelcore = max(required_kernelcore, corepages);
5205 }
5206
5207 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5208 if (!required_kernelcore)
5209 goto out;
5210
5211 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5212 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5213
5214 restart:
5215 /* Spread kernelcore memory as evenly as possible throughout nodes */
5216 kernelcore_node = required_kernelcore / usable_nodes;
5217 for_each_node_state(nid, N_MEMORY) {
5218 unsigned long start_pfn, end_pfn;
5219
5220 /*
5221 * Recalculate kernelcore_node if the division per node
5222 * now exceeds what is necessary to satisfy the requested
5223 * amount of memory for the kernel
5224 */
5225 if (required_kernelcore < kernelcore_node)
5226 kernelcore_node = required_kernelcore / usable_nodes;
5227
5228 /*
5229 * As the map is walked, we track how much memory is usable
5230 * by the kernel using kernelcore_remaining. When it is
5231 * 0, the rest of the node is usable by ZONE_MOVABLE
5232 */
5233 kernelcore_remaining = kernelcore_node;
5234
5235 /* Go through each range of PFNs within this node */
5236 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5237 unsigned long size_pages;
5238
5239 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5240 if (start_pfn >= end_pfn)
5241 continue;
5242
5243 /* Account for what is only usable for kernelcore */
5244 if (start_pfn < usable_startpfn) {
5245 unsigned long kernel_pages;
5246 kernel_pages = min(end_pfn, usable_startpfn)
5247 - start_pfn;
5248
5249 kernelcore_remaining -= min(kernel_pages,
5250 kernelcore_remaining);
5251 required_kernelcore -= min(kernel_pages,
5252 required_kernelcore);
5253
5254 /* Continue if range is now fully accounted */
5255 if (end_pfn <= usable_startpfn) {
5256
5257 /*
5258 * Push zone_movable_pfn to the end so
5259 * that if we have to rebalance
5260 * kernelcore across nodes, we will
5261 * not double account here
5262 */
5263 zone_movable_pfn[nid] = end_pfn;
5264 continue;
5265 }
5266 start_pfn = usable_startpfn;
5267 }
5268
5269 /*
5270 * The usable PFN range for ZONE_MOVABLE is from
5271 * start_pfn->end_pfn. Calculate size_pages as the
5272 * number of pages used as kernelcore
5273 */
5274 size_pages = end_pfn - start_pfn;
5275 if (size_pages > kernelcore_remaining)
5276 size_pages = kernelcore_remaining;
5277 zone_movable_pfn[nid] = start_pfn + size_pages;
5278
5279 /*
5280 * Some kernelcore has been met, update counts and
5281 * break if the kernelcore for this node has been
5282 * satisfied
5283 */
5284 required_kernelcore -= min(required_kernelcore,
5285 size_pages);
5286 kernelcore_remaining -= size_pages;
5287 if (!kernelcore_remaining)
5288 break;
5289 }
5290 }
5291
5292 /*
5293 * If there is still required_kernelcore, we do another pass with one
5294 * less node in the count. This will push zone_movable_pfn[nid] further
5295 * along on the nodes that still have memory until kernelcore is
5296 * satisfied
5297 */
5298 usable_nodes--;
5299 if (usable_nodes && required_kernelcore > usable_nodes)
5300 goto restart;
5301
5302 out2:
5303 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5304 for (nid = 0; nid < MAX_NUMNODES; nid++)
5305 zone_movable_pfn[nid] =
5306 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5307
5308 out:
5309 /* restore the node_state */
5310 node_states[N_MEMORY] = saved_node_state;
5311 }
5312
5313 /* Any regular or high memory on that node ? */
5314 static void check_for_memory(pg_data_t *pgdat, int nid)
5315 {
5316 enum zone_type zone_type;
5317
5318 if (N_MEMORY == N_NORMAL_MEMORY)
5319 return;
5320
5321 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5322 struct zone *zone = &pgdat->node_zones[zone_type];
5323 if (populated_zone(zone)) {
5324 node_set_state(nid, N_HIGH_MEMORY);
5325 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5326 zone_type <= ZONE_NORMAL)
5327 node_set_state(nid, N_NORMAL_MEMORY);
5328 break;
5329 }
5330 }
5331 }
5332
5333 /**
5334 * free_area_init_nodes - Initialise all pg_data_t and zone data
5335 * @max_zone_pfn: an array of max PFNs for each zone
5336 *
5337 * This will call free_area_init_node() for each active node in the system.
5338 * Using the page ranges provided by memblock_set_node(), the size of each
5339 * zone in each node and their holes is calculated. If the maximum PFN
5340 * between two adjacent zones match, it is assumed that the zone is empty.
5341 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5342 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5343 * starts where the previous one ended. For example, ZONE_DMA32 starts
5344 * at arch_max_dma_pfn.
5345 */
5346 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5347 {
5348 unsigned long start_pfn, end_pfn;
5349 int i, nid;
5350
5351 /* Record where the zone boundaries are */
5352 memset(arch_zone_lowest_possible_pfn, 0,
5353 sizeof(arch_zone_lowest_possible_pfn));
5354 memset(arch_zone_highest_possible_pfn, 0,
5355 sizeof(arch_zone_highest_possible_pfn));
5356 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5357 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5358 for (i = 1; i < MAX_NR_ZONES; i++) {
5359 if (i == ZONE_MOVABLE)
5360 continue;
5361 arch_zone_lowest_possible_pfn[i] =
5362 arch_zone_highest_possible_pfn[i-1];
5363 arch_zone_highest_possible_pfn[i] =
5364 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5365 }
5366 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5367 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5368
5369 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5370 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5371 find_zone_movable_pfns_for_nodes();
5372
5373 /* Print out the zone ranges */
5374 pr_info("Zone ranges:\n");
5375 for (i = 0; i < MAX_NR_ZONES; i++) {
5376 if (i == ZONE_MOVABLE)
5377 continue;
5378 pr_info(" %-8s ", zone_names[i]);
5379 if (arch_zone_lowest_possible_pfn[i] ==
5380 arch_zone_highest_possible_pfn[i])
5381 pr_cont("empty\n");
5382 else
5383 pr_cont("[mem %#018Lx-%#018Lx]\n",
5384 (u64)arch_zone_lowest_possible_pfn[i]
5385 << PAGE_SHIFT,
5386 ((u64)arch_zone_highest_possible_pfn[i]
5387 << PAGE_SHIFT) - 1);
5388 }
5389
5390 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5391 pr_info("Movable zone start for each node\n");
5392 for (i = 0; i < MAX_NUMNODES; i++) {
5393 if (zone_movable_pfn[i])
5394 pr_info(" Node %d: %#018Lx\n", i,
5395 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5396 }
5397
5398 /* Print out the early node map */
5399 pr_info("Early memory node ranges\n");
5400 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5401 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5402 (u64)start_pfn << PAGE_SHIFT,
5403 ((u64)end_pfn << PAGE_SHIFT) - 1);
5404
5405 /* Initialise every node */
5406 mminit_verify_pageflags_layout();
5407 setup_nr_node_ids();
5408 for_each_online_node(nid) {
5409 pg_data_t *pgdat = NODE_DATA(nid);
5410 free_area_init_node(nid, NULL,
5411 find_min_pfn_for_node(nid), NULL);
5412
5413 /* Any memory on that node */
5414 if (pgdat->node_present_pages)
5415 node_set_state(nid, N_MEMORY);
5416 check_for_memory(pgdat, nid);
5417 }
5418 }
5419
5420 static int __init cmdline_parse_core(char *p, unsigned long *core)
5421 {
5422 unsigned long long coremem;
5423 if (!p)
5424 return -EINVAL;
5425
5426 coremem = memparse(p, &p);
5427 *core = coremem >> PAGE_SHIFT;
5428
5429 /* Paranoid check that UL is enough for the coremem value */
5430 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5431
5432 return 0;
5433 }
5434
5435 /*
5436 * kernelcore=size sets the amount of memory for use for allocations that
5437 * cannot be reclaimed or migrated.
5438 */
5439 static int __init cmdline_parse_kernelcore(char *p)
5440 {
5441 return cmdline_parse_core(p, &required_kernelcore);
5442 }
5443
5444 /*
5445 * movablecore=size sets the amount of memory for use for allocations that
5446 * can be reclaimed or migrated.
5447 */
5448 static int __init cmdline_parse_movablecore(char *p)
5449 {
5450 return cmdline_parse_core(p, &required_movablecore);
5451 }
5452
5453 early_param("kernelcore", cmdline_parse_kernelcore);
5454 early_param("movablecore", cmdline_parse_movablecore);
5455
5456 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5457
5458 void adjust_managed_page_count(struct page *page, long count)
5459 {
5460 spin_lock(&managed_page_count_lock);
5461 page_zone(page)->managed_pages += count;
5462 totalram_pages += count;
5463 #ifdef CONFIG_HIGHMEM
5464 if (PageHighMem(page))
5465 totalhigh_pages += count;
5466 #endif
5467 spin_unlock(&managed_page_count_lock);
5468 }
5469 EXPORT_SYMBOL(adjust_managed_page_count);
5470
5471 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5472 {
5473 void *pos;
5474 unsigned long pages = 0;
5475
5476 start = (void *)PAGE_ALIGN((unsigned long)start);
5477 end = (void *)((unsigned long)end & PAGE_MASK);
5478 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5479 if ((unsigned int)poison <= 0xFF)
5480 memset(pos, poison, PAGE_SIZE);
5481 free_reserved_page(virt_to_page(pos));
5482 }
5483
5484 if (pages && s)
5485 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5486 s, pages << (PAGE_SHIFT - 10), start, end);
5487
5488 return pages;
5489 }
5490 EXPORT_SYMBOL(free_reserved_area);
5491
5492 #ifdef CONFIG_HIGHMEM
5493 void free_highmem_page(struct page *page)
5494 {
5495 __free_reserved_page(page);
5496 totalram_pages++;
5497 page_zone(page)->managed_pages++;
5498 totalhigh_pages++;
5499 }
5500 #endif
5501
5502
5503 void __init mem_init_print_info(const char *str)
5504 {
5505 unsigned long physpages, codesize, datasize, rosize, bss_size;
5506 unsigned long init_code_size, init_data_size;
5507
5508 physpages = get_num_physpages();
5509 codesize = _etext - _stext;
5510 datasize = _edata - _sdata;
5511 rosize = __end_rodata - __start_rodata;
5512 bss_size = __bss_stop - __bss_start;
5513 init_data_size = __init_end - __init_begin;
5514 init_code_size = _einittext - _sinittext;
5515
5516 /*
5517 * Detect special cases and adjust section sizes accordingly:
5518 * 1) .init.* may be embedded into .data sections
5519 * 2) .init.text.* may be out of [__init_begin, __init_end],
5520 * please refer to arch/tile/kernel/vmlinux.lds.S.
5521 * 3) .rodata.* may be embedded into .text or .data sections.
5522 */
5523 #define adj_init_size(start, end, size, pos, adj) \
5524 do { \
5525 if (start <= pos && pos < end && size > adj) \
5526 size -= adj; \
5527 } while (0)
5528
5529 adj_init_size(__init_begin, __init_end, init_data_size,
5530 _sinittext, init_code_size);
5531 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5532 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5533 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5534 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5535
5536 #undef adj_init_size
5537
5538 pr_info("Memory: %luK/%luK available "
5539 "(%luK kernel code, %luK rwdata, %luK rodata, "
5540 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5541 #ifdef CONFIG_HIGHMEM
5542 ", %luK highmem"
5543 #endif
5544 "%s%s)\n",
5545 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5546 codesize >> 10, datasize >> 10, rosize >> 10,
5547 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5548 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5549 totalcma_pages << (PAGE_SHIFT-10),
5550 #ifdef CONFIG_HIGHMEM
5551 totalhigh_pages << (PAGE_SHIFT-10),
5552 #endif
5553 str ? ", " : "", str ? str : "");
5554 }
5555
5556 /**
5557 * set_dma_reserve - set the specified number of pages reserved in the first zone
5558 * @new_dma_reserve: The number of pages to mark reserved
5559 *
5560 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5561 * In the DMA zone, a significant percentage may be consumed by kernel image
5562 * and other unfreeable allocations which can skew the watermarks badly. This
5563 * function may optionally be used to account for unfreeable pages in the
5564 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5565 * smaller per-cpu batchsize.
5566 */
5567 void __init set_dma_reserve(unsigned long new_dma_reserve)
5568 {
5569 dma_reserve = new_dma_reserve;
5570 }
5571
5572 void __init free_area_init(unsigned long *zones_size)
5573 {
5574 free_area_init_node(0, zones_size,
5575 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5576 }
5577
5578 static int page_alloc_cpu_notify(struct notifier_block *self,
5579 unsigned long action, void *hcpu)
5580 {
5581 int cpu = (unsigned long)hcpu;
5582
5583 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5584 lru_add_drain_cpu(cpu);
5585 drain_pages(cpu);
5586
5587 /*
5588 * Spill the event counters of the dead processor
5589 * into the current processors event counters.
5590 * This artificially elevates the count of the current
5591 * processor.
5592 */
5593 vm_events_fold_cpu(cpu);
5594
5595 /*
5596 * Zero the differential counters of the dead processor
5597 * so that the vm statistics are consistent.
5598 *
5599 * This is only okay since the processor is dead and cannot
5600 * race with what we are doing.
5601 */
5602 cpu_vm_stats_fold(cpu);
5603 }
5604 return NOTIFY_OK;
5605 }
5606
5607 void __init page_alloc_init(void)
5608 {
5609 hotcpu_notifier(page_alloc_cpu_notify, 0);
5610 }
5611
5612 /*
5613 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5614 * or min_free_kbytes changes.
5615 */
5616 static void calculate_totalreserve_pages(void)
5617 {
5618 struct pglist_data *pgdat;
5619 unsigned long reserve_pages = 0;
5620 enum zone_type i, j;
5621
5622 for_each_online_pgdat(pgdat) {
5623 for (i = 0; i < MAX_NR_ZONES; i++) {
5624 struct zone *zone = pgdat->node_zones + i;
5625 long max = 0;
5626
5627 /* Find valid and maximum lowmem_reserve in the zone */
5628 for (j = i; j < MAX_NR_ZONES; j++) {
5629 if (zone->lowmem_reserve[j] > max)
5630 max = zone->lowmem_reserve[j];
5631 }
5632
5633 /* we treat the high watermark as reserved pages. */
5634 max += high_wmark_pages(zone);
5635
5636 if (max > zone->managed_pages)
5637 max = zone->managed_pages;
5638 reserve_pages += max;
5639 /*
5640 * Lowmem reserves are not available to
5641 * GFP_HIGHUSER page cache allocations and
5642 * kswapd tries to balance zones to their high
5643 * watermark. As a result, neither should be
5644 * regarded as dirtyable memory, to prevent a
5645 * situation where reclaim has to clean pages
5646 * in order to balance the zones.
5647 */
5648 zone->dirty_balance_reserve = max;
5649 }
5650 }
5651 dirty_balance_reserve = reserve_pages;
5652 totalreserve_pages = reserve_pages;
5653 }
5654
5655 /*
5656 * setup_per_zone_lowmem_reserve - called whenever
5657 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5658 * has a correct pages reserved value, so an adequate number of
5659 * pages are left in the zone after a successful __alloc_pages().
5660 */
5661 static void setup_per_zone_lowmem_reserve(void)
5662 {
5663 struct pglist_data *pgdat;
5664 enum zone_type j, idx;
5665
5666 for_each_online_pgdat(pgdat) {
5667 for (j = 0; j < MAX_NR_ZONES; j++) {
5668 struct zone *zone = pgdat->node_zones + j;
5669 unsigned long managed_pages = zone->managed_pages;
5670
5671 zone->lowmem_reserve[j] = 0;
5672
5673 idx = j;
5674 while (idx) {
5675 struct zone *lower_zone;
5676
5677 idx--;
5678
5679 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5680 sysctl_lowmem_reserve_ratio[idx] = 1;
5681
5682 lower_zone = pgdat->node_zones + idx;
5683 lower_zone->lowmem_reserve[j] = managed_pages /
5684 sysctl_lowmem_reserve_ratio[idx];
5685 managed_pages += lower_zone->managed_pages;
5686 }
5687 }
5688 }
5689
5690 /* update totalreserve_pages */
5691 calculate_totalreserve_pages();
5692 }
5693
5694 static void __setup_per_zone_wmarks(void)
5695 {
5696 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5697 unsigned long lowmem_pages = 0;
5698 struct zone *zone;
5699 unsigned long flags;
5700
5701 /* Calculate total number of !ZONE_HIGHMEM pages */
5702 for_each_zone(zone) {
5703 if (!is_highmem(zone))
5704 lowmem_pages += zone->managed_pages;
5705 }
5706
5707 for_each_zone(zone) {
5708 u64 tmp;
5709
5710 spin_lock_irqsave(&zone->lock, flags);
5711 tmp = (u64)pages_min * zone->managed_pages;
5712 do_div(tmp, lowmem_pages);
5713 if (is_highmem(zone)) {
5714 /*
5715 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5716 * need highmem pages, so cap pages_min to a small
5717 * value here.
5718 *
5719 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5720 * deltas controls asynch page reclaim, and so should
5721 * not be capped for highmem.
5722 */
5723 unsigned long min_pages;
5724
5725 min_pages = zone->managed_pages / 1024;
5726 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5727 zone->watermark[WMARK_MIN] = min_pages;
5728 } else {
5729 /*
5730 * If it's a lowmem zone, reserve a number of pages
5731 * proportionate to the zone's size.
5732 */
5733 zone->watermark[WMARK_MIN] = tmp;
5734 }
5735
5736 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5737 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5738
5739 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5740 high_wmark_pages(zone) - low_wmark_pages(zone) -
5741 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5742
5743 setup_zone_migrate_reserve(zone);
5744 spin_unlock_irqrestore(&zone->lock, flags);
5745 }
5746
5747 /* update totalreserve_pages */
5748 calculate_totalreserve_pages();
5749 }
5750
5751 /**
5752 * setup_per_zone_wmarks - called when min_free_kbytes changes
5753 * or when memory is hot-{added|removed}
5754 *
5755 * Ensures that the watermark[min,low,high] values for each zone are set
5756 * correctly with respect to min_free_kbytes.
5757 */
5758 void setup_per_zone_wmarks(void)
5759 {
5760 mutex_lock(&zonelists_mutex);
5761 __setup_per_zone_wmarks();
5762 mutex_unlock(&zonelists_mutex);
5763 }
5764
5765 /*
5766 * The inactive anon list should be small enough that the VM never has to
5767 * do too much work, but large enough that each inactive page has a chance
5768 * to be referenced again before it is swapped out.
5769 *
5770 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5771 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5772 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5773 * the anonymous pages are kept on the inactive list.
5774 *
5775 * total target max
5776 * memory ratio inactive anon
5777 * -------------------------------------
5778 * 10MB 1 5MB
5779 * 100MB 1 50MB
5780 * 1GB 3 250MB
5781 * 10GB 10 0.9GB
5782 * 100GB 31 3GB
5783 * 1TB 101 10GB
5784 * 10TB 320 32GB
5785 */
5786 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5787 {
5788 unsigned int gb, ratio;
5789
5790 /* Zone size in gigabytes */
5791 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5792 if (gb)
5793 ratio = int_sqrt(10 * gb);
5794 else
5795 ratio = 1;
5796
5797 zone->inactive_ratio = ratio;
5798 }
5799
5800 static void __meminit setup_per_zone_inactive_ratio(void)
5801 {
5802 struct zone *zone;
5803
5804 for_each_zone(zone)
5805 calculate_zone_inactive_ratio(zone);
5806 }
5807
5808 /*
5809 * Initialise min_free_kbytes.
5810 *
5811 * For small machines we want it small (128k min). For large machines
5812 * we want it large (64MB max). But it is not linear, because network
5813 * bandwidth does not increase linearly with machine size. We use
5814 *
5815 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5816 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5817 *
5818 * which yields
5819 *
5820 * 16MB: 512k
5821 * 32MB: 724k
5822 * 64MB: 1024k
5823 * 128MB: 1448k
5824 * 256MB: 2048k
5825 * 512MB: 2896k
5826 * 1024MB: 4096k
5827 * 2048MB: 5792k
5828 * 4096MB: 8192k
5829 * 8192MB: 11584k
5830 * 16384MB: 16384k
5831 */
5832 int __meminit init_per_zone_wmark_min(void)
5833 {
5834 unsigned long lowmem_kbytes;
5835 int new_min_free_kbytes;
5836
5837 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5838 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5839
5840 if (new_min_free_kbytes > user_min_free_kbytes) {
5841 min_free_kbytes = new_min_free_kbytes;
5842 if (min_free_kbytes < 128)
5843 min_free_kbytes = 128;
5844 if (min_free_kbytes > 65536)
5845 min_free_kbytes = 65536;
5846 } else {
5847 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5848 new_min_free_kbytes, user_min_free_kbytes);
5849 }
5850 setup_per_zone_wmarks();
5851 refresh_zone_stat_thresholds();
5852 setup_per_zone_lowmem_reserve();
5853 setup_per_zone_inactive_ratio();
5854 return 0;
5855 }
5856 module_init(init_per_zone_wmark_min)
5857
5858 /*
5859 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5860 * that we can call two helper functions whenever min_free_kbytes
5861 * changes.
5862 */
5863 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5864 void __user *buffer, size_t *length, loff_t *ppos)
5865 {
5866 int rc;
5867
5868 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5869 if (rc)
5870 return rc;
5871
5872 if (write) {
5873 user_min_free_kbytes = min_free_kbytes;
5874 setup_per_zone_wmarks();
5875 }
5876 return 0;
5877 }
5878
5879 #ifdef CONFIG_NUMA
5880 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5881 void __user *buffer, size_t *length, loff_t *ppos)
5882 {
5883 struct zone *zone;
5884 int rc;
5885
5886 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5887 if (rc)
5888 return rc;
5889
5890 for_each_zone(zone)
5891 zone->min_unmapped_pages = (zone->managed_pages *
5892 sysctl_min_unmapped_ratio) / 100;
5893 return 0;
5894 }
5895
5896 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5897 void __user *buffer, size_t *length, loff_t *ppos)
5898 {
5899 struct zone *zone;
5900 int rc;
5901
5902 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5903 if (rc)
5904 return rc;
5905
5906 for_each_zone(zone)
5907 zone->min_slab_pages = (zone->managed_pages *
5908 sysctl_min_slab_ratio) / 100;
5909 return 0;
5910 }
5911 #endif
5912
5913 /*
5914 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5915 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5916 * whenever sysctl_lowmem_reserve_ratio changes.
5917 *
5918 * The reserve ratio obviously has absolutely no relation with the
5919 * minimum watermarks. The lowmem reserve ratio can only make sense
5920 * if in function of the boot time zone sizes.
5921 */
5922 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5923 void __user *buffer, size_t *length, loff_t *ppos)
5924 {
5925 proc_dointvec_minmax(table, write, buffer, length, ppos);
5926 setup_per_zone_lowmem_reserve();
5927 return 0;
5928 }
5929
5930 /*
5931 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5932 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5933 * pagelist can have before it gets flushed back to buddy allocator.
5934 */
5935 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5936 void __user *buffer, size_t *length, loff_t *ppos)
5937 {
5938 struct zone *zone;
5939 int old_percpu_pagelist_fraction;
5940 int ret;
5941
5942 mutex_lock(&pcp_batch_high_lock);
5943 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5944
5945 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5946 if (!write || ret < 0)
5947 goto out;
5948
5949 /* Sanity checking to avoid pcp imbalance */
5950 if (percpu_pagelist_fraction &&
5951 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5952 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5953 ret = -EINVAL;
5954 goto out;
5955 }
5956
5957 /* No change? */
5958 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5959 goto out;
5960
5961 for_each_populated_zone(zone) {
5962 unsigned int cpu;
5963
5964 for_each_possible_cpu(cpu)
5965 pageset_set_high_and_batch(zone,
5966 per_cpu_ptr(zone->pageset, cpu));
5967 }
5968 out:
5969 mutex_unlock(&pcp_batch_high_lock);
5970 return ret;
5971 }
5972
5973 int hashdist = HASHDIST_DEFAULT;
5974
5975 #ifdef CONFIG_NUMA
5976 static int __init set_hashdist(char *str)
5977 {
5978 if (!str)
5979 return 0;
5980 hashdist = simple_strtoul(str, &str, 0);
5981 return 1;
5982 }
5983 __setup("hashdist=", set_hashdist);
5984 #endif
5985
5986 /*
5987 * allocate a large system hash table from bootmem
5988 * - it is assumed that the hash table must contain an exact power-of-2
5989 * quantity of entries
5990 * - limit is the number of hash buckets, not the total allocation size
5991 */
5992 void *__init alloc_large_system_hash(const char *tablename,
5993 unsigned long bucketsize,
5994 unsigned long numentries,
5995 int scale,
5996 int flags,
5997 unsigned int *_hash_shift,
5998 unsigned int *_hash_mask,
5999 unsigned long low_limit,
6000 unsigned long high_limit)
6001 {
6002 unsigned long long max = high_limit;
6003 unsigned long log2qty, size;
6004 void *table = NULL;
6005
6006 /* allow the kernel cmdline to have a say */
6007 if (!numentries) {
6008 /* round applicable memory size up to nearest megabyte */
6009 numentries = nr_kernel_pages;
6010
6011 /* It isn't necessary when PAGE_SIZE >= 1MB */
6012 if (PAGE_SHIFT < 20)
6013 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6014
6015 /* limit to 1 bucket per 2^scale bytes of low memory */
6016 if (scale > PAGE_SHIFT)
6017 numentries >>= (scale - PAGE_SHIFT);
6018 else
6019 numentries <<= (PAGE_SHIFT - scale);
6020
6021 /* Make sure we've got at least a 0-order allocation.. */
6022 if (unlikely(flags & HASH_SMALL)) {
6023 /* Makes no sense without HASH_EARLY */
6024 WARN_ON(!(flags & HASH_EARLY));
6025 if (!(numentries >> *_hash_shift)) {
6026 numentries = 1UL << *_hash_shift;
6027 BUG_ON(!numentries);
6028 }
6029 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6030 numentries = PAGE_SIZE / bucketsize;
6031 }
6032 numentries = roundup_pow_of_two(numentries);
6033
6034 /* limit allocation size to 1/16 total memory by default */
6035 if (max == 0) {
6036 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6037 do_div(max, bucketsize);
6038 }
6039 max = min(max, 0x80000000ULL);
6040
6041 if (numentries < low_limit)
6042 numentries = low_limit;
6043 if (numentries > max)
6044 numentries = max;
6045
6046 log2qty = ilog2(numentries);
6047
6048 do {
6049 size = bucketsize << log2qty;
6050 if (flags & HASH_EARLY)
6051 table = memblock_virt_alloc_nopanic(size, 0);
6052 else if (hashdist)
6053 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6054 else {
6055 /*
6056 * If bucketsize is not a power-of-two, we may free
6057 * some pages at the end of hash table which
6058 * alloc_pages_exact() automatically does
6059 */
6060 if (get_order(size) < MAX_ORDER) {
6061 table = alloc_pages_exact(size, GFP_ATOMIC);
6062 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6063 }
6064 }
6065 } while (!table && size > PAGE_SIZE && --log2qty);
6066
6067 if (!table)
6068 panic("Failed to allocate %s hash table\n", tablename);
6069
6070 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6071 tablename,
6072 (1UL << log2qty),
6073 ilog2(size) - PAGE_SHIFT,
6074 size);
6075
6076 if (_hash_shift)
6077 *_hash_shift = log2qty;
6078 if (_hash_mask)
6079 *_hash_mask = (1 << log2qty) - 1;
6080
6081 return table;
6082 }
6083
6084 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6085 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6086 unsigned long pfn)
6087 {
6088 #ifdef CONFIG_SPARSEMEM
6089 return __pfn_to_section(pfn)->pageblock_flags;
6090 #else
6091 return zone->pageblock_flags;
6092 #endif /* CONFIG_SPARSEMEM */
6093 }
6094
6095 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6096 {
6097 #ifdef CONFIG_SPARSEMEM
6098 pfn &= (PAGES_PER_SECTION-1);
6099 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6100 #else
6101 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6102 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6103 #endif /* CONFIG_SPARSEMEM */
6104 }
6105
6106 /**
6107 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6108 * @page: The page within the block of interest
6109 * @pfn: The target page frame number
6110 * @end_bitidx: The last bit of interest to retrieve
6111 * @mask: mask of bits that the caller is interested in
6112 *
6113 * Return: pageblock_bits flags
6114 */
6115 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6116 unsigned long end_bitidx,
6117 unsigned long mask)
6118 {
6119 struct zone *zone;
6120 unsigned long *bitmap;
6121 unsigned long bitidx, word_bitidx;
6122 unsigned long word;
6123
6124 zone = page_zone(page);
6125 bitmap = get_pageblock_bitmap(zone, pfn);
6126 bitidx = pfn_to_bitidx(zone, pfn);
6127 word_bitidx = bitidx / BITS_PER_LONG;
6128 bitidx &= (BITS_PER_LONG-1);
6129
6130 word = bitmap[word_bitidx];
6131 bitidx += end_bitidx;
6132 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6133 }
6134
6135 /**
6136 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6137 * @page: The page within the block of interest
6138 * @flags: The flags to set
6139 * @pfn: The target page frame number
6140 * @end_bitidx: The last bit of interest
6141 * @mask: mask of bits that the caller is interested in
6142 */
6143 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6144 unsigned long pfn,
6145 unsigned long end_bitidx,
6146 unsigned long mask)
6147 {
6148 struct zone *zone;
6149 unsigned long *bitmap;
6150 unsigned long bitidx, word_bitidx;
6151 unsigned long old_word, word;
6152
6153 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6154
6155 zone = page_zone(page);
6156 bitmap = get_pageblock_bitmap(zone, pfn);
6157 bitidx = pfn_to_bitidx(zone, pfn);
6158 word_bitidx = bitidx / BITS_PER_LONG;
6159 bitidx &= (BITS_PER_LONG-1);
6160
6161 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6162
6163 bitidx += end_bitidx;
6164 mask <<= (BITS_PER_LONG - bitidx - 1);
6165 flags <<= (BITS_PER_LONG - bitidx - 1);
6166
6167 word = ACCESS_ONCE(bitmap[word_bitidx]);
6168 for (;;) {
6169 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6170 if (word == old_word)
6171 break;
6172 word = old_word;
6173 }
6174 }
6175
6176 /*
6177 * This function checks whether pageblock includes unmovable pages or not.
6178 * If @count is not zero, it is okay to include less @count unmovable pages
6179 *
6180 * PageLRU check without isolation or lru_lock could race so that
6181 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6182 * expect this function should be exact.
6183 */
6184 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6185 bool skip_hwpoisoned_pages)
6186 {
6187 unsigned long pfn, iter, found;
6188 int mt;
6189
6190 /*
6191 * For avoiding noise data, lru_add_drain_all() should be called
6192 * If ZONE_MOVABLE, the zone never contains unmovable pages
6193 */
6194 if (zone_idx(zone) == ZONE_MOVABLE)
6195 return false;
6196 mt = get_pageblock_migratetype(page);
6197 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6198 return false;
6199
6200 pfn = page_to_pfn(page);
6201 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6202 unsigned long check = pfn + iter;
6203
6204 if (!pfn_valid_within(check))
6205 continue;
6206
6207 page = pfn_to_page(check);
6208
6209 /*
6210 * Hugepages are not in LRU lists, but they're movable.
6211 * We need not scan over tail pages bacause we don't
6212 * handle each tail page individually in migration.
6213 */
6214 if (PageHuge(page)) {
6215 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6216 continue;
6217 }
6218
6219 /*
6220 * We can't use page_count without pin a page
6221 * because another CPU can free compound page.
6222 * This check already skips compound tails of THP
6223 * because their page->_count is zero at all time.
6224 */
6225 if (!atomic_read(&page->_count)) {
6226 if (PageBuddy(page))
6227 iter += (1 << page_order(page)) - 1;
6228 continue;
6229 }
6230
6231 /*
6232 * The HWPoisoned page may be not in buddy system, and
6233 * page_count() is not 0.
6234 */
6235 if (skip_hwpoisoned_pages && PageHWPoison(page))
6236 continue;
6237
6238 if (!PageLRU(page))
6239 found++;
6240 /*
6241 * If there are RECLAIMABLE pages, we need to check
6242 * it. But now, memory offline itself doesn't call
6243 * shrink_node_slabs() and it still to be fixed.
6244 */
6245 /*
6246 * If the page is not RAM, page_count()should be 0.
6247 * we don't need more check. This is an _used_ not-movable page.
6248 *
6249 * The problematic thing here is PG_reserved pages. PG_reserved
6250 * is set to both of a memory hole page and a _used_ kernel
6251 * page at boot.
6252 */
6253 if (found > count)
6254 return true;
6255 }
6256 return false;
6257 }
6258
6259 bool is_pageblock_removable_nolock(struct page *page)
6260 {
6261 struct zone *zone;
6262 unsigned long pfn;
6263
6264 /*
6265 * We have to be careful here because we are iterating over memory
6266 * sections which are not zone aware so we might end up outside of
6267 * the zone but still within the section.
6268 * We have to take care about the node as well. If the node is offline
6269 * its NODE_DATA will be NULL - see page_zone.
6270 */
6271 if (!node_online(page_to_nid(page)))
6272 return false;
6273
6274 zone = page_zone(page);
6275 pfn = page_to_pfn(page);
6276 if (!zone_spans_pfn(zone, pfn))
6277 return false;
6278
6279 return !has_unmovable_pages(zone, page, 0, true);
6280 }
6281
6282 #ifdef CONFIG_CMA
6283
6284 static unsigned long pfn_max_align_down(unsigned long pfn)
6285 {
6286 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6287 pageblock_nr_pages) - 1);
6288 }
6289
6290 static unsigned long pfn_max_align_up(unsigned long pfn)
6291 {
6292 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6293 pageblock_nr_pages));
6294 }
6295
6296 /* [start, end) must belong to a single zone. */
6297 static int __alloc_contig_migrate_range(struct compact_control *cc,
6298 unsigned long start, unsigned long end)
6299 {
6300 /* This function is based on compact_zone() from compaction.c. */
6301 unsigned long nr_reclaimed;
6302 unsigned long pfn = start;
6303 unsigned int tries = 0;
6304 int ret = 0;
6305
6306 migrate_prep();
6307
6308 while (pfn < end || !list_empty(&cc->migratepages)) {
6309 if (fatal_signal_pending(current)) {
6310 ret = -EINTR;
6311 break;
6312 }
6313
6314 if (list_empty(&cc->migratepages)) {
6315 cc->nr_migratepages = 0;
6316 pfn = isolate_migratepages_range(cc, pfn, end);
6317 if (!pfn) {
6318 ret = -EINTR;
6319 break;
6320 }
6321 tries = 0;
6322 } else if (++tries == 5) {
6323 ret = ret < 0 ? ret : -EBUSY;
6324 break;
6325 }
6326
6327 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6328 &cc->migratepages);
6329 cc->nr_migratepages -= nr_reclaimed;
6330
6331 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6332 NULL, 0, cc->mode, MR_CMA);
6333 }
6334 if (ret < 0) {
6335 putback_movable_pages(&cc->migratepages);
6336 return ret;
6337 }
6338 return 0;
6339 }
6340
6341 /**
6342 * alloc_contig_range() -- tries to allocate given range of pages
6343 * @start: start PFN to allocate
6344 * @end: one-past-the-last PFN to allocate
6345 * @migratetype: migratetype of the underlaying pageblocks (either
6346 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6347 * in range must have the same migratetype and it must
6348 * be either of the two.
6349 *
6350 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6351 * aligned, however it's the caller's responsibility to guarantee that
6352 * we are the only thread that changes migrate type of pageblocks the
6353 * pages fall in.
6354 *
6355 * The PFN range must belong to a single zone.
6356 *
6357 * Returns zero on success or negative error code. On success all
6358 * pages which PFN is in [start, end) are allocated for the caller and
6359 * need to be freed with free_contig_range().
6360 */
6361 int alloc_contig_range(unsigned long start, unsigned long end,
6362 unsigned migratetype)
6363 {
6364 unsigned long outer_start, outer_end;
6365 int ret = 0, order;
6366
6367 struct compact_control cc = {
6368 .nr_migratepages = 0,
6369 .order = -1,
6370 .zone = page_zone(pfn_to_page(start)),
6371 .mode = MIGRATE_SYNC,
6372 .ignore_skip_hint = true,
6373 };
6374 INIT_LIST_HEAD(&cc.migratepages);
6375
6376 /*
6377 * What we do here is we mark all pageblocks in range as
6378 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6379 * have different sizes, and due to the way page allocator
6380 * work, we align the range to biggest of the two pages so
6381 * that page allocator won't try to merge buddies from
6382 * different pageblocks and change MIGRATE_ISOLATE to some
6383 * other migration type.
6384 *
6385 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6386 * migrate the pages from an unaligned range (ie. pages that
6387 * we are interested in). This will put all the pages in
6388 * range back to page allocator as MIGRATE_ISOLATE.
6389 *
6390 * When this is done, we take the pages in range from page
6391 * allocator removing them from the buddy system. This way
6392 * page allocator will never consider using them.
6393 *
6394 * This lets us mark the pageblocks back as
6395 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6396 * aligned range but not in the unaligned, original range are
6397 * put back to page allocator so that buddy can use them.
6398 */
6399
6400 ret = start_isolate_page_range(pfn_max_align_down(start),
6401 pfn_max_align_up(end), migratetype,
6402 false);
6403 if (ret)
6404 return ret;
6405
6406 ret = __alloc_contig_migrate_range(&cc, start, end);
6407 if (ret)
6408 goto done;
6409
6410 /*
6411 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6412 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6413 * more, all pages in [start, end) are free in page allocator.
6414 * What we are going to do is to allocate all pages from
6415 * [start, end) (that is remove them from page allocator).
6416 *
6417 * The only problem is that pages at the beginning and at the
6418 * end of interesting range may be not aligned with pages that
6419 * page allocator holds, ie. they can be part of higher order
6420 * pages. Because of this, we reserve the bigger range and
6421 * once this is done free the pages we are not interested in.
6422 *
6423 * We don't have to hold zone->lock here because the pages are
6424 * isolated thus they won't get removed from buddy.
6425 */
6426
6427 lru_add_drain_all();
6428 drain_all_pages(cc.zone);
6429
6430 order = 0;
6431 outer_start = start;
6432 while (!PageBuddy(pfn_to_page(outer_start))) {
6433 if (++order >= MAX_ORDER) {
6434 ret = -EBUSY;
6435 goto done;
6436 }
6437 outer_start &= ~0UL << order;
6438 }
6439
6440 /* Make sure the range is really isolated. */
6441 if (test_pages_isolated(outer_start, end, false)) {
6442 pr_info("%s: [%lx, %lx) PFNs busy\n",
6443 __func__, outer_start, end);
6444 ret = -EBUSY;
6445 goto done;
6446 }
6447
6448 /* Grab isolated pages from freelists. */
6449 outer_end = isolate_freepages_range(&cc, outer_start, end);
6450 if (!outer_end) {
6451 ret = -EBUSY;
6452 goto done;
6453 }
6454
6455 /* Free head and tail (if any) */
6456 if (start != outer_start)
6457 free_contig_range(outer_start, start - outer_start);
6458 if (end != outer_end)
6459 free_contig_range(end, outer_end - end);
6460
6461 done:
6462 undo_isolate_page_range(pfn_max_align_down(start),
6463 pfn_max_align_up(end), migratetype);
6464 return ret;
6465 }
6466
6467 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6468 {
6469 unsigned int count = 0;
6470
6471 for (; nr_pages--; pfn++) {
6472 struct page *page = pfn_to_page(pfn);
6473
6474 count += page_count(page) != 1;
6475 __free_page(page);
6476 }
6477 WARN(count != 0, "%d pages are still in use!\n", count);
6478 }
6479 #endif
6480
6481 #ifdef CONFIG_MEMORY_HOTPLUG
6482 /*
6483 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6484 * page high values need to be recalulated.
6485 */
6486 void __meminit zone_pcp_update(struct zone *zone)
6487 {
6488 unsigned cpu;
6489 mutex_lock(&pcp_batch_high_lock);
6490 for_each_possible_cpu(cpu)
6491 pageset_set_high_and_batch(zone,
6492 per_cpu_ptr(zone->pageset, cpu));
6493 mutex_unlock(&pcp_batch_high_lock);
6494 }
6495 #endif
6496
6497 void zone_pcp_reset(struct zone *zone)
6498 {
6499 unsigned long flags;
6500 int cpu;
6501 struct per_cpu_pageset *pset;
6502
6503 /* avoid races with drain_pages() */
6504 local_irq_save(flags);
6505 if (zone->pageset != &boot_pageset) {
6506 for_each_online_cpu(cpu) {
6507 pset = per_cpu_ptr(zone->pageset, cpu);
6508 drain_zonestat(zone, pset);
6509 }
6510 free_percpu(zone->pageset);
6511 zone->pageset = &boot_pageset;
6512 }
6513 local_irq_restore(flags);
6514 }
6515
6516 #ifdef CONFIG_MEMORY_HOTREMOVE
6517 /*
6518 * All pages in the range must be isolated before calling this.
6519 */
6520 void
6521 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6522 {
6523 struct page *page;
6524 struct zone *zone;
6525 unsigned int order, i;
6526 unsigned long pfn;
6527 unsigned long flags;
6528 /* find the first valid pfn */
6529 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6530 if (pfn_valid(pfn))
6531 break;
6532 if (pfn == end_pfn)
6533 return;
6534 zone = page_zone(pfn_to_page(pfn));
6535 spin_lock_irqsave(&zone->lock, flags);
6536 pfn = start_pfn;
6537 while (pfn < end_pfn) {
6538 if (!pfn_valid(pfn)) {
6539 pfn++;
6540 continue;
6541 }
6542 page = pfn_to_page(pfn);
6543 /*
6544 * The HWPoisoned page may be not in buddy system, and
6545 * page_count() is not 0.
6546 */
6547 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6548 pfn++;
6549 SetPageReserved(page);
6550 continue;
6551 }
6552
6553 BUG_ON(page_count(page));
6554 BUG_ON(!PageBuddy(page));
6555 order = page_order(page);
6556 #ifdef CONFIG_DEBUG_VM
6557 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6558 pfn, 1 << order, end_pfn);
6559 #endif
6560 list_del(&page->lru);
6561 rmv_page_order(page);
6562 zone->free_area[order].nr_free--;
6563 for (i = 0; i < (1 << order); i++)
6564 SetPageReserved((page+i));
6565 pfn += (1 << order);
6566 }
6567 spin_unlock_irqrestore(&zone->lock, flags);
6568 }
6569 #endif
6570
6571 #ifdef CONFIG_MEMORY_FAILURE
6572 bool is_free_buddy_page(struct page *page)
6573 {
6574 struct zone *zone = page_zone(page);
6575 unsigned long pfn = page_to_pfn(page);
6576 unsigned long flags;
6577 unsigned int order;
6578
6579 spin_lock_irqsave(&zone->lock, flags);
6580 for (order = 0; order < MAX_ORDER; order++) {
6581 struct page *page_head = page - (pfn & ((1 << order) - 1));
6582
6583 if (PageBuddy(page_head) && page_order(page_head) >= order)
6584 break;
6585 }
6586 spin_unlock_irqrestore(&zone->lock, flags);
6587
6588 return order < MAX_ORDER;
6589 }
6590 #endif