]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/page_alloc.c
Merge tag 'nios2-v5.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/lftan...
[mirror_ubuntu-hirsute-kernel.git] / mm / page_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71 #include <linux/padata.h>
72
73 #include <asm/sections.h>
74 #include <asm/tlbflush.h>
75 #include <asm/div64.h>
76 #include "internal.h"
77 #include "shuffle.h"
78 #include "page_reporting.h"
79
80 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
81 static DEFINE_MUTEX(pcp_batch_high_lock);
82 #define MIN_PERCPU_PAGELIST_FRACTION (8)
83
84 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
85 DEFINE_PER_CPU(int, numa_node);
86 EXPORT_PER_CPU_SYMBOL(numa_node);
87 #endif
88
89 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
90
91 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
92 /*
93 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
94 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
95 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
96 * defined in <linux/topology.h>.
97 */
98 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
99 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
100 #endif
101
102 /* work_structs for global per-cpu drains */
103 struct pcpu_drain {
104 struct zone *zone;
105 struct work_struct work;
106 };
107 static DEFINE_MUTEX(pcpu_drain_mutex);
108 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
109
110 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
111 volatile unsigned long latent_entropy __latent_entropy;
112 EXPORT_SYMBOL(latent_entropy);
113 #endif
114
115 /*
116 * Array of node states.
117 */
118 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
119 [N_POSSIBLE] = NODE_MASK_ALL,
120 [N_ONLINE] = { { [0] = 1UL } },
121 #ifndef CONFIG_NUMA
122 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
123 #ifdef CONFIG_HIGHMEM
124 [N_HIGH_MEMORY] = { { [0] = 1UL } },
125 #endif
126 [N_MEMORY] = { { [0] = 1UL } },
127 [N_CPU] = { { [0] = 1UL } },
128 #endif /* NUMA */
129 };
130 EXPORT_SYMBOL(node_states);
131
132 atomic_long_t _totalram_pages __read_mostly;
133 EXPORT_SYMBOL(_totalram_pages);
134 unsigned long totalreserve_pages __read_mostly;
135 unsigned long totalcma_pages __read_mostly;
136
137 int percpu_pagelist_fraction;
138 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
139 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
140 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
141 #else
142 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
143 #endif
144 EXPORT_SYMBOL(init_on_alloc);
145
146 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
147 DEFINE_STATIC_KEY_TRUE(init_on_free);
148 #else
149 DEFINE_STATIC_KEY_FALSE(init_on_free);
150 #endif
151 EXPORT_SYMBOL(init_on_free);
152
153 static int __init early_init_on_alloc(char *buf)
154 {
155 int ret;
156 bool bool_result;
157
158 if (!buf)
159 return -EINVAL;
160 ret = kstrtobool(buf, &bool_result);
161 if (bool_result && page_poisoning_enabled())
162 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
163 if (bool_result)
164 static_branch_enable(&init_on_alloc);
165 else
166 static_branch_disable(&init_on_alloc);
167 return ret;
168 }
169 early_param("init_on_alloc", early_init_on_alloc);
170
171 static int __init early_init_on_free(char *buf)
172 {
173 int ret;
174 bool bool_result;
175
176 if (!buf)
177 return -EINVAL;
178 ret = kstrtobool(buf, &bool_result);
179 if (bool_result && page_poisoning_enabled())
180 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
181 if (bool_result)
182 static_branch_enable(&init_on_free);
183 else
184 static_branch_disable(&init_on_free);
185 return ret;
186 }
187 early_param("init_on_free", early_init_on_free);
188
189 /*
190 * A cached value of the page's pageblock's migratetype, used when the page is
191 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
192 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
193 * Also the migratetype set in the page does not necessarily match the pcplist
194 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
195 * other index - this ensures that it will be put on the correct CMA freelist.
196 */
197 static inline int get_pcppage_migratetype(struct page *page)
198 {
199 return page->index;
200 }
201
202 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
203 {
204 page->index = migratetype;
205 }
206
207 #ifdef CONFIG_PM_SLEEP
208 /*
209 * The following functions are used by the suspend/hibernate code to temporarily
210 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
211 * while devices are suspended. To avoid races with the suspend/hibernate code,
212 * they should always be called with system_transition_mutex held
213 * (gfp_allowed_mask also should only be modified with system_transition_mutex
214 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
215 * with that modification).
216 */
217
218 static gfp_t saved_gfp_mask;
219
220 void pm_restore_gfp_mask(void)
221 {
222 WARN_ON(!mutex_is_locked(&system_transition_mutex));
223 if (saved_gfp_mask) {
224 gfp_allowed_mask = saved_gfp_mask;
225 saved_gfp_mask = 0;
226 }
227 }
228
229 void pm_restrict_gfp_mask(void)
230 {
231 WARN_ON(!mutex_is_locked(&system_transition_mutex));
232 WARN_ON(saved_gfp_mask);
233 saved_gfp_mask = gfp_allowed_mask;
234 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
235 }
236
237 bool pm_suspended_storage(void)
238 {
239 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
240 return false;
241 return true;
242 }
243 #endif /* CONFIG_PM_SLEEP */
244
245 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
246 unsigned int pageblock_order __read_mostly;
247 #endif
248
249 static void __free_pages_ok(struct page *page, unsigned int order);
250
251 /*
252 * results with 256, 32 in the lowmem_reserve sysctl:
253 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
254 * 1G machine -> (16M dma, 784M normal, 224M high)
255 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
256 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
257 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
258 *
259 * TBD: should special case ZONE_DMA32 machines here - in those we normally
260 * don't need any ZONE_NORMAL reservation
261 */
262 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
263 #ifdef CONFIG_ZONE_DMA
264 [ZONE_DMA] = 256,
265 #endif
266 #ifdef CONFIG_ZONE_DMA32
267 [ZONE_DMA32] = 256,
268 #endif
269 [ZONE_NORMAL] = 32,
270 #ifdef CONFIG_HIGHMEM
271 [ZONE_HIGHMEM] = 0,
272 #endif
273 [ZONE_MOVABLE] = 0,
274 };
275
276 static char * const zone_names[MAX_NR_ZONES] = {
277 #ifdef CONFIG_ZONE_DMA
278 "DMA",
279 #endif
280 #ifdef CONFIG_ZONE_DMA32
281 "DMA32",
282 #endif
283 "Normal",
284 #ifdef CONFIG_HIGHMEM
285 "HighMem",
286 #endif
287 "Movable",
288 #ifdef CONFIG_ZONE_DEVICE
289 "Device",
290 #endif
291 };
292
293 const char * const migratetype_names[MIGRATE_TYPES] = {
294 "Unmovable",
295 "Movable",
296 "Reclaimable",
297 "HighAtomic",
298 #ifdef CONFIG_CMA
299 "CMA",
300 #endif
301 #ifdef CONFIG_MEMORY_ISOLATION
302 "Isolate",
303 #endif
304 };
305
306 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
307 [NULL_COMPOUND_DTOR] = NULL,
308 [COMPOUND_PAGE_DTOR] = free_compound_page,
309 #ifdef CONFIG_HUGETLB_PAGE
310 [HUGETLB_PAGE_DTOR] = free_huge_page,
311 #endif
312 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
313 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
314 #endif
315 };
316
317 int min_free_kbytes = 1024;
318 int user_min_free_kbytes = -1;
319 #ifdef CONFIG_DISCONTIGMEM
320 /*
321 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
322 * are not on separate NUMA nodes. Functionally this works but with
323 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
324 * quite small. By default, do not boost watermarks on discontigmem as in
325 * many cases very high-order allocations like THP are likely to be
326 * unsupported and the premature reclaim offsets the advantage of long-term
327 * fragmentation avoidance.
328 */
329 int watermark_boost_factor __read_mostly;
330 #else
331 int watermark_boost_factor __read_mostly = 15000;
332 #endif
333 int watermark_scale_factor = 10;
334
335 static unsigned long nr_kernel_pages __initdata;
336 static unsigned long nr_all_pages __initdata;
337 static unsigned long dma_reserve __initdata;
338
339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
341 static unsigned long required_kernelcore __initdata;
342 static unsigned long required_kernelcore_percent __initdata;
343 static unsigned long required_movablecore __initdata;
344 static unsigned long required_movablecore_percent __initdata;
345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
346 static bool mirrored_kernelcore __meminitdata;
347
348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349 int movable_zone;
350 EXPORT_SYMBOL(movable_zone);
351
352 #if MAX_NUMNODES > 1
353 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
354 unsigned int nr_online_nodes __read_mostly = 1;
355 EXPORT_SYMBOL(nr_node_ids);
356 EXPORT_SYMBOL(nr_online_nodes);
357 #endif
358
359 int page_group_by_mobility_disabled __read_mostly;
360
361 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
362 /*
363 * During boot we initialize deferred pages on-demand, as needed, but once
364 * page_alloc_init_late() has finished, the deferred pages are all initialized,
365 * and we can permanently disable that path.
366 */
367 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
368
369 /*
370 * Calling kasan_free_pages() only after deferred memory initialization
371 * has completed. Poisoning pages during deferred memory init will greatly
372 * lengthen the process and cause problem in large memory systems as the
373 * deferred pages initialization is done with interrupt disabled.
374 *
375 * Assuming that there will be no reference to those newly initialized
376 * pages before they are ever allocated, this should have no effect on
377 * KASAN memory tracking as the poison will be properly inserted at page
378 * allocation time. The only corner case is when pages are allocated by
379 * on-demand allocation and then freed again before the deferred pages
380 * initialization is done, but this is not likely to happen.
381 */
382 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
383 {
384 if (!static_branch_unlikely(&deferred_pages))
385 kasan_free_pages(page, order);
386 }
387
388 /* Returns true if the struct page for the pfn is uninitialised */
389 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
390 {
391 int nid = early_pfn_to_nid(pfn);
392
393 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
394 return true;
395
396 return false;
397 }
398
399 /*
400 * Returns true when the remaining initialisation should be deferred until
401 * later in the boot cycle when it can be parallelised.
402 */
403 static bool __meminit
404 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
405 {
406 static unsigned long prev_end_pfn, nr_initialised;
407
408 /*
409 * prev_end_pfn static that contains the end of previous zone
410 * No need to protect because called very early in boot before smp_init.
411 */
412 if (prev_end_pfn != end_pfn) {
413 prev_end_pfn = end_pfn;
414 nr_initialised = 0;
415 }
416
417 /* Always populate low zones for address-constrained allocations */
418 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
419 return false;
420
421 /*
422 * We start only with one section of pages, more pages are added as
423 * needed until the rest of deferred pages are initialized.
424 */
425 nr_initialised++;
426 if ((nr_initialised > PAGES_PER_SECTION) &&
427 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
428 NODE_DATA(nid)->first_deferred_pfn = pfn;
429 return true;
430 }
431 return false;
432 }
433 #else
434 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
435
436 static inline bool early_page_uninitialised(unsigned long pfn)
437 {
438 return false;
439 }
440
441 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
442 {
443 return false;
444 }
445 #endif
446
447 /* Return a pointer to the bitmap storing bits affecting a block of pages */
448 static inline unsigned long *get_pageblock_bitmap(struct page *page,
449 unsigned long pfn)
450 {
451 #ifdef CONFIG_SPARSEMEM
452 return section_to_usemap(__pfn_to_section(pfn));
453 #else
454 return page_zone(page)->pageblock_flags;
455 #endif /* CONFIG_SPARSEMEM */
456 }
457
458 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
459 {
460 #ifdef CONFIG_SPARSEMEM
461 pfn &= (PAGES_PER_SECTION-1);
462 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
463 #else
464 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
465 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
466 #endif /* CONFIG_SPARSEMEM */
467 }
468
469 /**
470 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
471 * @page: The page within the block of interest
472 * @pfn: The target page frame number
473 * @end_bitidx: The last bit of interest to retrieve
474 * @mask: mask of bits that the caller is interested in
475 *
476 * Return: pageblock_bits flags
477 */
478 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
479 unsigned long pfn,
480 unsigned long end_bitidx,
481 unsigned long mask)
482 {
483 unsigned long *bitmap;
484 unsigned long bitidx, word_bitidx;
485 unsigned long word;
486
487 bitmap = get_pageblock_bitmap(page, pfn);
488 bitidx = pfn_to_bitidx(page, pfn);
489 word_bitidx = bitidx / BITS_PER_LONG;
490 bitidx &= (BITS_PER_LONG-1);
491
492 word = bitmap[word_bitidx];
493 bitidx += end_bitidx;
494 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
495 }
496
497 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
498 unsigned long end_bitidx,
499 unsigned long mask)
500 {
501 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
502 }
503
504 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
505 {
506 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
507 }
508
509 /**
510 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
511 * @page: The page within the block of interest
512 * @flags: The flags to set
513 * @pfn: The target page frame number
514 * @end_bitidx: The last bit of interest
515 * @mask: mask of bits that the caller is interested in
516 */
517 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
518 unsigned long pfn,
519 unsigned long end_bitidx,
520 unsigned long mask)
521 {
522 unsigned long *bitmap;
523 unsigned long bitidx, word_bitidx;
524 unsigned long old_word, word;
525
526 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
527 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
528
529 bitmap = get_pageblock_bitmap(page, pfn);
530 bitidx = pfn_to_bitidx(page, pfn);
531 word_bitidx = bitidx / BITS_PER_LONG;
532 bitidx &= (BITS_PER_LONG-1);
533
534 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
535
536 bitidx += end_bitidx;
537 mask <<= (BITS_PER_LONG - bitidx - 1);
538 flags <<= (BITS_PER_LONG - bitidx - 1);
539
540 word = READ_ONCE(bitmap[word_bitidx]);
541 for (;;) {
542 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
543 if (word == old_word)
544 break;
545 word = old_word;
546 }
547 }
548
549 void set_pageblock_migratetype(struct page *page, int migratetype)
550 {
551 if (unlikely(page_group_by_mobility_disabled &&
552 migratetype < MIGRATE_PCPTYPES))
553 migratetype = MIGRATE_UNMOVABLE;
554
555 set_pageblock_flags_group(page, (unsigned long)migratetype,
556 PB_migrate, PB_migrate_end);
557 }
558
559 #ifdef CONFIG_DEBUG_VM
560 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
561 {
562 int ret = 0;
563 unsigned seq;
564 unsigned long pfn = page_to_pfn(page);
565 unsigned long sp, start_pfn;
566
567 do {
568 seq = zone_span_seqbegin(zone);
569 start_pfn = zone->zone_start_pfn;
570 sp = zone->spanned_pages;
571 if (!zone_spans_pfn(zone, pfn))
572 ret = 1;
573 } while (zone_span_seqretry(zone, seq));
574
575 if (ret)
576 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
577 pfn, zone_to_nid(zone), zone->name,
578 start_pfn, start_pfn + sp);
579
580 return ret;
581 }
582
583 static int page_is_consistent(struct zone *zone, struct page *page)
584 {
585 if (!pfn_valid_within(page_to_pfn(page)))
586 return 0;
587 if (zone != page_zone(page))
588 return 0;
589
590 return 1;
591 }
592 /*
593 * Temporary debugging check for pages not lying within a given zone.
594 */
595 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
596 {
597 if (page_outside_zone_boundaries(zone, page))
598 return 1;
599 if (!page_is_consistent(zone, page))
600 return 1;
601
602 return 0;
603 }
604 #else
605 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
606 {
607 return 0;
608 }
609 #endif
610
611 static void bad_page(struct page *page, const char *reason)
612 {
613 static unsigned long resume;
614 static unsigned long nr_shown;
615 static unsigned long nr_unshown;
616
617 /*
618 * Allow a burst of 60 reports, then keep quiet for that minute;
619 * or allow a steady drip of one report per second.
620 */
621 if (nr_shown == 60) {
622 if (time_before(jiffies, resume)) {
623 nr_unshown++;
624 goto out;
625 }
626 if (nr_unshown) {
627 pr_alert(
628 "BUG: Bad page state: %lu messages suppressed\n",
629 nr_unshown);
630 nr_unshown = 0;
631 }
632 nr_shown = 0;
633 }
634 if (nr_shown++ == 0)
635 resume = jiffies + 60 * HZ;
636
637 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
638 current->comm, page_to_pfn(page));
639 __dump_page(page, reason);
640 dump_page_owner(page);
641
642 print_modules();
643 dump_stack();
644 out:
645 /* Leave bad fields for debug, except PageBuddy could make trouble */
646 page_mapcount_reset(page); /* remove PageBuddy */
647 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
648 }
649
650 /*
651 * Higher-order pages are called "compound pages". They are structured thusly:
652 *
653 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
654 *
655 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
656 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
657 *
658 * The first tail page's ->compound_dtor holds the offset in array of compound
659 * page destructors. See compound_page_dtors.
660 *
661 * The first tail page's ->compound_order holds the order of allocation.
662 * This usage means that zero-order pages may not be compound.
663 */
664
665 void free_compound_page(struct page *page)
666 {
667 mem_cgroup_uncharge(page);
668 __free_pages_ok(page, compound_order(page));
669 }
670
671 void prep_compound_page(struct page *page, unsigned int order)
672 {
673 int i;
674 int nr_pages = 1 << order;
675
676 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
677 set_compound_order(page, order);
678 __SetPageHead(page);
679 for (i = 1; i < nr_pages; i++) {
680 struct page *p = page + i;
681 set_page_count(p, 0);
682 p->mapping = TAIL_MAPPING;
683 set_compound_head(p, page);
684 }
685 atomic_set(compound_mapcount_ptr(page), -1);
686 if (hpage_pincount_available(page))
687 atomic_set(compound_pincount_ptr(page), 0);
688 }
689
690 #ifdef CONFIG_DEBUG_PAGEALLOC
691 unsigned int _debug_guardpage_minorder;
692
693 bool _debug_pagealloc_enabled_early __read_mostly
694 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
695 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
696 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
697 EXPORT_SYMBOL(_debug_pagealloc_enabled);
698
699 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
700
701 static int __init early_debug_pagealloc(char *buf)
702 {
703 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
704 }
705 early_param("debug_pagealloc", early_debug_pagealloc);
706
707 void init_debug_pagealloc(void)
708 {
709 if (!debug_pagealloc_enabled())
710 return;
711
712 static_branch_enable(&_debug_pagealloc_enabled);
713
714 if (!debug_guardpage_minorder())
715 return;
716
717 static_branch_enable(&_debug_guardpage_enabled);
718 }
719
720 static int __init debug_guardpage_minorder_setup(char *buf)
721 {
722 unsigned long res;
723
724 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
725 pr_err("Bad debug_guardpage_minorder value\n");
726 return 0;
727 }
728 _debug_guardpage_minorder = res;
729 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
730 return 0;
731 }
732 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
733
734 static inline bool set_page_guard(struct zone *zone, struct page *page,
735 unsigned int order, int migratetype)
736 {
737 if (!debug_guardpage_enabled())
738 return false;
739
740 if (order >= debug_guardpage_minorder())
741 return false;
742
743 __SetPageGuard(page);
744 INIT_LIST_HEAD(&page->lru);
745 set_page_private(page, order);
746 /* Guard pages are not available for any usage */
747 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
748
749 return true;
750 }
751
752 static inline void clear_page_guard(struct zone *zone, struct page *page,
753 unsigned int order, int migratetype)
754 {
755 if (!debug_guardpage_enabled())
756 return;
757
758 __ClearPageGuard(page);
759
760 set_page_private(page, 0);
761 if (!is_migrate_isolate(migratetype))
762 __mod_zone_freepage_state(zone, (1 << order), migratetype);
763 }
764 #else
765 static inline bool set_page_guard(struct zone *zone, struct page *page,
766 unsigned int order, int migratetype) { return false; }
767 static inline void clear_page_guard(struct zone *zone, struct page *page,
768 unsigned int order, int migratetype) {}
769 #endif
770
771 static inline void set_page_order(struct page *page, unsigned int order)
772 {
773 set_page_private(page, order);
774 __SetPageBuddy(page);
775 }
776
777 /*
778 * This function checks whether a page is free && is the buddy
779 * we can coalesce a page and its buddy if
780 * (a) the buddy is not in a hole (check before calling!) &&
781 * (b) the buddy is in the buddy system &&
782 * (c) a page and its buddy have the same order &&
783 * (d) a page and its buddy are in the same zone.
784 *
785 * For recording whether a page is in the buddy system, we set PageBuddy.
786 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
787 *
788 * For recording page's order, we use page_private(page).
789 */
790 static inline bool page_is_buddy(struct page *page, struct page *buddy,
791 unsigned int order)
792 {
793 if (!page_is_guard(buddy) && !PageBuddy(buddy))
794 return false;
795
796 if (page_order(buddy) != order)
797 return false;
798
799 /*
800 * zone check is done late to avoid uselessly calculating
801 * zone/node ids for pages that could never merge.
802 */
803 if (page_zone_id(page) != page_zone_id(buddy))
804 return false;
805
806 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
807
808 return true;
809 }
810
811 #ifdef CONFIG_COMPACTION
812 static inline struct capture_control *task_capc(struct zone *zone)
813 {
814 struct capture_control *capc = current->capture_control;
815
816 return capc &&
817 !(current->flags & PF_KTHREAD) &&
818 !capc->page &&
819 capc->cc->zone == zone &&
820 capc->cc->direct_compaction ? capc : NULL;
821 }
822
823 static inline bool
824 compaction_capture(struct capture_control *capc, struct page *page,
825 int order, int migratetype)
826 {
827 if (!capc || order != capc->cc->order)
828 return false;
829
830 /* Do not accidentally pollute CMA or isolated regions*/
831 if (is_migrate_cma(migratetype) ||
832 is_migrate_isolate(migratetype))
833 return false;
834
835 /*
836 * Do not let lower order allocations polluate a movable pageblock.
837 * This might let an unmovable request use a reclaimable pageblock
838 * and vice-versa but no more than normal fallback logic which can
839 * have trouble finding a high-order free page.
840 */
841 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
842 return false;
843
844 capc->page = page;
845 return true;
846 }
847
848 #else
849 static inline struct capture_control *task_capc(struct zone *zone)
850 {
851 return NULL;
852 }
853
854 static inline bool
855 compaction_capture(struct capture_control *capc, struct page *page,
856 int order, int migratetype)
857 {
858 return false;
859 }
860 #endif /* CONFIG_COMPACTION */
861
862 /* Used for pages not on another list */
863 static inline void add_to_free_list(struct page *page, struct zone *zone,
864 unsigned int order, int migratetype)
865 {
866 struct free_area *area = &zone->free_area[order];
867
868 list_add(&page->lru, &area->free_list[migratetype]);
869 area->nr_free++;
870 }
871
872 /* Used for pages not on another list */
873 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
874 unsigned int order, int migratetype)
875 {
876 struct free_area *area = &zone->free_area[order];
877
878 list_add_tail(&page->lru, &area->free_list[migratetype]);
879 area->nr_free++;
880 }
881
882 /* Used for pages which are on another list */
883 static inline void move_to_free_list(struct page *page, struct zone *zone,
884 unsigned int order, int migratetype)
885 {
886 struct free_area *area = &zone->free_area[order];
887
888 list_move(&page->lru, &area->free_list[migratetype]);
889 }
890
891 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
892 unsigned int order)
893 {
894 /* clear reported state and update reported page count */
895 if (page_reported(page))
896 __ClearPageReported(page);
897
898 list_del(&page->lru);
899 __ClearPageBuddy(page);
900 set_page_private(page, 0);
901 zone->free_area[order].nr_free--;
902 }
903
904 /*
905 * If this is not the largest possible page, check if the buddy
906 * of the next-highest order is free. If it is, it's possible
907 * that pages are being freed that will coalesce soon. In case,
908 * that is happening, add the free page to the tail of the list
909 * so it's less likely to be used soon and more likely to be merged
910 * as a higher order page
911 */
912 static inline bool
913 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
914 struct page *page, unsigned int order)
915 {
916 struct page *higher_page, *higher_buddy;
917 unsigned long combined_pfn;
918
919 if (order >= MAX_ORDER - 2)
920 return false;
921
922 if (!pfn_valid_within(buddy_pfn))
923 return false;
924
925 combined_pfn = buddy_pfn & pfn;
926 higher_page = page + (combined_pfn - pfn);
927 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
928 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
929
930 return pfn_valid_within(buddy_pfn) &&
931 page_is_buddy(higher_page, higher_buddy, order + 1);
932 }
933
934 /*
935 * Freeing function for a buddy system allocator.
936 *
937 * The concept of a buddy system is to maintain direct-mapped table
938 * (containing bit values) for memory blocks of various "orders".
939 * The bottom level table contains the map for the smallest allocatable
940 * units of memory (here, pages), and each level above it describes
941 * pairs of units from the levels below, hence, "buddies".
942 * At a high level, all that happens here is marking the table entry
943 * at the bottom level available, and propagating the changes upward
944 * as necessary, plus some accounting needed to play nicely with other
945 * parts of the VM system.
946 * At each level, we keep a list of pages, which are heads of continuous
947 * free pages of length of (1 << order) and marked with PageBuddy.
948 * Page's order is recorded in page_private(page) field.
949 * So when we are allocating or freeing one, we can derive the state of the
950 * other. That is, if we allocate a small block, and both were
951 * free, the remainder of the region must be split into blocks.
952 * If a block is freed, and its buddy is also free, then this
953 * triggers coalescing into a block of larger size.
954 *
955 * -- nyc
956 */
957
958 static inline void __free_one_page(struct page *page,
959 unsigned long pfn,
960 struct zone *zone, unsigned int order,
961 int migratetype, bool report)
962 {
963 struct capture_control *capc = task_capc(zone);
964 unsigned long uninitialized_var(buddy_pfn);
965 unsigned long combined_pfn;
966 unsigned int max_order;
967 struct page *buddy;
968 bool to_tail;
969
970 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
971
972 VM_BUG_ON(!zone_is_initialized(zone));
973 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
974
975 VM_BUG_ON(migratetype == -1);
976 if (likely(!is_migrate_isolate(migratetype)))
977 __mod_zone_freepage_state(zone, 1 << order, migratetype);
978
979 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
980 VM_BUG_ON_PAGE(bad_range(zone, page), page);
981
982 continue_merging:
983 while (order < max_order - 1) {
984 if (compaction_capture(capc, page, order, migratetype)) {
985 __mod_zone_freepage_state(zone, -(1 << order),
986 migratetype);
987 return;
988 }
989 buddy_pfn = __find_buddy_pfn(pfn, order);
990 buddy = page + (buddy_pfn - pfn);
991
992 if (!pfn_valid_within(buddy_pfn))
993 goto done_merging;
994 if (!page_is_buddy(page, buddy, order))
995 goto done_merging;
996 /*
997 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
998 * merge with it and move up one order.
999 */
1000 if (page_is_guard(buddy))
1001 clear_page_guard(zone, buddy, order, migratetype);
1002 else
1003 del_page_from_free_list(buddy, zone, order);
1004 combined_pfn = buddy_pfn & pfn;
1005 page = page + (combined_pfn - pfn);
1006 pfn = combined_pfn;
1007 order++;
1008 }
1009 if (max_order < MAX_ORDER) {
1010 /* If we are here, it means order is >= pageblock_order.
1011 * We want to prevent merge between freepages on isolate
1012 * pageblock and normal pageblock. Without this, pageblock
1013 * isolation could cause incorrect freepage or CMA accounting.
1014 *
1015 * We don't want to hit this code for the more frequent
1016 * low-order merging.
1017 */
1018 if (unlikely(has_isolate_pageblock(zone))) {
1019 int buddy_mt;
1020
1021 buddy_pfn = __find_buddy_pfn(pfn, order);
1022 buddy = page + (buddy_pfn - pfn);
1023 buddy_mt = get_pageblock_migratetype(buddy);
1024
1025 if (migratetype != buddy_mt
1026 && (is_migrate_isolate(migratetype) ||
1027 is_migrate_isolate(buddy_mt)))
1028 goto done_merging;
1029 }
1030 max_order++;
1031 goto continue_merging;
1032 }
1033
1034 done_merging:
1035 set_page_order(page, order);
1036
1037 if (is_shuffle_order(order))
1038 to_tail = shuffle_pick_tail();
1039 else
1040 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1041
1042 if (to_tail)
1043 add_to_free_list_tail(page, zone, order, migratetype);
1044 else
1045 add_to_free_list(page, zone, order, migratetype);
1046
1047 /* Notify page reporting subsystem of freed page */
1048 if (report)
1049 page_reporting_notify_free(order);
1050 }
1051
1052 /*
1053 * A bad page could be due to a number of fields. Instead of multiple branches,
1054 * try and check multiple fields with one check. The caller must do a detailed
1055 * check if necessary.
1056 */
1057 static inline bool page_expected_state(struct page *page,
1058 unsigned long check_flags)
1059 {
1060 if (unlikely(atomic_read(&page->_mapcount) != -1))
1061 return false;
1062
1063 if (unlikely((unsigned long)page->mapping |
1064 page_ref_count(page) |
1065 #ifdef CONFIG_MEMCG
1066 (unsigned long)page->mem_cgroup |
1067 #endif
1068 (page->flags & check_flags)))
1069 return false;
1070
1071 return true;
1072 }
1073
1074 static const char *page_bad_reason(struct page *page, unsigned long flags)
1075 {
1076 const char *bad_reason = NULL;
1077
1078 if (unlikely(atomic_read(&page->_mapcount) != -1))
1079 bad_reason = "nonzero mapcount";
1080 if (unlikely(page->mapping != NULL))
1081 bad_reason = "non-NULL mapping";
1082 if (unlikely(page_ref_count(page) != 0))
1083 bad_reason = "nonzero _refcount";
1084 if (unlikely(page->flags & flags)) {
1085 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1086 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1087 else
1088 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1089 }
1090 #ifdef CONFIG_MEMCG
1091 if (unlikely(page->mem_cgroup))
1092 bad_reason = "page still charged to cgroup";
1093 #endif
1094 return bad_reason;
1095 }
1096
1097 static void check_free_page_bad(struct page *page)
1098 {
1099 bad_page(page,
1100 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1101 }
1102
1103 static inline int check_free_page(struct page *page)
1104 {
1105 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1106 return 0;
1107
1108 /* Something has gone sideways, find it */
1109 check_free_page_bad(page);
1110 return 1;
1111 }
1112
1113 static int free_tail_pages_check(struct page *head_page, struct page *page)
1114 {
1115 int ret = 1;
1116
1117 /*
1118 * We rely page->lru.next never has bit 0 set, unless the page
1119 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1120 */
1121 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1122
1123 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1124 ret = 0;
1125 goto out;
1126 }
1127 switch (page - head_page) {
1128 case 1:
1129 /* the first tail page: ->mapping may be compound_mapcount() */
1130 if (unlikely(compound_mapcount(page))) {
1131 bad_page(page, "nonzero compound_mapcount");
1132 goto out;
1133 }
1134 break;
1135 case 2:
1136 /*
1137 * the second tail page: ->mapping is
1138 * deferred_list.next -- ignore value.
1139 */
1140 break;
1141 default:
1142 if (page->mapping != TAIL_MAPPING) {
1143 bad_page(page, "corrupted mapping in tail page");
1144 goto out;
1145 }
1146 break;
1147 }
1148 if (unlikely(!PageTail(page))) {
1149 bad_page(page, "PageTail not set");
1150 goto out;
1151 }
1152 if (unlikely(compound_head(page) != head_page)) {
1153 bad_page(page, "compound_head not consistent");
1154 goto out;
1155 }
1156 ret = 0;
1157 out:
1158 page->mapping = NULL;
1159 clear_compound_head(page);
1160 return ret;
1161 }
1162
1163 static void kernel_init_free_pages(struct page *page, int numpages)
1164 {
1165 int i;
1166
1167 for (i = 0; i < numpages; i++)
1168 clear_highpage(page + i);
1169 }
1170
1171 static __always_inline bool free_pages_prepare(struct page *page,
1172 unsigned int order, bool check_free)
1173 {
1174 int bad = 0;
1175
1176 VM_BUG_ON_PAGE(PageTail(page), page);
1177
1178 trace_mm_page_free(page, order);
1179
1180 /*
1181 * Check tail pages before head page information is cleared to
1182 * avoid checking PageCompound for order-0 pages.
1183 */
1184 if (unlikely(order)) {
1185 bool compound = PageCompound(page);
1186 int i;
1187
1188 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1189
1190 if (compound)
1191 ClearPageDoubleMap(page);
1192 for (i = 1; i < (1 << order); i++) {
1193 if (compound)
1194 bad += free_tail_pages_check(page, page + i);
1195 if (unlikely(check_free_page(page + i))) {
1196 bad++;
1197 continue;
1198 }
1199 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1200 }
1201 }
1202 if (PageMappingFlags(page))
1203 page->mapping = NULL;
1204 if (memcg_kmem_enabled() && PageKmemcg(page))
1205 __memcg_kmem_uncharge_page(page, order);
1206 if (check_free)
1207 bad += check_free_page(page);
1208 if (bad)
1209 return false;
1210
1211 page_cpupid_reset_last(page);
1212 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1213 reset_page_owner(page, order);
1214
1215 if (!PageHighMem(page)) {
1216 debug_check_no_locks_freed(page_address(page),
1217 PAGE_SIZE << order);
1218 debug_check_no_obj_freed(page_address(page),
1219 PAGE_SIZE << order);
1220 }
1221 if (want_init_on_free())
1222 kernel_init_free_pages(page, 1 << order);
1223
1224 kernel_poison_pages(page, 1 << order, 0);
1225 /*
1226 * arch_free_page() can make the page's contents inaccessible. s390
1227 * does this. So nothing which can access the page's contents should
1228 * happen after this.
1229 */
1230 arch_free_page(page, order);
1231
1232 if (debug_pagealloc_enabled_static())
1233 kernel_map_pages(page, 1 << order, 0);
1234
1235 kasan_free_nondeferred_pages(page, order);
1236
1237 return true;
1238 }
1239
1240 #ifdef CONFIG_DEBUG_VM
1241 /*
1242 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1243 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1244 * moved from pcp lists to free lists.
1245 */
1246 static bool free_pcp_prepare(struct page *page)
1247 {
1248 return free_pages_prepare(page, 0, true);
1249 }
1250
1251 static bool bulkfree_pcp_prepare(struct page *page)
1252 {
1253 if (debug_pagealloc_enabled_static())
1254 return check_free_page(page);
1255 else
1256 return false;
1257 }
1258 #else
1259 /*
1260 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1261 * moving from pcp lists to free list in order to reduce overhead. With
1262 * debug_pagealloc enabled, they are checked also immediately when being freed
1263 * to the pcp lists.
1264 */
1265 static bool free_pcp_prepare(struct page *page)
1266 {
1267 if (debug_pagealloc_enabled_static())
1268 return free_pages_prepare(page, 0, true);
1269 else
1270 return free_pages_prepare(page, 0, false);
1271 }
1272
1273 static bool bulkfree_pcp_prepare(struct page *page)
1274 {
1275 return check_free_page(page);
1276 }
1277 #endif /* CONFIG_DEBUG_VM */
1278
1279 static inline void prefetch_buddy(struct page *page)
1280 {
1281 unsigned long pfn = page_to_pfn(page);
1282 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1283 struct page *buddy = page + (buddy_pfn - pfn);
1284
1285 prefetch(buddy);
1286 }
1287
1288 /*
1289 * Frees a number of pages from the PCP lists
1290 * Assumes all pages on list are in same zone, and of same order.
1291 * count is the number of pages to free.
1292 *
1293 * If the zone was previously in an "all pages pinned" state then look to
1294 * see if this freeing clears that state.
1295 *
1296 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1297 * pinned" detection logic.
1298 */
1299 static void free_pcppages_bulk(struct zone *zone, int count,
1300 struct per_cpu_pages *pcp)
1301 {
1302 int migratetype = 0;
1303 int batch_free = 0;
1304 int prefetch_nr = 0;
1305 bool isolated_pageblocks;
1306 struct page *page, *tmp;
1307 LIST_HEAD(head);
1308
1309 while (count) {
1310 struct list_head *list;
1311
1312 /*
1313 * Remove pages from lists in a round-robin fashion. A
1314 * batch_free count is maintained that is incremented when an
1315 * empty list is encountered. This is so more pages are freed
1316 * off fuller lists instead of spinning excessively around empty
1317 * lists
1318 */
1319 do {
1320 batch_free++;
1321 if (++migratetype == MIGRATE_PCPTYPES)
1322 migratetype = 0;
1323 list = &pcp->lists[migratetype];
1324 } while (list_empty(list));
1325
1326 /* This is the only non-empty list. Free them all. */
1327 if (batch_free == MIGRATE_PCPTYPES)
1328 batch_free = count;
1329
1330 do {
1331 page = list_last_entry(list, struct page, lru);
1332 /* must delete to avoid corrupting pcp list */
1333 list_del(&page->lru);
1334 pcp->count--;
1335
1336 if (bulkfree_pcp_prepare(page))
1337 continue;
1338
1339 list_add_tail(&page->lru, &head);
1340
1341 /*
1342 * We are going to put the page back to the global
1343 * pool, prefetch its buddy to speed up later access
1344 * under zone->lock. It is believed the overhead of
1345 * an additional test and calculating buddy_pfn here
1346 * can be offset by reduced memory latency later. To
1347 * avoid excessive prefetching due to large count, only
1348 * prefetch buddy for the first pcp->batch nr of pages.
1349 */
1350 if (prefetch_nr++ < pcp->batch)
1351 prefetch_buddy(page);
1352 } while (--count && --batch_free && !list_empty(list));
1353 }
1354
1355 spin_lock(&zone->lock);
1356 isolated_pageblocks = has_isolate_pageblock(zone);
1357
1358 /*
1359 * Use safe version since after __free_one_page(),
1360 * page->lru.next will not point to original list.
1361 */
1362 list_for_each_entry_safe(page, tmp, &head, lru) {
1363 int mt = get_pcppage_migratetype(page);
1364 /* MIGRATE_ISOLATE page should not go to pcplists */
1365 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1366 /* Pageblock could have been isolated meanwhile */
1367 if (unlikely(isolated_pageblocks))
1368 mt = get_pageblock_migratetype(page);
1369
1370 __free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
1371 trace_mm_page_pcpu_drain(page, 0, mt);
1372 }
1373 spin_unlock(&zone->lock);
1374 }
1375
1376 static void free_one_page(struct zone *zone,
1377 struct page *page, unsigned long pfn,
1378 unsigned int order,
1379 int migratetype)
1380 {
1381 spin_lock(&zone->lock);
1382 if (unlikely(has_isolate_pageblock(zone) ||
1383 is_migrate_isolate(migratetype))) {
1384 migratetype = get_pfnblock_migratetype(page, pfn);
1385 }
1386 __free_one_page(page, pfn, zone, order, migratetype, true);
1387 spin_unlock(&zone->lock);
1388 }
1389
1390 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1391 unsigned long zone, int nid)
1392 {
1393 mm_zero_struct_page(page);
1394 set_page_links(page, zone, nid, pfn);
1395 init_page_count(page);
1396 page_mapcount_reset(page);
1397 page_cpupid_reset_last(page);
1398 page_kasan_tag_reset(page);
1399
1400 INIT_LIST_HEAD(&page->lru);
1401 #ifdef WANT_PAGE_VIRTUAL
1402 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1403 if (!is_highmem_idx(zone))
1404 set_page_address(page, __va(pfn << PAGE_SHIFT));
1405 #endif
1406 }
1407
1408 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1409 static void __meminit init_reserved_page(unsigned long pfn)
1410 {
1411 pg_data_t *pgdat;
1412 int nid, zid;
1413
1414 if (!early_page_uninitialised(pfn))
1415 return;
1416
1417 nid = early_pfn_to_nid(pfn);
1418 pgdat = NODE_DATA(nid);
1419
1420 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1421 struct zone *zone = &pgdat->node_zones[zid];
1422
1423 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1424 break;
1425 }
1426 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1427 }
1428 #else
1429 static inline void init_reserved_page(unsigned long pfn)
1430 {
1431 }
1432 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1433
1434 /*
1435 * Initialised pages do not have PageReserved set. This function is
1436 * called for each range allocated by the bootmem allocator and
1437 * marks the pages PageReserved. The remaining valid pages are later
1438 * sent to the buddy page allocator.
1439 */
1440 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1441 {
1442 unsigned long start_pfn = PFN_DOWN(start);
1443 unsigned long end_pfn = PFN_UP(end);
1444
1445 for (; start_pfn < end_pfn; start_pfn++) {
1446 if (pfn_valid(start_pfn)) {
1447 struct page *page = pfn_to_page(start_pfn);
1448
1449 init_reserved_page(start_pfn);
1450
1451 /* Avoid false-positive PageTail() */
1452 INIT_LIST_HEAD(&page->lru);
1453
1454 /*
1455 * no need for atomic set_bit because the struct
1456 * page is not visible yet so nobody should
1457 * access it yet.
1458 */
1459 __SetPageReserved(page);
1460 }
1461 }
1462 }
1463
1464 static void __free_pages_ok(struct page *page, unsigned int order)
1465 {
1466 unsigned long flags;
1467 int migratetype;
1468 unsigned long pfn = page_to_pfn(page);
1469
1470 if (!free_pages_prepare(page, order, true))
1471 return;
1472
1473 migratetype = get_pfnblock_migratetype(page, pfn);
1474 local_irq_save(flags);
1475 __count_vm_events(PGFREE, 1 << order);
1476 free_one_page(page_zone(page), page, pfn, order, migratetype);
1477 local_irq_restore(flags);
1478 }
1479
1480 void __free_pages_core(struct page *page, unsigned int order)
1481 {
1482 unsigned int nr_pages = 1 << order;
1483 struct page *p = page;
1484 unsigned int loop;
1485
1486 prefetchw(p);
1487 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1488 prefetchw(p + 1);
1489 __ClearPageReserved(p);
1490 set_page_count(p, 0);
1491 }
1492 __ClearPageReserved(p);
1493 set_page_count(p, 0);
1494
1495 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1496 set_page_refcounted(page);
1497 __free_pages(page, order);
1498 }
1499
1500 #ifdef CONFIG_NEED_MULTIPLE_NODES
1501
1502 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1503
1504 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1505
1506 /*
1507 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1508 */
1509 int __meminit __early_pfn_to_nid(unsigned long pfn,
1510 struct mminit_pfnnid_cache *state)
1511 {
1512 unsigned long start_pfn, end_pfn;
1513 int nid;
1514
1515 if (state->last_start <= pfn && pfn < state->last_end)
1516 return state->last_nid;
1517
1518 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1519 if (nid != NUMA_NO_NODE) {
1520 state->last_start = start_pfn;
1521 state->last_end = end_pfn;
1522 state->last_nid = nid;
1523 }
1524
1525 return nid;
1526 }
1527 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1528
1529 int __meminit early_pfn_to_nid(unsigned long pfn)
1530 {
1531 static DEFINE_SPINLOCK(early_pfn_lock);
1532 int nid;
1533
1534 spin_lock(&early_pfn_lock);
1535 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1536 if (nid < 0)
1537 nid = first_online_node;
1538 spin_unlock(&early_pfn_lock);
1539
1540 return nid;
1541 }
1542 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1543
1544 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1545 unsigned int order)
1546 {
1547 if (early_page_uninitialised(pfn))
1548 return;
1549 __free_pages_core(page, order);
1550 }
1551
1552 /*
1553 * Check that the whole (or subset of) a pageblock given by the interval of
1554 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1555 * with the migration of free compaction scanner. The scanners then need to
1556 * use only pfn_valid_within() check for arches that allow holes within
1557 * pageblocks.
1558 *
1559 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1560 *
1561 * It's possible on some configurations to have a setup like node0 node1 node0
1562 * i.e. it's possible that all pages within a zones range of pages do not
1563 * belong to a single zone. We assume that a border between node0 and node1
1564 * can occur within a single pageblock, but not a node0 node1 node0
1565 * interleaving within a single pageblock. It is therefore sufficient to check
1566 * the first and last page of a pageblock and avoid checking each individual
1567 * page in a pageblock.
1568 */
1569 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1570 unsigned long end_pfn, struct zone *zone)
1571 {
1572 struct page *start_page;
1573 struct page *end_page;
1574
1575 /* end_pfn is one past the range we are checking */
1576 end_pfn--;
1577
1578 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1579 return NULL;
1580
1581 start_page = pfn_to_online_page(start_pfn);
1582 if (!start_page)
1583 return NULL;
1584
1585 if (page_zone(start_page) != zone)
1586 return NULL;
1587
1588 end_page = pfn_to_page(end_pfn);
1589
1590 /* This gives a shorter code than deriving page_zone(end_page) */
1591 if (page_zone_id(start_page) != page_zone_id(end_page))
1592 return NULL;
1593
1594 return start_page;
1595 }
1596
1597 void set_zone_contiguous(struct zone *zone)
1598 {
1599 unsigned long block_start_pfn = zone->zone_start_pfn;
1600 unsigned long block_end_pfn;
1601
1602 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1603 for (; block_start_pfn < zone_end_pfn(zone);
1604 block_start_pfn = block_end_pfn,
1605 block_end_pfn += pageblock_nr_pages) {
1606
1607 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1608
1609 if (!__pageblock_pfn_to_page(block_start_pfn,
1610 block_end_pfn, zone))
1611 return;
1612 cond_resched();
1613 }
1614
1615 /* We confirm that there is no hole */
1616 zone->contiguous = true;
1617 }
1618
1619 void clear_zone_contiguous(struct zone *zone)
1620 {
1621 zone->contiguous = false;
1622 }
1623
1624 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1625 static void __init deferred_free_range(unsigned long pfn,
1626 unsigned long nr_pages)
1627 {
1628 struct page *page;
1629 unsigned long i;
1630
1631 if (!nr_pages)
1632 return;
1633
1634 page = pfn_to_page(pfn);
1635
1636 /* Free a large naturally-aligned chunk if possible */
1637 if (nr_pages == pageblock_nr_pages &&
1638 (pfn & (pageblock_nr_pages - 1)) == 0) {
1639 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1640 __free_pages_core(page, pageblock_order);
1641 return;
1642 }
1643
1644 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1645 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1646 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1647 __free_pages_core(page, 0);
1648 }
1649 }
1650
1651 /* Completion tracking for deferred_init_memmap() threads */
1652 static atomic_t pgdat_init_n_undone __initdata;
1653 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1654
1655 static inline void __init pgdat_init_report_one_done(void)
1656 {
1657 if (atomic_dec_and_test(&pgdat_init_n_undone))
1658 complete(&pgdat_init_all_done_comp);
1659 }
1660
1661 /*
1662 * Returns true if page needs to be initialized or freed to buddy allocator.
1663 *
1664 * First we check if pfn is valid on architectures where it is possible to have
1665 * holes within pageblock_nr_pages. On systems where it is not possible, this
1666 * function is optimized out.
1667 *
1668 * Then, we check if a current large page is valid by only checking the validity
1669 * of the head pfn.
1670 */
1671 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1672 {
1673 if (!pfn_valid_within(pfn))
1674 return false;
1675 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1676 return false;
1677 return true;
1678 }
1679
1680 /*
1681 * Free pages to buddy allocator. Try to free aligned pages in
1682 * pageblock_nr_pages sizes.
1683 */
1684 static void __init deferred_free_pages(unsigned long pfn,
1685 unsigned long end_pfn)
1686 {
1687 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1688 unsigned long nr_free = 0;
1689
1690 for (; pfn < end_pfn; pfn++) {
1691 if (!deferred_pfn_valid(pfn)) {
1692 deferred_free_range(pfn - nr_free, nr_free);
1693 nr_free = 0;
1694 } else if (!(pfn & nr_pgmask)) {
1695 deferred_free_range(pfn - nr_free, nr_free);
1696 nr_free = 1;
1697 } else {
1698 nr_free++;
1699 }
1700 }
1701 /* Free the last block of pages to allocator */
1702 deferred_free_range(pfn - nr_free, nr_free);
1703 }
1704
1705 /*
1706 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1707 * by performing it only once every pageblock_nr_pages.
1708 * Return number of pages initialized.
1709 */
1710 static unsigned long __init deferred_init_pages(struct zone *zone,
1711 unsigned long pfn,
1712 unsigned long end_pfn)
1713 {
1714 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1715 int nid = zone_to_nid(zone);
1716 unsigned long nr_pages = 0;
1717 int zid = zone_idx(zone);
1718 struct page *page = NULL;
1719
1720 for (; pfn < end_pfn; pfn++) {
1721 if (!deferred_pfn_valid(pfn)) {
1722 page = NULL;
1723 continue;
1724 } else if (!page || !(pfn & nr_pgmask)) {
1725 page = pfn_to_page(pfn);
1726 } else {
1727 page++;
1728 }
1729 __init_single_page(page, pfn, zid, nid);
1730 nr_pages++;
1731 }
1732 return (nr_pages);
1733 }
1734
1735 /*
1736 * This function is meant to pre-load the iterator for the zone init.
1737 * Specifically it walks through the ranges until we are caught up to the
1738 * first_init_pfn value and exits there. If we never encounter the value we
1739 * return false indicating there are no valid ranges left.
1740 */
1741 static bool __init
1742 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1743 unsigned long *spfn, unsigned long *epfn,
1744 unsigned long first_init_pfn)
1745 {
1746 u64 j;
1747
1748 /*
1749 * Start out by walking through the ranges in this zone that have
1750 * already been initialized. We don't need to do anything with them
1751 * so we just need to flush them out of the system.
1752 */
1753 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1754 if (*epfn <= first_init_pfn)
1755 continue;
1756 if (*spfn < first_init_pfn)
1757 *spfn = first_init_pfn;
1758 *i = j;
1759 return true;
1760 }
1761
1762 return false;
1763 }
1764
1765 /*
1766 * Initialize and free pages. We do it in two loops: first we initialize
1767 * struct page, then free to buddy allocator, because while we are
1768 * freeing pages we can access pages that are ahead (computing buddy
1769 * page in __free_one_page()).
1770 *
1771 * In order to try and keep some memory in the cache we have the loop
1772 * broken along max page order boundaries. This way we will not cause
1773 * any issues with the buddy page computation.
1774 */
1775 static unsigned long __init
1776 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1777 unsigned long *end_pfn)
1778 {
1779 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1780 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1781 unsigned long nr_pages = 0;
1782 u64 j = *i;
1783
1784 /* First we loop through and initialize the page values */
1785 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1786 unsigned long t;
1787
1788 if (mo_pfn <= *start_pfn)
1789 break;
1790
1791 t = min(mo_pfn, *end_pfn);
1792 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1793
1794 if (mo_pfn < *end_pfn) {
1795 *start_pfn = mo_pfn;
1796 break;
1797 }
1798 }
1799
1800 /* Reset values and now loop through freeing pages as needed */
1801 swap(j, *i);
1802
1803 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1804 unsigned long t;
1805
1806 if (mo_pfn <= spfn)
1807 break;
1808
1809 t = min(mo_pfn, epfn);
1810 deferred_free_pages(spfn, t);
1811
1812 if (mo_pfn <= epfn)
1813 break;
1814 }
1815
1816 return nr_pages;
1817 }
1818
1819 static void __init
1820 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1821 void *arg)
1822 {
1823 unsigned long spfn, epfn;
1824 struct zone *zone = arg;
1825 u64 i;
1826
1827 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1828
1829 /*
1830 * Initialize and free pages in MAX_ORDER sized increments so that we
1831 * can avoid introducing any issues with the buddy allocator.
1832 */
1833 while (spfn < end_pfn) {
1834 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1835 cond_resched();
1836 }
1837 }
1838
1839 /* An arch may override for more concurrency. */
1840 __weak int __init
1841 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1842 {
1843 return 1;
1844 }
1845
1846 /* Initialise remaining memory on a node */
1847 static int __init deferred_init_memmap(void *data)
1848 {
1849 pg_data_t *pgdat = data;
1850 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1851 unsigned long spfn = 0, epfn = 0;
1852 unsigned long first_init_pfn, flags;
1853 unsigned long start = jiffies;
1854 struct zone *zone;
1855 int zid, max_threads;
1856 u64 i;
1857
1858 /* Bind memory initialisation thread to a local node if possible */
1859 if (!cpumask_empty(cpumask))
1860 set_cpus_allowed_ptr(current, cpumask);
1861
1862 pgdat_resize_lock(pgdat, &flags);
1863 first_init_pfn = pgdat->first_deferred_pfn;
1864 if (first_init_pfn == ULONG_MAX) {
1865 pgdat_resize_unlock(pgdat, &flags);
1866 pgdat_init_report_one_done();
1867 return 0;
1868 }
1869
1870 /* Sanity check boundaries */
1871 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1872 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1873 pgdat->first_deferred_pfn = ULONG_MAX;
1874
1875 /*
1876 * Once we unlock here, the zone cannot be grown anymore, thus if an
1877 * interrupt thread must allocate this early in boot, zone must be
1878 * pre-grown prior to start of deferred page initialization.
1879 */
1880 pgdat_resize_unlock(pgdat, &flags);
1881
1882 /* Only the highest zone is deferred so find it */
1883 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1884 zone = pgdat->node_zones + zid;
1885 if (first_init_pfn < zone_end_pfn(zone))
1886 break;
1887 }
1888
1889 /* If the zone is empty somebody else may have cleared out the zone */
1890 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1891 first_init_pfn))
1892 goto zone_empty;
1893
1894 max_threads = deferred_page_init_max_threads(cpumask);
1895
1896 while (spfn < epfn) {
1897 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1898 struct padata_mt_job job = {
1899 .thread_fn = deferred_init_memmap_chunk,
1900 .fn_arg = zone,
1901 .start = spfn,
1902 .size = epfn_align - spfn,
1903 .align = PAGES_PER_SECTION,
1904 .min_chunk = PAGES_PER_SECTION,
1905 .max_threads = max_threads,
1906 };
1907
1908 padata_do_multithreaded(&job);
1909 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1910 epfn_align);
1911 }
1912 zone_empty:
1913 /* Sanity check that the next zone really is unpopulated */
1914 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1915
1916 pr_info("node %d deferred pages initialised in %ums\n",
1917 pgdat->node_id, jiffies_to_msecs(jiffies - start));
1918
1919 pgdat_init_report_one_done();
1920 return 0;
1921 }
1922
1923 /*
1924 * If this zone has deferred pages, try to grow it by initializing enough
1925 * deferred pages to satisfy the allocation specified by order, rounded up to
1926 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1927 * of SECTION_SIZE bytes by initializing struct pages in increments of
1928 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1929 *
1930 * Return true when zone was grown, otherwise return false. We return true even
1931 * when we grow less than requested, to let the caller decide if there are
1932 * enough pages to satisfy the allocation.
1933 *
1934 * Note: We use noinline because this function is needed only during boot, and
1935 * it is called from a __ref function _deferred_grow_zone. This way we are
1936 * making sure that it is not inlined into permanent text section.
1937 */
1938 static noinline bool __init
1939 deferred_grow_zone(struct zone *zone, unsigned int order)
1940 {
1941 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1942 pg_data_t *pgdat = zone->zone_pgdat;
1943 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1944 unsigned long spfn, epfn, flags;
1945 unsigned long nr_pages = 0;
1946 u64 i;
1947
1948 /* Only the last zone may have deferred pages */
1949 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1950 return false;
1951
1952 pgdat_resize_lock(pgdat, &flags);
1953
1954 /*
1955 * If someone grew this zone while we were waiting for spinlock, return
1956 * true, as there might be enough pages already.
1957 */
1958 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1959 pgdat_resize_unlock(pgdat, &flags);
1960 return true;
1961 }
1962
1963 /* If the zone is empty somebody else may have cleared out the zone */
1964 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1965 first_deferred_pfn)) {
1966 pgdat->first_deferred_pfn = ULONG_MAX;
1967 pgdat_resize_unlock(pgdat, &flags);
1968 /* Retry only once. */
1969 return first_deferred_pfn != ULONG_MAX;
1970 }
1971
1972 /*
1973 * Initialize and free pages in MAX_ORDER sized increments so
1974 * that we can avoid introducing any issues with the buddy
1975 * allocator.
1976 */
1977 while (spfn < epfn) {
1978 /* update our first deferred PFN for this section */
1979 first_deferred_pfn = spfn;
1980
1981 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1982 touch_nmi_watchdog();
1983
1984 /* We should only stop along section boundaries */
1985 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1986 continue;
1987
1988 /* If our quota has been met we can stop here */
1989 if (nr_pages >= nr_pages_needed)
1990 break;
1991 }
1992
1993 pgdat->first_deferred_pfn = spfn;
1994 pgdat_resize_unlock(pgdat, &flags);
1995
1996 return nr_pages > 0;
1997 }
1998
1999 /*
2000 * deferred_grow_zone() is __init, but it is called from
2001 * get_page_from_freelist() during early boot until deferred_pages permanently
2002 * disables this call. This is why we have refdata wrapper to avoid warning,
2003 * and to ensure that the function body gets unloaded.
2004 */
2005 static bool __ref
2006 _deferred_grow_zone(struct zone *zone, unsigned int order)
2007 {
2008 return deferred_grow_zone(zone, order);
2009 }
2010
2011 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2012
2013 void __init page_alloc_init_late(void)
2014 {
2015 struct zone *zone;
2016 int nid;
2017
2018 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2019
2020 /* There will be num_node_state(N_MEMORY) threads */
2021 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2022 for_each_node_state(nid, N_MEMORY) {
2023 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2024 }
2025
2026 /* Block until all are initialised */
2027 wait_for_completion(&pgdat_init_all_done_comp);
2028
2029 /*
2030 * The number of managed pages has changed due to the initialisation
2031 * so the pcpu batch and high limits needs to be updated or the limits
2032 * will be artificially small.
2033 */
2034 for_each_populated_zone(zone)
2035 zone_pcp_update(zone);
2036
2037 /*
2038 * We initialized the rest of the deferred pages. Permanently disable
2039 * on-demand struct page initialization.
2040 */
2041 static_branch_disable(&deferred_pages);
2042
2043 /* Reinit limits that are based on free pages after the kernel is up */
2044 files_maxfiles_init();
2045 #endif
2046
2047 /* Discard memblock private memory */
2048 memblock_discard();
2049
2050 for_each_node_state(nid, N_MEMORY)
2051 shuffle_free_memory(NODE_DATA(nid));
2052
2053 for_each_populated_zone(zone)
2054 set_zone_contiguous(zone);
2055 }
2056
2057 #ifdef CONFIG_CMA
2058 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2059 void __init init_cma_reserved_pageblock(struct page *page)
2060 {
2061 unsigned i = pageblock_nr_pages;
2062 struct page *p = page;
2063
2064 do {
2065 __ClearPageReserved(p);
2066 set_page_count(p, 0);
2067 } while (++p, --i);
2068
2069 set_pageblock_migratetype(page, MIGRATE_CMA);
2070
2071 if (pageblock_order >= MAX_ORDER) {
2072 i = pageblock_nr_pages;
2073 p = page;
2074 do {
2075 set_page_refcounted(p);
2076 __free_pages(p, MAX_ORDER - 1);
2077 p += MAX_ORDER_NR_PAGES;
2078 } while (i -= MAX_ORDER_NR_PAGES);
2079 } else {
2080 set_page_refcounted(page);
2081 __free_pages(page, pageblock_order);
2082 }
2083
2084 adjust_managed_page_count(page, pageblock_nr_pages);
2085 }
2086 #endif
2087
2088 /*
2089 * The order of subdivision here is critical for the IO subsystem.
2090 * Please do not alter this order without good reasons and regression
2091 * testing. Specifically, as large blocks of memory are subdivided,
2092 * the order in which smaller blocks are delivered depends on the order
2093 * they're subdivided in this function. This is the primary factor
2094 * influencing the order in which pages are delivered to the IO
2095 * subsystem according to empirical testing, and this is also justified
2096 * by considering the behavior of a buddy system containing a single
2097 * large block of memory acted on by a series of small allocations.
2098 * This behavior is a critical factor in sglist merging's success.
2099 *
2100 * -- nyc
2101 */
2102 static inline void expand(struct zone *zone, struct page *page,
2103 int low, int high, int migratetype)
2104 {
2105 unsigned long size = 1 << high;
2106
2107 while (high > low) {
2108 high--;
2109 size >>= 1;
2110 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2111
2112 /*
2113 * Mark as guard pages (or page), that will allow to
2114 * merge back to allocator when buddy will be freed.
2115 * Corresponding page table entries will not be touched,
2116 * pages will stay not present in virtual address space
2117 */
2118 if (set_page_guard(zone, &page[size], high, migratetype))
2119 continue;
2120
2121 add_to_free_list(&page[size], zone, high, migratetype);
2122 set_page_order(&page[size], high);
2123 }
2124 }
2125
2126 static void check_new_page_bad(struct page *page)
2127 {
2128 if (unlikely(page->flags & __PG_HWPOISON)) {
2129 /* Don't complain about hwpoisoned pages */
2130 page_mapcount_reset(page); /* remove PageBuddy */
2131 return;
2132 }
2133
2134 bad_page(page,
2135 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2136 }
2137
2138 /*
2139 * This page is about to be returned from the page allocator
2140 */
2141 static inline int check_new_page(struct page *page)
2142 {
2143 if (likely(page_expected_state(page,
2144 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2145 return 0;
2146
2147 check_new_page_bad(page);
2148 return 1;
2149 }
2150
2151 static inline bool free_pages_prezeroed(void)
2152 {
2153 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2154 page_poisoning_enabled()) || want_init_on_free();
2155 }
2156
2157 #ifdef CONFIG_DEBUG_VM
2158 /*
2159 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2160 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2161 * also checked when pcp lists are refilled from the free lists.
2162 */
2163 static inline bool check_pcp_refill(struct page *page)
2164 {
2165 if (debug_pagealloc_enabled_static())
2166 return check_new_page(page);
2167 else
2168 return false;
2169 }
2170
2171 static inline bool check_new_pcp(struct page *page)
2172 {
2173 return check_new_page(page);
2174 }
2175 #else
2176 /*
2177 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2178 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2179 * enabled, they are also checked when being allocated from the pcp lists.
2180 */
2181 static inline bool check_pcp_refill(struct page *page)
2182 {
2183 return check_new_page(page);
2184 }
2185 static inline bool check_new_pcp(struct page *page)
2186 {
2187 if (debug_pagealloc_enabled_static())
2188 return check_new_page(page);
2189 else
2190 return false;
2191 }
2192 #endif /* CONFIG_DEBUG_VM */
2193
2194 static bool check_new_pages(struct page *page, unsigned int order)
2195 {
2196 int i;
2197 for (i = 0; i < (1 << order); i++) {
2198 struct page *p = page + i;
2199
2200 if (unlikely(check_new_page(p)))
2201 return true;
2202 }
2203
2204 return false;
2205 }
2206
2207 inline void post_alloc_hook(struct page *page, unsigned int order,
2208 gfp_t gfp_flags)
2209 {
2210 set_page_private(page, 0);
2211 set_page_refcounted(page);
2212
2213 arch_alloc_page(page, order);
2214 if (debug_pagealloc_enabled_static())
2215 kernel_map_pages(page, 1 << order, 1);
2216 kasan_alloc_pages(page, order);
2217 kernel_poison_pages(page, 1 << order, 1);
2218 set_page_owner(page, order, gfp_flags);
2219 }
2220
2221 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2222 unsigned int alloc_flags)
2223 {
2224 post_alloc_hook(page, order, gfp_flags);
2225
2226 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2227 kernel_init_free_pages(page, 1 << order);
2228
2229 if (order && (gfp_flags & __GFP_COMP))
2230 prep_compound_page(page, order);
2231
2232 /*
2233 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2234 * allocate the page. The expectation is that the caller is taking
2235 * steps that will free more memory. The caller should avoid the page
2236 * being used for !PFMEMALLOC purposes.
2237 */
2238 if (alloc_flags & ALLOC_NO_WATERMARKS)
2239 set_page_pfmemalloc(page);
2240 else
2241 clear_page_pfmemalloc(page);
2242 }
2243
2244 /*
2245 * Go through the free lists for the given migratetype and remove
2246 * the smallest available page from the freelists
2247 */
2248 static __always_inline
2249 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2250 int migratetype)
2251 {
2252 unsigned int current_order;
2253 struct free_area *area;
2254 struct page *page;
2255
2256 /* Find a page of the appropriate size in the preferred list */
2257 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2258 area = &(zone->free_area[current_order]);
2259 page = get_page_from_free_area(area, migratetype);
2260 if (!page)
2261 continue;
2262 del_page_from_free_list(page, zone, current_order);
2263 expand(zone, page, order, current_order, migratetype);
2264 set_pcppage_migratetype(page, migratetype);
2265 return page;
2266 }
2267
2268 return NULL;
2269 }
2270
2271
2272 /*
2273 * This array describes the order lists are fallen back to when
2274 * the free lists for the desirable migrate type are depleted
2275 */
2276 static int fallbacks[MIGRATE_TYPES][4] = {
2277 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2278 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2279 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2280 #ifdef CONFIG_CMA
2281 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2282 #endif
2283 #ifdef CONFIG_MEMORY_ISOLATION
2284 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2285 #endif
2286 };
2287
2288 #ifdef CONFIG_CMA
2289 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2290 unsigned int order)
2291 {
2292 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2293 }
2294 #else
2295 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2296 unsigned int order) { return NULL; }
2297 #endif
2298
2299 /*
2300 * Move the free pages in a range to the free lists of the requested type.
2301 * Note that start_page and end_pages are not aligned on a pageblock
2302 * boundary. If alignment is required, use move_freepages_block()
2303 */
2304 static int move_freepages(struct zone *zone,
2305 struct page *start_page, struct page *end_page,
2306 int migratetype, int *num_movable)
2307 {
2308 struct page *page;
2309 unsigned int order;
2310 int pages_moved = 0;
2311
2312 for (page = start_page; page <= end_page;) {
2313 if (!pfn_valid_within(page_to_pfn(page))) {
2314 page++;
2315 continue;
2316 }
2317
2318 if (!PageBuddy(page)) {
2319 /*
2320 * We assume that pages that could be isolated for
2321 * migration are movable. But we don't actually try
2322 * isolating, as that would be expensive.
2323 */
2324 if (num_movable &&
2325 (PageLRU(page) || __PageMovable(page)))
2326 (*num_movable)++;
2327
2328 page++;
2329 continue;
2330 }
2331
2332 /* Make sure we are not inadvertently changing nodes */
2333 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2334 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2335
2336 order = page_order(page);
2337 move_to_free_list(page, zone, order, migratetype);
2338 page += 1 << order;
2339 pages_moved += 1 << order;
2340 }
2341
2342 return pages_moved;
2343 }
2344
2345 int move_freepages_block(struct zone *zone, struct page *page,
2346 int migratetype, int *num_movable)
2347 {
2348 unsigned long start_pfn, end_pfn;
2349 struct page *start_page, *end_page;
2350
2351 if (num_movable)
2352 *num_movable = 0;
2353
2354 start_pfn = page_to_pfn(page);
2355 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2356 start_page = pfn_to_page(start_pfn);
2357 end_page = start_page + pageblock_nr_pages - 1;
2358 end_pfn = start_pfn + pageblock_nr_pages - 1;
2359
2360 /* Do not cross zone boundaries */
2361 if (!zone_spans_pfn(zone, start_pfn))
2362 start_page = page;
2363 if (!zone_spans_pfn(zone, end_pfn))
2364 return 0;
2365
2366 return move_freepages(zone, start_page, end_page, migratetype,
2367 num_movable);
2368 }
2369
2370 static void change_pageblock_range(struct page *pageblock_page,
2371 int start_order, int migratetype)
2372 {
2373 int nr_pageblocks = 1 << (start_order - pageblock_order);
2374
2375 while (nr_pageblocks--) {
2376 set_pageblock_migratetype(pageblock_page, migratetype);
2377 pageblock_page += pageblock_nr_pages;
2378 }
2379 }
2380
2381 /*
2382 * When we are falling back to another migratetype during allocation, try to
2383 * steal extra free pages from the same pageblocks to satisfy further
2384 * allocations, instead of polluting multiple pageblocks.
2385 *
2386 * If we are stealing a relatively large buddy page, it is likely there will
2387 * be more free pages in the pageblock, so try to steal them all. For
2388 * reclaimable and unmovable allocations, we steal regardless of page size,
2389 * as fragmentation caused by those allocations polluting movable pageblocks
2390 * is worse than movable allocations stealing from unmovable and reclaimable
2391 * pageblocks.
2392 */
2393 static bool can_steal_fallback(unsigned int order, int start_mt)
2394 {
2395 /*
2396 * Leaving this order check is intended, although there is
2397 * relaxed order check in next check. The reason is that
2398 * we can actually steal whole pageblock if this condition met,
2399 * but, below check doesn't guarantee it and that is just heuristic
2400 * so could be changed anytime.
2401 */
2402 if (order >= pageblock_order)
2403 return true;
2404
2405 if (order >= pageblock_order / 2 ||
2406 start_mt == MIGRATE_RECLAIMABLE ||
2407 start_mt == MIGRATE_UNMOVABLE ||
2408 page_group_by_mobility_disabled)
2409 return true;
2410
2411 return false;
2412 }
2413
2414 static inline void boost_watermark(struct zone *zone)
2415 {
2416 unsigned long max_boost;
2417
2418 if (!watermark_boost_factor)
2419 return;
2420 /*
2421 * Don't bother in zones that are unlikely to produce results.
2422 * On small machines, including kdump capture kernels running
2423 * in a small area, boosting the watermark can cause an out of
2424 * memory situation immediately.
2425 */
2426 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2427 return;
2428
2429 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2430 watermark_boost_factor, 10000);
2431
2432 /*
2433 * high watermark may be uninitialised if fragmentation occurs
2434 * very early in boot so do not boost. We do not fall
2435 * through and boost by pageblock_nr_pages as failing
2436 * allocations that early means that reclaim is not going
2437 * to help and it may even be impossible to reclaim the
2438 * boosted watermark resulting in a hang.
2439 */
2440 if (!max_boost)
2441 return;
2442
2443 max_boost = max(pageblock_nr_pages, max_boost);
2444
2445 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2446 max_boost);
2447 }
2448
2449 /*
2450 * This function implements actual steal behaviour. If order is large enough,
2451 * we can steal whole pageblock. If not, we first move freepages in this
2452 * pageblock to our migratetype and determine how many already-allocated pages
2453 * are there in the pageblock with a compatible migratetype. If at least half
2454 * of pages are free or compatible, we can change migratetype of the pageblock
2455 * itself, so pages freed in the future will be put on the correct free list.
2456 */
2457 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2458 unsigned int alloc_flags, int start_type, bool whole_block)
2459 {
2460 unsigned int current_order = page_order(page);
2461 int free_pages, movable_pages, alike_pages;
2462 int old_block_type;
2463
2464 old_block_type = get_pageblock_migratetype(page);
2465
2466 /*
2467 * This can happen due to races and we want to prevent broken
2468 * highatomic accounting.
2469 */
2470 if (is_migrate_highatomic(old_block_type))
2471 goto single_page;
2472
2473 /* Take ownership for orders >= pageblock_order */
2474 if (current_order >= pageblock_order) {
2475 change_pageblock_range(page, current_order, start_type);
2476 goto single_page;
2477 }
2478
2479 /*
2480 * Boost watermarks to increase reclaim pressure to reduce the
2481 * likelihood of future fallbacks. Wake kswapd now as the node
2482 * may be balanced overall and kswapd will not wake naturally.
2483 */
2484 boost_watermark(zone);
2485 if (alloc_flags & ALLOC_KSWAPD)
2486 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2487
2488 /* We are not allowed to try stealing from the whole block */
2489 if (!whole_block)
2490 goto single_page;
2491
2492 free_pages = move_freepages_block(zone, page, start_type,
2493 &movable_pages);
2494 /*
2495 * Determine how many pages are compatible with our allocation.
2496 * For movable allocation, it's the number of movable pages which
2497 * we just obtained. For other types it's a bit more tricky.
2498 */
2499 if (start_type == MIGRATE_MOVABLE) {
2500 alike_pages = movable_pages;
2501 } else {
2502 /*
2503 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2504 * to MOVABLE pageblock, consider all non-movable pages as
2505 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2506 * vice versa, be conservative since we can't distinguish the
2507 * exact migratetype of non-movable pages.
2508 */
2509 if (old_block_type == MIGRATE_MOVABLE)
2510 alike_pages = pageblock_nr_pages
2511 - (free_pages + movable_pages);
2512 else
2513 alike_pages = 0;
2514 }
2515
2516 /* moving whole block can fail due to zone boundary conditions */
2517 if (!free_pages)
2518 goto single_page;
2519
2520 /*
2521 * If a sufficient number of pages in the block are either free or of
2522 * comparable migratability as our allocation, claim the whole block.
2523 */
2524 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2525 page_group_by_mobility_disabled)
2526 set_pageblock_migratetype(page, start_type);
2527
2528 return;
2529
2530 single_page:
2531 move_to_free_list(page, zone, current_order, start_type);
2532 }
2533
2534 /*
2535 * Check whether there is a suitable fallback freepage with requested order.
2536 * If only_stealable is true, this function returns fallback_mt only if
2537 * we can steal other freepages all together. This would help to reduce
2538 * fragmentation due to mixed migratetype pages in one pageblock.
2539 */
2540 int find_suitable_fallback(struct free_area *area, unsigned int order,
2541 int migratetype, bool only_stealable, bool *can_steal)
2542 {
2543 int i;
2544 int fallback_mt;
2545
2546 if (area->nr_free == 0)
2547 return -1;
2548
2549 *can_steal = false;
2550 for (i = 0;; i++) {
2551 fallback_mt = fallbacks[migratetype][i];
2552 if (fallback_mt == MIGRATE_TYPES)
2553 break;
2554
2555 if (free_area_empty(area, fallback_mt))
2556 continue;
2557
2558 if (can_steal_fallback(order, migratetype))
2559 *can_steal = true;
2560
2561 if (!only_stealable)
2562 return fallback_mt;
2563
2564 if (*can_steal)
2565 return fallback_mt;
2566 }
2567
2568 return -1;
2569 }
2570
2571 /*
2572 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2573 * there are no empty page blocks that contain a page with a suitable order
2574 */
2575 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2576 unsigned int alloc_order)
2577 {
2578 int mt;
2579 unsigned long max_managed, flags;
2580
2581 /*
2582 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2583 * Check is race-prone but harmless.
2584 */
2585 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2586 if (zone->nr_reserved_highatomic >= max_managed)
2587 return;
2588
2589 spin_lock_irqsave(&zone->lock, flags);
2590
2591 /* Recheck the nr_reserved_highatomic limit under the lock */
2592 if (zone->nr_reserved_highatomic >= max_managed)
2593 goto out_unlock;
2594
2595 /* Yoink! */
2596 mt = get_pageblock_migratetype(page);
2597 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2598 && !is_migrate_cma(mt)) {
2599 zone->nr_reserved_highatomic += pageblock_nr_pages;
2600 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2601 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2602 }
2603
2604 out_unlock:
2605 spin_unlock_irqrestore(&zone->lock, flags);
2606 }
2607
2608 /*
2609 * Used when an allocation is about to fail under memory pressure. This
2610 * potentially hurts the reliability of high-order allocations when under
2611 * intense memory pressure but failed atomic allocations should be easier
2612 * to recover from than an OOM.
2613 *
2614 * If @force is true, try to unreserve a pageblock even though highatomic
2615 * pageblock is exhausted.
2616 */
2617 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2618 bool force)
2619 {
2620 struct zonelist *zonelist = ac->zonelist;
2621 unsigned long flags;
2622 struct zoneref *z;
2623 struct zone *zone;
2624 struct page *page;
2625 int order;
2626 bool ret;
2627
2628 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2629 ac->nodemask) {
2630 /*
2631 * Preserve at least one pageblock unless memory pressure
2632 * is really high.
2633 */
2634 if (!force && zone->nr_reserved_highatomic <=
2635 pageblock_nr_pages)
2636 continue;
2637
2638 spin_lock_irqsave(&zone->lock, flags);
2639 for (order = 0; order < MAX_ORDER; order++) {
2640 struct free_area *area = &(zone->free_area[order]);
2641
2642 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2643 if (!page)
2644 continue;
2645
2646 /*
2647 * In page freeing path, migratetype change is racy so
2648 * we can counter several free pages in a pageblock
2649 * in this loop althoug we changed the pageblock type
2650 * from highatomic to ac->migratetype. So we should
2651 * adjust the count once.
2652 */
2653 if (is_migrate_highatomic_page(page)) {
2654 /*
2655 * It should never happen but changes to
2656 * locking could inadvertently allow a per-cpu
2657 * drain to add pages to MIGRATE_HIGHATOMIC
2658 * while unreserving so be safe and watch for
2659 * underflows.
2660 */
2661 zone->nr_reserved_highatomic -= min(
2662 pageblock_nr_pages,
2663 zone->nr_reserved_highatomic);
2664 }
2665
2666 /*
2667 * Convert to ac->migratetype and avoid the normal
2668 * pageblock stealing heuristics. Minimally, the caller
2669 * is doing the work and needs the pages. More
2670 * importantly, if the block was always converted to
2671 * MIGRATE_UNMOVABLE or another type then the number
2672 * of pageblocks that cannot be completely freed
2673 * may increase.
2674 */
2675 set_pageblock_migratetype(page, ac->migratetype);
2676 ret = move_freepages_block(zone, page, ac->migratetype,
2677 NULL);
2678 if (ret) {
2679 spin_unlock_irqrestore(&zone->lock, flags);
2680 return ret;
2681 }
2682 }
2683 spin_unlock_irqrestore(&zone->lock, flags);
2684 }
2685
2686 return false;
2687 }
2688
2689 /*
2690 * Try finding a free buddy page on the fallback list and put it on the free
2691 * list of requested migratetype, possibly along with other pages from the same
2692 * block, depending on fragmentation avoidance heuristics. Returns true if
2693 * fallback was found so that __rmqueue_smallest() can grab it.
2694 *
2695 * The use of signed ints for order and current_order is a deliberate
2696 * deviation from the rest of this file, to make the for loop
2697 * condition simpler.
2698 */
2699 static __always_inline bool
2700 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2701 unsigned int alloc_flags)
2702 {
2703 struct free_area *area;
2704 int current_order;
2705 int min_order = order;
2706 struct page *page;
2707 int fallback_mt;
2708 bool can_steal;
2709
2710 /*
2711 * Do not steal pages from freelists belonging to other pageblocks
2712 * i.e. orders < pageblock_order. If there are no local zones free,
2713 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2714 */
2715 if (alloc_flags & ALLOC_NOFRAGMENT)
2716 min_order = pageblock_order;
2717
2718 /*
2719 * Find the largest available free page in the other list. This roughly
2720 * approximates finding the pageblock with the most free pages, which
2721 * would be too costly to do exactly.
2722 */
2723 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2724 --current_order) {
2725 area = &(zone->free_area[current_order]);
2726 fallback_mt = find_suitable_fallback(area, current_order,
2727 start_migratetype, false, &can_steal);
2728 if (fallback_mt == -1)
2729 continue;
2730
2731 /*
2732 * We cannot steal all free pages from the pageblock and the
2733 * requested migratetype is movable. In that case it's better to
2734 * steal and split the smallest available page instead of the
2735 * largest available page, because even if the next movable
2736 * allocation falls back into a different pageblock than this
2737 * one, it won't cause permanent fragmentation.
2738 */
2739 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2740 && current_order > order)
2741 goto find_smallest;
2742
2743 goto do_steal;
2744 }
2745
2746 return false;
2747
2748 find_smallest:
2749 for (current_order = order; current_order < MAX_ORDER;
2750 current_order++) {
2751 area = &(zone->free_area[current_order]);
2752 fallback_mt = find_suitable_fallback(area, current_order,
2753 start_migratetype, false, &can_steal);
2754 if (fallback_mt != -1)
2755 break;
2756 }
2757
2758 /*
2759 * This should not happen - we already found a suitable fallback
2760 * when looking for the largest page.
2761 */
2762 VM_BUG_ON(current_order == MAX_ORDER);
2763
2764 do_steal:
2765 page = get_page_from_free_area(area, fallback_mt);
2766
2767 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2768 can_steal);
2769
2770 trace_mm_page_alloc_extfrag(page, order, current_order,
2771 start_migratetype, fallback_mt);
2772
2773 return true;
2774
2775 }
2776
2777 /*
2778 * Do the hard work of removing an element from the buddy allocator.
2779 * Call me with the zone->lock already held.
2780 */
2781 static __always_inline struct page *
2782 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2783 unsigned int alloc_flags)
2784 {
2785 struct page *page;
2786
2787 #ifdef CONFIG_CMA
2788 /*
2789 * Balance movable allocations between regular and CMA areas by
2790 * allocating from CMA when over half of the zone's free memory
2791 * is in the CMA area.
2792 */
2793 if (migratetype == MIGRATE_MOVABLE &&
2794 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2795 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2796 page = __rmqueue_cma_fallback(zone, order);
2797 if (page)
2798 return page;
2799 }
2800 #endif
2801 retry:
2802 page = __rmqueue_smallest(zone, order, migratetype);
2803 if (unlikely(!page)) {
2804 if (migratetype == MIGRATE_MOVABLE)
2805 page = __rmqueue_cma_fallback(zone, order);
2806
2807 if (!page && __rmqueue_fallback(zone, order, migratetype,
2808 alloc_flags))
2809 goto retry;
2810 }
2811
2812 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2813 return page;
2814 }
2815
2816 /*
2817 * Obtain a specified number of elements from the buddy allocator, all under
2818 * a single hold of the lock, for efficiency. Add them to the supplied list.
2819 * Returns the number of new pages which were placed at *list.
2820 */
2821 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2822 unsigned long count, struct list_head *list,
2823 int migratetype, unsigned int alloc_flags)
2824 {
2825 int i, alloced = 0;
2826
2827 spin_lock(&zone->lock);
2828 for (i = 0; i < count; ++i) {
2829 struct page *page = __rmqueue(zone, order, migratetype,
2830 alloc_flags);
2831 if (unlikely(page == NULL))
2832 break;
2833
2834 if (unlikely(check_pcp_refill(page)))
2835 continue;
2836
2837 /*
2838 * Split buddy pages returned by expand() are received here in
2839 * physical page order. The page is added to the tail of
2840 * caller's list. From the callers perspective, the linked list
2841 * is ordered by page number under some conditions. This is
2842 * useful for IO devices that can forward direction from the
2843 * head, thus also in the physical page order. This is useful
2844 * for IO devices that can merge IO requests if the physical
2845 * pages are ordered properly.
2846 */
2847 list_add_tail(&page->lru, list);
2848 alloced++;
2849 if (is_migrate_cma(get_pcppage_migratetype(page)))
2850 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2851 -(1 << order));
2852 }
2853
2854 /*
2855 * i pages were removed from the buddy list even if some leak due
2856 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2857 * on i. Do not confuse with 'alloced' which is the number of
2858 * pages added to the pcp list.
2859 */
2860 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2861 spin_unlock(&zone->lock);
2862 return alloced;
2863 }
2864
2865 #ifdef CONFIG_NUMA
2866 /*
2867 * Called from the vmstat counter updater to drain pagesets of this
2868 * currently executing processor on remote nodes after they have
2869 * expired.
2870 *
2871 * Note that this function must be called with the thread pinned to
2872 * a single processor.
2873 */
2874 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2875 {
2876 unsigned long flags;
2877 int to_drain, batch;
2878
2879 local_irq_save(flags);
2880 batch = READ_ONCE(pcp->batch);
2881 to_drain = min(pcp->count, batch);
2882 if (to_drain > 0)
2883 free_pcppages_bulk(zone, to_drain, pcp);
2884 local_irq_restore(flags);
2885 }
2886 #endif
2887
2888 /*
2889 * Drain pcplists of the indicated processor and zone.
2890 *
2891 * The processor must either be the current processor and the
2892 * thread pinned to the current processor or a processor that
2893 * is not online.
2894 */
2895 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2896 {
2897 unsigned long flags;
2898 struct per_cpu_pageset *pset;
2899 struct per_cpu_pages *pcp;
2900
2901 local_irq_save(flags);
2902 pset = per_cpu_ptr(zone->pageset, cpu);
2903
2904 pcp = &pset->pcp;
2905 if (pcp->count)
2906 free_pcppages_bulk(zone, pcp->count, pcp);
2907 local_irq_restore(flags);
2908 }
2909
2910 /*
2911 * Drain pcplists of all zones on the indicated processor.
2912 *
2913 * The processor must either be the current processor and the
2914 * thread pinned to the current processor or a processor that
2915 * is not online.
2916 */
2917 static void drain_pages(unsigned int cpu)
2918 {
2919 struct zone *zone;
2920
2921 for_each_populated_zone(zone) {
2922 drain_pages_zone(cpu, zone);
2923 }
2924 }
2925
2926 /*
2927 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2928 *
2929 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2930 * the single zone's pages.
2931 */
2932 void drain_local_pages(struct zone *zone)
2933 {
2934 int cpu = smp_processor_id();
2935
2936 if (zone)
2937 drain_pages_zone(cpu, zone);
2938 else
2939 drain_pages(cpu);
2940 }
2941
2942 static void drain_local_pages_wq(struct work_struct *work)
2943 {
2944 struct pcpu_drain *drain;
2945
2946 drain = container_of(work, struct pcpu_drain, work);
2947
2948 /*
2949 * drain_all_pages doesn't use proper cpu hotplug protection so
2950 * we can race with cpu offline when the WQ can move this from
2951 * a cpu pinned worker to an unbound one. We can operate on a different
2952 * cpu which is allright but we also have to make sure to not move to
2953 * a different one.
2954 */
2955 preempt_disable();
2956 drain_local_pages(drain->zone);
2957 preempt_enable();
2958 }
2959
2960 /*
2961 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2962 *
2963 * When zone parameter is non-NULL, spill just the single zone's pages.
2964 *
2965 * Note that this can be extremely slow as the draining happens in a workqueue.
2966 */
2967 void drain_all_pages(struct zone *zone)
2968 {
2969 int cpu;
2970
2971 /*
2972 * Allocate in the BSS so we wont require allocation in
2973 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2974 */
2975 static cpumask_t cpus_with_pcps;
2976
2977 /*
2978 * Make sure nobody triggers this path before mm_percpu_wq is fully
2979 * initialized.
2980 */
2981 if (WARN_ON_ONCE(!mm_percpu_wq))
2982 return;
2983
2984 /*
2985 * Do not drain if one is already in progress unless it's specific to
2986 * a zone. Such callers are primarily CMA and memory hotplug and need
2987 * the drain to be complete when the call returns.
2988 */
2989 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2990 if (!zone)
2991 return;
2992 mutex_lock(&pcpu_drain_mutex);
2993 }
2994
2995 /*
2996 * We don't care about racing with CPU hotplug event
2997 * as offline notification will cause the notified
2998 * cpu to drain that CPU pcps and on_each_cpu_mask
2999 * disables preemption as part of its processing
3000 */
3001 for_each_online_cpu(cpu) {
3002 struct per_cpu_pageset *pcp;
3003 struct zone *z;
3004 bool has_pcps = false;
3005
3006 if (zone) {
3007 pcp = per_cpu_ptr(zone->pageset, cpu);
3008 if (pcp->pcp.count)
3009 has_pcps = true;
3010 } else {
3011 for_each_populated_zone(z) {
3012 pcp = per_cpu_ptr(z->pageset, cpu);
3013 if (pcp->pcp.count) {
3014 has_pcps = true;
3015 break;
3016 }
3017 }
3018 }
3019
3020 if (has_pcps)
3021 cpumask_set_cpu(cpu, &cpus_with_pcps);
3022 else
3023 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3024 }
3025
3026 for_each_cpu(cpu, &cpus_with_pcps) {
3027 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3028
3029 drain->zone = zone;
3030 INIT_WORK(&drain->work, drain_local_pages_wq);
3031 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3032 }
3033 for_each_cpu(cpu, &cpus_with_pcps)
3034 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3035
3036 mutex_unlock(&pcpu_drain_mutex);
3037 }
3038
3039 #ifdef CONFIG_HIBERNATION
3040
3041 /*
3042 * Touch the watchdog for every WD_PAGE_COUNT pages.
3043 */
3044 #define WD_PAGE_COUNT (128*1024)
3045
3046 void mark_free_pages(struct zone *zone)
3047 {
3048 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3049 unsigned long flags;
3050 unsigned int order, t;
3051 struct page *page;
3052
3053 if (zone_is_empty(zone))
3054 return;
3055
3056 spin_lock_irqsave(&zone->lock, flags);
3057
3058 max_zone_pfn = zone_end_pfn(zone);
3059 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3060 if (pfn_valid(pfn)) {
3061 page = pfn_to_page(pfn);
3062
3063 if (!--page_count) {
3064 touch_nmi_watchdog();
3065 page_count = WD_PAGE_COUNT;
3066 }
3067
3068 if (page_zone(page) != zone)
3069 continue;
3070
3071 if (!swsusp_page_is_forbidden(page))
3072 swsusp_unset_page_free(page);
3073 }
3074
3075 for_each_migratetype_order(order, t) {
3076 list_for_each_entry(page,
3077 &zone->free_area[order].free_list[t], lru) {
3078 unsigned long i;
3079
3080 pfn = page_to_pfn(page);
3081 for (i = 0; i < (1UL << order); i++) {
3082 if (!--page_count) {
3083 touch_nmi_watchdog();
3084 page_count = WD_PAGE_COUNT;
3085 }
3086 swsusp_set_page_free(pfn_to_page(pfn + i));
3087 }
3088 }
3089 }
3090 spin_unlock_irqrestore(&zone->lock, flags);
3091 }
3092 #endif /* CONFIG_PM */
3093
3094 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3095 {
3096 int migratetype;
3097
3098 if (!free_pcp_prepare(page))
3099 return false;
3100
3101 migratetype = get_pfnblock_migratetype(page, pfn);
3102 set_pcppage_migratetype(page, migratetype);
3103 return true;
3104 }
3105
3106 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3107 {
3108 struct zone *zone = page_zone(page);
3109 struct per_cpu_pages *pcp;
3110 int migratetype;
3111
3112 migratetype = get_pcppage_migratetype(page);
3113 __count_vm_event(PGFREE);
3114
3115 /*
3116 * We only track unmovable, reclaimable and movable on pcp lists.
3117 * Free ISOLATE pages back to the allocator because they are being
3118 * offlined but treat HIGHATOMIC as movable pages so we can get those
3119 * areas back if necessary. Otherwise, we may have to free
3120 * excessively into the page allocator
3121 */
3122 if (migratetype >= MIGRATE_PCPTYPES) {
3123 if (unlikely(is_migrate_isolate(migratetype))) {
3124 free_one_page(zone, page, pfn, 0, migratetype);
3125 return;
3126 }
3127 migratetype = MIGRATE_MOVABLE;
3128 }
3129
3130 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3131 list_add(&page->lru, &pcp->lists[migratetype]);
3132 pcp->count++;
3133 if (pcp->count >= pcp->high) {
3134 unsigned long batch = READ_ONCE(pcp->batch);
3135 free_pcppages_bulk(zone, batch, pcp);
3136 }
3137 }
3138
3139 /*
3140 * Free a 0-order page
3141 */
3142 void free_unref_page(struct page *page)
3143 {
3144 unsigned long flags;
3145 unsigned long pfn = page_to_pfn(page);
3146
3147 if (!free_unref_page_prepare(page, pfn))
3148 return;
3149
3150 local_irq_save(flags);
3151 free_unref_page_commit(page, pfn);
3152 local_irq_restore(flags);
3153 }
3154
3155 /*
3156 * Free a list of 0-order pages
3157 */
3158 void free_unref_page_list(struct list_head *list)
3159 {
3160 struct page *page, *next;
3161 unsigned long flags, pfn;
3162 int batch_count = 0;
3163
3164 /* Prepare pages for freeing */
3165 list_for_each_entry_safe(page, next, list, lru) {
3166 pfn = page_to_pfn(page);
3167 if (!free_unref_page_prepare(page, pfn))
3168 list_del(&page->lru);
3169 set_page_private(page, pfn);
3170 }
3171
3172 local_irq_save(flags);
3173 list_for_each_entry_safe(page, next, list, lru) {
3174 unsigned long pfn = page_private(page);
3175
3176 set_page_private(page, 0);
3177 trace_mm_page_free_batched(page);
3178 free_unref_page_commit(page, pfn);
3179
3180 /*
3181 * Guard against excessive IRQ disabled times when we get
3182 * a large list of pages to free.
3183 */
3184 if (++batch_count == SWAP_CLUSTER_MAX) {
3185 local_irq_restore(flags);
3186 batch_count = 0;
3187 local_irq_save(flags);
3188 }
3189 }
3190 local_irq_restore(flags);
3191 }
3192
3193 /*
3194 * split_page takes a non-compound higher-order page, and splits it into
3195 * n (1<<order) sub-pages: page[0..n]
3196 * Each sub-page must be freed individually.
3197 *
3198 * Note: this is probably too low level an operation for use in drivers.
3199 * Please consult with lkml before using this in your driver.
3200 */
3201 void split_page(struct page *page, unsigned int order)
3202 {
3203 int i;
3204
3205 VM_BUG_ON_PAGE(PageCompound(page), page);
3206 VM_BUG_ON_PAGE(!page_count(page), page);
3207
3208 for (i = 1; i < (1 << order); i++)
3209 set_page_refcounted(page + i);
3210 split_page_owner(page, order);
3211 }
3212 EXPORT_SYMBOL_GPL(split_page);
3213
3214 int __isolate_free_page(struct page *page, unsigned int order)
3215 {
3216 unsigned long watermark;
3217 struct zone *zone;
3218 int mt;
3219
3220 BUG_ON(!PageBuddy(page));
3221
3222 zone = page_zone(page);
3223 mt = get_pageblock_migratetype(page);
3224
3225 if (!is_migrate_isolate(mt)) {
3226 /*
3227 * Obey watermarks as if the page was being allocated. We can
3228 * emulate a high-order watermark check with a raised order-0
3229 * watermark, because we already know our high-order page
3230 * exists.
3231 */
3232 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3233 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3234 return 0;
3235
3236 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3237 }
3238
3239 /* Remove page from free list */
3240
3241 del_page_from_free_list(page, zone, order);
3242
3243 /*
3244 * Set the pageblock if the isolated page is at least half of a
3245 * pageblock
3246 */
3247 if (order >= pageblock_order - 1) {
3248 struct page *endpage = page + (1 << order) - 1;
3249 for (; page < endpage; page += pageblock_nr_pages) {
3250 int mt = get_pageblock_migratetype(page);
3251 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3252 && !is_migrate_highatomic(mt))
3253 set_pageblock_migratetype(page,
3254 MIGRATE_MOVABLE);
3255 }
3256 }
3257
3258
3259 return 1UL << order;
3260 }
3261
3262 /**
3263 * __putback_isolated_page - Return a now-isolated page back where we got it
3264 * @page: Page that was isolated
3265 * @order: Order of the isolated page
3266 * @mt: The page's pageblock's migratetype
3267 *
3268 * This function is meant to return a page pulled from the free lists via
3269 * __isolate_free_page back to the free lists they were pulled from.
3270 */
3271 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3272 {
3273 struct zone *zone = page_zone(page);
3274
3275 /* zone lock should be held when this function is called */
3276 lockdep_assert_held(&zone->lock);
3277
3278 /* Return isolated page to tail of freelist. */
3279 __free_one_page(page, page_to_pfn(page), zone, order, mt, false);
3280 }
3281
3282 /*
3283 * Update NUMA hit/miss statistics
3284 *
3285 * Must be called with interrupts disabled.
3286 */
3287 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3288 {
3289 #ifdef CONFIG_NUMA
3290 enum numa_stat_item local_stat = NUMA_LOCAL;
3291
3292 /* skip numa counters update if numa stats is disabled */
3293 if (!static_branch_likely(&vm_numa_stat_key))
3294 return;
3295
3296 if (zone_to_nid(z) != numa_node_id())
3297 local_stat = NUMA_OTHER;
3298
3299 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3300 __inc_numa_state(z, NUMA_HIT);
3301 else {
3302 __inc_numa_state(z, NUMA_MISS);
3303 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3304 }
3305 __inc_numa_state(z, local_stat);
3306 #endif
3307 }
3308
3309 /* Remove page from the per-cpu list, caller must protect the list */
3310 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3311 unsigned int alloc_flags,
3312 struct per_cpu_pages *pcp,
3313 struct list_head *list)
3314 {
3315 struct page *page;
3316
3317 do {
3318 if (list_empty(list)) {
3319 pcp->count += rmqueue_bulk(zone, 0,
3320 pcp->batch, list,
3321 migratetype, alloc_flags);
3322 if (unlikely(list_empty(list)))
3323 return NULL;
3324 }
3325
3326 page = list_first_entry(list, struct page, lru);
3327 list_del(&page->lru);
3328 pcp->count--;
3329 } while (check_new_pcp(page));
3330
3331 return page;
3332 }
3333
3334 /* Lock and remove page from the per-cpu list */
3335 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3336 struct zone *zone, gfp_t gfp_flags,
3337 int migratetype, unsigned int alloc_flags)
3338 {
3339 struct per_cpu_pages *pcp;
3340 struct list_head *list;
3341 struct page *page;
3342 unsigned long flags;
3343
3344 local_irq_save(flags);
3345 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3346 list = &pcp->lists[migratetype];
3347 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3348 if (page) {
3349 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3350 zone_statistics(preferred_zone, zone);
3351 }
3352 local_irq_restore(flags);
3353 return page;
3354 }
3355
3356 /*
3357 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3358 */
3359 static inline
3360 struct page *rmqueue(struct zone *preferred_zone,
3361 struct zone *zone, unsigned int order,
3362 gfp_t gfp_flags, unsigned int alloc_flags,
3363 int migratetype)
3364 {
3365 unsigned long flags;
3366 struct page *page;
3367
3368 if (likely(order == 0)) {
3369 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3370 migratetype, alloc_flags);
3371 goto out;
3372 }
3373
3374 /*
3375 * We most definitely don't want callers attempting to
3376 * allocate greater than order-1 page units with __GFP_NOFAIL.
3377 */
3378 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3379 spin_lock_irqsave(&zone->lock, flags);
3380
3381 do {
3382 page = NULL;
3383 if (alloc_flags & ALLOC_HARDER) {
3384 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3385 if (page)
3386 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3387 }
3388 if (!page)
3389 page = __rmqueue(zone, order, migratetype, alloc_flags);
3390 } while (page && check_new_pages(page, order));
3391 spin_unlock(&zone->lock);
3392 if (!page)
3393 goto failed;
3394 __mod_zone_freepage_state(zone, -(1 << order),
3395 get_pcppage_migratetype(page));
3396
3397 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3398 zone_statistics(preferred_zone, zone);
3399 local_irq_restore(flags);
3400
3401 out:
3402 /* Separate test+clear to avoid unnecessary atomics */
3403 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3404 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3405 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3406 }
3407
3408 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3409 return page;
3410
3411 failed:
3412 local_irq_restore(flags);
3413 return NULL;
3414 }
3415
3416 #ifdef CONFIG_FAIL_PAGE_ALLOC
3417
3418 static struct {
3419 struct fault_attr attr;
3420
3421 bool ignore_gfp_highmem;
3422 bool ignore_gfp_reclaim;
3423 u32 min_order;
3424 } fail_page_alloc = {
3425 .attr = FAULT_ATTR_INITIALIZER,
3426 .ignore_gfp_reclaim = true,
3427 .ignore_gfp_highmem = true,
3428 .min_order = 1,
3429 };
3430
3431 static int __init setup_fail_page_alloc(char *str)
3432 {
3433 return setup_fault_attr(&fail_page_alloc.attr, str);
3434 }
3435 __setup("fail_page_alloc=", setup_fail_page_alloc);
3436
3437 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3438 {
3439 if (order < fail_page_alloc.min_order)
3440 return false;
3441 if (gfp_mask & __GFP_NOFAIL)
3442 return false;
3443 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3444 return false;
3445 if (fail_page_alloc.ignore_gfp_reclaim &&
3446 (gfp_mask & __GFP_DIRECT_RECLAIM))
3447 return false;
3448
3449 return should_fail(&fail_page_alloc.attr, 1 << order);
3450 }
3451
3452 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3453
3454 static int __init fail_page_alloc_debugfs(void)
3455 {
3456 umode_t mode = S_IFREG | 0600;
3457 struct dentry *dir;
3458
3459 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3460 &fail_page_alloc.attr);
3461
3462 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3463 &fail_page_alloc.ignore_gfp_reclaim);
3464 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3465 &fail_page_alloc.ignore_gfp_highmem);
3466 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3467
3468 return 0;
3469 }
3470
3471 late_initcall(fail_page_alloc_debugfs);
3472
3473 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3474
3475 #else /* CONFIG_FAIL_PAGE_ALLOC */
3476
3477 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3478 {
3479 return false;
3480 }
3481
3482 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3483
3484 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3485 {
3486 return __should_fail_alloc_page(gfp_mask, order);
3487 }
3488 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3489
3490 /*
3491 * Return true if free base pages are above 'mark'. For high-order checks it
3492 * will return true of the order-0 watermark is reached and there is at least
3493 * one free page of a suitable size. Checking now avoids taking the zone lock
3494 * to check in the allocation paths if no pages are free.
3495 */
3496 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3497 int highest_zoneidx, unsigned int alloc_flags,
3498 long free_pages)
3499 {
3500 long min = mark;
3501 int o;
3502 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3503
3504 /* free_pages may go negative - that's OK */
3505 free_pages -= (1 << order) - 1;
3506
3507 if (alloc_flags & ALLOC_HIGH)
3508 min -= min / 2;
3509
3510 /*
3511 * If the caller does not have rights to ALLOC_HARDER then subtract
3512 * the high-atomic reserves. This will over-estimate the size of the
3513 * atomic reserve but it avoids a search.
3514 */
3515 if (likely(!alloc_harder)) {
3516 free_pages -= z->nr_reserved_highatomic;
3517 } else {
3518 /*
3519 * OOM victims can try even harder than normal ALLOC_HARDER
3520 * users on the grounds that it's definitely going to be in
3521 * the exit path shortly and free memory. Any allocation it
3522 * makes during the free path will be small and short-lived.
3523 */
3524 if (alloc_flags & ALLOC_OOM)
3525 min -= min / 2;
3526 else
3527 min -= min / 4;
3528 }
3529
3530
3531 #ifdef CONFIG_CMA
3532 /* If allocation can't use CMA areas don't use free CMA pages */
3533 if (!(alloc_flags & ALLOC_CMA))
3534 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3535 #endif
3536
3537 /*
3538 * Check watermarks for an order-0 allocation request. If these
3539 * are not met, then a high-order request also cannot go ahead
3540 * even if a suitable page happened to be free.
3541 */
3542 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3543 return false;
3544
3545 /* If this is an order-0 request then the watermark is fine */
3546 if (!order)
3547 return true;
3548
3549 /* For a high-order request, check at least one suitable page is free */
3550 for (o = order; o < MAX_ORDER; o++) {
3551 struct free_area *area = &z->free_area[o];
3552 int mt;
3553
3554 if (!area->nr_free)
3555 continue;
3556
3557 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3558 if (!free_area_empty(area, mt))
3559 return true;
3560 }
3561
3562 #ifdef CONFIG_CMA
3563 if ((alloc_flags & ALLOC_CMA) &&
3564 !free_area_empty(area, MIGRATE_CMA)) {
3565 return true;
3566 }
3567 #endif
3568 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3569 return true;
3570 }
3571 return false;
3572 }
3573
3574 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3575 int highest_zoneidx, unsigned int alloc_flags)
3576 {
3577 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3578 zone_page_state(z, NR_FREE_PAGES));
3579 }
3580
3581 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3582 unsigned long mark, int highest_zoneidx,
3583 unsigned int alloc_flags)
3584 {
3585 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3586 long cma_pages = 0;
3587
3588 #ifdef CONFIG_CMA
3589 /* If allocation can't use CMA areas don't use free CMA pages */
3590 if (!(alloc_flags & ALLOC_CMA))
3591 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3592 #endif
3593
3594 /*
3595 * Fast check for order-0 only. If this fails then the reserves
3596 * need to be calculated. There is a corner case where the check
3597 * passes but only the high-order atomic reserve are free. If
3598 * the caller is !atomic then it'll uselessly search the free
3599 * list. That corner case is then slower but it is harmless.
3600 */
3601 if (!order && (free_pages - cma_pages) >
3602 mark + z->lowmem_reserve[highest_zoneidx])
3603 return true;
3604
3605 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3606 free_pages);
3607 }
3608
3609 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3610 unsigned long mark, int highest_zoneidx)
3611 {
3612 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3613
3614 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3615 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3616
3617 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3618 free_pages);
3619 }
3620
3621 #ifdef CONFIG_NUMA
3622 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3623 {
3624 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3625 node_reclaim_distance;
3626 }
3627 #else /* CONFIG_NUMA */
3628 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3629 {
3630 return true;
3631 }
3632 #endif /* CONFIG_NUMA */
3633
3634 /*
3635 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3636 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3637 * premature use of a lower zone may cause lowmem pressure problems that
3638 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3639 * probably too small. It only makes sense to spread allocations to avoid
3640 * fragmentation between the Normal and DMA32 zones.
3641 */
3642 static inline unsigned int
3643 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3644 {
3645 unsigned int alloc_flags;
3646
3647 /*
3648 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3649 * to save a branch.
3650 */
3651 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3652
3653 #ifdef CONFIG_ZONE_DMA32
3654 if (!zone)
3655 return alloc_flags;
3656
3657 if (zone_idx(zone) != ZONE_NORMAL)
3658 return alloc_flags;
3659
3660 /*
3661 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3662 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3663 * on UMA that if Normal is populated then so is DMA32.
3664 */
3665 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3666 if (nr_online_nodes > 1 && !populated_zone(--zone))
3667 return alloc_flags;
3668
3669 alloc_flags |= ALLOC_NOFRAGMENT;
3670 #endif /* CONFIG_ZONE_DMA32 */
3671 return alloc_flags;
3672 }
3673
3674 /*
3675 * get_page_from_freelist goes through the zonelist trying to allocate
3676 * a page.
3677 */
3678 static struct page *
3679 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3680 const struct alloc_context *ac)
3681 {
3682 struct zoneref *z;
3683 struct zone *zone;
3684 struct pglist_data *last_pgdat_dirty_limit = NULL;
3685 bool no_fallback;
3686
3687 retry:
3688 /*
3689 * Scan zonelist, looking for a zone with enough free.
3690 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3691 */
3692 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3693 z = ac->preferred_zoneref;
3694 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist,
3695 ac->highest_zoneidx, ac->nodemask) {
3696 struct page *page;
3697 unsigned long mark;
3698
3699 if (cpusets_enabled() &&
3700 (alloc_flags & ALLOC_CPUSET) &&
3701 !__cpuset_zone_allowed(zone, gfp_mask))
3702 continue;
3703 /*
3704 * When allocating a page cache page for writing, we
3705 * want to get it from a node that is within its dirty
3706 * limit, such that no single node holds more than its
3707 * proportional share of globally allowed dirty pages.
3708 * The dirty limits take into account the node's
3709 * lowmem reserves and high watermark so that kswapd
3710 * should be able to balance it without having to
3711 * write pages from its LRU list.
3712 *
3713 * XXX: For now, allow allocations to potentially
3714 * exceed the per-node dirty limit in the slowpath
3715 * (spread_dirty_pages unset) before going into reclaim,
3716 * which is important when on a NUMA setup the allowed
3717 * nodes are together not big enough to reach the
3718 * global limit. The proper fix for these situations
3719 * will require awareness of nodes in the
3720 * dirty-throttling and the flusher threads.
3721 */
3722 if (ac->spread_dirty_pages) {
3723 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3724 continue;
3725
3726 if (!node_dirty_ok(zone->zone_pgdat)) {
3727 last_pgdat_dirty_limit = zone->zone_pgdat;
3728 continue;
3729 }
3730 }
3731
3732 if (no_fallback && nr_online_nodes > 1 &&
3733 zone != ac->preferred_zoneref->zone) {
3734 int local_nid;
3735
3736 /*
3737 * If moving to a remote node, retry but allow
3738 * fragmenting fallbacks. Locality is more important
3739 * than fragmentation avoidance.
3740 */
3741 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3742 if (zone_to_nid(zone) != local_nid) {
3743 alloc_flags &= ~ALLOC_NOFRAGMENT;
3744 goto retry;
3745 }
3746 }
3747
3748 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3749 if (!zone_watermark_fast(zone, order, mark,
3750 ac->highest_zoneidx, alloc_flags)) {
3751 int ret;
3752
3753 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3754 /*
3755 * Watermark failed for this zone, but see if we can
3756 * grow this zone if it contains deferred pages.
3757 */
3758 if (static_branch_unlikely(&deferred_pages)) {
3759 if (_deferred_grow_zone(zone, order))
3760 goto try_this_zone;
3761 }
3762 #endif
3763 /* Checked here to keep the fast path fast */
3764 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3765 if (alloc_flags & ALLOC_NO_WATERMARKS)
3766 goto try_this_zone;
3767
3768 if (node_reclaim_mode == 0 ||
3769 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3770 continue;
3771
3772 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3773 switch (ret) {
3774 case NODE_RECLAIM_NOSCAN:
3775 /* did not scan */
3776 continue;
3777 case NODE_RECLAIM_FULL:
3778 /* scanned but unreclaimable */
3779 continue;
3780 default:
3781 /* did we reclaim enough */
3782 if (zone_watermark_ok(zone, order, mark,
3783 ac->highest_zoneidx, alloc_flags))
3784 goto try_this_zone;
3785
3786 continue;
3787 }
3788 }
3789
3790 try_this_zone:
3791 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3792 gfp_mask, alloc_flags, ac->migratetype);
3793 if (page) {
3794 prep_new_page(page, order, gfp_mask, alloc_flags);
3795
3796 /*
3797 * If this is a high-order atomic allocation then check
3798 * if the pageblock should be reserved for the future
3799 */
3800 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3801 reserve_highatomic_pageblock(page, zone, order);
3802
3803 return page;
3804 } else {
3805 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3806 /* Try again if zone has deferred pages */
3807 if (static_branch_unlikely(&deferred_pages)) {
3808 if (_deferred_grow_zone(zone, order))
3809 goto try_this_zone;
3810 }
3811 #endif
3812 }
3813 }
3814
3815 /*
3816 * It's possible on a UMA machine to get through all zones that are
3817 * fragmented. If avoiding fragmentation, reset and try again.
3818 */
3819 if (no_fallback) {
3820 alloc_flags &= ~ALLOC_NOFRAGMENT;
3821 goto retry;
3822 }
3823
3824 return NULL;
3825 }
3826
3827 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3828 {
3829 unsigned int filter = SHOW_MEM_FILTER_NODES;
3830
3831 /*
3832 * This documents exceptions given to allocations in certain
3833 * contexts that are allowed to allocate outside current's set
3834 * of allowed nodes.
3835 */
3836 if (!(gfp_mask & __GFP_NOMEMALLOC))
3837 if (tsk_is_oom_victim(current) ||
3838 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3839 filter &= ~SHOW_MEM_FILTER_NODES;
3840 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3841 filter &= ~SHOW_MEM_FILTER_NODES;
3842
3843 show_mem(filter, nodemask);
3844 }
3845
3846 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3847 {
3848 struct va_format vaf;
3849 va_list args;
3850 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3851
3852 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3853 return;
3854
3855 va_start(args, fmt);
3856 vaf.fmt = fmt;
3857 vaf.va = &args;
3858 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3859 current->comm, &vaf, gfp_mask, &gfp_mask,
3860 nodemask_pr_args(nodemask));
3861 va_end(args);
3862
3863 cpuset_print_current_mems_allowed();
3864 pr_cont("\n");
3865 dump_stack();
3866 warn_alloc_show_mem(gfp_mask, nodemask);
3867 }
3868
3869 static inline struct page *
3870 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3871 unsigned int alloc_flags,
3872 const struct alloc_context *ac)
3873 {
3874 struct page *page;
3875
3876 page = get_page_from_freelist(gfp_mask, order,
3877 alloc_flags|ALLOC_CPUSET, ac);
3878 /*
3879 * fallback to ignore cpuset restriction if our nodes
3880 * are depleted
3881 */
3882 if (!page)
3883 page = get_page_from_freelist(gfp_mask, order,
3884 alloc_flags, ac);
3885
3886 return page;
3887 }
3888
3889 static inline struct page *
3890 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3891 const struct alloc_context *ac, unsigned long *did_some_progress)
3892 {
3893 struct oom_control oc = {
3894 .zonelist = ac->zonelist,
3895 .nodemask = ac->nodemask,
3896 .memcg = NULL,
3897 .gfp_mask = gfp_mask,
3898 .order = order,
3899 };
3900 struct page *page;
3901
3902 *did_some_progress = 0;
3903
3904 /*
3905 * Acquire the oom lock. If that fails, somebody else is
3906 * making progress for us.
3907 */
3908 if (!mutex_trylock(&oom_lock)) {
3909 *did_some_progress = 1;
3910 schedule_timeout_uninterruptible(1);
3911 return NULL;
3912 }
3913
3914 /*
3915 * Go through the zonelist yet one more time, keep very high watermark
3916 * here, this is only to catch a parallel oom killing, we must fail if
3917 * we're still under heavy pressure. But make sure that this reclaim
3918 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3919 * allocation which will never fail due to oom_lock already held.
3920 */
3921 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3922 ~__GFP_DIRECT_RECLAIM, order,
3923 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3924 if (page)
3925 goto out;
3926
3927 /* Coredumps can quickly deplete all memory reserves */
3928 if (current->flags & PF_DUMPCORE)
3929 goto out;
3930 /* The OOM killer will not help higher order allocs */
3931 if (order > PAGE_ALLOC_COSTLY_ORDER)
3932 goto out;
3933 /*
3934 * We have already exhausted all our reclaim opportunities without any
3935 * success so it is time to admit defeat. We will skip the OOM killer
3936 * because it is very likely that the caller has a more reasonable
3937 * fallback than shooting a random task.
3938 */
3939 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3940 goto out;
3941 /* The OOM killer does not needlessly kill tasks for lowmem */
3942 if (ac->highest_zoneidx < ZONE_NORMAL)
3943 goto out;
3944 if (pm_suspended_storage())
3945 goto out;
3946 /*
3947 * XXX: GFP_NOFS allocations should rather fail than rely on
3948 * other request to make a forward progress.
3949 * We are in an unfortunate situation where out_of_memory cannot
3950 * do much for this context but let's try it to at least get
3951 * access to memory reserved if the current task is killed (see
3952 * out_of_memory). Once filesystems are ready to handle allocation
3953 * failures more gracefully we should just bail out here.
3954 */
3955
3956 /* The OOM killer may not free memory on a specific node */
3957 if (gfp_mask & __GFP_THISNODE)
3958 goto out;
3959
3960 /* Exhausted what can be done so it's blame time */
3961 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3962 *did_some_progress = 1;
3963
3964 /*
3965 * Help non-failing allocations by giving them access to memory
3966 * reserves
3967 */
3968 if (gfp_mask & __GFP_NOFAIL)
3969 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3970 ALLOC_NO_WATERMARKS, ac);
3971 }
3972 out:
3973 mutex_unlock(&oom_lock);
3974 return page;
3975 }
3976
3977 /*
3978 * Maximum number of compaction retries wit a progress before OOM
3979 * killer is consider as the only way to move forward.
3980 */
3981 #define MAX_COMPACT_RETRIES 16
3982
3983 #ifdef CONFIG_COMPACTION
3984 /* Try memory compaction for high-order allocations before reclaim */
3985 static struct page *
3986 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3987 unsigned int alloc_flags, const struct alloc_context *ac,
3988 enum compact_priority prio, enum compact_result *compact_result)
3989 {
3990 struct page *page = NULL;
3991 unsigned long pflags;
3992 unsigned int noreclaim_flag;
3993
3994 if (!order)
3995 return NULL;
3996
3997 psi_memstall_enter(&pflags);
3998 noreclaim_flag = memalloc_noreclaim_save();
3999
4000 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4001 prio, &page);
4002
4003 memalloc_noreclaim_restore(noreclaim_flag);
4004 psi_memstall_leave(&pflags);
4005
4006 /*
4007 * At least in one zone compaction wasn't deferred or skipped, so let's
4008 * count a compaction stall
4009 */
4010 count_vm_event(COMPACTSTALL);
4011
4012 /* Prep a captured page if available */
4013 if (page)
4014 prep_new_page(page, order, gfp_mask, alloc_flags);
4015
4016 /* Try get a page from the freelist if available */
4017 if (!page)
4018 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4019
4020 if (page) {
4021 struct zone *zone = page_zone(page);
4022
4023 zone->compact_blockskip_flush = false;
4024 compaction_defer_reset(zone, order, true);
4025 count_vm_event(COMPACTSUCCESS);
4026 return page;
4027 }
4028
4029 /*
4030 * It's bad if compaction run occurs and fails. The most likely reason
4031 * is that pages exist, but not enough to satisfy watermarks.
4032 */
4033 count_vm_event(COMPACTFAIL);
4034
4035 cond_resched();
4036
4037 return NULL;
4038 }
4039
4040 static inline bool
4041 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4042 enum compact_result compact_result,
4043 enum compact_priority *compact_priority,
4044 int *compaction_retries)
4045 {
4046 int max_retries = MAX_COMPACT_RETRIES;
4047 int min_priority;
4048 bool ret = false;
4049 int retries = *compaction_retries;
4050 enum compact_priority priority = *compact_priority;
4051
4052 if (!order)
4053 return false;
4054
4055 if (compaction_made_progress(compact_result))
4056 (*compaction_retries)++;
4057
4058 /*
4059 * compaction considers all the zone as desperately out of memory
4060 * so it doesn't really make much sense to retry except when the
4061 * failure could be caused by insufficient priority
4062 */
4063 if (compaction_failed(compact_result))
4064 goto check_priority;
4065
4066 /*
4067 * compaction was skipped because there are not enough order-0 pages
4068 * to work with, so we retry only if it looks like reclaim can help.
4069 */
4070 if (compaction_needs_reclaim(compact_result)) {
4071 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4072 goto out;
4073 }
4074
4075 /*
4076 * make sure the compaction wasn't deferred or didn't bail out early
4077 * due to locks contention before we declare that we should give up.
4078 * But the next retry should use a higher priority if allowed, so
4079 * we don't just keep bailing out endlessly.
4080 */
4081 if (compaction_withdrawn(compact_result)) {
4082 goto check_priority;
4083 }
4084
4085 /*
4086 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4087 * costly ones because they are de facto nofail and invoke OOM
4088 * killer to move on while costly can fail and users are ready
4089 * to cope with that. 1/4 retries is rather arbitrary but we
4090 * would need much more detailed feedback from compaction to
4091 * make a better decision.
4092 */
4093 if (order > PAGE_ALLOC_COSTLY_ORDER)
4094 max_retries /= 4;
4095 if (*compaction_retries <= max_retries) {
4096 ret = true;
4097 goto out;
4098 }
4099
4100 /*
4101 * Make sure there are attempts at the highest priority if we exhausted
4102 * all retries or failed at the lower priorities.
4103 */
4104 check_priority:
4105 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4106 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4107
4108 if (*compact_priority > min_priority) {
4109 (*compact_priority)--;
4110 *compaction_retries = 0;
4111 ret = true;
4112 }
4113 out:
4114 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4115 return ret;
4116 }
4117 #else
4118 static inline struct page *
4119 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4120 unsigned int alloc_flags, const struct alloc_context *ac,
4121 enum compact_priority prio, enum compact_result *compact_result)
4122 {
4123 *compact_result = COMPACT_SKIPPED;
4124 return NULL;
4125 }
4126
4127 static inline bool
4128 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4129 enum compact_result compact_result,
4130 enum compact_priority *compact_priority,
4131 int *compaction_retries)
4132 {
4133 struct zone *zone;
4134 struct zoneref *z;
4135
4136 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4137 return false;
4138
4139 /*
4140 * There are setups with compaction disabled which would prefer to loop
4141 * inside the allocator rather than hit the oom killer prematurely.
4142 * Let's give them a good hope and keep retrying while the order-0
4143 * watermarks are OK.
4144 */
4145 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4146 ac->highest_zoneidx, ac->nodemask) {
4147 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4148 ac->highest_zoneidx, alloc_flags))
4149 return true;
4150 }
4151 return false;
4152 }
4153 #endif /* CONFIG_COMPACTION */
4154
4155 #ifdef CONFIG_LOCKDEP
4156 static struct lockdep_map __fs_reclaim_map =
4157 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4158
4159 static bool __need_fs_reclaim(gfp_t gfp_mask)
4160 {
4161 gfp_mask = current_gfp_context(gfp_mask);
4162
4163 /* no reclaim without waiting on it */
4164 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4165 return false;
4166
4167 /* this guy won't enter reclaim */
4168 if (current->flags & PF_MEMALLOC)
4169 return false;
4170
4171 /* We're only interested __GFP_FS allocations for now */
4172 if (!(gfp_mask & __GFP_FS))
4173 return false;
4174
4175 if (gfp_mask & __GFP_NOLOCKDEP)
4176 return false;
4177
4178 return true;
4179 }
4180
4181 void __fs_reclaim_acquire(void)
4182 {
4183 lock_map_acquire(&__fs_reclaim_map);
4184 }
4185
4186 void __fs_reclaim_release(void)
4187 {
4188 lock_map_release(&__fs_reclaim_map);
4189 }
4190
4191 void fs_reclaim_acquire(gfp_t gfp_mask)
4192 {
4193 if (__need_fs_reclaim(gfp_mask))
4194 __fs_reclaim_acquire();
4195 }
4196 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4197
4198 void fs_reclaim_release(gfp_t gfp_mask)
4199 {
4200 if (__need_fs_reclaim(gfp_mask))
4201 __fs_reclaim_release();
4202 }
4203 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4204 #endif
4205
4206 /* Perform direct synchronous page reclaim */
4207 static int
4208 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4209 const struct alloc_context *ac)
4210 {
4211 int progress;
4212 unsigned int noreclaim_flag;
4213 unsigned long pflags;
4214
4215 cond_resched();
4216
4217 /* We now go into synchronous reclaim */
4218 cpuset_memory_pressure_bump();
4219 psi_memstall_enter(&pflags);
4220 fs_reclaim_acquire(gfp_mask);
4221 noreclaim_flag = memalloc_noreclaim_save();
4222
4223 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4224 ac->nodemask);
4225
4226 memalloc_noreclaim_restore(noreclaim_flag);
4227 fs_reclaim_release(gfp_mask);
4228 psi_memstall_leave(&pflags);
4229
4230 cond_resched();
4231
4232 return progress;
4233 }
4234
4235 /* The really slow allocator path where we enter direct reclaim */
4236 static inline struct page *
4237 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4238 unsigned int alloc_flags, const struct alloc_context *ac,
4239 unsigned long *did_some_progress)
4240 {
4241 struct page *page = NULL;
4242 bool drained = false;
4243
4244 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4245 if (unlikely(!(*did_some_progress)))
4246 return NULL;
4247
4248 retry:
4249 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4250
4251 /*
4252 * If an allocation failed after direct reclaim, it could be because
4253 * pages are pinned on the per-cpu lists or in high alloc reserves.
4254 * Shrink them them and try again
4255 */
4256 if (!page && !drained) {
4257 unreserve_highatomic_pageblock(ac, false);
4258 drain_all_pages(NULL);
4259 drained = true;
4260 goto retry;
4261 }
4262
4263 return page;
4264 }
4265
4266 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4267 const struct alloc_context *ac)
4268 {
4269 struct zoneref *z;
4270 struct zone *zone;
4271 pg_data_t *last_pgdat = NULL;
4272 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4273
4274 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4275 ac->nodemask) {
4276 if (last_pgdat != zone->zone_pgdat)
4277 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4278 last_pgdat = zone->zone_pgdat;
4279 }
4280 }
4281
4282 static inline unsigned int
4283 gfp_to_alloc_flags(gfp_t gfp_mask)
4284 {
4285 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4286
4287 /*
4288 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4289 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4290 * to save two branches.
4291 */
4292 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4293 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4294
4295 /*
4296 * The caller may dip into page reserves a bit more if the caller
4297 * cannot run direct reclaim, or if the caller has realtime scheduling
4298 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4299 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4300 */
4301 alloc_flags |= (__force int)
4302 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4303
4304 if (gfp_mask & __GFP_ATOMIC) {
4305 /*
4306 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4307 * if it can't schedule.
4308 */
4309 if (!(gfp_mask & __GFP_NOMEMALLOC))
4310 alloc_flags |= ALLOC_HARDER;
4311 /*
4312 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4313 * comment for __cpuset_node_allowed().
4314 */
4315 alloc_flags &= ~ALLOC_CPUSET;
4316 } else if (unlikely(rt_task(current)) && !in_interrupt())
4317 alloc_flags |= ALLOC_HARDER;
4318
4319 #ifdef CONFIG_CMA
4320 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4321 alloc_flags |= ALLOC_CMA;
4322 #endif
4323 return alloc_flags;
4324 }
4325
4326 static bool oom_reserves_allowed(struct task_struct *tsk)
4327 {
4328 if (!tsk_is_oom_victim(tsk))
4329 return false;
4330
4331 /*
4332 * !MMU doesn't have oom reaper so give access to memory reserves
4333 * only to the thread with TIF_MEMDIE set
4334 */
4335 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4336 return false;
4337
4338 return true;
4339 }
4340
4341 /*
4342 * Distinguish requests which really need access to full memory
4343 * reserves from oom victims which can live with a portion of it
4344 */
4345 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4346 {
4347 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4348 return 0;
4349 if (gfp_mask & __GFP_MEMALLOC)
4350 return ALLOC_NO_WATERMARKS;
4351 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4352 return ALLOC_NO_WATERMARKS;
4353 if (!in_interrupt()) {
4354 if (current->flags & PF_MEMALLOC)
4355 return ALLOC_NO_WATERMARKS;
4356 else if (oom_reserves_allowed(current))
4357 return ALLOC_OOM;
4358 }
4359
4360 return 0;
4361 }
4362
4363 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4364 {
4365 return !!__gfp_pfmemalloc_flags(gfp_mask);
4366 }
4367
4368 /*
4369 * Checks whether it makes sense to retry the reclaim to make a forward progress
4370 * for the given allocation request.
4371 *
4372 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4373 * without success, or when we couldn't even meet the watermark if we
4374 * reclaimed all remaining pages on the LRU lists.
4375 *
4376 * Returns true if a retry is viable or false to enter the oom path.
4377 */
4378 static inline bool
4379 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4380 struct alloc_context *ac, int alloc_flags,
4381 bool did_some_progress, int *no_progress_loops)
4382 {
4383 struct zone *zone;
4384 struct zoneref *z;
4385 bool ret = false;
4386
4387 /*
4388 * Costly allocations might have made a progress but this doesn't mean
4389 * their order will become available due to high fragmentation so
4390 * always increment the no progress counter for them
4391 */
4392 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4393 *no_progress_loops = 0;
4394 else
4395 (*no_progress_loops)++;
4396
4397 /*
4398 * Make sure we converge to OOM if we cannot make any progress
4399 * several times in the row.
4400 */
4401 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4402 /* Before OOM, exhaust highatomic_reserve */
4403 return unreserve_highatomic_pageblock(ac, true);
4404 }
4405
4406 /*
4407 * Keep reclaiming pages while there is a chance this will lead
4408 * somewhere. If none of the target zones can satisfy our allocation
4409 * request even if all reclaimable pages are considered then we are
4410 * screwed and have to go OOM.
4411 */
4412 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4413 ac->highest_zoneidx, ac->nodemask) {
4414 unsigned long available;
4415 unsigned long reclaimable;
4416 unsigned long min_wmark = min_wmark_pages(zone);
4417 bool wmark;
4418
4419 available = reclaimable = zone_reclaimable_pages(zone);
4420 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4421
4422 /*
4423 * Would the allocation succeed if we reclaimed all
4424 * reclaimable pages?
4425 */
4426 wmark = __zone_watermark_ok(zone, order, min_wmark,
4427 ac->highest_zoneidx, alloc_flags, available);
4428 trace_reclaim_retry_zone(z, order, reclaimable,
4429 available, min_wmark, *no_progress_loops, wmark);
4430 if (wmark) {
4431 /*
4432 * If we didn't make any progress and have a lot of
4433 * dirty + writeback pages then we should wait for
4434 * an IO to complete to slow down the reclaim and
4435 * prevent from pre mature OOM
4436 */
4437 if (!did_some_progress) {
4438 unsigned long write_pending;
4439
4440 write_pending = zone_page_state_snapshot(zone,
4441 NR_ZONE_WRITE_PENDING);
4442
4443 if (2 * write_pending > reclaimable) {
4444 congestion_wait(BLK_RW_ASYNC, HZ/10);
4445 return true;
4446 }
4447 }
4448
4449 ret = true;
4450 goto out;
4451 }
4452 }
4453
4454 out:
4455 /*
4456 * Memory allocation/reclaim might be called from a WQ context and the
4457 * current implementation of the WQ concurrency control doesn't
4458 * recognize that a particular WQ is congested if the worker thread is
4459 * looping without ever sleeping. Therefore we have to do a short sleep
4460 * here rather than calling cond_resched().
4461 */
4462 if (current->flags & PF_WQ_WORKER)
4463 schedule_timeout_uninterruptible(1);
4464 else
4465 cond_resched();
4466 return ret;
4467 }
4468
4469 static inline bool
4470 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4471 {
4472 /*
4473 * It's possible that cpuset's mems_allowed and the nodemask from
4474 * mempolicy don't intersect. This should be normally dealt with by
4475 * policy_nodemask(), but it's possible to race with cpuset update in
4476 * such a way the check therein was true, and then it became false
4477 * before we got our cpuset_mems_cookie here.
4478 * This assumes that for all allocations, ac->nodemask can come only
4479 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4480 * when it does not intersect with the cpuset restrictions) or the
4481 * caller can deal with a violated nodemask.
4482 */
4483 if (cpusets_enabled() && ac->nodemask &&
4484 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4485 ac->nodemask = NULL;
4486 return true;
4487 }
4488
4489 /*
4490 * When updating a task's mems_allowed or mempolicy nodemask, it is
4491 * possible to race with parallel threads in such a way that our
4492 * allocation can fail while the mask is being updated. If we are about
4493 * to fail, check if the cpuset changed during allocation and if so,
4494 * retry.
4495 */
4496 if (read_mems_allowed_retry(cpuset_mems_cookie))
4497 return true;
4498
4499 return false;
4500 }
4501
4502 static inline struct page *
4503 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4504 struct alloc_context *ac)
4505 {
4506 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4507 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4508 struct page *page = NULL;
4509 unsigned int alloc_flags;
4510 unsigned long did_some_progress;
4511 enum compact_priority compact_priority;
4512 enum compact_result compact_result;
4513 int compaction_retries;
4514 int no_progress_loops;
4515 unsigned int cpuset_mems_cookie;
4516 int reserve_flags;
4517
4518 /*
4519 * We also sanity check to catch abuse of atomic reserves being used by
4520 * callers that are not in atomic context.
4521 */
4522 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4523 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4524 gfp_mask &= ~__GFP_ATOMIC;
4525
4526 retry_cpuset:
4527 compaction_retries = 0;
4528 no_progress_loops = 0;
4529 compact_priority = DEF_COMPACT_PRIORITY;
4530 cpuset_mems_cookie = read_mems_allowed_begin();
4531
4532 /*
4533 * The fast path uses conservative alloc_flags to succeed only until
4534 * kswapd needs to be woken up, and to avoid the cost of setting up
4535 * alloc_flags precisely. So we do that now.
4536 */
4537 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4538
4539 /*
4540 * We need to recalculate the starting point for the zonelist iterator
4541 * because we might have used different nodemask in the fast path, or
4542 * there was a cpuset modification and we are retrying - otherwise we
4543 * could end up iterating over non-eligible zones endlessly.
4544 */
4545 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4546 ac->highest_zoneidx, ac->nodemask);
4547 if (!ac->preferred_zoneref->zone)
4548 goto nopage;
4549
4550 if (alloc_flags & ALLOC_KSWAPD)
4551 wake_all_kswapds(order, gfp_mask, ac);
4552
4553 /*
4554 * The adjusted alloc_flags might result in immediate success, so try
4555 * that first
4556 */
4557 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4558 if (page)
4559 goto got_pg;
4560
4561 /*
4562 * For costly allocations, try direct compaction first, as it's likely
4563 * that we have enough base pages and don't need to reclaim. For non-
4564 * movable high-order allocations, do that as well, as compaction will
4565 * try prevent permanent fragmentation by migrating from blocks of the
4566 * same migratetype.
4567 * Don't try this for allocations that are allowed to ignore
4568 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4569 */
4570 if (can_direct_reclaim &&
4571 (costly_order ||
4572 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4573 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4574 page = __alloc_pages_direct_compact(gfp_mask, order,
4575 alloc_flags, ac,
4576 INIT_COMPACT_PRIORITY,
4577 &compact_result);
4578 if (page)
4579 goto got_pg;
4580
4581 /*
4582 * Checks for costly allocations with __GFP_NORETRY, which
4583 * includes some THP page fault allocations
4584 */
4585 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4586 /*
4587 * If allocating entire pageblock(s) and compaction
4588 * failed because all zones are below low watermarks
4589 * or is prohibited because it recently failed at this
4590 * order, fail immediately unless the allocator has
4591 * requested compaction and reclaim retry.
4592 *
4593 * Reclaim is
4594 * - potentially very expensive because zones are far
4595 * below their low watermarks or this is part of very
4596 * bursty high order allocations,
4597 * - not guaranteed to help because isolate_freepages()
4598 * may not iterate over freed pages as part of its
4599 * linear scan, and
4600 * - unlikely to make entire pageblocks free on its
4601 * own.
4602 */
4603 if (compact_result == COMPACT_SKIPPED ||
4604 compact_result == COMPACT_DEFERRED)
4605 goto nopage;
4606
4607 /*
4608 * Looks like reclaim/compaction is worth trying, but
4609 * sync compaction could be very expensive, so keep
4610 * using async compaction.
4611 */
4612 compact_priority = INIT_COMPACT_PRIORITY;
4613 }
4614 }
4615
4616 retry:
4617 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4618 if (alloc_flags & ALLOC_KSWAPD)
4619 wake_all_kswapds(order, gfp_mask, ac);
4620
4621 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4622 if (reserve_flags)
4623 alloc_flags = reserve_flags;
4624
4625 /*
4626 * Reset the nodemask and zonelist iterators if memory policies can be
4627 * ignored. These allocations are high priority and system rather than
4628 * user oriented.
4629 */
4630 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4631 ac->nodemask = NULL;
4632 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4633 ac->highest_zoneidx, ac->nodemask);
4634 }
4635
4636 /* Attempt with potentially adjusted zonelist and alloc_flags */
4637 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4638 if (page)
4639 goto got_pg;
4640
4641 /* Caller is not willing to reclaim, we can't balance anything */
4642 if (!can_direct_reclaim)
4643 goto nopage;
4644
4645 /* Avoid recursion of direct reclaim */
4646 if (current->flags & PF_MEMALLOC)
4647 goto nopage;
4648
4649 /* Try direct reclaim and then allocating */
4650 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4651 &did_some_progress);
4652 if (page)
4653 goto got_pg;
4654
4655 /* Try direct compaction and then allocating */
4656 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4657 compact_priority, &compact_result);
4658 if (page)
4659 goto got_pg;
4660
4661 /* Do not loop if specifically requested */
4662 if (gfp_mask & __GFP_NORETRY)
4663 goto nopage;
4664
4665 /*
4666 * Do not retry costly high order allocations unless they are
4667 * __GFP_RETRY_MAYFAIL
4668 */
4669 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4670 goto nopage;
4671
4672 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4673 did_some_progress > 0, &no_progress_loops))
4674 goto retry;
4675
4676 /*
4677 * It doesn't make any sense to retry for the compaction if the order-0
4678 * reclaim is not able to make any progress because the current
4679 * implementation of the compaction depends on the sufficient amount
4680 * of free memory (see __compaction_suitable)
4681 */
4682 if (did_some_progress > 0 &&
4683 should_compact_retry(ac, order, alloc_flags,
4684 compact_result, &compact_priority,
4685 &compaction_retries))
4686 goto retry;
4687
4688
4689 /* Deal with possible cpuset update races before we start OOM killing */
4690 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4691 goto retry_cpuset;
4692
4693 /* Reclaim has failed us, start killing things */
4694 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4695 if (page)
4696 goto got_pg;
4697
4698 /* Avoid allocations with no watermarks from looping endlessly */
4699 if (tsk_is_oom_victim(current) &&
4700 (alloc_flags == ALLOC_OOM ||
4701 (gfp_mask & __GFP_NOMEMALLOC)))
4702 goto nopage;
4703
4704 /* Retry as long as the OOM killer is making progress */
4705 if (did_some_progress) {
4706 no_progress_loops = 0;
4707 goto retry;
4708 }
4709
4710 nopage:
4711 /* Deal with possible cpuset update races before we fail */
4712 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4713 goto retry_cpuset;
4714
4715 /*
4716 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4717 * we always retry
4718 */
4719 if (gfp_mask & __GFP_NOFAIL) {
4720 /*
4721 * All existing users of the __GFP_NOFAIL are blockable, so warn
4722 * of any new users that actually require GFP_NOWAIT
4723 */
4724 if (WARN_ON_ONCE(!can_direct_reclaim))
4725 goto fail;
4726
4727 /*
4728 * PF_MEMALLOC request from this context is rather bizarre
4729 * because we cannot reclaim anything and only can loop waiting
4730 * for somebody to do a work for us
4731 */
4732 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4733
4734 /*
4735 * non failing costly orders are a hard requirement which we
4736 * are not prepared for much so let's warn about these users
4737 * so that we can identify them and convert them to something
4738 * else.
4739 */
4740 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4741
4742 /*
4743 * Help non-failing allocations by giving them access to memory
4744 * reserves but do not use ALLOC_NO_WATERMARKS because this
4745 * could deplete whole memory reserves which would just make
4746 * the situation worse
4747 */
4748 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4749 if (page)
4750 goto got_pg;
4751
4752 cond_resched();
4753 goto retry;
4754 }
4755 fail:
4756 warn_alloc(gfp_mask, ac->nodemask,
4757 "page allocation failure: order:%u", order);
4758 got_pg:
4759 return page;
4760 }
4761
4762 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4763 int preferred_nid, nodemask_t *nodemask,
4764 struct alloc_context *ac, gfp_t *alloc_mask,
4765 unsigned int *alloc_flags)
4766 {
4767 ac->highest_zoneidx = gfp_zone(gfp_mask);
4768 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4769 ac->nodemask = nodemask;
4770 ac->migratetype = gfp_migratetype(gfp_mask);
4771
4772 if (cpusets_enabled()) {
4773 *alloc_mask |= __GFP_HARDWALL;
4774 if (!ac->nodemask)
4775 ac->nodemask = &cpuset_current_mems_allowed;
4776 else
4777 *alloc_flags |= ALLOC_CPUSET;
4778 }
4779
4780 fs_reclaim_acquire(gfp_mask);
4781 fs_reclaim_release(gfp_mask);
4782
4783 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4784
4785 if (should_fail_alloc_page(gfp_mask, order))
4786 return false;
4787
4788 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4789 *alloc_flags |= ALLOC_CMA;
4790
4791 return true;
4792 }
4793
4794 /* Determine whether to spread dirty pages and what the first usable zone */
4795 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4796 {
4797 /* Dirty zone balancing only done in the fast path */
4798 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4799
4800 /*
4801 * The preferred zone is used for statistics but crucially it is
4802 * also used as the starting point for the zonelist iterator. It
4803 * may get reset for allocations that ignore memory policies.
4804 */
4805 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4806 ac->highest_zoneidx, ac->nodemask);
4807 }
4808
4809 /*
4810 * This is the 'heart' of the zoned buddy allocator.
4811 */
4812 struct page *
4813 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4814 nodemask_t *nodemask)
4815 {
4816 struct page *page;
4817 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4818 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4819 struct alloc_context ac = { };
4820
4821 /*
4822 * There are several places where we assume that the order value is sane
4823 * so bail out early if the request is out of bound.
4824 */
4825 if (unlikely(order >= MAX_ORDER)) {
4826 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4827 return NULL;
4828 }
4829
4830 gfp_mask &= gfp_allowed_mask;
4831 alloc_mask = gfp_mask;
4832 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4833 return NULL;
4834
4835 finalise_ac(gfp_mask, &ac);
4836
4837 /*
4838 * Forbid the first pass from falling back to types that fragment
4839 * memory until all local zones are considered.
4840 */
4841 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4842
4843 /* First allocation attempt */
4844 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4845 if (likely(page))
4846 goto out;
4847
4848 /*
4849 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4850 * resp. GFP_NOIO which has to be inherited for all allocation requests
4851 * from a particular context which has been marked by
4852 * memalloc_no{fs,io}_{save,restore}.
4853 */
4854 alloc_mask = current_gfp_context(gfp_mask);
4855 ac.spread_dirty_pages = false;
4856
4857 /*
4858 * Restore the original nodemask if it was potentially replaced with
4859 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4860 */
4861 ac.nodemask = nodemask;
4862
4863 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4864
4865 out:
4866 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4867 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
4868 __free_pages(page, order);
4869 page = NULL;
4870 }
4871
4872 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4873
4874 return page;
4875 }
4876 EXPORT_SYMBOL(__alloc_pages_nodemask);
4877
4878 /*
4879 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4880 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4881 * you need to access high mem.
4882 */
4883 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4884 {
4885 struct page *page;
4886
4887 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4888 if (!page)
4889 return 0;
4890 return (unsigned long) page_address(page);
4891 }
4892 EXPORT_SYMBOL(__get_free_pages);
4893
4894 unsigned long get_zeroed_page(gfp_t gfp_mask)
4895 {
4896 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4897 }
4898 EXPORT_SYMBOL(get_zeroed_page);
4899
4900 static inline void free_the_page(struct page *page, unsigned int order)
4901 {
4902 if (order == 0) /* Via pcp? */
4903 free_unref_page(page);
4904 else
4905 __free_pages_ok(page, order);
4906 }
4907
4908 void __free_pages(struct page *page, unsigned int order)
4909 {
4910 if (put_page_testzero(page))
4911 free_the_page(page, order);
4912 }
4913 EXPORT_SYMBOL(__free_pages);
4914
4915 void free_pages(unsigned long addr, unsigned int order)
4916 {
4917 if (addr != 0) {
4918 VM_BUG_ON(!virt_addr_valid((void *)addr));
4919 __free_pages(virt_to_page((void *)addr), order);
4920 }
4921 }
4922
4923 EXPORT_SYMBOL(free_pages);
4924
4925 /*
4926 * Page Fragment:
4927 * An arbitrary-length arbitrary-offset area of memory which resides
4928 * within a 0 or higher order page. Multiple fragments within that page
4929 * are individually refcounted, in the page's reference counter.
4930 *
4931 * The page_frag functions below provide a simple allocation framework for
4932 * page fragments. This is used by the network stack and network device
4933 * drivers to provide a backing region of memory for use as either an
4934 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4935 */
4936 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4937 gfp_t gfp_mask)
4938 {
4939 struct page *page = NULL;
4940 gfp_t gfp = gfp_mask;
4941
4942 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4943 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4944 __GFP_NOMEMALLOC;
4945 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4946 PAGE_FRAG_CACHE_MAX_ORDER);
4947 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4948 #endif
4949 if (unlikely(!page))
4950 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4951
4952 nc->va = page ? page_address(page) : NULL;
4953
4954 return page;
4955 }
4956
4957 void __page_frag_cache_drain(struct page *page, unsigned int count)
4958 {
4959 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4960
4961 if (page_ref_sub_and_test(page, count))
4962 free_the_page(page, compound_order(page));
4963 }
4964 EXPORT_SYMBOL(__page_frag_cache_drain);
4965
4966 void *page_frag_alloc(struct page_frag_cache *nc,
4967 unsigned int fragsz, gfp_t gfp_mask)
4968 {
4969 unsigned int size = PAGE_SIZE;
4970 struct page *page;
4971 int offset;
4972
4973 if (unlikely(!nc->va)) {
4974 refill:
4975 page = __page_frag_cache_refill(nc, gfp_mask);
4976 if (!page)
4977 return NULL;
4978
4979 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4980 /* if size can vary use size else just use PAGE_SIZE */
4981 size = nc->size;
4982 #endif
4983 /* Even if we own the page, we do not use atomic_set().
4984 * This would break get_page_unless_zero() users.
4985 */
4986 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4987
4988 /* reset page count bias and offset to start of new frag */
4989 nc->pfmemalloc = page_is_pfmemalloc(page);
4990 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4991 nc->offset = size;
4992 }
4993
4994 offset = nc->offset - fragsz;
4995 if (unlikely(offset < 0)) {
4996 page = virt_to_page(nc->va);
4997
4998 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4999 goto refill;
5000
5001 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5002 /* if size can vary use size else just use PAGE_SIZE */
5003 size = nc->size;
5004 #endif
5005 /* OK, page count is 0, we can safely set it */
5006 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5007
5008 /* reset page count bias and offset to start of new frag */
5009 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5010 offset = size - fragsz;
5011 }
5012
5013 nc->pagecnt_bias--;
5014 nc->offset = offset;
5015
5016 return nc->va + offset;
5017 }
5018 EXPORT_SYMBOL(page_frag_alloc);
5019
5020 /*
5021 * Frees a page fragment allocated out of either a compound or order 0 page.
5022 */
5023 void page_frag_free(void *addr)
5024 {
5025 struct page *page = virt_to_head_page(addr);
5026
5027 if (unlikely(put_page_testzero(page)))
5028 free_the_page(page, compound_order(page));
5029 }
5030 EXPORT_SYMBOL(page_frag_free);
5031
5032 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5033 size_t size)
5034 {
5035 if (addr) {
5036 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5037 unsigned long used = addr + PAGE_ALIGN(size);
5038
5039 split_page(virt_to_page((void *)addr), order);
5040 while (used < alloc_end) {
5041 free_page(used);
5042 used += PAGE_SIZE;
5043 }
5044 }
5045 return (void *)addr;
5046 }
5047
5048 /**
5049 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5050 * @size: the number of bytes to allocate
5051 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5052 *
5053 * This function is similar to alloc_pages(), except that it allocates the
5054 * minimum number of pages to satisfy the request. alloc_pages() can only
5055 * allocate memory in power-of-two pages.
5056 *
5057 * This function is also limited by MAX_ORDER.
5058 *
5059 * Memory allocated by this function must be released by free_pages_exact().
5060 *
5061 * Return: pointer to the allocated area or %NULL in case of error.
5062 */
5063 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5064 {
5065 unsigned int order = get_order(size);
5066 unsigned long addr;
5067
5068 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5069 gfp_mask &= ~__GFP_COMP;
5070
5071 addr = __get_free_pages(gfp_mask, order);
5072 return make_alloc_exact(addr, order, size);
5073 }
5074 EXPORT_SYMBOL(alloc_pages_exact);
5075
5076 /**
5077 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5078 * pages on a node.
5079 * @nid: the preferred node ID where memory should be allocated
5080 * @size: the number of bytes to allocate
5081 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5082 *
5083 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5084 * back.
5085 *
5086 * Return: pointer to the allocated area or %NULL in case of error.
5087 */
5088 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5089 {
5090 unsigned int order = get_order(size);
5091 struct page *p;
5092
5093 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5094 gfp_mask &= ~__GFP_COMP;
5095
5096 p = alloc_pages_node(nid, gfp_mask, order);
5097 if (!p)
5098 return NULL;
5099 return make_alloc_exact((unsigned long)page_address(p), order, size);
5100 }
5101
5102 /**
5103 * free_pages_exact - release memory allocated via alloc_pages_exact()
5104 * @virt: the value returned by alloc_pages_exact.
5105 * @size: size of allocation, same value as passed to alloc_pages_exact().
5106 *
5107 * Release the memory allocated by a previous call to alloc_pages_exact.
5108 */
5109 void free_pages_exact(void *virt, size_t size)
5110 {
5111 unsigned long addr = (unsigned long)virt;
5112 unsigned long end = addr + PAGE_ALIGN(size);
5113
5114 while (addr < end) {
5115 free_page(addr);
5116 addr += PAGE_SIZE;
5117 }
5118 }
5119 EXPORT_SYMBOL(free_pages_exact);
5120
5121 /**
5122 * nr_free_zone_pages - count number of pages beyond high watermark
5123 * @offset: The zone index of the highest zone
5124 *
5125 * nr_free_zone_pages() counts the number of pages which are beyond the
5126 * high watermark within all zones at or below a given zone index. For each
5127 * zone, the number of pages is calculated as:
5128 *
5129 * nr_free_zone_pages = managed_pages - high_pages
5130 *
5131 * Return: number of pages beyond high watermark.
5132 */
5133 static unsigned long nr_free_zone_pages(int offset)
5134 {
5135 struct zoneref *z;
5136 struct zone *zone;
5137
5138 /* Just pick one node, since fallback list is circular */
5139 unsigned long sum = 0;
5140
5141 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5142
5143 for_each_zone_zonelist(zone, z, zonelist, offset) {
5144 unsigned long size = zone_managed_pages(zone);
5145 unsigned long high = high_wmark_pages(zone);
5146 if (size > high)
5147 sum += size - high;
5148 }
5149
5150 return sum;
5151 }
5152
5153 /**
5154 * nr_free_buffer_pages - count number of pages beyond high watermark
5155 *
5156 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5157 * watermark within ZONE_DMA and ZONE_NORMAL.
5158 *
5159 * Return: number of pages beyond high watermark within ZONE_DMA and
5160 * ZONE_NORMAL.
5161 */
5162 unsigned long nr_free_buffer_pages(void)
5163 {
5164 return nr_free_zone_pages(gfp_zone(GFP_USER));
5165 }
5166 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5167
5168 /**
5169 * nr_free_pagecache_pages - count number of pages beyond high watermark
5170 *
5171 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5172 * high watermark within all zones.
5173 *
5174 * Return: number of pages beyond high watermark within all zones.
5175 */
5176 unsigned long nr_free_pagecache_pages(void)
5177 {
5178 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5179 }
5180
5181 static inline void show_node(struct zone *zone)
5182 {
5183 if (IS_ENABLED(CONFIG_NUMA))
5184 printk("Node %d ", zone_to_nid(zone));
5185 }
5186
5187 long si_mem_available(void)
5188 {
5189 long available;
5190 unsigned long pagecache;
5191 unsigned long wmark_low = 0;
5192 unsigned long pages[NR_LRU_LISTS];
5193 unsigned long reclaimable;
5194 struct zone *zone;
5195 int lru;
5196
5197 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5198 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5199
5200 for_each_zone(zone)
5201 wmark_low += low_wmark_pages(zone);
5202
5203 /*
5204 * Estimate the amount of memory available for userspace allocations,
5205 * without causing swapping.
5206 */
5207 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5208
5209 /*
5210 * Not all the page cache can be freed, otherwise the system will
5211 * start swapping. Assume at least half of the page cache, or the
5212 * low watermark worth of cache, needs to stay.
5213 */
5214 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5215 pagecache -= min(pagecache / 2, wmark_low);
5216 available += pagecache;
5217
5218 /*
5219 * Part of the reclaimable slab and other kernel memory consists of
5220 * items that are in use, and cannot be freed. Cap this estimate at the
5221 * low watermark.
5222 */
5223 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5224 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5225 available += reclaimable - min(reclaimable / 2, wmark_low);
5226
5227 if (available < 0)
5228 available = 0;
5229 return available;
5230 }
5231 EXPORT_SYMBOL_GPL(si_mem_available);
5232
5233 void si_meminfo(struct sysinfo *val)
5234 {
5235 val->totalram = totalram_pages();
5236 val->sharedram = global_node_page_state(NR_SHMEM);
5237 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5238 val->bufferram = nr_blockdev_pages();
5239 val->totalhigh = totalhigh_pages();
5240 val->freehigh = nr_free_highpages();
5241 val->mem_unit = PAGE_SIZE;
5242 }
5243
5244 EXPORT_SYMBOL(si_meminfo);
5245
5246 #ifdef CONFIG_NUMA
5247 void si_meminfo_node(struct sysinfo *val, int nid)
5248 {
5249 int zone_type; /* needs to be signed */
5250 unsigned long managed_pages = 0;
5251 unsigned long managed_highpages = 0;
5252 unsigned long free_highpages = 0;
5253 pg_data_t *pgdat = NODE_DATA(nid);
5254
5255 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5256 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5257 val->totalram = managed_pages;
5258 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5259 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5260 #ifdef CONFIG_HIGHMEM
5261 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5262 struct zone *zone = &pgdat->node_zones[zone_type];
5263
5264 if (is_highmem(zone)) {
5265 managed_highpages += zone_managed_pages(zone);
5266 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5267 }
5268 }
5269 val->totalhigh = managed_highpages;
5270 val->freehigh = free_highpages;
5271 #else
5272 val->totalhigh = managed_highpages;
5273 val->freehigh = free_highpages;
5274 #endif
5275 val->mem_unit = PAGE_SIZE;
5276 }
5277 #endif
5278
5279 /*
5280 * Determine whether the node should be displayed or not, depending on whether
5281 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5282 */
5283 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5284 {
5285 if (!(flags & SHOW_MEM_FILTER_NODES))
5286 return false;
5287
5288 /*
5289 * no node mask - aka implicit memory numa policy. Do not bother with
5290 * the synchronization - read_mems_allowed_begin - because we do not
5291 * have to be precise here.
5292 */
5293 if (!nodemask)
5294 nodemask = &cpuset_current_mems_allowed;
5295
5296 return !node_isset(nid, *nodemask);
5297 }
5298
5299 #define K(x) ((x) << (PAGE_SHIFT-10))
5300
5301 static void show_migration_types(unsigned char type)
5302 {
5303 static const char types[MIGRATE_TYPES] = {
5304 [MIGRATE_UNMOVABLE] = 'U',
5305 [MIGRATE_MOVABLE] = 'M',
5306 [MIGRATE_RECLAIMABLE] = 'E',
5307 [MIGRATE_HIGHATOMIC] = 'H',
5308 #ifdef CONFIG_CMA
5309 [MIGRATE_CMA] = 'C',
5310 #endif
5311 #ifdef CONFIG_MEMORY_ISOLATION
5312 [MIGRATE_ISOLATE] = 'I',
5313 #endif
5314 };
5315 char tmp[MIGRATE_TYPES + 1];
5316 char *p = tmp;
5317 int i;
5318
5319 for (i = 0; i < MIGRATE_TYPES; i++) {
5320 if (type & (1 << i))
5321 *p++ = types[i];
5322 }
5323
5324 *p = '\0';
5325 printk(KERN_CONT "(%s) ", tmp);
5326 }
5327
5328 /*
5329 * Show free area list (used inside shift_scroll-lock stuff)
5330 * We also calculate the percentage fragmentation. We do this by counting the
5331 * memory on each free list with the exception of the first item on the list.
5332 *
5333 * Bits in @filter:
5334 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5335 * cpuset.
5336 */
5337 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5338 {
5339 unsigned long free_pcp = 0;
5340 int cpu;
5341 struct zone *zone;
5342 pg_data_t *pgdat;
5343
5344 for_each_populated_zone(zone) {
5345 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5346 continue;
5347
5348 for_each_online_cpu(cpu)
5349 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5350 }
5351
5352 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5353 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5354 " unevictable:%lu dirty:%lu writeback:%lu\n"
5355 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5356 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5357 " free:%lu free_pcp:%lu free_cma:%lu\n",
5358 global_node_page_state(NR_ACTIVE_ANON),
5359 global_node_page_state(NR_INACTIVE_ANON),
5360 global_node_page_state(NR_ISOLATED_ANON),
5361 global_node_page_state(NR_ACTIVE_FILE),
5362 global_node_page_state(NR_INACTIVE_FILE),
5363 global_node_page_state(NR_ISOLATED_FILE),
5364 global_node_page_state(NR_UNEVICTABLE),
5365 global_node_page_state(NR_FILE_DIRTY),
5366 global_node_page_state(NR_WRITEBACK),
5367 global_node_page_state(NR_SLAB_RECLAIMABLE),
5368 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5369 global_node_page_state(NR_FILE_MAPPED),
5370 global_node_page_state(NR_SHMEM),
5371 global_zone_page_state(NR_PAGETABLE),
5372 global_zone_page_state(NR_BOUNCE),
5373 global_zone_page_state(NR_FREE_PAGES),
5374 free_pcp,
5375 global_zone_page_state(NR_FREE_CMA_PAGES));
5376
5377 for_each_online_pgdat(pgdat) {
5378 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5379 continue;
5380
5381 printk("Node %d"
5382 " active_anon:%lukB"
5383 " inactive_anon:%lukB"
5384 " active_file:%lukB"
5385 " inactive_file:%lukB"
5386 " unevictable:%lukB"
5387 " isolated(anon):%lukB"
5388 " isolated(file):%lukB"
5389 " mapped:%lukB"
5390 " dirty:%lukB"
5391 " writeback:%lukB"
5392 " shmem:%lukB"
5393 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5394 " shmem_thp: %lukB"
5395 " shmem_pmdmapped: %lukB"
5396 " anon_thp: %lukB"
5397 #endif
5398 " writeback_tmp:%lukB"
5399 " all_unreclaimable? %s"
5400 "\n",
5401 pgdat->node_id,
5402 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5403 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5404 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5405 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5406 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5407 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5408 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5409 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5410 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5411 K(node_page_state(pgdat, NR_WRITEBACK)),
5412 K(node_page_state(pgdat, NR_SHMEM)),
5413 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5414 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5415 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5416 * HPAGE_PMD_NR),
5417 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5418 #endif
5419 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5420 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5421 "yes" : "no");
5422 }
5423
5424 for_each_populated_zone(zone) {
5425 int i;
5426
5427 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5428 continue;
5429
5430 free_pcp = 0;
5431 for_each_online_cpu(cpu)
5432 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5433
5434 show_node(zone);
5435 printk(KERN_CONT
5436 "%s"
5437 " free:%lukB"
5438 " min:%lukB"
5439 " low:%lukB"
5440 " high:%lukB"
5441 " reserved_highatomic:%luKB"
5442 " active_anon:%lukB"
5443 " inactive_anon:%lukB"
5444 " active_file:%lukB"
5445 " inactive_file:%lukB"
5446 " unevictable:%lukB"
5447 " writepending:%lukB"
5448 " present:%lukB"
5449 " managed:%lukB"
5450 " mlocked:%lukB"
5451 " kernel_stack:%lukB"
5452 #ifdef CONFIG_SHADOW_CALL_STACK
5453 " shadow_call_stack:%lukB"
5454 #endif
5455 " pagetables:%lukB"
5456 " bounce:%lukB"
5457 " free_pcp:%lukB"
5458 " local_pcp:%ukB"
5459 " free_cma:%lukB"
5460 "\n",
5461 zone->name,
5462 K(zone_page_state(zone, NR_FREE_PAGES)),
5463 K(min_wmark_pages(zone)),
5464 K(low_wmark_pages(zone)),
5465 K(high_wmark_pages(zone)),
5466 K(zone->nr_reserved_highatomic),
5467 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5468 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5469 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5470 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5471 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5472 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5473 K(zone->present_pages),
5474 K(zone_managed_pages(zone)),
5475 K(zone_page_state(zone, NR_MLOCK)),
5476 zone_page_state(zone, NR_KERNEL_STACK_KB),
5477 #ifdef CONFIG_SHADOW_CALL_STACK
5478 zone_page_state(zone, NR_KERNEL_SCS_KB),
5479 #endif
5480 K(zone_page_state(zone, NR_PAGETABLE)),
5481 K(zone_page_state(zone, NR_BOUNCE)),
5482 K(free_pcp),
5483 K(this_cpu_read(zone->pageset->pcp.count)),
5484 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5485 printk("lowmem_reserve[]:");
5486 for (i = 0; i < MAX_NR_ZONES; i++)
5487 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5488 printk(KERN_CONT "\n");
5489 }
5490
5491 for_each_populated_zone(zone) {
5492 unsigned int order;
5493 unsigned long nr[MAX_ORDER], flags, total = 0;
5494 unsigned char types[MAX_ORDER];
5495
5496 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5497 continue;
5498 show_node(zone);
5499 printk(KERN_CONT "%s: ", zone->name);
5500
5501 spin_lock_irqsave(&zone->lock, flags);
5502 for (order = 0; order < MAX_ORDER; order++) {
5503 struct free_area *area = &zone->free_area[order];
5504 int type;
5505
5506 nr[order] = area->nr_free;
5507 total += nr[order] << order;
5508
5509 types[order] = 0;
5510 for (type = 0; type < MIGRATE_TYPES; type++) {
5511 if (!free_area_empty(area, type))
5512 types[order] |= 1 << type;
5513 }
5514 }
5515 spin_unlock_irqrestore(&zone->lock, flags);
5516 for (order = 0; order < MAX_ORDER; order++) {
5517 printk(KERN_CONT "%lu*%lukB ",
5518 nr[order], K(1UL) << order);
5519 if (nr[order])
5520 show_migration_types(types[order]);
5521 }
5522 printk(KERN_CONT "= %lukB\n", K(total));
5523 }
5524
5525 hugetlb_show_meminfo();
5526
5527 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5528
5529 show_swap_cache_info();
5530 }
5531
5532 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5533 {
5534 zoneref->zone = zone;
5535 zoneref->zone_idx = zone_idx(zone);
5536 }
5537
5538 /*
5539 * Builds allocation fallback zone lists.
5540 *
5541 * Add all populated zones of a node to the zonelist.
5542 */
5543 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5544 {
5545 struct zone *zone;
5546 enum zone_type zone_type = MAX_NR_ZONES;
5547 int nr_zones = 0;
5548
5549 do {
5550 zone_type--;
5551 zone = pgdat->node_zones + zone_type;
5552 if (managed_zone(zone)) {
5553 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5554 check_highest_zone(zone_type);
5555 }
5556 } while (zone_type);
5557
5558 return nr_zones;
5559 }
5560
5561 #ifdef CONFIG_NUMA
5562
5563 static int __parse_numa_zonelist_order(char *s)
5564 {
5565 /*
5566 * We used to support different zonlists modes but they turned
5567 * out to be just not useful. Let's keep the warning in place
5568 * if somebody still use the cmd line parameter so that we do
5569 * not fail it silently
5570 */
5571 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5572 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5573 return -EINVAL;
5574 }
5575 return 0;
5576 }
5577
5578 char numa_zonelist_order[] = "Node";
5579
5580 /*
5581 * sysctl handler for numa_zonelist_order
5582 */
5583 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5584 void *buffer, size_t *length, loff_t *ppos)
5585 {
5586 if (write)
5587 return __parse_numa_zonelist_order(buffer);
5588 return proc_dostring(table, write, buffer, length, ppos);
5589 }
5590
5591
5592 #define MAX_NODE_LOAD (nr_online_nodes)
5593 static int node_load[MAX_NUMNODES];
5594
5595 /**
5596 * find_next_best_node - find the next node that should appear in a given node's fallback list
5597 * @node: node whose fallback list we're appending
5598 * @used_node_mask: nodemask_t of already used nodes
5599 *
5600 * We use a number of factors to determine which is the next node that should
5601 * appear on a given node's fallback list. The node should not have appeared
5602 * already in @node's fallback list, and it should be the next closest node
5603 * according to the distance array (which contains arbitrary distance values
5604 * from each node to each node in the system), and should also prefer nodes
5605 * with no CPUs, since presumably they'll have very little allocation pressure
5606 * on them otherwise.
5607 *
5608 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5609 */
5610 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5611 {
5612 int n, val;
5613 int min_val = INT_MAX;
5614 int best_node = NUMA_NO_NODE;
5615 const struct cpumask *tmp = cpumask_of_node(0);
5616
5617 /* Use the local node if we haven't already */
5618 if (!node_isset(node, *used_node_mask)) {
5619 node_set(node, *used_node_mask);
5620 return node;
5621 }
5622
5623 for_each_node_state(n, N_MEMORY) {
5624
5625 /* Don't want a node to appear more than once */
5626 if (node_isset(n, *used_node_mask))
5627 continue;
5628
5629 /* Use the distance array to find the distance */
5630 val = node_distance(node, n);
5631
5632 /* Penalize nodes under us ("prefer the next node") */
5633 val += (n < node);
5634
5635 /* Give preference to headless and unused nodes */
5636 tmp = cpumask_of_node(n);
5637 if (!cpumask_empty(tmp))
5638 val += PENALTY_FOR_NODE_WITH_CPUS;
5639
5640 /* Slight preference for less loaded node */
5641 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5642 val += node_load[n];
5643
5644 if (val < min_val) {
5645 min_val = val;
5646 best_node = n;
5647 }
5648 }
5649
5650 if (best_node >= 0)
5651 node_set(best_node, *used_node_mask);
5652
5653 return best_node;
5654 }
5655
5656
5657 /*
5658 * Build zonelists ordered by node and zones within node.
5659 * This results in maximum locality--normal zone overflows into local
5660 * DMA zone, if any--but risks exhausting DMA zone.
5661 */
5662 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5663 unsigned nr_nodes)
5664 {
5665 struct zoneref *zonerefs;
5666 int i;
5667
5668 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5669
5670 for (i = 0; i < nr_nodes; i++) {
5671 int nr_zones;
5672
5673 pg_data_t *node = NODE_DATA(node_order[i]);
5674
5675 nr_zones = build_zonerefs_node(node, zonerefs);
5676 zonerefs += nr_zones;
5677 }
5678 zonerefs->zone = NULL;
5679 zonerefs->zone_idx = 0;
5680 }
5681
5682 /*
5683 * Build gfp_thisnode zonelists
5684 */
5685 static void build_thisnode_zonelists(pg_data_t *pgdat)
5686 {
5687 struct zoneref *zonerefs;
5688 int nr_zones;
5689
5690 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5691 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5692 zonerefs += nr_zones;
5693 zonerefs->zone = NULL;
5694 zonerefs->zone_idx = 0;
5695 }
5696
5697 /*
5698 * Build zonelists ordered by zone and nodes within zones.
5699 * This results in conserving DMA zone[s] until all Normal memory is
5700 * exhausted, but results in overflowing to remote node while memory
5701 * may still exist in local DMA zone.
5702 */
5703
5704 static void build_zonelists(pg_data_t *pgdat)
5705 {
5706 static int node_order[MAX_NUMNODES];
5707 int node, load, nr_nodes = 0;
5708 nodemask_t used_mask = NODE_MASK_NONE;
5709 int local_node, prev_node;
5710
5711 /* NUMA-aware ordering of nodes */
5712 local_node = pgdat->node_id;
5713 load = nr_online_nodes;
5714 prev_node = local_node;
5715
5716 memset(node_order, 0, sizeof(node_order));
5717 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5718 /*
5719 * We don't want to pressure a particular node.
5720 * So adding penalty to the first node in same
5721 * distance group to make it round-robin.
5722 */
5723 if (node_distance(local_node, node) !=
5724 node_distance(local_node, prev_node))
5725 node_load[node] = load;
5726
5727 node_order[nr_nodes++] = node;
5728 prev_node = node;
5729 load--;
5730 }
5731
5732 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5733 build_thisnode_zonelists(pgdat);
5734 }
5735
5736 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5737 /*
5738 * Return node id of node used for "local" allocations.
5739 * I.e., first node id of first zone in arg node's generic zonelist.
5740 * Used for initializing percpu 'numa_mem', which is used primarily
5741 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5742 */
5743 int local_memory_node(int node)
5744 {
5745 struct zoneref *z;
5746
5747 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5748 gfp_zone(GFP_KERNEL),
5749 NULL);
5750 return zone_to_nid(z->zone);
5751 }
5752 #endif
5753
5754 static void setup_min_unmapped_ratio(void);
5755 static void setup_min_slab_ratio(void);
5756 #else /* CONFIG_NUMA */
5757
5758 static void build_zonelists(pg_data_t *pgdat)
5759 {
5760 int node, local_node;
5761 struct zoneref *zonerefs;
5762 int nr_zones;
5763
5764 local_node = pgdat->node_id;
5765
5766 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5767 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5768 zonerefs += nr_zones;
5769
5770 /*
5771 * Now we build the zonelist so that it contains the zones
5772 * of all the other nodes.
5773 * We don't want to pressure a particular node, so when
5774 * building the zones for node N, we make sure that the
5775 * zones coming right after the local ones are those from
5776 * node N+1 (modulo N)
5777 */
5778 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5779 if (!node_online(node))
5780 continue;
5781 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5782 zonerefs += nr_zones;
5783 }
5784 for (node = 0; node < local_node; node++) {
5785 if (!node_online(node))
5786 continue;
5787 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5788 zonerefs += nr_zones;
5789 }
5790
5791 zonerefs->zone = NULL;
5792 zonerefs->zone_idx = 0;
5793 }
5794
5795 #endif /* CONFIG_NUMA */
5796
5797 /*
5798 * Boot pageset table. One per cpu which is going to be used for all
5799 * zones and all nodes. The parameters will be set in such a way
5800 * that an item put on a list will immediately be handed over to
5801 * the buddy list. This is safe since pageset manipulation is done
5802 * with interrupts disabled.
5803 *
5804 * The boot_pagesets must be kept even after bootup is complete for
5805 * unused processors and/or zones. They do play a role for bootstrapping
5806 * hotplugged processors.
5807 *
5808 * zoneinfo_show() and maybe other functions do
5809 * not check if the processor is online before following the pageset pointer.
5810 * Other parts of the kernel may not check if the zone is available.
5811 */
5812 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5813 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5814 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5815
5816 static void __build_all_zonelists(void *data)
5817 {
5818 int nid;
5819 int __maybe_unused cpu;
5820 pg_data_t *self = data;
5821 static DEFINE_SPINLOCK(lock);
5822
5823 spin_lock(&lock);
5824
5825 #ifdef CONFIG_NUMA
5826 memset(node_load, 0, sizeof(node_load));
5827 #endif
5828
5829 /*
5830 * This node is hotadded and no memory is yet present. So just
5831 * building zonelists is fine - no need to touch other nodes.
5832 */
5833 if (self && !node_online(self->node_id)) {
5834 build_zonelists(self);
5835 } else {
5836 for_each_online_node(nid) {
5837 pg_data_t *pgdat = NODE_DATA(nid);
5838
5839 build_zonelists(pgdat);
5840 }
5841
5842 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5843 /*
5844 * We now know the "local memory node" for each node--
5845 * i.e., the node of the first zone in the generic zonelist.
5846 * Set up numa_mem percpu variable for on-line cpus. During
5847 * boot, only the boot cpu should be on-line; we'll init the
5848 * secondary cpus' numa_mem as they come on-line. During
5849 * node/memory hotplug, we'll fixup all on-line cpus.
5850 */
5851 for_each_online_cpu(cpu)
5852 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5853 #endif
5854 }
5855
5856 spin_unlock(&lock);
5857 }
5858
5859 static noinline void __init
5860 build_all_zonelists_init(void)
5861 {
5862 int cpu;
5863
5864 __build_all_zonelists(NULL);
5865
5866 /*
5867 * Initialize the boot_pagesets that are going to be used
5868 * for bootstrapping processors. The real pagesets for
5869 * each zone will be allocated later when the per cpu
5870 * allocator is available.
5871 *
5872 * boot_pagesets are used also for bootstrapping offline
5873 * cpus if the system is already booted because the pagesets
5874 * are needed to initialize allocators on a specific cpu too.
5875 * F.e. the percpu allocator needs the page allocator which
5876 * needs the percpu allocator in order to allocate its pagesets
5877 * (a chicken-egg dilemma).
5878 */
5879 for_each_possible_cpu(cpu)
5880 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5881
5882 mminit_verify_zonelist();
5883 cpuset_init_current_mems_allowed();
5884 }
5885
5886 /*
5887 * unless system_state == SYSTEM_BOOTING.
5888 *
5889 * __ref due to call of __init annotated helper build_all_zonelists_init
5890 * [protected by SYSTEM_BOOTING].
5891 */
5892 void __ref build_all_zonelists(pg_data_t *pgdat)
5893 {
5894 if (system_state == SYSTEM_BOOTING) {
5895 build_all_zonelists_init();
5896 } else {
5897 __build_all_zonelists(pgdat);
5898 /* cpuset refresh routine should be here */
5899 }
5900 vm_total_pages = nr_free_pagecache_pages();
5901 /*
5902 * Disable grouping by mobility if the number of pages in the
5903 * system is too low to allow the mechanism to work. It would be
5904 * more accurate, but expensive to check per-zone. This check is
5905 * made on memory-hotadd so a system can start with mobility
5906 * disabled and enable it later
5907 */
5908 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5909 page_group_by_mobility_disabled = 1;
5910 else
5911 page_group_by_mobility_disabled = 0;
5912
5913 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5914 nr_online_nodes,
5915 page_group_by_mobility_disabled ? "off" : "on",
5916 vm_total_pages);
5917 #ifdef CONFIG_NUMA
5918 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5919 #endif
5920 }
5921
5922 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5923 static bool __meminit
5924 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5925 {
5926 static struct memblock_region *r;
5927
5928 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5929 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5930 for_each_memblock(memory, r) {
5931 if (*pfn < memblock_region_memory_end_pfn(r))
5932 break;
5933 }
5934 }
5935 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5936 memblock_is_mirror(r)) {
5937 *pfn = memblock_region_memory_end_pfn(r);
5938 return true;
5939 }
5940 }
5941 return false;
5942 }
5943
5944 /*
5945 * Initially all pages are reserved - free ones are freed
5946 * up by memblock_free_all() once the early boot process is
5947 * done. Non-atomic initialization, single-pass.
5948 */
5949 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5950 unsigned long start_pfn, enum memmap_context context,
5951 struct vmem_altmap *altmap)
5952 {
5953 unsigned long pfn, end_pfn = start_pfn + size;
5954 struct page *page;
5955
5956 if (highest_memmap_pfn < end_pfn - 1)
5957 highest_memmap_pfn = end_pfn - 1;
5958
5959 #ifdef CONFIG_ZONE_DEVICE
5960 /*
5961 * Honor reservation requested by the driver for this ZONE_DEVICE
5962 * memory. We limit the total number of pages to initialize to just
5963 * those that might contain the memory mapping. We will defer the
5964 * ZONE_DEVICE page initialization until after we have released
5965 * the hotplug lock.
5966 */
5967 if (zone == ZONE_DEVICE) {
5968 if (!altmap)
5969 return;
5970
5971 if (start_pfn == altmap->base_pfn)
5972 start_pfn += altmap->reserve;
5973 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5974 }
5975 #endif
5976
5977 for (pfn = start_pfn; pfn < end_pfn; ) {
5978 /*
5979 * There can be holes in boot-time mem_map[]s handed to this
5980 * function. They do not exist on hotplugged memory.
5981 */
5982 if (context == MEMMAP_EARLY) {
5983 if (overlap_memmap_init(zone, &pfn))
5984 continue;
5985 if (defer_init(nid, pfn, end_pfn))
5986 break;
5987 }
5988
5989 page = pfn_to_page(pfn);
5990 __init_single_page(page, pfn, zone, nid);
5991 if (context == MEMMAP_HOTPLUG)
5992 __SetPageReserved(page);
5993
5994 /*
5995 * Mark the block movable so that blocks are reserved for
5996 * movable at startup. This will force kernel allocations
5997 * to reserve their blocks rather than leaking throughout
5998 * the address space during boot when many long-lived
5999 * kernel allocations are made.
6000 *
6001 * bitmap is created for zone's valid pfn range. but memmap
6002 * can be created for invalid pages (for alignment)
6003 * check here not to call set_pageblock_migratetype() against
6004 * pfn out of zone.
6005 */
6006 if (!(pfn & (pageblock_nr_pages - 1))) {
6007 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6008 cond_resched();
6009 }
6010 pfn++;
6011 }
6012 }
6013
6014 #ifdef CONFIG_ZONE_DEVICE
6015 void __ref memmap_init_zone_device(struct zone *zone,
6016 unsigned long start_pfn,
6017 unsigned long nr_pages,
6018 struct dev_pagemap *pgmap)
6019 {
6020 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6021 struct pglist_data *pgdat = zone->zone_pgdat;
6022 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6023 unsigned long zone_idx = zone_idx(zone);
6024 unsigned long start = jiffies;
6025 int nid = pgdat->node_id;
6026
6027 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6028 return;
6029
6030 /*
6031 * The call to memmap_init_zone should have already taken care
6032 * of the pages reserved for the memmap, so we can just jump to
6033 * the end of that region and start processing the device pages.
6034 */
6035 if (altmap) {
6036 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6037 nr_pages = end_pfn - start_pfn;
6038 }
6039
6040 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6041 struct page *page = pfn_to_page(pfn);
6042
6043 __init_single_page(page, pfn, zone_idx, nid);
6044
6045 /*
6046 * Mark page reserved as it will need to wait for onlining
6047 * phase for it to be fully associated with a zone.
6048 *
6049 * We can use the non-atomic __set_bit operation for setting
6050 * the flag as we are still initializing the pages.
6051 */
6052 __SetPageReserved(page);
6053
6054 /*
6055 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6056 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6057 * ever freed or placed on a driver-private list.
6058 */
6059 page->pgmap = pgmap;
6060 page->zone_device_data = NULL;
6061
6062 /*
6063 * Mark the block movable so that blocks are reserved for
6064 * movable at startup. This will force kernel allocations
6065 * to reserve their blocks rather than leaking throughout
6066 * the address space during boot when many long-lived
6067 * kernel allocations are made.
6068 *
6069 * bitmap is created for zone's valid pfn range. but memmap
6070 * can be created for invalid pages (for alignment)
6071 * check here not to call set_pageblock_migratetype() against
6072 * pfn out of zone.
6073 *
6074 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6075 * because this is done early in section_activate()
6076 */
6077 if (!(pfn & (pageblock_nr_pages - 1))) {
6078 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6079 cond_resched();
6080 }
6081 }
6082
6083 pr_info("%s initialised %lu pages in %ums\n", __func__,
6084 nr_pages, jiffies_to_msecs(jiffies - start));
6085 }
6086
6087 #endif
6088 static void __meminit zone_init_free_lists(struct zone *zone)
6089 {
6090 unsigned int order, t;
6091 for_each_migratetype_order(order, t) {
6092 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6093 zone->free_area[order].nr_free = 0;
6094 }
6095 }
6096
6097 void __meminit __weak memmap_init(unsigned long size, int nid,
6098 unsigned long zone,
6099 unsigned long range_start_pfn)
6100 {
6101 unsigned long start_pfn, end_pfn;
6102 unsigned long range_end_pfn = range_start_pfn + size;
6103 int i;
6104
6105 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6106 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6107 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6108
6109 if (end_pfn > start_pfn) {
6110 size = end_pfn - start_pfn;
6111 memmap_init_zone(size, nid, zone, start_pfn,
6112 MEMMAP_EARLY, NULL);
6113 }
6114 }
6115 }
6116
6117 static int zone_batchsize(struct zone *zone)
6118 {
6119 #ifdef CONFIG_MMU
6120 int batch;
6121
6122 /*
6123 * The per-cpu-pages pools are set to around 1000th of the
6124 * size of the zone.
6125 */
6126 batch = zone_managed_pages(zone) / 1024;
6127 /* But no more than a meg. */
6128 if (batch * PAGE_SIZE > 1024 * 1024)
6129 batch = (1024 * 1024) / PAGE_SIZE;
6130 batch /= 4; /* We effectively *= 4 below */
6131 if (batch < 1)
6132 batch = 1;
6133
6134 /*
6135 * Clamp the batch to a 2^n - 1 value. Having a power
6136 * of 2 value was found to be more likely to have
6137 * suboptimal cache aliasing properties in some cases.
6138 *
6139 * For example if 2 tasks are alternately allocating
6140 * batches of pages, one task can end up with a lot
6141 * of pages of one half of the possible page colors
6142 * and the other with pages of the other colors.
6143 */
6144 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6145
6146 return batch;
6147
6148 #else
6149 /* The deferral and batching of frees should be suppressed under NOMMU
6150 * conditions.
6151 *
6152 * The problem is that NOMMU needs to be able to allocate large chunks
6153 * of contiguous memory as there's no hardware page translation to
6154 * assemble apparent contiguous memory from discontiguous pages.
6155 *
6156 * Queueing large contiguous runs of pages for batching, however,
6157 * causes the pages to actually be freed in smaller chunks. As there
6158 * can be a significant delay between the individual batches being
6159 * recycled, this leads to the once large chunks of space being
6160 * fragmented and becoming unavailable for high-order allocations.
6161 */
6162 return 0;
6163 #endif
6164 }
6165
6166 /*
6167 * pcp->high and pcp->batch values are related and dependent on one another:
6168 * ->batch must never be higher then ->high.
6169 * The following function updates them in a safe manner without read side
6170 * locking.
6171 *
6172 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6173 * those fields changing asynchronously (acording the the above rule).
6174 *
6175 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6176 * outside of boot time (or some other assurance that no concurrent updaters
6177 * exist).
6178 */
6179 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6180 unsigned long batch)
6181 {
6182 /* start with a fail safe value for batch */
6183 pcp->batch = 1;
6184 smp_wmb();
6185
6186 /* Update high, then batch, in order */
6187 pcp->high = high;
6188 smp_wmb();
6189
6190 pcp->batch = batch;
6191 }
6192
6193 /* a companion to pageset_set_high() */
6194 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6195 {
6196 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6197 }
6198
6199 static void pageset_init(struct per_cpu_pageset *p)
6200 {
6201 struct per_cpu_pages *pcp;
6202 int migratetype;
6203
6204 memset(p, 0, sizeof(*p));
6205
6206 pcp = &p->pcp;
6207 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6208 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6209 }
6210
6211 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6212 {
6213 pageset_init(p);
6214 pageset_set_batch(p, batch);
6215 }
6216
6217 /*
6218 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6219 * to the value high for the pageset p.
6220 */
6221 static void pageset_set_high(struct per_cpu_pageset *p,
6222 unsigned long high)
6223 {
6224 unsigned long batch = max(1UL, high / 4);
6225 if ((high / 4) > (PAGE_SHIFT * 8))
6226 batch = PAGE_SHIFT * 8;
6227
6228 pageset_update(&p->pcp, high, batch);
6229 }
6230
6231 static void pageset_set_high_and_batch(struct zone *zone,
6232 struct per_cpu_pageset *pcp)
6233 {
6234 if (percpu_pagelist_fraction)
6235 pageset_set_high(pcp,
6236 (zone_managed_pages(zone) /
6237 percpu_pagelist_fraction));
6238 else
6239 pageset_set_batch(pcp, zone_batchsize(zone));
6240 }
6241
6242 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6243 {
6244 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6245
6246 pageset_init(pcp);
6247 pageset_set_high_and_batch(zone, pcp);
6248 }
6249
6250 void __meminit setup_zone_pageset(struct zone *zone)
6251 {
6252 int cpu;
6253 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6254 for_each_possible_cpu(cpu)
6255 zone_pageset_init(zone, cpu);
6256 }
6257
6258 /*
6259 * Allocate per cpu pagesets and initialize them.
6260 * Before this call only boot pagesets were available.
6261 */
6262 void __init setup_per_cpu_pageset(void)
6263 {
6264 struct pglist_data *pgdat;
6265 struct zone *zone;
6266 int __maybe_unused cpu;
6267
6268 for_each_populated_zone(zone)
6269 setup_zone_pageset(zone);
6270
6271 #ifdef CONFIG_NUMA
6272 /*
6273 * Unpopulated zones continue using the boot pagesets.
6274 * The numa stats for these pagesets need to be reset.
6275 * Otherwise, they will end up skewing the stats of
6276 * the nodes these zones are associated with.
6277 */
6278 for_each_possible_cpu(cpu) {
6279 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6280 memset(pcp->vm_numa_stat_diff, 0,
6281 sizeof(pcp->vm_numa_stat_diff));
6282 }
6283 #endif
6284
6285 for_each_online_pgdat(pgdat)
6286 pgdat->per_cpu_nodestats =
6287 alloc_percpu(struct per_cpu_nodestat);
6288 }
6289
6290 static __meminit void zone_pcp_init(struct zone *zone)
6291 {
6292 /*
6293 * per cpu subsystem is not up at this point. The following code
6294 * relies on the ability of the linker to provide the
6295 * offset of a (static) per cpu variable into the per cpu area.
6296 */
6297 zone->pageset = &boot_pageset;
6298
6299 if (populated_zone(zone))
6300 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6301 zone->name, zone->present_pages,
6302 zone_batchsize(zone));
6303 }
6304
6305 void __meminit init_currently_empty_zone(struct zone *zone,
6306 unsigned long zone_start_pfn,
6307 unsigned long size)
6308 {
6309 struct pglist_data *pgdat = zone->zone_pgdat;
6310 int zone_idx = zone_idx(zone) + 1;
6311
6312 if (zone_idx > pgdat->nr_zones)
6313 pgdat->nr_zones = zone_idx;
6314
6315 zone->zone_start_pfn = zone_start_pfn;
6316
6317 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6318 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6319 pgdat->node_id,
6320 (unsigned long)zone_idx(zone),
6321 zone_start_pfn, (zone_start_pfn + size));
6322
6323 zone_init_free_lists(zone);
6324 zone->initialized = 1;
6325 }
6326
6327 /**
6328 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6329 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6330 *
6331 * If an architecture guarantees that all ranges registered contain no holes and may
6332 * be freed, this function may be used instead of calling memory_present() manually.
6333 */
6334 void __init sparse_memory_present_with_active_regions(int nid)
6335 {
6336 unsigned long start_pfn, end_pfn;
6337 int i, this_nid;
6338
6339 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6340 memory_present(this_nid, start_pfn, end_pfn);
6341 }
6342
6343 /**
6344 * get_pfn_range_for_nid - Return the start and end page frames for a node
6345 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6346 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6347 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6348 *
6349 * It returns the start and end page frame of a node based on information
6350 * provided by memblock_set_node(). If called for a node
6351 * with no available memory, a warning is printed and the start and end
6352 * PFNs will be 0.
6353 */
6354 void __init get_pfn_range_for_nid(unsigned int nid,
6355 unsigned long *start_pfn, unsigned long *end_pfn)
6356 {
6357 unsigned long this_start_pfn, this_end_pfn;
6358 int i;
6359
6360 *start_pfn = -1UL;
6361 *end_pfn = 0;
6362
6363 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6364 *start_pfn = min(*start_pfn, this_start_pfn);
6365 *end_pfn = max(*end_pfn, this_end_pfn);
6366 }
6367
6368 if (*start_pfn == -1UL)
6369 *start_pfn = 0;
6370 }
6371
6372 /*
6373 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6374 * assumption is made that zones within a node are ordered in monotonic
6375 * increasing memory addresses so that the "highest" populated zone is used
6376 */
6377 static void __init find_usable_zone_for_movable(void)
6378 {
6379 int zone_index;
6380 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6381 if (zone_index == ZONE_MOVABLE)
6382 continue;
6383
6384 if (arch_zone_highest_possible_pfn[zone_index] >
6385 arch_zone_lowest_possible_pfn[zone_index])
6386 break;
6387 }
6388
6389 VM_BUG_ON(zone_index == -1);
6390 movable_zone = zone_index;
6391 }
6392
6393 /*
6394 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6395 * because it is sized independent of architecture. Unlike the other zones,
6396 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6397 * in each node depending on the size of each node and how evenly kernelcore
6398 * is distributed. This helper function adjusts the zone ranges
6399 * provided by the architecture for a given node by using the end of the
6400 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6401 * zones within a node are in order of monotonic increases memory addresses
6402 */
6403 static void __init adjust_zone_range_for_zone_movable(int nid,
6404 unsigned long zone_type,
6405 unsigned long node_start_pfn,
6406 unsigned long node_end_pfn,
6407 unsigned long *zone_start_pfn,
6408 unsigned long *zone_end_pfn)
6409 {
6410 /* Only adjust if ZONE_MOVABLE is on this node */
6411 if (zone_movable_pfn[nid]) {
6412 /* Size ZONE_MOVABLE */
6413 if (zone_type == ZONE_MOVABLE) {
6414 *zone_start_pfn = zone_movable_pfn[nid];
6415 *zone_end_pfn = min(node_end_pfn,
6416 arch_zone_highest_possible_pfn[movable_zone]);
6417
6418 /* Adjust for ZONE_MOVABLE starting within this range */
6419 } else if (!mirrored_kernelcore &&
6420 *zone_start_pfn < zone_movable_pfn[nid] &&
6421 *zone_end_pfn > zone_movable_pfn[nid]) {
6422 *zone_end_pfn = zone_movable_pfn[nid];
6423
6424 /* Check if this whole range is within ZONE_MOVABLE */
6425 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6426 *zone_start_pfn = *zone_end_pfn;
6427 }
6428 }
6429
6430 /*
6431 * Return the number of pages a zone spans in a node, including holes
6432 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6433 */
6434 static unsigned long __init zone_spanned_pages_in_node(int nid,
6435 unsigned long zone_type,
6436 unsigned long node_start_pfn,
6437 unsigned long node_end_pfn,
6438 unsigned long *zone_start_pfn,
6439 unsigned long *zone_end_pfn)
6440 {
6441 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6442 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6443 /* When hotadd a new node from cpu_up(), the node should be empty */
6444 if (!node_start_pfn && !node_end_pfn)
6445 return 0;
6446
6447 /* Get the start and end of the zone */
6448 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6449 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6450 adjust_zone_range_for_zone_movable(nid, zone_type,
6451 node_start_pfn, node_end_pfn,
6452 zone_start_pfn, zone_end_pfn);
6453
6454 /* Check that this node has pages within the zone's required range */
6455 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6456 return 0;
6457
6458 /* Move the zone boundaries inside the node if necessary */
6459 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6460 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6461
6462 /* Return the spanned pages */
6463 return *zone_end_pfn - *zone_start_pfn;
6464 }
6465
6466 /*
6467 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6468 * then all holes in the requested range will be accounted for.
6469 */
6470 unsigned long __init __absent_pages_in_range(int nid,
6471 unsigned long range_start_pfn,
6472 unsigned long range_end_pfn)
6473 {
6474 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6475 unsigned long start_pfn, end_pfn;
6476 int i;
6477
6478 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6479 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6480 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6481 nr_absent -= end_pfn - start_pfn;
6482 }
6483 return nr_absent;
6484 }
6485
6486 /**
6487 * absent_pages_in_range - Return number of page frames in holes within a range
6488 * @start_pfn: The start PFN to start searching for holes
6489 * @end_pfn: The end PFN to stop searching for holes
6490 *
6491 * Return: the number of pages frames in memory holes within a range.
6492 */
6493 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6494 unsigned long end_pfn)
6495 {
6496 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6497 }
6498
6499 /* Return the number of page frames in holes in a zone on a node */
6500 static unsigned long __init zone_absent_pages_in_node(int nid,
6501 unsigned long zone_type,
6502 unsigned long node_start_pfn,
6503 unsigned long node_end_pfn)
6504 {
6505 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6506 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6507 unsigned long zone_start_pfn, zone_end_pfn;
6508 unsigned long nr_absent;
6509
6510 /* When hotadd a new node from cpu_up(), the node should be empty */
6511 if (!node_start_pfn && !node_end_pfn)
6512 return 0;
6513
6514 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6515 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6516
6517 adjust_zone_range_for_zone_movable(nid, zone_type,
6518 node_start_pfn, node_end_pfn,
6519 &zone_start_pfn, &zone_end_pfn);
6520 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6521
6522 /*
6523 * ZONE_MOVABLE handling.
6524 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6525 * and vice versa.
6526 */
6527 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6528 unsigned long start_pfn, end_pfn;
6529 struct memblock_region *r;
6530
6531 for_each_memblock(memory, r) {
6532 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6533 zone_start_pfn, zone_end_pfn);
6534 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6535 zone_start_pfn, zone_end_pfn);
6536
6537 if (zone_type == ZONE_MOVABLE &&
6538 memblock_is_mirror(r))
6539 nr_absent += end_pfn - start_pfn;
6540
6541 if (zone_type == ZONE_NORMAL &&
6542 !memblock_is_mirror(r))
6543 nr_absent += end_pfn - start_pfn;
6544 }
6545 }
6546
6547 return nr_absent;
6548 }
6549
6550 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6551 unsigned long node_start_pfn,
6552 unsigned long node_end_pfn)
6553 {
6554 unsigned long realtotalpages = 0, totalpages = 0;
6555 enum zone_type i;
6556
6557 for (i = 0; i < MAX_NR_ZONES; i++) {
6558 struct zone *zone = pgdat->node_zones + i;
6559 unsigned long zone_start_pfn, zone_end_pfn;
6560 unsigned long spanned, absent;
6561 unsigned long size, real_size;
6562
6563 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6564 node_start_pfn,
6565 node_end_pfn,
6566 &zone_start_pfn,
6567 &zone_end_pfn);
6568 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6569 node_start_pfn,
6570 node_end_pfn);
6571
6572 size = spanned;
6573 real_size = size - absent;
6574
6575 if (size)
6576 zone->zone_start_pfn = zone_start_pfn;
6577 else
6578 zone->zone_start_pfn = 0;
6579 zone->spanned_pages = size;
6580 zone->present_pages = real_size;
6581
6582 totalpages += size;
6583 realtotalpages += real_size;
6584 }
6585
6586 pgdat->node_spanned_pages = totalpages;
6587 pgdat->node_present_pages = realtotalpages;
6588 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6589 realtotalpages);
6590 }
6591
6592 #ifndef CONFIG_SPARSEMEM
6593 /*
6594 * Calculate the size of the zone->blockflags rounded to an unsigned long
6595 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6596 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6597 * round what is now in bits to nearest long in bits, then return it in
6598 * bytes.
6599 */
6600 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6601 {
6602 unsigned long usemapsize;
6603
6604 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6605 usemapsize = roundup(zonesize, pageblock_nr_pages);
6606 usemapsize = usemapsize >> pageblock_order;
6607 usemapsize *= NR_PAGEBLOCK_BITS;
6608 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6609
6610 return usemapsize / 8;
6611 }
6612
6613 static void __ref setup_usemap(struct pglist_data *pgdat,
6614 struct zone *zone,
6615 unsigned long zone_start_pfn,
6616 unsigned long zonesize)
6617 {
6618 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6619 zone->pageblock_flags = NULL;
6620 if (usemapsize) {
6621 zone->pageblock_flags =
6622 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6623 pgdat->node_id);
6624 if (!zone->pageblock_flags)
6625 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6626 usemapsize, zone->name, pgdat->node_id);
6627 }
6628 }
6629 #else
6630 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6631 unsigned long zone_start_pfn, unsigned long zonesize) {}
6632 #endif /* CONFIG_SPARSEMEM */
6633
6634 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6635
6636 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6637 void __init set_pageblock_order(void)
6638 {
6639 unsigned int order;
6640
6641 /* Check that pageblock_nr_pages has not already been setup */
6642 if (pageblock_order)
6643 return;
6644
6645 if (HPAGE_SHIFT > PAGE_SHIFT)
6646 order = HUGETLB_PAGE_ORDER;
6647 else
6648 order = MAX_ORDER - 1;
6649
6650 /*
6651 * Assume the largest contiguous order of interest is a huge page.
6652 * This value may be variable depending on boot parameters on IA64 and
6653 * powerpc.
6654 */
6655 pageblock_order = order;
6656 }
6657 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6658
6659 /*
6660 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6661 * is unused as pageblock_order is set at compile-time. See
6662 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6663 * the kernel config
6664 */
6665 void __init set_pageblock_order(void)
6666 {
6667 }
6668
6669 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6670
6671 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6672 unsigned long present_pages)
6673 {
6674 unsigned long pages = spanned_pages;
6675
6676 /*
6677 * Provide a more accurate estimation if there are holes within
6678 * the zone and SPARSEMEM is in use. If there are holes within the
6679 * zone, each populated memory region may cost us one or two extra
6680 * memmap pages due to alignment because memmap pages for each
6681 * populated regions may not be naturally aligned on page boundary.
6682 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6683 */
6684 if (spanned_pages > present_pages + (present_pages >> 4) &&
6685 IS_ENABLED(CONFIG_SPARSEMEM))
6686 pages = present_pages;
6687
6688 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6689 }
6690
6691 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6692 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6693 {
6694 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6695
6696 spin_lock_init(&ds_queue->split_queue_lock);
6697 INIT_LIST_HEAD(&ds_queue->split_queue);
6698 ds_queue->split_queue_len = 0;
6699 }
6700 #else
6701 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6702 #endif
6703
6704 #ifdef CONFIG_COMPACTION
6705 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6706 {
6707 init_waitqueue_head(&pgdat->kcompactd_wait);
6708 }
6709 #else
6710 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6711 #endif
6712
6713 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6714 {
6715 pgdat_resize_init(pgdat);
6716
6717 pgdat_init_split_queue(pgdat);
6718 pgdat_init_kcompactd(pgdat);
6719
6720 init_waitqueue_head(&pgdat->kswapd_wait);
6721 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6722
6723 pgdat_page_ext_init(pgdat);
6724 spin_lock_init(&pgdat->lru_lock);
6725 lruvec_init(&pgdat->__lruvec);
6726 }
6727
6728 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6729 unsigned long remaining_pages)
6730 {
6731 atomic_long_set(&zone->managed_pages, remaining_pages);
6732 zone_set_nid(zone, nid);
6733 zone->name = zone_names[idx];
6734 zone->zone_pgdat = NODE_DATA(nid);
6735 spin_lock_init(&zone->lock);
6736 zone_seqlock_init(zone);
6737 zone_pcp_init(zone);
6738 }
6739
6740 /*
6741 * Set up the zone data structures
6742 * - init pgdat internals
6743 * - init all zones belonging to this node
6744 *
6745 * NOTE: this function is only called during memory hotplug
6746 */
6747 #ifdef CONFIG_MEMORY_HOTPLUG
6748 void __ref free_area_init_core_hotplug(int nid)
6749 {
6750 enum zone_type z;
6751 pg_data_t *pgdat = NODE_DATA(nid);
6752
6753 pgdat_init_internals(pgdat);
6754 for (z = 0; z < MAX_NR_ZONES; z++)
6755 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6756 }
6757 #endif
6758
6759 /*
6760 * Set up the zone data structures:
6761 * - mark all pages reserved
6762 * - mark all memory queues empty
6763 * - clear the memory bitmaps
6764 *
6765 * NOTE: pgdat should get zeroed by caller.
6766 * NOTE: this function is only called during early init.
6767 */
6768 static void __init free_area_init_core(struct pglist_data *pgdat)
6769 {
6770 enum zone_type j;
6771 int nid = pgdat->node_id;
6772
6773 pgdat_init_internals(pgdat);
6774 pgdat->per_cpu_nodestats = &boot_nodestats;
6775
6776 for (j = 0; j < MAX_NR_ZONES; j++) {
6777 struct zone *zone = pgdat->node_zones + j;
6778 unsigned long size, freesize, memmap_pages;
6779 unsigned long zone_start_pfn = zone->zone_start_pfn;
6780
6781 size = zone->spanned_pages;
6782 freesize = zone->present_pages;
6783
6784 /*
6785 * Adjust freesize so that it accounts for how much memory
6786 * is used by this zone for memmap. This affects the watermark
6787 * and per-cpu initialisations
6788 */
6789 memmap_pages = calc_memmap_size(size, freesize);
6790 if (!is_highmem_idx(j)) {
6791 if (freesize >= memmap_pages) {
6792 freesize -= memmap_pages;
6793 if (memmap_pages)
6794 printk(KERN_DEBUG
6795 " %s zone: %lu pages used for memmap\n",
6796 zone_names[j], memmap_pages);
6797 } else
6798 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6799 zone_names[j], memmap_pages, freesize);
6800 }
6801
6802 /* Account for reserved pages */
6803 if (j == 0 && freesize > dma_reserve) {
6804 freesize -= dma_reserve;
6805 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6806 zone_names[0], dma_reserve);
6807 }
6808
6809 if (!is_highmem_idx(j))
6810 nr_kernel_pages += freesize;
6811 /* Charge for highmem memmap if there are enough kernel pages */
6812 else if (nr_kernel_pages > memmap_pages * 2)
6813 nr_kernel_pages -= memmap_pages;
6814 nr_all_pages += freesize;
6815
6816 /*
6817 * Set an approximate value for lowmem here, it will be adjusted
6818 * when the bootmem allocator frees pages into the buddy system.
6819 * And all highmem pages will be managed by the buddy system.
6820 */
6821 zone_init_internals(zone, j, nid, freesize);
6822
6823 if (!size)
6824 continue;
6825
6826 set_pageblock_order();
6827 setup_usemap(pgdat, zone, zone_start_pfn, size);
6828 init_currently_empty_zone(zone, zone_start_pfn, size);
6829 memmap_init(size, nid, j, zone_start_pfn);
6830 }
6831 }
6832
6833 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6834 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6835 {
6836 unsigned long __maybe_unused start = 0;
6837 unsigned long __maybe_unused offset = 0;
6838
6839 /* Skip empty nodes */
6840 if (!pgdat->node_spanned_pages)
6841 return;
6842
6843 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6844 offset = pgdat->node_start_pfn - start;
6845 /* ia64 gets its own node_mem_map, before this, without bootmem */
6846 if (!pgdat->node_mem_map) {
6847 unsigned long size, end;
6848 struct page *map;
6849
6850 /*
6851 * The zone's endpoints aren't required to be MAX_ORDER
6852 * aligned but the node_mem_map endpoints must be in order
6853 * for the buddy allocator to function correctly.
6854 */
6855 end = pgdat_end_pfn(pgdat);
6856 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6857 size = (end - start) * sizeof(struct page);
6858 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6859 pgdat->node_id);
6860 if (!map)
6861 panic("Failed to allocate %ld bytes for node %d memory map\n",
6862 size, pgdat->node_id);
6863 pgdat->node_mem_map = map + offset;
6864 }
6865 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6866 __func__, pgdat->node_id, (unsigned long)pgdat,
6867 (unsigned long)pgdat->node_mem_map);
6868 #ifndef CONFIG_NEED_MULTIPLE_NODES
6869 /*
6870 * With no DISCONTIG, the global mem_map is just set as node 0's
6871 */
6872 if (pgdat == NODE_DATA(0)) {
6873 mem_map = NODE_DATA(0)->node_mem_map;
6874 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6875 mem_map -= offset;
6876 }
6877 #endif
6878 }
6879 #else
6880 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6881 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6882
6883 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6884 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6885 {
6886 pgdat->first_deferred_pfn = ULONG_MAX;
6887 }
6888 #else
6889 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6890 #endif
6891
6892 static void __init free_area_init_node(int nid)
6893 {
6894 pg_data_t *pgdat = NODE_DATA(nid);
6895 unsigned long start_pfn = 0;
6896 unsigned long end_pfn = 0;
6897
6898 /* pg_data_t should be reset to zero when it's allocated */
6899 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
6900
6901 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6902
6903 pgdat->node_id = nid;
6904 pgdat->node_start_pfn = start_pfn;
6905 pgdat->per_cpu_nodestats = NULL;
6906
6907 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6908 (u64)start_pfn << PAGE_SHIFT,
6909 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6910 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
6911
6912 alloc_node_mem_map(pgdat);
6913 pgdat_set_deferred_range(pgdat);
6914
6915 free_area_init_core(pgdat);
6916 }
6917
6918 void __init free_area_init_memoryless_node(int nid)
6919 {
6920 free_area_init_node(nid);
6921 }
6922
6923 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6924 /*
6925 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6926 * PageReserved(). Return the number of struct pages that were initialized.
6927 */
6928 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
6929 {
6930 unsigned long pfn;
6931 u64 pgcnt = 0;
6932
6933 for (pfn = spfn; pfn < epfn; pfn++) {
6934 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6935 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6936 + pageblock_nr_pages - 1;
6937 continue;
6938 }
6939 /*
6940 * Use a fake node/zone (0) for now. Some of these pages
6941 * (in memblock.reserved but not in memblock.memory) will
6942 * get re-initialized via reserve_bootmem_region() later.
6943 */
6944 __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
6945 __SetPageReserved(pfn_to_page(pfn));
6946 pgcnt++;
6947 }
6948
6949 return pgcnt;
6950 }
6951
6952 /*
6953 * Only struct pages that are backed by physical memory are zeroed and
6954 * initialized by going through __init_single_page(). But, there are some
6955 * struct pages which are reserved in memblock allocator and their fields
6956 * may be accessed (for example page_to_pfn() on some configuration accesses
6957 * flags). We must explicitly initialize those struct pages.
6958 *
6959 * This function also addresses a similar issue where struct pages are left
6960 * uninitialized because the physical address range is not covered by
6961 * memblock.memory or memblock.reserved. That could happen when memblock
6962 * layout is manually configured via memmap=, or when the highest physical
6963 * address (max_pfn) does not end on a section boundary.
6964 */
6965 static void __init init_unavailable_mem(void)
6966 {
6967 phys_addr_t start, end;
6968 u64 i, pgcnt;
6969 phys_addr_t next = 0;
6970
6971 /*
6972 * Loop through unavailable ranges not covered by memblock.memory.
6973 */
6974 pgcnt = 0;
6975 for_each_mem_range(i, &memblock.memory, NULL,
6976 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6977 if (next < start)
6978 pgcnt += init_unavailable_range(PFN_DOWN(next),
6979 PFN_UP(start));
6980 next = end;
6981 }
6982
6983 /*
6984 * Early sections always have a fully populated memmap for the whole
6985 * section - see pfn_valid(). If the last section has holes at the
6986 * end and that section is marked "online", the memmap will be
6987 * considered initialized. Make sure that memmap has a well defined
6988 * state.
6989 */
6990 pgcnt += init_unavailable_range(PFN_DOWN(next),
6991 round_up(max_pfn, PAGES_PER_SECTION));
6992
6993 /*
6994 * Struct pages that do not have backing memory. This could be because
6995 * firmware is using some of this memory, or for some other reasons.
6996 */
6997 if (pgcnt)
6998 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6999 }
7000 #else
7001 static inline void __init init_unavailable_mem(void)
7002 {
7003 }
7004 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7005
7006 #if MAX_NUMNODES > 1
7007 /*
7008 * Figure out the number of possible node ids.
7009 */
7010 void __init setup_nr_node_ids(void)
7011 {
7012 unsigned int highest;
7013
7014 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7015 nr_node_ids = highest + 1;
7016 }
7017 #endif
7018
7019 /**
7020 * node_map_pfn_alignment - determine the maximum internode alignment
7021 *
7022 * This function should be called after node map is populated and sorted.
7023 * It calculates the maximum power of two alignment which can distinguish
7024 * all the nodes.
7025 *
7026 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7027 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7028 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7029 * shifted, 1GiB is enough and this function will indicate so.
7030 *
7031 * This is used to test whether pfn -> nid mapping of the chosen memory
7032 * model has fine enough granularity to avoid incorrect mapping for the
7033 * populated node map.
7034 *
7035 * Return: the determined alignment in pfn's. 0 if there is no alignment
7036 * requirement (single node).
7037 */
7038 unsigned long __init node_map_pfn_alignment(void)
7039 {
7040 unsigned long accl_mask = 0, last_end = 0;
7041 unsigned long start, end, mask;
7042 int last_nid = NUMA_NO_NODE;
7043 int i, nid;
7044
7045 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7046 if (!start || last_nid < 0 || last_nid == nid) {
7047 last_nid = nid;
7048 last_end = end;
7049 continue;
7050 }
7051
7052 /*
7053 * Start with a mask granular enough to pin-point to the
7054 * start pfn and tick off bits one-by-one until it becomes
7055 * too coarse to separate the current node from the last.
7056 */
7057 mask = ~((1 << __ffs(start)) - 1);
7058 while (mask && last_end <= (start & (mask << 1)))
7059 mask <<= 1;
7060
7061 /* accumulate all internode masks */
7062 accl_mask |= mask;
7063 }
7064
7065 /* convert mask to number of pages */
7066 return ~accl_mask + 1;
7067 }
7068
7069 /**
7070 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7071 *
7072 * Return: the minimum PFN based on information provided via
7073 * memblock_set_node().
7074 */
7075 unsigned long __init find_min_pfn_with_active_regions(void)
7076 {
7077 return PHYS_PFN(memblock_start_of_DRAM());
7078 }
7079
7080 /*
7081 * early_calculate_totalpages()
7082 * Sum pages in active regions for movable zone.
7083 * Populate N_MEMORY for calculating usable_nodes.
7084 */
7085 static unsigned long __init early_calculate_totalpages(void)
7086 {
7087 unsigned long totalpages = 0;
7088 unsigned long start_pfn, end_pfn;
7089 int i, nid;
7090
7091 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7092 unsigned long pages = end_pfn - start_pfn;
7093
7094 totalpages += pages;
7095 if (pages)
7096 node_set_state(nid, N_MEMORY);
7097 }
7098 return totalpages;
7099 }
7100
7101 /*
7102 * Find the PFN the Movable zone begins in each node. Kernel memory
7103 * is spread evenly between nodes as long as the nodes have enough
7104 * memory. When they don't, some nodes will have more kernelcore than
7105 * others
7106 */
7107 static void __init find_zone_movable_pfns_for_nodes(void)
7108 {
7109 int i, nid;
7110 unsigned long usable_startpfn;
7111 unsigned long kernelcore_node, kernelcore_remaining;
7112 /* save the state before borrow the nodemask */
7113 nodemask_t saved_node_state = node_states[N_MEMORY];
7114 unsigned long totalpages = early_calculate_totalpages();
7115 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7116 struct memblock_region *r;
7117
7118 /* Need to find movable_zone earlier when movable_node is specified. */
7119 find_usable_zone_for_movable();
7120
7121 /*
7122 * If movable_node is specified, ignore kernelcore and movablecore
7123 * options.
7124 */
7125 if (movable_node_is_enabled()) {
7126 for_each_memblock(memory, r) {
7127 if (!memblock_is_hotpluggable(r))
7128 continue;
7129
7130 nid = memblock_get_region_node(r);
7131
7132 usable_startpfn = PFN_DOWN(r->base);
7133 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7134 min(usable_startpfn, zone_movable_pfn[nid]) :
7135 usable_startpfn;
7136 }
7137
7138 goto out2;
7139 }
7140
7141 /*
7142 * If kernelcore=mirror is specified, ignore movablecore option
7143 */
7144 if (mirrored_kernelcore) {
7145 bool mem_below_4gb_not_mirrored = false;
7146
7147 for_each_memblock(memory, r) {
7148 if (memblock_is_mirror(r))
7149 continue;
7150
7151 nid = memblock_get_region_node(r);
7152
7153 usable_startpfn = memblock_region_memory_base_pfn(r);
7154
7155 if (usable_startpfn < 0x100000) {
7156 mem_below_4gb_not_mirrored = true;
7157 continue;
7158 }
7159
7160 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7161 min(usable_startpfn, zone_movable_pfn[nid]) :
7162 usable_startpfn;
7163 }
7164
7165 if (mem_below_4gb_not_mirrored)
7166 pr_warn("This configuration results in unmirrored kernel memory.\n");
7167
7168 goto out2;
7169 }
7170
7171 /*
7172 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7173 * amount of necessary memory.
7174 */
7175 if (required_kernelcore_percent)
7176 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7177 10000UL;
7178 if (required_movablecore_percent)
7179 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7180 10000UL;
7181
7182 /*
7183 * If movablecore= was specified, calculate what size of
7184 * kernelcore that corresponds so that memory usable for
7185 * any allocation type is evenly spread. If both kernelcore
7186 * and movablecore are specified, then the value of kernelcore
7187 * will be used for required_kernelcore if it's greater than
7188 * what movablecore would have allowed.
7189 */
7190 if (required_movablecore) {
7191 unsigned long corepages;
7192
7193 /*
7194 * Round-up so that ZONE_MOVABLE is at least as large as what
7195 * was requested by the user
7196 */
7197 required_movablecore =
7198 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7199 required_movablecore = min(totalpages, required_movablecore);
7200 corepages = totalpages - required_movablecore;
7201
7202 required_kernelcore = max(required_kernelcore, corepages);
7203 }
7204
7205 /*
7206 * If kernelcore was not specified or kernelcore size is larger
7207 * than totalpages, there is no ZONE_MOVABLE.
7208 */
7209 if (!required_kernelcore || required_kernelcore >= totalpages)
7210 goto out;
7211
7212 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7213 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7214
7215 restart:
7216 /* Spread kernelcore memory as evenly as possible throughout nodes */
7217 kernelcore_node = required_kernelcore / usable_nodes;
7218 for_each_node_state(nid, N_MEMORY) {
7219 unsigned long start_pfn, end_pfn;
7220
7221 /*
7222 * Recalculate kernelcore_node if the division per node
7223 * now exceeds what is necessary to satisfy the requested
7224 * amount of memory for the kernel
7225 */
7226 if (required_kernelcore < kernelcore_node)
7227 kernelcore_node = required_kernelcore / usable_nodes;
7228
7229 /*
7230 * As the map is walked, we track how much memory is usable
7231 * by the kernel using kernelcore_remaining. When it is
7232 * 0, the rest of the node is usable by ZONE_MOVABLE
7233 */
7234 kernelcore_remaining = kernelcore_node;
7235
7236 /* Go through each range of PFNs within this node */
7237 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7238 unsigned long size_pages;
7239
7240 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7241 if (start_pfn >= end_pfn)
7242 continue;
7243
7244 /* Account for what is only usable for kernelcore */
7245 if (start_pfn < usable_startpfn) {
7246 unsigned long kernel_pages;
7247 kernel_pages = min(end_pfn, usable_startpfn)
7248 - start_pfn;
7249
7250 kernelcore_remaining -= min(kernel_pages,
7251 kernelcore_remaining);
7252 required_kernelcore -= min(kernel_pages,
7253 required_kernelcore);
7254
7255 /* Continue if range is now fully accounted */
7256 if (end_pfn <= usable_startpfn) {
7257
7258 /*
7259 * Push zone_movable_pfn to the end so
7260 * that if we have to rebalance
7261 * kernelcore across nodes, we will
7262 * not double account here
7263 */
7264 zone_movable_pfn[nid] = end_pfn;
7265 continue;
7266 }
7267 start_pfn = usable_startpfn;
7268 }
7269
7270 /*
7271 * The usable PFN range for ZONE_MOVABLE is from
7272 * start_pfn->end_pfn. Calculate size_pages as the
7273 * number of pages used as kernelcore
7274 */
7275 size_pages = end_pfn - start_pfn;
7276 if (size_pages > kernelcore_remaining)
7277 size_pages = kernelcore_remaining;
7278 zone_movable_pfn[nid] = start_pfn + size_pages;
7279
7280 /*
7281 * Some kernelcore has been met, update counts and
7282 * break if the kernelcore for this node has been
7283 * satisfied
7284 */
7285 required_kernelcore -= min(required_kernelcore,
7286 size_pages);
7287 kernelcore_remaining -= size_pages;
7288 if (!kernelcore_remaining)
7289 break;
7290 }
7291 }
7292
7293 /*
7294 * If there is still required_kernelcore, we do another pass with one
7295 * less node in the count. This will push zone_movable_pfn[nid] further
7296 * along on the nodes that still have memory until kernelcore is
7297 * satisfied
7298 */
7299 usable_nodes--;
7300 if (usable_nodes && required_kernelcore > usable_nodes)
7301 goto restart;
7302
7303 out2:
7304 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7305 for (nid = 0; nid < MAX_NUMNODES; nid++)
7306 zone_movable_pfn[nid] =
7307 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7308
7309 out:
7310 /* restore the node_state */
7311 node_states[N_MEMORY] = saved_node_state;
7312 }
7313
7314 /* Any regular or high memory on that node ? */
7315 static void check_for_memory(pg_data_t *pgdat, int nid)
7316 {
7317 enum zone_type zone_type;
7318
7319 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7320 struct zone *zone = &pgdat->node_zones[zone_type];
7321 if (populated_zone(zone)) {
7322 if (IS_ENABLED(CONFIG_HIGHMEM))
7323 node_set_state(nid, N_HIGH_MEMORY);
7324 if (zone_type <= ZONE_NORMAL)
7325 node_set_state(nid, N_NORMAL_MEMORY);
7326 break;
7327 }
7328 }
7329 }
7330
7331 /*
7332 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7333 * such cases we allow max_zone_pfn sorted in the descending order
7334 */
7335 bool __weak arch_has_descending_max_zone_pfns(void)
7336 {
7337 return false;
7338 }
7339
7340 /**
7341 * free_area_init - Initialise all pg_data_t and zone data
7342 * @max_zone_pfn: an array of max PFNs for each zone
7343 *
7344 * This will call free_area_init_node() for each active node in the system.
7345 * Using the page ranges provided by memblock_set_node(), the size of each
7346 * zone in each node and their holes is calculated. If the maximum PFN
7347 * between two adjacent zones match, it is assumed that the zone is empty.
7348 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7349 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7350 * starts where the previous one ended. For example, ZONE_DMA32 starts
7351 * at arch_max_dma_pfn.
7352 */
7353 void __init free_area_init(unsigned long *max_zone_pfn)
7354 {
7355 unsigned long start_pfn, end_pfn;
7356 int i, nid, zone;
7357 bool descending;
7358
7359 /* Record where the zone boundaries are */
7360 memset(arch_zone_lowest_possible_pfn, 0,
7361 sizeof(arch_zone_lowest_possible_pfn));
7362 memset(arch_zone_highest_possible_pfn, 0,
7363 sizeof(arch_zone_highest_possible_pfn));
7364
7365 start_pfn = find_min_pfn_with_active_regions();
7366 descending = arch_has_descending_max_zone_pfns();
7367
7368 for (i = 0; i < MAX_NR_ZONES; i++) {
7369 if (descending)
7370 zone = MAX_NR_ZONES - i - 1;
7371 else
7372 zone = i;
7373
7374 if (zone == ZONE_MOVABLE)
7375 continue;
7376
7377 end_pfn = max(max_zone_pfn[zone], start_pfn);
7378 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7379 arch_zone_highest_possible_pfn[zone] = end_pfn;
7380
7381 start_pfn = end_pfn;
7382 }
7383
7384 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7385 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7386 find_zone_movable_pfns_for_nodes();
7387
7388 /* Print out the zone ranges */
7389 pr_info("Zone ranges:\n");
7390 for (i = 0; i < MAX_NR_ZONES; i++) {
7391 if (i == ZONE_MOVABLE)
7392 continue;
7393 pr_info(" %-8s ", zone_names[i]);
7394 if (arch_zone_lowest_possible_pfn[i] ==
7395 arch_zone_highest_possible_pfn[i])
7396 pr_cont("empty\n");
7397 else
7398 pr_cont("[mem %#018Lx-%#018Lx]\n",
7399 (u64)arch_zone_lowest_possible_pfn[i]
7400 << PAGE_SHIFT,
7401 ((u64)arch_zone_highest_possible_pfn[i]
7402 << PAGE_SHIFT) - 1);
7403 }
7404
7405 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7406 pr_info("Movable zone start for each node\n");
7407 for (i = 0; i < MAX_NUMNODES; i++) {
7408 if (zone_movable_pfn[i])
7409 pr_info(" Node %d: %#018Lx\n", i,
7410 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7411 }
7412
7413 /*
7414 * Print out the early node map, and initialize the
7415 * subsection-map relative to active online memory ranges to
7416 * enable future "sub-section" extensions of the memory map.
7417 */
7418 pr_info("Early memory node ranges\n");
7419 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7420 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7421 (u64)start_pfn << PAGE_SHIFT,
7422 ((u64)end_pfn << PAGE_SHIFT) - 1);
7423 subsection_map_init(start_pfn, end_pfn - start_pfn);
7424 }
7425
7426 /* Initialise every node */
7427 mminit_verify_pageflags_layout();
7428 setup_nr_node_ids();
7429 init_unavailable_mem();
7430 for_each_online_node(nid) {
7431 pg_data_t *pgdat = NODE_DATA(nid);
7432 free_area_init_node(nid);
7433
7434 /* Any memory on that node */
7435 if (pgdat->node_present_pages)
7436 node_set_state(nid, N_MEMORY);
7437 check_for_memory(pgdat, nid);
7438 }
7439 }
7440
7441 static int __init cmdline_parse_core(char *p, unsigned long *core,
7442 unsigned long *percent)
7443 {
7444 unsigned long long coremem;
7445 char *endptr;
7446
7447 if (!p)
7448 return -EINVAL;
7449
7450 /* Value may be a percentage of total memory, otherwise bytes */
7451 coremem = simple_strtoull(p, &endptr, 0);
7452 if (*endptr == '%') {
7453 /* Paranoid check for percent values greater than 100 */
7454 WARN_ON(coremem > 100);
7455
7456 *percent = coremem;
7457 } else {
7458 coremem = memparse(p, &p);
7459 /* Paranoid check that UL is enough for the coremem value */
7460 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7461
7462 *core = coremem >> PAGE_SHIFT;
7463 *percent = 0UL;
7464 }
7465 return 0;
7466 }
7467
7468 /*
7469 * kernelcore=size sets the amount of memory for use for allocations that
7470 * cannot be reclaimed or migrated.
7471 */
7472 static int __init cmdline_parse_kernelcore(char *p)
7473 {
7474 /* parse kernelcore=mirror */
7475 if (parse_option_str(p, "mirror")) {
7476 mirrored_kernelcore = true;
7477 return 0;
7478 }
7479
7480 return cmdline_parse_core(p, &required_kernelcore,
7481 &required_kernelcore_percent);
7482 }
7483
7484 /*
7485 * movablecore=size sets the amount of memory for use for allocations that
7486 * can be reclaimed or migrated.
7487 */
7488 static int __init cmdline_parse_movablecore(char *p)
7489 {
7490 return cmdline_parse_core(p, &required_movablecore,
7491 &required_movablecore_percent);
7492 }
7493
7494 early_param("kernelcore", cmdline_parse_kernelcore);
7495 early_param("movablecore", cmdline_parse_movablecore);
7496
7497 void adjust_managed_page_count(struct page *page, long count)
7498 {
7499 atomic_long_add(count, &page_zone(page)->managed_pages);
7500 totalram_pages_add(count);
7501 #ifdef CONFIG_HIGHMEM
7502 if (PageHighMem(page))
7503 totalhigh_pages_add(count);
7504 #endif
7505 }
7506 EXPORT_SYMBOL(adjust_managed_page_count);
7507
7508 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7509 {
7510 void *pos;
7511 unsigned long pages = 0;
7512
7513 start = (void *)PAGE_ALIGN((unsigned long)start);
7514 end = (void *)((unsigned long)end & PAGE_MASK);
7515 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7516 struct page *page = virt_to_page(pos);
7517 void *direct_map_addr;
7518
7519 /*
7520 * 'direct_map_addr' might be different from 'pos'
7521 * because some architectures' virt_to_page()
7522 * work with aliases. Getting the direct map
7523 * address ensures that we get a _writeable_
7524 * alias for the memset().
7525 */
7526 direct_map_addr = page_address(page);
7527 if ((unsigned int)poison <= 0xFF)
7528 memset(direct_map_addr, poison, PAGE_SIZE);
7529
7530 free_reserved_page(page);
7531 }
7532
7533 if (pages && s)
7534 pr_info("Freeing %s memory: %ldK\n",
7535 s, pages << (PAGE_SHIFT - 10));
7536
7537 return pages;
7538 }
7539
7540 #ifdef CONFIG_HIGHMEM
7541 void free_highmem_page(struct page *page)
7542 {
7543 __free_reserved_page(page);
7544 totalram_pages_inc();
7545 atomic_long_inc(&page_zone(page)->managed_pages);
7546 totalhigh_pages_inc();
7547 }
7548 #endif
7549
7550
7551 void __init mem_init_print_info(const char *str)
7552 {
7553 unsigned long physpages, codesize, datasize, rosize, bss_size;
7554 unsigned long init_code_size, init_data_size;
7555
7556 physpages = get_num_physpages();
7557 codesize = _etext - _stext;
7558 datasize = _edata - _sdata;
7559 rosize = __end_rodata - __start_rodata;
7560 bss_size = __bss_stop - __bss_start;
7561 init_data_size = __init_end - __init_begin;
7562 init_code_size = _einittext - _sinittext;
7563
7564 /*
7565 * Detect special cases and adjust section sizes accordingly:
7566 * 1) .init.* may be embedded into .data sections
7567 * 2) .init.text.* may be out of [__init_begin, __init_end],
7568 * please refer to arch/tile/kernel/vmlinux.lds.S.
7569 * 3) .rodata.* may be embedded into .text or .data sections.
7570 */
7571 #define adj_init_size(start, end, size, pos, adj) \
7572 do { \
7573 if (start <= pos && pos < end && size > adj) \
7574 size -= adj; \
7575 } while (0)
7576
7577 adj_init_size(__init_begin, __init_end, init_data_size,
7578 _sinittext, init_code_size);
7579 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7580 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7581 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7582 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7583
7584 #undef adj_init_size
7585
7586 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7587 #ifdef CONFIG_HIGHMEM
7588 ", %luK highmem"
7589 #endif
7590 "%s%s)\n",
7591 nr_free_pages() << (PAGE_SHIFT - 10),
7592 physpages << (PAGE_SHIFT - 10),
7593 codesize >> 10, datasize >> 10, rosize >> 10,
7594 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7595 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7596 totalcma_pages << (PAGE_SHIFT - 10),
7597 #ifdef CONFIG_HIGHMEM
7598 totalhigh_pages() << (PAGE_SHIFT - 10),
7599 #endif
7600 str ? ", " : "", str ? str : "");
7601 }
7602
7603 /**
7604 * set_dma_reserve - set the specified number of pages reserved in the first zone
7605 * @new_dma_reserve: The number of pages to mark reserved
7606 *
7607 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7608 * In the DMA zone, a significant percentage may be consumed by kernel image
7609 * and other unfreeable allocations which can skew the watermarks badly. This
7610 * function may optionally be used to account for unfreeable pages in the
7611 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7612 * smaller per-cpu batchsize.
7613 */
7614 void __init set_dma_reserve(unsigned long new_dma_reserve)
7615 {
7616 dma_reserve = new_dma_reserve;
7617 }
7618
7619 static int page_alloc_cpu_dead(unsigned int cpu)
7620 {
7621
7622 lru_add_drain_cpu(cpu);
7623 drain_pages(cpu);
7624
7625 /*
7626 * Spill the event counters of the dead processor
7627 * into the current processors event counters.
7628 * This artificially elevates the count of the current
7629 * processor.
7630 */
7631 vm_events_fold_cpu(cpu);
7632
7633 /*
7634 * Zero the differential counters of the dead processor
7635 * so that the vm statistics are consistent.
7636 *
7637 * This is only okay since the processor is dead and cannot
7638 * race with what we are doing.
7639 */
7640 cpu_vm_stats_fold(cpu);
7641 return 0;
7642 }
7643
7644 #ifdef CONFIG_NUMA
7645 int hashdist = HASHDIST_DEFAULT;
7646
7647 static int __init set_hashdist(char *str)
7648 {
7649 if (!str)
7650 return 0;
7651 hashdist = simple_strtoul(str, &str, 0);
7652 return 1;
7653 }
7654 __setup("hashdist=", set_hashdist);
7655 #endif
7656
7657 void __init page_alloc_init(void)
7658 {
7659 int ret;
7660
7661 #ifdef CONFIG_NUMA
7662 if (num_node_state(N_MEMORY) == 1)
7663 hashdist = 0;
7664 #endif
7665
7666 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7667 "mm/page_alloc:dead", NULL,
7668 page_alloc_cpu_dead);
7669 WARN_ON(ret < 0);
7670 }
7671
7672 /*
7673 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7674 * or min_free_kbytes changes.
7675 */
7676 static void calculate_totalreserve_pages(void)
7677 {
7678 struct pglist_data *pgdat;
7679 unsigned long reserve_pages = 0;
7680 enum zone_type i, j;
7681
7682 for_each_online_pgdat(pgdat) {
7683
7684 pgdat->totalreserve_pages = 0;
7685
7686 for (i = 0; i < MAX_NR_ZONES; i++) {
7687 struct zone *zone = pgdat->node_zones + i;
7688 long max = 0;
7689 unsigned long managed_pages = zone_managed_pages(zone);
7690
7691 /* Find valid and maximum lowmem_reserve in the zone */
7692 for (j = i; j < MAX_NR_ZONES; j++) {
7693 if (zone->lowmem_reserve[j] > max)
7694 max = zone->lowmem_reserve[j];
7695 }
7696
7697 /* we treat the high watermark as reserved pages. */
7698 max += high_wmark_pages(zone);
7699
7700 if (max > managed_pages)
7701 max = managed_pages;
7702
7703 pgdat->totalreserve_pages += max;
7704
7705 reserve_pages += max;
7706 }
7707 }
7708 totalreserve_pages = reserve_pages;
7709 }
7710
7711 /*
7712 * setup_per_zone_lowmem_reserve - called whenever
7713 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7714 * has a correct pages reserved value, so an adequate number of
7715 * pages are left in the zone after a successful __alloc_pages().
7716 */
7717 static void setup_per_zone_lowmem_reserve(void)
7718 {
7719 struct pglist_data *pgdat;
7720 enum zone_type j, idx;
7721
7722 for_each_online_pgdat(pgdat) {
7723 for (j = 0; j < MAX_NR_ZONES; j++) {
7724 struct zone *zone = pgdat->node_zones + j;
7725 unsigned long managed_pages = zone_managed_pages(zone);
7726
7727 zone->lowmem_reserve[j] = 0;
7728
7729 idx = j;
7730 while (idx) {
7731 struct zone *lower_zone;
7732
7733 idx--;
7734 lower_zone = pgdat->node_zones + idx;
7735
7736 if (!sysctl_lowmem_reserve_ratio[idx] ||
7737 !zone_managed_pages(lower_zone)) {
7738 lower_zone->lowmem_reserve[j] = 0;
7739 continue;
7740 } else {
7741 lower_zone->lowmem_reserve[j] =
7742 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7743 }
7744 managed_pages += zone_managed_pages(lower_zone);
7745 }
7746 }
7747 }
7748
7749 /* update totalreserve_pages */
7750 calculate_totalreserve_pages();
7751 }
7752
7753 static void __setup_per_zone_wmarks(void)
7754 {
7755 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7756 unsigned long lowmem_pages = 0;
7757 struct zone *zone;
7758 unsigned long flags;
7759
7760 /* Calculate total number of !ZONE_HIGHMEM pages */
7761 for_each_zone(zone) {
7762 if (!is_highmem(zone))
7763 lowmem_pages += zone_managed_pages(zone);
7764 }
7765
7766 for_each_zone(zone) {
7767 u64 tmp;
7768
7769 spin_lock_irqsave(&zone->lock, flags);
7770 tmp = (u64)pages_min * zone_managed_pages(zone);
7771 do_div(tmp, lowmem_pages);
7772 if (is_highmem(zone)) {
7773 /*
7774 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7775 * need highmem pages, so cap pages_min to a small
7776 * value here.
7777 *
7778 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7779 * deltas control async page reclaim, and so should
7780 * not be capped for highmem.
7781 */
7782 unsigned long min_pages;
7783
7784 min_pages = zone_managed_pages(zone) / 1024;
7785 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7786 zone->_watermark[WMARK_MIN] = min_pages;
7787 } else {
7788 /*
7789 * If it's a lowmem zone, reserve a number of pages
7790 * proportionate to the zone's size.
7791 */
7792 zone->_watermark[WMARK_MIN] = tmp;
7793 }
7794
7795 /*
7796 * Set the kswapd watermarks distance according to the
7797 * scale factor in proportion to available memory, but
7798 * ensure a minimum size on small systems.
7799 */
7800 tmp = max_t(u64, tmp >> 2,
7801 mult_frac(zone_managed_pages(zone),
7802 watermark_scale_factor, 10000));
7803
7804 zone->watermark_boost = 0;
7805 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7806 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7807
7808 spin_unlock_irqrestore(&zone->lock, flags);
7809 }
7810
7811 /* update totalreserve_pages */
7812 calculate_totalreserve_pages();
7813 }
7814
7815 /**
7816 * setup_per_zone_wmarks - called when min_free_kbytes changes
7817 * or when memory is hot-{added|removed}
7818 *
7819 * Ensures that the watermark[min,low,high] values for each zone are set
7820 * correctly with respect to min_free_kbytes.
7821 */
7822 void setup_per_zone_wmarks(void)
7823 {
7824 static DEFINE_SPINLOCK(lock);
7825
7826 spin_lock(&lock);
7827 __setup_per_zone_wmarks();
7828 spin_unlock(&lock);
7829 }
7830
7831 /*
7832 * Initialise min_free_kbytes.
7833 *
7834 * For small machines we want it small (128k min). For large machines
7835 * we want it large (64MB max). But it is not linear, because network
7836 * bandwidth does not increase linearly with machine size. We use
7837 *
7838 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7839 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7840 *
7841 * which yields
7842 *
7843 * 16MB: 512k
7844 * 32MB: 724k
7845 * 64MB: 1024k
7846 * 128MB: 1448k
7847 * 256MB: 2048k
7848 * 512MB: 2896k
7849 * 1024MB: 4096k
7850 * 2048MB: 5792k
7851 * 4096MB: 8192k
7852 * 8192MB: 11584k
7853 * 16384MB: 16384k
7854 */
7855 int __meminit init_per_zone_wmark_min(void)
7856 {
7857 unsigned long lowmem_kbytes;
7858 int new_min_free_kbytes;
7859
7860 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7861 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7862
7863 if (new_min_free_kbytes > user_min_free_kbytes) {
7864 min_free_kbytes = new_min_free_kbytes;
7865 if (min_free_kbytes < 128)
7866 min_free_kbytes = 128;
7867 if (min_free_kbytes > 262144)
7868 min_free_kbytes = 262144;
7869 } else {
7870 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7871 new_min_free_kbytes, user_min_free_kbytes);
7872 }
7873 setup_per_zone_wmarks();
7874 refresh_zone_stat_thresholds();
7875 setup_per_zone_lowmem_reserve();
7876
7877 #ifdef CONFIG_NUMA
7878 setup_min_unmapped_ratio();
7879 setup_min_slab_ratio();
7880 #endif
7881
7882 return 0;
7883 }
7884 core_initcall(init_per_zone_wmark_min)
7885
7886 /*
7887 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7888 * that we can call two helper functions whenever min_free_kbytes
7889 * changes.
7890 */
7891 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7892 void *buffer, size_t *length, loff_t *ppos)
7893 {
7894 int rc;
7895
7896 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7897 if (rc)
7898 return rc;
7899
7900 if (write) {
7901 user_min_free_kbytes = min_free_kbytes;
7902 setup_per_zone_wmarks();
7903 }
7904 return 0;
7905 }
7906
7907 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7908 void *buffer, size_t *length, loff_t *ppos)
7909 {
7910 int rc;
7911
7912 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7913 if (rc)
7914 return rc;
7915
7916 if (write)
7917 setup_per_zone_wmarks();
7918
7919 return 0;
7920 }
7921
7922 #ifdef CONFIG_NUMA
7923 static void setup_min_unmapped_ratio(void)
7924 {
7925 pg_data_t *pgdat;
7926 struct zone *zone;
7927
7928 for_each_online_pgdat(pgdat)
7929 pgdat->min_unmapped_pages = 0;
7930
7931 for_each_zone(zone)
7932 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7933 sysctl_min_unmapped_ratio) / 100;
7934 }
7935
7936
7937 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7938 void *buffer, size_t *length, loff_t *ppos)
7939 {
7940 int rc;
7941
7942 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7943 if (rc)
7944 return rc;
7945
7946 setup_min_unmapped_ratio();
7947
7948 return 0;
7949 }
7950
7951 static void setup_min_slab_ratio(void)
7952 {
7953 pg_data_t *pgdat;
7954 struct zone *zone;
7955
7956 for_each_online_pgdat(pgdat)
7957 pgdat->min_slab_pages = 0;
7958
7959 for_each_zone(zone)
7960 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7961 sysctl_min_slab_ratio) / 100;
7962 }
7963
7964 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7965 void *buffer, size_t *length, loff_t *ppos)
7966 {
7967 int rc;
7968
7969 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7970 if (rc)
7971 return rc;
7972
7973 setup_min_slab_ratio();
7974
7975 return 0;
7976 }
7977 #endif
7978
7979 /*
7980 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7981 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7982 * whenever sysctl_lowmem_reserve_ratio changes.
7983 *
7984 * The reserve ratio obviously has absolutely no relation with the
7985 * minimum watermarks. The lowmem reserve ratio can only make sense
7986 * if in function of the boot time zone sizes.
7987 */
7988 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7989 void *buffer, size_t *length, loff_t *ppos)
7990 {
7991 int i;
7992
7993 proc_dointvec_minmax(table, write, buffer, length, ppos);
7994
7995 for (i = 0; i < MAX_NR_ZONES; i++) {
7996 if (sysctl_lowmem_reserve_ratio[i] < 1)
7997 sysctl_lowmem_reserve_ratio[i] = 0;
7998 }
7999
8000 setup_per_zone_lowmem_reserve();
8001 return 0;
8002 }
8003
8004 static void __zone_pcp_update(struct zone *zone)
8005 {
8006 unsigned int cpu;
8007
8008 for_each_possible_cpu(cpu)
8009 pageset_set_high_and_batch(zone,
8010 per_cpu_ptr(zone->pageset, cpu));
8011 }
8012
8013 /*
8014 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8015 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8016 * pagelist can have before it gets flushed back to buddy allocator.
8017 */
8018 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8019 void *buffer, size_t *length, loff_t *ppos)
8020 {
8021 struct zone *zone;
8022 int old_percpu_pagelist_fraction;
8023 int ret;
8024
8025 mutex_lock(&pcp_batch_high_lock);
8026 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8027
8028 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8029 if (!write || ret < 0)
8030 goto out;
8031
8032 /* Sanity checking to avoid pcp imbalance */
8033 if (percpu_pagelist_fraction &&
8034 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8035 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8036 ret = -EINVAL;
8037 goto out;
8038 }
8039
8040 /* No change? */
8041 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8042 goto out;
8043
8044 for_each_populated_zone(zone)
8045 __zone_pcp_update(zone);
8046 out:
8047 mutex_unlock(&pcp_batch_high_lock);
8048 return ret;
8049 }
8050
8051 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8052 /*
8053 * Returns the number of pages that arch has reserved but
8054 * is not known to alloc_large_system_hash().
8055 */
8056 static unsigned long __init arch_reserved_kernel_pages(void)
8057 {
8058 return 0;
8059 }
8060 #endif
8061
8062 /*
8063 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8064 * machines. As memory size is increased the scale is also increased but at
8065 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8066 * quadruples the scale is increased by one, which means the size of hash table
8067 * only doubles, instead of quadrupling as well.
8068 * Because 32-bit systems cannot have large physical memory, where this scaling
8069 * makes sense, it is disabled on such platforms.
8070 */
8071 #if __BITS_PER_LONG > 32
8072 #define ADAPT_SCALE_BASE (64ul << 30)
8073 #define ADAPT_SCALE_SHIFT 2
8074 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8075 #endif
8076
8077 /*
8078 * allocate a large system hash table from bootmem
8079 * - it is assumed that the hash table must contain an exact power-of-2
8080 * quantity of entries
8081 * - limit is the number of hash buckets, not the total allocation size
8082 */
8083 void *__init alloc_large_system_hash(const char *tablename,
8084 unsigned long bucketsize,
8085 unsigned long numentries,
8086 int scale,
8087 int flags,
8088 unsigned int *_hash_shift,
8089 unsigned int *_hash_mask,
8090 unsigned long low_limit,
8091 unsigned long high_limit)
8092 {
8093 unsigned long long max = high_limit;
8094 unsigned long log2qty, size;
8095 void *table = NULL;
8096 gfp_t gfp_flags;
8097 bool virt;
8098
8099 /* allow the kernel cmdline to have a say */
8100 if (!numentries) {
8101 /* round applicable memory size up to nearest megabyte */
8102 numentries = nr_kernel_pages;
8103 numentries -= arch_reserved_kernel_pages();
8104
8105 /* It isn't necessary when PAGE_SIZE >= 1MB */
8106 if (PAGE_SHIFT < 20)
8107 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8108
8109 #if __BITS_PER_LONG > 32
8110 if (!high_limit) {
8111 unsigned long adapt;
8112
8113 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8114 adapt <<= ADAPT_SCALE_SHIFT)
8115 scale++;
8116 }
8117 #endif
8118
8119 /* limit to 1 bucket per 2^scale bytes of low memory */
8120 if (scale > PAGE_SHIFT)
8121 numentries >>= (scale - PAGE_SHIFT);
8122 else
8123 numentries <<= (PAGE_SHIFT - scale);
8124
8125 /* Make sure we've got at least a 0-order allocation.. */
8126 if (unlikely(flags & HASH_SMALL)) {
8127 /* Makes no sense without HASH_EARLY */
8128 WARN_ON(!(flags & HASH_EARLY));
8129 if (!(numentries >> *_hash_shift)) {
8130 numentries = 1UL << *_hash_shift;
8131 BUG_ON(!numentries);
8132 }
8133 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8134 numentries = PAGE_SIZE / bucketsize;
8135 }
8136 numentries = roundup_pow_of_two(numentries);
8137
8138 /* limit allocation size to 1/16 total memory by default */
8139 if (max == 0) {
8140 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8141 do_div(max, bucketsize);
8142 }
8143 max = min(max, 0x80000000ULL);
8144
8145 if (numentries < low_limit)
8146 numentries = low_limit;
8147 if (numentries > max)
8148 numentries = max;
8149
8150 log2qty = ilog2(numentries);
8151
8152 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8153 do {
8154 virt = false;
8155 size = bucketsize << log2qty;
8156 if (flags & HASH_EARLY) {
8157 if (flags & HASH_ZERO)
8158 table = memblock_alloc(size, SMP_CACHE_BYTES);
8159 else
8160 table = memblock_alloc_raw(size,
8161 SMP_CACHE_BYTES);
8162 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8163 table = __vmalloc(size, gfp_flags);
8164 virt = true;
8165 } else {
8166 /*
8167 * If bucketsize is not a power-of-two, we may free
8168 * some pages at the end of hash table which
8169 * alloc_pages_exact() automatically does
8170 */
8171 table = alloc_pages_exact(size, gfp_flags);
8172 kmemleak_alloc(table, size, 1, gfp_flags);
8173 }
8174 } while (!table && size > PAGE_SIZE && --log2qty);
8175
8176 if (!table)
8177 panic("Failed to allocate %s hash table\n", tablename);
8178
8179 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8180 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8181 virt ? "vmalloc" : "linear");
8182
8183 if (_hash_shift)
8184 *_hash_shift = log2qty;
8185 if (_hash_mask)
8186 *_hash_mask = (1 << log2qty) - 1;
8187
8188 return table;
8189 }
8190
8191 /*
8192 * This function checks whether pageblock includes unmovable pages or not.
8193 *
8194 * PageLRU check without isolation or lru_lock could race so that
8195 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8196 * check without lock_page also may miss some movable non-lru pages at
8197 * race condition. So you can't expect this function should be exact.
8198 *
8199 * Returns a page without holding a reference. If the caller wants to
8200 * dereference that page (e.g., dumping), it has to make sure that that it
8201 * cannot get removed (e.g., via memory unplug) concurrently.
8202 *
8203 */
8204 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8205 int migratetype, int flags)
8206 {
8207 unsigned long iter = 0;
8208 unsigned long pfn = page_to_pfn(page);
8209
8210 /*
8211 * TODO we could make this much more efficient by not checking every
8212 * page in the range if we know all of them are in MOVABLE_ZONE and
8213 * that the movable zone guarantees that pages are migratable but
8214 * the later is not the case right now unfortunatelly. E.g. movablecore
8215 * can still lead to having bootmem allocations in zone_movable.
8216 */
8217
8218 if (is_migrate_cma_page(page)) {
8219 /*
8220 * CMA allocations (alloc_contig_range) really need to mark
8221 * isolate CMA pageblocks even when they are not movable in fact
8222 * so consider them movable here.
8223 */
8224 if (is_migrate_cma(migratetype))
8225 return NULL;
8226
8227 return page;
8228 }
8229
8230 for (; iter < pageblock_nr_pages; iter++) {
8231 if (!pfn_valid_within(pfn + iter))
8232 continue;
8233
8234 page = pfn_to_page(pfn + iter);
8235
8236 if (PageReserved(page))
8237 return page;
8238
8239 /*
8240 * If the zone is movable and we have ruled out all reserved
8241 * pages then it should be reasonably safe to assume the rest
8242 * is movable.
8243 */
8244 if (zone_idx(zone) == ZONE_MOVABLE)
8245 continue;
8246
8247 /*
8248 * Hugepages are not in LRU lists, but they're movable.
8249 * THPs are on the LRU, but need to be counted as #small pages.
8250 * We need not scan over tail pages because we don't
8251 * handle each tail page individually in migration.
8252 */
8253 if (PageHuge(page) || PageTransCompound(page)) {
8254 struct page *head = compound_head(page);
8255 unsigned int skip_pages;
8256
8257 if (PageHuge(page)) {
8258 if (!hugepage_migration_supported(page_hstate(head)))
8259 return page;
8260 } else if (!PageLRU(head) && !__PageMovable(head)) {
8261 return page;
8262 }
8263
8264 skip_pages = compound_nr(head) - (page - head);
8265 iter += skip_pages - 1;
8266 continue;
8267 }
8268
8269 /*
8270 * We can't use page_count without pin a page
8271 * because another CPU can free compound page.
8272 * This check already skips compound tails of THP
8273 * because their page->_refcount is zero at all time.
8274 */
8275 if (!page_ref_count(page)) {
8276 if (PageBuddy(page))
8277 iter += (1 << page_order(page)) - 1;
8278 continue;
8279 }
8280
8281 /*
8282 * The HWPoisoned page may be not in buddy system, and
8283 * page_count() is not 0.
8284 */
8285 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8286 continue;
8287
8288 /*
8289 * We treat all PageOffline() pages as movable when offlining
8290 * to give drivers a chance to decrement their reference count
8291 * in MEM_GOING_OFFLINE in order to indicate that these pages
8292 * can be offlined as there are no direct references anymore.
8293 * For actually unmovable PageOffline() where the driver does
8294 * not support this, we will fail later when trying to actually
8295 * move these pages that still have a reference count > 0.
8296 * (false negatives in this function only)
8297 */
8298 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8299 continue;
8300
8301 if (__PageMovable(page) || PageLRU(page))
8302 continue;
8303
8304 /*
8305 * If there are RECLAIMABLE pages, we need to check
8306 * it. But now, memory offline itself doesn't call
8307 * shrink_node_slabs() and it still to be fixed.
8308 */
8309 /*
8310 * If the page is not RAM, page_count()should be 0.
8311 * we don't need more check. This is an _used_ not-movable page.
8312 *
8313 * The problematic thing here is PG_reserved pages. PG_reserved
8314 * is set to both of a memory hole page and a _used_ kernel
8315 * page at boot.
8316 */
8317 return page;
8318 }
8319 return NULL;
8320 }
8321
8322 #ifdef CONFIG_CONTIG_ALLOC
8323 static unsigned long pfn_max_align_down(unsigned long pfn)
8324 {
8325 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8326 pageblock_nr_pages) - 1);
8327 }
8328
8329 static unsigned long pfn_max_align_up(unsigned long pfn)
8330 {
8331 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8332 pageblock_nr_pages));
8333 }
8334
8335 /* [start, end) must belong to a single zone. */
8336 static int __alloc_contig_migrate_range(struct compact_control *cc,
8337 unsigned long start, unsigned long end)
8338 {
8339 /* This function is based on compact_zone() from compaction.c. */
8340 unsigned int nr_reclaimed;
8341 unsigned long pfn = start;
8342 unsigned int tries = 0;
8343 int ret = 0;
8344
8345 migrate_prep();
8346
8347 while (pfn < end || !list_empty(&cc->migratepages)) {
8348 if (fatal_signal_pending(current)) {
8349 ret = -EINTR;
8350 break;
8351 }
8352
8353 if (list_empty(&cc->migratepages)) {
8354 cc->nr_migratepages = 0;
8355 pfn = isolate_migratepages_range(cc, pfn, end);
8356 if (!pfn) {
8357 ret = -EINTR;
8358 break;
8359 }
8360 tries = 0;
8361 } else if (++tries == 5) {
8362 ret = ret < 0 ? ret : -EBUSY;
8363 break;
8364 }
8365
8366 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8367 &cc->migratepages);
8368 cc->nr_migratepages -= nr_reclaimed;
8369
8370 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8371 NULL, 0, cc->mode, MR_CONTIG_RANGE);
8372 }
8373 if (ret < 0) {
8374 putback_movable_pages(&cc->migratepages);
8375 return ret;
8376 }
8377 return 0;
8378 }
8379
8380 /**
8381 * alloc_contig_range() -- tries to allocate given range of pages
8382 * @start: start PFN to allocate
8383 * @end: one-past-the-last PFN to allocate
8384 * @migratetype: migratetype of the underlaying pageblocks (either
8385 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8386 * in range must have the same migratetype and it must
8387 * be either of the two.
8388 * @gfp_mask: GFP mask to use during compaction
8389 *
8390 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8391 * aligned. The PFN range must belong to a single zone.
8392 *
8393 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8394 * pageblocks in the range. Once isolated, the pageblocks should not
8395 * be modified by others.
8396 *
8397 * Return: zero on success or negative error code. On success all
8398 * pages which PFN is in [start, end) are allocated for the caller and
8399 * need to be freed with free_contig_range().
8400 */
8401 int alloc_contig_range(unsigned long start, unsigned long end,
8402 unsigned migratetype, gfp_t gfp_mask)
8403 {
8404 unsigned long outer_start, outer_end;
8405 unsigned int order;
8406 int ret = 0;
8407
8408 struct compact_control cc = {
8409 .nr_migratepages = 0,
8410 .order = -1,
8411 .zone = page_zone(pfn_to_page(start)),
8412 .mode = MIGRATE_SYNC,
8413 .ignore_skip_hint = true,
8414 .no_set_skip_hint = true,
8415 .gfp_mask = current_gfp_context(gfp_mask),
8416 .alloc_contig = true,
8417 };
8418 INIT_LIST_HEAD(&cc.migratepages);
8419
8420 /*
8421 * What we do here is we mark all pageblocks in range as
8422 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8423 * have different sizes, and due to the way page allocator
8424 * work, we align the range to biggest of the two pages so
8425 * that page allocator won't try to merge buddies from
8426 * different pageblocks and change MIGRATE_ISOLATE to some
8427 * other migration type.
8428 *
8429 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8430 * migrate the pages from an unaligned range (ie. pages that
8431 * we are interested in). This will put all the pages in
8432 * range back to page allocator as MIGRATE_ISOLATE.
8433 *
8434 * When this is done, we take the pages in range from page
8435 * allocator removing them from the buddy system. This way
8436 * page allocator will never consider using them.
8437 *
8438 * This lets us mark the pageblocks back as
8439 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8440 * aligned range but not in the unaligned, original range are
8441 * put back to page allocator so that buddy can use them.
8442 */
8443
8444 ret = start_isolate_page_range(pfn_max_align_down(start),
8445 pfn_max_align_up(end), migratetype, 0);
8446 if (ret < 0)
8447 return ret;
8448
8449 /*
8450 * In case of -EBUSY, we'd like to know which page causes problem.
8451 * So, just fall through. test_pages_isolated() has a tracepoint
8452 * which will report the busy page.
8453 *
8454 * It is possible that busy pages could become available before
8455 * the call to test_pages_isolated, and the range will actually be
8456 * allocated. So, if we fall through be sure to clear ret so that
8457 * -EBUSY is not accidentally used or returned to caller.
8458 */
8459 ret = __alloc_contig_migrate_range(&cc, start, end);
8460 if (ret && ret != -EBUSY)
8461 goto done;
8462 ret =0;
8463
8464 /*
8465 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8466 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8467 * more, all pages in [start, end) are free in page allocator.
8468 * What we are going to do is to allocate all pages from
8469 * [start, end) (that is remove them from page allocator).
8470 *
8471 * The only problem is that pages at the beginning and at the
8472 * end of interesting range may be not aligned with pages that
8473 * page allocator holds, ie. they can be part of higher order
8474 * pages. Because of this, we reserve the bigger range and
8475 * once this is done free the pages we are not interested in.
8476 *
8477 * We don't have to hold zone->lock here because the pages are
8478 * isolated thus they won't get removed from buddy.
8479 */
8480
8481 lru_add_drain_all();
8482
8483 order = 0;
8484 outer_start = start;
8485 while (!PageBuddy(pfn_to_page(outer_start))) {
8486 if (++order >= MAX_ORDER) {
8487 outer_start = start;
8488 break;
8489 }
8490 outer_start &= ~0UL << order;
8491 }
8492
8493 if (outer_start != start) {
8494 order = page_order(pfn_to_page(outer_start));
8495
8496 /*
8497 * outer_start page could be small order buddy page and
8498 * it doesn't include start page. Adjust outer_start
8499 * in this case to report failed page properly
8500 * on tracepoint in test_pages_isolated()
8501 */
8502 if (outer_start + (1UL << order) <= start)
8503 outer_start = start;
8504 }
8505
8506 /* Make sure the range is really isolated. */
8507 if (test_pages_isolated(outer_start, end, 0)) {
8508 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8509 __func__, outer_start, end);
8510 ret = -EBUSY;
8511 goto done;
8512 }
8513
8514 /* Grab isolated pages from freelists. */
8515 outer_end = isolate_freepages_range(&cc, outer_start, end);
8516 if (!outer_end) {
8517 ret = -EBUSY;
8518 goto done;
8519 }
8520
8521 /* Free head and tail (if any) */
8522 if (start != outer_start)
8523 free_contig_range(outer_start, start - outer_start);
8524 if (end != outer_end)
8525 free_contig_range(end, outer_end - end);
8526
8527 done:
8528 undo_isolate_page_range(pfn_max_align_down(start),
8529 pfn_max_align_up(end), migratetype);
8530 return ret;
8531 }
8532 EXPORT_SYMBOL(alloc_contig_range);
8533
8534 static int __alloc_contig_pages(unsigned long start_pfn,
8535 unsigned long nr_pages, gfp_t gfp_mask)
8536 {
8537 unsigned long end_pfn = start_pfn + nr_pages;
8538
8539 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8540 gfp_mask);
8541 }
8542
8543 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8544 unsigned long nr_pages)
8545 {
8546 unsigned long i, end_pfn = start_pfn + nr_pages;
8547 struct page *page;
8548
8549 for (i = start_pfn; i < end_pfn; i++) {
8550 page = pfn_to_online_page(i);
8551 if (!page)
8552 return false;
8553
8554 if (page_zone(page) != z)
8555 return false;
8556
8557 if (PageReserved(page))
8558 return false;
8559
8560 if (page_count(page) > 0)
8561 return false;
8562
8563 if (PageHuge(page))
8564 return false;
8565 }
8566 return true;
8567 }
8568
8569 static bool zone_spans_last_pfn(const struct zone *zone,
8570 unsigned long start_pfn, unsigned long nr_pages)
8571 {
8572 unsigned long last_pfn = start_pfn + nr_pages - 1;
8573
8574 return zone_spans_pfn(zone, last_pfn);
8575 }
8576
8577 /**
8578 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8579 * @nr_pages: Number of contiguous pages to allocate
8580 * @gfp_mask: GFP mask to limit search and used during compaction
8581 * @nid: Target node
8582 * @nodemask: Mask for other possible nodes
8583 *
8584 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8585 * on an applicable zonelist to find a contiguous pfn range which can then be
8586 * tried for allocation with alloc_contig_range(). This routine is intended
8587 * for allocation requests which can not be fulfilled with the buddy allocator.
8588 *
8589 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8590 * power of two then the alignment is guaranteed to be to the given nr_pages
8591 * (e.g. 1GB request would be aligned to 1GB).
8592 *
8593 * Allocated pages can be freed with free_contig_range() or by manually calling
8594 * __free_page() on each allocated page.
8595 *
8596 * Return: pointer to contiguous pages on success, or NULL if not successful.
8597 */
8598 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8599 int nid, nodemask_t *nodemask)
8600 {
8601 unsigned long ret, pfn, flags;
8602 struct zonelist *zonelist;
8603 struct zone *zone;
8604 struct zoneref *z;
8605
8606 zonelist = node_zonelist(nid, gfp_mask);
8607 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8608 gfp_zone(gfp_mask), nodemask) {
8609 spin_lock_irqsave(&zone->lock, flags);
8610
8611 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8612 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8613 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8614 /*
8615 * We release the zone lock here because
8616 * alloc_contig_range() will also lock the zone
8617 * at some point. If there's an allocation
8618 * spinning on this lock, it may win the race
8619 * and cause alloc_contig_range() to fail...
8620 */
8621 spin_unlock_irqrestore(&zone->lock, flags);
8622 ret = __alloc_contig_pages(pfn, nr_pages,
8623 gfp_mask);
8624 if (!ret)
8625 return pfn_to_page(pfn);
8626 spin_lock_irqsave(&zone->lock, flags);
8627 }
8628 pfn += nr_pages;
8629 }
8630 spin_unlock_irqrestore(&zone->lock, flags);
8631 }
8632 return NULL;
8633 }
8634 #endif /* CONFIG_CONTIG_ALLOC */
8635
8636 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8637 {
8638 unsigned int count = 0;
8639
8640 for (; nr_pages--; pfn++) {
8641 struct page *page = pfn_to_page(pfn);
8642
8643 count += page_count(page) != 1;
8644 __free_page(page);
8645 }
8646 WARN(count != 0, "%d pages are still in use!\n", count);
8647 }
8648 EXPORT_SYMBOL(free_contig_range);
8649
8650 /*
8651 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8652 * page high values need to be recalulated.
8653 */
8654 void __meminit zone_pcp_update(struct zone *zone)
8655 {
8656 mutex_lock(&pcp_batch_high_lock);
8657 __zone_pcp_update(zone);
8658 mutex_unlock(&pcp_batch_high_lock);
8659 }
8660
8661 void zone_pcp_reset(struct zone *zone)
8662 {
8663 unsigned long flags;
8664 int cpu;
8665 struct per_cpu_pageset *pset;
8666
8667 /* avoid races with drain_pages() */
8668 local_irq_save(flags);
8669 if (zone->pageset != &boot_pageset) {
8670 for_each_online_cpu(cpu) {
8671 pset = per_cpu_ptr(zone->pageset, cpu);
8672 drain_zonestat(zone, pset);
8673 }
8674 free_percpu(zone->pageset);
8675 zone->pageset = &boot_pageset;
8676 }
8677 local_irq_restore(flags);
8678 }
8679
8680 #ifdef CONFIG_MEMORY_HOTREMOVE
8681 /*
8682 * All pages in the range must be in a single zone and isolated
8683 * before calling this.
8684 */
8685 unsigned long
8686 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8687 {
8688 struct page *page;
8689 struct zone *zone;
8690 unsigned int order;
8691 unsigned long pfn;
8692 unsigned long flags;
8693 unsigned long offlined_pages = 0;
8694
8695 /* find the first valid pfn */
8696 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8697 if (pfn_valid(pfn))
8698 break;
8699 if (pfn == end_pfn)
8700 return offlined_pages;
8701
8702 offline_mem_sections(pfn, end_pfn);
8703 zone = page_zone(pfn_to_page(pfn));
8704 spin_lock_irqsave(&zone->lock, flags);
8705 pfn = start_pfn;
8706 while (pfn < end_pfn) {
8707 if (!pfn_valid(pfn)) {
8708 pfn++;
8709 continue;
8710 }
8711 page = pfn_to_page(pfn);
8712 /*
8713 * The HWPoisoned page may be not in buddy system, and
8714 * page_count() is not 0.
8715 */
8716 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8717 pfn++;
8718 offlined_pages++;
8719 continue;
8720 }
8721 /*
8722 * At this point all remaining PageOffline() pages have a
8723 * reference count of 0 and can simply be skipped.
8724 */
8725 if (PageOffline(page)) {
8726 BUG_ON(page_count(page));
8727 BUG_ON(PageBuddy(page));
8728 pfn++;
8729 offlined_pages++;
8730 continue;
8731 }
8732
8733 BUG_ON(page_count(page));
8734 BUG_ON(!PageBuddy(page));
8735 order = page_order(page);
8736 offlined_pages += 1 << order;
8737 del_page_from_free_list(page, zone, order);
8738 pfn += (1 << order);
8739 }
8740 spin_unlock_irqrestore(&zone->lock, flags);
8741
8742 return offlined_pages;
8743 }
8744 #endif
8745
8746 bool is_free_buddy_page(struct page *page)
8747 {
8748 struct zone *zone = page_zone(page);
8749 unsigned long pfn = page_to_pfn(page);
8750 unsigned long flags;
8751 unsigned int order;
8752
8753 spin_lock_irqsave(&zone->lock, flags);
8754 for (order = 0; order < MAX_ORDER; order++) {
8755 struct page *page_head = page - (pfn & ((1 << order) - 1));
8756
8757 if (PageBuddy(page_head) && page_order(page_head) >= order)
8758 break;
8759 }
8760 spin_unlock_irqrestore(&zone->lock, flags);
8761
8762 return order < MAX_ORDER;
8763 }
8764
8765 #ifdef CONFIG_MEMORY_FAILURE
8766 /*
8767 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8768 * test is performed under the zone lock to prevent a race against page
8769 * allocation.
8770 */
8771 bool set_hwpoison_free_buddy_page(struct page *page)
8772 {
8773 struct zone *zone = page_zone(page);
8774 unsigned long pfn = page_to_pfn(page);
8775 unsigned long flags;
8776 unsigned int order;
8777 bool hwpoisoned = false;
8778
8779 spin_lock_irqsave(&zone->lock, flags);
8780 for (order = 0; order < MAX_ORDER; order++) {
8781 struct page *page_head = page - (pfn & ((1 << order) - 1));
8782
8783 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8784 if (!TestSetPageHWPoison(page))
8785 hwpoisoned = true;
8786 break;
8787 }
8788 }
8789 spin_unlock_irqrestore(&zone->lock, flags);
8790
8791 return hwpoisoned;
8792 }
8793 #endif