]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/page_alloc.c
mm, page_alloc: don't check cpuset allowed twice in fast-path
[mirror_ubuntu-jammy-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/page_ext.h>
63 #include <linux/hugetlb.h>
64 #include <linux/sched/rt.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68
69 #include <asm/sections.h>
70 #include <asm/tlbflush.h>
71 #include <asm/div64.h>
72 #include "internal.h"
73
74 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
75 static DEFINE_MUTEX(pcp_batch_high_lock);
76 #define MIN_PERCPU_PAGELIST_FRACTION (8)
77
78 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
79 DEFINE_PER_CPU(int, numa_node);
80 EXPORT_PER_CPU_SYMBOL(numa_node);
81 #endif
82
83 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
84 /*
85 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
86 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
87 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
88 * defined in <linux/topology.h>.
89 */
90 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
91 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
92 int _node_numa_mem_[MAX_NUMNODES];
93 #endif
94
95 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
96 volatile unsigned long latent_entropy __latent_entropy;
97 EXPORT_SYMBOL(latent_entropy);
98 #endif
99
100 /*
101 * Array of node states.
102 */
103 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
104 [N_POSSIBLE] = NODE_MASK_ALL,
105 [N_ONLINE] = { { [0] = 1UL } },
106 #ifndef CONFIG_NUMA
107 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
108 #ifdef CONFIG_HIGHMEM
109 [N_HIGH_MEMORY] = { { [0] = 1UL } },
110 #endif
111 #ifdef CONFIG_MOVABLE_NODE
112 [N_MEMORY] = { { [0] = 1UL } },
113 #endif
114 [N_CPU] = { { [0] = 1UL } },
115 #endif /* NUMA */
116 };
117 EXPORT_SYMBOL(node_states);
118
119 /* Protect totalram_pages and zone->managed_pages */
120 static DEFINE_SPINLOCK(managed_page_count_lock);
121
122 unsigned long totalram_pages __read_mostly;
123 unsigned long totalreserve_pages __read_mostly;
124 unsigned long totalcma_pages __read_mostly;
125
126 int percpu_pagelist_fraction;
127 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
128
129 /*
130 * A cached value of the page's pageblock's migratetype, used when the page is
131 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
132 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
133 * Also the migratetype set in the page does not necessarily match the pcplist
134 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
135 * other index - this ensures that it will be put on the correct CMA freelist.
136 */
137 static inline int get_pcppage_migratetype(struct page *page)
138 {
139 return page->index;
140 }
141
142 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
143 {
144 page->index = migratetype;
145 }
146
147 #ifdef CONFIG_PM_SLEEP
148 /*
149 * The following functions are used by the suspend/hibernate code to temporarily
150 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
151 * while devices are suspended. To avoid races with the suspend/hibernate code,
152 * they should always be called with pm_mutex held (gfp_allowed_mask also should
153 * only be modified with pm_mutex held, unless the suspend/hibernate code is
154 * guaranteed not to run in parallel with that modification).
155 */
156
157 static gfp_t saved_gfp_mask;
158
159 void pm_restore_gfp_mask(void)
160 {
161 WARN_ON(!mutex_is_locked(&pm_mutex));
162 if (saved_gfp_mask) {
163 gfp_allowed_mask = saved_gfp_mask;
164 saved_gfp_mask = 0;
165 }
166 }
167
168 void pm_restrict_gfp_mask(void)
169 {
170 WARN_ON(!mutex_is_locked(&pm_mutex));
171 WARN_ON(saved_gfp_mask);
172 saved_gfp_mask = gfp_allowed_mask;
173 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
174 }
175
176 bool pm_suspended_storage(void)
177 {
178 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
179 return false;
180 return true;
181 }
182 #endif /* CONFIG_PM_SLEEP */
183
184 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
185 unsigned int pageblock_order __read_mostly;
186 #endif
187
188 static void __free_pages_ok(struct page *page, unsigned int order);
189
190 /*
191 * results with 256, 32 in the lowmem_reserve sysctl:
192 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
193 * 1G machine -> (16M dma, 784M normal, 224M high)
194 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
195 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
196 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
197 *
198 * TBD: should special case ZONE_DMA32 machines here - in those we normally
199 * don't need any ZONE_NORMAL reservation
200 */
201 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
202 #ifdef CONFIG_ZONE_DMA
203 256,
204 #endif
205 #ifdef CONFIG_ZONE_DMA32
206 256,
207 #endif
208 #ifdef CONFIG_HIGHMEM
209 32,
210 #endif
211 32,
212 };
213
214 EXPORT_SYMBOL(totalram_pages);
215
216 static char * const zone_names[MAX_NR_ZONES] = {
217 #ifdef CONFIG_ZONE_DMA
218 "DMA",
219 #endif
220 #ifdef CONFIG_ZONE_DMA32
221 "DMA32",
222 #endif
223 "Normal",
224 #ifdef CONFIG_HIGHMEM
225 "HighMem",
226 #endif
227 "Movable",
228 #ifdef CONFIG_ZONE_DEVICE
229 "Device",
230 #endif
231 };
232
233 char * const migratetype_names[MIGRATE_TYPES] = {
234 "Unmovable",
235 "Movable",
236 "Reclaimable",
237 "HighAtomic",
238 #ifdef CONFIG_CMA
239 "CMA",
240 #endif
241 #ifdef CONFIG_MEMORY_ISOLATION
242 "Isolate",
243 #endif
244 };
245
246 compound_page_dtor * const compound_page_dtors[] = {
247 NULL,
248 free_compound_page,
249 #ifdef CONFIG_HUGETLB_PAGE
250 free_huge_page,
251 #endif
252 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
253 free_transhuge_page,
254 #endif
255 };
256
257 int min_free_kbytes = 1024;
258 int user_min_free_kbytes = -1;
259 int watermark_scale_factor = 10;
260
261 static unsigned long __meminitdata nr_kernel_pages;
262 static unsigned long __meminitdata nr_all_pages;
263 static unsigned long __meminitdata dma_reserve;
264
265 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
266 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
267 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
268 static unsigned long __initdata required_kernelcore;
269 static unsigned long __initdata required_movablecore;
270 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
271 static bool mirrored_kernelcore;
272
273 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
274 int movable_zone;
275 EXPORT_SYMBOL(movable_zone);
276 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
277
278 #if MAX_NUMNODES > 1
279 int nr_node_ids __read_mostly = MAX_NUMNODES;
280 int nr_online_nodes __read_mostly = 1;
281 EXPORT_SYMBOL(nr_node_ids);
282 EXPORT_SYMBOL(nr_online_nodes);
283 #endif
284
285 int page_group_by_mobility_disabled __read_mostly;
286
287 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
288 static inline void reset_deferred_meminit(pg_data_t *pgdat)
289 {
290 pgdat->first_deferred_pfn = ULONG_MAX;
291 }
292
293 /* Returns true if the struct page for the pfn is uninitialised */
294 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
295 {
296 int nid = early_pfn_to_nid(pfn);
297
298 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
299 return true;
300
301 return false;
302 }
303
304 /*
305 * Returns false when the remaining initialisation should be deferred until
306 * later in the boot cycle when it can be parallelised.
307 */
308 static inline bool update_defer_init(pg_data_t *pgdat,
309 unsigned long pfn, unsigned long zone_end,
310 unsigned long *nr_initialised)
311 {
312 unsigned long max_initialise;
313
314 /* Always populate low zones for address-contrained allocations */
315 if (zone_end < pgdat_end_pfn(pgdat))
316 return true;
317 /*
318 * Initialise at least 2G of a node but also take into account that
319 * two large system hashes that can take up 1GB for 0.25TB/node.
320 */
321 max_initialise = max(2UL << (30 - PAGE_SHIFT),
322 (pgdat->node_spanned_pages >> 8));
323
324 (*nr_initialised)++;
325 if ((*nr_initialised > max_initialise) &&
326 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
327 pgdat->first_deferred_pfn = pfn;
328 return false;
329 }
330
331 return true;
332 }
333 #else
334 static inline void reset_deferred_meminit(pg_data_t *pgdat)
335 {
336 }
337
338 static inline bool early_page_uninitialised(unsigned long pfn)
339 {
340 return false;
341 }
342
343 static inline bool update_defer_init(pg_data_t *pgdat,
344 unsigned long pfn, unsigned long zone_end,
345 unsigned long *nr_initialised)
346 {
347 return true;
348 }
349 #endif
350
351 /* Return a pointer to the bitmap storing bits affecting a block of pages */
352 static inline unsigned long *get_pageblock_bitmap(struct page *page,
353 unsigned long pfn)
354 {
355 #ifdef CONFIG_SPARSEMEM
356 return __pfn_to_section(pfn)->pageblock_flags;
357 #else
358 return page_zone(page)->pageblock_flags;
359 #endif /* CONFIG_SPARSEMEM */
360 }
361
362 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
363 {
364 #ifdef CONFIG_SPARSEMEM
365 pfn &= (PAGES_PER_SECTION-1);
366 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
367 #else
368 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
369 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
370 #endif /* CONFIG_SPARSEMEM */
371 }
372
373 /**
374 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
375 * @page: The page within the block of interest
376 * @pfn: The target page frame number
377 * @end_bitidx: The last bit of interest to retrieve
378 * @mask: mask of bits that the caller is interested in
379 *
380 * Return: pageblock_bits flags
381 */
382 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
383 unsigned long pfn,
384 unsigned long end_bitidx,
385 unsigned long mask)
386 {
387 unsigned long *bitmap;
388 unsigned long bitidx, word_bitidx;
389 unsigned long word;
390
391 bitmap = get_pageblock_bitmap(page, pfn);
392 bitidx = pfn_to_bitidx(page, pfn);
393 word_bitidx = bitidx / BITS_PER_LONG;
394 bitidx &= (BITS_PER_LONG-1);
395
396 word = bitmap[word_bitidx];
397 bitidx += end_bitidx;
398 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
399 }
400
401 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
402 unsigned long end_bitidx,
403 unsigned long mask)
404 {
405 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
406 }
407
408 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
409 {
410 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
411 }
412
413 /**
414 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
415 * @page: The page within the block of interest
416 * @flags: The flags to set
417 * @pfn: The target page frame number
418 * @end_bitidx: The last bit of interest
419 * @mask: mask of bits that the caller is interested in
420 */
421 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
422 unsigned long pfn,
423 unsigned long end_bitidx,
424 unsigned long mask)
425 {
426 unsigned long *bitmap;
427 unsigned long bitidx, word_bitidx;
428 unsigned long old_word, word;
429
430 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
431
432 bitmap = get_pageblock_bitmap(page, pfn);
433 bitidx = pfn_to_bitidx(page, pfn);
434 word_bitidx = bitidx / BITS_PER_LONG;
435 bitidx &= (BITS_PER_LONG-1);
436
437 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
438
439 bitidx += end_bitidx;
440 mask <<= (BITS_PER_LONG - bitidx - 1);
441 flags <<= (BITS_PER_LONG - bitidx - 1);
442
443 word = READ_ONCE(bitmap[word_bitidx]);
444 for (;;) {
445 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
446 if (word == old_word)
447 break;
448 word = old_word;
449 }
450 }
451
452 void set_pageblock_migratetype(struct page *page, int migratetype)
453 {
454 if (unlikely(page_group_by_mobility_disabled &&
455 migratetype < MIGRATE_PCPTYPES))
456 migratetype = MIGRATE_UNMOVABLE;
457
458 set_pageblock_flags_group(page, (unsigned long)migratetype,
459 PB_migrate, PB_migrate_end);
460 }
461
462 #ifdef CONFIG_DEBUG_VM
463 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
464 {
465 int ret = 0;
466 unsigned seq;
467 unsigned long pfn = page_to_pfn(page);
468 unsigned long sp, start_pfn;
469
470 do {
471 seq = zone_span_seqbegin(zone);
472 start_pfn = zone->zone_start_pfn;
473 sp = zone->spanned_pages;
474 if (!zone_spans_pfn(zone, pfn))
475 ret = 1;
476 } while (zone_span_seqretry(zone, seq));
477
478 if (ret)
479 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
480 pfn, zone_to_nid(zone), zone->name,
481 start_pfn, start_pfn + sp);
482
483 return ret;
484 }
485
486 static int page_is_consistent(struct zone *zone, struct page *page)
487 {
488 if (!pfn_valid_within(page_to_pfn(page)))
489 return 0;
490 if (zone != page_zone(page))
491 return 0;
492
493 return 1;
494 }
495 /*
496 * Temporary debugging check for pages not lying within a given zone.
497 */
498 static int bad_range(struct zone *zone, struct page *page)
499 {
500 if (page_outside_zone_boundaries(zone, page))
501 return 1;
502 if (!page_is_consistent(zone, page))
503 return 1;
504
505 return 0;
506 }
507 #else
508 static inline int bad_range(struct zone *zone, struct page *page)
509 {
510 return 0;
511 }
512 #endif
513
514 static void bad_page(struct page *page, const char *reason,
515 unsigned long bad_flags)
516 {
517 static unsigned long resume;
518 static unsigned long nr_shown;
519 static unsigned long nr_unshown;
520
521 /*
522 * Allow a burst of 60 reports, then keep quiet for that minute;
523 * or allow a steady drip of one report per second.
524 */
525 if (nr_shown == 60) {
526 if (time_before(jiffies, resume)) {
527 nr_unshown++;
528 goto out;
529 }
530 if (nr_unshown) {
531 pr_alert(
532 "BUG: Bad page state: %lu messages suppressed\n",
533 nr_unshown);
534 nr_unshown = 0;
535 }
536 nr_shown = 0;
537 }
538 if (nr_shown++ == 0)
539 resume = jiffies + 60 * HZ;
540
541 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
542 current->comm, page_to_pfn(page));
543 __dump_page(page, reason);
544 bad_flags &= page->flags;
545 if (bad_flags)
546 pr_alert("bad because of flags: %#lx(%pGp)\n",
547 bad_flags, &bad_flags);
548 dump_page_owner(page);
549
550 print_modules();
551 dump_stack();
552 out:
553 /* Leave bad fields for debug, except PageBuddy could make trouble */
554 page_mapcount_reset(page); /* remove PageBuddy */
555 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
556 }
557
558 /*
559 * Higher-order pages are called "compound pages". They are structured thusly:
560 *
561 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
562 *
563 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
564 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
565 *
566 * The first tail page's ->compound_dtor holds the offset in array of compound
567 * page destructors. See compound_page_dtors.
568 *
569 * The first tail page's ->compound_order holds the order of allocation.
570 * This usage means that zero-order pages may not be compound.
571 */
572
573 void free_compound_page(struct page *page)
574 {
575 __free_pages_ok(page, compound_order(page));
576 }
577
578 void prep_compound_page(struct page *page, unsigned int order)
579 {
580 int i;
581 int nr_pages = 1 << order;
582
583 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
584 set_compound_order(page, order);
585 __SetPageHead(page);
586 for (i = 1; i < nr_pages; i++) {
587 struct page *p = page + i;
588 set_page_count(p, 0);
589 p->mapping = TAIL_MAPPING;
590 set_compound_head(p, page);
591 }
592 atomic_set(compound_mapcount_ptr(page), -1);
593 }
594
595 #ifdef CONFIG_DEBUG_PAGEALLOC
596 unsigned int _debug_guardpage_minorder;
597 bool _debug_pagealloc_enabled __read_mostly
598 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
599 EXPORT_SYMBOL(_debug_pagealloc_enabled);
600 bool _debug_guardpage_enabled __read_mostly;
601
602 static int __init early_debug_pagealloc(char *buf)
603 {
604 if (!buf)
605 return -EINVAL;
606 return kstrtobool(buf, &_debug_pagealloc_enabled);
607 }
608 early_param("debug_pagealloc", early_debug_pagealloc);
609
610 static bool need_debug_guardpage(void)
611 {
612 /* If we don't use debug_pagealloc, we don't need guard page */
613 if (!debug_pagealloc_enabled())
614 return false;
615
616 if (!debug_guardpage_minorder())
617 return false;
618
619 return true;
620 }
621
622 static void init_debug_guardpage(void)
623 {
624 if (!debug_pagealloc_enabled())
625 return;
626
627 if (!debug_guardpage_minorder())
628 return;
629
630 _debug_guardpage_enabled = true;
631 }
632
633 struct page_ext_operations debug_guardpage_ops = {
634 .need = need_debug_guardpage,
635 .init = init_debug_guardpage,
636 };
637
638 static int __init debug_guardpage_minorder_setup(char *buf)
639 {
640 unsigned long res;
641
642 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
643 pr_err("Bad debug_guardpage_minorder value\n");
644 return 0;
645 }
646 _debug_guardpage_minorder = res;
647 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
648 return 0;
649 }
650 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
651
652 static inline bool set_page_guard(struct zone *zone, struct page *page,
653 unsigned int order, int migratetype)
654 {
655 struct page_ext *page_ext;
656
657 if (!debug_guardpage_enabled())
658 return false;
659
660 if (order >= debug_guardpage_minorder())
661 return false;
662
663 page_ext = lookup_page_ext(page);
664 if (unlikely(!page_ext))
665 return false;
666
667 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
668
669 INIT_LIST_HEAD(&page->lru);
670 set_page_private(page, order);
671 /* Guard pages are not available for any usage */
672 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
673
674 return true;
675 }
676
677 static inline void clear_page_guard(struct zone *zone, struct page *page,
678 unsigned int order, int migratetype)
679 {
680 struct page_ext *page_ext;
681
682 if (!debug_guardpage_enabled())
683 return;
684
685 page_ext = lookup_page_ext(page);
686 if (unlikely(!page_ext))
687 return;
688
689 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
690
691 set_page_private(page, 0);
692 if (!is_migrate_isolate(migratetype))
693 __mod_zone_freepage_state(zone, (1 << order), migratetype);
694 }
695 #else
696 struct page_ext_operations debug_guardpage_ops;
697 static inline bool set_page_guard(struct zone *zone, struct page *page,
698 unsigned int order, int migratetype) { return false; }
699 static inline void clear_page_guard(struct zone *zone, struct page *page,
700 unsigned int order, int migratetype) {}
701 #endif
702
703 static inline void set_page_order(struct page *page, unsigned int order)
704 {
705 set_page_private(page, order);
706 __SetPageBuddy(page);
707 }
708
709 static inline void rmv_page_order(struct page *page)
710 {
711 __ClearPageBuddy(page);
712 set_page_private(page, 0);
713 }
714
715 /*
716 * This function checks whether a page is free && is the buddy
717 * we can do coalesce a page and its buddy if
718 * (a) the buddy is not in a hole (check before calling!) &&
719 * (b) the buddy is in the buddy system &&
720 * (c) a page and its buddy have the same order &&
721 * (d) a page and its buddy are in the same zone.
722 *
723 * For recording whether a page is in the buddy system, we set ->_mapcount
724 * PAGE_BUDDY_MAPCOUNT_VALUE.
725 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
726 * serialized by zone->lock.
727 *
728 * For recording page's order, we use page_private(page).
729 */
730 static inline int page_is_buddy(struct page *page, struct page *buddy,
731 unsigned int order)
732 {
733 if (page_is_guard(buddy) && page_order(buddy) == order) {
734 if (page_zone_id(page) != page_zone_id(buddy))
735 return 0;
736
737 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
738
739 return 1;
740 }
741
742 if (PageBuddy(buddy) && page_order(buddy) == order) {
743 /*
744 * zone check is done late to avoid uselessly
745 * calculating zone/node ids for pages that could
746 * never merge.
747 */
748 if (page_zone_id(page) != page_zone_id(buddy))
749 return 0;
750
751 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
752
753 return 1;
754 }
755 return 0;
756 }
757
758 /*
759 * Freeing function for a buddy system allocator.
760 *
761 * The concept of a buddy system is to maintain direct-mapped table
762 * (containing bit values) for memory blocks of various "orders".
763 * The bottom level table contains the map for the smallest allocatable
764 * units of memory (here, pages), and each level above it describes
765 * pairs of units from the levels below, hence, "buddies".
766 * At a high level, all that happens here is marking the table entry
767 * at the bottom level available, and propagating the changes upward
768 * as necessary, plus some accounting needed to play nicely with other
769 * parts of the VM system.
770 * At each level, we keep a list of pages, which are heads of continuous
771 * free pages of length of (1 << order) and marked with _mapcount
772 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
773 * field.
774 * So when we are allocating or freeing one, we can derive the state of the
775 * other. That is, if we allocate a small block, and both were
776 * free, the remainder of the region must be split into blocks.
777 * If a block is freed, and its buddy is also free, then this
778 * triggers coalescing into a block of larger size.
779 *
780 * -- nyc
781 */
782
783 static inline void __free_one_page(struct page *page,
784 unsigned long pfn,
785 struct zone *zone, unsigned int order,
786 int migratetype)
787 {
788 unsigned long combined_pfn;
789 unsigned long uninitialized_var(buddy_pfn);
790 struct page *buddy;
791 unsigned int max_order;
792
793 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
794
795 VM_BUG_ON(!zone_is_initialized(zone));
796 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
797
798 VM_BUG_ON(migratetype == -1);
799 if (likely(!is_migrate_isolate(migratetype)))
800 __mod_zone_freepage_state(zone, 1 << order, migratetype);
801
802 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
803 VM_BUG_ON_PAGE(bad_range(zone, page), page);
804
805 continue_merging:
806 while (order < max_order - 1) {
807 buddy_pfn = __find_buddy_pfn(pfn, order);
808 buddy = page + (buddy_pfn - pfn);
809
810 if (!pfn_valid_within(buddy_pfn))
811 goto done_merging;
812 if (!page_is_buddy(page, buddy, order))
813 goto done_merging;
814 /*
815 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
816 * merge with it and move up one order.
817 */
818 if (page_is_guard(buddy)) {
819 clear_page_guard(zone, buddy, order, migratetype);
820 } else {
821 list_del(&buddy->lru);
822 zone->free_area[order].nr_free--;
823 rmv_page_order(buddy);
824 }
825 combined_pfn = buddy_pfn & pfn;
826 page = page + (combined_pfn - pfn);
827 pfn = combined_pfn;
828 order++;
829 }
830 if (max_order < MAX_ORDER) {
831 /* If we are here, it means order is >= pageblock_order.
832 * We want to prevent merge between freepages on isolate
833 * pageblock and normal pageblock. Without this, pageblock
834 * isolation could cause incorrect freepage or CMA accounting.
835 *
836 * We don't want to hit this code for the more frequent
837 * low-order merging.
838 */
839 if (unlikely(has_isolate_pageblock(zone))) {
840 int buddy_mt;
841
842 buddy_pfn = __find_buddy_pfn(pfn, order);
843 buddy = page + (buddy_pfn - pfn);
844 buddy_mt = get_pageblock_migratetype(buddy);
845
846 if (migratetype != buddy_mt
847 && (is_migrate_isolate(migratetype) ||
848 is_migrate_isolate(buddy_mt)))
849 goto done_merging;
850 }
851 max_order++;
852 goto continue_merging;
853 }
854
855 done_merging:
856 set_page_order(page, order);
857
858 /*
859 * If this is not the largest possible page, check if the buddy
860 * of the next-highest order is free. If it is, it's possible
861 * that pages are being freed that will coalesce soon. In case,
862 * that is happening, add the free page to the tail of the list
863 * so it's less likely to be used soon and more likely to be merged
864 * as a higher order page
865 */
866 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
867 struct page *higher_page, *higher_buddy;
868 combined_pfn = buddy_pfn & pfn;
869 higher_page = page + (combined_pfn - pfn);
870 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
871 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
872 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
873 list_add_tail(&page->lru,
874 &zone->free_area[order].free_list[migratetype]);
875 goto out;
876 }
877 }
878
879 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
880 out:
881 zone->free_area[order].nr_free++;
882 }
883
884 /*
885 * A bad page could be due to a number of fields. Instead of multiple branches,
886 * try and check multiple fields with one check. The caller must do a detailed
887 * check if necessary.
888 */
889 static inline bool page_expected_state(struct page *page,
890 unsigned long check_flags)
891 {
892 if (unlikely(atomic_read(&page->_mapcount) != -1))
893 return false;
894
895 if (unlikely((unsigned long)page->mapping |
896 page_ref_count(page) |
897 #ifdef CONFIG_MEMCG
898 (unsigned long)page->mem_cgroup |
899 #endif
900 (page->flags & check_flags)))
901 return false;
902
903 return true;
904 }
905
906 static void free_pages_check_bad(struct page *page)
907 {
908 const char *bad_reason;
909 unsigned long bad_flags;
910
911 bad_reason = NULL;
912 bad_flags = 0;
913
914 if (unlikely(atomic_read(&page->_mapcount) != -1))
915 bad_reason = "nonzero mapcount";
916 if (unlikely(page->mapping != NULL))
917 bad_reason = "non-NULL mapping";
918 if (unlikely(page_ref_count(page) != 0))
919 bad_reason = "nonzero _refcount";
920 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
921 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
922 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
923 }
924 #ifdef CONFIG_MEMCG
925 if (unlikely(page->mem_cgroup))
926 bad_reason = "page still charged to cgroup";
927 #endif
928 bad_page(page, bad_reason, bad_flags);
929 }
930
931 static inline int free_pages_check(struct page *page)
932 {
933 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
934 return 0;
935
936 /* Something has gone sideways, find it */
937 free_pages_check_bad(page);
938 return 1;
939 }
940
941 static int free_tail_pages_check(struct page *head_page, struct page *page)
942 {
943 int ret = 1;
944
945 /*
946 * We rely page->lru.next never has bit 0 set, unless the page
947 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
948 */
949 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
950
951 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
952 ret = 0;
953 goto out;
954 }
955 switch (page - head_page) {
956 case 1:
957 /* the first tail page: ->mapping is compound_mapcount() */
958 if (unlikely(compound_mapcount(page))) {
959 bad_page(page, "nonzero compound_mapcount", 0);
960 goto out;
961 }
962 break;
963 case 2:
964 /*
965 * the second tail page: ->mapping is
966 * page_deferred_list().next -- ignore value.
967 */
968 break;
969 default:
970 if (page->mapping != TAIL_MAPPING) {
971 bad_page(page, "corrupted mapping in tail page", 0);
972 goto out;
973 }
974 break;
975 }
976 if (unlikely(!PageTail(page))) {
977 bad_page(page, "PageTail not set", 0);
978 goto out;
979 }
980 if (unlikely(compound_head(page) != head_page)) {
981 bad_page(page, "compound_head not consistent", 0);
982 goto out;
983 }
984 ret = 0;
985 out:
986 page->mapping = NULL;
987 clear_compound_head(page);
988 return ret;
989 }
990
991 static __always_inline bool free_pages_prepare(struct page *page,
992 unsigned int order, bool check_free)
993 {
994 int bad = 0;
995
996 VM_BUG_ON_PAGE(PageTail(page), page);
997
998 trace_mm_page_free(page, order);
999 kmemcheck_free_shadow(page, order);
1000
1001 /*
1002 * Check tail pages before head page information is cleared to
1003 * avoid checking PageCompound for order-0 pages.
1004 */
1005 if (unlikely(order)) {
1006 bool compound = PageCompound(page);
1007 int i;
1008
1009 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1010
1011 if (compound)
1012 ClearPageDoubleMap(page);
1013 for (i = 1; i < (1 << order); i++) {
1014 if (compound)
1015 bad += free_tail_pages_check(page, page + i);
1016 if (unlikely(free_pages_check(page + i))) {
1017 bad++;
1018 continue;
1019 }
1020 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1021 }
1022 }
1023 if (PageMappingFlags(page))
1024 page->mapping = NULL;
1025 if (memcg_kmem_enabled() && PageKmemcg(page))
1026 memcg_kmem_uncharge(page, order);
1027 if (check_free)
1028 bad += free_pages_check(page);
1029 if (bad)
1030 return false;
1031
1032 page_cpupid_reset_last(page);
1033 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1034 reset_page_owner(page, order);
1035
1036 if (!PageHighMem(page)) {
1037 debug_check_no_locks_freed(page_address(page),
1038 PAGE_SIZE << order);
1039 debug_check_no_obj_freed(page_address(page),
1040 PAGE_SIZE << order);
1041 }
1042 arch_free_page(page, order);
1043 kernel_poison_pages(page, 1 << order, 0);
1044 kernel_map_pages(page, 1 << order, 0);
1045 kasan_free_pages(page, order);
1046
1047 return true;
1048 }
1049
1050 #ifdef CONFIG_DEBUG_VM
1051 static inline bool free_pcp_prepare(struct page *page)
1052 {
1053 return free_pages_prepare(page, 0, true);
1054 }
1055
1056 static inline bool bulkfree_pcp_prepare(struct page *page)
1057 {
1058 return false;
1059 }
1060 #else
1061 static bool free_pcp_prepare(struct page *page)
1062 {
1063 return free_pages_prepare(page, 0, false);
1064 }
1065
1066 static bool bulkfree_pcp_prepare(struct page *page)
1067 {
1068 return free_pages_check(page);
1069 }
1070 #endif /* CONFIG_DEBUG_VM */
1071
1072 /*
1073 * Frees a number of pages from the PCP lists
1074 * Assumes all pages on list are in same zone, and of same order.
1075 * count is the number of pages to free.
1076 *
1077 * If the zone was previously in an "all pages pinned" state then look to
1078 * see if this freeing clears that state.
1079 *
1080 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1081 * pinned" detection logic.
1082 */
1083 static void free_pcppages_bulk(struct zone *zone, int count,
1084 struct per_cpu_pages *pcp)
1085 {
1086 int migratetype = 0;
1087 int batch_free = 0;
1088 unsigned long nr_scanned, flags;
1089 bool isolated_pageblocks;
1090
1091 spin_lock_irqsave(&zone->lock, flags);
1092 isolated_pageblocks = has_isolate_pageblock(zone);
1093 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1094 if (nr_scanned)
1095 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1096
1097 while (count) {
1098 struct page *page;
1099 struct list_head *list;
1100
1101 /*
1102 * Remove pages from lists in a round-robin fashion. A
1103 * batch_free count is maintained that is incremented when an
1104 * empty list is encountered. This is so more pages are freed
1105 * off fuller lists instead of spinning excessively around empty
1106 * lists
1107 */
1108 do {
1109 batch_free++;
1110 if (++migratetype == MIGRATE_PCPTYPES)
1111 migratetype = 0;
1112 list = &pcp->lists[migratetype];
1113 } while (list_empty(list));
1114
1115 /* This is the only non-empty list. Free them all. */
1116 if (batch_free == MIGRATE_PCPTYPES)
1117 batch_free = count;
1118
1119 do {
1120 int mt; /* migratetype of the to-be-freed page */
1121
1122 page = list_last_entry(list, struct page, lru);
1123 /* must delete as __free_one_page list manipulates */
1124 list_del(&page->lru);
1125
1126 mt = get_pcppage_migratetype(page);
1127 /* MIGRATE_ISOLATE page should not go to pcplists */
1128 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1129 /* Pageblock could have been isolated meanwhile */
1130 if (unlikely(isolated_pageblocks))
1131 mt = get_pageblock_migratetype(page);
1132
1133 if (bulkfree_pcp_prepare(page))
1134 continue;
1135
1136 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1137 trace_mm_page_pcpu_drain(page, 0, mt);
1138 } while (--count && --batch_free && !list_empty(list));
1139 }
1140 spin_unlock_irqrestore(&zone->lock, flags);
1141 }
1142
1143 static void free_one_page(struct zone *zone,
1144 struct page *page, unsigned long pfn,
1145 unsigned int order,
1146 int migratetype)
1147 {
1148 unsigned long nr_scanned, flags;
1149 spin_lock_irqsave(&zone->lock, flags);
1150 __count_vm_events(PGFREE, 1 << order);
1151 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1152 if (nr_scanned)
1153 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1154
1155 if (unlikely(has_isolate_pageblock(zone) ||
1156 is_migrate_isolate(migratetype))) {
1157 migratetype = get_pfnblock_migratetype(page, pfn);
1158 }
1159 __free_one_page(page, pfn, zone, order, migratetype);
1160 spin_unlock_irqrestore(&zone->lock, flags);
1161 }
1162
1163 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1164 unsigned long zone, int nid)
1165 {
1166 set_page_links(page, zone, nid, pfn);
1167 init_page_count(page);
1168 page_mapcount_reset(page);
1169 page_cpupid_reset_last(page);
1170
1171 INIT_LIST_HEAD(&page->lru);
1172 #ifdef WANT_PAGE_VIRTUAL
1173 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1174 if (!is_highmem_idx(zone))
1175 set_page_address(page, __va(pfn << PAGE_SHIFT));
1176 #endif
1177 }
1178
1179 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1180 int nid)
1181 {
1182 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1183 }
1184
1185 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1186 static void init_reserved_page(unsigned long pfn)
1187 {
1188 pg_data_t *pgdat;
1189 int nid, zid;
1190
1191 if (!early_page_uninitialised(pfn))
1192 return;
1193
1194 nid = early_pfn_to_nid(pfn);
1195 pgdat = NODE_DATA(nid);
1196
1197 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1198 struct zone *zone = &pgdat->node_zones[zid];
1199
1200 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1201 break;
1202 }
1203 __init_single_pfn(pfn, zid, nid);
1204 }
1205 #else
1206 static inline void init_reserved_page(unsigned long pfn)
1207 {
1208 }
1209 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1210
1211 /*
1212 * Initialised pages do not have PageReserved set. This function is
1213 * called for each range allocated by the bootmem allocator and
1214 * marks the pages PageReserved. The remaining valid pages are later
1215 * sent to the buddy page allocator.
1216 */
1217 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1218 {
1219 unsigned long start_pfn = PFN_DOWN(start);
1220 unsigned long end_pfn = PFN_UP(end);
1221
1222 for (; start_pfn < end_pfn; start_pfn++) {
1223 if (pfn_valid(start_pfn)) {
1224 struct page *page = pfn_to_page(start_pfn);
1225
1226 init_reserved_page(start_pfn);
1227
1228 /* Avoid false-positive PageTail() */
1229 INIT_LIST_HEAD(&page->lru);
1230
1231 SetPageReserved(page);
1232 }
1233 }
1234 }
1235
1236 static void __free_pages_ok(struct page *page, unsigned int order)
1237 {
1238 int migratetype;
1239 unsigned long pfn = page_to_pfn(page);
1240
1241 if (!free_pages_prepare(page, order, true))
1242 return;
1243
1244 migratetype = get_pfnblock_migratetype(page, pfn);
1245 free_one_page(page_zone(page), page, pfn, order, migratetype);
1246 }
1247
1248 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1249 {
1250 unsigned int nr_pages = 1 << order;
1251 struct page *p = page;
1252 unsigned int loop;
1253
1254 prefetchw(p);
1255 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1256 prefetchw(p + 1);
1257 __ClearPageReserved(p);
1258 set_page_count(p, 0);
1259 }
1260 __ClearPageReserved(p);
1261 set_page_count(p, 0);
1262
1263 page_zone(page)->managed_pages += nr_pages;
1264 set_page_refcounted(page);
1265 __free_pages(page, order);
1266 }
1267
1268 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1269 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1270
1271 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1272
1273 int __meminit early_pfn_to_nid(unsigned long pfn)
1274 {
1275 static DEFINE_SPINLOCK(early_pfn_lock);
1276 int nid;
1277
1278 spin_lock(&early_pfn_lock);
1279 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1280 if (nid < 0)
1281 nid = first_online_node;
1282 spin_unlock(&early_pfn_lock);
1283
1284 return nid;
1285 }
1286 #endif
1287
1288 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1289 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1290 struct mminit_pfnnid_cache *state)
1291 {
1292 int nid;
1293
1294 nid = __early_pfn_to_nid(pfn, state);
1295 if (nid >= 0 && nid != node)
1296 return false;
1297 return true;
1298 }
1299
1300 /* Only safe to use early in boot when initialisation is single-threaded */
1301 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1302 {
1303 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1304 }
1305
1306 #else
1307
1308 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1309 {
1310 return true;
1311 }
1312 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1313 struct mminit_pfnnid_cache *state)
1314 {
1315 return true;
1316 }
1317 #endif
1318
1319
1320 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1321 unsigned int order)
1322 {
1323 if (early_page_uninitialised(pfn))
1324 return;
1325 return __free_pages_boot_core(page, order);
1326 }
1327
1328 /*
1329 * Check that the whole (or subset of) a pageblock given by the interval of
1330 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1331 * with the migration of free compaction scanner. The scanners then need to
1332 * use only pfn_valid_within() check for arches that allow holes within
1333 * pageblocks.
1334 *
1335 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1336 *
1337 * It's possible on some configurations to have a setup like node0 node1 node0
1338 * i.e. it's possible that all pages within a zones range of pages do not
1339 * belong to a single zone. We assume that a border between node0 and node1
1340 * can occur within a single pageblock, but not a node0 node1 node0
1341 * interleaving within a single pageblock. It is therefore sufficient to check
1342 * the first and last page of a pageblock and avoid checking each individual
1343 * page in a pageblock.
1344 */
1345 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1346 unsigned long end_pfn, struct zone *zone)
1347 {
1348 struct page *start_page;
1349 struct page *end_page;
1350
1351 /* end_pfn is one past the range we are checking */
1352 end_pfn--;
1353
1354 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1355 return NULL;
1356
1357 start_page = pfn_to_page(start_pfn);
1358
1359 if (page_zone(start_page) != zone)
1360 return NULL;
1361
1362 end_page = pfn_to_page(end_pfn);
1363
1364 /* This gives a shorter code than deriving page_zone(end_page) */
1365 if (page_zone_id(start_page) != page_zone_id(end_page))
1366 return NULL;
1367
1368 return start_page;
1369 }
1370
1371 void set_zone_contiguous(struct zone *zone)
1372 {
1373 unsigned long block_start_pfn = zone->zone_start_pfn;
1374 unsigned long block_end_pfn;
1375
1376 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1377 for (; block_start_pfn < zone_end_pfn(zone);
1378 block_start_pfn = block_end_pfn,
1379 block_end_pfn += pageblock_nr_pages) {
1380
1381 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1382
1383 if (!__pageblock_pfn_to_page(block_start_pfn,
1384 block_end_pfn, zone))
1385 return;
1386 }
1387
1388 /* We confirm that there is no hole */
1389 zone->contiguous = true;
1390 }
1391
1392 void clear_zone_contiguous(struct zone *zone)
1393 {
1394 zone->contiguous = false;
1395 }
1396
1397 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1398 static void __init deferred_free_range(struct page *page,
1399 unsigned long pfn, int nr_pages)
1400 {
1401 int i;
1402
1403 if (!page)
1404 return;
1405
1406 /* Free a large naturally-aligned chunk if possible */
1407 if (nr_pages == pageblock_nr_pages &&
1408 (pfn & (pageblock_nr_pages - 1)) == 0) {
1409 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1410 __free_pages_boot_core(page, pageblock_order);
1411 return;
1412 }
1413
1414 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1415 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1416 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1417 __free_pages_boot_core(page, 0);
1418 }
1419 }
1420
1421 /* Completion tracking for deferred_init_memmap() threads */
1422 static atomic_t pgdat_init_n_undone __initdata;
1423 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1424
1425 static inline void __init pgdat_init_report_one_done(void)
1426 {
1427 if (atomic_dec_and_test(&pgdat_init_n_undone))
1428 complete(&pgdat_init_all_done_comp);
1429 }
1430
1431 /* Initialise remaining memory on a node */
1432 static int __init deferred_init_memmap(void *data)
1433 {
1434 pg_data_t *pgdat = data;
1435 int nid = pgdat->node_id;
1436 struct mminit_pfnnid_cache nid_init_state = { };
1437 unsigned long start = jiffies;
1438 unsigned long nr_pages = 0;
1439 unsigned long walk_start, walk_end;
1440 int i, zid;
1441 struct zone *zone;
1442 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1443 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1444
1445 if (first_init_pfn == ULONG_MAX) {
1446 pgdat_init_report_one_done();
1447 return 0;
1448 }
1449
1450 /* Bind memory initialisation thread to a local node if possible */
1451 if (!cpumask_empty(cpumask))
1452 set_cpus_allowed_ptr(current, cpumask);
1453
1454 /* Sanity check boundaries */
1455 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1456 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1457 pgdat->first_deferred_pfn = ULONG_MAX;
1458
1459 /* Only the highest zone is deferred so find it */
1460 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1461 zone = pgdat->node_zones + zid;
1462 if (first_init_pfn < zone_end_pfn(zone))
1463 break;
1464 }
1465
1466 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1467 unsigned long pfn, end_pfn;
1468 struct page *page = NULL;
1469 struct page *free_base_page = NULL;
1470 unsigned long free_base_pfn = 0;
1471 int nr_to_free = 0;
1472
1473 end_pfn = min(walk_end, zone_end_pfn(zone));
1474 pfn = first_init_pfn;
1475 if (pfn < walk_start)
1476 pfn = walk_start;
1477 if (pfn < zone->zone_start_pfn)
1478 pfn = zone->zone_start_pfn;
1479
1480 for (; pfn < end_pfn; pfn++) {
1481 if (!pfn_valid_within(pfn))
1482 goto free_range;
1483
1484 /*
1485 * Ensure pfn_valid is checked every
1486 * pageblock_nr_pages for memory holes
1487 */
1488 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1489 if (!pfn_valid(pfn)) {
1490 page = NULL;
1491 goto free_range;
1492 }
1493 }
1494
1495 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1496 page = NULL;
1497 goto free_range;
1498 }
1499
1500 /* Minimise pfn page lookups and scheduler checks */
1501 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1502 page++;
1503 } else {
1504 nr_pages += nr_to_free;
1505 deferred_free_range(free_base_page,
1506 free_base_pfn, nr_to_free);
1507 free_base_page = NULL;
1508 free_base_pfn = nr_to_free = 0;
1509
1510 page = pfn_to_page(pfn);
1511 cond_resched();
1512 }
1513
1514 if (page->flags) {
1515 VM_BUG_ON(page_zone(page) != zone);
1516 goto free_range;
1517 }
1518
1519 __init_single_page(page, pfn, zid, nid);
1520 if (!free_base_page) {
1521 free_base_page = page;
1522 free_base_pfn = pfn;
1523 nr_to_free = 0;
1524 }
1525 nr_to_free++;
1526
1527 /* Where possible, batch up pages for a single free */
1528 continue;
1529 free_range:
1530 /* Free the current block of pages to allocator */
1531 nr_pages += nr_to_free;
1532 deferred_free_range(free_base_page, free_base_pfn,
1533 nr_to_free);
1534 free_base_page = NULL;
1535 free_base_pfn = nr_to_free = 0;
1536 }
1537 /* Free the last block of pages to allocator */
1538 nr_pages += nr_to_free;
1539 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1540
1541 first_init_pfn = max(end_pfn, first_init_pfn);
1542 }
1543
1544 /* Sanity check that the next zone really is unpopulated */
1545 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1546
1547 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1548 jiffies_to_msecs(jiffies - start));
1549
1550 pgdat_init_report_one_done();
1551 return 0;
1552 }
1553 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1554
1555 void __init page_alloc_init_late(void)
1556 {
1557 struct zone *zone;
1558
1559 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1560 int nid;
1561
1562 /* There will be num_node_state(N_MEMORY) threads */
1563 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1564 for_each_node_state(nid, N_MEMORY) {
1565 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1566 }
1567
1568 /* Block until all are initialised */
1569 wait_for_completion(&pgdat_init_all_done_comp);
1570
1571 /* Reinit limits that are based on free pages after the kernel is up */
1572 files_maxfiles_init();
1573 #endif
1574
1575 for_each_populated_zone(zone)
1576 set_zone_contiguous(zone);
1577 }
1578
1579 #ifdef CONFIG_CMA
1580 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1581 void __init init_cma_reserved_pageblock(struct page *page)
1582 {
1583 unsigned i = pageblock_nr_pages;
1584 struct page *p = page;
1585
1586 do {
1587 __ClearPageReserved(p);
1588 set_page_count(p, 0);
1589 } while (++p, --i);
1590
1591 set_pageblock_migratetype(page, MIGRATE_CMA);
1592
1593 if (pageblock_order >= MAX_ORDER) {
1594 i = pageblock_nr_pages;
1595 p = page;
1596 do {
1597 set_page_refcounted(p);
1598 __free_pages(p, MAX_ORDER - 1);
1599 p += MAX_ORDER_NR_PAGES;
1600 } while (i -= MAX_ORDER_NR_PAGES);
1601 } else {
1602 set_page_refcounted(page);
1603 __free_pages(page, pageblock_order);
1604 }
1605
1606 adjust_managed_page_count(page, pageblock_nr_pages);
1607 }
1608 #endif
1609
1610 /*
1611 * The order of subdivision here is critical for the IO subsystem.
1612 * Please do not alter this order without good reasons and regression
1613 * testing. Specifically, as large blocks of memory are subdivided,
1614 * the order in which smaller blocks are delivered depends on the order
1615 * they're subdivided in this function. This is the primary factor
1616 * influencing the order in which pages are delivered to the IO
1617 * subsystem according to empirical testing, and this is also justified
1618 * by considering the behavior of a buddy system containing a single
1619 * large block of memory acted on by a series of small allocations.
1620 * This behavior is a critical factor in sglist merging's success.
1621 *
1622 * -- nyc
1623 */
1624 static inline void expand(struct zone *zone, struct page *page,
1625 int low, int high, struct free_area *area,
1626 int migratetype)
1627 {
1628 unsigned long size = 1 << high;
1629
1630 while (high > low) {
1631 area--;
1632 high--;
1633 size >>= 1;
1634 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1635
1636 /*
1637 * Mark as guard pages (or page), that will allow to
1638 * merge back to allocator when buddy will be freed.
1639 * Corresponding page table entries will not be touched,
1640 * pages will stay not present in virtual address space
1641 */
1642 if (set_page_guard(zone, &page[size], high, migratetype))
1643 continue;
1644
1645 list_add(&page[size].lru, &area->free_list[migratetype]);
1646 area->nr_free++;
1647 set_page_order(&page[size], high);
1648 }
1649 }
1650
1651 static void check_new_page_bad(struct page *page)
1652 {
1653 const char *bad_reason = NULL;
1654 unsigned long bad_flags = 0;
1655
1656 if (unlikely(atomic_read(&page->_mapcount) != -1))
1657 bad_reason = "nonzero mapcount";
1658 if (unlikely(page->mapping != NULL))
1659 bad_reason = "non-NULL mapping";
1660 if (unlikely(page_ref_count(page) != 0))
1661 bad_reason = "nonzero _count";
1662 if (unlikely(page->flags & __PG_HWPOISON)) {
1663 bad_reason = "HWPoisoned (hardware-corrupted)";
1664 bad_flags = __PG_HWPOISON;
1665 /* Don't complain about hwpoisoned pages */
1666 page_mapcount_reset(page); /* remove PageBuddy */
1667 return;
1668 }
1669 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1670 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1671 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1672 }
1673 #ifdef CONFIG_MEMCG
1674 if (unlikely(page->mem_cgroup))
1675 bad_reason = "page still charged to cgroup";
1676 #endif
1677 bad_page(page, bad_reason, bad_flags);
1678 }
1679
1680 /*
1681 * This page is about to be returned from the page allocator
1682 */
1683 static inline int check_new_page(struct page *page)
1684 {
1685 if (likely(page_expected_state(page,
1686 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1687 return 0;
1688
1689 check_new_page_bad(page);
1690 return 1;
1691 }
1692
1693 static inline bool free_pages_prezeroed(bool poisoned)
1694 {
1695 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1696 page_poisoning_enabled() && poisoned;
1697 }
1698
1699 #ifdef CONFIG_DEBUG_VM
1700 static bool check_pcp_refill(struct page *page)
1701 {
1702 return false;
1703 }
1704
1705 static bool check_new_pcp(struct page *page)
1706 {
1707 return check_new_page(page);
1708 }
1709 #else
1710 static bool check_pcp_refill(struct page *page)
1711 {
1712 return check_new_page(page);
1713 }
1714 static bool check_new_pcp(struct page *page)
1715 {
1716 return false;
1717 }
1718 #endif /* CONFIG_DEBUG_VM */
1719
1720 static bool check_new_pages(struct page *page, unsigned int order)
1721 {
1722 int i;
1723 for (i = 0; i < (1 << order); i++) {
1724 struct page *p = page + i;
1725
1726 if (unlikely(check_new_page(p)))
1727 return true;
1728 }
1729
1730 return false;
1731 }
1732
1733 inline void post_alloc_hook(struct page *page, unsigned int order,
1734 gfp_t gfp_flags)
1735 {
1736 set_page_private(page, 0);
1737 set_page_refcounted(page);
1738
1739 arch_alloc_page(page, order);
1740 kernel_map_pages(page, 1 << order, 1);
1741 kernel_poison_pages(page, 1 << order, 1);
1742 kasan_alloc_pages(page, order);
1743 set_page_owner(page, order, gfp_flags);
1744 }
1745
1746 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1747 unsigned int alloc_flags)
1748 {
1749 int i;
1750 bool poisoned = true;
1751
1752 for (i = 0; i < (1 << order); i++) {
1753 struct page *p = page + i;
1754 if (poisoned)
1755 poisoned &= page_is_poisoned(p);
1756 }
1757
1758 post_alloc_hook(page, order, gfp_flags);
1759
1760 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1761 for (i = 0; i < (1 << order); i++)
1762 clear_highpage(page + i);
1763
1764 if (order && (gfp_flags & __GFP_COMP))
1765 prep_compound_page(page, order);
1766
1767 /*
1768 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1769 * allocate the page. The expectation is that the caller is taking
1770 * steps that will free more memory. The caller should avoid the page
1771 * being used for !PFMEMALLOC purposes.
1772 */
1773 if (alloc_flags & ALLOC_NO_WATERMARKS)
1774 set_page_pfmemalloc(page);
1775 else
1776 clear_page_pfmemalloc(page);
1777 }
1778
1779 /*
1780 * Go through the free lists for the given migratetype and remove
1781 * the smallest available page from the freelists
1782 */
1783 static inline
1784 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1785 int migratetype)
1786 {
1787 unsigned int current_order;
1788 struct free_area *area;
1789 struct page *page;
1790
1791 /* Find a page of the appropriate size in the preferred list */
1792 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1793 area = &(zone->free_area[current_order]);
1794 page = list_first_entry_or_null(&area->free_list[migratetype],
1795 struct page, lru);
1796 if (!page)
1797 continue;
1798 list_del(&page->lru);
1799 rmv_page_order(page);
1800 area->nr_free--;
1801 expand(zone, page, order, current_order, area, migratetype);
1802 set_pcppage_migratetype(page, migratetype);
1803 return page;
1804 }
1805
1806 return NULL;
1807 }
1808
1809
1810 /*
1811 * This array describes the order lists are fallen back to when
1812 * the free lists for the desirable migrate type are depleted
1813 */
1814 static int fallbacks[MIGRATE_TYPES][4] = {
1815 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1816 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1817 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1818 #ifdef CONFIG_CMA
1819 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1820 #endif
1821 #ifdef CONFIG_MEMORY_ISOLATION
1822 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1823 #endif
1824 };
1825
1826 #ifdef CONFIG_CMA
1827 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1828 unsigned int order)
1829 {
1830 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1831 }
1832 #else
1833 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1834 unsigned int order) { return NULL; }
1835 #endif
1836
1837 /*
1838 * Move the free pages in a range to the free lists of the requested type.
1839 * Note that start_page and end_pages are not aligned on a pageblock
1840 * boundary. If alignment is required, use move_freepages_block()
1841 */
1842 int move_freepages(struct zone *zone,
1843 struct page *start_page, struct page *end_page,
1844 int migratetype)
1845 {
1846 struct page *page;
1847 unsigned int order;
1848 int pages_moved = 0;
1849
1850 #ifndef CONFIG_HOLES_IN_ZONE
1851 /*
1852 * page_zone is not safe to call in this context when
1853 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1854 * anyway as we check zone boundaries in move_freepages_block().
1855 * Remove at a later date when no bug reports exist related to
1856 * grouping pages by mobility
1857 */
1858 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1859 #endif
1860
1861 for (page = start_page; page <= end_page;) {
1862 if (!pfn_valid_within(page_to_pfn(page))) {
1863 page++;
1864 continue;
1865 }
1866
1867 /* Make sure we are not inadvertently changing nodes */
1868 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1869
1870 if (!PageBuddy(page)) {
1871 page++;
1872 continue;
1873 }
1874
1875 order = page_order(page);
1876 list_move(&page->lru,
1877 &zone->free_area[order].free_list[migratetype]);
1878 page += 1 << order;
1879 pages_moved += 1 << order;
1880 }
1881
1882 return pages_moved;
1883 }
1884
1885 int move_freepages_block(struct zone *zone, struct page *page,
1886 int migratetype)
1887 {
1888 unsigned long start_pfn, end_pfn;
1889 struct page *start_page, *end_page;
1890
1891 start_pfn = page_to_pfn(page);
1892 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1893 start_page = pfn_to_page(start_pfn);
1894 end_page = start_page + pageblock_nr_pages - 1;
1895 end_pfn = start_pfn + pageblock_nr_pages - 1;
1896
1897 /* Do not cross zone boundaries */
1898 if (!zone_spans_pfn(zone, start_pfn))
1899 start_page = page;
1900 if (!zone_spans_pfn(zone, end_pfn))
1901 return 0;
1902
1903 return move_freepages(zone, start_page, end_page, migratetype);
1904 }
1905
1906 static void change_pageblock_range(struct page *pageblock_page,
1907 int start_order, int migratetype)
1908 {
1909 int nr_pageblocks = 1 << (start_order - pageblock_order);
1910
1911 while (nr_pageblocks--) {
1912 set_pageblock_migratetype(pageblock_page, migratetype);
1913 pageblock_page += pageblock_nr_pages;
1914 }
1915 }
1916
1917 /*
1918 * When we are falling back to another migratetype during allocation, try to
1919 * steal extra free pages from the same pageblocks to satisfy further
1920 * allocations, instead of polluting multiple pageblocks.
1921 *
1922 * If we are stealing a relatively large buddy page, it is likely there will
1923 * be more free pages in the pageblock, so try to steal them all. For
1924 * reclaimable and unmovable allocations, we steal regardless of page size,
1925 * as fragmentation caused by those allocations polluting movable pageblocks
1926 * is worse than movable allocations stealing from unmovable and reclaimable
1927 * pageblocks.
1928 */
1929 static bool can_steal_fallback(unsigned int order, int start_mt)
1930 {
1931 /*
1932 * Leaving this order check is intended, although there is
1933 * relaxed order check in next check. The reason is that
1934 * we can actually steal whole pageblock if this condition met,
1935 * but, below check doesn't guarantee it and that is just heuristic
1936 * so could be changed anytime.
1937 */
1938 if (order >= pageblock_order)
1939 return true;
1940
1941 if (order >= pageblock_order / 2 ||
1942 start_mt == MIGRATE_RECLAIMABLE ||
1943 start_mt == MIGRATE_UNMOVABLE ||
1944 page_group_by_mobility_disabled)
1945 return true;
1946
1947 return false;
1948 }
1949
1950 /*
1951 * This function implements actual steal behaviour. If order is large enough,
1952 * we can steal whole pageblock. If not, we first move freepages in this
1953 * pageblock and check whether half of pages are moved or not. If half of
1954 * pages are moved, we can change migratetype of pageblock and permanently
1955 * use it's pages as requested migratetype in the future.
1956 */
1957 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1958 int start_type)
1959 {
1960 unsigned int current_order = page_order(page);
1961 int pages;
1962
1963 /* Take ownership for orders >= pageblock_order */
1964 if (current_order >= pageblock_order) {
1965 change_pageblock_range(page, current_order, start_type);
1966 return;
1967 }
1968
1969 pages = move_freepages_block(zone, page, start_type);
1970
1971 /* Claim the whole block if over half of it is free */
1972 if (pages >= (1 << (pageblock_order-1)) ||
1973 page_group_by_mobility_disabled)
1974 set_pageblock_migratetype(page, start_type);
1975 }
1976
1977 /*
1978 * Check whether there is a suitable fallback freepage with requested order.
1979 * If only_stealable is true, this function returns fallback_mt only if
1980 * we can steal other freepages all together. This would help to reduce
1981 * fragmentation due to mixed migratetype pages in one pageblock.
1982 */
1983 int find_suitable_fallback(struct free_area *area, unsigned int order,
1984 int migratetype, bool only_stealable, bool *can_steal)
1985 {
1986 int i;
1987 int fallback_mt;
1988
1989 if (area->nr_free == 0)
1990 return -1;
1991
1992 *can_steal = false;
1993 for (i = 0;; i++) {
1994 fallback_mt = fallbacks[migratetype][i];
1995 if (fallback_mt == MIGRATE_TYPES)
1996 break;
1997
1998 if (list_empty(&area->free_list[fallback_mt]))
1999 continue;
2000
2001 if (can_steal_fallback(order, migratetype))
2002 *can_steal = true;
2003
2004 if (!only_stealable)
2005 return fallback_mt;
2006
2007 if (*can_steal)
2008 return fallback_mt;
2009 }
2010
2011 return -1;
2012 }
2013
2014 /*
2015 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2016 * there are no empty page blocks that contain a page with a suitable order
2017 */
2018 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2019 unsigned int alloc_order)
2020 {
2021 int mt;
2022 unsigned long max_managed, flags;
2023
2024 /*
2025 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2026 * Check is race-prone but harmless.
2027 */
2028 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2029 if (zone->nr_reserved_highatomic >= max_managed)
2030 return;
2031
2032 spin_lock_irqsave(&zone->lock, flags);
2033
2034 /* Recheck the nr_reserved_highatomic limit under the lock */
2035 if (zone->nr_reserved_highatomic >= max_managed)
2036 goto out_unlock;
2037
2038 /* Yoink! */
2039 mt = get_pageblock_migratetype(page);
2040 if (mt != MIGRATE_HIGHATOMIC &&
2041 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2042 zone->nr_reserved_highatomic += pageblock_nr_pages;
2043 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2044 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2045 }
2046
2047 out_unlock:
2048 spin_unlock_irqrestore(&zone->lock, flags);
2049 }
2050
2051 /*
2052 * Used when an allocation is about to fail under memory pressure. This
2053 * potentially hurts the reliability of high-order allocations when under
2054 * intense memory pressure but failed atomic allocations should be easier
2055 * to recover from than an OOM.
2056 *
2057 * If @force is true, try to unreserve a pageblock even though highatomic
2058 * pageblock is exhausted.
2059 */
2060 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2061 bool force)
2062 {
2063 struct zonelist *zonelist = ac->zonelist;
2064 unsigned long flags;
2065 struct zoneref *z;
2066 struct zone *zone;
2067 struct page *page;
2068 int order;
2069 bool ret;
2070
2071 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2072 ac->nodemask) {
2073 /*
2074 * Preserve at least one pageblock unless memory pressure
2075 * is really high.
2076 */
2077 if (!force && zone->nr_reserved_highatomic <=
2078 pageblock_nr_pages)
2079 continue;
2080
2081 spin_lock_irqsave(&zone->lock, flags);
2082 for (order = 0; order < MAX_ORDER; order++) {
2083 struct free_area *area = &(zone->free_area[order]);
2084
2085 page = list_first_entry_or_null(
2086 &area->free_list[MIGRATE_HIGHATOMIC],
2087 struct page, lru);
2088 if (!page)
2089 continue;
2090
2091 /*
2092 * In page freeing path, migratetype change is racy so
2093 * we can counter several free pages in a pageblock
2094 * in this loop althoug we changed the pageblock type
2095 * from highatomic to ac->migratetype. So we should
2096 * adjust the count once.
2097 */
2098 if (get_pageblock_migratetype(page) ==
2099 MIGRATE_HIGHATOMIC) {
2100 /*
2101 * It should never happen but changes to
2102 * locking could inadvertently allow a per-cpu
2103 * drain to add pages to MIGRATE_HIGHATOMIC
2104 * while unreserving so be safe and watch for
2105 * underflows.
2106 */
2107 zone->nr_reserved_highatomic -= min(
2108 pageblock_nr_pages,
2109 zone->nr_reserved_highatomic);
2110 }
2111
2112 /*
2113 * Convert to ac->migratetype and avoid the normal
2114 * pageblock stealing heuristics. Minimally, the caller
2115 * is doing the work and needs the pages. More
2116 * importantly, if the block was always converted to
2117 * MIGRATE_UNMOVABLE or another type then the number
2118 * of pageblocks that cannot be completely freed
2119 * may increase.
2120 */
2121 set_pageblock_migratetype(page, ac->migratetype);
2122 ret = move_freepages_block(zone, page, ac->migratetype);
2123 if (ret) {
2124 spin_unlock_irqrestore(&zone->lock, flags);
2125 return ret;
2126 }
2127 }
2128 spin_unlock_irqrestore(&zone->lock, flags);
2129 }
2130
2131 return false;
2132 }
2133
2134 /* Remove an element from the buddy allocator from the fallback list */
2135 static inline struct page *
2136 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2137 {
2138 struct free_area *area;
2139 unsigned int current_order;
2140 struct page *page;
2141 int fallback_mt;
2142 bool can_steal;
2143
2144 /* Find the largest possible block of pages in the other list */
2145 for (current_order = MAX_ORDER-1;
2146 current_order >= order && current_order <= MAX_ORDER-1;
2147 --current_order) {
2148 area = &(zone->free_area[current_order]);
2149 fallback_mt = find_suitable_fallback(area, current_order,
2150 start_migratetype, false, &can_steal);
2151 if (fallback_mt == -1)
2152 continue;
2153
2154 page = list_first_entry(&area->free_list[fallback_mt],
2155 struct page, lru);
2156 if (can_steal &&
2157 get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
2158 steal_suitable_fallback(zone, page, start_migratetype);
2159
2160 /* Remove the page from the freelists */
2161 area->nr_free--;
2162 list_del(&page->lru);
2163 rmv_page_order(page);
2164
2165 expand(zone, page, order, current_order, area,
2166 start_migratetype);
2167 /*
2168 * The pcppage_migratetype may differ from pageblock's
2169 * migratetype depending on the decisions in
2170 * find_suitable_fallback(). This is OK as long as it does not
2171 * differ for MIGRATE_CMA pageblocks. Those can be used as
2172 * fallback only via special __rmqueue_cma_fallback() function
2173 */
2174 set_pcppage_migratetype(page, start_migratetype);
2175
2176 trace_mm_page_alloc_extfrag(page, order, current_order,
2177 start_migratetype, fallback_mt);
2178
2179 return page;
2180 }
2181
2182 return NULL;
2183 }
2184
2185 /*
2186 * Do the hard work of removing an element from the buddy allocator.
2187 * Call me with the zone->lock already held.
2188 */
2189 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2190 int migratetype)
2191 {
2192 struct page *page;
2193
2194 page = __rmqueue_smallest(zone, order, migratetype);
2195 if (unlikely(!page)) {
2196 if (migratetype == MIGRATE_MOVABLE)
2197 page = __rmqueue_cma_fallback(zone, order);
2198
2199 if (!page)
2200 page = __rmqueue_fallback(zone, order, migratetype);
2201 }
2202
2203 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2204 return page;
2205 }
2206
2207 /*
2208 * Obtain a specified number of elements from the buddy allocator, all under
2209 * a single hold of the lock, for efficiency. Add them to the supplied list.
2210 * Returns the number of new pages which were placed at *list.
2211 */
2212 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2213 unsigned long count, struct list_head *list,
2214 int migratetype, bool cold)
2215 {
2216 int i, alloced = 0;
2217 unsigned long flags;
2218
2219 spin_lock_irqsave(&zone->lock, flags);
2220 for (i = 0; i < count; ++i) {
2221 struct page *page = __rmqueue(zone, order, migratetype);
2222 if (unlikely(page == NULL))
2223 break;
2224
2225 if (unlikely(check_pcp_refill(page)))
2226 continue;
2227
2228 /*
2229 * Split buddy pages returned by expand() are received here
2230 * in physical page order. The page is added to the callers and
2231 * list and the list head then moves forward. From the callers
2232 * perspective, the linked list is ordered by page number in
2233 * some conditions. This is useful for IO devices that can
2234 * merge IO requests if the physical pages are ordered
2235 * properly.
2236 */
2237 if (likely(!cold))
2238 list_add(&page->lru, list);
2239 else
2240 list_add_tail(&page->lru, list);
2241 list = &page->lru;
2242 alloced++;
2243 if (is_migrate_cma(get_pcppage_migratetype(page)))
2244 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2245 -(1 << order));
2246 }
2247
2248 /*
2249 * i pages were removed from the buddy list even if some leak due
2250 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2251 * on i. Do not confuse with 'alloced' which is the number of
2252 * pages added to the pcp list.
2253 */
2254 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2255 spin_unlock_irqrestore(&zone->lock, flags);
2256 return alloced;
2257 }
2258
2259 #ifdef CONFIG_NUMA
2260 /*
2261 * Called from the vmstat counter updater to drain pagesets of this
2262 * currently executing processor on remote nodes after they have
2263 * expired.
2264 *
2265 * Note that this function must be called with the thread pinned to
2266 * a single processor.
2267 */
2268 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2269 {
2270 unsigned long flags;
2271 int to_drain, batch;
2272
2273 local_irq_save(flags);
2274 batch = READ_ONCE(pcp->batch);
2275 to_drain = min(pcp->count, batch);
2276 if (to_drain > 0) {
2277 free_pcppages_bulk(zone, to_drain, pcp);
2278 pcp->count -= to_drain;
2279 }
2280 local_irq_restore(flags);
2281 }
2282 #endif
2283
2284 /*
2285 * Drain pcplists of the indicated processor and zone.
2286 *
2287 * The processor must either be the current processor and the
2288 * thread pinned to the current processor or a processor that
2289 * is not online.
2290 */
2291 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2292 {
2293 unsigned long flags;
2294 struct per_cpu_pageset *pset;
2295 struct per_cpu_pages *pcp;
2296
2297 local_irq_save(flags);
2298 pset = per_cpu_ptr(zone->pageset, cpu);
2299
2300 pcp = &pset->pcp;
2301 if (pcp->count) {
2302 free_pcppages_bulk(zone, pcp->count, pcp);
2303 pcp->count = 0;
2304 }
2305 local_irq_restore(flags);
2306 }
2307
2308 /*
2309 * Drain pcplists of all zones on the indicated processor.
2310 *
2311 * The processor must either be the current processor and the
2312 * thread pinned to the current processor or a processor that
2313 * is not online.
2314 */
2315 static void drain_pages(unsigned int cpu)
2316 {
2317 struct zone *zone;
2318
2319 for_each_populated_zone(zone) {
2320 drain_pages_zone(cpu, zone);
2321 }
2322 }
2323
2324 /*
2325 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2326 *
2327 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2328 * the single zone's pages.
2329 */
2330 void drain_local_pages(struct zone *zone)
2331 {
2332 int cpu = smp_processor_id();
2333
2334 if (zone)
2335 drain_pages_zone(cpu, zone);
2336 else
2337 drain_pages(cpu);
2338 }
2339
2340 static void drain_local_pages_wq(struct work_struct *work)
2341 {
2342 /*
2343 * drain_all_pages doesn't use proper cpu hotplug protection so
2344 * we can race with cpu offline when the WQ can move this from
2345 * a cpu pinned worker to an unbound one. We can operate on a different
2346 * cpu which is allright but we also have to make sure to not move to
2347 * a different one.
2348 */
2349 preempt_disable();
2350 drain_local_pages(NULL);
2351 preempt_enable();
2352 }
2353
2354 /*
2355 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2356 *
2357 * When zone parameter is non-NULL, spill just the single zone's pages.
2358 *
2359 * Note that this can be extremely slow as the draining happens in a workqueue.
2360 */
2361 void drain_all_pages(struct zone *zone)
2362 {
2363 struct work_struct __percpu *works;
2364 int cpu;
2365
2366 /*
2367 * Allocate in the BSS so we wont require allocation in
2368 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2369 */
2370 static cpumask_t cpus_with_pcps;
2371
2372 /* Workqueues cannot recurse */
2373 if (current->flags & PF_WQ_WORKER)
2374 return;
2375
2376 works = alloc_percpu_gfp(struct work_struct, GFP_ATOMIC);
2377
2378 /*
2379 * We don't care about racing with CPU hotplug event
2380 * as offline notification will cause the notified
2381 * cpu to drain that CPU pcps and on_each_cpu_mask
2382 * disables preemption as part of its processing
2383 */
2384 for_each_online_cpu(cpu) {
2385 struct per_cpu_pageset *pcp;
2386 struct zone *z;
2387 bool has_pcps = false;
2388
2389 if (zone) {
2390 pcp = per_cpu_ptr(zone->pageset, cpu);
2391 if (pcp->pcp.count)
2392 has_pcps = true;
2393 } else {
2394 for_each_populated_zone(z) {
2395 pcp = per_cpu_ptr(z->pageset, cpu);
2396 if (pcp->pcp.count) {
2397 has_pcps = true;
2398 break;
2399 }
2400 }
2401 }
2402
2403 if (has_pcps)
2404 cpumask_set_cpu(cpu, &cpus_with_pcps);
2405 else
2406 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2407 }
2408
2409 if (works) {
2410 for_each_cpu(cpu, &cpus_with_pcps) {
2411 struct work_struct *work = per_cpu_ptr(works, cpu);
2412 INIT_WORK(work, drain_local_pages_wq);
2413 schedule_work_on(cpu, work);
2414 }
2415 for_each_cpu(cpu, &cpus_with_pcps)
2416 flush_work(per_cpu_ptr(works, cpu));
2417 } else {
2418 for_each_cpu(cpu, &cpus_with_pcps) {
2419 struct work_struct work;
2420
2421 INIT_WORK(&work, drain_local_pages_wq);
2422 schedule_work_on(cpu, &work);
2423 flush_work(&work);
2424 }
2425 }
2426 }
2427
2428 #ifdef CONFIG_HIBERNATION
2429
2430 void mark_free_pages(struct zone *zone)
2431 {
2432 unsigned long pfn, max_zone_pfn;
2433 unsigned long flags;
2434 unsigned int order, t;
2435 struct page *page;
2436
2437 if (zone_is_empty(zone))
2438 return;
2439
2440 spin_lock_irqsave(&zone->lock, flags);
2441
2442 max_zone_pfn = zone_end_pfn(zone);
2443 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2444 if (pfn_valid(pfn)) {
2445 page = pfn_to_page(pfn);
2446
2447 if (page_zone(page) != zone)
2448 continue;
2449
2450 if (!swsusp_page_is_forbidden(page))
2451 swsusp_unset_page_free(page);
2452 }
2453
2454 for_each_migratetype_order(order, t) {
2455 list_for_each_entry(page,
2456 &zone->free_area[order].free_list[t], lru) {
2457 unsigned long i;
2458
2459 pfn = page_to_pfn(page);
2460 for (i = 0; i < (1UL << order); i++)
2461 swsusp_set_page_free(pfn_to_page(pfn + i));
2462 }
2463 }
2464 spin_unlock_irqrestore(&zone->lock, flags);
2465 }
2466 #endif /* CONFIG_PM */
2467
2468 /*
2469 * Free a 0-order page
2470 * cold == true ? free a cold page : free a hot page
2471 */
2472 void free_hot_cold_page(struct page *page, bool cold)
2473 {
2474 struct zone *zone = page_zone(page);
2475 struct per_cpu_pages *pcp;
2476 unsigned long pfn = page_to_pfn(page);
2477 int migratetype;
2478
2479 if (in_interrupt()) {
2480 __free_pages_ok(page, 0);
2481 return;
2482 }
2483
2484 if (!free_pcp_prepare(page))
2485 return;
2486
2487 migratetype = get_pfnblock_migratetype(page, pfn);
2488 set_pcppage_migratetype(page, migratetype);
2489 preempt_disable();
2490
2491 /*
2492 * We only track unmovable, reclaimable and movable on pcp lists.
2493 * Free ISOLATE pages back to the allocator because they are being
2494 * offlined but treat RESERVE as movable pages so we can get those
2495 * areas back if necessary. Otherwise, we may have to free
2496 * excessively into the page allocator
2497 */
2498 if (migratetype >= MIGRATE_PCPTYPES) {
2499 if (unlikely(is_migrate_isolate(migratetype))) {
2500 free_one_page(zone, page, pfn, 0, migratetype);
2501 goto out;
2502 }
2503 migratetype = MIGRATE_MOVABLE;
2504 }
2505
2506 __count_vm_event(PGFREE);
2507 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2508 if (!cold)
2509 list_add(&page->lru, &pcp->lists[migratetype]);
2510 else
2511 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2512 pcp->count++;
2513 if (pcp->count >= pcp->high) {
2514 unsigned long batch = READ_ONCE(pcp->batch);
2515 free_pcppages_bulk(zone, batch, pcp);
2516 pcp->count -= batch;
2517 }
2518
2519 out:
2520 preempt_enable();
2521 }
2522
2523 /*
2524 * Free a list of 0-order pages
2525 */
2526 void free_hot_cold_page_list(struct list_head *list, bool cold)
2527 {
2528 struct page *page, *next;
2529
2530 list_for_each_entry_safe(page, next, list, lru) {
2531 trace_mm_page_free_batched(page, cold);
2532 free_hot_cold_page(page, cold);
2533 }
2534 }
2535
2536 /*
2537 * split_page takes a non-compound higher-order page, and splits it into
2538 * n (1<<order) sub-pages: page[0..n]
2539 * Each sub-page must be freed individually.
2540 *
2541 * Note: this is probably too low level an operation for use in drivers.
2542 * Please consult with lkml before using this in your driver.
2543 */
2544 void split_page(struct page *page, unsigned int order)
2545 {
2546 int i;
2547
2548 VM_BUG_ON_PAGE(PageCompound(page), page);
2549 VM_BUG_ON_PAGE(!page_count(page), page);
2550
2551 #ifdef CONFIG_KMEMCHECK
2552 /*
2553 * Split shadow pages too, because free(page[0]) would
2554 * otherwise free the whole shadow.
2555 */
2556 if (kmemcheck_page_is_tracked(page))
2557 split_page(virt_to_page(page[0].shadow), order);
2558 #endif
2559
2560 for (i = 1; i < (1 << order); i++)
2561 set_page_refcounted(page + i);
2562 split_page_owner(page, order);
2563 }
2564 EXPORT_SYMBOL_GPL(split_page);
2565
2566 int __isolate_free_page(struct page *page, unsigned int order)
2567 {
2568 unsigned long watermark;
2569 struct zone *zone;
2570 int mt;
2571
2572 BUG_ON(!PageBuddy(page));
2573
2574 zone = page_zone(page);
2575 mt = get_pageblock_migratetype(page);
2576
2577 if (!is_migrate_isolate(mt)) {
2578 /*
2579 * Obey watermarks as if the page was being allocated. We can
2580 * emulate a high-order watermark check with a raised order-0
2581 * watermark, because we already know our high-order page
2582 * exists.
2583 */
2584 watermark = min_wmark_pages(zone) + (1UL << order);
2585 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2586 return 0;
2587
2588 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2589 }
2590
2591 /* Remove page from free list */
2592 list_del(&page->lru);
2593 zone->free_area[order].nr_free--;
2594 rmv_page_order(page);
2595
2596 /*
2597 * Set the pageblock if the isolated page is at least half of a
2598 * pageblock
2599 */
2600 if (order >= pageblock_order - 1) {
2601 struct page *endpage = page + (1 << order) - 1;
2602 for (; page < endpage; page += pageblock_nr_pages) {
2603 int mt = get_pageblock_migratetype(page);
2604 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2605 && mt != MIGRATE_HIGHATOMIC)
2606 set_pageblock_migratetype(page,
2607 MIGRATE_MOVABLE);
2608 }
2609 }
2610
2611
2612 return 1UL << order;
2613 }
2614
2615 /*
2616 * Update NUMA hit/miss statistics
2617 *
2618 * Must be called with interrupts disabled.
2619 */
2620 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2621 {
2622 #ifdef CONFIG_NUMA
2623 enum zone_stat_item local_stat = NUMA_LOCAL;
2624
2625 if (z->node != numa_node_id())
2626 local_stat = NUMA_OTHER;
2627
2628 if (z->node == preferred_zone->node)
2629 __inc_zone_state(z, NUMA_HIT);
2630 else {
2631 __inc_zone_state(z, NUMA_MISS);
2632 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2633 }
2634 __inc_zone_state(z, local_stat);
2635 #endif
2636 }
2637
2638 /* Remove page from the per-cpu list, caller must protect the list */
2639 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2640 bool cold, struct per_cpu_pages *pcp,
2641 struct list_head *list)
2642 {
2643 struct page *page;
2644
2645 VM_BUG_ON(in_interrupt());
2646
2647 do {
2648 if (list_empty(list)) {
2649 pcp->count += rmqueue_bulk(zone, 0,
2650 pcp->batch, list,
2651 migratetype, cold);
2652 if (unlikely(list_empty(list)))
2653 return NULL;
2654 }
2655
2656 if (cold)
2657 page = list_last_entry(list, struct page, lru);
2658 else
2659 page = list_first_entry(list, struct page, lru);
2660
2661 list_del(&page->lru);
2662 pcp->count--;
2663 } while (check_new_pcp(page));
2664
2665 return page;
2666 }
2667
2668 /* Lock and remove page from the per-cpu list */
2669 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2670 struct zone *zone, unsigned int order,
2671 gfp_t gfp_flags, int migratetype)
2672 {
2673 struct per_cpu_pages *pcp;
2674 struct list_head *list;
2675 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2676 struct page *page;
2677
2678 preempt_disable();
2679 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2680 list = &pcp->lists[migratetype];
2681 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2682 if (page) {
2683 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2684 zone_statistics(preferred_zone, zone);
2685 }
2686 preempt_enable();
2687 return page;
2688 }
2689
2690 /*
2691 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2692 */
2693 static inline
2694 struct page *rmqueue(struct zone *preferred_zone,
2695 struct zone *zone, unsigned int order,
2696 gfp_t gfp_flags, unsigned int alloc_flags,
2697 int migratetype)
2698 {
2699 unsigned long flags;
2700 struct page *page;
2701
2702 if (likely(order == 0) && !in_interrupt()) {
2703 page = rmqueue_pcplist(preferred_zone, zone, order,
2704 gfp_flags, migratetype);
2705 goto out;
2706 }
2707
2708 /*
2709 * We most definitely don't want callers attempting to
2710 * allocate greater than order-1 page units with __GFP_NOFAIL.
2711 */
2712 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2713 spin_lock_irqsave(&zone->lock, flags);
2714
2715 do {
2716 page = NULL;
2717 if (alloc_flags & ALLOC_HARDER) {
2718 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2719 if (page)
2720 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2721 }
2722 if (!page)
2723 page = __rmqueue(zone, order, migratetype);
2724 } while (page && check_new_pages(page, order));
2725 spin_unlock(&zone->lock);
2726 if (!page)
2727 goto failed;
2728 __mod_zone_freepage_state(zone, -(1 << order),
2729 get_pcppage_migratetype(page));
2730
2731 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2732 zone_statistics(preferred_zone, zone);
2733 local_irq_restore(flags);
2734
2735 out:
2736 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2737 return page;
2738
2739 failed:
2740 local_irq_restore(flags);
2741 return NULL;
2742 }
2743
2744 #ifdef CONFIG_FAIL_PAGE_ALLOC
2745
2746 static struct {
2747 struct fault_attr attr;
2748
2749 bool ignore_gfp_highmem;
2750 bool ignore_gfp_reclaim;
2751 u32 min_order;
2752 } fail_page_alloc = {
2753 .attr = FAULT_ATTR_INITIALIZER,
2754 .ignore_gfp_reclaim = true,
2755 .ignore_gfp_highmem = true,
2756 .min_order = 1,
2757 };
2758
2759 static int __init setup_fail_page_alloc(char *str)
2760 {
2761 return setup_fault_attr(&fail_page_alloc.attr, str);
2762 }
2763 __setup("fail_page_alloc=", setup_fail_page_alloc);
2764
2765 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2766 {
2767 if (order < fail_page_alloc.min_order)
2768 return false;
2769 if (gfp_mask & __GFP_NOFAIL)
2770 return false;
2771 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2772 return false;
2773 if (fail_page_alloc.ignore_gfp_reclaim &&
2774 (gfp_mask & __GFP_DIRECT_RECLAIM))
2775 return false;
2776
2777 return should_fail(&fail_page_alloc.attr, 1 << order);
2778 }
2779
2780 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2781
2782 static int __init fail_page_alloc_debugfs(void)
2783 {
2784 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2785 struct dentry *dir;
2786
2787 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2788 &fail_page_alloc.attr);
2789 if (IS_ERR(dir))
2790 return PTR_ERR(dir);
2791
2792 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2793 &fail_page_alloc.ignore_gfp_reclaim))
2794 goto fail;
2795 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2796 &fail_page_alloc.ignore_gfp_highmem))
2797 goto fail;
2798 if (!debugfs_create_u32("min-order", mode, dir,
2799 &fail_page_alloc.min_order))
2800 goto fail;
2801
2802 return 0;
2803 fail:
2804 debugfs_remove_recursive(dir);
2805
2806 return -ENOMEM;
2807 }
2808
2809 late_initcall(fail_page_alloc_debugfs);
2810
2811 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2812
2813 #else /* CONFIG_FAIL_PAGE_ALLOC */
2814
2815 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2816 {
2817 return false;
2818 }
2819
2820 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2821
2822 /*
2823 * Return true if free base pages are above 'mark'. For high-order checks it
2824 * will return true of the order-0 watermark is reached and there is at least
2825 * one free page of a suitable size. Checking now avoids taking the zone lock
2826 * to check in the allocation paths if no pages are free.
2827 */
2828 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2829 int classzone_idx, unsigned int alloc_flags,
2830 long free_pages)
2831 {
2832 long min = mark;
2833 int o;
2834 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2835
2836 /* free_pages may go negative - that's OK */
2837 free_pages -= (1 << order) - 1;
2838
2839 if (alloc_flags & ALLOC_HIGH)
2840 min -= min / 2;
2841
2842 /*
2843 * If the caller does not have rights to ALLOC_HARDER then subtract
2844 * the high-atomic reserves. This will over-estimate the size of the
2845 * atomic reserve but it avoids a search.
2846 */
2847 if (likely(!alloc_harder))
2848 free_pages -= z->nr_reserved_highatomic;
2849 else
2850 min -= min / 4;
2851
2852 #ifdef CONFIG_CMA
2853 /* If allocation can't use CMA areas don't use free CMA pages */
2854 if (!(alloc_flags & ALLOC_CMA))
2855 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2856 #endif
2857
2858 /*
2859 * Check watermarks for an order-0 allocation request. If these
2860 * are not met, then a high-order request also cannot go ahead
2861 * even if a suitable page happened to be free.
2862 */
2863 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2864 return false;
2865
2866 /* If this is an order-0 request then the watermark is fine */
2867 if (!order)
2868 return true;
2869
2870 /* For a high-order request, check at least one suitable page is free */
2871 for (o = order; o < MAX_ORDER; o++) {
2872 struct free_area *area = &z->free_area[o];
2873 int mt;
2874
2875 if (!area->nr_free)
2876 continue;
2877
2878 if (alloc_harder)
2879 return true;
2880
2881 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2882 if (!list_empty(&area->free_list[mt]))
2883 return true;
2884 }
2885
2886 #ifdef CONFIG_CMA
2887 if ((alloc_flags & ALLOC_CMA) &&
2888 !list_empty(&area->free_list[MIGRATE_CMA])) {
2889 return true;
2890 }
2891 #endif
2892 }
2893 return false;
2894 }
2895
2896 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2897 int classzone_idx, unsigned int alloc_flags)
2898 {
2899 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2900 zone_page_state(z, NR_FREE_PAGES));
2901 }
2902
2903 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2904 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2905 {
2906 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2907 long cma_pages = 0;
2908
2909 #ifdef CONFIG_CMA
2910 /* If allocation can't use CMA areas don't use free CMA pages */
2911 if (!(alloc_flags & ALLOC_CMA))
2912 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2913 #endif
2914
2915 /*
2916 * Fast check for order-0 only. If this fails then the reserves
2917 * need to be calculated. There is a corner case where the check
2918 * passes but only the high-order atomic reserve are free. If
2919 * the caller is !atomic then it'll uselessly search the free
2920 * list. That corner case is then slower but it is harmless.
2921 */
2922 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2923 return true;
2924
2925 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2926 free_pages);
2927 }
2928
2929 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2930 unsigned long mark, int classzone_idx)
2931 {
2932 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2933
2934 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2935 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2936
2937 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2938 free_pages);
2939 }
2940
2941 #ifdef CONFIG_NUMA
2942 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2943 {
2944 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2945 RECLAIM_DISTANCE;
2946 }
2947 #else /* CONFIG_NUMA */
2948 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2949 {
2950 return true;
2951 }
2952 #endif /* CONFIG_NUMA */
2953
2954 /*
2955 * get_page_from_freelist goes through the zonelist trying to allocate
2956 * a page.
2957 */
2958 static struct page *
2959 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2960 const struct alloc_context *ac)
2961 {
2962 struct zoneref *z = ac->preferred_zoneref;
2963 struct zone *zone;
2964 struct pglist_data *last_pgdat_dirty_limit = NULL;
2965
2966 /*
2967 * Scan zonelist, looking for a zone with enough free.
2968 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2969 */
2970 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2971 ac->nodemask) {
2972 struct page *page;
2973 unsigned long mark;
2974
2975 if (cpusets_enabled() &&
2976 (alloc_flags & ALLOC_CPUSET) &&
2977 !__cpuset_zone_allowed(zone, gfp_mask))
2978 continue;
2979 /*
2980 * When allocating a page cache page for writing, we
2981 * want to get it from a node that is within its dirty
2982 * limit, such that no single node holds more than its
2983 * proportional share of globally allowed dirty pages.
2984 * The dirty limits take into account the node's
2985 * lowmem reserves and high watermark so that kswapd
2986 * should be able to balance it without having to
2987 * write pages from its LRU list.
2988 *
2989 * XXX: For now, allow allocations to potentially
2990 * exceed the per-node dirty limit in the slowpath
2991 * (spread_dirty_pages unset) before going into reclaim,
2992 * which is important when on a NUMA setup the allowed
2993 * nodes are together not big enough to reach the
2994 * global limit. The proper fix for these situations
2995 * will require awareness of nodes in the
2996 * dirty-throttling and the flusher threads.
2997 */
2998 if (ac->spread_dirty_pages) {
2999 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3000 continue;
3001
3002 if (!node_dirty_ok(zone->zone_pgdat)) {
3003 last_pgdat_dirty_limit = zone->zone_pgdat;
3004 continue;
3005 }
3006 }
3007
3008 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3009 if (!zone_watermark_fast(zone, order, mark,
3010 ac_classzone_idx(ac), alloc_flags)) {
3011 int ret;
3012
3013 /* Checked here to keep the fast path fast */
3014 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3015 if (alloc_flags & ALLOC_NO_WATERMARKS)
3016 goto try_this_zone;
3017
3018 if (node_reclaim_mode == 0 ||
3019 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3020 continue;
3021
3022 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3023 switch (ret) {
3024 case NODE_RECLAIM_NOSCAN:
3025 /* did not scan */
3026 continue;
3027 case NODE_RECLAIM_FULL:
3028 /* scanned but unreclaimable */
3029 continue;
3030 default:
3031 /* did we reclaim enough */
3032 if (zone_watermark_ok(zone, order, mark,
3033 ac_classzone_idx(ac), alloc_flags))
3034 goto try_this_zone;
3035
3036 continue;
3037 }
3038 }
3039
3040 try_this_zone:
3041 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3042 gfp_mask, alloc_flags, ac->migratetype);
3043 if (page) {
3044 prep_new_page(page, order, gfp_mask, alloc_flags);
3045
3046 /*
3047 * If this is a high-order atomic allocation then check
3048 * if the pageblock should be reserved for the future
3049 */
3050 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3051 reserve_highatomic_pageblock(page, zone, order);
3052
3053 return page;
3054 }
3055 }
3056
3057 return NULL;
3058 }
3059
3060 /*
3061 * Large machines with many possible nodes should not always dump per-node
3062 * meminfo in irq context.
3063 */
3064 static inline bool should_suppress_show_mem(void)
3065 {
3066 bool ret = false;
3067
3068 #if NODES_SHIFT > 8
3069 ret = in_interrupt();
3070 #endif
3071 return ret;
3072 }
3073
3074 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3075 {
3076 unsigned int filter = SHOW_MEM_FILTER_NODES;
3077 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3078
3079 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3080 return;
3081
3082 /*
3083 * This documents exceptions given to allocations in certain
3084 * contexts that are allowed to allocate outside current's set
3085 * of allowed nodes.
3086 */
3087 if (!(gfp_mask & __GFP_NOMEMALLOC))
3088 if (test_thread_flag(TIF_MEMDIE) ||
3089 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3090 filter &= ~SHOW_MEM_FILTER_NODES;
3091 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3092 filter &= ~SHOW_MEM_FILTER_NODES;
3093
3094 show_mem(filter, nodemask);
3095 }
3096
3097 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3098 {
3099 struct va_format vaf;
3100 va_list args;
3101 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3102 DEFAULT_RATELIMIT_BURST);
3103
3104 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3105 debug_guardpage_minorder() > 0)
3106 return;
3107
3108 pr_warn("%s: ", current->comm);
3109
3110 va_start(args, fmt);
3111 vaf.fmt = fmt;
3112 vaf.va = &args;
3113 pr_cont("%pV", &vaf);
3114 va_end(args);
3115
3116 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3117 if (nodemask)
3118 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3119 else
3120 pr_cont("(null)\n");
3121
3122 cpuset_print_current_mems_allowed();
3123
3124 dump_stack();
3125 warn_alloc_show_mem(gfp_mask, nodemask);
3126 }
3127
3128 static inline struct page *
3129 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3130 unsigned int alloc_flags,
3131 const struct alloc_context *ac)
3132 {
3133 struct page *page;
3134
3135 page = get_page_from_freelist(gfp_mask, order,
3136 alloc_flags|ALLOC_CPUSET, ac);
3137 /*
3138 * fallback to ignore cpuset restriction if our nodes
3139 * are depleted
3140 */
3141 if (!page)
3142 page = get_page_from_freelist(gfp_mask, order,
3143 alloc_flags, ac);
3144
3145 return page;
3146 }
3147
3148 static inline struct page *
3149 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3150 const struct alloc_context *ac, unsigned long *did_some_progress)
3151 {
3152 struct oom_control oc = {
3153 .zonelist = ac->zonelist,
3154 .nodemask = ac->nodemask,
3155 .memcg = NULL,
3156 .gfp_mask = gfp_mask,
3157 .order = order,
3158 };
3159 struct page *page;
3160
3161 *did_some_progress = 0;
3162
3163 /*
3164 * Acquire the oom lock. If that fails, somebody else is
3165 * making progress for us.
3166 */
3167 if (!mutex_trylock(&oom_lock)) {
3168 *did_some_progress = 1;
3169 schedule_timeout_uninterruptible(1);
3170 return NULL;
3171 }
3172
3173 /*
3174 * Go through the zonelist yet one more time, keep very high watermark
3175 * here, this is only to catch a parallel oom killing, we must fail if
3176 * we're still under heavy pressure.
3177 */
3178 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3179 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3180 if (page)
3181 goto out;
3182
3183 /* Coredumps can quickly deplete all memory reserves */
3184 if (current->flags & PF_DUMPCORE)
3185 goto out;
3186 /* The OOM killer will not help higher order allocs */
3187 if (order > PAGE_ALLOC_COSTLY_ORDER)
3188 goto out;
3189 /* The OOM killer does not needlessly kill tasks for lowmem */
3190 if (ac->high_zoneidx < ZONE_NORMAL)
3191 goto out;
3192 if (pm_suspended_storage())
3193 goto out;
3194 /*
3195 * XXX: GFP_NOFS allocations should rather fail than rely on
3196 * other request to make a forward progress.
3197 * We are in an unfortunate situation where out_of_memory cannot
3198 * do much for this context but let's try it to at least get
3199 * access to memory reserved if the current task is killed (see
3200 * out_of_memory). Once filesystems are ready to handle allocation
3201 * failures more gracefully we should just bail out here.
3202 */
3203
3204 /* The OOM killer may not free memory on a specific node */
3205 if (gfp_mask & __GFP_THISNODE)
3206 goto out;
3207
3208 /* Exhausted what can be done so it's blamo time */
3209 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3210 *did_some_progress = 1;
3211
3212 /*
3213 * Help non-failing allocations by giving them access to memory
3214 * reserves
3215 */
3216 if (gfp_mask & __GFP_NOFAIL)
3217 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3218 ALLOC_NO_WATERMARKS, ac);
3219 }
3220 out:
3221 mutex_unlock(&oom_lock);
3222 return page;
3223 }
3224
3225 /*
3226 * Maximum number of compaction retries wit a progress before OOM
3227 * killer is consider as the only way to move forward.
3228 */
3229 #define MAX_COMPACT_RETRIES 16
3230
3231 #ifdef CONFIG_COMPACTION
3232 /* Try memory compaction for high-order allocations before reclaim */
3233 static struct page *
3234 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3235 unsigned int alloc_flags, const struct alloc_context *ac,
3236 enum compact_priority prio, enum compact_result *compact_result)
3237 {
3238 struct page *page;
3239
3240 if (!order)
3241 return NULL;
3242
3243 current->flags |= PF_MEMALLOC;
3244 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3245 prio);
3246 current->flags &= ~PF_MEMALLOC;
3247
3248 if (*compact_result <= COMPACT_INACTIVE)
3249 return NULL;
3250
3251 /*
3252 * At least in one zone compaction wasn't deferred or skipped, so let's
3253 * count a compaction stall
3254 */
3255 count_vm_event(COMPACTSTALL);
3256
3257 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3258
3259 if (page) {
3260 struct zone *zone = page_zone(page);
3261
3262 zone->compact_blockskip_flush = false;
3263 compaction_defer_reset(zone, order, true);
3264 count_vm_event(COMPACTSUCCESS);
3265 return page;
3266 }
3267
3268 /*
3269 * It's bad if compaction run occurs and fails. The most likely reason
3270 * is that pages exist, but not enough to satisfy watermarks.
3271 */
3272 count_vm_event(COMPACTFAIL);
3273
3274 cond_resched();
3275
3276 return NULL;
3277 }
3278
3279 static inline bool
3280 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3281 enum compact_result compact_result,
3282 enum compact_priority *compact_priority,
3283 int *compaction_retries)
3284 {
3285 int max_retries = MAX_COMPACT_RETRIES;
3286 int min_priority;
3287 bool ret = false;
3288 int retries = *compaction_retries;
3289 enum compact_priority priority = *compact_priority;
3290
3291 if (!order)
3292 return false;
3293
3294 if (compaction_made_progress(compact_result))
3295 (*compaction_retries)++;
3296
3297 /*
3298 * compaction considers all the zone as desperately out of memory
3299 * so it doesn't really make much sense to retry except when the
3300 * failure could be caused by insufficient priority
3301 */
3302 if (compaction_failed(compact_result))
3303 goto check_priority;
3304
3305 /*
3306 * make sure the compaction wasn't deferred or didn't bail out early
3307 * due to locks contention before we declare that we should give up.
3308 * But do not retry if the given zonelist is not suitable for
3309 * compaction.
3310 */
3311 if (compaction_withdrawn(compact_result)) {
3312 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3313 goto out;
3314 }
3315
3316 /*
3317 * !costly requests are much more important than __GFP_REPEAT
3318 * costly ones because they are de facto nofail and invoke OOM
3319 * killer to move on while costly can fail and users are ready
3320 * to cope with that. 1/4 retries is rather arbitrary but we
3321 * would need much more detailed feedback from compaction to
3322 * make a better decision.
3323 */
3324 if (order > PAGE_ALLOC_COSTLY_ORDER)
3325 max_retries /= 4;
3326 if (*compaction_retries <= max_retries) {
3327 ret = true;
3328 goto out;
3329 }
3330
3331 /*
3332 * Make sure there are attempts at the highest priority if we exhausted
3333 * all retries or failed at the lower priorities.
3334 */
3335 check_priority:
3336 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3337 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3338
3339 if (*compact_priority > min_priority) {
3340 (*compact_priority)--;
3341 *compaction_retries = 0;
3342 ret = true;
3343 }
3344 out:
3345 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3346 return ret;
3347 }
3348 #else
3349 static inline struct page *
3350 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3351 unsigned int alloc_flags, const struct alloc_context *ac,
3352 enum compact_priority prio, enum compact_result *compact_result)
3353 {
3354 *compact_result = COMPACT_SKIPPED;
3355 return NULL;
3356 }
3357
3358 static inline bool
3359 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3360 enum compact_result compact_result,
3361 enum compact_priority *compact_priority,
3362 int *compaction_retries)
3363 {
3364 struct zone *zone;
3365 struct zoneref *z;
3366
3367 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3368 return false;
3369
3370 /*
3371 * There are setups with compaction disabled which would prefer to loop
3372 * inside the allocator rather than hit the oom killer prematurely.
3373 * Let's give them a good hope and keep retrying while the order-0
3374 * watermarks are OK.
3375 */
3376 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3377 ac->nodemask) {
3378 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3379 ac_classzone_idx(ac), alloc_flags))
3380 return true;
3381 }
3382 return false;
3383 }
3384 #endif /* CONFIG_COMPACTION */
3385
3386 /* Perform direct synchronous page reclaim */
3387 static int
3388 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3389 const struct alloc_context *ac)
3390 {
3391 struct reclaim_state reclaim_state;
3392 int progress;
3393
3394 cond_resched();
3395
3396 /* We now go into synchronous reclaim */
3397 cpuset_memory_pressure_bump();
3398 current->flags |= PF_MEMALLOC;
3399 lockdep_set_current_reclaim_state(gfp_mask);
3400 reclaim_state.reclaimed_slab = 0;
3401 current->reclaim_state = &reclaim_state;
3402
3403 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3404 ac->nodemask);
3405
3406 current->reclaim_state = NULL;
3407 lockdep_clear_current_reclaim_state();
3408 current->flags &= ~PF_MEMALLOC;
3409
3410 cond_resched();
3411
3412 return progress;
3413 }
3414
3415 /* The really slow allocator path where we enter direct reclaim */
3416 static inline struct page *
3417 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3418 unsigned int alloc_flags, const struct alloc_context *ac,
3419 unsigned long *did_some_progress)
3420 {
3421 struct page *page = NULL;
3422 bool drained = false;
3423
3424 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3425 if (unlikely(!(*did_some_progress)))
3426 return NULL;
3427
3428 retry:
3429 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3430
3431 /*
3432 * If an allocation failed after direct reclaim, it could be because
3433 * pages are pinned on the per-cpu lists or in high alloc reserves.
3434 * Shrink them them and try again
3435 */
3436 if (!page && !drained) {
3437 unreserve_highatomic_pageblock(ac, false);
3438 drain_all_pages(NULL);
3439 drained = true;
3440 goto retry;
3441 }
3442
3443 return page;
3444 }
3445
3446 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3447 {
3448 struct zoneref *z;
3449 struct zone *zone;
3450 pg_data_t *last_pgdat = NULL;
3451
3452 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3453 ac->high_zoneidx, ac->nodemask) {
3454 if (last_pgdat != zone->zone_pgdat)
3455 wakeup_kswapd(zone, order, ac->high_zoneidx);
3456 last_pgdat = zone->zone_pgdat;
3457 }
3458 }
3459
3460 static inline unsigned int
3461 gfp_to_alloc_flags(gfp_t gfp_mask)
3462 {
3463 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3464
3465 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3466 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3467
3468 /*
3469 * The caller may dip into page reserves a bit more if the caller
3470 * cannot run direct reclaim, or if the caller has realtime scheduling
3471 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3472 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3473 */
3474 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3475
3476 if (gfp_mask & __GFP_ATOMIC) {
3477 /*
3478 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3479 * if it can't schedule.
3480 */
3481 if (!(gfp_mask & __GFP_NOMEMALLOC))
3482 alloc_flags |= ALLOC_HARDER;
3483 /*
3484 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3485 * comment for __cpuset_node_allowed().
3486 */
3487 alloc_flags &= ~ALLOC_CPUSET;
3488 } else if (unlikely(rt_task(current)) && !in_interrupt())
3489 alloc_flags |= ALLOC_HARDER;
3490
3491 #ifdef CONFIG_CMA
3492 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3493 alloc_flags |= ALLOC_CMA;
3494 #endif
3495 return alloc_flags;
3496 }
3497
3498 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3499 {
3500 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3501 return false;
3502
3503 if (gfp_mask & __GFP_MEMALLOC)
3504 return true;
3505 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3506 return true;
3507 if (!in_interrupt() &&
3508 ((current->flags & PF_MEMALLOC) ||
3509 unlikely(test_thread_flag(TIF_MEMDIE))))
3510 return true;
3511
3512 return false;
3513 }
3514
3515 /*
3516 * Maximum number of reclaim retries without any progress before OOM killer
3517 * is consider as the only way to move forward.
3518 */
3519 #define MAX_RECLAIM_RETRIES 16
3520
3521 /*
3522 * Checks whether it makes sense to retry the reclaim to make a forward progress
3523 * for the given allocation request.
3524 * The reclaim feedback represented by did_some_progress (any progress during
3525 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3526 * any progress in a row) is considered as well as the reclaimable pages on the
3527 * applicable zone list (with a backoff mechanism which is a function of
3528 * no_progress_loops).
3529 *
3530 * Returns true if a retry is viable or false to enter the oom path.
3531 */
3532 static inline bool
3533 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3534 struct alloc_context *ac, int alloc_flags,
3535 bool did_some_progress, int *no_progress_loops)
3536 {
3537 struct zone *zone;
3538 struct zoneref *z;
3539
3540 /*
3541 * Costly allocations might have made a progress but this doesn't mean
3542 * their order will become available due to high fragmentation so
3543 * always increment the no progress counter for them
3544 */
3545 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3546 *no_progress_loops = 0;
3547 else
3548 (*no_progress_loops)++;
3549
3550 /*
3551 * Make sure we converge to OOM if we cannot make any progress
3552 * several times in the row.
3553 */
3554 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3555 /* Before OOM, exhaust highatomic_reserve */
3556 return unreserve_highatomic_pageblock(ac, true);
3557 }
3558
3559 /*
3560 * Keep reclaiming pages while there is a chance this will lead
3561 * somewhere. If none of the target zones can satisfy our allocation
3562 * request even if all reclaimable pages are considered then we are
3563 * screwed and have to go OOM.
3564 */
3565 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3566 ac->nodemask) {
3567 unsigned long available;
3568 unsigned long reclaimable;
3569 unsigned long min_wmark = min_wmark_pages(zone);
3570 bool wmark;
3571
3572 available = reclaimable = zone_reclaimable_pages(zone);
3573 available -= DIV_ROUND_UP((*no_progress_loops) * available,
3574 MAX_RECLAIM_RETRIES);
3575 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3576
3577 /*
3578 * Would the allocation succeed if we reclaimed the whole
3579 * available?
3580 */
3581 wmark = __zone_watermark_ok(zone, order, min_wmark,
3582 ac_classzone_idx(ac), alloc_flags, available);
3583 trace_reclaim_retry_zone(z, order, reclaimable,
3584 available, min_wmark, *no_progress_loops, wmark);
3585 if (wmark) {
3586 /*
3587 * If we didn't make any progress and have a lot of
3588 * dirty + writeback pages then we should wait for
3589 * an IO to complete to slow down the reclaim and
3590 * prevent from pre mature OOM
3591 */
3592 if (!did_some_progress) {
3593 unsigned long write_pending;
3594
3595 write_pending = zone_page_state_snapshot(zone,
3596 NR_ZONE_WRITE_PENDING);
3597
3598 if (2 * write_pending > reclaimable) {
3599 congestion_wait(BLK_RW_ASYNC, HZ/10);
3600 return true;
3601 }
3602 }
3603
3604 /*
3605 * Memory allocation/reclaim might be called from a WQ
3606 * context and the current implementation of the WQ
3607 * concurrency control doesn't recognize that
3608 * a particular WQ is congested if the worker thread is
3609 * looping without ever sleeping. Therefore we have to
3610 * do a short sleep here rather than calling
3611 * cond_resched().
3612 */
3613 if (current->flags & PF_WQ_WORKER)
3614 schedule_timeout_uninterruptible(1);
3615 else
3616 cond_resched();
3617
3618 return true;
3619 }
3620 }
3621
3622 return false;
3623 }
3624
3625 static inline struct page *
3626 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3627 struct alloc_context *ac)
3628 {
3629 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3630 struct page *page = NULL;
3631 unsigned int alloc_flags;
3632 unsigned long did_some_progress;
3633 enum compact_priority compact_priority;
3634 enum compact_result compact_result;
3635 int compaction_retries;
3636 int no_progress_loops;
3637 unsigned long alloc_start = jiffies;
3638 unsigned int stall_timeout = 10 * HZ;
3639 unsigned int cpuset_mems_cookie;
3640
3641 /*
3642 * In the slowpath, we sanity check order to avoid ever trying to
3643 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3644 * be using allocators in order of preference for an area that is
3645 * too large.
3646 */
3647 if (order >= MAX_ORDER) {
3648 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3649 return NULL;
3650 }
3651
3652 /*
3653 * We also sanity check to catch abuse of atomic reserves being used by
3654 * callers that are not in atomic context.
3655 */
3656 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3657 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3658 gfp_mask &= ~__GFP_ATOMIC;
3659
3660 retry_cpuset:
3661 compaction_retries = 0;
3662 no_progress_loops = 0;
3663 compact_priority = DEF_COMPACT_PRIORITY;
3664 cpuset_mems_cookie = read_mems_allowed_begin();
3665
3666 /*
3667 * The fast path uses conservative alloc_flags to succeed only until
3668 * kswapd needs to be woken up, and to avoid the cost of setting up
3669 * alloc_flags precisely. So we do that now.
3670 */
3671 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3672
3673 /*
3674 * We need to recalculate the starting point for the zonelist iterator
3675 * because we might have used different nodemask in the fast path, or
3676 * there was a cpuset modification and we are retrying - otherwise we
3677 * could end up iterating over non-eligible zones endlessly.
3678 */
3679 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3680 ac->high_zoneidx, ac->nodemask);
3681 if (!ac->preferred_zoneref->zone)
3682 goto nopage;
3683
3684 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3685 wake_all_kswapds(order, ac);
3686
3687 /*
3688 * The adjusted alloc_flags might result in immediate success, so try
3689 * that first
3690 */
3691 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3692 if (page)
3693 goto got_pg;
3694
3695 /*
3696 * For costly allocations, try direct compaction first, as it's likely
3697 * that we have enough base pages and don't need to reclaim. Don't try
3698 * that for allocations that are allowed to ignore watermarks, as the
3699 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3700 */
3701 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3702 !gfp_pfmemalloc_allowed(gfp_mask)) {
3703 page = __alloc_pages_direct_compact(gfp_mask, order,
3704 alloc_flags, ac,
3705 INIT_COMPACT_PRIORITY,
3706 &compact_result);
3707 if (page)
3708 goto got_pg;
3709
3710 /*
3711 * Checks for costly allocations with __GFP_NORETRY, which
3712 * includes THP page fault allocations
3713 */
3714 if (gfp_mask & __GFP_NORETRY) {
3715 /*
3716 * If compaction is deferred for high-order allocations,
3717 * it is because sync compaction recently failed. If
3718 * this is the case and the caller requested a THP
3719 * allocation, we do not want to heavily disrupt the
3720 * system, so we fail the allocation instead of entering
3721 * direct reclaim.
3722 */
3723 if (compact_result == COMPACT_DEFERRED)
3724 goto nopage;
3725
3726 /*
3727 * Looks like reclaim/compaction is worth trying, but
3728 * sync compaction could be very expensive, so keep
3729 * using async compaction.
3730 */
3731 compact_priority = INIT_COMPACT_PRIORITY;
3732 }
3733 }
3734
3735 retry:
3736 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3737 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3738 wake_all_kswapds(order, ac);
3739
3740 if (gfp_pfmemalloc_allowed(gfp_mask))
3741 alloc_flags = ALLOC_NO_WATERMARKS;
3742
3743 /*
3744 * Reset the zonelist iterators if memory policies can be ignored.
3745 * These allocations are high priority and system rather than user
3746 * orientated.
3747 */
3748 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3749 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3750 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3751 ac->high_zoneidx, ac->nodemask);
3752 }
3753
3754 /* Attempt with potentially adjusted zonelist and alloc_flags */
3755 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3756 if (page)
3757 goto got_pg;
3758
3759 /* Caller is not willing to reclaim, we can't balance anything */
3760 if (!can_direct_reclaim)
3761 goto nopage;
3762
3763 /* Make sure we know about allocations which stall for too long */
3764 if (time_after(jiffies, alloc_start + stall_timeout)) {
3765 warn_alloc(gfp_mask, ac->nodemask,
3766 "page allocation stalls for %ums, order:%u",
3767 jiffies_to_msecs(jiffies-alloc_start), order);
3768 stall_timeout += 10 * HZ;
3769 }
3770
3771 /* Avoid recursion of direct reclaim */
3772 if (current->flags & PF_MEMALLOC)
3773 goto nopage;
3774
3775 /* Try direct reclaim and then allocating */
3776 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3777 &did_some_progress);
3778 if (page)
3779 goto got_pg;
3780
3781 /* Try direct compaction and then allocating */
3782 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3783 compact_priority, &compact_result);
3784 if (page)
3785 goto got_pg;
3786
3787 /* Do not loop if specifically requested */
3788 if (gfp_mask & __GFP_NORETRY)
3789 goto nopage;
3790
3791 /*
3792 * Do not retry costly high order allocations unless they are
3793 * __GFP_REPEAT
3794 */
3795 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3796 goto nopage;
3797
3798 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3799 did_some_progress > 0, &no_progress_loops))
3800 goto retry;
3801
3802 /*
3803 * It doesn't make any sense to retry for the compaction if the order-0
3804 * reclaim is not able to make any progress because the current
3805 * implementation of the compaction depends on the sufficient amount
3806 * of free memory (see __compaction_suitable)
3807 */
3808 if (did_some_progress > 0 &&
3809 should_compact_retry(ac, order, alloc_flags,
3810 compact_result, &compact_priority,
3811 &compaction_retries))
3812 goto retry;
3813
3814 /*
3815 * It's possible we raced with cpuset update so the OOM would be
3816 * premature (see below the nopage: label for full explanation).
3817 */
3818 if (read_mems_allowed_retry(cpuset_mems_cookie))
3819 goto retry_cpuset;
3820
3821 /* Reclaim has failed us, start killing things */
3822 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3823 if (page)
3824 goto got_pg;
3825
3826 /* Avoid allocations with no watermarks from looping endlessly */
3827 if (test_thread_flag(TIF_MEMDIE))
3828 goto nopage;
3829
3830 /* Retry as long as the OOM killer is making progress */
3831 if (did_some_progress) {
3832 no_progress_loops = 0;
3833 goto retry;
3834 }
3835
3836 nopage:
3837 /*
3838 * When updating a task's mems_allowed or mempolicy nodemask, it is
3839 * possible to race with parallel threads in such a way that our
3840 * allocation can fail while the mask is being updated. If we are about
3841 * to fail, check if the cpuset changed during allocation and if so,
3842 * retry.
3843 */
3844 if (read_mems_allowed_retry(cpuset_mems_cookie))
3845 goto retry_cpuset;
3846
3847 /*
3848 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3849 * we always retry
3850 */
3851 if (gfp_mask & __GFP_NOFAIL) {
3852 /*
3853 * All existing users of the __GFP_NOFAIL are blockable, so warn
3854 * of any new users that actually require GFP_NOWAIT
3855 */
3856 if (WARN_ON_ONCE(!can_direct_reclaim))
3857 goto fail;
3858
3859 /*
3860 * PF_MEMALLOC request from this context is rather bizarre
3861 * because we cannot reclaim anything and only can loop waiting
3862 * for somebody to do a work for us
3863 */
3864 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3865
3866 /*
3867 * non failing costly orders are a hard requirement which we
3868 * are not prepared for much so let's warn about these users
3869 * so that we can identify them and convert them to something
3870 * else.
3871 */
3872 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
3873
3874 /*
3875 * Help non-failing allocations by giving them access to memory
3876 * reserves but do not use ALLOC_NO_WATERMARKS because this
3877 * could deplete whole memory reserves which would just make
3878 * the situation worse
3879 */
3880 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
3881 if (page)
3882 goto got_pg;
3883
3884 cond_resched();
3885 goto retry;
3886 }
3887 fail:
3888 warn_alloc(gfp_mask, ac->nodemask,
3889 "page allocation failure: order:%u", order);
3890 got_pg:
3891 return page;
3892 }
3893
3894 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
3895 struct zonelist *zonelist, nodemask_t *nodemask,
3896 struct alloc_context *ac, gfp_t *alloc_mask,
3897 unsigned int *alloc_flags)
3898 {
3899 ac->high_zoneidx = gfp_zone(gfp_mask);
3900 ac->zonelist = zonelist;
3901 ac->nodemask = nodemask;
3902 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
3903
3904 if (cpusets_enabled()) {
3905 *alloc_mask |= __GFP_HARDWALL;
3906 if (!ac->nodemask)
3907 ac->nodemask = &cpuset_current_mems_allowed;
3908 else
3909 *alloc_flags |= ALLOC_CPUSET;
3910 }
3911
3912 lockdep_trace_alloc(gfp_mask);
3913
3914 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3915
3916 if (should_fail_alloc_page(gfp_mask, order))
3917 return false;
3918
3919 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
3920 *alloc_flags |= ALLOC_CMA;
3921
3922 return true;
3923 }
3924
3925 /* Determine whether to spread dirty pages and what the first usable zone */
3926 static inline void finalise_ac(gfp_t gfp_mask,
3927 unsigned int order, struct alloc_context *ac)
3928 {
3929 /* Dirty zone balancing only done in the fast path */
3930 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3931
3932 /*
3933 * The preferred zone is used for statistics but crucially it is
3934 * also used as the starting point for the zonelist iterator. It
3935 * may get reset for allocations that ignore memory policies.
3936 */
3937 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3938 ac->high_zoneidx, ac->nodemask);
3939 }
3940
3941 /*
3942 * This is the 'heart' of the zoned buddy allocator.
3943 */
3944 struct page *
3945 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3946 struct zonelist *zonelist, nodemask_t *nodemask)
3947 {
3948 struct page *page;
3949 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3950 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3951 struct alloc_context ac = { };
3952
3953 gfp_mask &= gfp_allowed_mask;
3954 if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
3955 return NULL;
3956
3957 finalise_ac(gfp_mask, order, &ac);
3958
3959 /* First allocation attempt */
3960 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3961 if (likely(page))
3962 goto out;
3963
3964 /*
3965 * Runtime PM, block IO and its error handling path can deadlock
3966 * because I/O on the device might not complete.
3967 */
3968 alloc_mask = memalloc_noio_flags(gfp_mask);
3969 ac.spread_dirty_pages = false;
3970
3971 /*
3972 * Restore the original nodemask if it was potentially replaced with
3973 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3974 */
3975 if (unlikely(ac.nodemask != nodemask))
3976 ac.nodemask = nodemask;
3977
3978 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3979
3980 out:
3981 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3982 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3983 __free_pages(page, order);
3984 page = NULL;
3985 }
3986
3987 if (kmemcheck_enabled && page)
3988 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3989
3990 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3991
3992 return page;
3993 }
3994 EXPORT_SYMBOL(__alloc_pages_nodemask);
3995
3996 /*
3997 * Common helper functions.
3998 */
3999 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4000 {
4001 struct page *page;
4002
4003 /*
4004 * __get_free_pages() returns a 32-bit address, which cannot represent
4005 * a highmem page
4006 */
4007 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4008
4009 page = alloc_pages(gfp_mask, order);
4010 if (!page)
4011 return 0;
4012 return (unsigned long) page_address(page);
4013 }
4014 EXPORT_SYMBOL(__get_free_pages);
4015
4016 unsigned long get_zeroed_page(gfp_t gfp_mask)
4017 {
4018 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4019 }
4020 EXPORT_SYMBOL(get_zeroed_page);
4021
4022 void __free_pages(struct page *page, unsigned int order)
4023 {
4024 if (put_page_testzero(page)) {
4025 if (order == 0)
4026 free_hot_cold_page(page, false);
4027 else
4028 __free_pages_ok(page, order);
4029 }
4030 }
4031
4032 EXPORT_SYMBOL(__free_pages);
4033
4034 void free_pages(unsigned long addr, unsigned int order)
4035 {
4036 if (addr != 0) {
4037 VM_BUG_ON(!virt_addr_valid((void *)addr));
4038 __free_pages(virt_to_page((void *)addr), order);
4039 }
4040 }
4041
4042 EXPORT_SYMBOL(free_pages);
4043
4044 /*
4045 * Page Fragment:
4046 * An arbitrary-length arbitrary-offset area of memory which resides
4047 * within a 0 or higher order page. Multiple fragments within that page
4048 * are individually refcounted, in the page's reference counter.
4049 *
4050 * The page_frag functions below provide a simple allocation framework for
4051 * page fragments. This is used by the network stack and network device
4052 * drivers to provide a backing region of memory for use as either an
4053 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4054 */
4055 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4056 gfp_t gfp_mask)
4057 {
4058 struct page *page = NULL;
4059 gfp_t gfp = gfp_mask;
4060
4061 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4062 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4063 __GFP_NOMEMALLOC;
4064 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4065 PAGE_FRAG_CACHE_MAX_ORDER);
4066 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4067 #endif
4068 if (unlikely(!page))
4069 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4070
4071 nc->va = page ? page_address(page) : NULL;
4072
4073 return page;
4074 }
4075
4076 void __page_frag_cache_drain(struct page *page, unsigned int count)
4077 {
4078 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4079
4080 if (page_ref_sub_and_test(page, count)) {
4081 unsigned int order = compound_order(page);
4082
4083 if (order == 0)
4084 free_hot_cold_page(page, false);
4085 else
4086 __free_pages_ok(page, order);
4087 }
4088 }
4089 EXPORT_SYMBOL(__page_frag_cache_drain);
4090
4091 void *page_frag_alloc(struct page_frag_cache *nc,
4092 unsigned int fragsz, gfp_t gfp_mask)
4093 {
4094 unsigned int size = PAGE_SIZE;
4095 struct page *page;
4096 int offset;
4097
4098 if (unlikely(!nc->va)) {
4099 refill:
4100 page = __page_frag_cache_refill(nc, gfp_mask);
4101 if (!page)
4102 return NULL;
4103
4104 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4105 /* if size can vary use size else just use PAGE_SIZE */
4106 size = nc->size;
4107 #endif
4108 /* Even if we own the page, we do not use atomic_set().
4109 * This would break get_page_unless_zero() users.
4110 */
4111 page_ref_add(page, size - 1);
4112
4113 /* reset page count bias and offset to start of new frag */
4114 nc->pfmemalloc = page_is_pfmemalloc(page);
4115 nc->pagecnt_bias = size;
4116 nc->offset = size;
4117 }
4118
4119 offset = nc->offset - fragsz;
4120 if (unlikely(offset < 0)) {
4121 page = virt_to_page(nc->va);
4122
4123 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4124 goto refill;
4125
4126 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4127 /* if size can vary use size else just use PAGE_SIZE */
4128 size = nc->size;
4129 #endif
4130 /* OK, page count is 0, we can safely set it */
4131 set_page_count(page, size);
4132
4133 /* reset page count bias and offset to start of new frag */
4134 nc->pagecnt_bias = size;
4135 offset = size - fragsz;
4136 }
4137
4138 nc->pagecnt_bias--;
4139 nc->offset = offset;
4140
4141 return nc->va + offset;
4142 }
4143 EXPORT_SYMBOL(page_frag_alloc);
4144
4145 /*
4146 * Frees a page fragment allocated out of either a compound or order 0 page.
4147 */
4148 void page_frag_free(void *addr)
4149 {
4150 struct page *page = virt_to_head_page(addr);
4151
4152 if (unlikely(put_page_testzero(page)))
4153 __free_pages_ok(page, compound_order(page));
4154 }
4155 EXPORT_SYMBOL(page_frag_free);
4156
4157 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4158 size_t size)
4159 {
4160 if (addr) {
4161 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4162 unsigned long used = addr + PAGE_ALIGN(size);
4163
4164 split_page(virt_to_page((void *)addr), order);
4165 while (used < alloc_end) {
4166 free_page(used);
4167 used += PAGE_SIZE;
4168 }
4169 }
4170 return (void *)addr;
4171 }
4172
4173 /**
4174 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4175 * @size: the number of bytes to allocate
4176 * @gfp_mask: GFP flags for the allocation
4177 *
4178 * This function is similar to alloc_pages(), except that it allocates the
4179 * minimum number of pages to satisfy the request. alloc_pages() can only
4180 * allocate memory in power-of-two pages.
4181 *
4182 * This function is also limited by MAX_ORDER.
4183 *
4184 * Memory allocated by this function must be released by free_pages_exact().
4185 */
4186 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4187 {
4188 unsigned int order = get_order(size);
4189 unsigned long addr;
4190
4191 addr = __get_free_pages(gfp_mask, order);
4192 return make_alloc_exact(addr, order, size);
4193 }
4194 EXPORT_SYMBOL(alloc_pages_exact);
4195
4196 /**
4197 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4198 * pages on a node.
4199 * @nid: the preferred node ID where memory should be allocated
4200 * @size: the number of bytes to allocate
4201 * @gfp_mask: GFP flags for the allocation
4202 *
4203 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4204 * back.
4205 */
4206 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4207 {
4208 unsigned int order = get_order(size);
4209 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4210 if (!p)
4211 return NULL;
4212 return make_alloc_exact((unsigned long)page_address(p), order, size);
4213 }
4214
4215 /**
4216 * free_pages_exact - release memory allocated via alloc_pages_exact()
4217 * @virt: the value returned by alloc_pages_exact.
4218 * @size: size of allocation, same value as passed to alloc_pages_exact().
4219 *
4220 * Release the memory allocated by a previous call to alloc_pages_exact.
4221 */
4222 void free_pages_exact(void *virt, size_t size)
4223 {
4224 unsigned long addr = (unsigned long)virt;
4225 unsigned long end = addr + PAGE_ALIGN(size);
4226
4227 while (addr < end) {
4228 free_page(addr);
4229 addr += PAGE_SIZE;
4230 }
4231 }
4232 EXPORT_SYMBOL(free_pages_exact);
4233
4234 /**
4235 * nr_free_zone_pages - count number of pages beyond high watermark
4236 * @offset: The zone index of the highest zone
4237 *
4238 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4239 * high watermark within all zones at or below a given zone index. For each
4240 * zone, the number of pages is calculated as:
4241 * managed_pages - high_pages
4242 */
4243 static unsigned long nr_free_zone_pages(int offset)
4244 {
4245 struct zoneref *z;
4246 struct zone *zone;
4247
4248 /* Just pick one node, since fallback list is circular */
4249 unsigned long sum = 0;
4250
4251 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4252
4253 for_each_zone_zonelist(zone, z, zonelist, offset) {
4254 unsigned long size = zone->managed_pages;
4255 unsigned long high = high_wmark_pages(zone);
4256 if (size > high)
4257 sum += size - high;
4258 }
4259
4260 return sum;
4261 }
4262
4263 /**
4264 * nr_free_buffer_pages - count number of pages beyond high watermark
4265 *
4266 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4267 * watermark within ZONE_DMA and ZONE_NORMAL.
4268 */
4269 unsigned long nr_free_buffer_pages(void)
4270 {
4271 return nr_free_zone_pages(gfp_zone(GFP_USER));
4272 }
4273 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4274
4275 /**
4276 * nr_free_pagecache_pages - count number of pages beyond high watermark
4277 *
4278 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4279 * high watermark within all zones.
4280 */
4281 unsigned long nr_free_pagecache_pages(void)
4282 {
4283 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4284 }
4285
4286 static inline void show_node(struct zone *zone)
4287 {
4288 if (IS_ENABLED(CONFIG_NUMA))
4289 printk("Node %d ", zone_to_nid(zone));
4290 }
4291
4292 long si_mem_available(void)
4293 {
4294 long available;
4295 unsigned long pagecache;
4296 unsigned long wmark_low = 0;
4297 unsigned long pages[NR_LRU_LISTS];
4298 struct zone *zone;
4299 int lru;
4300
4301 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4302 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4303
4304 for_each_zone(zone)
4305 wmark_low += zone->watermark[WMARK_LOW];
4306
4307 /*
4308 * Estimate the amount of memory available for userspace allocations,
4309 * without causing swapping.
4310 */
4311 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4312
4313 /*
4314 * Not all the page cache can be freed, otherwise the system will
4315 * start swapping. Assume at least half of the page cache, or the
4316 * low watermark worth of cache, needs to stay.
4317 */
4318 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4319 pagecache -= min(pagecache / 2, wmark_low);
4320 available += pagecache;
4321
4322 /*
4323 * Part of the reclaimable slab consists of items that are in use,
4324 * and cannot be freed. Cap this estimate at the low watermark.
4325 */
4326 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4327 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4328
4329 if (available < 0)
4330 available = 0;
4331 return available;
4332 }
4333 EXPORT_SYMBOL_GPL(si_mem_available);
4334
4335 void si_meminfo(struct sysinfo *val)
4336 {
4337 val->totalram = totalram_pages;
4338 val->sharedram = global_node_page_state(NR_SHMEM);
4339 val->freeram = global_page_state(NR_FREE_PAGES);
4340 val->bufferram = nr_blockdev_pages();
4341 val->totalhigh = totalhigh_pages;
4342 val->freehigh = nr_free_highpages();
4343 val->mem_unit = PAGE_SIZE;
4344 }
4345
4346 EXPORT_SYMBOL(si_meminfo);
4347
4348 #ifdef CONFIG_NUMA
4349 void si_meminfo_node(struct sysinfo *val, int nid)
4350 {
4351 int zone_type; /* needs to be signed */
4352 unsigned long managed_pages = 0;
4353 unsigned long managed_highpages = 0;
4354 unsigned long free_highpages = 0;
4355 pg_data_t *pgdat = NODE_DATA(nid);
4356
4357 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4358 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4359 val->totalram = managed_pages;
4360 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4361 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4362 #ifdef CONFIG_HIGHMEM
4363 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4364 struct zone *zone = &pgdat->node_zones[zone_type];
4365
4366 if (is_highmem(zone)) {
4367 managed_highpages += zone->managed_pages;
4368 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4369 }
4370 }
4371 val->totalhigh = managed_highpages;
4372 val->freehigh = free_highpages;
4373 #else
4374 val->totalhigh = managed_highpages;
4375 val->freehigh = free_highpages;
4376 #endif
4377 val->mem_unit = PAGE_SIZE;
4378 }
4379 #endif
4380
4381 /*
4382 * Determine whether the node should be displayed or not, depending on whether
4383 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4384 */
4385 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4386 {
4387 if (!(flags & SHOW_MEM_FILTER_NODES))
4388 return false;
4389
4390 /*
4391 * no node mask - aka implicit memory numa policy. Do not bother with
4392 * the synchronization - read_mems_allowed_begin - because we do not
4393 * have to be precise here.
4394 */
4395 if (!nodemask)
4396 nodemask = &cpuset_current_mems_allowed;
4397
4398 return !node_isset(nid, *nodemask);
4399 }
4400
4401 #define K(x) ((x) << (PAGE_SHIFT-10))
4402
4403 static void show_migration_types(unsigned char type)
4404 {
4405 static const char types[MIGRATE_TYPES] = {
4406 [MIGRATE_UNMOVABLE] = 'U',
4407 [MIGRATE_MOVABLE] = 'M',
4408 [MIGRATE_RECLAIMABLE] = 'E',
4409 [MIGRATE_HIGHATOMIC] = 'H',
4410 #ifdef CONFIG_CMA
4411 [MIGRATE_CMA] = 'C',
4412 #endif
4413 #ifdef CONFIG_MEMORY_ISOLATION
4414 [MIGRATE_ISOLATE] = 'I',
4415 #endif
4416 };
4417 char tmp[MIGRATE_TYPES + 1];
4418 char *p = tmp;
4419 int i;
4420
4421 for (i = 0; i < MIGRATE_TYPES; i++) {
4422 if (type & (1 << i))
4423 *p++ = types[i];
4424 }
4425
4426 *p = '\0';
4427 printk(KERN_CONT "(%s) ", tmp);
4428 }
4429
4430 /*
4431 * Show free area list (used inside shift_scroll-lock stuff)
4432 * We also calculate the percentage fragmentation. We do this by counting the
4433 * memory on each free list with the exception of the first item on the list.
4434 *
4435 * Bits in @filter:
4436 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4437 * cpuset.
4438 */
4439 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4440 {
4441 unsigned long free_pcp = 0;
4442 int cpu;
4443 struct zone *zone;
4444 pg_data_t *pgdat;
4445
4446 for_each_populated_zone(zone) {
4447 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4448 continue;
4449
4450 for_each_online_cpu(cpu)
4451 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4452 }
4453
4454 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4455 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4456 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4457 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4458 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4459 " free:%lu free_pcp:%lu free_cma:%lu\n",
4460 global_node_page_state(NR_ACTIVE_ANON),
4461 global_node_page_state(NR_INACTIVE_ANON),
4462 global_node_page_state(NR_ISOLATED_ANON),
4463 global_node_page_state(NR_ACTIVE_FILE),
4464 global_node_page_state(NR_INACTIVE_FILE),
4465 global_node_page_state(NR_ISOLATED_FILE),
4466 global_node_page_state(NR_UNEVICTABLE),
4467 global_node_page_state(NR_FILE_DIRTY),
4468 global_node_page_state(NR_WRITEBACK),
4469 global_node_page_state(NR_UNSTABLE_NFS),
4470 global_page_state(NR_SLAB_RECLAIMABLE),
4471 global_page_state(NR_SLAB_UNRECLAIMABLE),
4472 global_node_page_state(NR_FILE_MAPPED),
4473 global_node_page_state(NR_SHMEM),
4474 global_page_state(NR_PAGETABLE),
4475 global_page_state(NR_BOUNCE),
4476 global_page_state(NR_FREE_PAGES),
4477 free_pcp,
4478 global_page_state(NR_FREE_CMA_PAGES));
4479
4480 for_each_online_pgdat(pgdat) {
4481 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4482 continue;
4483
4484 printk("Node %d"
4485 " active_anon:%lukB"
4486 " inactive_anon:%lukB"
4487 " active_file:%lukB"
4488 " inactive_file:%lukB"
4489 " unevictable:%lukB"
4490 " isolated(anon):%lukB"
4491 " isolated(file):%lukB"
4492 " mapped:%lukB"
4493 " dirty:%lukB"
4494 " writeback:%lukB"
4495 " shmem:%lukB"
4496 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4497 " shmem_thp: %lukB"
4498 " shmem_pmdmapped: %lukB"
4499 " anon_thp: %lukB"
4500 #endif
4501 " writeback_tmp:%lukB"
4502 " unstable:%lukB"
4503 " pages_scanned:%lu"
4504 " all_unreclaimable? %s"
4505 "\n",
4506 pgdat->node_id,
4507 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4508 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4509 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4510 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4511 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4512 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4513 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4514 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4515 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4516 K(node_page_state(pgdat, NR_WRITEBACK)),
4517 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4518 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4519 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4520 * HPAGE_PMD_NR),
4521 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4522 #endif
4523 K(node_page_state(pgdat, NR_SHMEM)),
4524 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4525 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4526 node_page_state(pgdat, NR_PAGES_SCANNED),
4527 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4528 }
4529
4530 for_each_populated_zone(zone) {
4531 int i;
4532
4533 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4534 continue;
4535
4536 free_pcp = 0;
4537 for_each_online_cpu(cpu)
4538 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4539
4540 show_node(zone);
4541 printk(KERN_CONT
4542 "%s"
4543 " free:%lukB"
4544 " min:%lukB"
4545 " low:%lukB"
4546 " high:%lukB"
4547 " active_anon:%lukB"
4548 " inactive_anon:%lukB"
4549 " active_file:%lukB"
4550 " inactive_file:%lukB"
4551 " unevictable:%lukB"
4552 " writepending:%lukB"
4553 " present:%lukB"
4554 " managed:%lukB"
4555 " mlocked:%lukB"
4556 " slab_reclaimable:%lukB"
4557 " slab_unreclaimable:%lukB"
4558 " kernel_stack:%lukB"
4559 " pagetables:%lukB"
4560 " bounce:%lukB"
4561 " free_pcp:%lukB"
4562 " local_pcp:%ukB"
4563 " free_cma:%lukB"
4564 "\n",
4565 zone->name,
4566 K(zone_page_state(zone, NR_FREE_PAGES)),
4567 K(min_wmark_pages(zone)),
4568 K(low_wmark_pages(zone)),
4569 K(high_wmark_pages(zone)),
4570 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4571 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4572 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4573 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4574 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4575 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4576 K(zone->present_pages),
4577 K(zone->managed_pages),
4578 K(zone_page_state(zone, NR_MLOCK)),
4579 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4580 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4581 zone_page_state(zone, NR_KERNEL_STACK_KB),
4582 K(zone_page_state(zone, NR_PAGETABLE)),
4583 K(zone_page_state(zone, NR_BOUNCE)),
4584 K(free_pcp),
4585 K(this_cpu_read(zone->pageset->pcp.count)),
4586 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4587 printk("lowmem_reserve[]:");
4588 for (i = 0; i < MAX_NR_ZONES; i++)
4589 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4590 printk(KERN_CONT "\n");
4591 }
4592
4593 for_each_populated_zone(zone) {
4594 unsigned int order;
4595 unsigned long nr[MAX_ORDER], flags, total = 0;
4596 unsigned char types[MAX_ORDER];
4597
4598 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4599 continue;
4600 show_node(zone);
4601 printk(KERN_CONT "%s: ", zone->name);
4602
4603 spin_lock_irqsave(&zone->lock, flags);
4604 for (order = 0; order < MAX_ORDER; order++) {
4605 struct free_area *area = &zone->free_area[order];
4606 int type;
4607
4608 nr[order] = area->nr_free;
4609 total += nr[order] << order;
4610
4611 types[order] = 0;
4612 for (type = 0; type < MIGRATE_TYPES; type++) {
4613 if (!list_empty(&area->free_list[type]))
4614 types[order] |= 1 << type;
4615 }
4616 }
4617 spin_unlock_irqrestore(&zone->lock, flags);
4618 for (order = 0; order < MAX_ORDER; order++) {
4619 printk(KERN_CONT "%lu*%lukB ",
4620 nr[order], K(1UL) << order);
4621 if (nr[order])
4622 show_migration_types(types[order]);
4623 }
4624 printk(KERN_CONT "= %lukB\n", K(total));
4625 }
4626
4627 hugetlb_show_meminfo();
4628
4629 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4630
4631 show_swap_cache_info();
4632 }
4633
4634 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4635 {
4636 zoneref->zone = zone;
4637 zoneref->zone_idx = zone_idx(zone);
4638 }
4639
4640 /*
4641 * Builds allocation fallback zone lists.
4642 *
4643 * Add all populated zones of a node to the zonelist.
4644 */
4645 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4646 int nr_zones)
4647 {
4648 struct zone *zone;
4649 enum zone_type zone_type = MAX_NR_ZONES;
4650
4651 do {
4652 zone_type--;
4653 zone = pgdat->node_zones + zone_type;
4654 if (managed_zone(zone)) {
4655 zoneref_set_zone(zone,
4656 &zonelist->_zonerefs[nr_zones++]);
4657 check_highest_zone(zone_type);
4658 }
4659 } while (zone_type);
4660
4661 return nr_zones;
4662 }
4663
4664
4665 /*
4666 * zonelist_order:
4667 * 0 = automatic detection of better ordering.
4668 * 1 = order by ([node] distance, -zonetype)
4669 * 2 = order by (-zonetype, [node] distance)
4670 *
4671 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4672 * the same zonelist. So only NUMA can configure this param.
4673 */
4674 #define ZONELIST_ORDER_DEFAULT 0
4675 #define ZONELIST_ORDER_NODE 1
4676 #define ZONELIST_ORDER_ZONE 2
4677
4678 /* zonelist order in the kernel.
4679 * set_zonelist_order() will set this to NODE or ZONE.
4680 */
4681 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4682 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4683
4684
4685 #ifdef CONFIG_NUMA
4686 /* The value user specified ....changed by config */
4687 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4688 /* string for sysctl */
4689 #define NUMA_ZONELIST_ORDER_LEN 16
4690 char numa_zonelist_order[16] = "default";
4691
4692 /*
4693 * interface for configure zonelist ordering.
4694 * command line option "numa_zonelist_order"
4695 * = "[dD]efault - default, automatic configuration.
4696 * = "[nN]ode - order by node locality, then by zone within node
4697 * = "[zZ]one - order by zone, then by locality within zone
4698 */
4699
4700 static int __parse_numa_zonelist_order(char *s)
4701 {
4702 if (*s == 'd' || *s == 'D') {
4703 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4704 } else if (*s == 'n' || *s == 'N') {
4705 user_zonelist_order = ZONELIST_ORDER_NODE;
4706 } else if (*s == 'z' || *s == 'Z') {
4707 user_zonelist_order = ZONELIST_ORDER_ZONE;
4708 } else {
4709 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4710 return -EINVAL;
4711 }
4712 return 0;
4713 }
4714
4715 static __init int setup_numa_zonelist_order(char *s)
4716 {
4717 int ret;
4718
4719 if (!s)
4720 return 0;
4721
4722 ret = __parse_numa_zonelist_order(s);
4723 if (ret == 0)
4724 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4725
4726 return ret;
4727 }
4728 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4729
4730 /*
4731 * sysctl handler for numa_zonelist_order
4732 */
4733 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4734 void __user *buffer, size_t *length,
4735 loff_t *ppos)
4736 {
4737 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4738 int ret;
4739 static DEFINE_MUTEX(zl_order_mutex);
4740
4741 mutex_lock(&zl_order_mutex);
4742 if (write) {
4743 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4744 ret = -EINVAL;
4745 goto out;
4746 }
4747 strcpy(saved_string, (char *)table->data);
4748 }
4749 ret = proc_dostring(table, write, buffer, length, ppos);
4750 if (ret)
4751 goto out;
4752 if (write) {
4753 int oldval = user_zonelist_order;
4754
4755 ret = __parse_numa_zonelist_order((char *)table->data);
4756 if (ret) {
4757 /*
4758 * bogus value. restore saved string
4759 */
4760 strncpy((char *)table->data, saved_string,
4761 NUMA_ZONELIST_ORDER_LEN);
4762 user_zonelist_order = oldval;
4763 } else if (oldval != user_zonelist_order) {
4764 mutex_lock(&zonelists_mutex);
4765 build_all_zonelists(NULL, NULL);
4766 mutex_unlock(&zonelists_mutex);
4767 }
4768 }
4769 out:
4770 mutex_unlock(&zl_order_mutex);
4771 return ret;
4772 }
4773
4774
4775 #define MAX_NODE_LOAD (nr_online_nodes)
4776 static int node_load[MAX_NUMNODES];
4777
4778 /**
4779 * find_next_best_node - find the next node that should appear in a given node's fallback list
4780 * @node: node whose fallback list we're appending
4781 * @used_node_mask: nodemask_t of already used nodes
4782 *
4783 * We use a number of factors to determine which is the next node that should
4784 * appear on a given node's fallback list. The node should not have appeared
4785 * already in @node's fallback list, and it should be the next closest node
4786 * according to the distance array (which contains arbitrary distance values
4787 * from each node to each node in the system), and should also prefer nodes
4788 * with no CPUs, since presumably they'll have very little allocation pressure
4789 * on them otherwise.
4790 * It returns -1 if no node is found.
4791 */
4792 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4793 {
4794 int n, val;
4795 int min_val = INT_MAX;
4796 int best_node = NUMA_NO_NODE;
4797 const struct cpumask *tmp = cpumask_of_node(0);
4798
4799 /* Use the local node if we haven't already */
4800 if (!node_isset(node, *used_node_mask)) {
4801 node_set(node, *used_node_mask);
4802 return node;
4803 }
4804
4805 for_each_node_state(n, N_MEMORY) {
4806
4807 /* Don't want a node to appear more than once */
4808 if (node_isset(n, *used_node_mask))
4809 continue;
4810
4811 /* Use the distance array to find the distance */
4812 val = node_distance(node, n);
4813
4814 /* Penalize nodes under us ("prefer the next node") */
4815 val += (n < node);
4816
4817 /* Give preference to headless and unused nodes */
4818 tmp = cpumask_of_node(n);
4819 if (!cpumask_empty(tmp))
4820 val += PENALTY_FOR_NODE_WITH_CPUS;
4821
4822 /* Slight preference for less loaded node */
4823 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4824 val += node_load[n];
4825
4826 if (val < min_val) {
4827 min_val = val;
4828 best_node = n;
4829 }
4830 }
4831
4832 if (best_node >= 0)
4833 node_set(best_node, *used_node_mask);
4834
4835 return best_node;
4836 }
4837
4838
4839 /*
4840 * Build zonelists ordered by node and zones within node.
4841 * This results in maximum locality--normal zone overflows into local
4842 * DMA zone, if any--but risks exhausting DMA zone.
4843 */
4844 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4845 {
4846 int j;
4847 struct zonelist *zonelist;
4848
4849 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4850 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4851 ;
4852 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4853 zonelist->_zonerefs[j].zone = NULL;
4854 zonelist->_zonerefs[j].zone_idx = 0;
4855 }
4856
4857 /*
4858 * Build gfp_thisnode zonelists
4859 */
4860 static void build_thisnode_zonelists(pg_data_t *pgdat)
4861 {
4862 int j;
4863 struct zonelist *zonelist;
4864
4865 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4866 j = build_zonelists_node(pgdat, zonelist, 0);
4867 zonelist->_zonerefs[j].zone = NULL;
4868 zonelist->_zonerefs[j].zone_idx = 0;
4869 }
4870
4871 /*
4872 * Build zonelists ordered by zone and nodes within zones.
4873 * This results in conserving DMA zone[s] until all Normal memory is
4874 * exhausted, but results in overflowing to remote node while memory
4875 * may still exist in local DMA zone.
4876 */
4877 static int node_order[MAX_NUMNODES];
4878
4879 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4880 {
4881 int pos, j, node;
4882 int zone_type; /* needs to be signed */
4883 struct zone *z;
4884 struct zonelist *zonelist;
4885
4886 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4887 pos = 0;
4888 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4889 for (j = 0; j < nr_nodes; j++) {
4890 node = node_order[j];
4891 z = &NODE_DATA(node)->node_zones[zone_type];
4892 if (managed_zone(z)) {
4893 zoneref_set_zone(z,
4894 &zonelist->_zonerefs[pos++]);
4895 check_highest_zone(zone_type);
4896 }
4897 }
4898 }
4899 zonelist->_zonerefs[pos].zone = NULL;
4900 zonelist->_zonerefs[pos].zone_idx = 0;
4901 }
4902
4903 #if defined(CONFIG_64BIT)
4904 /*
4905 * Devices that require DMA32/DMA are relatively rare and do not justify a
4906 * penalty to every machine in case the specialised case applies. Default
4907 * to Node-ordering on 64-bit NUMA machines
4908 */
4909 static int default_zonelist_order(void)
4910 {
4911 return ZONELIST_ORDER_NODE;
4912 }
4913 #else
4914 /*
4915 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4916 * by the kernel. If processes running on node 0 deplete the low memory zone
4917 * then reclaim will occur more frequency increasing stalls and potentially
4918 * be easier to OOM if a large percentage of the zone is under writeback or
4919 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4920 * Hence, default to zone ordering on 32-bit.
4921 */
4922 static int default_zonelist_order(void)
4923 {
4924 return ZONELIST_ORDER_ZONE;
4925 }
4926 #endif /* CONFIG_64BIT */
4927
4928 static void set_zonelist_order(void)
4929 {
4930 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4931 current_zonelist_order = default_zonelist_order();
4932 else
4933 current_zonelist_order = user_zonelist_order;
4934 }
4935
4936 static void build_zonelists(pg_data_t *pgdat)
4937 {
4938 int i, node, load;
4939 nodemask_t used_mask;
4940 int local_node, prev_node;
4941 struct zonelist *zonelist;
4942 unsigned int order = current_zonelist_order;
4943
4944 /* initialize zonelists */
4945 for (i = 0; i < MAX_ZONELISTS; i++) {
4946 zonelist = pgdat->node_zonelists + i;
4947 zonelist->_zonerefs[0].zone = NULL;
4948 zonelist->_zonerefs[0].zone_idx = 0;
4949 }
4950
4951 /* NUMA-aware ordering of nodes */
4952 local_node = pgdat->node_id;
4953 load = nr_online_nodes;
4954 prev_node = local_node;
4955 nodes_clear(used_mask);
4956
4957 memset(node_order, 0, sizeof(node_order));
4958 i = 0;
4959
4960 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4961 /*
4962 * We don't want to pressure a particular node.
4963 * So adding penalty to the first node in same
4964 * distance group to make it round-robin.
4965 */
4966 if (node_distance(local_node, node) !=
4967 node_distance(local_node, prev_node))
4968 node_load[node] = load;
4969
4970 prev_node = node;
4971 load--;
4972 if (order == ZONELIST_ORDER_NODE)
4973 build_zonelists_in_node_order(pgdat, node);
4974 else
4975 node_order[i++] = node; /* remember order */
4976 }
4977
4978 if (order == ZONELIST_ORDER_ZONE) {
4979 /* calculate node order -- i.e., DMA last! */
4980 build_zonelists_in_zone_order(pgdat, i);
4981 }
4982
4983 build_thisnode_zonelists(pgdat);
4984 }
4985
4986 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4987 /*
4988 * Return node id of node used for "local" allocations.
4989 * I.e., first node id of first zone in arg node's generic zonelist.
4990 * Used for initializing percpu 'numa_mem', which is used primarily
4991 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4992 */
4993 int local_memory_node(int node)
4994 {
4995 struct zoneref *z;
4996
4997 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4998 gfp_zone(GFP_KERNEL),
4999 NULL);
5000 return z->zone->node;
5001 }
5002 #endif
5003
5004 static void setup_min_unmapped_ratio(void);
5005 static void setup_min_slab_ratio(void);
5006 #else /* CONFIG_NUMA */
5007
5008 static void set_zonelist_order(void)
5009 {
5010 current_zonelist_order = ZONELIST_ORDER_ZONE;
5011 }
5012
5013 static void build_zonelists(pg_data_t *pgdat)
5014 {
5015 int node, local_node;
5016 enum zone_type j;
5017 struct zonelist *zonelist;
5018
5019 local_node = pgdat->node_id;
5020
5021 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5022 j = build_zonelists_node(pgdat, zonelist, 0);
5023
5024 /*
5025 * Now we build the zonelist so that it contains the zones
5026 * of all the other nodes.
5027 * We don't want to pressure a particular node, so when
5028 * building the zones for node N, we make sure that the
5029 * zones coming right after the local ones are those from
5030 * node N+1 (modulo N)
5031 */
5032 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5033 if (!node_online(node))
5034 continue;
5035 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5036 }
5037 for (node = 0; node < local_node; node++) {
5038 if (!node_online(node))
5039 continue;
5040 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5041 }
5042
5043 zonelist->_zonerefs[j].zone = NULL;
5044 zonelist->_zonerefs[j].zone_idx = 0;
5045 }
5046
5047 #endif /* CONFIG_NUMA */
5048
5049 /*
5050 * Boot pageset table. One per cpu which is going to be used for all
5051 * zones and all nodes. The parameters will be set in such a way
5052 * that an item put on a list will immediately be handed over to
5053 * the buddy list. This is safe since pageset manipulation is done
5054 * with interrupts disabled.
5055 *
5056 * The boot_pagesets must be kept even after bootup is complete for
5057 * unused processors and/or zones. They do play a role for bootstrapping
5058 * hotplugged processors.
5059 *
5060 * zoneinfo_show() and maybe other functions do
5061 * not check if the processor is online before following the pageset pointer.
5062 * Other parts of the kernel may not check if the zone is available.
5063 */
5064 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5065 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5066 static void setup_zone_pageset(struct zone *zone);
5067
5068 /*
5069 * Global mutex to protect against size modification of zonelists
5070 * as well as to serialize pageset setup for the new populated zone.
5071 */
5072 DEFINE_MUTEX(zonelists_mutex);
5073
5074 /* return values int ....just for stop_machine() */
5075 static int __build_all_zonelists(void *data)
5076 {
5077 int nid;
5078 int cpu;
5079 pg_data_t *self = data;
5080
5081 #ifdef CONFIG_NUMA
5082 memset(node_load, 0, sizeof(node_load));
5083 #endif
5084
5085 if (self && !node_online(self->node_id)) {
5086 build_zonelists(self);
5087 }
5088
5089 for_each_online_node(nid) {
5090 pg_data_t *pgdat = NODE_DATA(nid);
5091
5092 build_zonelists(pgdat);
5093 }
5094
5095 /*
5096 * Initialize the boot_pagesets that are going to be used
5097 * for bootstrapping processors. The real pagesets for
5098 * each zone will be allocated later when the per cpu
5099 * allocator is available.
5100 *
5101 * boot_pagesets are used also for bootstrapping offline
5102 * cpus if the system is already booted because the pagesets
5103 * are needed to initialize allocators on a specific cpu too.
5104 * F.e. the percpu allocator needs the page allocator which
5105 * needs the percpu allocator in order to allocate its pagesets
5106 * (a chicken-egg dilemma).
5107 */
5108 for_each_possible_cpu(cpu) {
5109 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5110
5111 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5112 /*
5113 * We now know the "local memory node" for each node--
5114 * i.e., the node of the first zone in the generic zonelist.
5115 * Set up numa_mem percpu variable for on-line cpus. During
5116 * boot, only the boot cpu should be on-line; we'll init the
5117 * secondary cpus' numa_mem as they come on-line. During
5118 * node/memory hotplug, we'll fixup all on-line cpus.
5119 */
5120 if (cpu_online(cpu))
5121 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5122 #endif
5123 }
5124
5125 return 0;
5126 }
5127
5128 static noinline void __init
5129 build_all_zonelists_init(void)
5130 {
5131 __build_all_zonelists(NULL);
5132 mminit_verify_zonelist();
5133 cpuset_init_current_mems_allowed();
5134 }
5135
5136 /*
5137 * Called with zonelists_mutex held always
5138 * unless system_state == SYSTEM_BOOTING.
5139 *
5140 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5141 * [we're only called with non-NULL zone through __meminit paths] and
5142 * (2) call of __init annotated helper build_all_zonelists_init
5143 * [protected by SYSTEM_BOOTING].
5144 */
5145 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5146 {
5147 set_zonelist_order();
5148
5149 if (system_state == SYSTEM_BOOTING) {
5150 build_all_zonelists_init();
5151 } else {
5152 #ifdef CONFIG_MEMORY_HOTPLUG
5153 if (zone)
5154 setup_zone_pageset(zone);
5155 #endif
5156 /* we have to stop all cpus to guarantee there is no user
5157 of zonelist */
5158 stop_machine(__build_all_zonelists, pgdat, NULL);
5159 /* cpuset refresh routine should be here */
5160 }
5161 vm_total_pages = nr_free_pagecache_pages();
5162 /*
5163 * Disable grouping by mobility if the number of pages in the
5164 * system is too low to allow the mechanism to work. It would be
5165 * more accurate, but expensive to check per-zone. This check is
5166 * made on memory-hotadd so a system can start with mobility
5167 * disabled and enable it later
5168 */
5169 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5170 page_group_by_mobility_disabled = 1;
5171 else
5172 page_group_by_mobility_disabled = 0;
5173
5174 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5175 nr_online_nodes,
5176 zonelist_order_name[current_zonelist_order],
5177 page_group_by_mobility_disabled ? "off" : "on",
5178 vm_total_pages);
5179 #ifdef CONFIG_NUMA
5180 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5181 #endif
5182 }
5183
5184 /*
5185 * Initially all pages are reserved - free ones are freed
5186 * up by free_all_bootmem() once the early boot process is
5187 * done. Non-atomic initialization, single-pass.
5188 */
5189 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5190 unsigned long start_pfn, enum memmap_context context)
5191 {
5192 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5193 unsigned long end_pfn = start_pfn + size;
5194 pg_data_t *pgdat = NODE_DATA(nid);
5195 unsigned long pfn;
5196 unsigned long nr_initialised = 0;
5197 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5198 struct memblock_region *r = NULL, *tmp;
5199 #endif
5200
5201 if (highest_memmap_pfn < end_pfn - 1)
5202 highest_memmap_pfn = end_pfn - 1;
5203
5204 /*
5205 * Honor reservation requested by the driver for this ZONE_DEVICE
5206 * memory
5207 */
5208 if (altmap && start_pfn == altmap->base_pfn)
5209 start_pfn += altmap->reserve;
5210
5211 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5212 /*
5213 * There can be holes in boot-time mem_map[]s handed to this
5214 * function. They do not exist on hotplugged memory.
5215 */
5216 if (context != MEMMAP_EARLY)
5217 goto not_early;
5218
5219 if (!early_pfn_valid(pfn)) {
5220 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5221 /*
5222 * Skip to the pfn preceding the next valid one (or
5223 * end_pfn), such that we hit a valid pfn (or end_pfn)
5224 * on our next iteration of the loop.
5225 */
5226 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5227 #endif
5228 continue;
5229 }
5230 if (!early_pfn_in_nid(pfn, nid))
5231 continue;
5232 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5233 break;
5234
5235 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5236 /*
5237 * Check given memblock attribute by firmware which can affect
5238 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5239 * mirrored, it's an overlapped memmap init. skip it.
5240 */
5241 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5242 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5243 for_each_memblock(memory, tmp)
5244 if (pfn < memblock_region_memory_end_pfn(tmp))
5245 break;
5246 r = tmp;
5247 }
5248 if (pfn >= memblock_region_memory_base_pfn(r) &&
5249 memblock_is_mirror(r)) {
5250 /* already initialized as NORMAL */
5251 pfn = memblock_region_memory_end_pfn(r);
5252 continue;
5253 }
5254 }
5255 #endif
5256
5257 not_early:
5258 /*
5259 * Mark the block movable so that blocks are reserved for
5260 * movable at startup. This will force kernel allocations
5261 * to reserve their blocks rather than leaking throughout
5262 * the address space during boot when many long-lived
5263 * kernel allocations are made.
5264 *
5265 * bitmap is created for zone's valid pfn range. but memmap
5266 * can be created for invalid pages (for alignment)
5267 * check here not to call set_pageblock_migratetype() against
5268 * pfn out of zone.
5269 */
5270 if (!(pfn & (pageblock_nr_pages - 1))) {
5271 struct page *page = pfn_to_page(pfn);
5272
5273 __init_single_page(page, pfn, zone, nid);
5274 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5275 } else {
5276 __init_single_pfn(pfn, zone, nid);
5277 }
5278 }
5279 }
5280
5281 static void __meminit zone_init_free_lists(struct zone *zone)
5282 {
5283 unsigned int order, t;
5284 for_each_migratetype_order(order, t) {
5285 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5286 zone->free_area[order].nr_free = 0;
5287 }
5288 }
5289
5290 #ifndef __HAVE_ARCH_MEMMAP_INIT
5291 #define memmap_init(size, nid, zone, start_pfn) \
5292 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5293 #endif
5294
5295 static int zone_batchsize(struct zone *zone)
5296 {
5297 #ifdef CONFIG_MMU
5298 int batch;
5299
5300 /*
5301 * The per-cpu-pages pools are set to around 1000th of the
5302 * size of the zone. But no more than 1/2 of a meg.
5303 *
5304 * OK, so we don't know how big the cache is. So guess.
5305 */
5306 batch = zone->managed_pages / 1024;
5307 if (batch * PAGE_SIZE > 512 * 1024)
5308 batch = (512 * 1024) / PAGE_SIZE;
5309 batch /= 4; /* We effectively *= 4 below */
5310 if (batch < 1)
5311 batch = 1;
5312
5313 /*
5314 * Clamp the batch to a 2^n - 1 value. Having a power
5315 * of 2 value was found to be more likely to have
5316 * suboptimal cache aliasing properties in some cases.
5317 *
5318 * For example if 2 tasks are alternately allocating
5319 * batches of pages, one task can end up with a lot
5320 * of pages of one half of the possible page colors
5321 * and the other with pages of the other colors.
5322 */
5323 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5324
5325 return batch;
5326
5327 #else
5328 /* The deferral and batching of frees should be suppressed under NOMMU
5329 * conditions.
5330 *
5331 * The problem is that NOMMU needs to be able to allocate large chunks
5332 * of contiguous memory as there's no hardware page translation to
5333 * assemble apparent contiguous memory from discontiguous pages.
5334 *
5335 * Queueing large contiguous runs of pages for batching, however,
5336 * causes the pages to actually be freed in smaller chunks. As there
5337 * can be a significant delay between the individual batches being
5338 * recycled, this leads to the once large chunks of space being
5339 * fragmented and becoming unavailable for high-order allocations.
5340 */
5341 return 0;
5342 #endif
5343 }
5344
5345 /*
5346 * pcp->high and pcp->batch values are related and dependent on one another:
5347 * ->batch must never be higher then ->high.
5348 * The following function updates them in a safe manner without read side
5349 * locking.
5350 *
5351 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5352 * those fields changing asynchronously (acording the the above rule).
5353 *
5354 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5355 * outside of boot time (or some other assurance that no concurrent updaters
5356 * exist).
5357 */
5358 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5359 unsigned long batch)
5360 {
5361 /* start with a fail safe value for batch */
5362 pcp->batch = 1;
5363 smp_wmb();
5364
5365 /* Update high, then batch, in order */
5366 pcp->high = high;
5367 smp_wmb();
5368
5369 pcp->batch = batch;
5370 }
5371
5372 /* a companion to pageset_set_high() */
5373 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5374 {
5375 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5376 }
5377
5378 static void pageset_init(struct per_cpu_pageset *p)
5379 {
5380 struct per_cpu_pages *pcp;
5381 int migratetype;
5382
5383 memset(p, 0, sizeof(*p));
5384
5385 pcp = &p->pcp;
5386 pcp->count = 0;
5387 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5388 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5389 }
5390
5391 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5392 {
5393 pageset_init(p);
5394 pageset_set_batch(p, batch);
5395 }
5396
5397 /*
5398 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5399 * to the value high for the pageset p.
5400 */
5401 static void pageset_set_high(struct per_cpu_pageset *p,
5402 unsigned long high)
5403 {
5404 unsigned long batch = max(1UL, high / 4);
5405 if ((high / 4) > (PAGE_SHIFT * 8))
5406 batch = PAGE_SHIFT * 8;
5407
5408 pageset_update(&p->pcp, high, batch);
5409 }
5410
5411 static void pageset_set_high_and_batch(struct zone *zone,
5412 struct per_cpu_pageset *pcp)
5413 {
5414 if (percpu_pagelist_fraction)
5415 pageset_set_high(pcp,
5416 (zone->managed_pages /
5417 percpu_pagelist_fraction));
5418 else
5419 pageset_set_batch(pcp, zone_batchsize(zone));
5420 }
5421
5422 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5423 {
5424 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5425
5426 pageset_init(pcp);
5427 pageset_set_high_and_batch(zone, pcp);
5428 }
5429
5430 static void __meminit setup_zone_pageset(struct zone *zone)
5431 {
5432 int cpu;
5433 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5434 for_each_possible_cpu(cpu)
5435 zone_pageset_init(zone, cpu);
5436 }
5437
5438 /*
5439 * Allocate per cpu pagesets and initialize them.
5440 * Before this call only boot pagesets were available.
5441 */
5442 void __init setup_per_cpu_pageset(void)
5443 {
5444 struct pglist_data *pgdat;
5445 struct zone *zone;
5446
5447 for_each_populated_zone(zone)
5448 setup_zone_pageset(zone);
5449
5450 for_each_online_pgdat(pgdat)
5451 pgdat->per_cpu_nodestats =
5452 alloc_percpu(struct per_cpu_nodestat);
5453 }
5454
5455 static __meminit void zone_pcp_init(struct zone *zone)
5456 {
5457 /*
5458 * per cpu subsystem is not up at this point. The following code
5459 * relies on the ability of the linker to provide the
5460 * offset of a (static) per cpu variable into the per cpu area.
5461 */
5462 zone->pageset = &boot_pageset;
5463
5464 if (populated_zone(zone))
5465 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5466 zone->name, zone->present_pages,
5467 zone_batchsize(zone));
5468 }
5469
5470 int __meminit init_currently_empty_zone(struct zone *zone,
5471 unsigned long zone_start_pfn,
5472 unsigned long size)
5473 {
5474 struct pglist_data *pgdat = zone->zone_pgdat;
5475
5476 pgdat->nr_zones = zone_idx(zone) + 1;
5477
5478 zone->zone_start_pfn = zone_start_pfn;
5479
5480 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5481 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5482 pgdat->node_id,
5483 (unsigned long)zone_idx(zone),
5484 zone_start_pfn, (zone_start_pfn + size));
5485
5486 zone_init_free_lists(zone);
5487 zone->initialized = 1;
5488
5489 return 0;
5490 }
5491
5492 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5493 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5494
5495 /*
5496 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5497 */
5498 int __meminit __early_pfn_to_nid(unsigned long pfn,
5499 struct mminit_pfnnid_cache *state)
5500 {
5501 unsigned long start_pfn, end_pfn;
5502 int nid;
5503
5504 if (state->last_start <= pfn && pfn < state->last_end)
5505 return state->last_nid;
5506
5507 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5508 if (nid != -1) {
5509 state->last_start = start_pfn;
5510 state->last_end = end_pfn;
5511 state->last_nid = nid;
5512 }
5513
5514 return nid;
5515 }
5516 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5517
5518 /**
5519 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5520 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5521 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5522 *
5523 * If an architecture guarantees that all ranges registered contain no holes
5524 * and may be freed, this this function may be used instead of calling
5525 * memblock_free_early_nid() manually.
5526 */
5527 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5528 {
5529 unsigned long start_pfn, end_pfn;
5530 int i, this_nid;
5531
5532 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5533 start_pfn = min(start_pfn, max_low_pfn);
5534 end_pfn = min(end_pfn, max_low_pfn);
5535
5536 if (start_pfn < end_pfn)
5537 memblock_free_early_nid(PFN_PHYS(start_pfn),
5538 (end_pfn - start_pfn) << PAGE_SHIFT,
5539 this_nid);
5540 }
5541 }
5542
5543 /**
5544 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5545 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5546 *
5547 * If an architecture guarantees that all ranges registered contain no holes and may
5548 * be freed, this function may be used instead of calling memory_present() manually.
5549 */
5550 void __init sparse_memory_present_with_active_regions(int nid)
5551 {
5552 unsigned long start_pfn, end_pfn;
5553 int i, this_nid;
5554
5555 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5556 memory_present(this_nid, start_pfn, end_pfn);
5557 }
5558
5559 /**
5560 * get_pfn_range_for_nid - Return the start and end page frames for a node
5561 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5562 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5563 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5564 *
5565 * It returns the start and end page frame of a node based on information
5566 * provided by memblock_set_node(). If called for a node
5567 * with no available memory, a warning is printed and the start and end
5568 * PFNs will be 0.
5569 */
5570 void __meminit get_pfn_range_for_nid(unsigned int nid,
5571 unsigned long *start_pfn, unsigned long *end_pfn)
5572 {
5573 unsigned long this_start_pfn, this_end_pfn;
5574 int i;
5575
5576 *start_pfn = -1UL;
5577 *end_pfn = 0;
5578
5579 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5580 *start_pfn = min(*start_pfn, this_start_pfn);
5581 *end_pfn = max(*end_pfn, this_end_pfn);
5582 }
5583
5584 if (*start_pfn == -1UL)
5585 *start_pfn = 0;
5586 }
5587
5588 /*
5589 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5590 * assumption is made that zones within a node are ordered in monotonic
5591 * increasing memory addresses so that the "highest" populated zone is used
5592 */
5593 static void __init find_usable_zone_for_movable(void)
5594 {
5595 int zone_index;
5596 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5597 if (zone_index == ZONE_MOVABLE)
5598 continue;
5599
5600 if (arch_zone_highest_possible_pfn[zone_index] >
5601 arch_zone_lowest_possible_pfn[zone_index])
5602 break;
5603 }
5604
5605 VM_BUG_ON(zone_index == -1);
5606 movable_zone = zone_index;
5607 }
5608
5609 /*
5610 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5611 * because it is sized independent of architecture. Unlike the other zones,
5612 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5613 * in each node depending on the size of each node and how evenly kernelcore
5614 * is distributed. This helper function adjusts the zone ranges
5615 * provided by the architecture for a given node by using the end of the
5616 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5617 * zones within a node are in order of monotonic increases memory addresses
5618 */
5619 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5620 unsigned long zone_type,
5621 unsigned long node_start_pfn,
5622 unsigned long node_end_pfn,
5623 unsigned long *zone_start_pfn,
5624 unsigned long *zone_end_pfn)
5625 {
5626 /* Only adjust if ZONE_MOVABLE is on this node */
5627 if (zone_movable_pfn[nid]) {
5628 /* Size ZONE_MOVABLE */
5629 if (zone_type == ZONE_MOVABLE) {
5630 *zone_start_pfn = zone_movable_pfn[nid];
5631 *zone_end_pfn = min(node_end_pfn,
5632 arch_zone_highest_possible_pfn[movable_zone]);
5633
5634 /* Adjust for ZONE_MOVABLE starting within this range */
5635 } else if (!mirrored_kernelcore &&
5636 *zone_start_pfn < zone_movable_pfn[nid] &&
5637 *zone_end_pfn > zone_movable_pfn[nid]) {
5638 *zone_end_pfn = zone_movable_pfn[nid];
5639
5640 /* Check if this whole range is within ZONE_MOVABLE */
5641 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5642 *zone_start_pfn = *zone_end_pfn;
5643 }
5644 }
5645
5646 /*
5647 * Return the number of pages a zone spans in a node, including holes
5648 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5649 */
5650 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5651 unsigned long zone_type,
5652 unsigned long node_start_pfn,
5653 unsigned long node_end_pfn,
5654 unsigned long *zone_start_pfn,
5655 unsigned long *zone_end_pfn,
5656 unsigned long *ignored)
5657 {
5658 /* When hotadd a new node from cpu_up(), the node should be empty */
5659 if (!node_start_pfn && !node_end_pfn)
5660 return 0;
5661
5662 /* Get the start and end of the zone */
5663 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5664 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5665 adjust_zone_range_for_zone_movable(nid, zone_type,
5666 node_start_pfn, node_end_pfn,
5667 zone_start_pfn, zone_end_pfn);
5668
5669 /* Check that this node has pages within the zone's required range */
5670 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5671 return 0;
5672
5673 /* Move the zone boundaries inside the node if necessary */
5674 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5675 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5676
5677 /* Return the spanned pages */
5678 return *zone_end_pfn - *zone_start_pfn;
5679 }
5680
5681 /*
5682 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5683 * then all holes in the requested range will be accounted for.
5684 */
5685 unsigned long __meminit __absent_pages_in_range(int nid,
5686 unsigned long range_start_pfn,
5687 unsigned long range_end_pfn)
5688 {
5689 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5690 unsigned long start_pfn, end_pfn;
5691 int i;
5692
5693 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5694 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5695 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5696 nr_absent -= end_pfn - start_pfn;
5697 }
5698 return nr_absent;
5699 }
5700
5701 /**
5702 * absent_pages_in_range - Return number of page frames in holes within a range
5703 * @start_pfn: The start PFN to start searching for holes
5704 * @end_pfn: The end PFN to stop searching for holes
5705 *
5706 * It returns the number of pages frames in memory holes within a range.
5707 */
5708 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5709 unsigned long end_pfn)
5710 {
5711 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5712 }
5713
5714 /* Return the number of page frames in holes in a zone on a node */
5715 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5716 unsigned long zone_type,
5717 unsigned long node_start_pfn,
5718 unsigned long node_end_pfn,
5719 unsigned long *ignored)
5720 {
5721 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5722 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5723 unsigned long zone_start_pfn, zone_end_pfn;
5724 unsigned long nr_absent;
5725
5726 /* When hotadd a new node from cpu_up(), the node should be empty */
5727 if (!node_start_pfn && !node_end_pfn)
5728 return 0;
5729
5730 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5731 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5732
5733 adjust_zone_range_for_zone_movable(nid, zone_type,
5734 node_start_pfn, node_end_pfn,
5735 &zone_start_pfn, &zone_end_pfn);
5736 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5737
5738 /*
5739 * ZONE_MOVABLE handling.
5740 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5741 * and vice versa.
5742 */
5743 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5744 unsigned long start_pfn, end_pfn;
5745 struct memblock_region *r;
5746
5747 for_each_memblock(memory, r) {
5748 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5749 zone_start_pfn, zone_end_pfn);
5750 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5751 zone_start_pfn, zone_end_pfn);
5752
5753 if (zone_type == ZONE_MOVABLE &&
5754 memblock_is_mirror(r))
5755 nr_absent += end_pfn - start_pfn;
5756
5757 if (zone_type == ZONE_NORMAL &&
5758 !memblock_is_mirror(r))
5759 nr_absent += end_pfn - start_pfn;
5760 }
5761 }
5762
5763 return nr_absent;
5764 }
5765
5766 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5767 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5768 unsigned long zone_type,
5769 unsigned long node_start_pfn,
5770 unsigned long node_end_pfn,
5771 unsigned long *zone_start_pfn,
5772 unsigned long *zone_end_pfn,
5773 unsigned long *zones_size)
5774 {
5775 unsigned int zone;
5776
5777 *zone_start_pfn = node_start_pfn;
5778 for (zone = 0; zone < zone_type; zone++)
5779 *zone_start_pfn += zones_size[zone];
5780
5781 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5782
5783 return zones_size[zone_type];
5784 }
5785
5786 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5787 unsigned long zone_type,
5788 unsigned long node_start_pfn,
5789 unsigned long node_end_pfn,
5790 unsigned long *zholes_size)
5791 {
5792 if (!zholes_size)
5793 return 0;
5794
5795 return zholes_size[zone_type];
5796 }
5797
5798 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5799
5800 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5801 unsigned long node_start_pfn,
5802 unsigned long node_end_pfn,
5803 unsigned long *zones_size,
5804 unsigned long *zholes_size)
5805 {
5806 unsigned long realtotalpages = 0, totalpages = 0;
5807 enum zone_type i;
5808
5809 for (i = 0; i < MAX_NR_ZONES; i++) {
5810 struct zone *zone = pgdat->node_zones + i;
5811 unsigned long zone_start_pfn, zone_end_pfn;
5812 unsigned long size, real_size;
5813
5814 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5815 node_start_pfn,
5816 node_end_pfn,
5817 &zone_start_pfn,
5818 &zone_end_pfn,
5819 zones_size);
5820 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5821 node_start_pfn, node_end_pfn,
5822 zholes_size);
5823 if (size)
5824 zone->zone_start_pfn = zone_start_pfn;
5825 else
5826 zone->zone_start_pfn = 0;
5827 zone->spanned_pages = size;
5828 zone->present_pages = real_size;
5829
5830 totalpages += size;
5831 realtotalpages += real_size;
5832 }
5833
5834 pgdat->node_spanned_pages = totalpages;
5835 pgdat->node_present_pages = realtotalpages;
5836 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5837 realtotalpages);
5838 }
5839
5840 #ifndef CONFIG_SPARSEMEM
5841 /*
5842 * Calculate the size of the zone->blockflags rounded to an unsigned long
5843 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5844 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5845 * round what is now in bits to nearest long in bits, then return it in
5846 * bytes.
5847 */
5848 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5849 {
5850 unsigned long usemapsize;
5851
5852 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5853 usemapsize = roundup(zonesize, pageblock_nr_pages);
5854 usemapsize = usemapsize >> pageblock_order;
5855 usemapsize *= NR_PAGEBLOCK_BITS;
5856 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5857
5858 return usemapsize / 8;
5859 }
5860
5861 static void __init setup_usemap(struct pglist_data *pgdat,
5862 struct zone *zone,
5863 unsigned long zone_start_pfn,
5864 unsigned long zonesize)
5865 {
5866 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5867 zone->pageblock_flags = NULL;
5868 if (usemapsize)
5869 zone->pageblock_flags =
5870 memblock_virt_alloc_node_nopanic(usemapsize,
5871 pgdat->node_id);
5872 }
5873 #else
5874 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5875 unsigned long zone_start_pfn, unsigned long zonesize) {}
5876 #endif /* CONFIG_SPARSEMEM */
5877
5878 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5879
5880 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5881 void __paginginit set_pageblock_order(void)
5882 {
5883 unsigned int order;
5884
5885 /* Check that pageblock_nr_pages has not already been setup */
5886 if (pageblock_order)
5887 return;
5888
5889 if (HPAGE_SHIFT > PAGE_SHIFT)
5890 order = HUGETLB_PAGE_ORDER;
5891 else
5892 order = MAX_ORDER - 1;
5893
5894 /*
5895 * Assume the largest contiguous order of interest is a huge page.
5896 * This value may be variable depending on boot parameters on IA64 and
5897 * powerpc.
5898 */
5899 pageblock_order = order;
5900 }
5901 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5902
5903 /*
5904 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5905 * is unused as pageblock_order is set at compile-time. See
5906 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5907 * the kernel config
5908 */
5909 void __paginginit set_pageblock_order(void)
5910 {
5911 }
5912
5913 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5914
5915 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5916 unsigned long present_pages)
5917 {
5918 unsigned long pages = spanned_pages;
5919
5920 /*
5921 * Provide a more accurate estimation if there are holes within
5922 * the zone and SPARSEMEM is in use. If there are holes within the
5923 * zone, each populated memory region may cost us one or two extra
5924 * memmap pages due to alignment because memmap pages for each
5925 * populated regions may not naturally algined on page boundary.
5926 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5927 */
5928 if (spanned_pages > present_pages + (present_pages >> 4) &&
5929 IS_ENABLED(CONFIG_SPARSEMEM))
5930 pages = present_pages;
5931
5932 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5933 }
5934
5935 /*
5936 * Set up the zone data structures:
5937 * - mark all pages reserved
5938 * - mark all memory queues empty
5939 * - clear the memory bitmaps
5940 *
5941 * NOTE: pgdat should get zeroed by caller.
5942 */
5943 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5944 {
5945 enum zone_type j;
5946 int nid = pgdat->node_id;
5947 int ret;
5948
5949 pgdat_resize_init(pgdat);
5950 #ifdef CONFIG_NUMA_BALANCING
5951 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5952 pgdat->numabalancing_migrate_nr_pages = 0;
5953 pgdat->numabalancing_migrate_next_window = jiffies;
5954 #endif
5955 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5956 spin_lock_init(&pgdat->split_queue_lock);
5957 INIT_LIST_HEAD(&pgdat->split_queue);
5958 pgdat->split_queue_len = 0;
5959 #endif
5960 init_waitqueue_head(&pgdat->kswapd_wait);
5961 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5962 #ifdef CONFIG_COMPACTION
5963 init_waitqueue_head(&pgdat->kcompactd_wait);
5964 #endif
5965 pgdat_page_ext_init(pgdat);
5966 spin_lock_init(&pgdat->lru_lock);
5967 lruvec_init(node_lruvec(pgdat));
5968
5969 for (j = 0; j < MAX_NR_ZONES; j++) {
5970 struct zone *zone = pgdat->node_zones + j;
5971 unsigned long size, realsize, freesize, memmap_pages;
5972 unsigned long zone_start_pfn = zone->zone_start_pfn;
5973
5974 size = zone->spanned_pages;
5975 realsize = freesize = zone->present_pages;
5976
5977 /*
5978 * Adjust freesize so that it accounts for how much memory
5979 * is used by this zone for memmap. This affects the watermark
5980 * and per-cpu initialisations
5981 */
5982 memmap_pages = calc_memmap_size(size, realsize);
5983 if (!is_highmem_idx(j)) {
5984 if (freesize >= memmap_pages) {
5985 freesize -= memmap_pages;
5986 if (memmap_pages)
5987 printk(KERN_DEBUG
5988 " %s zone: %lu pages used for memmap\n",
5989 zone_names[j], memmap_pages);
5990 } else
5991 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5992 zone_names[j], memmap_pages, freesize);
5993 }
5994
5995 /* Account for reserved pages */
5996 if (j == 0 && freesize > dma_reserve) {
5997 freesize -= dma_reserve;
5998 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5999 zone_names[0], dma_reserve);
6000 }
6001
6002 if (!is_highmem_idx(j))
6003 nr_kernel_pages += freesize;
6004 /* Charge for highmem memmap if there are enough kernel pages */
6005 else if (nr_kernel_pages > memmap_pages * 2)
6006 nr_kernel_pages -= memmap_pages;
6007 nr_all_pages += freesize;
6008
6009 /*
6010 * Set an approximate value for lowmem here, it will be adjusted
6011 * when the bootmem allocator frees pages into the buddy system.
6012 * And all highmem pages will be managed by the buddy system.
6013 */
6014 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6015 #ifdef CONFIG_NUMA
6016 zone->node = nid;
6017 #endif
6018 zone->name = zone_names[j];
6019 zone->zone_pgdat = pgdat;
6020 spin_lock_init(&zone->lock);
6021 zone_seqlock_init(zone);
6022 zone_pcp_init(zone);
6023
6024 if (!size)
6025 continue;
6026
6027 set_pageblock_order();
6028 setup_usemap(pgdat, zone, zone_start_pfn, size);
6029 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
6030 BUG_ON(ret);
6031 memmap_init(size, nid, j, zone_start_pfn);
6032 }
6033 }
6034
6035 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6036 {
6037 unsigned long __maybe_unused start = 0;
6038 unsigned long __maybe_unused offset = 0;
6039
6040 /* Skip empty nodes */
6041 if (!pgdat->node_spanned_pages)
6042 return;
6043
6044 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6045 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6046 offset = pgdat->node_start_pfn - start;
6047 /* ia64 gets its own node_mem_map, before this, without bootmem */
6048 if (!pgdat->node_mem_map) {
6049 unsigned long size, end;
6050 struct page *map;
6051
6052 /*
6053 * The zone's endpoints aren't required to be MAX_ORDER
6054 * aligned but the node_mem_map endpoints must be in order
6055 * for the buddy allocator to function correctly.
6056 */
6057 end = pgdat_end_pfn(pgdat);
6058 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6059 size = (end - start) * sizeof(struct page);
6060 map = alloc_remap(pgdat->node_id, size);
6061 if (!map)
6062 map = memblock_virt_alloc_node_nopanic(size,
6063 pgdat->node_id);
6064 pgdat->node_mem_map = map + offset;
6065 }
6066 #ifndef CONFIG_NEED_MULTIPLE_NODES
6067 /*
6068 * With no DISCONTIG, the global mem_map is just set as node 0's
6069 */
6070 if (pgdat == NODE_DATA(0)) {
6071 mem_map = NODE_DATA(0)->node_mem_map;
6072 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6073 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6074 mem_map -= offset;
6075 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6076 }
6077 #endif
6078 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6079 }
6080
6081 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6082 unsigned long node_start_pfn, unsigned long *zholes_size)
6083 {
6084 pg_data_t *pgdat = NODE_DATA(nid);
6085 unsigned long start_pfn = 0;
6086 unsigned long end_pfn = 0;
6087
6088 /* pg_data_t should be reset to zero when it's allocated */
6089 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6090
6091 reset_deferred_meminit(pgdat);
6092 pgdat->node_id = nid;
6093 pgdat->node_start_pfn = node_start_pfn;
6094 pgdat->per_cpu_nodestats = NULL;
6095 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6096 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6097 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6098 (u64)start_pfn << PAGE_SHIFT,
6099 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6100 #else
6101 start_pfn = node_start_pfn;
6102 #endif
6103 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6104 zones_size, zholes_size);
6105
6106 alloc_node_mem_map(pgdat);
6107 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6108 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6109 nid, (unsigned long)pgdat,
6110 (unsigned long)pgdat->node_mem_map);
6111 #endif
6112
6113 free_area_init_core(pgdat);
6114 }
6115
6116 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6117
6118 #if MAX_NUMNODES > 1
6119 /*
6120 * Figure out the number of possible node ids.
6121 */
6122 void __init setup_nr_node_ids(void)
6123 {
6124 unsigned int highest;
6125
6126 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6127 nr_node_ids = highest + 1;
6128 }
6129 #endif
6130
6131 /**
6132 * node_map_pfn_alignment - determine the maximum internode alignment
6133 *
6134 * This function should be called after node map is populated and sorted.
6135 * It calculates the maximum power of two alignment which can distinguish
6136 * all the nodes.
6137 *
6138 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6139 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6140 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6141 * shifted, 1GiB is enough and this function will indicate so.
6142 *
6143 * This is used to test whether pfn -> nid mapping of the chosen memory
6144 * model has fine enough granularity to avoid incorrect mapping for the
6145 * populated node map.
6146 *
6147 * Returns the determined alignment in pfn's. 0 if there is no alignment
6148 * requirement (single node).
6149 */
6150 unsigned long __init node_map_pfn_alignment(void)
6151 {
6152 unsigned long accl_mask = 0, last_end = 0;
6153 unsigned long start, end, mask;
6154 int last_nid = -1;
6155 int i, nid;
6156
6157 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6158 if (!start || last_nid < 0 || last_nid == nid) {
6159 last_nid = nid;
6160 last_end = end;
6161 continue;
6162 }
6163
6164 /*
6165 * Start with a mask granular enough to pin-point to the
6166 * start pfn and tick off bits one-by-one until it becomes
6167 * too coarse to separate the current node from the last.
6168 */
6169 mask = ~((1 << __ffs(start)) - 1);
6170 while (mask && last_end <= (start & (mask << 1)))
6171 mask <<= 1;
6172
6173 /* accumulate all internode masks */
6174 accl_mask |= mask;
6175 }
6176
6177 /* convert mask to number of pages */
6178 return ~accl_mask + 1;
6179 }
6180
6181 /* Find the lowest pfn for a node */
6182 static unsigned long __init find_min_pfn_for_node(int nid)
6183 {
6184 unsigned long min_pfn = ULONG_MAX;
6185 unsigned long start_pfn;
6186 int i;
6187
6188 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6189 min_pfn = min(min_pfn, start_pfn);
6190
6191 if (min_pfn == ULONG_MAX) {
6192 pr_warn("Could not find start_pfn for node %d\n", nid);
6193 return 0;
6194 }
6195
6196 return min_pfn;
6197 }
6198
6199 /**
6200 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6201 *
6202 * It returns the minimum PFN based on information provided via
6203 * memblock_set_node().
6204 */
6205 unsigned long __init find_min_pfn_with_active_regions(void)
6206 {
6207 return find_min_pfn_for_node(MAX_NUMNODES);
6208 }
6209
6210 /*
6211 * early_calculate_totalpages()
6212 * Sum pages in active regions for movable zone.
6213 * Populate N_MEMORY for calculating usable_nodes.
6214 */
6215 static unsigned long __init early_calculate_totalpages(void)
6216 {
6217 unsigned long totalpages = 0;
6218 unsigned long start_pfn, end_pfn;
6219 int i, nid;
6220
6221 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6222 unsigned long pages = end_pfn - start_pfn;
6223
6224 totalpages += pages;
6225 if (pages)
6226 node_set_state(nid, N_MEMORY);
6227 }
6228 return totalpages;
6229 }
6230
6231 /*
6232 * Find the PFN the Movable zone begins in each node. Kernel memory
6233 * is spread evenly between nodes as long as the nodes have enough
6234 * memory. When they don't, some nodes will have more kernelcore than
6235 * others
6236 */
6237 static void __init find_zone_movable_pfns_for_nodes(void)
6238 {
6239 int i, nid;
6240 unsigned long usable_startpfn;
6241 unsigned long kernelcore_node, kernelcore_remaining;
6242 /* save the state before borrow the nodemask */
6243 nodemask_t saved_node_state = node_states[N_MEMORY];
6244 unsigned long totalpages = early_calculate_totalpages();
6245 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6246 struct memblock_region *r;
6247
6248 /* Need to find movable_zone earlier when movable_node is specified. */
6249 find_usable_zone_for_movable();
6250
6251 /*
6252 * If movable_node is specified, ignore kernelcore and movablecore
6253 * options.
6254 */
6255 if (movable_node_is_enabled()) {
6256 for_each_memblock(memory, r) {
6257 if (!memblock_is_hotpluggable(r))
6258 continue;
6259
6260 nid = r->nid;
6261
6262 usable_startpfn = PFN_DOWN(r->base);
6263 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6264 min(usable_startpfn, zone_movable_pfn[nid]) :
6265 usable_startpfn;
6266 }
6267
6268 goto out2;
6269 }
6270
6271 /*
6272 * If kernelcore=mirror is specified, ignore movablecore option
6273 */
6274 if (mirrored_kernelcore) {
6275 bool mem_below_4gb_not_mirrored = false;
6276
6277 for_each_memblock(memory, r) {
6278 if (memblock_is_mirror(r))
6279 continue;
6280
6281 nid = r->nid;
6282
6283 usable_startpfn = memblock_region_memory_base_pfn(r);
6284
6285 if (usable_startpfn < 0x100000) {
6286 mem_below_4gb_not_mirrored = true;
6287 continue;
6288 }
6289
6290 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6291 min(usable_startpfn, zone_movable_pfn[nid]) :
6292 usable_startpfn;
6293 }
6294
6295 if (mem_below_4gb_not_mirrored)
6296 pr_warn("This configuration results in unmirrored kernel memory.");
6297
6298 goto out2;
6299 }
6300
6301 /*
6302 * If movablecore=nn[KMG] was specified, calculate what size of
6303 * kernelcore that corresponds so that memory usable for
6304 * any allocation type is evenly spread. If both kernelcore
6305 * and movablecore are specified, then the value of kernelcore
6306 * will be used for required_kernelcore if it's greater than
6307 * what movablecore would have allowed.
6308 */
6309 if (required_movablecore) {
6310 unsigned long corepages;
6311
6312 /*
6313 * Round-up so that ZONE_MOVABLE is at least as large as what
6314 * was requested by the user
6315 */
6316 required_movablecore =
6317 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6318 required_movablecore = min(totalpages, required_movablecore);
6319 corepages = totalpages - required_movablecore;
6320
6321 required_kernelcore = max(required_kernelcore, corepages);
6322 }
6323
6324 /*
6325 * If kernelcore was not specified or kernelcore size is larger
6326 * than totalpages, there is no ZONE_MOVABLE.
6327 */
6328 if (!required_kernelcore || required_kernelcore >= totalpages)
6329 goto out;
6330
6331 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6332 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6333
6334 restart:
6335 /* Spread kernelcore memory as evenly as possible throughout nodes */
6336 kernelcore_node = required_kernelcore / usable_nodes;
6337 for_each_node_state(nid, N_MEMORY) {
6338 unsigned long start_pfn, end_pfn;
6339
6340 /*
6341 * Recalculate kernelcore_node if the division per node
6342 * now exceeds what is necessary to satisfy the requested
6343 * amount of memory for the kernel
6344 */
6345 if (required_kernelcore < kernelcore_node)
6346 kernelcore_node = required_kernelcore / usable_nodes;
6347
6348 /*
6349 * As the map is walked, we track how much memory is usable
6350 * by the kernel using kernelcore_remaining. When it is
6351 * 0, the rest of the node is usable by ZONE_MOVABLE
6352 */
6353 kernelcore_remaining = kernelcore_node;
6354
6355 /* Go through each range of PFNs within this node */
6356 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6357 unsigned long size_pages;
6358
6359 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6360 if (start_pfn >= end_pfn)
6361 continue;
6362
6363 /* Account for what is only usable for kernelcore */
6364 if (start_pfn < usable_startpfn) {
6365 unsigned long kernel_pages;
6366 kernel_pages = min(end_pfn, usable_startpfn)
6367 - start_pfn;
6368
6369 kernelcore_remaining -= min(kernel_pages,
6370 kernelcore_remaining);
6371 required_kernelcore -= min(kernel_pages,
6372 required_kernelcore);
6373
6374 /* Continue if range is now fully accounted */
6375 if (end_pfn <= usable_startpfn) {
6376
6377 /*
6378 * Push zone_movable_pfn to the end so
6379 * that if we have to rebalance
6380 * kernelcore across nodes, we will
6381 * not double account here
6382 */
6383 zone_movable_pfn[nid] = end_pfn;
6384 continue;
6385 }
6386 start_pfn = usable_startpfn;
6387 }
6388
6389 /*
6390 * The usable PFN range for ZONE_MOVABLE is from
6391 * start_pfn->end_pfn. Calculate size_pages as the
6392 * number of pages used as kernelcore
6393 */
6394 size_pages = end_pfn - start_pfn;
6395 if (size_pages > kernelcore_remaining)
6396 size_pages = kernelcore_remaining;
6397 zone_movable_pfn[nid] = start_pfn + size_pages;
6398
6399 /*
6400 * Some kernelcore has been met, update counts and
6401 * break if the kernelcore for this node has been
6402 * satisfied
6403 */
6404 required_kernelcore -= min(required_kernelcore,
6405 size_pages);
6406 kernelcore_remaining -= size_pages;
6407 if (!kernelcore_remaining)
6408 break;
6409 }
6410 }
6411
6412 /*
6413 * If there is still required_kernelcore, we do another pass with one
6414 * less node in the count. This will push zone_movable_pfn[nid] further
6415 * along on the nodes that still have memory until kernelcore is
6416 * satisfied
6417 */
6418 usable_nodes--;
6419 if (usable_nodes && required_kernelcore > usable_nodes)
6420 goto restart;
6421
6422 out2:
6423 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6424 for (nid = 0; nid < MAX_NUMNODES; nid++)
6425 zone_movable_pfn[nid] =
6426 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6427
6428 out:
6429 /* restore the node_state */
6430 node_states[N_MEMORY] = saved_node_state;
6431 }
6432
6433 /* Any regular or high memory on that node ? */
6434 static void check_for_memory(pg_data_t *pgdat, int nid)
6435 {
6436 enum zone_type zone_type;
6437
6438 if (N_MEMORY == N_NORMAL_MEMORY)
6439 return;
6440
6441 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6442 struct zone *zone = &pgdat->node_zones[zone_type];
6443 if (populated_zone(zone)) {
6444 node_set_state(nid, N_HIGH_MEMORY);
6445 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6446 zone_type <= ZONE_NORMAL)
6447 node_set_state(nid, N_NORMAL_MEMORY);
6448 break;
6449 }
6450 }
6451 }
6452
6453 /**
6454 * free_area_init_nodes - Initialise all pg_data_t and zone data
6455 * @max_zone_pfn: an array of max PFNs for each zone
6456 *
6457 * This will call free_area_init_node() for each active node in the system.
6458 * Using the page ranges provided by memblock_set_node(), the size of each
6459 * zone in each node and their holes is calculated. If the maximum PFN
6460 * between two adjacent zones match, it is assumed that the zone is empty.
6461 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6462 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6463 * starts where the previous one ended. For example, ZONE_DMA32 starts
6464 * at arch_max_dma_pfn.
6465 */
6466 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6467 {
6468 unsigned long start_pfn, end_pfn;
6469 int i, nid;
6470
6471 /* Record where the zone boundaries are */
6472 memset(arch_zone_lowest_possible_pfn, 0,
6473 sizeof(arch_zone_lowest_possible_pfn));
6474 memset(arch_zone_highest_possible_pfn, 0,
6475 sizeof(arch_zone_highest_possible_pfn));
6476
6477 start_pfn = find_min_pfn_with_active_regions();
6478
6479 for (i = 0; i < MAX_NR_ZONES; i++) {
6480 if (i == ZONE_MOVABLE)
6481 continue;
6482
6483 end_pfn = max(max_zone_pfn[i], start_pfn);
6484 arch_zone_lowest_possible_pfn[i] = start_pfn;
6485 arch_zone_highest_possible_pfn[i] = end_pfn;
6486
6487 start_pfn = end_pfn;
6488 }
6489 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6490 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6491
6492 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6493 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6494 find_zone_movable_pfns_for_nodes();
6495
6496 /* Print out the zone ranges */
6497 pr_info("Zone ranges:\n");
6498 for (i = 0; i < MAX_NR_ZONES; i++) {
6499 if (i == ZONE_MOVABLE)
6500 continue;
6501 pr_info(" %-8s ", zone_names[i]);
6502 if (arch_zone_lowest_possible_pfn[i] ==
6503 arch_zone_highest_possible_pfn[i])
6504 pr_cont("empty\n");
6505 else
6506 pr_cont("[mem %#018Lx-%#018Lx]\n",
6507 (u64)arch_zone_lowest_possible_pfn[i]
6508 << PAGE_SHIFT,
6509 ((u64)arch_zone_highest_possible_pfn[i]
6510 << PAGE_SHIFT) - 1);
6511 }
6512
6513 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6514 pr_info("Movable zone start for each node\n");
6515 for (i = 0; i < MAX_NUMNODES; i++) {
6516 if (zone_movable_pfn[i])
6517 pr_info(" Node %d: %#018Lx\n", i,
6518 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6519 }
6520
6521 /* Print out the early node map */
6522 pr_info("Early memory node ranges\n");
6523 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6524 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6525 (u64)start_pfn << PAGE_SHIFT,
6526 ((u64)end_pfn << PAGE_SHIFT) - 1);
6527
6528 /* Initialise every node */
6529 mminit_verify_pageflags_layout();
6530 setup_nr_node_ids();
6531 for_each_online_node(nid) {
6532 pg_data_t *pgdat = NODE_DATA(nid);
6533 free_area_init_node(nid, NULL,
6534 find_min_pfn_for_node(nid), NULL);
6535
6536 /* Any memory on that node */
6537 if (pgdat->node_present_pages)
6538 node_set_state(nid, N_MEMORY);
6539 check_for_memory(pgdat, nid);
6540 }
6541 }
6542
6543 static int __init cmdline_parse_core(char *p, unsigned long *core)
6544 {
6545 unsigned long long coremem;
6546 if (!p)
6547 return -EINVAL;
6548
6549 coremem = memparse(p, &p);
6550 *core = coremem >> PAGE_SHIFT;
6551
6552 /* Paranoid check that UL is enough for the coremem value */
6553 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6554
6555 return 0;
6556 }
6557
6558 /*
6559 * kernelcore=size sets the amount of memory for use for allocations that
6560 * cannot be reclaimed or migrated.
6561 */
6562 static int __init cmdline_parse_kernelcore(char *p)
6563 {
6564 /* parse kernelcore=mirror */
6565 if (parse_option_str(p, "mirror")) {
6566 mirrored_kernelcore = true;
6567 return 0;
6568 }
6569
6570 return cmdline_parse_core(p, &required_kernelcore);
6571 }
6572
6573 /*
6574 * movablecore=size sets the amount of memory for use for allocations that
6575 * can be reclaimed or migrated.
6576 */
6577 static int __init cmdline_parse_movablecore(char *p)
6578 {
6579 return cmdline_parse_core(p, &required_movablecore);
6580 }
6581
6582 early_param("kernelcore", cmdline_parse_kernelcore);
6583 early_param("movablecore", cmdline_parse_movablecore);
6584
6585 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6586
6587 void adjust_managed_page_count(struct page *page, long count)
6588 {
6589 spin_lock(&managed_page_count_lock);
6590 page_zone(page)->managed_pages += count;
6591 totalram_pages += count;
6592 #ifdef CONFIG_HIGHMEM
6593 if (PageHighMem(page))
6594 totalhigh_pages += count;
6595 #endif
6596 spin_unlock(&managed_page_count_lock);
6597 }
6598 EXPORT_SYMBOL(adjust_managed_page_count);
6599
6600 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6601 {
6602 void *pos;
6603 unsigned long pages = 0;
6604
6605 start = (void *)PAGE_ALIGN((unsigned long)start);
6606 end = (void *)((unsigned long)end & PAGE_MASK);
6607 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6608 if ((unsigned int)poison <= 0xFF)
6609 memset(pos, poison, PAGE_SIZE);
6610 free_reserved_page(virt_to_page(pos));
6611 }
6612
6613 if (pages && s)
6614 pr_info("Freeing %s memory: %ldK\n",
6615 s, pages << (PAGE_SHIFT - 10));
6616
6617 return pages;
6618 }
6619 EXPORT_SYMBOL(free_reserved_area);
6620
6621 #ifdef CONFIG_HIGHMEM
6622 void free_highmem_page(struct page *page)
6623 {
6624 __free_reserved_page(page);
6625 totalram_pages++;
6626 page_zone(page)->managed_pages++;
6627 totalhigh_pages++;
6628 }
6629 #endif
6630
6631
6632 void __init mem_init_print_info(const char *str)
6633 {
6634 unsigned long physpages, codesize, datasize, rosize, bss_size;
6635 unsigned long init_code_size, init_data_size;
6636
6637 physpages = get_num_physpages();
6638 codesize = _etext - _stext;
6639 datasize = _edata - _sdata;
6640 rosize = __end_rodata - __start_rodata;
6641 bss_size = __bss_stop - __bss_start;
6642 init_data_size = __init_end - __init_begin;
6643 init_code_size = _einittext - _sinittext;
6644
6645 /*
6646 * Detect special cases and adjust section sizes accordingly:
6647 * 1) .init.* may be embedded into .data sections
6648 * 2) .init.text.* may be out of [__init_begin, __init_end],
6649 * please refer to arch/tile/kernel/vmlinux.lds.S.
6650 * 3) .rodata.* may be embedded into .text or .data sections.
6651 */
6652 #define adj_init_size(start, end, size, pos, adj) \
6653 do { \
6654 if (start <= pos && pos < end && size > adj) \
6655 size -= adj; \
6656 } while (0)
6657
6658 adj_init_size(__init_begin, __init_end, init_data_size,
6659 _sinittext, init_code_size);
6660 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6661 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6662 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6663 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6664
6665 #undef adj_init_size
6666
6667 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6668 #ifdef CONFIG_HIGHMEM
6669 ", %luK highmem"
6670 #endif
6671 "%s%s)\n",
6672 nr_free_pages() << (PAGE_SHIFT - 10),
6673 physpages << (PAGE_SHIFT - 10),
6674 codesize >> 10, datasize >> 10, rosize >> 10,
6675 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6676 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6677 totalcma_pages << (PAGE_SHIFT - 10),
6678 #ifdef CONFIG_HIGHMEM
6679 totalhigh_pages << (PAGE_SHIFT - 10),
6680 #endif
6681 str ? ", " : "", str ? str : "");
6682 }
6683
6684 /**
6685 * set_dma_reserve - set the specified number of pages reserved in the first zone
6686 * @new_dma_reserve: The number of pages to mark reserved
6687 *
6688 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6689 * In the DMA zone, a significant percentage may be consumed by kernel image
6690 * and other unfreeable allocations which can skew the watermarks badly. This
6691 * function may optionally be used to account for unfreeable pages in the
6692 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6693 * smaller per-cpu batchsize.
6694 */
6695 void __init set_dma_reserve(unsigned long new_dma_reserve)
6696 {
6697 dma_reserve = new_dma_reserve;
6698 }
6699
6700 void __init free_area_init(unsigned long *zones_size)
6701 {
6702 free_area_init_node(0, zones_size,
6703 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6704 }
6705
6706 static int page_alloc_cpu_dead(unsigned int cpu)
6707 {
6708
6709 lru_add_drain_cpu(cpu);
6710 drain_pages(cpu);
6711
6712 /*
6713 * Spill the event counters of the dead processor
6714 * into the current processors event counters.
6715 * This artificially elevates the count of the current
6716 * processor.
6717 */
6718 vm_events_fold_cpu(cpu);
6719
6720 /*
6721 * Zero the differential counters of the dead processor
6722 * so that the vm statistics are consistent.
6723 *
6724 * This is only okay since the processor is dead and cannot
6725 * race with what we are doing.
6726 */
6727 cpu_vm_stats_fold(cpu);
6728 return 0;
6729 }
6730
6731 void __init page_alloc_init(void)
6732 {
6733 int ret;
6734
6735 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6736 "mm/page_alloc:dead", NULL,
6737 page_alloc_cpu_dead);
6738 WARN_ON(ret < 0);
6739 }
6740
6741 /*
6742 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6743 * or min_free_kbytes changes.
6744 */
6745 static void calculate_totalreserve_pages(void)
6746 {
6747 struct pglist_data *pgdat;
6748 unsigned long reserve_pages = 0;
6749 enum zone_type i, j;
6750
6751 for_each_online_pgdat(pgdat) {
6752
6753 pgdat->totalreserve_pages = 0;
6754
6755 for (i = 0; i < MAX_NR_ZONES; i++) {
6756 struct zone *zone = pgdat->node_zones + i;
6757 long max = 0;
6758
6759 /* Find valid and maximum lowmem_reserve in the zone */
6760 for (j = i; j < MAX_NR_ZONES; j++) {
6761 if (zone->lowmem_reserve[j] > max)
6762 max = zone->lowmem_reserve[j];
6763 }
6764
6765 /* we treat the high watermark as reserved pages. */
6766 max += high_wmark_pages(zone);
6767
6768 if (max > zone->managed_pages)
6769 max = zone->managed_pages;
6770
6771 pgdat->totalreserve_pages += max;
6772
6773 reserve_pages += max;
6774 }
6775 }
6776 totalreserve_pages = reserve_pages;
6777 }
6778
6779 /*
6780 * setup_per_zone_lowmem_reserve - called whenever
6781 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6782 * has a correct pages reserved value, so an adequate number of
6783 * pages are left in the zone after a successful __alloc_pages().
6784 */
6785 static void setup_per_zone_lowmem_reserve(void)
6786 {
6787 struct pglist_data *pgdat;
6788 enum zone_type j, idx;
6789
6790 for_each_online_pgdat(pgdat) {
6791 for (j = 0; j < MAX_NR_ZONES; j++) {
6792 struct zone *zone = pgdat->node_zones + j;
6793 unsigned long managed_pages = zone->managed_pages;
6794
6795 zone->lowmem_reserve[j] = 0;
6796
6797 idx = j;
6798 while (idx) {
6799 struct zone *lower_zone;
6800
6801 idx--;
6802
6803 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6804 sysctl_lowmem_reserve_ratio[idx] = 1;
6805
6806 lower_zone = pgdat->node_zones + idx;
6807 lower_zone->lowmem_reserve[j] = managed_pages /
6808 sysctl_lowmem_reserve_ratio[idx];
6809 managed_pages += lower_zone->managed_pages;
6810 }
6811 }
6812 }
6813
6814 /* update totalreserve_pages */
6815 calculate_totalreserve_pages();
6816 }
6817
6818 static void __setup_per_zone_wmarks(void)
6819 {
6820 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6821 unsigned long lowmem_pages = 0;
6822 struct zone *zone;
6823 unsigned long flags;
6824
6825 /* Calculate total number of !ZONE_HIGHMEM pages */
6826 for_each_zone(zone) {
6827 if (!is_highmem(zone))
6828 lowmem_pages += zone->managed_pages;
6829 }
6830
6831 for_each_zone(zone) {
6832 u64 tmp;
6833
6834 spin_lock_irqsave(&zone->lock, flags);
6835 tmp = (u64)pages_min * zone->managed_pages;
6836 do_div(tmp, lowmem_pages);
6837 if (is_highmem(zone)) {
6838 /*
6839 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6840 * need highmem pages, so cap pages_min to a small
6841 * value here.
6842 *
6843 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6844 * deltas control asynch page reclaim, and so should
6845 * not be capped for highmem.
6846 */
6847 unsigned long min_pages;
6848
6849 min_pages = zone->managed_pages / 1024;
6850 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6851 zone->watermark[WMARK_MIN] = min_pages;
6852 } else {
6853 /*
6854 * If it's a lowmem zone, reserve a number of pages
6855 * proportionate to the zone's size.
6856 */
6857 zone->watermark[WMARK_MIN] = tmp;
6858 }
6859
6860 /*
6861 * Set the kswapd watermarks distance according to the
6862 * scale factor in proportion to available memory, but
6863 * ensure a minimum size on small systems.
6864 */
6865 tmp = max_t(u64, tmp >> 2,
6866 mult_frac(zone->managed_pages,
6867 watermark_scale_factor, 10000));
6868
6869 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6870 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6871
6872 spin_unlock_irqrestore(&zone->lock, flags);
6873 }
6874
6875 /* update totalreserve_pages */
6876 calculate_totalreserve_pages();
6877 }
6878
6879 /**
6880 * setup_per_zone_wmarks - called when min_free_kbytes changes
6881 * or when memory is hot-{added|removed}
6882 *
6883 * Ensures that the watermark[min,low,high] values for each zone are set
6884 * correctly with respect to min_free_kbytes.
6885 */
6886 void setup_per_zone_wmarks(void)
6887 {
6888 mutex_lock(&zonelists_mutex);
6889 __setup_per_zone_wmarks();
6890 mutex_unlock(&zonelists_mutex);
6891 }
6892
6893 /*
6894 * Initialise min_free_kbytes.
6895 *
6896 * For small machines we want it small (128k min). For large machines
6897 * we want it large (64MB max). But it is not linear, because network
6898 * bandwidth does not increase linearly with machine size. We use
6899 *
6900 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6901 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6902 *
6903 * which yields
6904 *
6905 * 16MB: 512k
6906 * 32MB: 724k
6907 * 64MB: 1024k
6908 * 128MB: 1448k
6909 * 256MB: 2048k
6910 * 512MB: 2896k
6911 * 1024MB: 4096k
6912 * 2048MB: 5792k
6913 * 4096MB: 8192k
6914 * 8192MB: 11584k
6915 * 16384MB: 16384k
6916 */
6917 int __meminit init_per_zone_wmark_min(void)
6918 {
6919 unsigned long lowmem_kbytes;
6920 int new_min_free_kbytes;
6921
6922 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6923 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6924
6925 if (new_min_free_kbytes > user_min_free_kbytes) {
6926 min_free_kbytes = new_min_free_kbytes;
6927 if (min_free_kbytes < 128)
6928 min_free_kbytes = 128;
6929 if (min_free_kbytes > 65536)
6930 min_free_kbytes = 65536;
6931 } else {
6932 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6933 new_min_free_kbytes, user_min_free_kbytes);
6934 }
6935 setup_per_zone_wmarks();
6936 refresh_zone_stat_thresholds();
6937 setup_per_zone_lowmem_reserve();
6938
6939 #ifdef CONFIG_NUMA
6940 setup_min_unmapped_ratio();
6941 setup_min_slab_ratio();
6942 #endif
6943
6944 return 0;
6945 }
6946 core_initcall(init_per_zone_wmark_min)
6947
6948 /*
6949 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6950 * that we can call two helper functions whenever min_free_kbytes
6951 * changes.
6952 */
6953 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6954 void __user *buffer, size_t *length, loff_t *ppos)
6955 {
6956 int rc;
6957
6958 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6959 if (rc)
6960 return rc;
6961
6962 if (write) {
6963 user_min_free_kbytes = min_free_kbytes;
6964 setup_per_zone_wmarks();
6965 }
6966 return 0;
6967 }
6968
6969 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6970 void __user *buffer, size_t *length, loff_t *ppos)
6971 {
6972 int rc;
6973
6974 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6975 if (rc)
6976 return rc;
6977
6978 if (write)
6979 setup_per_zone_wmarks();
6980
6981 return 0;
6982 }
6983
6984 #ifdef CONFIG_NUMA
6985 static void setup_min_unmapped_ratio(void)
6986 {
6987 pg_data_t *pgdat;
6988 struct zone *zone;
6989
6990 for_each_online_pgdat(pgdat)
6991 pgdat->min_unmapped_pages = 0;
6992
6993 for_each_zone(zone)
6994 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6995 sysctl_min_unmapped_ratio) / 100;
6996 }
6997
6998
6999 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7000 void __user *buffer, size_t *length, loff_t *ppos)
7001 {
7002 int rc;
7003
7004 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7005 if (rc)
7006 return rc;
7007
7008 setup_min_unmapped_ratio();
7009
7010 return 0;
7011 }
7012
7013 static void setup_min_slab_ratio(void)
7014 {
7015 pg_data_t *pgdat;
7016 struct zone *zone;
7017
7018 for_each_online_pgdat(pgdat)
7019 pgdat->min_slab_pages = 0;
7020
7021 for_each_zone(zone)
7022 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7023 sysctl_min_slab_ratio) / 100;
7024 }
7025
7026 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7027 void __user *buffer, size_t *length, loff_t *ppos)
7028 {
7029 int rc;
7030
7031 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7032 if (rc)
7033 return rc;
7034
7035 setup_min_slab_ratio();
7036
7037 return 0;
7038 }
7039 #endif
7040
7041 /*
7042 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7043 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7044 * whenever sysctl_lowmem_reserve_ratio changes.
7045 *
7046 * The reserve ratio obviously has absolutely no relation with the
7047 * minimum watermarks. The lowmem reserve ratio can only make sense
7048 * if in function of the boot time zone sizes.
7049 */
7050 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7051 void __user *buffer, size_t *length, loff_t *ppos)
7052 {
7053 proc_dointvec_minmax(table, write, buffer, length, ppos);
7054 setup_per_zone_lowmem_reserve();
7055 return 0;
7056 }
7057
7058 /*
7059 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7060 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7061 * pagelist can have before it gets flushed back to buddy allocator.
7062 */
7063 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7064 void __user *buffer, size_t *length, loff_t *ppos)
7065 {
7066 struct zone *zone;
7067 int old_percpu_pagelist_fraction;
7068 int ret;
7069
7070 mutex_lock(&pcp_batch_high_lock);
7071 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7072
7073 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7074 if (!write || ret < 0)
7075 goto out;
7076
7077 /* Sanity checking to avoid pcp imbalance */
7078 if (percpu_pagelist_fraction &&
7079 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7080 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7081 ret = -EINVAL;
7082 goto out;
7083 }
7084
7085 /* No change? */
7086 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7087 goto out;
7088
7089 for_each_populated_zone(zone) {
7090 unsigned int cpu;
7091
7092 for_each_possible_cpu(cpu)
7093 pageset_set_high_and_batch(zone,
7094 per_cpu_ptr(zone->pageset, cpu));
7095 }
7096 out:
7097 mutex_unlock(&pcp_batch_high_lock);
7098 return ret;
7099 }
7100
7101 #ifdef CONFIG_NUMA
7102 int hashdist = HASHDIST_DEFAULT;
7103
7104 static int __init set_hashdist(char *str)
7105 {
7106 if (!str)
7107 return 0;
7108 hashdist = simple_strtoul(str, &str, 0);
7109 return 1;
7110 }
7111 __setup("hashdist=", set_hashdist);
7112 #endif
7113
7114 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7115 /*
7116 * Returns the number of pages that arch has reserved but
7117 * is not known to alloc_large_system_hash().
7118 */
7119 static unsigned long __init arch_reserved_kernel_pages(void)
7120 {
7121 return 0;
7122 }
7123 #endif
7124
7125 /*
7126 * allocate a large system hash table from bootmem
7127 * - it is assumed that the hash table must contain an exact power-of-2
7128 * quantity of entries
7129 * - limit is the number of hash buckets, not the total allocation size
7130 */
7131 void *__init alloc_large_system_hash(const char *tablename,
7132 unsigned long bucketsize,
7133 unsigned long numentries,
7134 int scale,
7135 int flags,
7136 unsigned int *_hash_shift,
7137 unsigned int *_hash_mask,
7138 unsigned long low_limit,
7139 unsigned long high_limit)
7140 {
7141 unsigned long long max = high_limit;
7142 unsigned long log2qty, size;
7143 void *table = NULL;
7144
7145 /* allow the kernel cmdline to have a say */
7146 if (!numentries) {
7147 /* round applicable memory size up to nearest megabyte */
7148 numentries = nr_kernel_pages;
7149 numentries -= arch_reserved_kernel_pages();
7150
7151 /* It isn't necessary when PAGE_SIZE >= 1MB */
7152 if (PAGE_SHIFT < 20)
7153 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7154
7155 /* limit to 1 bucket per 2^scale bytes of low memory */
7156 if (scale > PAGE_SHIFT)
7157 numentries >>= (scale - PAGE_SHIFT);
7158 else
7159 numentries <<= (PAGE_SHIFT - scale);
7160
7161 /* Make sure we've got at least a 0-order allocation.. */
7162 if (unlikely(flags & HASH_SMALL)) {
7163 /* Makes no sense without HASH_EARLY */
7164 WARN_ON(!(flags & HASH_EARLY));
7165 if (!(numentries >> *_hash_shift)) {
7166 numentries = 1UL << *_hash_shift;
7167 BUG_ON(!numentries);
7168 }
7169 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7170 numentries = PAGE_SIZE / bucketsize;
7171 }
7172 numentries = roundup_pow_of_two(numentries);
7173
7174 /* limit allocation size to 1/16 total memory by default */
7175 if (max == 0) {
7176 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7177 do_div(max, bucketsize);
7178 }
7179 max = min(max, 0x80000000ULL);
7180
7181 if (numentries < low_limit)
7182 numentries = low_limit;
7183 if (numentries > max)
7184 numentries = max;
7185
7186 log2qty = ilog2(numentries);
7187
7188 do {
7189 size = bucketsize << log2qty;
7190 if (flags & HASH_EARLY)
7191 table = memblock_virt_alloc_nopanic(size, 0);
7192 else if (hashdist)
7193 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7194 else {
7195 /*
7196 * If bucketsize is not a power-of-two, we may free
7197 * some pages at the end of hash table which
7198 * alloc_pages_exact() automatically does
7199 */
7200 if (get_order(size) < MAX_ORDER) {
7201 table = alloc_pages_exact(size, GFP_ATOMIC);
7202 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7203 }
7204 }
7205 } while (!table && size > PAGE_SIZE && --log2qty);
7206
7207 if (!table)
7208 panic("Failed to allocate %s hash table\n", tablename);
7209
7210 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7211 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7212
7213 if (_hash_shift)
7214 *_hash_shift = log2qty;
7215 if (_hash_mask)
7216 *_hash_mask = (1 << log2qty) - 1;
7217
7218 return table;
7219 }
7220
7221 /*
7222 * This function checks whether pageblock includes unmovable pages or not.
7223 * If @count is not zero, it is okay to include less @count unmovable pages
7224 *
7225 * PageLRU check without isolation or lru_lock could race so that
7226 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7227 * expect this function should be exact.
7228 */
7229 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7230 bool skip_hwpoisoned_pages)
7231 {
7232 unsigned long pfn, iter, found;
7233 int mt;
7234
7235 /*
7236 * For avoiding noise data, lru_add_drain_all() should be called
7237 * If ZONE_MOVABLE, the zone never contains unmovable pages
7238 */
7239 if (zone_idx(zone) == ZONE_MOVABLE)
7240 return false;
7241 mt = get_pageblock_migratetype(page);
7242 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7243 return false;
7244
7245 pfn = page_to_pfn(page);
7246 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7247 unsigned long check = pfn + iter;
7248
7249 if (!pfn_valid_within(check))
7250 continue;
7251
7252 page = pfn_to_page(check);
7253
7254 /*
7255 * Hugepages are not in LRU lists, but they're movable.
7256 * We need not scan over tail pages bacause we don't
7257 * handle each tail page individually in migration.
7258 */
7259 if (PageHuge(page)) {
7260 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7261 continue;
7262 }
7263
7264 /*
7265 * We can't use page_count without pin a page
7266 * because another CPU can free compound page.
7267 * This check already skips compound tails of THP
7268 * because their page->_refcount is zero at all time.
7269 */
7270 if (!page_ref_count(page)) {
7271 if (PageBuddy(page))
7272 iter += (1 << page_order(page)) - 1;
7273 continue;
7274 }
7275
7276 /*
7277 * The HWPoisoned page may be not in buddy system, and
7278 * page_count() is not 0.
7279 */
7280 if (skip_hwpoisoned_pages && PageHWPoison(page))
7281 continue;
7282
7283 if (!PageLRU(page))
7284 found++;
7285 /*
7286 * If there are RECLAIMABLE pages, we need to check
7287 * it. But now, memory offline itself doesn't call
7288 * shrink_node_slabs() and it still to be fixed.
7289 */
7290 /*
7291 * If the page is not RAM, page_count()should be 0.
7292 * we don't need more check. This is an _used_ not-movable page.
7293 *
7294 * The problematic thing here is PG_reserved pages. PG_reserved
7295 * is set to both of a memory hole page and a _used_ kernel
7296 * page at boot.
7297 */
7298 if (found > count)
7299 return true;
7300 }
7301 return false;
7302 }
7303
7304 bool is_pageblock_removable_nolock(struct page *page)
7305 {
7306 struct zone *zone;
7307 unsigned long pfn;
7308
7309 /*
7310 * We have to be careful here because we are iterating over memory
7311 * sections which are not zone aware so we might end up outside of
7312 * the zone but still within the section.
7313 * We have to take care about the node as well. If the node is offline
7314 * its NODE_DATA will be NULL - see page_zone.
7315 */
7316 if (!node_online(page_to_nid(page)))
7317 return false;
7318
7319 zone = page_zone(page);
7320 pfn = page_to_pfn(page);
7321 if (!zone_spans_pfn(zone, pfn))
7322 return false;
7323
7324 return !has_unmovable_pages(zone, page, 0, true);
7325 }
7326
7327 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7328
7329 static unsigned long pfn_max_align_down(unsigned long pfn)
7330 {
7331 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7332 pageblock_nr_pages) - 1);
7333 }
7334
7335 static unsigned long pfn_max_align_up(unsigned long pfn)
7336 {
7337 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7338 pageblock_nr_pages));
7339 }
7340
7341 /* [start, end) must belong to a single zone. */
7342 static int __alloc_contig_migrate_range(struct compact_control *cc,
7343 unsigned long start, unsigned long end)
7344 {
7345 /* This function is based on compact_zone() from compaction.c. */
7346 unsigned long nr_reclaimed;
7347 unsigned long pfn = start;
7348 unsigned int tries = 0;
7349 int ret = 0;
7350
7351 migrate_prep();
7352
7353 while (pfn < end || !list_empty(&cc->migratepages)) {
7354 if (fatal_signal_pending(current)) {
7355 ret = -EINTR;
7356 break;
7357 }
7358
7359 if (list_empty(&cc->migratepages)) {
7360 cc->nr_migratepages = 0;
7361 pfn = isolate_migratepages_range(cc, pfn, end);
7362 if (!pfn) {
7363 ret = -EINTR;
7364 break;
7365 }
7366 tries = 0;
7367 } else if (++tries == 5) {
7368 ret = ret < 0 ? ret : -EBUSY;
7369 break;
7370 }
7371
7372 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7373 &cc->migratepages);
7374 cc->nr_migratepages -= nr_reclaimed;
7375
7376 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7377 NULL, 0, cc->mode, MR_CMA);
7378 }
7379 if (ret < 0) {
7380 putback_movable_pages(&cc->migratepages);
7381 return ret;
7382 }
7383 return 0;
7384 }
7385
7386 /**
7387 * alloc_contig_range() -- tries to allocate given range of pages
7388 * @start: start PFN to allocate
7389 * @end: one-past-the-last PFN to allocate
7390 * @migratetype: migratetype of the underlaying pageblocks (either
7391 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7392 * in range must have the same migratetype and it must
7393 * be either of the two.
7394 *
7395 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7396 * aligned, however it's the caller's responsibility to guarantee that
7397 * we are the only thread that changes migrate type of pageblocks the
7398 * pages fall in.
7399 *
7400 * The PFN range must belong to a single zone.
7401 *
7402 * Returns zero on success or negative error code. On success all
7403 * pages which PFN is in [start, end) are allocated for the caller and
7404 * need to be freed with free_contig_range().
7405 */
7406 int alloc_contig_range(unsigned long start, unsigned long end,
7407 unsigned migratetype)
7408 {
7409 unsigned long outer_start, outer_end;
7410 unsigned int order;
7411 int ret = 0;
7412
7413 struct compact_control cc = {
7414 .nr_migratepages = 0,
7415 .order = -1,
7416 .zone = page_zone(pfn_to_page(start)),
7417 .mode = MIGRATE_SYNC,
7418 .ignore_skip_hint = true,
7419 .gfp_mask = GFP_KERNEL,
7420 };
7421 INIT_LIST_HEAD(&cc.migratepages);
7422
7423 /*
7424 * What we do here is we mark all pageblocks in range as
7425 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7426 * have different sizes, and due to the way page allocator
7427 * work, we align the range to biggest of the two pages so
7428 * that page allocator won't try to merge buddies from
7429 * different pageblocks and change MIGRATE_ISOLATE to some
7430 * other migration type.
7431 *
7432 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7433 * migrate the pages from an unaligned range (ie. pages that
7434 * we are interested in). This will put all the pages in
7435 * range back to page allocator as MIGRATE_ISOLATE.
7436 *
7437 * When this is done, we take the pages in range from page
7438 * allocator removing them from the buddy system. This way
7439 * page allocator will never consider using them.
7440 *
7441 * This lets us mark the pageblocks back as
7442 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7443 * aligned range but not in the unaligned, original range are
7444 * put back to page allocator so that buddy can use them.
7445 */
7446
7447 ret = start_isolate_page_range(pfn_max_align_down(start),
7448 pfn_max_align_up(end), migratetype,
7449 false);
7450 if (ret)
7451 return ret;
7452
7453 /*
7454 * In case of -EBUSY, we'd like to know which page causes problem.
7455 * So, just fall through. We will check it in test_pages_isolated().
7456 */
7457 ret = __alloc_contig_migrate_range(&cc, start, end);
7458 if (ret && ret != -EBUSY)
7459 goto done;
7460
7461 /*
7462 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7463 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7464 * more, all pages in [start, end) are free in page allocator.
7465 * What we are going to do is to allocate all pages from
7466 * [start, end) (that is remove them from page allocator).
7467 *
7468 * The only problem is that pages at the beginning and at the
7469 * end of interesting range may be not aligned with pages that
7470 * page allocator holds, ie. they can be part of higher order
7471 * pages. Because of this, we reserve the bigger range and
7472 * once this is done free the pages we are not interested in.
7473 *
7474 * We don't have to hold zone->lock here because the pages are
7475 * isolated thus they won't get removed from buddy.
7476 */
7477
7478 lru_add_drain_all();
7479 drain_all_pages(cc.zone);
7480
7481 order = 0;
7482 outer_start = start;
7483 while (!PageBuddy(pfn_to_page(outer_start))) {
7484 if (++order >= MAX_ORDER) {
7485 outer_start = start;
7486 break;
7487 }
7488 outer_start &= ~0UL << order;
7489 }
7490
7491 if (outer_start != start) {
7492 order = page_order(pfn_to_page(outer_start));
7493
7494 /*
7495 * outer_start page could be small order buddy page and
7496 * it doesn't include start page. Adjust outer_start
7497 * in this case to report failed page properly
7498 * on tracepoint in test_pages_isolated()
7499 */
7500 if (outer_start + (1UL << order) <= start)
7501 outer_start = start;
7502 }
7503
7504 /* Make sure the range is really isolated. */
7505 if (test_pages_isolated(outer_start, end, false)) {
7506 pr_info("%s: [%lx, %lx) PFNs busy\n",
7507 __func__, outer_start, end);
7508 ret = -EBUSY;
7509 goto done;
7510 }
7511
7512 /* Grab isolated pages from freelists. */
7513 outer_end = isolate_freepages_range(&cc, outer_start, end);
7514 if (!outer_end) {
7515 ret = -EBUSY;
7516 goto done;
7517 }
7518
7519 /* Free head and tail (if any) */
7520 if (start != outer_start)
7521 free_contig_range(outer_start, start - outer_start);
7522 if (end != outer_end)
7523 free_contig_range(end, outer_end - end);
7524
7525 done:
7526 undo_isolate_page_range(pfn_max_align_down(start),
7527 pfn_max_align_up(end), migratetype);
7528 return ret;
7529 }
7530
7531 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7532 {
7533 unsigned int count = 0;
7534
7535 for (; nr_pages--; pfn++) {
7536 struct page *page = pfn_to_page(pfn);
7537
7538 count += page_count(page) != 1;
7539 __free_page(page);
7540 }
7541 WARN(count != 0, "%d pages are still in use!\n", count);
7542 }
7543 #endif
7544
7545 #ifdef CONFIG_MEMORY_HOTPLUG
7546 /*
7547 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7548 * page high values need to be recalulated.
7549 */
7550 void __meminit zone_pcp_update(struct zone *zone)
7551 {
7552 unsigned cpu;
7553 mutex_lock(&pcp_batch_high_lock);
7554 for_each_possible_cpu(cpu)
7555 pageset_set_high_and_batch(zone,
7556 per_cpu_ptr(zone->pageset, cpu));
7557 mutex_unlock(&pcp_batch_high_lock);
7558 }
7559 #endif
7560
7561 void zone_pcp_reset(struct zone *zone)
7562 {
7563 unsigned long flags;
7564 int cpu;
7565 struct per_cpu_pageset *pset;
7566
7567 /* avoid races with drain_pages() */
7568 local_irq_save(flags);
7569 if (zone->pageset != &boot_pageset) {
7570 for_each_online_cpu(cpu) {
7571 pset = per_cpu_ptr(zone->pageset, cpu);
7572 drain_zonestat(zone, pset);
7573 }
7574 free_percpu(zone->pageset);
7575 zone->pageset = &boot_pageset;
7576 }
7577 local_irq_restore(flags);
7578 }
7579
7580 #ifdef CONFIG_MEMORY_HOTREMOVE
7581 /*
7582 * All pages in the range must be in a single zone and isolated
7583 * before calling this.
7584 */
7585 void
7586 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7587 {
7588 struct page *page;
7589 struct zone *zone;
7590 unsigned int order, i;
7591 unsigned long pfn;
7592 unsigned long flags;
7593 /* find the first valid pfn */
7594 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7595 if (pfn_valid(pfn))
7596 break;
7597 if (pfn == end_pfn)
7598 return;
7599 zone = page_zone(pfn_to_page(pfn));
7600 spin_lock_irqsave(&zone->lock, flags);
7601 pfn = start_pfn;
7602 while (pfn < end_pfn) {
7603 if (!pfn_valid(pfn)) {
7604 pfn++;
7605 continue;
7606 }
7607 page = pfn_to_page(pfn);
7608 /*
7609 * The HWPoisoned page may be not in buddy system, and
7610 * page_count() is not 0.
7611 */
7612 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7613 pfn++;
7614 SetPageReserved(page);
7615 continue;
7616 }
7617
7618 BUG_ON(page_count(page));
7619 BUG_ON(!PageBuddy(page));
7620 order = page_order(page);
7621 #ifdef CONFIG_DEBUG_VM
7622 pr_info("remove from free list %lx %d %lx\n",
7623 pfn, 1 << order, end_pfn);
7624 #endif
7625 list_del(&page->lru);
7626 rmv_page_order(page);
7627 zone->free_area[order].nr_free--;
7628 for (i = 0; i < (1 << order); i++)
7629 SetPageReserved((page+i));
7630 pfn += (1 << order);
7631 }
7632 spin_unlock_irqrestore(&zone->lock, flags);
7633 }
7634 #endif
7635
7636 bool is_free_buddy_page(struct page *page)
7637 {
7638 struct zone *zone = page_zone(page);
7639 unsigned long pfn = page_to_pfn(page);
7640 unsigned long flags;
7641 unsigned int order;
7642
7643 spin_lock_irqsave(&zone->lock, flags);
7644 for (order = 0; order < MAX_ORDER; order++) {
7645 struct page *page_head = page - (pfn & ((1 << order) - 1));
7646
7647 if (PageBuddy(page_head) && page_order(page_head) >= order)
7648 break;
7649 }
7650 spin_unlock_irqrestore(&zone->lock, flags);
7651
7652 return order < MAX_ORDER;
7653 }