]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/page_alloc.c
sched/rt: Move rt specific bits into new header file
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 #include <linux/sched/rt.h>
62
63 #include <asm/tlbflush.h>
64 #include <asm/div64.h>
65 #include "internal.h"
66
67 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
68 DEFINE_PER_CPU(int, numa_node);
69 EXPORT_PER_CPU_SYMBOL(numa_node);
70 #endif
71
72 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
73 /*
74 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
75 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
76 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
77 * defined in <linux/topology.h>.
78 */
79 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
80 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
81 #endif
82
83 /*
84 * Array of node states.
85 */
86 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
87 [N_POSSIBLE] = NODE_MASK_ALL,
88 [N_ONLINE] = { { [0] = 1UL } },
89 #ifndef CONFIG_NUMA
90 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
91 #ifdef CONFIG_HIGHMEM
92 [N_HIGH_MEMORY] = { { [0] = 1UL } },
93 #endif
94 #ifdef CONFIG_MOVABLE_NODE
95 [N_MEMORY] = { { [0] = 1UL } },
96 #endif
97 [N_CPU] = { { [0] = 1UL } },
98 #endif /* NUMA */
99 };
100 EXPORT_SYMBOL(node_states);
101
102 unsigned long totalram_pages __read_mostly;
103 unsigned long totalreserve_pages __read_mostly;
104 /*
105 * When calculating the number of globally allowed dirty pages, there
106 * is a certain number of per-zone reserves that should not be
107 * considered dirtyable memory. This is the sum of those reserves
108 * over all existing zones that contribute dirtyable memory.
109 */
110 unsigned long dirty_balance_reserve __read_mostly;
111
112 int percpu_pagelist_fraction;
113 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
114
115 #ifdef CONFIG_PM_SLEEP
116 /*
117 * The following functions are used by the suspend/hibernate code to temporarily
118 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
119 * while devices are suspended. To avoid races with the suspend/hibernate code,
120 * they should always be called with pm_mutex held (gfp_allowed_mask also should
121 * only be modified with pm_mutex held, unless the suspend/hibernate code is
122 * guaranteed not to run in parallel with that modification).
123 */
124
125 static gfp_t saved_gfp_mask;
126
127 void pm_restore_gfp_mask(void)
128 {
129 WARN_ON(!mutex_is_locked(&pm_mutex));
130 if (saved_gfp_mask) {
131 gfp_allowed_mask = saved_gfp_mask;
132 saved_gfp_mask = 0;
133 }
134 }
135
136 void pm_restrict_gfp_mask(void)
137 {
138 WARN_ON(!mutex_is_locked(&pm_mutex));
139 WARN_ON(saved_gfp_mask);
140 saved_gfp_mask = gfp_allowed_mask;
141 gfp_allowed_mask &= ~GFP_IOFS;
142 }
143
144 bool pm_suspended_storage(void)
145 {
146 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
147 return false;
148 return true;
149 }
150 #endif /* CONFIG_PM_SLEEP */
151
152 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
153 int pageblock_order __read_mostly;
154 #endif
155
156 static void __free_pages_ok(struct page *page, unsigned int order);
157
158 /*
159 * results with 256, 32 in the lowmem_reserve sysctl:
160 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
161 * 1G machine -> (16M dma, 784M normal, 224M high)
162 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
163 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
164 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
165 *
166 * TBD: should special case ZONE_DMA32 machines here - in those we normally
167 * don't need any ZONE_NORMAL reservation
168 */
169 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
170 #ifdef CONFIG_ZONE_DMA
171 256,
172 #endif
173 #ifdef CONFIG_ZONE_DMA32
174 256,
175 #endif
176 #ifdef CONFIG_HIGHMEM
177 32,
178 #endif
179 32,
180 };
181
182 EXPORT_SYMBOL(totalram_pages);
183
184 static char * const zone_names[MAX_NR_ZONES] = {
185 #ifdef CONFIG_ZONE_DMA
186 "DMA",
187 #endif
188 #ifdef CONFIG_ZONE_DMA32
189 "DMA32",
190 #endif
191 "Normal",
192 #ifdef CONFIG_HIGHMEM
193 "HighMem",
194 #endif
195 "Movable",
196 };
197
198 int min_free_kbytes = 1024;
199
200 static unsigned long __meminitdata nr_kernel_pages;
201 static unsigned long __meminitdata nr_all_pages;
202 static unsigned long __meminitdata dma_reserve;
203
204 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
205 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
206 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
207 static unsigned long __initdata required_kernelcore;
208 static unsigned long __initdata required_movablecore;
209 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
210
211 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
212 int movable_zone;
213 EXPORT_SYMBOL(movable_zone);
214 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
215
216 #if MAX_NUMNODES > 1
217 int nr_node_ids __read_mostly = MAX_NUMNODES;
218 int nr_online_nodes __read_mostly = 1;
219 EXPORT_SYMBOL(nr_node_ids);
220 EXPORT_SYMBOL(nr_online_nodes);
221 #endif
222
223 int page_group_by_mobility_disabled __read_mostly;
224
225 void set_pageblock_migratetype(struct page *page, int migratetype)
226 {
227
228 if (unlikely(page_group_by_mobility_disabled))
229 migratetype = MIGRATE_UNMOVABLE;
230
231 set_pageblock_flags_group(page, (unsigned long)migratetype,
232 PB_migrate, PB_migrate_end);
233 }
234
235 bool oom_killer_disabled __read_mostly;
236
237 #ifdef CONFIG_DEBUG_VM
238 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
239 {
240 int ret = 0;
241 unsigned seq;
242 unsigned long pfn = page_to_pfn(page);
243
244 do {
245 seq = zone_span_seqbegin(zone);
246 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
247 ret = 1;
248 else if (pfn < zone->zone_start_pfn)
249 ret = 1;
250 } while (zone_span_seqretry(zone, seq));
251
252 return ret;
253 }
254
255 static int page_is_consistent(struct zone *zone, struct page *page)
256 {
257 if (!pfn_valid_within(page_to_pfn(page)))
258 return 0;
259 if (zone != page_zone(page))
260 return 0;
261
262 return 1;
263 }
264 /*
265 * Temporary debugging check for pages not lying within a given zone.
266 */
267 static int bad_range(struct zone *zone, struct page *page)
268 {
269 if (page_outside_zone_boundaries(zone, page))
270 return 1;
271 if (!page_is_consistent(zone, page))
272 return 1;
273
274 return 0;
275 }
276 #else
277 static inline int bad_range(struct zone *zone, struct page *page)
278 {
279 return 0;
280 }
281 #endif
282
283 static void bad_page(struct page *page)
284 {
285 static unsigned long resume;
286 static unsigned long nr_shown;
287 static unsigned long nr_unshown;
288
289 /* Don't complain about poisoned pages */
290 if (PageHWPoison(page)) {
291 reset_page_mapcount(page); /* remove PageBuddy */
292 return;
293 }
294
295 /*
296 * Allow a burst of 60 reports, then keep quiet for that minute;
297 * or allow a steady drip of one report per second.
298 */
299 if (nr_shown == 60) {
300 if (time_before(jiffies, resume)) {
301 nr_unshown++;
302 goto out;
303 }
304 if (nr_unshown) {
305 printk(KERN_ALERT
306 "BUG: Bad page state: %lu messages suppressed\n",
307 nr_unshown);
308 nr_unshown = 0;
309 }
310 nr_shown = 0;
311 }
312 if (nr_shown++ == 0)
313 resume = jiffies + 60 * HZ;
314
315 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
316 current->comm, page_to_pfn(page));
317 dump_page(page);
318
319 print_modules();
320 dump_stack();
321 out:
322 /* Leave bad fields for debug, except PageBuddy could make trouble */
323 reset_page_mapcount(page); /* remove PageBuddy */
324 add_taint(TAINT_BAD_PAGE);
325 }
326
327 /*
328 * Higher-order pages are called "compound pages". They are structured thusly:
329 *
330 * The first PAGE_SIZE page is called the "head page".
331 *
332 * The remaining PAGE_SIZE pages are called "tail pages".
333 *
334 * All pages have PG_compound set. All tail pages have their ->first_page
335 * pointing at the head page.
336 *
337 * The first tail page's ->lru.next holds the address of the compound page's
338 * put_page() function. Its ->lru.prev holds the order of allocation.
339 * This usage means that zero-order pages may not be compound.
340 */
341
342 static void free_compound_page(struct page *page)
343 {
344 __free_pages_ok(page, compound_order(page));
345 }
346
347 void prep_compound_page(struct page *page, unsigned long order)
348 {
349 int i;
350 int nr_pages = 1 << order;
351
352 set_compound_page_dtor(page, free_compound_page);
353 set_compound_order(page, order);
354 __SetPageHead(page);
355 for (i = 1; i < nr_pages; i++) {
356 struct page *p = page + i;
357 __SetPageTail(p);
358 set_page_count(p, 0);
359 p->first_page = page;
360 }
361 }
362
363 /* update __split_huge_page_refcount if you change this function */
364 static int destroy_compound_page(struct page *page, unsigned long order)
365 {
366 int i;
367 int nr_pages = 1 << order;
368 int bad = 0;
369
370 if (unlikely(compound_order(page) != order)) {
371 bad_page(page);
372 bad++;
373 }
374
375 __ClearPageHead(page);
376
377 for (i = 1; i < nr_pages; i++) {
378 struct page *p = page + i;
379
380 if (unlikely(!PageTail(p) || (p->first_page != page))) {
381 bad_page(page);
382 bad++;
383 }
384 __ClearPageTail(p);
385 }
386
387 return bad;
388 }
389
390 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
391 {
392 int i;
393
394 /*
395 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
396 * and __GFP_HIGHMEM from hard or soft interrupt context.
397 */
398 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
399 for (i = 0; i < (1 << order); i++)
400 clear_highpage(page + i);
401 }
402
403 #ifdef CONFIG_DEBUG_PAGEALLOC
404 unsigned int _debug_guardpage_minorder;
405
406 static int __init debug_guardpage_minorder_setup(char *buf)
407 {
408 unsigned long res;
409
410 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
411 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
412 return 0;
413 }
414 _debug_guardpage_minorder = res;
415 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
416 return 0;
417 }
418 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
419
420 static inline void set_page_guard_flag(struct page *page)
421 {
422 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
423 }
424
425 static inline void clear_page_guard_flag(struct page *page)
426 {
427 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
428 }
429 #else
430 static inline void set_page_guard_flag(struct page *page) { }
431 static inline void clear_page_guard_flag(struct page *page) { }
432 #endif
433
434 static inline void set_page_order(struct page *page, int order)
435 {
436 set_page_private(page, order);
437 __SetPageBuddy(page);
438 }
439
440 static inline void rmv_page_order(struct page *page)
441 {
442 __ClearPageBuddy(page);
443 set_page_private(page, 0);
444 }
445
446 /*
447 * Locate the struct page for both the matching buddy in our
448 * pair (buddy1) and the combined O(n+1) page they form (page).
449 *
450 * 1) Any buddy B1 will have an order O twin B2 which satisfies
451 * the following equation:
452 * B2 = B1 ^ (1 << O)
453 * For example, if the starting buddy (buddy2) is #8 its order
454 * 1 buddy is #10:
455 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
456 *
457 * 2) Any buddy B will have an order O+1 parent P which
458 * satisfies the following equation:
459 * P = B & ~(1 << O)
460 *
461 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
462 */
463 static inline unsigned long
464 __find_buddy_index(unsigned long page_idx, unsigned int order)
465 {
466 return page_idx ^ (1 << order);
467 }
468
469 /*
470 * This function checks whether a page is free && is the buddy
471 * we can do coalesce a page and its buddy if
472 * (a) the buddy is not in a hole &&
473 * (b) the buddy is in the buddy system &&
474 * (c) a page and its buddy have the same order &&
475 * (d) a page and its buddy are in the same zone.
476 *
477 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
478 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
479 *
480 * For recording page's order, we use page_private(page).
481 */
482 static inline int page_is_buddy(struct page *page, struct page *buddy,
483 int order)
484 {
485 if (!pfn_valid_within(page_to_pfn(buddy)))
486 return 0;
487
488 if (page_zone_id(page) != page_zone_id(buddy))
489 return 0;
490
491 if (page_is_guard(buddy) && page_order(buddy) == order) {
492 VM_BUG_ON(page_count(buddy) != 0);
493 return 1;
494 }
495
496 if (PageBuddy(buddy) && page_order(buddy) == order) {
497 VM_BUG_ON(page_count(buddy) != 0);
498 return 1;
499 }
500 return 0;
501 }
502
503 /*
504 * Freeing function for a buddy system allocator.
505 *
506 * The concept of a buddy system is to maintain direct-mapped table
507 * (containing bit values) for memory blocks of various "orders".
508 * The bottom level table contains the map for the smallest allocatable
509 * units of memory (here, pages), and each level above it describes
510 * pairs of units from the levels below, hence, "buddies".
511 * At a high level, all that happens here is marking the table entry
512 * at the bottom level available, and propagating the changes upward
513 * as necessary, plus some accounting needed to play nicely with other
514 * parts of the VM system.
515 * At each level, we keep a list of pages, which are heads of continuous
516 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
517 * order is recorded in page_private(page) field.
518 * So when we are allocating or freeing one, we can derive the state of the
519 * other. That is, if we allocate a small block, and both were
520 * free, the remainder of the region must be split into blocks.
521 * If a block is freed, and its buddy is also free, then this
522 * triggers coalescing into a block of larger size.
523 *
524 * -- nyc
525 */
526
527 static inline void __free_one_page(struct page *page,
528 struct zone *zone, unsigned int order,
529 int migratetype)
530 {
531 unsigned long page_idx;
532 unsigned long combined_idx;
533 unsigned long uninitialized_var(buddy_idx);
534 struct page *buddy;
535
536 if (unlikely(PageCompound(page)))
537 if (unlikely(destroy_compound_page(page, order)))
538 return;
539
540 VM_BUG_ON(migratetype == -1);
541
542 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
543
544 VM_BUG_ON(page_idx & ((1 << order) - 1));
545 VM_BUG_ON(bad_range(zone, page));
546
547 while (order < MAX_ORDER-1) {
548 buddy_idx = __find_buddy_index(page_idx, order);
549 buddy = page + (buddy_idx - page_idx);
550 if (!page_is_buddy(page, buddy, order))
551 break;
552 /*
553 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
554 * merge with it and move up one order.
555 */
556 if (page_is_guard(buddy)) {
557 clear_page_guard_flag(buddy);
558 set_page_private(page, 0);
559 __mod_zone_freepage_state(zone, 1 << order,
560 migratetype);
561 } else {
562 list_del(&buddy->lru);
563 zone->free_area[order].nr_free--;
564 rmv_page_order(buddy);
565 }
566 combined_idx = buddy_idx & page_idx;
567 page = page + (combined_idx - page_idx);
568 page_idx = combined_idx;
569 order++;
570 }
571 set_page_order(page, order);
572
573 /*
574 * If this is not the largest possible page, check if the buddy
575 * of the next-highest order is free. If it is, it's possible
576 * that pages are being freed that will coalesce soon. In case,
577 * that is happening, add the free page to the tail of the list
578 * so it's less likely to be used soon and more likely to be merged
579 * as a higher order page
580 */
581 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
582 struct page *higher_page, *higher_buddy;
583 combined_idx = buddy_idx & page_idx;
584 higher_page = page + (combined_idx - page_idx);
585 buddy_idx = __find_buddy_index(combined_idx, order + 1);
586 higher_buddy = higher_page + (buddy_idx - combined_idx);
587 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
588 list_add_tail(&page->lru,
589 &zone->free_area[order].free_list[migratetype]);
590 goto out;
591 }
592 }
593
594 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
595 out:
596 zone->free_area[order].nr_free++;
597 }
598
599 static inline int free_pages_check(struct page *page)
600 {
601 if (unlikely(page_mapcount(page) |
602 (page->mapping != NULL) |
603 (atomic_read(&page->_count) != 0) |
604 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
605 (mem_cgroup_bad_page_check(page)))) {
606 bad_page(page);
607 return 1;
608 }
609 reset_page_last_nid(page);
610 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
611 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
612 return 0;
613 }
614
615 /*
616 * Frees a number of pages from the PCP lists
617 * Assumes all pages on list are in same zone, and of same order.
618 * count is the number of pages to free.
619 *
620 * If the zone was previously in an "all pages pinned" state then look to
621 * see if this freeing clears that state.
622 *
623 * And clear the zone's pages_scanned counter, to hold off the "all pages are
624 * pinned" detection logic.
625 */
626 static void free_pcppages_bulk(struct zone *zone, int count,
627 struct per_cpu_pages *pcp)
628 {
629 int migratetype = 0;
630 int batch_free = 0;
631 int to_free = count;
632
633 spin_lock(&zone->lock);
634 zone->all_unreclaimable = 0;
635 zone->pages_scanned = 0;
636
637 while (to_free) {
638 struct page *page;
639 struct list_head *list;
640
641 /*
642 * Remove pages from lists in a round-robin fashion. A
643 * batch_free count is maintained that is incremented when an
644 * empty list is encountered. This is so more pages are freed
645 * off fuller lists instead of spinning excessively around empty
646 * lists
647 */
648 do {
649 batch_free++;
650 if (++migratetype == MIGRATE_PCPTYPES)
651 migratetype = 0;
652 list = &pcp->lists[migratetype];
653 } while (list_empty(list));
654
655 /* This is the only non-empty list. Free them all. */
656 if (batch_free == MIGRATE_PCPTYPES)
657 batch_free = to_free;
658
659 do {
660 int mt; /* migratetype of the to-be-freed page */
661
662 page = list_entry(list->prev, struct page, lru);
663 /* must delete as __free_one_page list manipulates */
664 list_del(&page->lru);
665 mt = get_freepage_migratetype(page);
666 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
667 __free_one_page(page, zone, 0, mt);
668 trace_mm_page_pcpu_drain(page, 0, mt);
669 if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) {
670 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
671 if (is_migrate_cma(mt))
672 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
673 }
674 } while (--to_free && --batch_free && !list_empty(list));
675 }
676 spin_unlock(&zone->lock);
677 }
678
679 static void free_one_page(struct zone *zone, struct page *page, int order,
680 int migratetype)
681 {
682 spin_lock(&zone->lock);
683 zone->all_unreclaimable = 0;
684 zone->pages_scanned = 0;
685
686 __free_one_page(page, zone, order, migratetype);
687 if (unlikely(migratetype != MIGRATE_ISOLATE))
688 __mod_zone_freepage_state(zone, 1 << order, migratetype);
689 spin_unlock(&zone->lock);
690 }
691
692 static bool free_pages_prepare(struct page *page, unsigned int order)
693 {
694 int i;
695 int bad = 0;
696
697 trace_mm_page_free(page, order);
698 kmemcheck_free_shadow(page, order);
699
700 if (PageAnon(page))
701 page->mapping = NULL;
702 for (i = 0; i < (1 << order); i++)
703 bad += free_pages_check(page + i);
704 if (bad)
705 return false;
706
707 if (!PageHighMem(page)) {
708 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
709 debug_check_no_obj_freed(page_address(page),
710 PAGE_SIZE << order);
711 }
712 arch_free_page(page, order);
713 kernel_map_pages(page, 1 << order, 0);
714
715 return true;
716 }
717
718 static void __free_pages_ok(struct page *page, unsigned int order)
719 {
720 unsigned long flags;
721 int migratetype;
722
723 if (!free_pages_prepare(page, order))
724 return;
725
726 local_irq_save(flags);
727 __count_vm_events(PGFREE, 1 << order);
728 migratetype = get_pageblock_migratetype(page);
729 set_freepage_migratetype(page, migratetype);
730 free_one_page(page_zone(page), page, order, migratetype);
731 local_irq_restore(flags);
732 }
733
734 /*
735 * Read access to zone->managed_pages is safe because it's unsigned long,
736 * but we still need to serialize writers. Currently all callers of
737 * __free_pages_bootmem() except put_page_bootmem() should only be used
738 * at boot time. So for shorter boot time, we shift the burden to
739 * put_page_bootmem() to serialize writers.
740 */
741 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
742 {
743 unsigned int nr_pages = 1 << order;
744 unsigned int loop;
745
746 prefetchw(page);
747 for (loop = 0; loop < nr_pages; loop++) {
748 struct page *p = &page[loop];
749
750 if (loop + 1 < nr_pages)
751 prefetchw(p + 1);
752 __ClearPageReserved(p);
753 set_page_count(p, 0);
754 }
755
756 page_zone(page)->managed_pages += 1 << order;
757 set_page_refcounted(page);
758 __free_pages(page, order);
759 }
760
761 #ifdef CONFIG_CMA
762 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
763 void __init init_cma_reserved_pageblock(struct page *page)
764 {
765 unsigned i = pageblock_nr_pages;
766 struct page *p = page;
767
768 do {
769 __ClearPageReserved(p);
770 set_page_count(p, 0);
771 } while (++p, --i);
772
773 set_page_refcounted(page);
774 set_pageblock_migratetype(page, MIGRATE_CMA);
775 __free_pages(page, pageblock_order);
776 totalram_pages += pageblock_nr_pages;
777 }
778 #endif
779
780 /*
781 * The order of subdivision here is critical for the IO subsystem.
782 * Please do not alter this order without good reasons and regression
783 * testing. Specifically, as large blocks of memory are subdivided,
784 * the order in which smaller blocks are delivered depends on the order
785 * they're subdivided in this function. This is the primary factor
786 * influencing the order in which pages are delivered to the IO
787 * subsystem according to empirical testing, and this is also justified
788 * by considering the behavior of a buddy system containing a single
789 * large block of memory acted on by a series of small allocations.
790 * This behavior is a critical factor in sglist merging's success.
791 *
792 * -- nyc
793 */
794 static inline void expand(struct zone *zone, struct page *page,
795 int low, int high, struct free_area *area,
796 int migratetype)
797 {
798 unsigned long size = 1 << high;
799
800 while (high > low) {
801 area--;
802 high--;
803 size >>= 1;
804 VM_BUG_ON(bad_range(zone, &page[size]));
805
806 #ifdef CONFIG_DEBUG_PAGEALLOC
807 if (high < debug_guardpage_minorder()) {
808 /*
809 * Mark as guard pages (or page), that will allow to
810 * merge back to allocator when buddy will be freed.
811 * Corresponding page table entries will not be touched,
812 * pages will stay not present in virtual address space
813 */
814 INIT_LIST_HEAD(&page[size].lru);
815 set_page_guard_flag(&page[size]);
816 set_page_private(&page[size], high);
817 /* Guard pages are not available for any usage */
818 __mod_zone_freepage_state(zone, -(1 << high),
819 migratetype);
820 continue;
821 }
822 #endif
823 list_add(&page[size].lru, &area->free_list[migratetype]);
824 area->nr_free++;
825 set_page_order(&page[size], high);
826 }
827 }
828
829 /*
830 * This page is about to be returned from the page allocator
831 */
832 static inline int check_new_page(struct page *page)
833 {
834 if (unlikely(page_mapcount(page) |
835 (page->mapping != NULL) |
836 (atomic_read(&page->_count) != 0) |
837 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
838 (mem_cgroup_bad_page_check(page)))) {
839 bad_page(page);
840 return 1;
841 }
842 return 0;
843 }
844
845 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
846 {
847 int i;
848
849 for (i = 0; i < (1 << order); i++) {
850 struct page *p = page + i;
851 if (unlikely(check_new_page(p)))
852 return 1;
853 }
854
855 set_page_private(page, 0);
856 set_page_refcounted(page);
857
858 arch_alloc_page(page, order);
859 kernel_map_pages(page, 1 << order, 1);
860
861 if (gfp_flags & __GFP_ZERO)
862 prep_zero_page(page, order, gfp_flags);
863
864 if (order && (gfp_flags & __GFP_COMP))
865 prep_compound_page(page, order);
866
867 return 0;
868 }
869
870 /*
871 * Go through the free lists for the given migratetype and remove
872 * the smallest available page from the freelists
873 */
874 static inline
875 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
876 int migratetype)
877 {
878 unsigned int current_order;
879 struct free_area * area;
880 struct page *page;
881
882 /* Find a page of the appropriate size in the preferred list */
883 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
884 area = &(zone->free_area[current_order]);
885 if (list_empty(&area->free_list[migratetype]))
886 continue;
887
888 page = list_entry(area->free_list[migratetype].next,
889 struct page, lru);
890 list_del(&page->lru);
891 rmv_page_order(page);
892 area->nr_free--;
893 expand(zone, page, order, current_order, area, migratetype);
894 return page;
895 }
896
897 return NULL;
898 }
899
900
901 /*
902 * This array describes the order lists are fallen back to when
903 * the free lists for the desirable migrate type are depleted
904 */
905 static int fallbacks[MIGRATE_TYPES][4] = {
906 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
907 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
908 #ifdef CONFIG_CMA
909 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
910 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
911 #else
912 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
913 #endif
914 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
915 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
916 };
917
918 /*
919 * Move the free pages in a range to the free lists of the requested type.
920 * Note that start_page and end_pages are not aligned on a pageblock
921 * boundary. If alignment is required, use move_freepages_block()
922 */
923 int move_freepages(struct zone *zone,
924 struct page *start_page, struct page *end_page,
925 int migratetype)
926 {
927 struct page *page;
928 unsigned long order;
929 int pages_moved = 0;
930
931 #ifndef CONFIG_HOLES_IN_ZONE
932 /*
933 * page_zone is not safe to call in this context when
934 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
935 * anyway as we check zone boundaries in move_freepages_block().
936 * Remove at a later date when no bug reports exist related to
937 * grouping pages by mobility
938 */
939 BUG_ON(page_zone(start_page) != page_zone(end_page));
940 #endif
941
942 for (page = start_page; page <= end_page;) {
943 /* Make sure we are not inadvertently changing nodes */
944 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
945
946 if (!pfn_valid_within(page_to_pfn(page))) {
947 page++;
948 continue;
949 }
950
951 if (!PageBuddy(page)) {
952 page++;
953 continue;
954 }
955
956 order = page_order(page);
957 list_move(&page->lru,
958 &zone->free_area[order].free_list[migratetype]);
959 set_freepage_migratetype(page, migratetype);
960 page += 1 << order;
961 pages_moved += 1 << order;
962 }
963
964 return pages_moved;
965 }
966
967 int move_freepages_block(struct zone *zone, struct page *page,
968 int migratetype)
969 {
970 unsigned long start_pfn, end_pfn;
971 struct page *start_page, *end_page;
972
973 start_pfn = page_to_pfn(page);
974 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
975 start_page = pfn_to_page(start_pfn);
976 end_page = start_page + pageblock_nr_pages - 1;
977 end_pfn = start_pfn + pageblock_nr_pages - 1;
978
979 /* Do not cross zone boundaries */
980 if (start_pfn < zone->zone_start_pfn)
981 start_page = page;
982 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
983 return 0;
984
985 return move_freepages(zone, start_page, end_page, migratetype);
986 }
987
988 static void change_pageblock_range(struct page *pageblock_page,
989 int start_order, int migratetype)
990 {
991 int nr_pageblocks = 1 << (start_order - pageblock_order);
992
993 while (nr_pageblocks--) {
994 set_pageblock_migratetype(pageblock_page, migratetype);
995 pageblock_page += pageblock_nr_pages;
996 }
997 }
998
999 /* Remove an element from the buddy allocator from the fallback list */
1000 static inline struct page *
1001 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1002 {
1003 struct free_area * area;
1004 int current_order;
1005 struct page *page;
1006 int migratetype, i;
1007
1008 /* Find the largest possible block of pages in the other list */
1009 for (current_order = MAX_ORDER-1; current_order >= order;
1010 --current_order) {
1011 for (i = 0;; i++) {
1012 migratetype = fallbacks[start_migratetype][i];
1013
1014 /* MIGRATE_RESERVE handled later if necessary */
1015 if (migratetype == MIGRATE_RESERVE)
1016 break;
1017
1018 area = &(zone->free_area[current_order]);
1019 if (list_empty(&area->free_list[migratetype]))
1020 continue;
1021
1022 page = list_entry(area->free_list[migratetype].next,
1023 struct page, lru);
1024 area->nr_free--;
1025
1026 /*
1027 * If breaking a large block of pages, move all free
1028 * pages to the preferred allocation list. If falling
1029 * back for a reclaimable kernel allocation, be more
1030 * aggressive about taking ownership of free pages
1031 *
1032 * On the other hand, never change migration
1033 * type of MIGRATE_CMA pageblocks nor move CMA
1034 * pages on different free lists. We don't
1035 * want unmovable pages to be allocated from
1036 * MIGRATE_CMA areas.
1037 */
1038 if (!is_migrate_cma(migratetype) &&
1039 (unlikely(current_order >= pageblock_order / 2) ||
1040 start_migratetype == MIGRATE_RECLAIMABLE ||
1041 page_group_by_mobility_disabled)) {
1042 int pages;
1043 pages = move_freepages_block(zone, page,
1044 start_migratetype);
1045
1046 /* Claim the whole block if over half of it is free */
1047 if (pages >= (1 << (pageblock_order-1)) ||
1048 page_group_by_mobility_disabled)
1049 set_pageblock_migratetype(page,
1050 start_migratetype);
1051
1052 migratetype = start_migratetype;
1053 }
1054
1055 /* Remove the page from the freelists */
1056 list_del(&page->lru);
1057 rmv_page_order(page);
1058
1059 /* Take ownership for orders >= pageblock_order */
1060 if (current_order >= pageblock_order &&
1061 !is_migrate_cma(migratetype))
1062 change_pageblock_range(page, current_order,
1063 start_migratetype);
1064
1065 expand(zone, page, order, current_order, area,
1066 is_migrate_cma(migratetype)
1067 ? migratetype : start_migratetype);
1068
1069 trace_mm_page_alloc_extfrag(page, order, current_order,
1070 start_migratetype, migratetype);
1071
1072 return page;
1073 }
1074 }
1075
1076 return NULL;
1077 }
1078
1079 /*
1080 * Do the hard work of removing an element from the buddy allocator.
1081 * Call me with the zone->lock already held.
1082 */
1083 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1084 int migratetype)
1085 {
1086 struct page *page;
1087
1088 retry_reserve:
1089 page = __rmqueue_smallest(zone, order, migratetype);
1090
1091 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1092 page = __rmqueue_fallback(zone, order, migratetype);
1093
1094 /*
1095 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1096 * is used because __rmqueue_smallest is an inline function
1097 * and we want just one call site
1098 */
1099 if (!page) {
1100 migratetype = MIGRATE_RESERVE;
1101 goto retry_reserve;
1102 }
1103 }
1104
1105 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1106 return page;
1107 }
1108
1109 /*
1110 * Obtain a specified number of elements from the buddy allocator, all under
1111 * a single hold of the lock, for efficiency. Add them to the supplied list.
1112 * Returns the number of new pages which were placed at *list.
1113 */
1114 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1115 unsigned long count, struct list_head *list,
1116 int migratetype, int cold)
1117 {
1118 int mt = migratetype, i;
1119
1120 spin_lock(&zone->lock);
1121 for (i = 0; i < count; ++i) {
1122 struct page *page = __rmqueue(zone, order, migratetype);
1123 if (unlikely(page == NULL))
1124 break;
1125
1126 /*
1127 * Split buddy pages returned by expand() are received here
1128 * in physical page order. The page is added to the callers and
1129 * list and the list head then moves forward. From the callers
1130 * perspective, the linked list is ordered by page number in
1131 * some conditions. This is useful for IO devices that can
1132 * merge IO requests if the physical pages are ordered
1133 * properly.
1134 */
1135 if (likely(cold == 0))
1136 list_add(&page->lru, list);
1137 else
1138 list_add_tail(&page->lru, list);
1139 if (IS_ENABLED(CONFIG_CMA)) {
1140 mt = get_pageblock_migratetype(page);
1141 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1142 mt = migratetype;
1143 }
1144 set_freepage_migratetype(page, mt);
1145 list = &page->lru;
1146 if (is_migrate_cma(mt))
1147 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1148 -(1 << order));
1149 }
1150 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1151 spin_unlock(&zone->lock);
1152 return i;
1153 }
1154
1155 #ifdef CONFIG_NUMA
1156 /*
1157 * Called from the vmstat counter updater to drain pagesets of this
1158 * currently executing processor on remote nodes after they have
1159 * expired.
1160 *
1161 * Note that this function must be called with the thread pinned to
1162 * a single processor.
1163 */
1164 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1165 {
1166 unsigned long flags;
1167 int to_drain;
1168
1169 local_irq_save(flags);
1170 if (pcp->count >= pcp->batch)
1171 to_drain = pcp->batch;
1172 else
1173 to_drain = pcp->count;
1174 if (to_drain > 0) {
1175 free_pcppages_bulk(zone, to_drain, pcp);
1176 pcp->count -= to_drain;
1177 }
1178 local_irq_restore(flags);
1179 }
1180 #endif
1181
1182 /*
1183 * Drain pages of the indicated processor.
1184 *
1185 * The processor must either be the current processor and the
1186 * thread pinned to the current processor or a processor that
1187 * is not online.
1188 */
1189 static void drain_pages(unsigned int cpu)
1190 {
1191 unsigned long flags;
1192 struct zone *zone;
1193
1194 for_each_populated_zone(zone) {
1195 struct per_cpu_pageset *pset;
1196 struct per_cpu_pages *pcp;
1197
1198 local_irq_save(flags);
1199 pset = per_cpu_ptr(zone->pageset, cpu);
1200
1201 pcp = &pset->pcp;
1202 if (pcp->count) {
1203 free_pcppages_bulk(zone, pcp->count, pcp);
1204 pcp->count = 0;
1205 }
1206 local_irq_restore(flags);
1207 }
1208 }
1209
1210 /*
1211 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1212 */
1213 void drain_local_pages(void *arg)
1214 {
1215 drain_pages(smp_processor_id());
1216 }
1217
1218 /*
1219 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1220 *
1221 * Note that this code is protected against sending an IPI to an offline
1222 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1223 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1224 * nothing keeps CPUs from showing up after we populated the cpumask and
1225 * before the call to on_each_cpu_mask().
1226 */
1227 void drain_all_pages(void)
1228 {
1229 int cpu;
1230 struct per_cpu_pageset *pcp;
1231 struct zone *zone;
1232
1233 /*
1234 * Allocate in the BSS so we wont require allocation in
1235 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1236 */
1237 static cpumask_t cpus_with_pcps;
1238
1239 /*
1240 * We don't care about racing with CPU hotplug event
1241 * as offline notification will cause the notified
1242 * cpu to drain that CPU pcps and on_each_cpu_mask
1243 * disables preemption as part of its processing
1244 */
1245 for_each_online_cpu(cpu) {
1246 bool has_pcps = false;
1247 for_each_populated_zone(zone) {
1248 pcp = per_cpu_ptr(zone->pageset, cpu);
1249 if (pcp->pcp.count) {
1250 has_pcps = true;
1251 break;
1252 }
1253 }
1254 if (has_pcps)
1255 cpumask_set_cpu(cpu, &cpus_with_pcps);
1256 else
1257 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1258 }
1259 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1260 }
1261
1262 #ifdef CONFIG_HIBERNATION
1263
1264 void mark_free_pages(struct zone *zone)
1265 {
1266 unsigned long pfn, max_zone_pfn;
1267 unsigned long flags;
1268 int order, t;
1269 struct list_head *curr;
1270
1271 if (!zone->spanned_pages)
1272 return;
1273
1274 spin_lock_irqsave(&zone->lock, flags);
1275
1276 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1277 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1278 if (pfn_valid(pfn)) {
1279 struct page *page = pfn_to_page(pfn);
1280
1281 if (!swsusp_page_is_forbidden(page))
1282 swsusp_unset_page_free(page);
1283 }
1284
1285 for_each_migratetype_order(order, t) {
1286 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1287 unsigned long i;
1288
1289 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1290 for (i = 0; i < (1UL << order); i++)
1291 swsusp_set_page_free(pfn_to_page(pfn + i));
1292 }
1293 }
1294 spin_unlock_irqrestore(&zone->lock, flags);
1295 }
1296 #endif /* CONFIG_PM */
1297
1298 /*
1299 * Free a 0-order page
1300 * cold == 1 ? free a cold page : free a hot page
1301 */
1302 void free_hot_cold_page(struct page *page, int cold)
1303 {
1304 struct zone *zone = page_zone(page);
1305 struct per_cpu_pages *pcp;
1306 unsigned long flags;
1307 int migratetype;
1308
1309 if (!free_pages_prepare(page, 0))
1310 return;
1311
1312 migratetype = get_pageblock_migratetype(page);
1313 set_freepage_migratetype(page, migratetype);
1314 local_irq_save(flags);
1315 __count_vm_event(PGFREE);
1316
1317 /*
1318 * We only track unmovable, reclaimable and movable on pcp lists.
1319 * Free ISOLATE pages back to the allocator because they are being
1320 * offlined but treat RESERVE as movable pages so we can get those
1321 * areas back if necessary. Otherwise, we may have to free
1322 * excessively into the page allocator
1323 */
1324 if (migratetype >= MIGRATE_PCPTYPES) {
1325 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1326 free_one_page(zone, page, 0, migratetype);
1327 goto out;
1328 }
1329 migratetype = MIGRATE_MOVABLE;
1330 }
1331
1332 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1333 if (cold)
1334 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1335 else
1336 list_add(&page->lru, &pcp->lists[migratetype]);
1337 pcp->count++;
1338 if (pcp->count >= pcp->high) {
1339 free_pcppages_bulk(zone, pcp->batch, pcp);
1340 pcp->count -= pcp->batch;
1341 }
1342
1343 out:
1344 local_irq_restore(flags);
1345 }
1346
1347 /*
1348 * Free a list of 0-order pages
1349 */
1350 void free_hot_cold_page_list(struct list_head *list, int cold)
1351 {
1352 struct page *page, *next;
1353
1354 list_for_each_entry_safe(page, next, list, lru) {
1355 trace_mm_page_free_batched(page, cold);
1356 free_hot_cold_page(page, cold);
1357 }
1358 }
1359
1360 /*
1361 * split_page takes a non-compound higher-order page, and splits it into
1362 * n (1<<order) sub-pages: page[0..n]
1363 * Each sub-page must be freed individually.
1364 *
1365 * Note: this is probably too low level an operation for use in drivers.
1366 * Please consult with lkml before using this in your driver.
1367 */
1368 void split_page(struct page *page, unsigned int order)
1369 {
1370 int i;
1371
1372 VM_BUG_ON(PageCompound(page));
1373 VM_BUG_ON(!page_count(page));
1374
1375 #ifdef CONFIG_KMEMCHECK
1376 /*
1377 * Split shadow pages too, because free(page[0]) would
1378 * otherwise free the whole shadow.
1379 */
1380 if (kmemcheck_page_is_tracked(page))
1381 split_page(virt_to_page(page[0].shadow), order);
1382 #endif
1383
1384 for (i = 1; i < (1 << order); i++)
1385 set_page_refcounted(page + i);
1386 }
1387
1388 static int __isolate_free_page(struct page *page, unsigned int order)
1389 {
1390 unsigned long watermark;
1391 struct zone *zone;
1392 int mt;
1393
1394 BUG_ON(!PageBuddy(page));
1395
1396 zone = page_zone(page);
1397 mt = get_pageblock_migratetype(page);
1398
1399 if (mt != MIGRATE_ISOLATE) {
1400 /* Obey watermarks as if the page was being allocated */
1401 watermark = low_wmark_pages(zone) + (1 << order);
1402 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1403 return 0;
1404
1405 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1406 }
1407
1408 /* Remove page from free list */
1409 list_del(&page->lru);
1410 zone->free_area[order].nr_free--;
1411 rmv_page_order(page);
1412
1413 /* Set the pageblock if the isolated page is at least a pageblock */
1414 if (order >= pageblock_order - 1) {
1415 struct page *endpage = page + (1 << order) - 1;
1416 for (; page < endpage; page += pageblock_nr_pages) {
1417 int mt = get_pageblock_migratetype(page);
1418 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1419 set_pageblock_migratetype(page,
1420 MIGRATE_MOVABLE);
1421 }
1422 }
1423
1424 return 1UL << order;
1425 }
1426
1427 /*
1428 * Similar to split_page except the page is already free. As this is only
1429 * being used for migration, the migratetype of the block also changes.
1430 * As this is called with interrupts disabled, the caller is responsible
1431 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1432 * are enabled.
1433 *
1434 * Note: this is probably too low level an operation for use in drivers.
1435 * Please consult with lkml before using this in your driver.
1436 */
1437 int split_free_page(struct page *page)
1438 {
1439 unsigned int order;
1440 int nr_pages;
1441
1442 order = page_order(page);
1443
1444 nr_pages = __isolate_free_page(page, order);
1445 if (!nr_pages)
1446 return 0;
1447
1448 /* Split into individual pages */
1449 set_page_refcounted(page);
1450 split_page(page, order);
1451 return nr_pages;
1452 }
1453
1454 /*
1455 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1456 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1457 * or two.
1458 */
1459 static inline
1460 struct page *buffered_rmqueue(struct zone *preferred_zone,
1461 struct zone *zone, int order, gfp_t gfp_flags,
1462 int migratetype)
1463 {
1464 unsigned long flags;
1465 struct page *page;
1466 int cold = !!(gfp_flags & __GFP_COLD);
1467
1468 again:
1469 if (likely(order == 0)) {
1470 struct per_cpu_pages *pcp;
1471 struct list_head *list;
1472
1473 local_irq_save(flags);
1474 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1475 list = &pcp->lists[migratetype];
1476 if (list_empty(list)) {
1477 pcp->count += rmqueue_bulk(zone, 0,
1478 pcp->batch, list,
1479 migratetype, cold);
1480 if (unlikely(list_empty(list)))
1481 goto failed;
1482 }
1483
1484 if (cold)
1485 page = list_entry(list->prev, struct page, lru);
1486 else
1487 page = list_entry(list->next, struct page, lru);
1488
1489 list_del(&page->lru);
1490 pcp->count--;
1491 } else {
1492 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1493 /*
1494 * __GFP_NOFAIL is not to be used in new code.
1495 *
1496 * All __GFP_NOFAIL callers should be fixed so that they
1497 * properly detect and handle allocation failures.
1498 *
1499 * We most definitely don't want callers attempting to
1500 * allocate greater than order-1 page units with
1501 * __GFP_NOFAIL.
1502 */
1503 WARN_ON_ONCE(order > 1);
1504 }
1505 spin_lock_irqsave(&zone->lock, flags);
1506 page = __rmqueue(zone, order, migratetype);
1507 spin_unlock(&zone->lock);
1508 if (!page)
1509 goto failed;
1510 __mod_zone_freepage_state(zone, -(1 << order),
1511 get_pageblock_migratetype(page));
1512 }
1513
1514 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1515 zone_statistics(preferred_zone, zone, gfp_flags);
1516 local_irq_restore(flags);
1517
1518 VM_BUG_ON(bad_range(zone, page));
1519 if (prep_new_page(page, order, gfp_flags))
1520 goto again;
1521 return page;
1522
1523 failed:
1524 local_irq_restore(flags);
1525 return NULL;
1526 }
1527
1528 #ifdef CONFIG_FAIL_PAGE_ALLOC
1529
1530 static struct {
1531 struct fault_attr attr;
1532
1533 u32 ignore_gfp_highmem;
1534 u32 ignore_gfp_wait;
1535 u32 min_order;
1536 } fail_page_alloc = {
1537 .attr = FAULT_ATTR_INITIALIZER,
1538 .ignore_gfp_wait = 1,
1539 .ignore_gfp_highmem = 1,
1540 .min_order = 1,
1541 };
1542
1543 static int __init setup_fail_page_alloc(char *str)
1544 {
1545 return setup_fault_attr(&fail_page_alloc.attr, str);
1546 }
1547 __setup("fail_page_alloc=", setup_fail_page_alloc);
1548
1549 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1550 {
1551 if (order < fail_page_alloc.min_order)
1552 return false;
1553 if (gfp_mask & __GFP_NOFAIL)
1554 return false;
1555 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1556 return false;
1557 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1558 return false;
1559
1560 return should_fail(&fail_page_alloc.attr, 1 << order);
1561 }
1562
1563 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1564
1565 static int __init fail_page_alloc_debugfs(void)
1566 {
1567 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1568 struct dentry *dir;
1569
1570 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1571 &fail_page_alloc.attr);
1572 if (IS_ERR(dir))
1573 return PTR_ERR(dir);
1574
1575 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1576 &fail_page_alloc.ignore_gfp_wait))
1577 goto fail;
1578 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1579 &fail_page_alloc.ignore_gfp_highmem))
1580 goto fail;
1581 if (!debugfs_create_u32("min-order", mode, dir,
1582 &fail_page_alloc.min_order))
1583 goto fail;
1584
1585 return 0;
1586 fail:
1587 debugfs_remove_recursive(dir);
1588
1589 return -ENOMEM;
1590 }
1591
1592 late_initcall(fail_page_alloc_debugfs);
1593
1594 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1595
1596 #else /* CONFIG_FAIL_PAGE_ALLOC */
1597
1598 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1599 {
1600 return false;
1601 }
1602
1603 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1604
1605 /*
1606 * Return true if free pages are above 'mark'. This takes into account the order
1607 * of the allocation.
1608 */
1609 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1610 int classzone_idx, int alloc_flags, long free_pages)
1611 {
1612 /* free_pages my go negative - that's OK */
1613 long min = mark;
1614 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1615 int o;
1616
1617 free_pages -= (1 << order) - 1;
1618 if (alloc_flags & ALLOC_HIGH)
1619 min -= min / 2;
1620 if (alloc_flags & ALLOC_HARDER)
1621 min -= min / 4;
1622 #ifdef CONFIG_CMA
1623 /* If allocation can't use CMA areas don't use free CMA pages */
1624 if (!(alloc_flags & ALLOC_CMA))
1625 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1626 #endif
1627 if (free_pages <= min + lowmem_reserve)
1628 return false;
1629 for (o = 0; o < order; o++) {
1630 /* At the next order, this order's pages become unavailable */
1631 free_pages -= z->free_area[o].nr_free << o;
1632
1633 /* Require fewer higher order pages to be free */
1634 min >>= 1;
1635
1636 if (free_pages <= min)
1637 return false;
1638 }
1639 return true;
1640 }
1641
1642 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1643 int classzone_idx, int alloc_flags)
1644 {
1645 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1646 zone_page_state(z, NR_FREE_PAGES));
1647 }
1648
1649 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1650 int classzone_idx, int alloc_flags)
1651 {
1652 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1653
1654 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1655 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1656
1657 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1658 free_pages);
1659 }
1660
1661 #ifdef CONFIG_NUMA
1662 /*
1663 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1664 * skip over zones that are not allowed by the cpuset, or that have
1665 * been recently (in last second) found to be nearly full. See further
1666 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1667 * that have to skip over a lot of full or unallowed zones.
1668 *
1669 * If the zonelist cache is present in the passed in zonelist, then
1670 * returns a pointer to the allowed node mask (either the current
1671 * tasks mems_allowed, or node_states[N_MEMORY].)
1672 *
1673 * If the zonelist cache is not available for this zonelist, does
1674 * nothing and returns NULL.
1675 *
1676 * If the fullzones BITMAP in the zonelist cache is stale (more than
1677 * a second since last zap'd) then we zap it out (clear its bits.)
1678 *
1679 * We hold off even calling zlc_setup, until after we've checked the
1680 * first zone in the zonelist, on the theory that most allocations will
1681 * be satisfied from that first zone, so best to examine that zone as
1682 * quickly as we can.
1683 */
1684 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1685 {
1686 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1687 nodemask_t *allowednodes; /* zonelist_cache approximation */
1688
1689 zlc = zonelist->zlcache_ptr;
1690 if (!zlc)
1691 return NULL;
1692
1693 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1694 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1695 zlc->last_full_zap = jiffies;
1696 }
1697
1698 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1699 &cpuset_current_mems_allowed :
1700 &node_states[N_MEMORY];
1701 return allowednodes;
1702 }
1703
1704 /*
1705 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1706 * if it is worth looking at further for free memory:
1707 * 1) Check that the zone isn't thought to be full (doesn't have its
1708 * bit set in the zonelist_cache fullzones BITMAP).
1709 * 2) Check that the zones node (obtained from the zonelist_cache
1710 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1711 * Return true (non-zero) if zone is worth looking at further, or
1712 * else return false (zero) if it is not.
1713 *
1714 * This check -ignores- the distinction between various watermarks,
1715 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1716 * found to be full for any variation of these watermarks, it will
1717 * be considered full for up to one second by all requests, unless
1718 * we are so low on memory on all allowed nodes that we are forced
1719 * into the second scan of the zonelist.
1720 *
1721 * In the second scan we ignore this zonelist cache and exactly
1722 * apply the watermarks to all zones, even it is slower to do so.
1723 * We are low on memory in the second scan, and should leave no stone
1724 * unturned looking for a free page.
1725 */
1726 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1727 nodemask_t *allowednodes)
1728 {
1729 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1730 int i; /* index of *z in zonelist zones */
1731 int n; /* node that zone *z is on */
1732
1733 zlc = zonelist->zlcache_ptr;
1734 if (!zlc)
1735 return 1;
1736
1737 i = z - zonelist->_zonerefs;
1738 n = zlc->z_to_n[i];
1739
1740 /* This zone is worth trying if it is allowed but not full */
1741 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1742 }
1743
1744 /*
1745 * Given 'z' scanning a zonelist, set the corresponding bit in
1746 * zlc->fullzones, so that subsequent attempts to allocate a page
1747 * from that zone don't waste time re-examining it.
1748 */
1749 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1750 {
1751 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1752 int i; /* index of *z in zonelist zones */
1753
1754 zlc = zonelist->zlcache_ptr;
1755 if (!zlc)
1756 return;
1757
1758 i = z - zonelist->_zonerefs;
1759
1760 set_bit(i, zlc->fullzones);
1761 }
1762
1763 /*
1764 * clear all zones full, called after direct reclaim makes progress so that
1765 * a zone that was recently full is not skipped over for up to a second
1766 */
1767 static void zlc_clear_zones_full(struct zonelist *zonelist)
1768 {
1769 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1770
1771 zlc = zonelist->zlcache_ptr;
1772 if (!zlc)
1773 return;
1774
1775 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1776 }
1777
1778 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1779 {
1780 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1781 }
1782
1783 static void __paginginit init_zone_allows_reclaim(int nid)
1784 {
1785 int i;
1786
1787 for_each_online_node(i)
1788 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1789 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1790 else
1791 zone_reclaim_mode = 1;
1792 }
1793
1794 #else /* CONFIG_NUMA */
1795
1796 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1797 {
1798 return NULL;
1799 }
1800
1801 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1802 nodemask_t *allowednodes)
1803 {
1804 return 1;
1805 }
1806
1807 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1808 {
1809 }
1810
1811 static void zlc_clear_zones_full(struct zonelist *zonelist)
1812 {
1813 }
1814
1815 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1816 {
1817 return true;
1818 }
1819
1820 static inline void init_zone_allows_reclaim(int nid)
1821 {
1822 }
1823 #endif /* CONFIG_NUMA */
1824
1825 /*
1826 * get_page_from_freelist goes through the zonelist trying to allocate
1827 * a page.
1828 */
1829 static struct page *
1830 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1831 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1832 struct zone *preferred_zone, int migratetype)
1833 {
1834 struct zoneref *z;
1835 struct page *page = NULL;
1836 int classzone_idx;
1837 struct zone *zone;
1838 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1839 int zlc_active = 0; /* set if using zonelist_cache */
1840 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1841
1842 classzone_idx = zone_idx(preferred_zone);
1843 zonelist_scan:
1844 /*
1845 * Scan zonelist, looking for a zone with enough free.
1846 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1847 */
1848 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1849 high_zoneidx, nodemask) {
1850 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1851 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1852 continue;
1853 if ((alloc_flags & ALLOC_CPUSET) &&
1854 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1855 continue;
1856 /*
1857 * When allocating a page cache page for writing, we
1858 * want to get it from a zone that is within its dirty
1859 * limit, such that no single zone holds more than its
1860 * proportional share of globally allowed dirty pages.
1861 * The dirty limits take into account the zone's
1862 * lowmem reserves and high watermark so that kswapd
1863 * should be able to balance it without having to
1864 * write pages from its LRU list.
1865 *
1866 * This may look like it could increase pressure on
1867 * lower zones by failing allocations in higher zones
1868 * before they are full. But the pages that do spill
1869 * over are limited as the lower zones are protected
1870 * by this very same mechanism. It should not become
1871 * a practical burden to them.
1872 *
1873 * XXX: For now, allow allocations to potentially
1874 * exceed the per-zone dirty limit in the slowpath
1875 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1876 * which is important when on a NUMA setup the allowed
1877 * zones are together not big enough to reach the
1878 * global limit. The proper fix for these situations
1879 * will require awareness of zones in the
1880 * dirty-throttling and the flusher threads.
1881 */
1882 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1883 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1884 goto this_zone_full;
1885
1886 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1887 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1888 unsigned long mark;
1889 int ret;
1890
1891 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1892 if (zone_watermark_ok(zone, order, mark,
1893 classzone_idx, alloc_flags))
1894 goto try_this_zone;
1895
1896 if (IS_ENABLED(CONFIG_NUMA) &&
1897 !did_zlc_setup && nr_online_nodes > 1) {
1898 /*
1899 * we do zlc_setup if there are multiple nodes
1900 * and before considering the first zone allowed
1901 * by the cpuset.
1902 */
1903 allowednodes = zlc_setup(zonelist, alloc_flags);
1904 zlc_active = 1;
1905 did_zlc_setup = 1;
1906 }
1907
1908 if (zone_reclaim_mode == 0 ||
1909 !zone_allows_reclaim(preferred_zone, zone))
1910 goto this_zone_full;
1911
1912 /*
1913 * As we may have just activated ZLC, check if the first
1914 * eligible zone has failed zone_reclaim recently.
1915 */
1916 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1917 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1918 continue;
1919
1920 ret = zone_reclaim(zone, gfp_mask, order);
1921 switch (ret) {
1922 case ZONE_RECLAIM_NOSCAN:
1923 /* did not scan */
1924 continue;
1925 case ZONE_RECLAIM_FULL:
1926 /* scanned but unreclaimable */
1927 continue;
1928 default:
1929 /* did we reclaim enough */
1930 if (!zone_watermark_ok(zone, order, mark,
1931 classzone_idx, alloc_flags))
1932 goto this_zone_full;
1933 }
1934 }
1935
1936 try_this_zone:
1937 page = buffered_rmqueue(preferred_zone, zone, order,
1938 gfp_mask, migratetype);
1939 if (page)
1940 break;
1941 this_zone_full:
1942 if (IS_ENABLED(CONFIG_NUMA))
1943 zlc_mark_zone_full(zonelist, z);
1944 }
1945
1946 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1947 /* Disable zlc cache for second zonelist scan */
1948 zlc_active = 0;
1949 goto zonelist_scan;
1950 }
1951
1952 if (page)
1953 /*
1954 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1955 * necessary to allocate the page. The expectation is
1956 * that the caller is taking steps that will free more
1957 * memory. The caller should avoid the page being used
1958 * for !PFMEMALLOC purposes.
1959 */
1960 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1961
1962 return page;
1963 }
1964
1965 /*
1966 * Large machines with many possible nodes should not always dump per-node
1967 * meminfo in irq context.
1968 */
1969 static inline bool should_suppress_show_mem(void)
1970 {
1971 bool ret = false;
1972
1973 #if NODES_SHIFT > 8
1974 ret = in_interrupt();
1975 #endif
1976 return ret;
1977 }
1978
1979 static DEFINE_RATELIMIT_STATE(nopage_rs,
1980 DEFAULT_RATELIMIT_INTERVAL,
1981 DEFAULT_RATELIMIT_BURST);
1982
1983 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1984 {
1985 unsigned int filter = SHOW_MEM_FILTER_NODES;
1986
1987 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1988 debug_guardpage_minorder() > 0)
1989 return;
1990
1991 /*
1992 * This documents exceptions given to allocations in certain
1993 * contexts that are allowed to allocate outside current's set
1994 * of allowed nodes.
1995 */
1996 if (!(gfp_mask & __GFP_NOMEMALLOC))
1997 if (test_thread_flag(TIF_MEMDIE) ||
1998 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1999 filter &= ~SHOW_MEM_FILTER_NODES;
2000 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2001 filter &= ~SHOW_MEM_FILTER_NODES;
2002
2003 if (fmt) {
2004 struct va_format vaf;
2005 va_list args;
2006
2007 va_start(args, fmt);
2008
2009 vaf.fmt = fmt;
2010 vaf.va = &args;
2011
2012 pr_warn("%pV", &vaf);
2013
2014 va_end(args);
2015 }
2016
2017 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2018 current->comm, order, gfp_mask);
2019
2020 dump_stack();
2021 if (!should_suppress_show_mem())
2022 show_mem(filter);
2023 }
2024
2025 static inline int
2026 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2027 unsigned long did_some_progress,
2028 unsigned long pages_reclaimed)
2029 {
2030 /* Do not loop if specifically requested */
2031 if (gfp_mask & __GFP_NORETRY)
2032 return 0;
2033
2034 /* Always retry if specifically requested */
2035 if (gfp_mask & __GFP_NOFAIL)
2036 return 1;
2037
2038 /*
2039 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2040 * making forward progress without invoking OOM. Suspend also disables
2041 * storage devices so kswapd will not help. Bail if we are suspending.
2042 */
2043 if (!did_some_progress && pm_suspended_storage())
2044 return 0;
2045
2046 /*
2047 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2048 * means __GFP_NOFAIL, but that may not be true in other
2049 * implementations.
2050 */
2051 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2052 return 1;
2053
2054 /*
2055 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2056 * specified, then we retry until we no longer reclaim any pages
2057 * (above), or we've reclaimed an order of pages at least as
2058 * large as the allocation's order. In both cases, if the
2059 * allocation still fails, we stop retrying.
2060 */
2061 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2062 return 1;
2063
2064 return 0;
2065 }
2066
2067 static inline struct page *
2068 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2069 struct zonelist *zonelist, enum zone_type high_zoneidx,
2070 nodemask_t *nodemask, struct zone *preferred_zone,
2071 int migratetype)
2072 {
2073 struct page *page;
2074
2075 /* Acquire the OOM killer lock for the zones in zonelist */
2076 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2077 schedule_timeout_uninterruptible(1);
2078 return NULL;
2079 }
2080
2081 /*
2082 * Go through the zonelist yet one more time, keep very high watermark
2083 * here, this is only to catch a parallel oom killing, we must fail if
2084 * we're still under heavy pressure.
2085 */
2086 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2087 order, zonelist, high_zoneidx,
2088 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2089 preferred_zone, migratetype);
2090 if (page)
2091 goto out;
2092
2093 if (!(gfp_mask & __GFP_NOFAIL)) {
2094 /* The OOM killer will not help higher order allocs */
2095 if (order > PAGE_ALLOC_COSTLY_ORDER)
2096 goto out;
2097 /* The OOM killer does not needlessly kill tasks for lowmem */
2098 if (high_zoneidx < ZONE_NORMAL)
2099 goto out;
2100 /*
2101 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2102 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2103 * The caller should handle page allocation failure by itself if
2104 * it specifies __GFP_THISNODE.
2105 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2106 */
2107 if (gfp_mask & __GFP_THISNODE)
2108 goto out;
2109 }
2110 /* Exhausted what can be done so it's blamo time */
2111 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2112
2113 out:
2114 clear_zonelist_oom(zonelist, gfp_mask);
2115 return page;
2116 }
2117
2118 #ifdef CONFIG_COMPACTION
2119 /* Try memory compaction for high-order allocations before reclaim */
2120 static struct page *
2121 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2122 struct zonelist *zonelist, enum zone_type high_zoneidx,
2123 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2124 int migratetype, bool sync_migration,
2125 bool *contended_compaction, bool *deferred_compaction,
2126 unsigned long *did_some_progress)
2127 {
2128 if (!order)
2129 return NULL;
2130
2131 if (compaction_deferred(preferred_zone, order)) {
2132 *deferred_compaction = true;
2133 return NULL;
2134 }
2135
2136 current->flags |= PF_MEMALLOC;
2137 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2138 nodemask, sync_migration,
2139 contended_compaction);
2140 current->flags &= ~PF_MEMALLOC;
2141
2142 if (*did_some_progress != COMPACT_SKIPPED) {
2143 struct page *page;
2144
2145 /* Page migration frees to the PCP lists but we want merging */
2146 drain_pages(get_cpu());
2147 put_cpu();
2148
2149 page = get_page_from_freelist(gfp_mask, nodemask,
2150 order, zonelist, high_zoneidx,
2151 alloc_flags & ~ALLOC_NO_WATERMARKS,
2152 preferred_zone, migratetype);
2153 if (page) {
2154 preferred_zone->compact_blockskip_flush = false;
2155 preferred_zone->compact_considered = 0;
2156 preferred_zone->compact_defer_shift = 0;
2157 if (order >= preferred_zone->compact_order_failed)
2158 preferred_zone->compact_order_failed = order + 1;
2159 count_vm_event(COMPACTSUCCESS);
2160 return page;
2161 }
2162
2163 /*
2164 * It's bad if compaction run occurs and fails.
2165 * The most likely reason is that pages exist,
2166 * but not enough to satisfy watermarks.
2167 */
2168 count_vm_event(COMPACTFAIL);
2169
2170 /*
2171 * As async compaction considers a subset of pageblocks, only
2172 * defer if the failure was a sync compaction failure.
2173 */
2174 if (sync_migration)
2175 defer_compaction(preferred_zone, order);
2176
2177 cond_resched();
2178 }
2179
2180 return NULL;
2181 }
2182 #else
2183 static inline struct page *
2184 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2185 struct zonelist *zonelist, enum zone_type high_zoneidx,
2186 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2187 int migratetype, bool sync_migration,
2188 bool *contended_compaction, bool *deferred_compaction,
2189 unsigned long *did_some_progress)
2190 {
2191 return NULL;
2192 }
2193 #endif /* CONFIG_COMPACTION */
2194
2195 /* Perform direct synchronous page reclaim */
2196 static int
2197 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2198 nodemask_t *nodemask)
2199 {
2200 struct reclaim_state reclaim_state;
2201 int progress;
2202
2203 cond_resched();
2204
2205 /* We now go into synchronous reclaim */
2206 cpuset_memory_pressure_bump();
2207 current->flags |= PF_MEMALLOC;
2208 lockdep_set_current_reclaim_state(gfp_mask);
2209 reclaim_state.reclaimed_slab = 0;
2210 current->reclaim_state = &reclaim_state;
2211
2212 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2213
2214 current->reclaim_state = NULL;
2215 lockdep_clear_current_reclaim_state();
2216 current->flags &= ~PF_MEMALLOC;
2217
2218 cond_resched();
2219
2220 return progress;
2221 }
2222
2223 /* The really slow allocator path where we enter direct reclaim */
2224 static inline struct page *
2225 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2226 struct zonelist *zonelist, enum zone_type high_zoneidx,
2227 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2228 int migratetype, unsigned long *did_some_progress)
2229 {
2230 struct page *page = NULL;
2231 bool drained = false;
2232
2233 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2234 nodemask);
2235 if (unlikely(!(*did_some_progress)))
2236 return NULL;
2237
2238 /* After successful reclaim, reconsider all zones for allocation */
2239 if (IS_ENABLED(CONFIG_NUMA))
2240 zlc_clear_zones_full(zonelist);
2241
2242 retry:
2243 page = get_page_from_freelist(gfp_mask, nodemask, order,
2244 zonelist, high_zoneidx,
2245 alloc_flags & ~ALLOC_NO_WATERMARKS,
2246 preferred_zone, migratetype);
2247
2248 /*
2249 * If an allocation failed after direct reclaim, it could be because
2250 * pages are pinned on the per-cpu lists. Drain them and try again
2251 */
2252 if (!page && !drained) {
2253 drain_all_pages();
2254 drained = true;
2255 goto retry;
2256 }
2257
2258 return page;
2259 }
2260
2261 /*
2262 * This is called in the allocator slow-path if the allocation request is of
2263 * sufficient urgency to ignore watermarks and take other desperate measures
2264 */
2265 static inline struct page *
2266 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2267 struct zonelist *zonelist, enum zone_type high_zoneidx,
2268 nodemask_t *nodemask, struct zone *preferred_zone,
2269 int migratetype)
2270 {
2271 struct page *page;
2272
2273 do {
2274 page = get_page_from_freelist(gfp_mask, nodemask, order,
2275 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2276 preferred_zone, migratetype);
2277
2278 if (!page && gfp_mask & __GFP_NOFAIL)
2279 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2280 } while (!page && (gfp_mask & __GFP_NOFAIL));
2281
2282 return page;
2283 }
2284
2285 static inline
2286 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2287 enum zone_type high_zoneidx,
2288 enum zone_type classzone_idx)
2289 {
2290 struct zoneref *z;
2291 struct zone *zone;
2292
2293 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2294 wakeup_kswapd(zone, order, classzone_idx);
2295 }
2296
2297 static inline int
2298 gfp_to_alloc_flags(gfp_t gfp_mask)
2299 {
2300 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2301 const gfp_t wait = gfp_mask & __GFP_WAIT;
2302
2303 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2304 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2305
2306 /*
2307 * The caller may dip into page reserves a bit more if the caller
2308 * cannot run direct reclaim, or if the caller has realtime scheduling
2309 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2310 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2311 */
2312 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2313
2314 if (!wait) {
2315 /*
2316 * Not worth trying to allocate harder for
2317 * __GFP_NOMEMALLOC even if it can't schedule.
2318 */
2319 if (!(gfp_mask & __GFP_NOMEMALLOC))
2320 alloc_flags |= ALLOC_HARDER;
2321 /*
2322 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2323 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2324 */
2325 alloc_flags &= ~ALLOC_CPUSET;
2326 } else if (unlikely(rt_task(current)) && !in_interrupt())
2327 alloc_flags |= ALLOC_HARDER;
2328
2329 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2330 if (gfp_mask & __GFP_MEMALLOC)
2331 alloc_flags |= ALLOC_NO_WATERMARKS;
2332 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2333 alloc_flags |= ALLOC_NO_WATERMARKS;
2334 else if (!in_interrupt() &&
2335 ((current->flags & PF_MEMALLOC) ||
2336 unlikely(test_thread_flag(TIF_MEMDIE))))
2337 alloc_flags |= ALLOC_NO_WATERMARKS;
2338 }
2339 #ifdef CONFIG_CMA
2340 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2341 alloc_flags |= ALLOC_CMA;
2342 #endif
2343 return alloc_flags;
2344 }
2345
2346 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2347 {
2348 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2349 }
2350
2351 static inline struct page *
2352 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2353 struct zonelist *zonelist, enum zone_type high_zoneidx,
2354 nodemask_t *nodemask, struct zone *preferred_zone,
2355 int migratetype)
2356 {
2357 const gfp_t wait = gfp_mask & __GFP_WAIT;
2358 struct page *page = NULL;
2359 int alloc_flags;
2360 unsigned long pages_reclaimed = 0;
2361 unsigned long did_some_progress;
2362 bool sync_migration = false;
2363 bool deferred_compaction = false;
2364 bool contended_compaction = false;
2365
2366 /*
2367 * In the slowpath, we sanity check order to avoid ever trying to
2368 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2369 * be using allocators in order of preference for an area that is
2370 * too large.
2371 */
2372 if (order >= MAX_ORDER) {
2373 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2374 return NULL;
2375 }
2376
2377 /*
2378 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2379 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2380 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2381 * using a larger set of nodes after it has established that the
2382 * allowed per node queues are empty and that nodes are
2383 * over allocated.
2384 */
2385 if (IS_ENABLED(CONFIG_NUMA) &&
2386 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2387 goto nopage;
2388
2389 restart:
2390 if (!(gfp_mask & __GFP_NO_KSWAPD))
2391 wake_all_kswapd(order, zonelist, high_zoneidx,
2392 zone_idx(preferred_zone));
2393
2394 /*
2395 * OK, we're below the kswapd watermark and have kicked background
2396 * reclaim. Now things get more complex, so set up alloc_flags according
2397 * to how we want to proceed.
2398 */
2399 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2400
2401 /*
2402 * Find the true preferred zone if the allocation is unconstrained by
2403 * cpusets.
2404 */
2405 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2406 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2407 &preferred_zone);
2408
2409 rebalance:
2410 /* This is the last chance, in general, before the goto nopage. */
2411 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2412 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2413 preferred_zone, migratetype);
2414 if (page)
2415 goto got_pg;
2416
2417 /* Allocate without watermarks if the context allows */
2418 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2419 /*
2420 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2421 * the allocation is high priority and these type of
2422 * allocations are system rather than user orientated
2423 */
2424 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2425
2426 page = __alloc_pages_high_priority(gfp_mask, order,
2427 zonelist, high_zoneidx, nodemask,
2428 preferred_zone, migratetype);
2429 if (page) {
2430 goto got_pg;
2431 }
2432 }
2433
2434 /* Atomic allocations - we can't balance anything */
2435 if (!wait)
2436 goto nopage;
2437
2438 /* Avoid recursion of direct reclaim */
2439 if (current->flags & PF_MEMALLOC)
2440 goto nopage;
2441
2442 /* Avoid allocations with no watermarks from looping endlessly */
2443 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2444 goto nopage;
2445
2446 /*
2447 * Try direct compaction. The first pass is asynchronous. Subsequent
2448 * attempts after direct reclaim are synchronous
2449 */
2450 page = __alloc_pages_direct_compact(gfp_mask, order,
2451 zonelist, high_zoneidx,
2452 nodemask,
2453 alloc_flags, preferred_zone,
2454 migratetype, sync_migration,
2455 &contended_compaction,
2456 &deferred_compaction,
2457 &did_some_progress);
2458 if (page)
2459 goto got_pg;
2460 sync_migration = true;
2461
2462 /*
2463 * If compaction is deferred for high-order allocations, it is because
2464 * sync compaction recently failed. In this is the case and the caller
2465 * requested a movable allocation that does not heavily disrupt the
2466 * system then fail the allocation instead of entering direct reclaim.
2467 */
2468 if ((deferred_compaction || contended_compaction) &&
2469 (gfp_mask & __GFP_NO_KSWAPD))
2470 goto nopage;
2471
2472 /* Try direct reclaim and then allocating */
2473 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2474 zonelist, high_zoneidx,
2475 nodemask,
2476 alloc_flags, preferred_zone,
2477 migratetype, &did_some_progress);
2478 if (page)
2479 goto got_pg;
2480
2481 /*
2482 * If we failed to make any progress reclaiming, then we are
2483 * running out of options and have to consider going OOM
2484 */
2485 if (!did_some_progress) {
2486 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2487 if (oom_killer_disabled)
2488 goto nopage;
2489 /* Coredumps can quickly deplete all memory reserves */
2490 if ((current->flags & PF_DUMPCORE) &&
2491 !(gfp_mask & __GFP_NOFAIL))
2492 goto nopage;
2493 page = __alloc_pages_may_oom(gfp_mask, order,
2494 zonelist, high_zoneidx,
2495 nodemask, preferred_zone,
2496 migratetype);
2497 if (page)
2498 goto got_pg;
2499
2500 if (!(gfp_mask & __GFP_NOFAIL)) {
2501 /*
2502 * The oom killer is not called for high-order
2503 * allocations that may fail, so if no progress
2504 * is being made, there are no other options and
2505 * retrying is unlikely to help.
2506 */
2507 if (order > PAGE_ALLOC_COSTLY_ORDER)
2508 goto nopage;
2509 /*
2510 * The oom killer is not called for lowmem
2511 * allocations to prevent needlessly killing
2512 * innocent tasks.
2513 */
2514 if (high_zoneidx < ZONE_NORMAL)
2515 goto nopage;
2516 }
2517
2518 goto restart;
2519 }
2520 }
2521
2522 /* Check if we should retry the allocation */
2523 pages_reclaimed += did_some_progress;
2524 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2525 pages_reclaimed)) {
2526 /* Wait for some write requests to complete then retry */
2527 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2528 goto rebalance;
2529 } else {
2530 /*
2531 * High-order allocations do not necessarily loop after
2532 * direct reclaim and reclaim/compaction depends on compaction
2533 * being called after reclaim so call directly if necessary
2534 */
2535 page = __alloc_pages_direct_compact(gfp_mask, order,
2536 zonelist, high_zoneidx,
2537 nodemask,
2538 alloc_flags, preferred_zone,
2539 migratetype, sync_migration,
2540 &contended_compaction,
2541 &deferred_compaction,
2542 &did_some_progress);
2543 if (page)
2544 goto got_pg;
2545 }
2546
2547 nopage:
2548 warn_alloc_failed(gfp_mask, order, NULL);
2549 return page;
2550 got_pg:
2551 if (kmemcheck_enabled)
2552 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2553
2554 return page;
2555 }
2556
2557 /*
2558 * This is the 'heart' of the zoned buddy allocator.
2559 */
2560 struct page *
2561 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2562 struct zonelist *zonelist, nodemask_t *nodemask)
2563 {
2564 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2565 struct zone *preferred_zone;
2566 struct page *page = NULL;
2567 int migratetype = allocflags_to_migratetype(gfp_mask);
2568 unsigned int cpuset_mems_cookie;
2569 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2570 struct mem_cgroup *memcg = NULL;
2571
2572 gfp_mask &= gfp_allowed_mask;
2573
2574 lockdep_trace_alloc(gfp_mask);
2575
2576 might_sleep_if(gfp_mask & __GFP_WAIT);
2577
2578 if (should_fail_alloc_page(gfp_mask, order))
2579 return NULL;
2580
2581 /*
2582 * Check the zones suitable for the gfp_mask contain at least one
2583 * valid zone. It's possible to have an empty zonelist as a result
2584 * of GFP_THISNODE and a memoryless node
2585 */
2586 if (unlikely(!zonelist->_zonerefs->zone))
2587 return NULL;
2588
2589 /*
2590 * Will only have any effect when __GFP_KMEMCG is set. This is
2591 * verified in the (always inline) callee
2592 */
2593 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2594 return NULL;
2595
2596 retry_cpuset:
2597 cpuset_mems_cookie = get_mems_allowed();
2598
2599 /* The preferred zone is used for statistics later */
2600 first_zones_zonelist(zonelist, high_zoneidx,
2601 nodemask ? : &cpuset_current_mems_allowed,
2602 &preferred_zone);
2603 if (!preferred_zone)
2604 goto out;
2605
2606 #ifdef CONFIG_CMA
2607 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2608 alloc_flags |= ALLOC_CMA;
2609 #endif
2610 /* First allocation attempt */
2611 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2612 zonelist, high_zoneidx, alloc_flags,
2613 preferred_zone, migratetype);
2614 if (unlikely(!page))
2615 page = __alloc_pages_slowpath(gfp_mask, order,
2616 zonelist, high_zoneidx, nodemask,
2617 preferred_zone, migratetype);
2618
2619 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2620
2621 out:
2622 /*
2623 * When updating a task's mems_allowed, it is possible to race with
2624 * parallel threads in such a way that an allocation can fail while
2625 * the mask is being updated. If a page allocation is about to fail,
2626 * check if the cpuset changed during allocation and if so, retry.
2627 */
2628 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2629 goto retry_cpuset;
2630
2631 memcg_kmem_commit_charge(page, memcg, order);
2632
2633 return page;
2634 }
2635 EXPORT_SYMBOL(__alloc_pages_nodemask);
2636
2637 /*
2638 * Common helper functions.
2639 */
2640 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2641 {
2642 struct page *page;
2643
2644 /*
2645 * __get_free_pages() returns a 32-bit address, which cannot represent
2646 * a highmem page
2647 */
2648 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2649
2650 page = alloc_pages(gfp_mask, order);
2651 if (!page)
2652 return 0;
2653 return (unsigned long) page_address(page);
2654 }
2655 EXPORT_SYMBOL(__get_free_pages);
2656
2657 unsigned long get_zeroed_page(gfp_t gfp_mask)
2658 {
2659 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2660 }
2661 EXPORT_SYMBOL(get_zeroed_page);
2662
2663 void __free_pages(struct page *page, unsigned int order)
2664 {
2665 if (put_page_testzero(page)) {
2666 if (order == 0)
2667 free_hot_cold_page(page, 0);
2668 else
2669 __free_pages_ok(page, order);
2670 }
2671 }
2672
2673 EXPORT_SYMBOL(__free_pages);
2674
2675 void free_pages(unsigned long addr, unsigned int order)
2676 {
2677 if (addr != 0) {
2678 VM_BUG_ON(!virt_addr_valid((void *)addr));
2679 __free_pages(virt_to_page((void *)addr), order);
2680 }
2681 }
2682
2683 EXPORT_SYMBOL(free_pages);
2684
2685 /*
2686 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2687 * pages allocated with __GFP_KMEMCG.
2688 *
2689 * Those pages are accounted to a particular memcg, embedded in the
2690 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2691 * for that information only to find out that it is NULL for users who have no
2692 * interest in that whatsoever, we provide these functions.
2693 *
2694 * The caller knows better which flags it relies on.
2695 */
2696 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2697 {
2698 memcg_kmem_uncharge_pages(page, order);
2699 __free_pages(page, order);
2700 }
2701
2702 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2703 {
2704 if (addr != 0) {
2705 VM_BUG_ON(!virt_addr_valid((void *)addr));
2706 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2707 }
2708 }
2709
2710 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2711 {
2712 if (addr) {
2713 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2714 unsigned long used = addr + PAGE_ALIGN(size);
2715
2716 split_page(virt_to_page((void *)addr), order);
2717 while (used < alloc_end) {
2718 free_page(used);
2719 used += PAGE_SIZE;
2720 }
2721 }
2722 return (void *)addr;
2723 }
2724
2725 /**
2726 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2727 * @size: the number of bytes to allocate
2728 * @gfp_mask: GFP flags for the allocation
2729 *
2730 * This function is similar to alloc_pages(), except that it allocates the
2731 * minimum number of pages to satisfy the request. alloc_pages() can only
2732 * allocate memory in power-of-two pages.
2733 *
2734 * This function is also limited by MAX_ORDER.
2735 *
2736 * Memory allocated by this function must be released by free_pages_exact().
2737 */
2738 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2739 {
2740 unsigned int order = get_order(size);
2741 unsigned long addr;
2742
2743 addr = __get_free_pages(gfp_mask, order);
2744 return make_alloc_exact(addr, order, size);
2745 }
2746 EXPORT_SYMBOL(alloc_pages_exact);
2747
2748 /**
2749 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2750 * pages on a node.
2751 * @nid: the preferred node ID where memory should be allocated
2752 * @size: the number of bytes to allocate
2753 * @gfp_mask: GFP flags for the allocation
2754 *
2755 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2756 * back.
2757 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2758 * but is not exact.
2759 */
2760 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2761 {
2762 unsigned order = get_order(size);
2763 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2764 if (!p)
2765 return NULL;
2766 return make_alloc_exact((unsigned long)page_address(p), order, size);
2767 }
2768 EXPORT_SYMBOL(alloc_pages_exact_nid);
2769
2770 /**
2771 * free_pages_exact - release memory allocated via alloc_pages_exact()
2772 * @virt: the value returned by alloc_pages_exact.
2773 * @size: size of allocation, same value as passed to alloc_pages_exact().
2774 *
2775 * Release the memory allocated by a previous call to alloc_pages_exact.
2776 */
2777 void free_pages_exact(void *virt, size_t size)
2778 {
2779 unsigned long addr = (unsigned long)virt;
2780 unsigned long end = addr + PAGE_ALIGN(size);
2781
2782 while (addr < end) {
2783 free_page(addr);
2784 addr += PAGE_SIZE;
2785 }
2786 }
2787 EXPORT_SYMBOL(free_pages_exact);
2788
2789 static unsigned int nr_free_zone_pages(int offset)
2790 {
2791 struct zoneref *z;
2792 struct zone *zone;
2793
2794 /* Just pick one node, since fallback list is circular */
2795 unsigned int sum = 0;
2796
2797 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2798
2799 for_each_zone_zonelist(zone, z, zonelist, offset) {
2800 unsigned long size = zone->present_pages;
2801 unsigned long high = high_wmark_pages(zone);
2802 if (size > high)
2803 sum += size - high;
2804 }
2805
2806 return sum;
2807 }
2808
2809 /*
2810 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2811 */
2812 unsigned int nr_free_buffer_pages(void)
2813 {
2814 return nr_free_zone_pages(gfp_zone(GFP_USER));
2815 }
2816 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2817
2818 /*
2819 * Amount of free RAM allocatable within all zones
2820 */
2821 unsigned int nr_free_pagecache_pages(void)
2822 {
2823 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2824 }
2825
2826 static inline void show_node(struct zone *zone)
2827 {
2828 if (IS_ENABLED(CONFIG_NUMA))
2829 printk("Node %d ", zone_to_nid(zone));
2830 }
2831
2832 void si_meminfo(struct sysinfo *val)
2833 {
2834 val->totalram = totalram_pages;
2835 val->sharedram = 0;
2836 val->freeram = global_page_state(NR_FREE_PAGES);
2837 val->bufferram = nr_blockdev_pages();
2838 val->totalhigh = totalhigh_pages;
2839 val->freehigh = nr_free_highpages();
2840 val->mem_unit = PAGE_SIZE;
2841 }
2842
2843 EXPORT_SYMBOL(si_meminfo);
2844
2845 #ifdef CONFIG_NUMA
2846 void si_meminfo_node(struct sysinfo *val, int nid)
2847 {
2848 pg_data_t *pgdat = NODE_DATA(nid);
2849
2850 val->totalram = pgdat->node_present_pages;
2851 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2852 #ifdef CONFIG_HIGHMEM
2853 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2854 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2855 NR_FREE_PAGES);
2856 #else
2857 val->totalhigh = 0;
2858 val->freehigh = 0;
2859 #endif
2860 val->mem_unit = PAGE_SIZE;
2861 }
2862 #endif
2863
2864 /*
2865 * Determine whether the node should be displayed or not, depending on whether
2866 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2867 */
2868 bool skip_free_areas_node(unsigned int flags, int nid)
2869 {
2870 bool ret = false;
2871 unsigned int cpuset_mems_cookie;
2872
2873 if (!(flags & SHOW_MEM_FILTER_NODES))
2874 goto out;
2875
2876 do {
2877 cpuset_mems_cookie = get_mems_allowed();
2878 ret = !node_isset(nid, cpuset_current_mems_allowed);
2879 } while (!put_mems_allowed(cpuset_mems_cookie));
2880 out:
2881 return ret;
2882 }
2883
2884 #define K(x) ((x) << (PAGE_SHIFT-10))
2885
2886 static void show_migration_types(unsigned char type)
2887 {
2888 static const char types[MIGRATE_TYPES] = {
2889 [MIGRATE_UNMOVABLE] = 'U',
2890 [MIGRATE_RECLAIMABLE] = 'E',
2891 [MIGRATE_MOVABLE] = 'M',
2892 [MIGRATE_RESERVE] = 'R',
2893 #ifdef CONFIG_CMA
2894 [MIGRATE_CMA] = 'C',
2895 #endif
2896 [MIGRATE_ISOLATE] = 'I',
2897 };
2898 char tmp[MIGRATE_TYPES + 1];
2899 char *p = tmp;
2900 int i;
2901
2902 for (i = 0; i < MIGRATE_TYPES; i++) {
2903 if (type & (1 << i))
2904 *p++ = types[i];
2905 }
2906
2907 *p = '\0';
2908 printk("(%s) ", tmp);
2909 }
2910
2911 /*
2912 * Show free area list (used inside shift_scroll-lock stuff)
2913 * We also calculate the percentage fragmentation. We do this by counting the
2914 * memory on each free list with the exception of the first item on the list.
2915 * Suppresses nodes that are not allowed by current's cpuset if
2916 * SHOW_MEM_FILTER_NODES is passed.
2917 */
2918 void show_free_areas(unsigned int filter)
2919 {
2920 int cpu;
2921 struct zone *zone;
2922
2923 for_each_populated_zone(zone) {
2924 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2925 continue;
2926 show_node(zone);
2927 printk("%s per-cpu:\n", zone->name);
2928
2929 for_each_online_cpu(cpu) {
2930 struct per_cpu_pageset *pageset;
2931
2932 pageset = per_cpu_ptr(zone->pageset, cpu);
2933
2934 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2935 cpu, pageset->pcp.high,
2936 pageset->pcp.batch, pageset->pcp.count);
2937 }
2938 }
2939
2940 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2941 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2942 " unevictable:%lu"
2943 " dirty:%lu writeback:%lu unstable:%lu\n"
2944 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2945 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2946 " free_cma:%lu\n",
2947 global_page_state(NR_ACTIVE_ANON),
2948 global_page_state(NR_INACTIVE_ANON),
2949 global_page_state(NR_ISOLATED_ANON),
2950 global_page_state(NR_ACTIVE_FILE),
2951 global_page_state(NR_INACTIVE_FILE),
2952 global_page_state(NR_ISOLATED_FILE),
2953 global_page_state(NR_UNEVICTABLE),
2954 global_page_state(NR_FILE_DIRTY),
2955 global_page_state(NR_WRITEBACK),
2956 global_page_state(NR_UNSTABLE_NFS),
2957 global_page_state(NR_FREE_PAGES),
2958 global_page_state(NR_SLAB_RECLAIMABLE),
2959 global_page_state(NR_SLAB_UNRECLAIMABLE),
2960 global_page_state(NR_FILE_MAPPED),
2961 global_page_state(NR_SHMEM),
2962 global_page_state(NR_PAGETABLE),
2963 global_page_state(NR_BOUNCE),
2964 global_page_state(NR_FREE_CMA_PAGES));
2965
2966 for_each_populated_zone(zone) {
2967 int i;
2968
2969 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2970 continue;
2971 show_node(zone);
2972 printk("%s"
2973 " free:%lukB"
2974 " min:%lukB"
2975 " low:%lukB"
2976 " high:%lukB"
2977 " active_anon:%lukB"
2978 " inactive_anon:%lukB"
2979 " active_file:%lukB"
2980 " inactive_file:%lukB"
2981 " unevictable:%lukB"
2982 " isolated(anon):%lukB"
2983 " isolated(file):%lukB"
2984 " present:%lukB"
2985 " managed:%lukB"
2986 " mlocked:%lukB"
2987 " dirty:%lukB"
2988 " writeback:%lukB"
2989 " mapped:%lukB"
2990 " shmem:%lukB"
2991 " slab_reclaimable:%lukB"
2992 " slab_unreclaimable:%lukB"
2993 " kernel_stack:%lukB"
2994 " pagetables:%lukB"
2995 " unstable:%lukB"
2996 " bounce:%lukB"
2997 " free_cma:%lukB"
2998 " writeback_tmp:%lukB"
2999 " pages_scanned:%lu"
3000 " all_unreclaimable? %s"
3001 "\n",
3002 zone->name,
3003 K(zone_page_state(zone, NR_FREE_PAGES)),
3004 K(min_wmark_pages(zone)),
3005 K(low_wmark_pages(zone)),
3006 K(high_wmark_pages(zone)),
3007 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3008 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3009 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3010 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3011 K(zone_page_state(zone, NR_UNEVICTABLE)),
3012 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3013 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3014 K(zone->present_pages),
3015 K(zone->managed_pages),
3016 K(zone_page_state(zone, NR_MLOCK)),
3017 K(zone_page_state(zone, NR_FILE_DIRTY)),
3018 K(zone_page_state(zone, NR_WRITEBACK)),
3019 K(zone_page_state(zone, NR_FILE_MAPPED)),
3020 K(zone_page_state(zone, NR_SHMEM)),
3021 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3022 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3023 zone_page_state(zone, NR_KERNEL_STACK) *
3024 THREAD_SIZE / 1024,
3025 K(zone_page_state(zone, NR_PAGETABLE)),
3026 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3027 K(zone_page_state(zone, NR_BOUNCE)),
3028 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3029 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3030 zone->pages_scanned,
3031 (zone->all_unreclaimable ? "yes" : "no")
3032 );
3033 printk("lowmem_reserve[]:");
3034 for (i = 0; i < MAX_NR_ZONES; i++)
3035 printk(" %lu", zone->lowmem_reserve[i]);
3036 printk("\n");
3037 }
3038
3039 for_each_populated_zone(zone) {
3040 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3041 unsigned char types[MAX_ORDER];
3042
3043 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3044 continue;
3045 show_node(zone);
3046 printk("%s: ", zone->name);
3047
3048 spin_lock_irqsave(&zone->lock, flags);
3049 for (order = 0; order < MAX_ORDER; order++) {
3050 struct free_area *area = &zone->free_area[order];
3051 int type;
3052
3053 nr[order] = area->nr_free;
3054 total += nr[order] << order;
3055
3056 types[order] = 0;
3057 for (type = 0; type < MIGRATE_TYPES; type++) {
3058 if (!list_empty(&area->free_list[type]))
3059 types[order] |= 1 << type;
3060 }
3061 }
3062 spin_unlock_irqrestore(&zone->lock, flags);
3063 for (order = 0; order < MAX_ORDER; order++) {
3064 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3065 if (nr[order])
3066 show_migration_types(types[order]);
3067 }
3068 printk("= %lukB\n", K(total));
3069 }
3070
3071 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3072
3073 show_swap_cache_info();
3074 }
3075
3076 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3077 {
3078 zoneref->zone = zone;
3079 zoneref->zone_idx = zone_idx(zone);
3080 }
3081
3082 /*
3083 * Builds allocation fallback zone lists.
3084 *
3085 * Add all populated zones of a node to the zonelist.
3086 */
3087 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3088 int nr_zones, enum zone_type zone_type)
3089 {
3090 struct zone *zone;
3091
3092 BUG_ON(zone_type >= MAX_NR_ZONES);
3093 zone_type++;
3094
3095 do {
3096 zone_type--;
3097 zone = pgdat->node_zones + zone_type;
3098 if (populated_zone(zone)) {
3099 zoneref_set_zone(zone,
3100 &zonelist->_zonerefs[nr_zones++]);
3101 check_highest_zone(zone_type);
3102 }
3103
3104 } while (zone_type);
3105 return nr_zones;
3106 }
3107
3108
3109 /*
3110 * zonelist_order:
3111 * 0 = automatic detection of better ordering.
3112 * 1 = order by ([node] distance, -zonetype)
3113 * 2 = order by (-zonetype, [node] distance)
3114 *
3115 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3116 * the same zonelist. So only NUMA can configure this param.
3117 */
3118 #define ZONELIST_ORDER_DEFAULT 0
3119 #define ZONELIST_ORDER_NODE 1
3120 #define ZONELIST_ORDER_ZONE 2
3121
3122 /* zonelist order in the kernel.
3123 * set_zonelist_order() will set this to NODE or ZONE.
3124 */
3125 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3126 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3127
3128
3129 #ifdef CONFIG_NUMA
3130 /* The value user specified ....changed by config */
3131 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3132 /* string for sysctl */
3133 #define NUMA_ZONELIST_ORDER_LEN 16
3134 char numa_zonelist_order[16] = "default";
3135
3136 /*
3137 * interface for configure zonelist ordering.
3138 * command line option "numa_zonelist_order"
3139 * = "[dD]efault - default, automatic configuration.
3140 * = "[nN]ode - order by node locality, then by zone within node
3141 * = "[zZ]one - order by zone, then by locality within zone
3142 */
3143
3144 static int __parse_numa_zonelist_order(char *s)
3145 {
3146 if (*s == 'd' || *s == 'D') {
3147 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3148 } else if (*s == 'n' || *s == 'N') {
3149 user_zonelist_order = ZONELIST_ORDER_NODE;
3150 } else if (*s == 'z' || *s == 'Z') {
3151 user_zonelist_order = ZONELIST_ORDER_ZONE;
3152 } else {
3153 printk(KERN_WARNING
3154 "Ignoring invalid numa_zonelist_order value: "
3155 "%s\n", s);
3156 return -EINVAL;
3157 }
3158 return 0;
3159 }
3160
3161 static __init int setup_numa_zonelist_order(char *s)
3162 {
3163 int ret;
3164
3165 if (!s)
3166 return 0;
3167
3168 ret = __parse_numa_zonelist_order(s);
3169 if (ret == 0)
3170 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3171
3172 return ret;
3173 }
3174 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3175
3176 /*
3177 * sysctl handler for numa_zonelist_order
3178 */
3179 int numa_zonelist_order_handler(ctl_table *table, int write,
3180 void __user *buffer, size_t *length,
3181 loff_t *ppos)
3182 {
3183 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3184 int ret;
3185 static DEFINE_MUTEX(zl_order_mutex);
3186
3187 mutex_lock(&zl_order_mutex);
3188 if (write)
3189 strcpy(saved_string, (char*)table->data);
3190 ret = proc_dostring(table, write, buffer, length, ppos);
3191 if (ret)
3192 goto out;
3193 if (write) {
3194 int oldval = user_zonelist_order;
3195 if (__parse_numa_zonelist_order((char*)table->data)) {
3196 /*
3197 * bogus value. restore saved string
3198 */
3199 strncpy((char*)table->data, saved_string,
3200 NUMA_ZONELIST_ORDER_LEN);
3201 user_zonelist_order = oldval;
3202 } else if (oldval != user_zonelist_order) {
3203 mutex_lock(&zonelists_mutex);
3204 build_all_zonelists(NULL, NULL);
3205 mutex_unlock(&zonelists_mutex);
3206 }
3207 }
3208 out:
3209 mutex_unlock(&zl_order_mutex);
3210 return ret;
3211 }
3212
3213
3214 #define MAX_NODE_LOAD (nr_online_nodes)
3215 static int node_load[MAX_NUMNODES];
3216
3217 /**
3218 * find_next_best_node - find the next node that should appear in a given node's fallback list
3219 * @node: node whose fallback list we're appending
3220 * @used_node_mask: nodemask_t of already used nodes
3221 *
3222 * We use a number of factors to determine which is the next node that should
3223 * appear on a given node's fallback list. The node should not have appeared
3224 * already in @node's fallback list, and it should be the next closest node
3225 * according to the distance array (which contains arbitrary distance values
3226 * from each node to each node in the system), and should also prefer nodes
3227 * with no CPUs, since presumably they'll have very little allocation pressure
3228 * on them otherwise.
3229 * It returns -1 if no node is found.
3230 */
3231 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3232 {
3233 int n, val;
3234 int min_val = INT_MAX;
3235 int best_node = -1;
3236 const struct cpumask *tmp = cpumask_of_node(0);
3237
3238 /* Use the local node if we haven't already */
3239 if (!node_isset(node, *used_node_mask)) {
3240 node_set(node, *used_node_mask);
3241 return node;
3242 }
3243
3244 for_each_node_state(n, N_MEMORY) {
3245
3246 /* Don't want a node to appear more than once */
3247 if (node_isset(n, *used_node_mask))
3248 continue;
3249
3250 /* Use the distance array to find the distance */
3251 val = node_distance(node, n);
3252
3253 /* Penalize nodes under us ("prefer the next node") */
3254 val += (n < node);
3255
3256 /* Give preference to headless and unused nodes */
3257 tmp = cpumask_of_node(n);
3258 if (!cpumask_empty(tmp))
3259 val += PENALTY_FOR_NODE_WITH_CPUS;
3260
3261 /* Slight preference for less loaded node */
3262 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3263 val += node_load[n];
3264
3265 if (val < min_val) {
3266 min_val = val;
3267 best_node = n;
3268 }
3269 }
3270
3271 if (best_node >= 0)
3272 node_set(best_node, *used_node_mask);
3273
3274 return best_node;
3275 }
3276
3277
3278 /*
3279 * Build zonelists ordered by node and zones within node.
3280 * This results in maximum locality--normal zone overflows into local
3281 * DMA zone, if any--but risks exhausting DMA zone.
3282 */
3283 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3284 {
3285 int j;
3286 struct zonelist *zonelist;
3287
3288 zonelist = &pgdat->node_zonelists[0];
3289 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3290 ;
3291 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3292 MAX_NR_ZONES - 1);
3293 zonelist->_zonerefs[j].zone = NULL;
3294 zonelist->_zonerefs[j].zone_idx = 0;
3295 }
3296
3297 /*
3298 * Build gfp_thisnode zonelists
3299 */
3300 static void build_thisnode_zonelists(pg_data_t *pgdat)
3301 {
3302 int j;
3303 struct zonelist *zonelist;
3304
3305 zonelist = &pgdat->node_zonelists[1];
3306 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3307 zonelist->_zonerefs[j].zone = NULL;
3308 zonelist->_zonerefs[j].zone_idx = 0;
3309 }
3310
3311 /*
3312 * Build zonelists ordered by zone and nodes within zones.
3313 * This results in conserving DMA zone[s] until all Normal memory is
3314 * exhausted, but results in overflowing to remote node while memory
3315 * may still exist in local DMA zone.
3316 */
3317 static int node_order[MAX_NUMNODES];
3318
3319 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3320 {
3321 int pos, j, node;
3322 int zone_type; /* needs to be signed */
3323 struct zone *z;
3324 struct zonelist *zonelist;
3325
3326 zonelist = &pgdat->node_zonelists[0];
3327 pos = 0;
3328 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3329 for (j = 0; j < nr_nodes; j++) {
3330 node = node_order[j];
3331 z = &NODE_DATA(node)->node_zones[zone_type];
3332 if (populated_zone(z)) {
3333 zoneref_set_zone(z,
3334 &zonelist->_zonerefs[pos++]);
3335 check_highest_zone(zone_type);
3336 }
3337 }
3338 }
3339 zonelist->_zonerefs[pos].zone = NULL;
3340 zonelist->_zonerefs[pos].zone_idx = 0;
3341 }
3342
3343 static int default_zonelist_order(void)
3344 {
3345 int nid, zone_type;
3346 unsigned long low_kmem_size,total_size;
3347 struct zone *z;
3348 int average_size;
3349 /*
3350 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3351 * If they are really small and used heavily, the system can fall
3352 * into OOM very easily.
3353 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3354 */
3355 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3356 low_kmem_size = 0;
3357 total_size = 0;
3358 for_each_online_node(nid) {
3359 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3360 z = &NODE_DATA(nid)->node_zones[zone_type];
3361 if (populated_zone(z)) {
3362 if (zone_type < ZONE_NORMAL)
3363 low_kmem_size += z->present_pages;
3364 total_size += z->present_pages;
3365 } else if (zone_type == ZONE_NORMAL) {
3366 /*
3367 * If any node has only lowmem, then node order
3368 * is preferred to allow kernel allocations
3369 * locally; otherwise, they can easily infringe
3370 * on other nodes when there is an abundance of
3371 * lowmem available to allocate from.
3372 */
3373 return ZONELIST_ORDER_NODE;
3374 }
3375 }
3376 }
3377 if (!low_kmem_size || /* there are no DMA area. */
3378 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3379 return ZONELIST_ORDER_NODE;
3380 /*
3381 * look into each node's config.
3382 * If there is a node whose DMA/DMA32 memory is very big area on
3383 * local memory, NODE_ORDER may be suitable.
3384 */
3385 average_size = total_size /
3386 (nodes_weight(node_states[N_MEMORY]) + 1);
3387 for_each_online_node(nid) {
3388 low_kmem_size = 0;
3389 total_size = 0;
3390 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3391 z = &NODE_DATA(nid)->node_zones[zone_type];
3392 if (populated_zone(z)) {
3393 if (zone_type < ZONE_NORMAL)
3394 low_kmem_size += z->present_pages;
3395 total_size += z->present_pages;
3396 }
3397 }
3398 if (low_kmem_size &&
3399 total_size > average_size && /* ignore small node */
3400 low_kmem_size > total_size * 70/100)
3401 return ZONELIST_ORDER_NODE;
3402 }
3403 return ZONELIST_ORDER_ZONE;
3404 }
3405
3406 static void set_zonelist_order(void)
3407 {
3408 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3409 current_zonelist_order = default_zonelist_order();
3410 else
3411 current_zonelist_order = user_zonelist_order;
3412 }
3413
3414 static void build_zonelists(pg_data_t *pgdat)
3415 {
3416 int j, node, load;
3417 enum zone_type i;
3418 nodemask_t used_mask;
3419 int local_node, prev_node;
3420 struct zonelist *zonelist;
3421 int order = current_zonelist_order;
3422
3423 /* initialize zonelists */
3424 for (i = 0; i < MAX_ZONELISTS; i++) {
3425 zonelist = pgdat->node_zonelists + i;
3426 zonelist->_zonerefs[0].zone = NULL;
3427 zonelist->_zonerefs[0].zone_idx = 0;
3428 }
3429
3430 /* NUMA-aware ordering of nodes */
3431 local_node = pgdat->node_id;
3432 load = nr_online_nodes;
3433 prev_node = local_node;
3434 nodes_clear(used_mask);
3435
3436 memset(node_order, 0, sizeof(node_order));
3437 j = 0;
3438
3439 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3440 /*
3441 * We don't want to pressure a particular node.
3442 * So adding penalty to the first node in same
3443 * distance group to make it round-robin.
3444 */
3445 if (node_distance(local_node, node) !=
3446 node_distance(local_node, prev_node))
3447 node_load[node] = load;
3448
3449 prev_node = node;
3450 load--;
3451 if (order == ZONELIST_ORDER_NODE)
3452 build_zonelists_in_node_order(pgdat, node);
3453 else
3454 node_order[j++] = node; /* remember order */
3455 }
3456
3457 if (order == ZONELIST_ORDER_ZONE) {
3458 /* calculate node order -- i.e., DMA last! */
3459 build_zonelists_in_zone_order(pgdat, j);
3460 }
3461
3462 build_thisnode_zonelists(pgdat);
3463 }
3464
3465 /* Construct the zonelist performance cache - see further mmzone.h */
3466 static void build_zonelist_cache(pg_data_t *pgdat)
3467 {
3468 struct zonelist *zonelist;
3469 struct zonelist_cache *zlc;
3470 struct zoneref *z;
3471
3472 zonelist = &pgdat->node_zonelists[0];
3473 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3474 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3475 for (z = zonelist->_zonerefs; z->zone; z++)
3476 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3477 }
3478
3479 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3480 /*
3481 * Return node id of node used for "local" allocations.
3482 * I.e., first node id of first zone in arg node's generic zonelist.
3483 * Used for initializing percpu 'numa_mem', which is used primarily
3484 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3485 */
3486 int local_memory_node(int node)
3487 {
3488 struct zone *zone;
3489
3490 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3491 gfp_zone(GFP_KERNEL),
3492 NULL,
3493 &zone);
3494 return zone->node;
3495 }
3496 #endif
3497
3498 #else /* CONFIG_NUMA */
3499
3500 static void set_zonelist_order(void)
3501 {
3502 current_zonelist_order = ZONELIST_ORDER_ZONE;
3503 }
3504
3505 static void build_zonelists(pg_data_t *pgdat)
3506 {
3507 int node, local_node;
3508 enum zone_type j;
3509 struct zonelist *zonelist;
3510
3511 local_node = pgdat->node_id;
3512
3513 zonelist = &pgdat->node_zonelists[0];
3514 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3515
3516 /*
3517 * Now we build the zonelist so that it contains the zones
3518 * of all the other nodes.
3519 * We don't want to pressure a particular node, so when
3520 * building the zones for node N, we make sure that the
3521 * zones coming right after the local ones are those from
3522 * node N+1 (modulo N)
3523 */
3524 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3525 if (!node_online(node))
3526 continue;
3527 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3528 MAX_NR_ZONES - 1);
3529 }
3530 for (node = 0; node < local_node; node++) {
3531 if (!node_online(node))
3532 continue;
3533 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3534 MAX_NR_ZONES - 1);
3535 }
3536
3537 zonelist->_zonerefs[j].zone = NULL;
3538 zonelist->_zonerefs[j].zone_idx = 0;
3539 }
3540
3541 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3542 static void build_zonelist_cache(pg_data_t *pgdat)
3543 {
3544 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3545 }
3546
3547 #endif /* CONFIG_NUMA */
3548
3549 /*
3550 * Boot pageset table. One per cpu which is going to be used for all
3551 * zones and all nodes. The parameters will be set in such a way
3552 * that an item put on a list will immediately be handed over to
3553 * the buddy list. This is safe since pageset manipulation is done
3554 * with interrupts disabled.
3555 *
3556 * The boot_pagesets must be kept even after bootup is complete for
3557 * unused processors and/or zones. They do play a role for bootstrapping
3558 * hotplugged processors.
3559 *
3560 * zoneinfo_show() and maybe other functions do
3561 * not check if the processor is online before following the pageset pointer.
3562 * Other parts of the kernel may not check if the zone is available.
3563 */
3564 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3565 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3566 static void setup_zone_pageset(struct zone *zone);
3567
3568 /*
3569 * Global mutex to protect against size modification of zonelists
3570 * as well as to serialize pageset setup for the new populated zone.
3571 */
3572 DEFINE_MUTEX(zonelists_mutex);
3573
3574 /* return values int ....just for stop_machine() */
3575 static int __build_all_zonelists(void *data)
3576 {
3577 int nid;
3578 int cpu;
3579 pg_data_t *self = data;
3580
3581 #ifdef CONFIG_NUMA
3582 memset(node_load, 0, sizeof(node_load));
3583 #endif
3584
3585 if (self && !node_online(self->node_id)) {
3586 build_zonelists(self);
3587 build_zonelist_cache(self);
3588 }
3589
3590 for_each_online_node(nid) {
3591 pg_data_t *pgdat = NODE_DATA(nid);
3592
3593 build_zonelists(pgdat);
3594 build_zonelist_cache(pgdat);
3595 }
3596
3597 /*
3598 * Initialize the boot_pagesets that are going to be used
3599 * for bootstrapping processors. The real pagesets for
3600 * each zone will be allocated later when the per cpu
3601 * allocator is available.
3602 *
3603 * boot_pagesets are used also for bootstrapping offline
3604 * cpus if the system is already booted because the pagesets
3605 * are needed to initialize allocators on a specific cpu too.
3606 * F.e. the percpu allocator needs the page allocator which
3607 * needs the percpu allocator in order to allocate its pagesets
3608 * (a chicken-egg dilemma).
3609 */
3610 for_each_possible_cpu(cpu) {
3611 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3612
3613 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3614 /*
3615 * We now know the "local memory node" for each node--
3616 * i.e., the node of the first zone in the generic zonelist.
3617 * Set up numa_mem percpu variable for on-line cpus. During
3618 * boot, only the boot cpu should be on-line; we'll init the
3619 * secondary cpus' numa_mem as they come on-line. During
3620 * node/memory hotplug, we'll fixup all on-line cpus.
3621 */
3622 if (cpu_online(cpu))
3623 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3624 #endif
3625 }
3626
3627 return 0;
3628 }
3629
3630 /*
3631 * Called with zonelists_mutex held always
3632 * unless system_state == SYSTEM_BOOTING.
3633 */
3634 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3635 {
3636 set_zonelist_order();
3637
3638 if (system_state == SYSTEM_BOOTING) {
3639 __build_all_zonelists(NULL);
3640 mminit_verify_zonelist();
3641 cpuset_init_current_mems_allowed();
3642 } else {
3643 /* we have to stop all cpus to guarantee there is no user
3644 of zonelist */
3645 #ifdef CONFIG_MEMORY_HOTPLUG
3646 if (zone)
3647 setup_zone_pageset(zone);
3648 #endif
3649 stop_machine(__build_all_zonelists, pgdat, NULL);
3650 /* cpuset refresh routine should be here */
3651 }
3652 vm_total_pages = nr_free_pagecache_pages();
3653 /*
3654 * Disable grouping by mobility if the number of pages in the
3655 * system is too low to allow the mechanism to work. It would be
3656 * more accurate, but expensive to check per-zone. This check is
3657 * made on memory-hotadd so a system can start with mobility
3658 * disabled and enable it later
3659 */
3660 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3661 page_group_by_mobility_disabled = 1;
3662 else
3663 page_group_by_mobility_disabled = 0;
3664
3665 printk("Built %i zonelists in %s order, mobility grouping %s. "
3666 "Total pages: %ld\n",
3667 nr_online_nodes,
3668 zonelist_order_name[current_zonelist_order],
3669 page_group_by_mobility_disabled ? "off" : "on",
3670 vm_total_pages);
3671 #ifdef CONFIG_NUMA
3672 printk("Policy zone: %s\n", zone_names[policy_zone]);
3673 #endif
3674 }
3675
3676 /*
3677 * Helper functions to size the waitqueue hash table.
3678 * Essentially these want to choose hash table sizes sufficiently
3679 * large so that collisions trying to wait on pages are rare.
3680 * But in fact, the number of active page waitqueues on typical
3681 * systems is ridiculously low, less than 200. So this is even
3682 * conservative, even though it seems large.
3683 *
3684 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3685 * waitqueues, i.e. the size of the waitq table given the number of pages.
3686 */
3687 #define PAGES_PER_WAITQUEUE 256
3688
3689 #ifndef CONFIG_MEMORY_HOTPLUG
3690 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3691 {
3692 unsigned long size = 1;
3693
3694 pages /= PAGES_PER_WAITQUEUE;
3695
3696 while (size < pages)
3697 size <<= 1;
3698
3699 /*
3700 * Once we have dozens or even hundreds of threads sleeping
3701 * on IO we've got bigger problems than wait queue collision.
3702 * Limit the size of the wait table to a reasonable size.
3703 */
3704 size = min(size, 4096UL);
3705
3706 return max(size, 4UL);
3707 }
3708 #else
3709 /*
3710 * A zone's size might be changed by hot-add, so it is not possible to determine
3711 * a suitable size for its wait_table. So we use the maximum size now.
3712 *
3713 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3714 *
3715 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3716 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3717 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3718 *
3719 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3720 * or more by the traditional way. (See above). It equals:
3721 *
3722 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3723 * ia64(16K page size) : = ( 8G + 4M)byte.
3724 * powerpc (64K page size) : = (32G +16M)byte.
3725 */
3726 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3727 {
3728 return 4096UL;
3729 }
3730 #endif
3731
3732 /*
3733 * This is an integer logarithm so that shifts can be used later
3734 * to extract the more random high bits from the multiplicative
3735 * hash function before the remainder is taken.
3736 */
3737 static inline unsigned long wait_table_bits(unsigned long size)
3738 {
3739 return ffz(~size);
3740 }
3741
3742 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3743
3744 /*
3745 * Check if a pageblock contains reserved pages
3746 */
3747 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3748 {
3749 unsigned long pfn;
3750
3751 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3752 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3753 return 1;
3754 }
3755 return 0;
3756 }
3757
3758 /*
3759 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3760 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3761 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3762 * higher will lead to a bigger reserve which will get freed as contiguous
3763 * blocks as reclaim kicks in
3764 */
3765 static void setup_zone_migrate_reserve(struct zone *zone)
3766 {
3767 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3768 struct page *page;
3769 unsigned long block_migratetype;
3770 int reserve;
3771
3772 /*
3773 * Get the start pfn, end pfn and the number of blocks to reserve
3774 * We have to be careful to be aligned to pageblock_nr_pages to
3775 * make sure that we always check pfn_valid for the first page in
3776 * the block.
3777 */
3778 start_pfn = zone->zone_start_pfn;
3779 end_pfn = start_pfn + zone->spanned_pages;
3780 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3781 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3782 pageblock_order;
3783
3784 /*
3785 * Reserve blocks are generally in place to help high-order atomic
3786 * allocations that are short-lived. A min_free_kbytes value that
3787 * would result in more than 2 reserve blocks for atomic allocations
3788 * is assumed to be in place to help anti-fragmentation for the
3789 * future allocation of hugepages at runtime.
3790 */
3791 reserve = min(2, reserve);
3792
3793 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3794 if (!pfn_valid(pfn))
3795 continue;
3796 page = pfn_to_page(pfn);
3797
3798 /* Watch out for overlapping nodes */
3799 if (page_to_nid(page) != zone_to_nid(zone))
3800 continue;
3801
3802 block_migratetype = get_pageblock_migratetype(page);
3803
3804 /* Only test what is necessary when the reserves are not met */
3805 if (reserve > 0) {
3806 /*
3807 * Blocks with reserved pages will never free, skip
3808 * them.
3809 */
3810 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3811 if (pageblock_is_reserved(pfn, block_end_pfn))
3812 continue;
3813
3814 /* If this block is reserved, account for it */
3815 if (block_migratetype == MIGRATE_RESERVE) {
3816 reserve--;
3817 continue;
3818 }
3819
3820 /* Suitable for reserving if this block is movable */
3821 if (block_migratetype == MIGRATE_MOVABLE) {
3822 set_pageblock_migratetype(page,
3823 MIGRATE_RESERVE);
3824 move_freepages_block(zone, page,
3825 MIGRATE_RESERVE);
3826 reserve--;
3827 continue;
3828 }
3829 }
3830
3831 /*
3832 * If the reserve is met and this is a previous reserved block,
3833 * take it back
3834 */
3835 if (block_migratetype == MIGRATE_RESERVE) {
3836 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3837 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3838 }
3839 }
3840 }
3841
3842 /*
3843 * Initially all pages are reserved - free ones are freed
3844 * up by free_all_bootmem() once the early boot process is
3845 * done. Non-atomic initialization, single-pass.
3846 */
3847 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3848 unsigned long start_pfn, enum memmap_context context)
3849 {
3850 struct page *page;
3851 unsigned long end_pfn = start_pfn + size;
3852 unsigned long pfn;
3853 struct zone *z;
3854
3855 if (highest_memmap_pfn < end_pfn - 1)
3856 highest_memmap_pfn = end_pfn - 1;
3857
3858 z = &NODE_DATA(nid)->node_zones[zone];
3859 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3860 /*
3861 * There can be holes in boot-time mem_map[]s
3862 * handed to this function. They do not
3863 * exist on hotplugged memory.
3864 */
3865 if (context == MEMMAP_EARLY) {
3866 if (!early_pfn_valid(pfn))
3867 continue;
3868 if (!early_pfn_in_nid(pfn, nid))
3869 continue;
3870 }
3871 page = pfn_to_page(pfn);
3872 set_page_links(page, zone, nid, pfn);
3873 mminit_verify_page_links(page, zone, nid, pfn);
3874 init_page_count(page);
3875 reset_page_mapcount(page);
3876 reset_page_last_nid(page);
3877 SetPageReserved(page);
3878 /*
3879 * Mark the block movable so that blocks are reserved for
3880 * movable at startup. This will force kernel allocations
3881 * to reserve their blocks rather than leaking throughout
3882 * the address space during boot when many long-lived
3883 * kernel allocations are made. Later some blocks near
3884 * the start are marked MIGRATE_RESERVE by
3885 * setup_zone_migrate_reserve()
3886 *
3887 * bitmap is created for zone's valid pfn range. but memmap
3888 * can be created for invalid pages (for alignment)
3889 * check here not to call set_pageblock_migratetype() against
3890 * pfn out of zone.
3891 */
3892 if ((z->zone_start_pfn <= pfn)
3893 && (pfn < z->zone_start_pfn + z->spanned_pages)
3894 && !(pfn & (pageblock_nr_pages - 1)))
3895 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3896
3897 INIT_LIST_HEAD(&page->lru);
3898 #ifdef WANT_PAGE_VIRTUAL
3899 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3900 if (!is_highmem_idx(zone))
3901 set_page_address(page, __va(pfn << PAGE_SHIFT));
3902 #endif
3903 }
3904 }
3905
3906 static void __meminit zone_init_free_lists(struct zone *zone)
3907 {
3908 int order, t;
3909 for_each_migratetype_order(order, t) {
3910 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3911 zone->free_area[order].nr_free = 0;
3912 }
3913 }
3914
3915 #ifndef __HAVE_ARCH_MEMMAP_INIT
3916 #define memmap_init(size, nid, zone, start_pfn) \
3917 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3918 #endif
3919
3920 static int __meminit zone_batchsize(struct zone *zone)
3921 {
3922 #ifdef CONFIG_MMU
3923 int batch;
3924
3925 /*
3926 * The per-cpu-pages pools are set to around 1000th of the
3927 * size of the zone. But no more than 1/2 of a meg.
3928 *
3929 * OK, so we don't know how big the cache is. So guess.
3930 */
3931 batch = zone->present_pages / 1024;
3932 if (batch * PAGE_SIZE > 512 * 1024)
3933 batch = (512 * 1024) / PAGE_SIZE;
3934 batch /= 4; /* We effectively *= 4 below */
3935 if (batch < 1)
3936 batch = 1;
3937
3938 /*
3939 * Clamp the batch to a 2^n - 1 value. Having a power
3940 * of 2 value was found to be more likely to have
3941 * suboptimal cache aliasing properties in some cases.
3942 *
3943 * For example if 2 tasks are alternately allocating
3944 * batches of pages, one task can end up with a lot
3945 * of pages of one half of the possible page colors
3946 * and the other with pages of the other colors.
3947 */
3948 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3949
3950 return batch;
3951
3952 #else
3953 /* The deferral and batching of frees should be suppressed under NOMMU
3954 * conditions.
3955 *
3956 * The problem is that NOMMU needs to be able to allocate large chunks
3957 * of contiguous memory as there's no hardware page translation to
3958 * assemble apparent contiguous memory from discontiguous pages.
3959 *
3960 * Queueing large contiguous runs of pages for batching, however,
3961 * causes the pages to actually be freed in smaller chunks. As there
3962 * can be a significant delay between the individual batches being
3963 * recycled, this leads to the once large chunks of space being
3964 * fragmented and becoming unavailable for high-order allocations.
3965 */
3966 return 0;
3967 #endif
3968 }
3969
3970 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3971 {
3972 struct per_cpu_pages *pcp;
3973 int migratetype;
3974
3975 memset(p, 0, sizeof(*p));
3976
3977 pcp = &p->pcp;
3978 pcp->count = 0;
3979 pcp->high = 6 * batch;
3980 pcp->batch = max(1UL, 1 * batch);
3981 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3982 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3983 }
3984
3985 /*
3986 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3987 * to the value high for the pageset p.
3988 */
3989
3990 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3991 unsigned long high)
3992 {
3993 struct per_cpu_pages *pcp;
3994
3995 pcp = &p->pcp;
3996 pcp->high = high;
3997 pcp->batch = max(1UL, high/4);
3998 if ((high/4) > (PAGE_SHIFT * 8))
3999 pcp->batch = PAGE_SHIFT * 8;
4000 }
4001
4002 static void __meminit setup_zone_pageset(struct zone *zone)
4003 {
4004 int cpu;
4005
4006 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4007
4008 for_each_possible_cpu(cpu) {
4009 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4010
4011 setup_pageset(pcp, zone_batchsize(zone));
4012
4013 if (percpu_pagelist_fraction)
4014 setup_pagelist_highmark(pcp,
4015 (zone->present_pages /
4016 percpu_pagelist_fraction));
4017 }
4018 }
4019
4020 /*
4021 * Allocate per cpu pagesets and initialize them.
4022 * Before this call only boot pagesets were available.
4023 */
4024 void __init setup_per_cpu_pageset(void)
4025 {
4026 struct zone *zone;
4027
4028 for_each_populated_zone(zone)
4029 setup_zone_pageset(zone);
4030 }
4031
4032 static noinline __init_refok
4033 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4034 {
4035 int i;
4036 struct pglist_data *pgdat = zone->zone_pgdat;
4037 size_t alloc_size;
4038
4039 /*
4040 * The per-page waitqueue mechanism uses hashed waitqueues
4041 * per zone.
4042 */
4043 zone->wait_table_hash_nr_entries =
4044 wait_table_hash_nr_entries(zone_size_pages);
4045 zone->wait_table_bits =
4046 wait_table_bits(zone->wait_table_hash_nr_entries);
4047 alloc_size = zone->wait_table_hash_nr_entries
4048 * sizeof(wait_queue_head_t);
4049
4050 if (!slab_is_available()) {
4051 zone->wait_table = (wait_queue_head_t *)
4052 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4053 } else {
4054 /*
4055 * This case means that a zone whose size was 0 gets new memory
4056 * via memory hot-add.
4057 * But it may be the case that a new node was hot-added. In
4058 * this case vmalloc() will not be able to use this new node's
4059 * memory - this wait_table must be initialized to use this new
4060 * node itself as well.
4061 * To use this new node's memory, further consideration will be
4062 * necessary.
4063 */
4064 zone->wait_table = vmalloc(alloc_size);
4065 }
4066 if (!zone->wait_table)
4067 return -ENOMEM;
4068
4069 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4070 init_waitqueue_head(zone->wait_table + i);
4071
4072 return 0;
4073 }
4074
4075 static __meminit void zone_pcp_init(struct zone *zone)
4076 {
4077 /*
4078 * per cpu subsystem is not up at this point. The following code
4079 * relies on the ability of the linker to provide the
4080 * offset of a (static) per cpu variable into the per cpu area.
4081 */
4082 zone->pageset = &boot_pageset;
4083
4084 if (zone->present_pages)
4085 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4086 zone->name, zone->present_pages,
4087 zone_batchsize(zone));
4088 }
4089
4090 int __meminit init_currently_empty_zone(struct zone *zone,
4091 unsigned long zone_start_pfn,
4092 unsigned long size,
4093 enum memmap_context context)
4094 {
4095 struct pglist_data *pgdat = zone->zone_pgdat;
4096 int ret;
4097 ret = zone_wait_table_init(zone, size);
4098 if (ret)
4099 return ret;
4100 pgdat->nr_zones = zone_idx(zone) + 1;
4101
4102 zone->zone_start_pfn = zone_start_pfn;
4103
4104 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4105 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4106 pgdat->node_id,
4107 (unsigned long)zone_idx(zone),
4108 zone_start_pfn, (zone_start_pfn + size));
4109
4110 zone_init_free_lists(zone);
4111
4112 return 0;
4113 }
4114
4115 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4116 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4117 /*
4118 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4119 * Architectures may implement their own version but if add_active_range()
4120 * was used and there are no special requirements, this is a convenient
4121 * alternative
4122 */
4123 int __meminit __early_pfn_to_nid(unsigned long pfn)
4124 {
4125 unsigned long start_pfn, end_pfn;
4126 int i, nid;
4127
4128 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4129 if (start_pfn <= pfn && pfn < end_pfn)
4130 return nid;
4131 /* This is a memory hole */
4132 return -1;
4133 }
4134 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4135
4136 int __meminit early_pfn_to_nid(unsigned long pfn)
4137 {
4138 int nid;
4139
4140 nid = __early_pfn_to_nid(pfn);
4141 if (nid >= 0)
4142 return nid;
4143 /* just returns 0 */
4144 return 0;
4145 }
4146
4147 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4148 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4149 {
4150 int nid;
4151
4152 nid = __early_pfn_to_nid(pfn);
4153 if (nid >= 0 && nid != node)
4154 return false;
4155 return true;
4156 }
4157 #endif
4158
4159 /**
4160 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4161 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4162 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4163 *
4164 * If an architecture guarantees that all ranges registered with
4165 * add_active_ranges() contain no holes and may be freed, this
4166 * this function may be used instead of calling free_bootmem() manually.
4167 */
4168 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4169 {
4170 unsigned long start_pfn, end_pfn;
4171 int i, this_nid;
4172
4173 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4174 start_pfn = min(start_pfn, max_low_pfn);
4175 end_pfn = min(end_pfn, max_low_pfn);
4176
4177 if (start_pfn < end_pfn)
4178 free_bootmem_node(NODE_DATA(this_nid),
4179 PFN_PHYS(start_pfn),
4180 (end_pfn - start_pfn) << PAGE_SHIFT);
4181 }
4182 }
4183
4184 /**
4185 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4186 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4187 *
4188 * If an architecture guarantees that all ranges registered with
4189 * add_active_ranges() contain no holes and may be freed, this
4190 * function may be used instead of calling memory_present() manually.
4191 */
4192 void __init sparse_memory_present_with_active_regions(int nid)
4193 {
4194 unsigned long start_pfn, end_pfn;
4195 int i, this_nid;
4196
4197 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4198 memory_present(this_nid, start_pfn, end_pfn);
4199 }
4200
4201 /**
4202 * get_pfn_range_for_nid - Return the start and end page frames for a node
4203 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4204 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4205 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4206 *
4207 * It returns the start and end page frame of a node based on information
4208 * provided by an arch calling add_active_range(). If called for a node
4209 * with no available memory, a warning is printed and the start and end
4210 * PFNs will be 0.
4211 */
4212 void __meminit get_pfn_range_for_nid(unsigned int nid,
4213 unsigned long *start_pfn, unsigned long *end_pfn)
4214 {
4215 unsigned long this_start_pfn, this_end_pfn;
4216 int i;
4217
4218 *start_pfn = -1UL;
4219 *end_pfn = 0;
4220
4221 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4222 *start_pfn = min(*start_pfn, this_start_pfn);
4223 *end_pfn = max(*end_pfn, this_end_pfn);
4224 }
4225
4226 if (*start_pfn == -1UL)
4227 *start_pfn = 0;
4228 }
4229
4230 /*
4231 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4232 * assumption is made that zones within a node are ordered in monotonic
4233 * increasing memory addresses so that the "highest" populated zone is used
4234 */
4235 static void __init find_usable_zone_for_movable(void)
4236 {
4237 int zone_index;
4238 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4239 if (zone_index == ZONE_MOVABLE)
4240 continue;
4241
4242 if (arch_zone_highest_possible_pfn[zone_index] >
4243 arch_zone_lowest_possible_pfn[zone_index])
4244 break;
4245 }
4246
4247 VM_BUG_ON(zone_index == -1);
4248 movable_zone = zone_index;
4249 }
4250
4251 /*
4252 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4253 * because it is sized independent of architecture. Unlike the other zones,
4254 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4255 * in each node depending on the size of each node and how evenly kernelcore
4256 * is distributed. This helper function adjusts the zone ranges
4257 * provided by the architecture for a given node by using the end of the
4258 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4259 * zones within a node are in order of monotonic increases memory addresses
4260 */
4261 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4262 unsigned long zone_type,
4263 unsigned long node_start_pfn,
4264 unsigned long node_end_pfn,
4265 unsigned long *zone_start_pfn,
4266 unsigned long *zone_end_pfn)
4267 {
4268 /* Only adjust if ZONE_MOVABLE is on this node */
4269 if (zone_movable_pfn[nid]) {
4270 /* Size ZONE_MOVABLE */
4271 if (zone_type == ZONE_MOVABLE) {
4272 *zone_start_pfn = zone_movable_pfn[nid];
4273 *zone_end_pfn = min(node_end_pfn,
4274 arch_zone_highest_possible_pfn[movable_zone]);
4275
4276 /* Adjust for ZONE_MOVABLE starting within this range */
4277 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4278 *zone_end_pfn > zone_movable_pfn[nid]) {
4279 *zone_end_pfn = zone_movable_pfn[nid];
4280
4281 /* Check if this whole range is within ZONE_MOVABLE */
4282 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4283 *zone_start_pfn = *zone_end_pfn;
4284 }
4285 }
4286
4287 /*
4288 * Return the number of pages a zone spans in a node, including holes
4289 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4290 */
4291 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4292 unsigned long zone_type,
4293 unsigned long *ignored)
4294 {
4295 unsigned long node_start_pfn, node_end_pfn;
4296 unsigned long zone_start_pfn, zone_end_pfn;
4297
4298 /* Get the start and end of the node and zone */
4299 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4300 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4301 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4302 adjust_zone_range_for_zone_movable(nid, zone_type,
4303 node_start_pfn, node_end_pfn,
4304 &zone_start_pfn, &zone_end_pfn);
4305
4306 /* Check that this node has pages within the zone's required range */
4307 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4308 return 0;
4309
4310 /* Move the zone boundaries inside the node if necessary */
4311 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4312 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4313
4314 /* Return the spanned pages */
4315 return zone_end_pfn - zone_start_pfn;
4316 }
4317
4318 /*
4319 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4320 * then all holes in the requested range will be accounted for.
4321 */
4322 unsigned long __meminit __absent_pages_in_range(int nid,
4323 unsigned long range_start_pfn,
4324 unsigned long range_end_pfn)
4325 {
4326 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4327 unsigned long start_pfn, end_pfn;
4328 int i;
4329
4330 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4331 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4332 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4333 nr_absent -= end_pfn - start_pfn;
4334 }
4335 return nr_absent;
4336 }
4337
4338 /**
4339 * absent_pages_in_range - Return number of page frames in holes within a range
4340 * @start_pfn: The start PFN to start searching for holes
4341 * @end_pfn: The end PFN to stop searching for holes
4342 *
4343 * It returns the number of pages frames in memory holes within a range.
4344 */
4345 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4346 unsigned long end_pfn)
4347 {
4348 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4349 }
4350
4351 /* Return the number of page frames in holes in a zone on a node */
4352 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4353 unsigned long zone_type,
4354 unsigned long *ignored)
4355 {
4356 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4357 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4358 unsigned long node_start_pfn, node_end_pfn;
4359 unsigned long zone_start_pfn, zone_end_pfn;
4360
4361 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4362 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4363 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4364
4365 adjust_zone_range_for_zone_movable(nid, zone_type,
4366 node_start_pfn, node_end_pfn,
4367 &zone_start_pfn, &zone_end_pfn);
4368 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4369 }
4370
4371 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4372 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4373 unsigned long zone_type,
4374 unsigned long *zones_size)
4375 {
4376 return zones_size[zone_type];
4377 }
4378
4379 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4380 unsigned long zone_type,
4381 unsigned long *zholes_size)
4382 {
4383 if (!zholes_size)
4384 return 0;
4385
4386 return zholes_size[zone_type];
4387 }
4388
4389 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4390
4391 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4392 unsigned long *zones_size, unsigned long *zholes_size)
4393 {
4394 unsigned long realtotalpages, totalpages = 0;
4395 enum zone_type i;
4396
4397 for (i = 0; i < MAX_NR_ZONES; i++)
4398 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4399 zones_size);
4400 pgdat->node_spanned_pages = totalpages;
4401
4402 realtotalpages = totalpages;
4403 for (i = 0; i < MAX_NR_ZONES; i++)
4404 realtotalpages -=
4405 zone_absent_pages_in_node(pgdat->node_id, i,
4406 zholes_size);
4407 pgdat->node_present_pages = realtotalpages;
4408 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4409 realtotalpages);
4410 }
4411
4412 #ifndef CONFIG_SPARSEMEM
4413 /*
4414 * Calculate the size of the zone->blockflags rounded to an unsigned long
4415 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4416 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4417 * round what is now in bits to nearest long in bits, then return it in
4418 * bytes.
4419 */
4420 static unsigned long __init usemap_size(unsigned long zonesize)
4421 {
4422 unsigned long usemapsize;
4423
4424 usemapsize = roundup(zonesize, pageblock_nr_pages);
4425 usemapsize = usemapsize >> pageblock_order;
4426 usemapsize *= NR_PAGEBLOCK_BITS;
4427 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4428
4429 return usemapsize / 8;
4430 }
4431
4432 static void __init setup_usemap(struct pglist_data *pgdat,
4433 struct zone *zone, unsigned long zonesize)
4434 {
4435 unsigned long usemapsize = usemap_size(zonesize);
4436 zone->pageblock_flags = NULL;
4437 if (usemapsize)
4438 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4439 usemapsize);
4440 }
4441 #else
4442 static inline void setup_usemap(struct pglist_data *pgdat,
4443 struct zone *zone, unsigned long zonesize) {}
4444 #endif /* CONFIG_SPARSEMEM */
4445
4446 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4447
4448 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4449 void __init set_pageblock_order(void)
4450 {
4451 unsigned int order;
4452
4453 /* Check that pageblock_nr_pages has not already been setup */
4454 if (pageblock_order)
4455 return;
4456
4457 if (HPAGE_SHIFT > PAGE_SHIFT)
4458 order = HUGETLB_PAGE_ORDER;
4459 else
4460 order = MAX_ORDER - 1;
4461
4462 /*
4463 * Assume the largest contiguous order of interest is a huge page.
4464 * This value may be variable depending on boot parameters on IA64 and
4465 * powerpc.
4466 */
4467 pageblock_order = order;
4468 }
4469 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4470
4471 /*
4472 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4473 * is unused as pageblock_order is set at compile-time. See
4474 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4475 * the kernel config
4476 */
4477 void __init set_pageblock_order(void)
4478 {
4479 }
4480
4481 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4482
4483 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4484 unsigned long present_pages)
4485 {
4486 unsigned long pages = spanned_pages;
4487
4488 /*
4489 * Provide a more accurate estimation if there are holes within
4490 * the zone and SPARSEMEM is in use. If there are holes within the
4491 * zone, each populated memory region may cost us one or two extra
4492 * memmap pages due to alignment because memmap pages for each
4493 * populated regions may not naturally algined on page boundary.
4494 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4495 */
4496 if (spanned_pages > present_pages + (present_pages >> 4) &&
4497 IS_ENABLED(CONFIG_SPARSEMEM))
4498 pages = present_pages;
4499
4500 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4501 }
4502
4503 /*
4504 * Set up the zone data structures:
4505 * - mark all pages reserved
4506 * - mark all memory queues empty
4507 * - clear the memory bitmaps
4508 *
4509 * NOTE: pgdat should get zeroed by caller.
4510 */
4511 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4512 unsigned long *zones_size, unsigned long *zholes_size)
4513 {
4514 enum zone_type j;
4515 int nid = pgdat->node_id;
4516 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4517 int ret;
4518
4519 pgdat_resize_init(pgdat);
4520 #ifdef CONFIG_NUMA_BALANCING
4521 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4522 pgdat->numabalancing_migrate_nr_pages = 0;
4523 pgdat->numabalancing_migrate_next_window = jiffies;
4524 #endif
4525 init_waitqueue_head(&pgdat->kswapd_wait);
4526 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4527 pgdat_page_cgroup_init(pgdat);
4528
4529 for (j = 0; j < MAX_NR_ZONES; j++) {
4530 struct zone *zone = pgdat->node_zones + j;
4531 unsigned long size, realsize, freesize, memmap_pages;
4532
4533 size = zone_spanned_pages_in_node(nid, j, zones_size);
4534 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4535 zholes_size);
4536
4537 /*
4538 * Adjust freesize so that it accounts for how much memory
4539 * is used by this zone for memmap. This affects the watermark
4540 * and per-cpu initialisations
4541 */
4542 memmap_pages = calc_memmap_size(size, realsize);
4543 if (freesize >= memmap_pages) {
4544 freesize -= memmap_pages;
4545 if (memmap_pages)
4546 printk(KERN_DEBUG
4547 " %s zone: %lu pages used for memmap\n",
4548 zone_names[j], memmap_pages);
4549 } else
4550 printk(KERN_WARNING
4551 " %s zone: %lu pages exceeds freesize %lu\n",
4552 zone_names[j], memmap_pages, freesize);
4553
4554 /* Account for reserved pages */
4555 if (j == 0 && freesize > dma_reserve) {
4556 freesize -= dma_reserve;
4557 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4558 zone_names[0], dma_reserve);
4559 }
4560
4561 if (!is_highmem_idx(j))
4562 nr_kernel_pages += freesize;
4563 /* Charge for highmem memmap if there are enough kernel pages */
4564 else if (nr_kernel_pages > memmap_pages * 2)
4565 nr_kernel_pages -= memmap_pages;
4566 nr_all_pages += freesize;
4567
4568 zone->spanned_pages = size;
4569 zone->present_pages = freesize;
4570 /*
4571 * Set an approximate value for lowmem here, it will be adjusted
4572 * when the bootmem allocator frees pages into the buddy system.
4573 * And all highmem pages will be managed by the buddy system.
4574 */
4575 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4576 #ifdef CONFIG_NUMA
4577 zone->node = nid;
4578 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4579 / 100;
4580 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4581 #endif
4582 zone->name = zone_names[j];
4583 spin_lock_init(&zone->lock);
4584 spin_lock_init(&zone->lru_lock);
4585 zone_seqlock_init(zone);
4586 zone->zone_pgdat = pgdat;
4587
4588 zone_pcp_init(zone);
4589 lruvec_init(&zone->lruvec);
4590 if (!size)
4591 continue;
4592
4593 set_pageblock_order();
4594 setup_usemap(pgdat, zone, size);
4595 ret = init_currently_empty_zone(zone, zone_start_pfn,
4596 size, MEMMAP_EARLY);
4597 BUG_ON(ret);
4598 memmap_init(size, nid, j, zone_start_pfn);
4599 zone_start_pfn += size;
4600 }
4601 }
4602
4603 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4604 {
4605 /* Skip empty nodes */
4606 if (!pgdat->node_spanned_pages)
4607 return;
4608
4609 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4610 /* ia64 gets its own node_mem_map, before this, without bootmem */
4611 if (!pgdat->node_mem_map) {
4612 unsigned long size, start, end;
4613 struct page *map;
4614
4615 /*
4616 * The zone's endpoints aren't required to be MAX_ORDER
4617 * aligned but the node_mem_map endpoints must be in order
4618 * for the buddy allocator to function correctly.
4619 */
4620 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4621 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4622 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4623 size = (end - start) * sizeof(struct page);
4624 map = alloc_remap(pgdat->node_id, size);
4625 if (!map)
4626 map = alloc_bootmem_node_nopanic(pgdat, size);
4627 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4628 }
4629 #ifndef CONFIG_NEED_MULTIPLE_NODES
4630 /*
4631 * With no DISCONTIG, the global mem_map is just set as node 0's
4632 */
4633 if (pgdat == NODE_DATA(0)) {
4634 mem_map = NODE_DATA(0)->node_mem_map;
4635 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4636 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4637 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4638 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4639 }
4640 #endif
4641 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4642 }
4643
4644 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4645 unsigned long node_start_pfn, unsigned long *zholes_size)
4646 {
4647 pg_data_t *pgdat = NODE_DATA(nid);
4648
4649 /* pg_data_t should be reset to zero when it's allocated */
4650 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4651
4652 pgdat->node_id = nid;
4653 pgdat->node_start_pfn = node_start_pfn;
4654 init_zone_allows_reclaim(nid);
4655 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4656
4657 alloc_node_mem_map(pgdat);
4658 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4659 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4660 nid, (unsigned long)pgdat,
4661 (unsigned long)pgdat->node_mem_map);
4662 #endif
4663
4664 free_area_init_core(pgdat, zones_size, zholes_size);
4665 }
4666
4667 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4668
4669 #if MAX_NUMNODES > 1
4670 /*
4671 * Figure out the number of possible node ids.
4672 */
4673 static void __init setup_nr_node_ids(void)
4674 {
4675 unsigned int node;
4676 unsigned int highest = 0;
4677
4678 for_each_node_mask(node, node_possible_map)
4679 highest = node;
4680 nr_node_ids = highest + 1;
4681 }
4682 #else
4683 static inline void setup_nr_node_ids(void)
4684 {
4685 }
4686 #endif
4687
4688 /**
4689 * node_map_pfn_alignment - determine the maximum internode alignment
4690 *
4691 * This function should be called after node map is populated and sorted.
4692 * It calculates the maximum power of two alignment which can distinguish
4693 * all the nodes.
4694 *
4695 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4696 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4697 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4698 * shifted, 1GiB is enough and this function will indicate so.
4699 *
4700 * This is used to test whether pfn -> nid mapping of the chosen memory
4701 * model has fine enough granularity to avoid incorrect mapping for the
4702 * populated node map.
4703 *
4704 * Returns the determined alignment in pfn's. 0 if there is no alignment
4705 * requirement (single node).
4706 */
4707 unsigned long __init node_map_pfn_alignment(void)
4708 {
4709 unsigned long accl_mask = 0, last_end = 0;
4710 unsigned long start, end, mask;
4711 int last_nid = -1;
4712 int i, nid;
4713
4714 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4715 if (!start || last_nid < 0 || last_nid == nid) {
4716 last_nid = nid;
4717 last_end = end;
4718 continue;
4719 }
4720
4721 /*
4722 * Start with a mask granular enough to pin-point to the
4723 * start pfn and tick off bits one-by-one until it becomes
4724 * too coarse to separate the current node from the last.
4725 */
4726 mask = ~((1 << __ffs(start)) - 1);
4727 while (mask && last_end <= (start & (mask << 1)))
4728 mask <<= 1;
4729
4730 /* accumulate all internode masks */
4731 accl_mask |= mask;
4732 }
4733
4734 /* convert mask to number of pages */
4735 return ~accl_mask + 1;
4736 }
4737
4738 /* Find the lowest pfn for a node */
4739 static unsigned long __init find_min_pfn_for_node(int nid)
4740 {
4741 unsigned long min_pfn = ULONG_MAX;
4742 unsigned long start_pfn;
4743 int i;
4744
4745 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4746 min_pfn = min(min_pfn, start_pfn);
4747
4748 if (min_pfn == ULONG_MAX) {
4749 printk(KERN_WARNING
4750 "Could not find start_pfn for node %d\n", nid);
4751 return 0;
4752 }
4753
4754 return min_pfn;
4755 }
4756
4757 /**
4758 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4759 *
4760 * It returns the minimum PFN based on information provided via
4761 * add_active_range().
4762 */
4763 unsigned long __init find_min_pfn_with_active_regions(void)
4764 {
4765 return find_min_pfn_for_node(MAX_NUMNODES);
4766 }
4767
4768 /*
4769 * early_calculate_totalpages()
4770 * Sum pages in active regions for movable zone.
4771 * Populate N_MEMORY for calculating usable_nodes.
4772 */
4773 static unsigned long __init early_calculate_totalpages(void)
4774 {
4775 unsigned long totalpages = 0;
4776 unsigned long start_pfn, end_pfn;
4777 int i, nid;
4778
4779 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4780 unsigned long pages = end_pfn - start_pfn;
4781
4782 totalpages += pages;
4783 if (pages)
4784 node_set_state(nid, N_MEMORY);
4785 }
4786 return totalpages;
4787 }
4788
4789 /*
4790 * Find the PFN the Movable zone begins in each node. Kernel memory
4791 * is spread evenly between nodes as long as the nodes have enough
4792 * memory. When they don't, some nodes will have more kernelcore than
4793 * others
4794 */
4795 static void __init find_zone_movable_pfns_for_nodes(void)
4796 {
4797 int i, nid;
4798 unsigned long usable_startpfn;
4799 unsigned long kernelcore_node, kernelcore_remaining;
4800 /* save the state before borrow the nodemask */
4801 nodemask_t saved_node_state = node_states[N_MEMORY];
4802 unsigned long totalpages = early_calculate_totalpages();
4803 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4804
4805 /*
4806 * If movablecore was specified, calculate what size of
4807 * kernelcore that corresponds so that memory usable for
4808 * any allocation type is evenly spread. If both kernelcore
4809 * and movablecore are specified, then the value of kernelcore
4810 * will be used for required_kernelcore if it's greater than
4811 * what movablecore would have allowed.
4812 */
4813 if (required_movablecore) {
4814 unsigned long corepages;
4815
4816 /*
4817 * Round-up so that ZONE_MOVABLE is at least as large as what
4818 * was requested by the user
4819 */
4820 required_movablecore =
4821 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4822 corepages = totalpages - required_movablecore;
4823
4824 required_kernelcore = max(required_kernelcore, corepages);
4825 }
4826
4827 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4828 if (!required_kernelcore)
4829 goto out;
4830
4831 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4832 find_usable_zone_for_movable();
4833 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4834
4835 restart:
4836 /* Spread kernelcore memory as evenly as possible throughout nodes */
4837 kernelcore_node = required_kernelcore / usable_nodes;
4838 for_each_node_state(nid, N_MEMORY) {
4839 unsigned long start_pfn, end_pfn;
4840
4841 /*
4842 * Recalculate kernelcore_node if the division per node
4843 * now exceeds what is necessary to satisfy the requested
4844 * amount of memory for the kernel
4845 */
4846 if (required_kernelcore < kernelcore_node)
4847 kernelcore_node = required_kernelcore / usable_nodes;
4848
4849 /*
4850 * As the map is walked, we track how much memory is usable
4851 * by the kernel using kernelcore_remaining. When it is
4852 * 0, the rest of the node is usable by ZONE_MOVABLE
4853 */
4854 kernelcore_remaining = kernelcore_node;
4855
4856 /* Go through each range of PFNs within this node */
4857 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4858 unsigned long size_pages;
4859
4860 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4861 if (start_pfn >= end_pfn)
4862 continue;
4863
4864 /* Account for what is only usable for kernelcore */
4865 if (start_pfn < usable_startpfn) {
4866 unsigned long kernel_pages;
4867 kernel_pages = min(end_pfn, usable_startpfn)
4868 - start_pfn;
4869
4870 kernelcore_remaining -= min(kernel_pages,
4871 kernelcore_remaining);
4872 required_kernelcore -= min(kernel_pages,
4873 required_kernelcore);
4874
4875 /* Continue if range is now fully accounted */
4876 if (end_pfn <= usable_startpfn) {
4877
4878 /*
4879 * Push zone_movable_pfn to the end so
4880 * that if we have to rebalance
4881 * kernelcore across nodes, we will
4882 * not double account here
4883 */
4884 zone_movable_pfn[nid] = end_pfn;
4885 continue;
4886 }
4887 start_pfn = usable_startpfn;
4888 }
4889
4890 /*
4891 * The usable PFN range for ZONE_MOVABLE is from
4892 * start_pfn->end_pfn. Calculate size_pages as the
4893 * number of pages used as kernelcore
4894 */
4895 size_pages = end_pfn - start_pfn;
4896 if (size_pages > kernelcore_remaining)
4897 size_pages = kernelcore_remaining;
4898 zone_movable_pfn[nid] = start_pfn + size_pages;
4899
4900 /*
4901 * Some kernelcore has been met, update counts and
4902 * break if the kernelcore for this node has been
4903 * satisified
4904 */
4905 required_kernelcore -= min(required_kernelcore,
4906 size_pages);
4907 kernelcore_remaining -= size_pages;
4908 if (!kernelcore_remaining)
4909 break;
4910 }
4911 }
4912
4913 /*
4914 * If there is still required_kernelcore, we do another pass with one
4915 * less node in the count. This will push zone_movable_pfn[nid] further
4916 * along on the nodes that still have memory until kernelcore is
4917 * satisified
4918 */
4919 usable_nodes--;
4920 if (usable_nodes && required_kernelcore > usable_nodes)
4921 goto restart;
4922
4923 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4924 for (nid = 0; nid < MAX_NUMNODES; nid++)
4925 zone_movable_pfn[nid] =
4926 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4927
4928 out:
4929 /* restore the node_state */
4930 node_states[N_MEMORY] = saved_node_state;
4931 }
4932
4933 /* Any regular or high memory on that node ? */
4934 static void check_for_memory(pg_data_t *pgdat, int nid)
4935 {
4936 enum zone_type zone_type;
4937
4938 if (N_MEMORY == N_NORMAL_MEMORY)
4939 return;
4940
4941 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
4942 struct zone *zone = &pgdat->node_zones[zone_type];
4943 if (zone->present_pages) {
4944 node_set_state(nid, N_HIGH_MEMORY);
4945 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
4946 zone_type <= ZONE_NORMAL)
4947 node_set_state(nid, N_NORMAL_MEMORY);
4948 break;
4949 }
4950 }
4951 }
4952
4953 /**
4954 * free_area_init_nodes - Initialise all pg_data_t and zone data
4955 * @max_zone_pfn: an array of max PFNs for each zone
4956 *
4957 * This will call free_area_init_node() for each active node in the system.
4958 * Using the page ranges provided by add_active_range(), the size of each
4959 * zone in each node and their holes is calculated. If the maximum PFN
4960 * between two adjacent zones match, it is assumed that the zone is empty.
4961 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4962 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4963 * starts where the previous one ended. For example, ZONE_DMA32 starts
4964 * at arch_max_dma_pfn.
4965 */
4966 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4967 {
4968 unsigned long start_pfn, end_pfn;
4969 int i, nid;
4970
4971 /* Record where the zone boundaries are */
4972 memset(arch_zone_lowest_possible_pfn, 0,
4973 sizeof(arch_zone_lowest_possible_pfn));
4974 memset(arch_zone_highest_possible_pfn, 0,
4975 sizeof(arch_zone_highest_possible_pfn));
4976 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4977 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4978 for (i = 1; i < MAX_NR_ZONES; i++) {
4979 if (i == ZONE_MOVABLE)
4980 continue;
4981 arch_zone_lowest_possible_pfn[i] =
4982 arch_zone_highest_possible_pfn[i-1];
4983 arch_zone_highest_possible_pfn[i] =
4984 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4985 }
4986 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4987 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4988
4989 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4990 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4991 find_zone_movable_pfns_for_nodes();
4992
4993 /* Print out the zone ranges */
4994 printk("Zone ranges:\n");
4995 for (i = 0; i < MAX_NR_ZONES; i++) {
4996 if (i == ZONE_MOVABLE)
4997 continue;
4998 printk(KERN_CONT " %-8s ", zone_names[i]);
4999 if (arch_zone_lowest_possible_pfn[i] ==
5000 arch_zone_highest_possible_pfn[i])
5001 printk(KERN_CONT "empty\n");
5002 else
5003 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5004 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5005 (arch_zone_highest_possible_pfn[i]
5006 << PAGE_SHIFT) - 1);
5007 }
5008
5009 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5010 printk("Movable zone start for each node\n");
5011 for (i = 0; i < MAX_NUMNODES; i++) {
5012 if (zone_movable_pfn[i])
5013 printk(" Node %d: %#010lx\n", i,
5014 zone_movable_pfn[i] << PAGE_SHIFT);
5015 }
5016
5017 /* Print out the early node map */
5018 printk("Early memory node ranges\n");
5019 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5020 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5021 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5022
5023 /* Initialise every node */
5024 mminit_verify_pageflags_layout();
5025 setup_nr_node_ids();
5026 for_each_online_node(nid) {
5027 pg_data_t *pgdat = NODE_DATA(nid);
5028 free_area_init_node(nid, NULL,
5029 find_min_pfn_for_node(nid), NULL);
5030
5031 /* Any memory on that node */
5032 if (pgdat->node_present_pages)
5033 node_set_state(nid, N_MEMORY);
5034 check_for_memory(pgdat, nid);
5035 }
5036 }
5037
5038 static int __init cmdline_parse_core(char *p, unsigned long *core)
5039 {
5040 unsigned long long coremem;
5041 if (!p)
5042 return -EINVAL;
5043
5044 coremem = memparse(p, &p);
5045 *core = coremem >> PAGE_SHIFT;
5046
5047 /* Paranoid check that UL is enough for the coremem value */
5048 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5049
5050 return 0;
5051 }
5052
5053 /*
5054 * kernelcore=size sets the amount of memory for use for allocations that
5055 * cannot be reclaimed or migrated.
5056 */
5057 static int __init cmdline_parse_kernelcore(char *p)
5058 {
5059 return cmdline_parse_core(p, &required_kernelcore);
5060 }
5061
5062 /*
5063 * movablecore=size sets the amount of memory for use for allocations that
5064 * can be reclaimed or migrated.
5065 */
5066 static int __init cmdline_parse_movablecore(char *p)
5067 {
5068 return cmdline_parse_core(p, &required_movablecore);
5069 }
5070
5071 early_param("kernelcore", cmdline_parse_kernelcore);
5072 early_param("movablecore", cmdline_parse_movablecore);
5073
5074 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5075
5076 /**
5077 * set_dma_reserve - set the specified number of pages reserved in the first zone
5078 * @new_dma_reserve: The number of pages to mark reserved
5079 *
5080 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5081 * In the DMA zone, a significant percentage may be consumed by kernel image
5082 * and other unfreeable allocations which can skew the watermarks badly. This
5083 * function may optionally be used to account for unfreeable pages in the
5084 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5085 * smaller per-cpu batchsize.
5086 */
5087 void __init set_dma_reserve(unsigned long new_dma_reserve)
5088 {
5089 dma_reserve = new_dma_reserve;
5090 }
5091
5092 void __init free_area_init(unsigned long *zones_size)
5093 {
5094 free_area_init_node(0, zones_size,
5095 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5096 }
5097
5098 static int page_alloc_cpu_notify(struct notifier_block *self,
5099 unsigned long action, void *hcpu)
5100 {
5101 int cpu = (unsigned long)hcpu;
5102
5103 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5104 lru_add_drain_cpu(cpu);
5105 drain_pages(cpu);
5106
5107 /*
5108 * Spill the event counters of the dead processor
5109 * into the current processors event counters.
5110 * This artificially elevates the count of the current
5111 * processor.
5112 */
5113 vm_events_fold_cpu(cpu);
5114
5115 /*
5116 * Zero the differential counters of the dead processor
5117 * so that the vm statistics are consistent.
5118 *
5119 * This is only okay since the processor is dead and cannot
5120 * race with what we are doing.
5121 */
5122 refresh_cpu_vm_stats(cpu);
5123 }
5124 return NOTIFY_OK;
5125 }
5126
5127 void __init page_alloc_init(void)
5128 {
5129 hotcpu_notifier(page_alloc_cpu_notify, 0);
5130 }
5131
5132 /*
5133 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5134 * or min_free_kbytes changes.
5135 */
5136 static void calculate_totalreserve_pages(void)
5137 {
5138 struct pglist_data *pgdat;
5139 unsigned long reserve_pages = 0;
5140 enum zone_type i, j;
5141
5142 for_each_online_pgdat(pgdat) {
5143 for (i = 0; i < MAX_NR_ZONES; i++) {
5144 struct zone *zone = pgdat->node_zones + i;
5145 unsigned long max = 0;
5146
5147 /* Find valid and maximum lowmem_reserve in the zone */
5148 for (j = i; j < MAX_NR_ZONES; j++) {
5149 if (zone->lowmem_reserve[j] > max)
5150 max = zone->lowmem_reserve[j];
5151 }
5152
5153 /* we treat the high watermark as reserved pages. */
5154 max += high_wmark_pages(zone);
5155
5156 if (max > zone->present_pages)
5157 max = zone->present_pages;
5158 reserve_pages += max;
5159 /*
5160 * Lowmem reserves are not available to
5161 * GFP_HIGHUSER page cache allocations and
5162 * kswapd tries to balance zones to their high
5163 * watermark. As a result, neither should be
5164 * regarded as dirtyable memory, to prevent a
5165 * situation where reclaim has to clean pages
5166 * in order to balance the zones.
5167 */
5168 zone->dirty_balance_reserve = max;
5169 }
5170 }
5171 dirty_balance_reserve = reserve_pages;
5172 totalreserve_pages = reserve_pages;
5173 }
5174
5175 /*
5176 * setup_per_zone_lowmem_reserve - called whenever
5177 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5178 * has a correct pages reserved value, so an adequate number of
5179 * pages are left in the zone after a successful __alloc_pages().
5180 */
5181 static void setup_per_zone_lowmem_reserve(void)
5182 {
5183 struct pglist_data *pgdat;
5184 enum zone_type j, idx;
5185
5186 for_each_online_pgdat(pgdat) {
5187 for (j = 0; j < MAX_NR_ZONES; j++) {
5188 struct zone *zone = pgdat->node_zones + j;
5189 unsigned long present_pages = zone->present_pages;
5190
5191 zone->lowmem_reserve[j] = 0;
5192
5193 idx = j;
5194 while (idx) {
5195 struct zone *lower_zone;
5196
5197 idx--;
5198
5199 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5200 sysctl_lowmem_reserve_ratio[idx] = 1;
5201
5202 lower_zone = pgdat->node_zones + idx;
5203 lower_zone->lowmem_reserve[j] = present_pages /
5204 sysctl_lowmem_reserve_ratio[idx];
5205 present_pages += lower_zone->present_pages;
5206 }
5207 }
5208 }
5209
5210 /* update totalreserve_pages */
5211 calculate_totalreserve_pages();
5212 }
5213
5214 static void __setup_per_zone_wmarks(void)
5215 {
5216 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5217 unsigned long lowmem_pages = 0;
5218 struct zone *zone;
5219 unsigned long flags;
5220
5221 /* Calculate total number of !ZONE_HIGHMEM pages */
5222 for_each_zone(zone) {
5223 if (!is_highmem(zone))
5224 lowmem_pages += zone->present_pages;
5225 }
5226
5227 for_each_zone(zone) {
5228 u64 tmp;
5229
5230 spin_lock_irqsave(&zone->lock, flags);
5231 tmp = (u64)pages_min * zone->present_pages;
5232 do_div(tmp, lowmem_pages);
5233 if (is_highmem(zone)) {
5234 /*
5235 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5236 * need highmem pages, so cap pages_min to a small
5237 * value here.
5238 *
5239 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5240 * deltas controls asynch page reclaim, and so should
5241 * not be capped for highmem.
5242 */
5243 int min_pages;
5244
5245 min_pages = zone->present_pages / 1024;
5246 if (min_pages < SWAP_CLUSTER_MAX)
5247 min_pages = SWAP_CLUSTER_MAX;
5248 if (min_pages > 128)
5249 min_pages = 128;
5250 zone->watermark[WMARK_MIN] = min_pages;
5251 } else {
5252 /*
5253 * If it's a lowmem zone, reserve a number of pages
5254 * proportionate to the zone's size.
5255 */
5256 zone->watermark[WMARK_MIN] = tmp;
5257 }
5258
5259 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5260 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5261
5262 setup_zone_migrate_reserve(zone);
5263 spin_unlock_irqrestore(&zone->lock, flags);
5264 }
5265
5266 /* update totalreserve_pages */
5267 calculate_totalreserve_pages();
5268 }
5269
5270 /**
5271 * setup_per_zone_wmarks - called when min_free_kbytes changes
5272 * or when memory is hot-{added|removed}
5273 *
5274 * Ensures that the watermark[min,low,high] values for each zone are set
5275 * correctly with respect to min_free_kbytes.
5276 */
5277 void setup_per_zone_wmarks(void)
5278 {
5279 mutex_lock(&zonelists_mutex);
5280 __setup_per_zone_wmarks();
5281 mutex_unlock(&zonelists_mutex);
5282 }
5283
5284 /*
5285 * The inactive anon list should be small enough that the VM never has to
5286 * do too much work, but large enough that each inactive page has a chance
5287 * to be referenced again before it is swapped out.
5288 *
5289 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5290 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5291 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5292 * the anonymous pages are kept on the inactive list.
5293 *
5294 * total target max
5295 * memory ratio inactive anon
5296 * -------------------------------------
5297 * 10MB 1 5MB
5298 * 100MB 1 50MB
5299 * 1GB 3 250MB
5300 * 10GB 10 0.9GB
5301 * 100GB 31 3GB
5302 * 1TB 101 10GB
5303 * 10TB 320 32GB
5304 */
5305 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5306 {
5307 unsigned int gb, ratio;
5308
5309 /* Zone size in gigabytes */
5310 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5311 if (gb)
5312 ratio = int_sqrt(10 * gb);
5313 else
5314 ratio = 1;
5315
5316 zone->inactive_ratio = ratio;
5317 }
5318
5319 static void __meminit setup_per_zone_inactive_ratio(void)
5320 {
5321 struct zone *zone;
5322
5323 for_each_zone(zone)
5324 calculate_zone_inactive_ratio(zone);
5325 }
5326
5327 /*
5328 * Initialise min_free_kbytes.
5329 *
5330 * For small machines we want it small (128k min). For large machines
5331 * we want it large (64MB max). But it is not linear, because network
5332 * bandwidth does not increase linearly with machine size. We use
5333 *
5334 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5335 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5336 *
5337 * which yields
5338 *
5339 * 16MB: 512k
5340 * 32MB: 724k
5341 * 64MB: 1024k
5342 * 128MB: 1448k
5343 * 256MB: 2048k
5344 * 512MB: 2896k
5345 * 1024MB: 4096k
5346 * 2048MB: 5792k
5347 * 4096MB: 8192k
5348 * 8192MB: 11584k
5349 * 16384MB: 16384k
5350 */
5351 int __meminit init_per_zone_wmark_min(void)
5352 {
5353 unsigned long lowmem_kbytes;
5354
5355 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5356
5357 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5358 if (min_free_kbytes < 128)
5359 min_free_kbytes = 128;
5360 if (min_free_kbytes > 65536)
5361 min_free_kbytes = 65536;
5362 setup_per_zone_wmarks();
5363 refresh_zone_stat_thresholds();
5364 setup_per_zone_lowmem_reserve();
5365 setup_per_zone_inactive_ratio();
5366 return 0;
5367 }
5368 module_init(init_per_zone_wmark_min)
5369
5370 /*
5371 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5372 * that we can call two helper functions whenever min_free_kbytes
5373 * changes.
5374 */
5375 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5376 void __user *buffer, size_t *length, loff_t *ppos)
5377 {
5378 proc_dointvec(table, write, buffer, length, ppos);
5379 if (write)
5380 setup_per_zone_wmarks();
5381 return 0;
5382 }
5383
5384 #ifdef CONFIG_NUMA
5385 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5386 void __user *buffer, size_t *length, loff_t *ppos)
5387 {
5388 struct zone *zone;
5389 int rc;
5390
5391 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5392 if (rc)
5393 return rc;
5394
5395 for_each_zone(zone)
5396 zone->min_unmapped_pages = (zone->present_pages *
5397 sysctl_min_unmapped_ratio) / 100;
5398 return 0;
5399 }
5400
5401 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5402 void __user *buffer, size_t *length, loff_t *ppos)
5403 {
5404 struct zone *zone;
5405 int rc;
5406
5407 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5408 if (rc)
5409 return rc;
5410
5411 for_each_zone(zone)
5412 zone->min_slab_pages = (zone->present_pages *
5413 sysctl_min_slab_ratio) / 100;
5414 return 0;
5415 }
5416 #endif
5417
5418 /*
5419 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5420 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5421 * whenever sysctl_lowmem_reserve_ratio changes.
5422 *
5423 * The reserve ratio obviously has absolutely no relation with the
5424 * minimum watermarks. The lowmem reserve ratio can only make sense
5425 * if in function of the boot time zone sizes.
5426 */
5427 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5428 void __user *buffer, size_t *length, loff_t *ppos)
5429 {
5430 proc_dointvec_minmax(table, write, buffer, length, ppos);
5431 setup_per_zone_lowmem_reserve();
5432 return 0;
5433 }
5434
5435 /*
5436 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5437 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5438 * can have before it gets flushed back to buddy allocator.
5439 */
5440
5441 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5442 void __user *buffer, size_t *length, loff_t *ppos)
5443 {
5444 struct zone *zone;
5445 unsigned int cpu;
5446 int ret;
5447
5448 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5449 if (!write || (ret < 0))
5450 return ret;
5451 for_each_populated_zone(zone) {
5452 for_each_possible_cpu(cpu) {
5453 unsigned long high;
5454 high = zone->present_pages / percpu_pagelist_fraction;
5455 setup_pagelist_highmark(
5456 per_cpu_ptr(zone->pageset, cpu), high);
5457 }
5458 }
5459 return 0;
5460 }
5461
5462 int hashdist = HASHDIST_DEFAULT;
5463
5464 #ifdef CONFIG_NUMA
5465 static int __init set_hashdist(char *str)
5466 {
5467 if (!str)
5468 return 0;
5469 hashdist = simple_strtoul(str, &str, 0);
5470 return 1;
5471 }
5472 __setup("hashdist=", set_hashdist);
5473 #endif
5474
5475 /*
5476 * allocate a large system hash table from bootmem
5477 * - it is assumed that the hash table must contain an exact power-of-2
5478 * quantity of entries
5479 * - limit is the number of hash buckets, not the total allocation size
5480 */
5481 void *__init alloc_large_system_hash(const char *tablename,
5482 unsigned long bucketsize,
5483 unsigned long numentries,
5484 int scale,
5485 int flags,
5486 unsigned int *_hash_shift,
5487 unsigned int *_hash_mask,
5488 unsigned long low_limit,
5489 unsigned long high_limit)
5490 {
5491 unsigned long long max = high_limit;
5492 unsigned long log2qty, size;
5493 void *table = NULL;
5494
5495 /* allow the kernel cmdline to have a say */
5496 if (!numentries) {
5497 /* round applicable memory size up to nearest megabyte */
5498 numentries = nr_kernel_pages;
5499 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5500 numentries >>= 20 - PAGE_SHIFT;
5501 numentries <<= 20 - PAGE_SHIFT;
5502
5503 /* limit to 1 bucket per 2^scale bytes of low memory */
5504 if (scale > PAGE_SHIFT)
5505 numentries >>= (scale - PAGE_SHIFT);
5506 else
5507 numentries <<= (PAGE_SHIFT - scale);
5508
5509 /* Make sure we've got at least a 0-order allocation.. */
5510 if (unlikely(flags & HASH_SMALL)) {
5511 /* Makes no sense without HASH_EARLY */
5512 WARN_ON(!(flags & HASH_EARLY));
5513 if (!(numentries >> *_hash_shift)) {
5514 numentries = 1UL << *_hash_shift;
5515 BUG_ON(!numentries);
5516 }
5517 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5518 numentries = PAGE_SIZE / bucketsize;
5519 }
5520 numentries = roundup_pow_of_two(numentries);
5521
5522 /* limit allocation size to 1/16 total memory by default */
5523 if (max == 0) {
5524 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5525 do_div(max, bucketsize);
5526 }
5527 max = min(max, 0x80000000ULL);
5528
5529 if (numentries < low_limit)
5530 numentries = low_limit;
5531 if (numentries > max)
5532 numentries = max;
5533
5534 log2qty = ilog2(numentries);
5535
5536 do {
5537 size = bucketsize << log2qty;
5538 if (flags & HASH_EARLY)
5539 table = alloc_bootmem_nopanic(size);
5540 else if (hashdist)
5541 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5542 else {
5543 /*
5544 * If bucketsize is not a power-of-two, we may free
5545 * some pages at the end of hash table which
5546 * alloc_pages_exact() automatically does
5547 */
5548 if (get_order(size) < MAX_ORDER) {
5549 table = alloc_pages_exact(size, GFP_ATOMIC);
5550 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5551 }
5552 }
5553 } while (!table && size > PAGE_SIZE && --log2qty);
5554
5555 if (!table)
5556 panic("Failed to allocate %s hash table\n", tablename);
5557
5558 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5559 tablename,
5560 (1UL << log2qty),
5561 ilog2(size) - PAGE_SHIFT,
5562 size);
5563
5564 if (_hash_shift)
5565 *_hash_shift = log2qty;
5566 if (_hash_mask)
5567 *_hash_mask = (1 << log2qty) - 1;
5568
5569 return table;
5570 }
5571
5572 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5573 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5574 unsigned long pfn)
5575 {
5576 #ifdef CONFIG_SPARSEMEM
5577 return __pfn_to_section(pfn)->pageblock_flags;
5578 #else
5579 return zone->pageblock_flags;
5580 #endif /* CONFIG_SPARSEMEM */
5581 }
5582
5583 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5584 {
5585 #ifdef CONFIG_SPARSEMEM
5586 pfn &= (PAGES_PER_SECTION-1);
5587 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5588 #else
5589 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5590 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5591 #endif /* CONFIG_SPARSEMEM */
5592 }
5593
5594 /**
5595 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5596 * @page: The page within the block of interest
5597 * @start_bitidx: The first bit of interest to retrieve
5598 * @end_bitidx: The last bit of interest
5599 * returns pageblock_bits flags
5600 */
5601 unsigned long get_pageblock_flags_group(struct page *page,
5602 int start_bitidx, int end_bitidx)
5603 {
5604 struct zone *zone;
5605 unsigned long *bitmap;
5606 unsigned long pfn, bitidx;
5607 unsigned long flags = 0;
5608 unsigned long value = 1;
5609
5610 zone = page_zone(page);
5611 pfn = page_to_pfn(page);
5612 bitmap = get_pageblock_bitmap(zone, pfn);
5613 bitidx = pfn_to_bitidx(zone, pfn);
5614
5615 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5616 if (test_bit(bitidx + start_bitidx, bitmap))
5617 flags |= value;
5618
5619 return flags;
5620 }
5621
5622 /**
5623 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5624 * @page: The page within the block of interest
5625 * @start_bitidx: The first bit of interest
5626 * @end_bitidx: The last bit of interest
5627 * @flags: The flags to set
5628 */
5629 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5630 int start_bitidx, int end_bitidx)
5631 {
5632 struct zone *zone;
5633 unsigned long *bitmap;
5634 unsigned long pfn, bitidx;
5635 unsigned long value = 1;
5636
5637 zone = page_zone(page);
5638 pfn = page_to_pfn(page);
5639 bitmap = get_pageblock_bitmap(zone, pfn);
5640 bitidx = pfn_to_bitidx(zone, pfn);
5641 VM_BUG_ON(pfn < zone->zone_start_pfn);
5642 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5643
5644 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5645 if (flags & value)
5646 __set_bit(bitidx + start_bitidx, bitmap);
5647 else
5648 __clear_bit(bitidx + start_bitidx, bitmap);
5649 }
5650
5651 /*
5652 * This function checks whether pageblock includes unmovable pages or not.
5653 * If @count is not zero, it is okay to include less @count unmovable pages
5654 *
5655 * PageLRU check wihtout isolation or lru_lock could race so that
5656 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5657 * expect this function should be exact.
5658 */
5659 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5660 bool skip_hwpoisoned_pages)
5661 {
5662 unsigned long pfn, iter, found;
5663 int mt;
5664
5665 /*
5666 * For avoiding noise data, lru_add_drain_all() should be called
5667 * If ZONE_MOVABLE, the zone never contains unmovable pages
5668 */
5669 if (zone_idx(zone) == ZONE_MOVABLE)
5670 return false;
5671 mt = get_pageblock_migratetype(page);
5672 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5673 return false;
5674
5675 pfn = page_to_pfn(page);
5676 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5677 unsigned long check = pfn + iter;
5678
5679 if (!pfn_valid_within(check))
5680 continue;
5681
5682 page = pfn_to_page(check);
5683 /*
5684 * We can't use page_count without pin a page
5685 * because another CPU can free compound page.
5686 * This check already skips compound tails of THP
5687 * because their page->_count is zero at all time.
5688 */
5689 if (!atomic_read(&page->_count)) {
5690 if (PageBuddy(page))
5691 iter += (1 << page_order(page)) - 1;
5692 continue;
5693 }
5694
5695 /*
5696 * The HWPoisoned page may be not in buddy system, and
5697 * page_count() is not 0.
5698 */
5699 if (skip_hwpoisoned_pages && PageHWPoison(page))
5700 continue;
5701
5702 if (!PageLRU(page))
5703 found++;
5704 /*
5705 * If there are RECLAIMABLE pages, we need to check it.
5706 * But now, memory offline itself doesn't call shrink_slab()
5707 * and it still to be fixed.
5708 */
5709 /*
5710 * If the page is not RAM, page_count()should be 0.
5711 * we don't need more check. This is an _used_ not-movable page.
5712 *
5713 * The problematic thing here is PG_reserved pages. PG_reserved
5714 * is set to both of a memory hole page and a _used_ kernel
5715 * page at boot.
5716 */
5717 if (found > count)
5718 return true;
5719 }
5720 return false;
5721 }
5722
5723 bool is_pageblock_removable_nolock(struct page *page)
5724 {
5725 struct zone *zone;
5726 unsigned long pfn;
5727
5728 /*
5729 * We have to be careful here because we are iterating over memory
5730 * sections which are not zone aware so we might end up outside of
5731 * the zone but still within the section.
5732 * We have to take care about the node as well. If the node is offline
5733 * its NODE_DATA will be NULL - see page_zone.
5734 */
5735 if (!node_online(page_to_nid(page)))
5736 return false;
5737
5738 zone = page_zone(page);
5739 pfn = page_to_pfn(page);
5740 if (zone->zone_start_pfn > pfn ||
5741 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5742 return false;
5743
5744 return !has_unmovable_pages(zone, page, 0, true);
5745 }
5746
5747 #ifdef CONFIG_CMA
5748
5749 static unsigned long pfn_max_align_down(unsigned long pfn)
5750 {
5751 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5752 pageblock_nr_pages) - 1);
5753 }
5754
5755 static unsigned long pfn_max_align_up(unsigned long pfn)
5756 {
5757 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5758 pageblock_nr_pages));
5759 }
5760
5761 /* [start, end) must belong to a single zone. */
5762 static int __alloc_contig_migrate_range(struct compact_control *cc,
5763 unsigned long start, unsigned long end)
5764 {
5765 /* This function is based on compact_zone() from compaction.c. */
5766 unsigned long nr_reclaimed;
5767 unsigned long pfn = start;
5768 unsigned int tries = 0;
5769 int ret = 0;
5770
5771 migrate_prep();
5772
5773 while (pfn < end || !list_empty(&cc->migratepages)) {
5774 if (fatal_signal_pending(current)) {
5775 ret = -EINTR;
5776 break;
5777 }
5778
5779 if (list_empty(&cc->migratepages)) {
5780 cc->nr_migratepages = 0;
5781 pfn = isolate_migratepages_range(cc->zone, cc,
5782 pfn, end, true);
5783 if (!pfn) {
5784 ret = -EINTR;
5785 break;
5786 }
5787 tries = 0;
5788 } else if (++tries == 5) {
5789 ret = ret < 0 ? ret : -EBUSY;
5790 break;
5791 }
5792
5793 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5794 &cc->migratepages);
5795 cc->nr_migratepages -= nr_reclaimed;
5796
5797 ret = migrate_pages(&cc->migratepages,
5798 alloc_migrate_target,
5799 0, false, MIGRATE_SYNC,
5800 MR_CMA);
5801 }
5802
5803 putback_movable_pages(&cc->migratepages);
5804 return ret > 0 ? 0 : ret;
5805 }
5806
5807 /**
5808 * alloc_contig_range() -- tries to allocate given range of pages
5809 * @start: start PFN to allocate
5810 * @end: one-past-the-last PFN to allocate
5811 * @migratetype: migratetype of the underlaying pageblocks (either
5812 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5813 * in range must have the same migratetype and it must
5814 * be either of the two.
5815 *
5816 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5817 * aligned, however it's the caller's responsibility to guarantee that
5818 * we are the only thread that changes migrate type of pageblocks the
5819 * pages fall in.
5820 *
5821 * The PFN range must belong to a single zone.
5822 *
5823 * Returns zero on success or negative error code. On success all
5824 * pages which PFN is in [start, end) are allocated for the caller and
5825 * need to be freed with free_contig_range().
5826 */
5827 int alloc_contig_range(unsigned long start, unsigned long end,
5828 unsigned migratetype)
5829 {
5830 unsigned long outer_start, outer_end;
5831 int ret = 0, order;
5832
5833 struct compact_control cc = {
5834 .nr_migratepages = 0,
5835 .order = -1,
5836 .zone = page_zone(pfn_to_page(start)),
5837 .sync = true,
5838 .ignore_skip_hint = true,
5839 };
5840 INIT_LIST_HEAD(&cc.migratepages);
5841
5842 /*
5843 * What we do here is we mark all pageblocks in range as
5844 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5845 * have different sizes, and due to the way page allocator
5846 * work, we align the range to biggest of the two pages so
5847 * that page allocator won't try to merge buddies from
5848 * different pageblocks and change MIGRATE_ISOLATE to some
5849 * other migration type.
5850 *
5851 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5852 * migrate the pages from an unaligned range (ie. pages that
5853 * we are interested in). This will put all the pages in
5854 * range back to page allocator as MIGRATE_ISOLATE.
5855 *
5856 * When this is done, we take the pages in range from page
5857 * allocator removing them from the buddy system. This way
5858 * page allocator will never consider using them.
5859 *
5860 * This lets us mark the pageblocks back as
5861 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5862 * aligned range but not in the unaligned, original range are
5863 * put back to page allocator so that buddy can use them.
5864 */
5865
5866 ret = start_isolate_page_range(pfn_max_align_down(start),
5867 pfn_max_align_up(end), migratetype,
5868 false);
5869 if (ret)
5870 return ret;
5871
5872 ret = __alloc_contig_migrate_range(&cc, start, end);
5873 if (ret)
5874 goto done;
5875
5876 /*
5877 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5878 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5879 * more, all pages in [start, end) are free in page allocator.
5880 * What we are going to do is to allocate all pages from
5881 * [start, end) (that is remove them from page allocator).
5882 *
5883 * The only problem is that pages at the beginning and at the
5884 * end of interesting range may be not aligned with pages that
5885 * page allocator holds, ie. they can be part of higher order
5886 * pages. Because of this, we reserve the bigger range and
5887 * once this is done free the pages we are not interested in.
5888 *
5889 * We don't have to hold zone->lock here because the pages are
5890 * isolated thus they won't get removed from buddy.
5891 */
5892
5893 lru_add_drain_all();
5894 drain_all_pages();
5895
5896 order = 0;
5897 outer_start = start;
5898 while (!PageBuddy(pfn_to_page(outer_start))) {
5899 if (++order >= MAX_ORDER) {
5900 ret = -EBUSY;
5901 goto done;
5902 }
5903 outer_start &= ~0UL << order;
5904 }
5905
5906 /* Make sure the range is really isolated. */
5907 if (test_pages_isolated(outer_start, end, false)) {
5908 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5909 outer_start, end);
5910 ret = -EBUSY;
5911 goto done;
5912 }
5913
5914
5915 /* Grab isolated pages from freelists. */
5916 outer_end = isolate_freepages_range(&cc, outer_start, end);
5917 if (!outer_end) {
5918 ret = -EBUSY;
5919 goto done;
5920 }
5921
5922 /* Free head and tail (if any) */
5923 if (start != outer_start)
5924 free_contig_range(outer_start, start - outer_start);
5925 if (end != outer_end)
5926 free_contig_range(end, outer_end - end);
5927
5928 done:
5929 undo_isolate_page_range(pfn_max_align_down(start),
5930 pfn_max_align_up(end), migratetype);
5931 return ret;
5932 }
5933
5934 void free_contig_range(unsigned long pfn, unsigned nr_pages)
5935 {
5936 unsigned int count = 0;
5937
5938 for (; nr_pages--; pfn++) {
5939 struct page *page = pfn_to_page(pfn);
5940
5941 count += page_count(page) != 1;
5942 __free_page(page);
5943 }
5944 WARN(count != 0, "%d pages are still in use!\n", count);
5945 }
5946 #endif
5947
5948 #ifdef CONFIG_MEMORY_HOTPLUG
5949 static int __meminit __zone_pcp_update(void *data)
5950 {
5951 struct zone *zone = data;
5952 int cpu;
5953 unsigned long batch = zone_batchsize(zone), flags;
5954
5955 for_each_possible_cpu(cpu) {
5956 struct per_cpu_pageset *pset;
5957 struct per_cpu_pages *pcp;
5958
5959 pset = per_cpu_ptr(zone->pageset, cpu);
5960 pcp = &pset->pcp;
5961
5962 local_irq_save(flags);
5963 if (pcp->count > 0)
5964 free_pcppages_bulk(zone, pcp->count, pcp);
5965 drain_zonestat(zone, pset);
5966 setup_pageset(pset, batch);
5967 local_irq_restore(flags);
5968 }
5969 return 0;
5970 }
5971
5972 void __meminit zone_pcp_update(struct zone *zone)
5973 {
5974 stop_machine(__zone_pcp_update, zone, NULL);
5975 }
5976 #endif
5977
5978 void zone_pcp_reset(struct zone *zone)
5979 {
5980 unsigned long flags;
5981 int cpu;
5982 struct per_cpu_pageset *pset;
5983
5984 /* avoid races with drain_pages() */
5985 local_irq_save(flags);
5986 if (zone->pageset != &boot_pageset) {
5987 for_each_online_cpu(cpu) {
5988 pset = per_cpu_ptr(zone->pageset, cpu);
5989 drain_zonestat(zone, pset);
5990 }
5991 free_percpu(zone->pageset);
5992 zone->pageset = &boot_pageset;
5993 }
5994 local_irq_restore(flags);
5995 }
5996
5997 #ifdef CONFIG_MEMORY_HOTREMOVE
5998 /*
5999 * All pages in the range must be isolated before calling this.
6000 */
6001 void
6002 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6003 {
6004 struct page *page;
6005 struct zone *zone;
6006 int order, i;
6007 unsigned long pfn;
6008 unsigned long flags;
6009 /* find the first valid pfn */
6010 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6011 if (pfn_valid(pfn))
6012 break;
6013 if (pfn == end_pfn)
6014 return;
6015 zone = page_zone(pfn_to_page(pfn));
6016 spin_lock_irqsave(&zone->lock, flags);
6017 pfn = start_pfn;
6018 while (pfn < end_pfn) {
6019 if (!pfn_valid(pfn)) {
6020 pfn++;
6021 continue;
6022 }
6023 page = pfn_to_page(pfn);
6024 /*
6025 * The HWPoisoned page may be not in buddy system, and
6026 * page_count() is not 0.
6027 */
6028 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6029 pfn++;
6030 SetPageReserved(page);
6031 continue;
6032 }
6033
6034 BUG_ON(page_count(page));
6035 BUG_ON(!PageBuddy(page));
6036 order = page_order(page);
6037 #ifdef CONFIG_DEBUG_VM
6038 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6039 pfn, 1 << order, end_pfn);
6040 #endif
6041 list_del(&page->lru);
6042 rmv_page_order(page);
6043 zone->free_area[order].nr_free--;
6044 for (i = 0; i < (1 << order); i++)
6045 SetPageReserved((page+i));
6046 pfn += (1 << order);
6047 }
6048 spin_unlock_irqrestore(&zone->lock, flags);
6049 }
6050 #endif
6051
6052 #ifdef CONFIG_MEMORY_FAILURE
6053 bool is_free_buddy_page(struct page *page)
6054 {
6055 struct zone *zone = page_zone(page);
6056 unsigned long pfn = page_to_pfn(page);
6057 unsigned long flags;
6058 int order;
6059
6060 spin_lock_irqsave(&zone->lock, flags);
6061 for (order = 0; order < MAX_ORDER; order++) {
6062 struct page *page_head = page - (pfn & ((1 << order) - 1));
6063
6064 if (PageBuddy(page_head) && page_order(page_head) >= order)
6065 break;
6066 }
6067 spin_unlock_irqrestore(&zone->lock, flags);
6068
6069 return order < MAX_ORDER;
6070 }
6071 #endif
6072
6073 static const struct trace_print_flags pageflag_names[] = {
6074 {1UL << PG_locked, "locked" },
6075 {1UL << PG_error, "error" },
6076 {1UL << PG_referenced, "referenced" },
6077 {1UL << PG_uptodate, "uptodate" },
6078 {1UL << PG_dirty, "dirty" },
6079 {1UL << PG_lru, "lru" },
6080 {1UL << PG_active, "active" },
6081 {1UL << PG_slab, "slab" },
6082 {1UL << PG_owner_priv_1, "owner_priv_1" },
6083 {1UL << PG_arch_1, "arch_1" },
6084 {1UL << PG_reserved, "reserved" },
6085 {1UL << PG_private, "private" },
6086 {1UL << PG_private_2, "private_2" },
6087 {1UL << PG_writeback, "writeback" },
6088 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6089 {1UL << PG_head, "head" },
6090 {1UL << PG_tail, "tail" },
6091 #else
6092 {1UL << PG_compound, "compound" },
6093 #endif
6094 {1UL << PG_swapcache, "swapcache" },
6095 {1UL << PG_mappedtodisk, "mappedtodisk" },
6096 {1UL << PG_reclaim, "reclaim" },
6097 {1UL << PG_swapbacked, "swapbacked" },
6098 {1UL << PG_unevictable, "unevictable" },
6099 #ifdef CONFIG_MMU
6100 {1UL << PG_mlocked, "mlocked" },
6101 #endif
6102 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6103 {1UL << PG_uncached, "uncached" },
6104 #endif
6105 #ifdef CONFIG_MEMORY_FAILURE
6106 {1UL << PG_hwpoison, "hwpoison" },
6107 #endif
6108 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6109 {1UL << PG_compound_lock, "compound_lock" },
6110 #endif
6111 };
6112
6113 static void dump_page_flags(unsigned long flags)
6114 {
6115 const char *delim = "";
6116 unsigned long mask;
6117 int i;
6118
6119 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6120
6121 printk(KERN_ALERT "page flags: %#lx(", flags);
6122
6123 /* remove zone id */
6124 flags &= (1UL << NR_PAGEFLAGS) - 1;
6125
6126 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6127
6128 mask = pageflag_names[i].mask;
6129 if ((flags & mask) != mask)
6130 continue;
6131
6132 flags &= ~mask;
6133 printk("%s%s", delim, pageflag_names[i].name);
6134 delim = "|";
6135 }
6136
6137 /* check for left over flags */
6138 if (flags)
6139 printk("%s%#lx", delim, flags);
6140
6141 printk(")\n");
6142 }
6143
6144 void dump_page(struct page *page)
6145 {
6146 printk(KERN_ALERT
6147 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6148 page, atomic_read(&page->_count), page_mapcount(page),
6149 page->mapping, page->index);
6150 dump_page_flags(page->flags);
6151 mem_cgroup_print_bad_page(page);
6152 }