]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/page_alloc.c
Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72
73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74 DEFINE_PER_CPU(int, numa_node);
75 EXPORT_PER_CPU_SYMBOL(numa_node);
76 #endif
77
78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
79 /*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87 #endif
88
89 /*
90 * Array of node states.
91 */
92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95 #ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97 #ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
99 #endif
100 #ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
102 #endif
103 [N_CPU] = { { [0] = 1UL } },
104 #endif /* NUMA */
105 };
106 EXPORT_SYMBOL(node_states);
107
108 /* Protect totalram_pages and zone->managed_pages */
109 static DEFINE_SPINLOCK(managed_page_count_lock);
110
111 unsigned long totalram_pages __read_mostly;
112 unsigned long totalreserve_pages __read_mostly;
113 /*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119 unsigned long dirty_balance_reserve __read_mostly;
120
121 int percpu_pagelist_fraction;
122 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
123
124 #ifdef CONFIG_PM_SLEEP
125 /*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
133
134 static gfp_t saved_gfp_mask;
135
136 void pm_restore_gfp_mask(void)
137 {
138 WARN_ON(!mutex_is_locked(&pm_mutex));
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
143 }
144
145 void pm_restrict_gfp_mask(void)
146 {
147 WARN_ON(!mutex_is_locked(&pm_mutex));
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
151 }
152
153 bool pm_suspended_storage(void)
154 {
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158 }
159 #endif /* CONFIG_PM_SLEEP */
160
161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162 int pageblock_order __read_mostly;
163 #endif
164
165 static void __free_pages_ok(struct page *page, unsigned int order);
166
167 /*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
177 */
178 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
179 #ifdef CONFIG_ZONE_DMA
180 256,
181 #endif
182 #ifdef CONFIG_ZONE_DMA32
183 256,
184 #endif
185 #ifdef CONFIG_HIGHMEM
186 32,
187 #endif
188 32,
189 };
190
191 EXPORT_SYMBOL(totalram_pages);
192
193 static char * const zone_names[MAX_NR_ZONES] = {
194 #ifdef CONFIG_ZONE_DMA
195 "DMA",
196 #endif
197 #ifdef CONFIG_ZONE_DMA32
198 "DMA32",
199 #endif
200 "Normal",
201 #ifdef CONFIG_HIGHMEM
202 "HighMem",
203 #endif
204 "Movable",
205 };
206
207 int min_free_kbytes = 1024;
208 int user_min_free_kbytes = -1;
209
210 static unsigned long __meminitdata nr_kernel_pages;
211 static unsigned long __meminitdata nr_all_pages;
212 static unsigned long __meminitdata dma_reserve;
213
214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217 static unsigned long __initdata required_kernelcore;
218 static unsigned long __initdata required_movablecore;
219 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222 int movable_zone;
223 EXPORT_SYMBOL(movable_zone);
224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
225
226 #if MAX_NUMNODES > 1
227 int nr_node_ids __read_mostly = MAX_NUMNODES;
228 int nr_online_nodes __read_mostly = 1;
229 EXPORT_SYMBOL(nr_node_ids);
230 EXPORT_SYMBOL(nr_online_nodes);
231 #endif
232
233 int page_group_by_mobility_disabled __read_mostly;
234
235 void set_pageblock_migratetype(struct page *page, int migratetype)
236 {
237 if (unlikely(page_group_by_mobility_disabled &&
238 migratetype < MIGRATE_PCPTYPES))
239 migratetype = MIGRATE_UNMOVABLE;
240
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243 }
244
245 bool oom_killer_disabled __read_mostly;
246
247 #ifdef CONFIG_DEBUG_VM
248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
249 {
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
253 unsigned long sp, start_pfn;
254
255 do {
256 seq = zone_span_seqbegin(zone);
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
259 if (!zone_spans_pfn(zone, pfn))
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
263 if (ret)
264 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
265 pfn, zone_to_nid(zone), zone->name,
266 start_pfn, start_pfn + sp);
267
268 return ret;
269 }
270
271 static int page_is_consistent(struct zone *zone, struct page *page)
272 {
273 if (!pfn_valid_within(page_to_pfn(page)))
274 return 0;
275 if (zone != page_zone(page))
276 return 0;
277
278 return 1;
279 }
280 /*
281 * Temporary debugging check for pages not lying within a given zone.
282 */
283 static int bad_range(struct zone *zone, struct page *page)
284 {
285 if (page_outside_zone_boundaries(zone, page))
286 return 1;
287 if (!page_is_consistent(zone, page))
288 return 1;
289
290 return 0;
291 }
292 #else
293 static inline int bad_range(struct zone *zone, struct page *page)
294 {
295 return 0;
296 }
297 #endif
298
299 static void bad_page(struct page *page, const char *reason,
300 unsigned long bad_flags)
301 {
302 static unsigned long resume;
303 static unsigned long nr_shown;
304 static unsigned long nr_unshown;
305
306 /* Don't complain about poisoned pages */
307 if (PageHWPoison(page)) {
308 page_mapcount_reset(page); /* remove PageBuddy */
309 return;
310 }
311
312 /*
313 * Allow a burst of 60 reports, then keep quiet for that minute;
314 * or allow a steady drip of one report per second.
315 */
316 if (nr_shown == 60) {
317 if (time_before(jiffies, resume)) {
318 nr_unshown++;
319 goto out;
320 }
321 if (nr_unshown) {
322 printk(KERN_ALERT
323 "BUG: Bad page state: %lu messages suppressed\n",
324 nr_unshown);
325 nr_unshown = 0;
326 }
327 nr_shown = 0;
328 }
329 if (nr_shown++ == 0)
330 resume = jiffies + 60 * HZ;
331
332 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
333 current->comm, page_to_pfn(page));
334 dump_page_badflags(page, reason, bad_flags);
335
336 print_modules();
337 dump_stack();
338 out:
339 /* Leave bad fields for debug, except PageBuddy could make trouble */
340 page_mapcount_reset(page); /* remove PageBuddy */
341 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
342 }
343
344 /*
345 * Higher-order pages are called "compound pages". They are structured thusly:
346 *
347 * The first PAGE_SIZE page is called the "head page".
348 *
349 * The remaining PAGE_SIZE pages are called "tail pages".
350 *
351 * All pages have PG_compound set. All tail pages have their ->first_page
352 * pointing at the head page.
353 *
354 * The first tail page's ->lru.next holds the address of the compound page's
355 * put_page() function. Its ->lru.prev holds the order of allocation.
356 * This usage means that zero-order pages may not be compound.
357 */
358
359 static void free_compound_page(struct page *page)
360 {
361 __free_pages_ok(page, compound_order(page));
362 }
363
364 void prep_compound_page(struct page *page, unsigned long order)
365 {
366 int i;
367 int nr_pages = 1 << order;
368
369 set_compound_page_dtor(page, free_compound_page);
370 set_compound_order(page, order);
371 __SetPageHead(page);
372 for (i = 1; i < nr_pages; i++) {
373 struct page *p = page + i;
374 set_page_count(p, 0);
375 p->first_page = page;
376 /* Make sure p->first_page is always valid for PageTail() */
377 smp_wmb();
378 __SetPageTail(p);
379 }
380 }
381
382 /* update __split_huge_page_refcount if you change this function */
383 static int destroy_compound_page(struct page *page, unsigned long order)
384 {
385 int i;
386 int nr_pages = 1 << order;
387 int bad = 0;
388
389 if (unlikely(compound_order(page) != order)) {
390 bad_page(page, "wrong compound order", 0);
391 bad++;
392 }
393
394 __ClearPageHead(page);
395
396 for (i = 1; i < nr_pages; i++) {
397 struct page *p = page + i;
398
399 if (unlikely(!PageTail(p))) {
400 bad_page(page, "PageTail not set", 0);
401 bad++;
402 } else if (unlikely(p->first_page != page)) {
403 bad_page(page, "first_page not consistent", 0);
404 bad++;
405 }
406 __ClearPageTail(p);
407 }
408
409 return bad;
410 }
411
412 static inline void prep_zero_page(struct page *page, unsigned int order,
413 gfp_t gfp_flags)
414 {
415 int i;
416
417 /*
418 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
419 * and __GFP_HIGHMEM from hard or soft interrupt context.
420 */
421 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
422 for (i = 0; i < (1 << order); i++)
423 clear_highpage(page + i);
424 }
425
426 #ifdef CONFIG_DEBUG_PAGEALLOC
427 unsigned int _debug_guardpage_minorder;
428
429 static int __init debug_guardpage_minorder_setup(char *buf)
430 {
431 unsigned long res;
432
433 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
434 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
435 return 0;
436 }
437 _debug_guardpage_minorder = res;
438 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
439 return 0;
440 }
441 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
442
443 static inline void set_page_guard_flag(struct page *page)
444 {
445 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
446 }
447
448 static inline void clear_page_guard_flag(struct page *page)
449 {
450 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
451 }
452 #else
453 static inline void set_page_guard_flag(struct page *page) { }
454 static inline void clear_page_guard_flag(struct page *page) { }
455 #endif
456
457 static inline void set_page_order(struct page *page, unsigned int order)
458 {
459 set_page_private(page, order);
460 __SetPageBuddy(page);
461 }
462
463 static inline void rmv_page_order(struct page *page)
464 {
465 __ClearPageBuddy(page);
466 set_page_private(page, 0);
467 }
468
469 /*
470 * Locate the struct page for both the matching buddy in our
471 * pair (buddy1) and the combined O(n+1) page they form (page).
472 *
473 * 1) Any buddy B1 will have an order O twin B2 which satisfies
474 * the following equation:
475 * B2 = B1 ^ (1 << O)
476 * For example, if the starting buddy (buddy2) is #8 its order
477 * 1 buddy is #10:
478 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
479 *
480 * 2) Any buddy B will have an order O+1 parent P which
481 * satisfies the following equation:
482 * P = B & ~(1 << O)
483 *
484 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
485 */
486 static inline unsigned long
487 __find_buddy_index(unsigned long page_idx, unsigned int order)
488 {
489 return page_idx ^ (1 << order);
490 }
491
492 /*
493 * This function checks whether a page is free && is the buddy
494 * we can do coalesce a page and its buddy if
495 * (a) the buddy is not in a hole &&
496 * (b) the buddy is in the buddy system &&
497 * (c) a page and its buddy have the same order &&
498 * (d) a page and its buddy are in the same zone.
499 *
500 * For recording whether a page is in the buddy system, we set ->_mapcount
501 * PAGE_BUDDY_MAPCOUNT_VALUE.
502 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
503 * serialized by zone->lock.
504 *
505 * For recording page's order, we use page_private(page).
506 */
507 static inline int page_is_buddy(struct page *page, struct page *buddy,
508 unsigned int order)
509 {
510 if (!pfn_valid_within(page_to_pfn(buddy)))
511 return 0;
512
513 if (page_is_guard(buddy) && page_order(buddy) == order) {
514 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
515
516 if (page_zone_id(page) != page_zone_id(buddy))
517 return 0;
518
519 return 1;
520 }
521
522 if (PageBuddy(buddy) && page_order(buddy) == order) {
523 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
524
525 /*
526 * zone check is done late to avoid uselessly
527 * calculating zone/node ids for pages that could
528 * never merge.
529 */
530 if (page_zone_id(page) != page_zone_id(buddy))
531 return 0;
532
533 return 1;
534 }
535 return 0;
536 }
537
538 /*
539 * Freeing function for a buddy system allocator.
540 *
541 * The concept of a buddy system is to maintain direct-mapped table
542 * (containing bit values) for memory blocks of various "orders".
543 * The bottom level table contains the map for the smallest allocatable
544 * units of memory (here, pages), and each level above it describes
545 * pairs of units from the levels below, hence, "buddies".
546 * At a high level, all that happens here is marking the table entry
547 * at the bottom level available, and propagating the changes upward
548 * as necessary, plus some accounting needed to play nicely with other
549 * parts of the VM system.
550 * At each level, we keep a list of pages, which are heads of continuous
551 * free pages of length of (1 << order) and marked with _mapcount
552 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
553 * field.
554 * So when we are allocating or freeing one, we can derive the state of the
555 * other. That is, if we allocate a small block, and both were
556 * free, the remainder of the region must be split into blocks.
557 * If a block is freed, and its buddy is also free, then this
558 * triggers coalescing into a block of larger size.
559 *
560 * -- nyc
561 */
562
563 static inline void __free_one_page(struct page *page,
564 unsigned long pfn,
565 struct zone *zone, unsigned int order,
566 int migratetype)
567 {
568 unsigned long page_idx;
569 unsigned long combined_idx;
570 unsigned long uninitialized_var(buddy_idx);
571 struct page *buddy;
572
573 VM_BUG_ON(!zone_is_initialized(zone));
574
575 if (unlikely(PageCompound(page)))
576 if (unlikely(destroy_compound_page(page, order)))
577 return;
578
579 VM_BUG_ON(migratetype == -1);
580
581 page_idx = pfn & ((1 << MAX_ORDER) - 1);
582
583 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
584 VM_BUG_ON_PAGE(bad_range(zone, page), page);
585
586 while (order < MAX_ORDER-1) {
587 buddy_idx = __find_buddy_index(page_idx, order);
588 buddy = page + (buddy_idx - page_idx);
589 if (!page_is_buddy(page, buddy, order))
590 break;
591 /*
592 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
593 * merge with it and move up one order.
594 */
595 if (page_is_guard(buddy)) {
596 clear_page_guard_flag(buddy);
597 set_page_private(page, 0);
598 __mod_zone_freepage_state(zone, 1 << order,
599 migratetype);
600 } else {
601 list_del(&buddy->lru);
602 zone->free_area[order].nr_free--;
603 rmv_page_order(buddy);
604 }
605 combined_idx = buddy_idx & page_idx;
606 page = page + (combined_idx - page_idx);
607 page_idx = combined_idx;
608 order++;
609 }
610 set_page_order(page, order);
611
612 /*
613 * If this is not the largest possible page, check if the buddy
614 * of the next-highest order is free. If it is, it's possible
615 * that pages are being freed that will coalesce soon. In case,
616 * that is happening, add the free page to the tail of the list
617 * so it's less likely to be used soon and more likely to be merged
618 * as a higher order page
619 */
620 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
621 struct page *higher_page, *higher_buddy;
622 combined_idx = buddy_idx & page_idx;
623 higher_page = page + (combined_idx - page_idx);
624 buddy_idx = __find_buddy_index(combined_idx, order + 1);
625 higher_buddy = higher_page + (buddy_idx - combined_idx);
626 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
627 list_add_tail(&page->lru,
628 &zone->free_area[order].free_list[migratetype]);
629 goto out;
630 }
631 }
632
633 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
634 out:
635 zone->free_area[order].nr_free++;
636 }
637
638 static inline int free_pages_check(struct page *page)
639 {
640 const char *bad_reason = NULL;
641 unsigned long bad_flags = 0;
642
643 if (unlikely(page_mapcount(page)))
644 bad_reason = "nonzero mapcount";
645 if (unlikely(page->mapping != NULL))
646 bad_reason = "non-NULL mapping";
647 if (unlikely(atomic_read(&page->_count) != 0))
648 bad_reason = "nonzero _count";
649 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
650 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
651 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
652 }
653 if (unlikely(mem_cgroup_bad_page_check(page)))
654 bad_reason = "cgroup check failed";
655 if (unlikely(bad_reason)) {
656 bad_page(page, bad_reason, bad_flags);
657 return 1;
658 }
659 page_cpupid_reset_last(page);
660 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
661 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
662 return 0;
663 }
664
665 /*
666 * Frees a number of pages from the PCP lists
667 * Assumes all pages on list are in same zone, and of same order.
668 * count is the number of pages to free.
669 *
670 * If the zone was previously in an "all pages pinned" state then look to
671 * see if this freeing clears that state.
672 *
673 * And clear the zone's pages_scanned counter, to hold off the "all pages are
674 * pinned" detection logic.
675 */
676 static void free_pcppages_bulk(struct zone *zone, int count,
677 struct per_cpu_pages *pcp)
678 {
679 int migratetype = 0;
680 int batch_free = 0;
681 int to_free = count;
682
683 spin_lock(&zone->lock);
684 zone->pages_scanned = 0;
685
686 while (to_free) {
687 struct page *page;
688 struct list_head *list;
689
690 /*
691 * Remove pages from lists in a round-robin fashion. A
692 * batch_free count is maintained that is incremented when an
693 * empty list is encountered. This is so more pages are freed
694 * off fuller lists instead of spinning excessively around empty
695 * lists
696 */
697 do {
698 batch_free++;
699 if (++migratetype == MIGRATE_PCPTYPES)
700 migratetype = 0;
701 list = &pcp->lists[migratetype];
702 } while (list_empty(list));
703
704 /* This is the only non-empty list. Free them all. */
705 if (batch_free == MIGRATE_PCPTYPES)
706 batch_free = to_free;
707
708 do {
709 int mt; /* migratetype of the to-be-freed page */
710
711 page = list_entry(list->prev, struct page, lru);
712 /* must delete as __free_one_page list manipulates */
713 list_del(&page->lru);
714 mt = get_freepage_migratetype(page);
715 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
716 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
717 trace_mm_page_pcpu_drain(page, 0, mt);
718 if (likely(!is_migrate_isolate_page(page))) {
719 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
720 if (is_migrate_cma(mt))
721 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
722 }
723 } while (--to_free && --batch_free && !list_empty(list));
724 }
725 spin_unlock(&zone->lock);
726 }
727
728 static void free_one_page(struct zone *zone,
729 struct page *page, unsigned long pfn,
730 unsigned int order,
731 int migratetype)
732 {
733 spin_lock(&zone->lock);
734 zone->pages_scanned = 0;
735
736 __free_one_page(page, pfn, zone, order, migratetype);
737 if (unlikely(!is_migrate_isolate(migratetype)))
738 __mod_zone_freepage_state(zone, 1 << order, migratetype);
739 spin_unlock(&zone->lock);
740 }
741
742 static bool free_pages_prepare(struct page *page, unsigned int order)
743 {
744 int i;
745 int bad = 0;
746
747 trace_mm_page_free(page, order);
748 kmemcheck_free_shadow(page, order);
749
750 if (PageAnon(page))
751 page->mapping = NULL;
752 for (i = 0; i < (1 << order); i++)
753 bad += free_pages_check(page + i);
754 if (bad)
755 return false;
756
757 if (!PageHighMem(page)) {
758 debug_check_no_locks_freed(page_address(page),
759 PAGE_SIZE << order);
760 debug_check_no_obj_freed(page_address(page),
761 PAGE_SIZE << order);
762 }
763 arch_free_page(page, order);
764 kernel_map_pages(page, 1 << order, 0);
765
766 return true;
767 }
768
769 static void __free_pages_ok(struct page *page, unsigned int order)
770 {
771 unsigned long flags;
772 int migratetype;
773 unsigned long pfn = page_to_pfn(page);
774
775 if (!free_pages_prepare(page, order))
776 return;
777
778 migratetype = get_pfnblock_migratetype(page, pfn);
779 local_irq_save(flags);
780 __count_vm_events(PGFREE, 1 << order);
781 set_freepage_migratetype(page, migratetype);
782 free_one_page(page_zone(page), page, pfn, order, migratetype);
783 local_irq_restore(flags);
784 }
785
786 void __init __free_pages_bootmem(struct page *page, unsigned int order)
787 {
788 unsigned int nr_pages = 1 << order;
789 struct page *p = page;
790 unsigned int loop;
791
792 prefetchw(p);
793 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
794 prefetchw(p + 1);
795 __ClearPageReserved(p);
796 set_page_count(p, 0);
797 }
798 __ClearPageReserved(p);
799 set_page_count(p, 0);
800
801 page_zone(page)->managed_pages += nr_pages;
802 set_page_refcounted(page);
803 __free_pages(page, order);
804 }
805
806 #ifdef CONFIG_CMA
807 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
808 void __init init_cma_reserved_pageblock(struct page *page)
809 {
810 unsigned i = pageblock_nr_pages;
811 struct page *p = page;
812
813 do {
814 __ClearPageReserved(p);
815 set_page_count(p, 0);
816 } while (++p, --i);
817
818 set_page_refcounted(page);
819 set_pageblock_migratetype(page, MIGRATE_CMA);
820 __free_pages(page, pageblock_order);
821 adjust_managed_page_count(page, pageblock_nr_pages);
822 }
823 #endif
824
825 /*
826 * The order of subdivision here is critical for the IO subsystem.
827 * Please do not alter this order without good reasons and regression
828 * testing. Specifically, as large blocks of memory are subdivided,
829 * the order in which smaller blocks are delivered depends on the order
830 * they're subdivided in this function. This is the primary factor
831 * influencing the order in which pages are delivered to the IO
832 * subsystem according to empirical testing, and this is also justified
833 * by considering the behavior of a buddy system containing a single
834 * large block of memory acted on by a series of small allocations.
835 * This behavior is a critical factor in sglist merging's success.
836 *
837 * -- nyc
838 */
839 static inline void expand(struct zone *zone, struct page *page,
840 int low, int high, struct free_area *area,
841 int migratetype)
842 {
843 unsigned long size = 1 << high;
844
845 while (high > low) {
846 area--;
847 high--;
848 size >>= 1;
849 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
850
851 #ifdef CONFIG_DEBUG_PAGEALLOC
852 if (high < debug_guardpage_minorder()) {
853 /*
854 * Mark as guard pages (or page), that will allow to
855 * merge back to allocator when buddy will be freed.
856 * Corresponding page table entries will not be touched,
857 * pages will stay not present in virtual address space
858 */
859 INIT_LIST_HEAD(&page[size].lru);
860 set_page_guard_flag(&page[size]);
861 set_page_private(&page[size], high);
862 /* Guard pages are not available for any usage */
863 __mod_zone_freepage_state(zone, -(1 << high),
864 migratetype);
865 continue;
866 }
867 #endif
868 list_add(&page[size].lru, &area->free_list[migratetype]);
869 area->nr_free++;
870 set_page_order(&page[size], high);
871 }
872 }
873
874 /*
875 * This page is about to be returned from the page allocator
876 */
877 static inline int check_new_page(struct page *page)
878 {
879 const char *bad_reason = NULL;
880 unsigned long bad_flags = 0;
881
882 if (unlikely(page_mapcount(page)))
883 bad_reason = "nonzero mapcount";
884 if (unlikely(page->mapping != NULL))
885 bad_reason = "non-NULL mapping";
886 if (unlikely(atomic_read(&page->_count) != 0))
887 bad_reason = "nonzero _count";
888 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
889 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
890 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
891 }
892 if (unlikely(mem_cgroup_bad_page_check(page)))
893 bad_reason = "cgroup check failed";
894 if (unlikely(bad_reason)) {
895 bad_page(page, bad_reason, bad_flags);
896 return 1;
897 }
898 return 0;
899 }
900
901 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
902 {
903 int i;
904
905 for (i = 0; i < (1 << order); i++) {
906 struct page *p = page + i;
907 if (unlikely(check_new_page(p)))
908 return 1;
909 }
910
911 set_page_private(page, 0);
912 set_page_refcounted(page);
913
914 arch_alloc_page(page, order);
915 kernel_map_pages(page, 1 << order, 1);
916
917 if (gfp_flags & __GFP_ZERO)
918 prep_zero_page(page, order, gfp_flags);
919
920 if (order && (gfp_flags & __GFP_COMP))
921 prep_compound_page(page, order);
922
923 return 0;
924 }
925
926 /*
927 * Go through the free lists for the given migratetype and remove
928 * the smallest available page from the freelists
929 */
930 static inline
931 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
932 int migratetype)
933 {
934 unsigned int current_order;
935 struct free_area *area;
936 struct page *page;
937
938 /* Find a page of the appropriate size in the preferred list */
939 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
940 area = &(zone->free_area[current_order]);
941 if (list_empty(&area->free_list[migratetype]))
942 continue;
943
944 page = list_entry(area->free_list[migratetype].next,
945 struct page, lru);
946 list_del(&page->lru);
947 rmv_page_order(page);
948 area->nr_free--;
949 expand(zone, page, order, current_order, area, migratetype);
950 set_freepage_migratetype(page, migratetype);
951 return page;
952 }
953
954 return NULL;
955 }
956
957
958 /*
959 * This array describes the order lists are fallen back to when
960 * the free lists for the desirable migrate type are depleted
961 */
962 static int fallbacks[MIGRATE_TYPES][4] = {
963 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
964 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
965 #ifdef CONFIG_CMA
966 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
967 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
968 #else
969 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
970 #endif
971 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
972 #ifdef CONFIG_MEMORY_ISOLATION
973 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
974 #endif
975 };
976
977 /*
978 * Move the free pages in a range to the free lists of the requested type.
979 * Note that start_page and end_pages are not aligned on a pageblock
980 * boundary. If alignment is required, use move_freepages_block()
981 */
982 int move_freepages(struct zone *zone,
983 struct page *start_page, struct page *end_page,
984 int migratetype)
985 {
986 struct page *page;
987 unsigned long order;
988 int pages_moved = 0;
989
990 #ifndef CONFIG_HOLES_IN_ZONE
991 /*
992 * page_zone is not safe to call in this context when
993 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
994 * anyway as we check zone boundaries in move_freepages_block().
995 * Remove at a later date when no bug reports exist related to
996 * grouping pages by mobility
997 */
998 BUG_ON(page_zone(start_page) != page_zone(end_page));
999 #endif
1000
1001 for (page = start_page; page <= end_page;) {
1002 /* Make sure we are not inadvertently changing nodes */
1003 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1004
1005 if (!pfn_valid_within(page_to_pfn(page))) {
1006 page++;
1007 continue;
1008 }
1009
1010 if (!PageBuddy(page)) {
1011 page++;
1012 continue;
1013 }
1014
1015 order = page_order(page);
1016 list_move(&page->lru,
1017 &zone->free_area[order].free_list[migratetype]);
1018 set_freepage_migratetype(page, migratetype);
1019 page += 1 << order;
1020 pages_moved += 1 << order;
1021 }
1022
1023 return pages_moved;
1024 }
1025
1026 int move_freepages_block(struct zone *zone, struct page *page,
1027 int migratetype)
1028 {
1029 unsigned long start_pfn, end_pfn;
1030 struct page *start_page, *end_page;
1031
1032 start_pfn = page_to_pfn(page);
1033 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1034 start_page = pfn_to_page(start_pfn);
1035 end_page = start_page + pageblock_nr_pages - 1;
1036 end_pfn = start_pfn + pageblock_nr_pages - 1;
1037
1038 /* Do not cross zone boundaries */
1039 if (!zone_spans_pfn(zone, start_pfn))
1040 start_page = page;
1041 if (!zone_spans_pfn(zone, end_pfn))
1042 return 0;
1043
1044 return move_freepages(zone, start_page, end_page, migratetype);
1045 }
1046
1047 static void change_pageblock_range(struct page *pageblock_page,
1048 int start_order, int migratetype)
1049 {
1050 int nr_pageblocks = 1 << (start_order - pageblock_order);
1051
1052 while (nr_pageblocks--) {
1053 set_pageblock_migratetype(pageblock_page, migratetype);
1054 pageblock_page += pageblock_nr_pages;
1055 }
1056 }
1057
1058 /*
1059 * If breaking a large block of pages, move all free pages to the preferred
1060 * allocation list. If falling back for a reclaimable kernel allocation, be
1061 * more aggressive about taking ownership of free pages.
1062 *
1063 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1064 * nor move CMA pages to different free lists. We don't want unmovable pages
1065 * to be allocated from MIGRATE_CMA areas.
1066 *
1067 * Returns the new migratetype of the pageblock (or the same old migratetype
1068 * if it was unchanged).
1069 */
1070 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1071 int start_type, int fallback_type)
1072 {
1073 int current_order = page_order(page);
1074
1075 /*
1076 * When borrowing from MIGRATE_CMA, we need to release the excess
1077 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1078 * is set to CMA so it is returned to the correct freelist in case
1079 * the page ends up being not actually allocated from the pcp lists.
1080 */
1081 if (is_migrate_cma(fallback_type))
1082 return fallback_type;
1083
1084 /* Take ownership for orders >= pageblock_order */
1085 if (current_order >= pageblock_order) {
1086 change_pageblock_range(page, current_order, start_type);
1087 return start_type;
1088 }
1089
1090 if (current_order >= pageblock_order / 2 ||
1091 start_type == MIGRATE_RECLAIMABLE ||
1092 page_group_by_mobility_disabled) {
1093 int pages;
1094
1095 pages = move_freepages_block(zone, page, start_type);
1096
1097 /* Claim the whole block if over half of it is free */
1098 if (pages >= (1 << (pageblock_order-1)) ||
1099 page_group_by_mobility_disabled) {
1100
1101 set_pageblock_migratetype(page, start_type);
1102 return start_type;
1103 }
1104
1105 }
1106
1107 return fallback_type;
1108 }
1109
1110 /* Remove an element from the buddy allocator from the fallback list */
1111 static inline struct page *
1112 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1113 {
1114 struct free_area *area;
1115 unsigned int current_order;
1116 struct page *page;
1117 int migratetype, new_type, i;
1118
1119 /* Find the largest possible block of pages in the other list */
1120 for (current_order = MAX_ORDER-1;
1121 current_order >= order && current_order <= MAX_ORDER-1;
1122 --current_order) {
1123 for (i = 0;; i++) {
1124 migratetype = fallbacks[start_migratetype][i];
1125
1126 /* MIGRATE_RESERVE handled later if necessary */
1127 if (migratetype == MIGRATE_RESERVE)
1128 break;
1129
1130 area = &(zone->free_area[current_order]);
1131 if (list_empty(&area->free_list[migratetype]))
1132 continue;
1133
1134 page = list_entry(area->free_list[migratetype].next,
1135 struct page, lru);
1136 area->nr_free--;
1137
1138 new_type = try_to_steal_freepages(zone, page,
1139 start_migratetype,
1140 migratetype);
1141
1142 /* Remove the page from the freelists */
1143 list_del(&page->lru);
1144 rmv_page_order(page);
1145
1146 expand(zone, page, order, current_order, area,
1147 new_type);
1148 /* The freepage_migratetype may differ from pageblock's
1149 * migratetype depending on the decisions in
1150 * try_to_steal_freepages. This is OK as long as it does
1151 * not differ for MIGRATE_CMA type.
1152 */
1153 set_freepage_migratetype(page, new_type);
1154
1155 trace_mm_page_alloc_extfrag(page, order, current_order,
1156 start_migratetype, migratetype, new_type);
1157
1158 return page;
1159 }
1160 }
1161
1162 return NULL;
1163 }
1164
1165 /*
1166 * Do the hard work of removing an element from the buddy allocator.
1167 * Call me with the zone->lock already held.
1168 */
1169 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1170 int migratetype)
1171 {
1172 struct page *page;
1173
1174 retry_reserve:
1175 page = __rmqueue_smallest(zone, order, migratetype);
1176
1177 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1178 page = __rmqueue_fallback(zone, order, migratetype);
1179
1180 /*
1181 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1182 * is used because __rmqueue_smallest is an inline function
1183 * and we want just one call site
1184 */
1185 if (!page) {
1186 migratetype = MIGRATE_RESERVE;
1187 goto retry_reserve;
1188 }
1189 }
1190
1191 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1192 return page;
1193 }
1194
1195 /*
1196 * Obtain a specified number of elements from the buddy allocator, all under
1197 * a single hold of the lock, for efficiency. Add them to the supplied list.
1198 * Returns the number of new pages which were placed at *list.
1199 */
1200 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1201 unsigned long count, struct list_head *list,
1202 int migratetype, bool cold)
1203 {
1204 int i;
1205
1206 spin_lock(&zone->lock);
1207 for (i = 0; i < count; ++i) {
1208 struct page *page = __rmqueue(zone, order, migratetype);
1209 if (unlikely(page == NULL))
1210 break;
1211
1212 /*
1213 * Split buddy pages returned by expand() are received here
1214 * in physical page order. The page is added to the callers and
1215 * list and the list head then moves forward. From the callers
1216 * perspective, the linked list is ordered by page number in
1217 * some conditions. This is useful for IO devices that can
1218 * merge IO requests if the physical pages are ordered
1219 * properly.
1220 */
1221 if (likely(!cold))
1222 list_add(&page->lru, list);
1223 else
1224 list_add_tail(&page->lru, list);
1225 list = &page->lru;
1226 if (is_migrate_cma(get_freepage_migratetype(page)))
1227 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1228 -(1 << order));
1229 }
1230 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1231 spin_unlock(&zone->lock);
1232 return i;
1233 }
1234
1235 #ifdef CONFIG_NUMA
1236 /*
1237 * Called from the vmstat counter updater to drain pagesets of this
1238 * currently executing processor on remote nodes after they have
1239 * expired.
1240 *
1241 * Note that this function must be called with the thread pinned to
1242 * a single processor.
1243 */
1244 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1245 {
1246 unsigned long flags;
1247 int to_drain;
1248 unsigned long batch;
1249
1250 local_irq_save(flags);
1251 batch = ACCESS_ONCE(pcp->batch);
1252 if (pcp->count >= batch)
1253 to_drain = batch;
1254 else
1255 to_drain = pcp->count;
1256 if (to_drain > 0) {
1257 free_pcppages_bulk(zone, to_drain, pcp);
1258 pcp->count -= to_drain;
1259 }
1260 local_irq_restore(flags);
1261 }
1262 #endif
1263
1264 /*
1265 * Drain pages of the indicated processor.
1266 *
1267 * The processor must either be the current processor and the
1268 * thread pinned to the current processor or a processor that
1269 * is not online.
1270 */
1271 static void drain_pages(unsigned int cpu)
1272 {
1273 unsigned long flags;
1274 struct zone *zone;
1275
1276 for_each_populated_zone(zone) {
1277 struct per_cpu_pageset *pset;
1278 struct per_cpu_pages *pcp;
1279
1280 local_irq_save(flags);
1281 pset = per_cpu_ptr(zone->pageset, cpu);
1282
1283 pcp = &pset->pcp;
1284 if (pcp->count) {
1285 free_pcppages_bulk(zone, pcp->count, pcp);
1286 pcp->count = 0;
1287 }
1288 local_irq_restore(flags);
1289 }
1290 }
1291
1292 /*
1293 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1294 */
1295 void drain_local_pages(void *arg)
1296 {
1297 drain_pages(smp_processor_id());
1298 }
1299
1300 /*
1301 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1302 *
1303 * Note that this code is protected against sending an IPI to an offline
1304 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1305 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1306 * nothing keeps CPUs from showing up after we populated the cpumask and
1307 * before the call to on_each_cpu_mask().
1308 */
1309 void drain_all_pages(void)
1310 {
1311 int cpu;
1312 struct per_cpu_pageset *pcp;
1313 struct zone *zone;
1314
1315 /*
1316 * Allocate in the BSS so we wont require allocation in
1317 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1318 */
1319 static cpumask_t cpus_with_pcps;
1320
1321 /*
1322 * We don't care about racing with CPU hotplug event
1323 * as offline notification will cause the notified
1324 * cpu to drain that CPU pcps and on_each_cpu_mask
1325 * disables preemption as part of its processing
1326 */
1327 for_each_online_cpu(cpu) {
1328 bool has_pcps = false;
1329 for_each_populated_zone(zone) {
1330 pcp = per_cpu_ptr(zone->pageset, cpu);
1331 if (pcp->pcp.count) {
1332 has_pcps = true;
1333 break;
1334 }
1335 }
1336 if (has_pcps)
1337 cpumask_set_cpu(cpu, &cpus_with_pcps);
1338 else
1339 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1340 }
1341 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1342 }
1343
1344 #ifdef CONFIG_HIBERNATION
1345
1346 void mark_free_pages(struct zone *zone)
1347 {
1348 unsigned long pfn, max_zone_pfn;
1349 unsigned long flags;
1350 unsigned int order, t;
1351 struct list_head *curr;
1352
1353 if (zone_is_empty(zone))
1354 return;
1355
1356 spin_lock_irqsave(&zone->lock, flags);
1357
1358 max_zone_pfn = zone_end_pfn(zone);
1359 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1360 if (pfn_valid(pfn)) {
1361 struct page *page = pfn_to_page(pfn);
1362
1363 if (!swsusp_page_is_forbidden(page))
1364 swsusp_unset_page_free(page);
1365 }
1366
1367 for_each_migratetype_order(order, t) {
1368 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1369 unsigned long i;
1370
1371 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1372 for (i = 0; i < (1UL << order); i++)
1373 swsusp_set_page_free(pfn_to_page(pfn + i));
1374 }
1375 }
1376 spin_unlock_irqrestore(&zone->lock, flags);
1377 }
1378 #endif /* CONFIG_PM */
1379
1380 /*
1381 * Free a 0-order page
1382 * cold == true ? free a cold page : free a hot page
1383 */
1384 void free_hot_cold_page(struct page *page, bool cold)
1385 {
1386 struct zone *zone = page_zone(page);
1387 struct per_cpu_pages *pcp;
1388 unsigned long flags;
1389 unsigned long pfn = page_to_pfn(page);
1390 int migratetype;
1391
1392 if (!free_pages_prepare(page, 0))
1393 return;
1394
1395 migratetype = get_pfnblock_migratetype(page, pfn);
1396 set_freepage_migratetype(page, migratetype);
1397 local_irq_save(flags);
1398 __count_vm_event(PGFREE);
1399
1400 /*
1401 * We only track unmovable, reclaimable and movable on pcp lists.
1402 * Free ISOLATE pages back to the allocator because they are being
1403 * offlined but treat RESERVE as movable pages so we can get those
1404 * areas back if necessary. Otherwise, we may have to free
1405 * excessively into the page allocator
1406 */
1407 if (migratetype >= MIGRATE_PCPTYPES) {
1408 if (unlikely(is_migrate_isolate(migratetype))) {
1409 free_one_page(zone, page, pfn, 0, migratetype);
1410 goto out;
1411 }
1412 migratetype = MIGRATE_MOVABLE;
1413 }
1414
1415 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1416 if (!cold)
1417 list_add(&page->lru, &pcp->lists[migratetype]);
1418 else
1419 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1420 pcp->count++;
1421 if (pcp->count >= pcp->high) {
1422 unsigned long batch = ACCESS_ONCE(pcp->batch);
1423 free_pcppages_bulk(zone, batch, pcp);
1424 pcp->count -= batch;
1425 }
1426
1427 out:
1428 local_irq_restore(flags);
1429 }
1430
1431 /*
1432 * Free a list of 0-order pages
1433 */
1434 void free_hot_cold_page_list(struct list_head *list, bool cold)
1435 {
1436 struct page *page, *next;
1437
1438 list_for_each_entry_safe(page, next, list, lru) {
1439 trace_mm_page_free_batched(page, cold);
1440 free_hot_cold_page(page, cold);
1441 }
1442 }
1443
1444 /*
1445 * split_page takes a non-compound higher-order page, and splits it into
1446 * n (1<<order) sub-pages: page[0..n]
1447 * Each sub-page must be freed individually.
1448 *
1449 * Note: this is probably too low level an operation for use in drivers.
1450 * Please consult with lkml before using this in your driver.
1451 */
1452 void split_page(struct page *page, unsigned int order)
1453 {
1454 int i;
1455
1456 VM_BUG_ON_PAGE(PageCompound(page), page);
1457 VM_BUG_ON_PAGE(!page_count(page), page);
1458
1459 #ifdef CONFIG_KMEMCHECK
1460 /*
1461 * Split shadow pages too, because free(page[0]) would
1462 * otherwise free the whole shadow.
1463 */
1464 if (kmemcheck_page_is_tracked(page))
1465 split_page(virt_to_page(page[0].shadow), order);
1466 #endif
1467
1468 for (i = 1; i < (1 << order); i++)
1469 set_page_refcounted(page + i);
1470 }
1471 EXPORT_SYMBOL_GPL(split_page);
1472
1473 static int __isolate_free_page(struct page *page, unsigned int order)
1474 {
1475 unsigned long watermark;
1476 struct zone *zone;
1477 int mt;
1478
1479 BUG_ON(!PageBuddy(page));
1480
1481 zone = page_zone(page);
1482 mt = get_pageblock_migratetype(page);
1483
1484 if (!is_migrate_isolate(mt)) {
1485 /* Obey watermarks as if the page was being allocated */
1486 watermark = low_wmark_pages(zone) + (1 << order);
1487 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1488 return 0;
1489
1490 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1491 }
1492
1493 /* Remove page from free list */
1494 list_del(&page->lru);
1495 zone->free_area[order].nr_free--;
1496 rmv_page_order(page);
1497
1498 /* Set the pageblock if the isolated page is at least a pageblock */
1499 if (order >= pageblock_order - 1) {
1500 struct page *endpage = page + (1 << order) - 1;
1501 for (; page < endpage; page += pageblock_nr_pages) {
1502 int mt = get_pageblock_migratetype(page);
1503 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1504 set_pageblock_migratetype(page,
1505 MIGRATE_MOVABLE);
1506 }
1507 }
1508
1509 return 1UL << order;
1510 }
1511
1512 /*
1513 * Similar to split_page except the page is already free. As this is only
1514 * being used for migration, the migratetype of the block also changes.
1515 * As this is called with interrupts disabled, the caller is responsible
1516 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1517 * are enabled.
1518 *
1519 * Note: this is probably too low level an operation for use in drivers.
1520 * Please consult with lkml before using this in your driver.
1521 */
1522 int split_free_page(struct page *page)
1523 {
1524 unsigned int order;
1525 int nr_pages;
1526
1527 order = page_order(page);
1528
1529 nr_pages = __isolate_free_page(page, order);
1530 if (!nr_pages)
1531 return 0;
1532
1533 /* Split into individual pages */
1534 set_page_refcounted(page);
1535 split_page(page, order);
1536 return nr_pages;
1537 }
1538
1539 /*
1540 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1541 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1542 * or two.
1543 */
1544 static inline
1545 struct page *buffered_rmqueue(struct zone *preferred_zone,
1546 struct zone *zone, unsigned int order,
1547 gfp_t gfp_flags, int migratetype)
1548 {
1549 unsigned long flags;
1550 struct page *page;
1551 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1552
1553 again:
1554 if (likely(order == 0)) {
1555 struct per_cpu_pages *pcp;
1556 struct list_head *list;
1557
1558 local_irq_save(flags);
1559 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1560 list = &pcp->lists[migratetype];
1561 if (list_empty(list)) {
1562 pcp->count += rmqueue_bulk(zone, 0,
1563 pcp->batch, list,
1564 migratetype, cold);
1565 if (unlikely(list_empty(list)))
1566 goto failed;
1567 }
1568
1569 if (cold)
1570 page = list_entry(list->prev, struct page, lru);
1571 else
1572 page = list_entry(list->next, struct page, lru);
1573
1574 list_del(&page->lru);
1575 pcp->count--;
1576 } else {
1577 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1578 /*
1579 * __GFP_NOFAIL is not to be used in new code.
1580 *
1581 * All __GFP_NOFAIL callers should be fixed so that they
1582 * properly detect and handle allocation failures.
1583 *
1584 * We most definitely don't want callers attempting to
1585 * allocate greater than order-1 page units with
1586 * __GFP_NOFAIL.
1587 */
1588 WARN_ON_ONCE(order > 1);
1589 }
1590 spin_lock_irqsave(&zone->lock, flags);
1591 page = __rmqueue(zone, order, migratetype);
1592 spin_unlock(&zone->lock);
1593 if (!page)
1594 goto failed;
1595 __mod_zone_freepage_state(zone, -(1 << order),
1596 get_freepage_migratetype(page));
1597 }
1598
1599 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1600
1601 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1602 zone_statistics(preferred_zone, zone, gfp_flags);
1603 local_irq_restore(flags);
1604
1605 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1606 if (prep_new_page(page, order, gfp_flags))
1607 goto again;
1608 return page;
1609
1610 failed:
1611 local_irq_restore(flags);
1612 return NULL;
1613 }
1614
1615 #ifdef CONFIG_FAIL_PAGE_ALLOC
1616
1617 static struct {
1618 struct fault_attr attr;
1619
1620 u32 ignore_gfp_highmem;
1621 u32 ignore_gfp_wait;
1622 u32 min_order;
1623 } fail_page_alloc = {
1624 .attr = FAULT_ATTR_INITIALIZER,
1625 .ignore_gfp_wait = 1,
1626 .ignore_gfp_highmem = 1,
1627 .min_order = 1,
1628 };
1629
1630 static int __init setup_fail_page_alloc(char *str)
1631 {
1632 return setup_fault_attr(&fail_page_alloc.attr, str);
1633 }
1634 __setup("fail_page_alloc=", setup_fail_page_alloc);
1635
1636 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1637 {
1638 if (order < fail_page_alloc.min_order)
1639 return false;
1640 if (gfp_mask & __GFP_NOFAIL)
1641 return false;
1642 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1643 return false;
1644 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1645 return false;
1646
1647 return should_fail(&fail_page_alloc.attr, 1 << order);
1648 }
1649
1650 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1651
1652 static int __init fail_page_alloc_debugfs(void)
1653 {
1654 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1655 struct dentry *dir;
1656
1657 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1658 &fail_page_alloc.attr);
1659 if (IS_ERR(dir))
1660 return PTR_ERR(dir);
1661
1662 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1663 &fail_page_alloc.ignore_gfp_wait))
1664 goto fail;
1665 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1666 &fail_page_alloc.ignore_gfp_highmem))
1667 goto fail;
1668 if (!debugfs_create_u32("min-order", mode, dir,
1669 &fail_page_alloc.min_order))
1670 goto fail;
1671
1672 return 0;
1673 fail:
1674 debugfs_remove_recursive(dir);
1675
1676 return -ENOMEM;
1677 }
1678
1679 late_initcall(fail_page_alloc_debugfs);
1680
1681 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1682
1683 #else /* CONFIG_FAIL_PAGE_ALLOC */
1684
1685 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1686 {
1687 return false;
1688 }
1689
1690 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1691
1692 /*
1693 * Return true if free pages are above 'mark'. This takes into account the order
1694 * of the allocation.
1695 */
1696 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1697 unsigned long mark, int classzone_idx, int alloc_flags,
1698 long free_pages)
1699 {
1700 /* free_pages my go negative - that's OK */
1701 long min = mark;
1702 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1703 int o;
1704 long free_cma = 0;
1705
1706 free_pages -= (1 << order) - 1;
1707 if (alloc_flags & ALLOC_HIGH)
1708 min -= min / 2;
1709 if (alloc_flags & ALLOC_HARDER)
1710 min -= min / 4;
1711 #ifdef CONFIG_CMA
1712 /* If allocation can't use CMA areas don't use free CMA pages */
1713 if (!(alloc_flags & ALLOC_CMA))
1714 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1715 #endif
1716
1717 if (free_pages - free_cma <= min + lowmem_reserve)
1718 return false;
1719 for (o = 0; o < order; o++) {
1720 /* At the next order, this order's pages become unavailable */
1721 free_pages -= z->free_area[o].nr_free << o;
1722
1723 /* Require fewer higher order pages to be free */
1724 min >>= 1;
1725
1726 if (free_pages <= min)
1727 return false;
1728 }
1729 return true;
1730 }
1731
1732 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1733 int classzone_idx, int alloc_flags)
1734 {
1735 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1736 zone_page_state(z, NR_FREE_PAGES));
1737 }
1738
1739 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1740 unsigned long mark, int classzone_idx, int alloc_flags)
1741 {
1742 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1743
1744 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1745 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1746
1747 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1748 free_pages);
1749 }
1750
1751 #ifdef CONFIG_NUMA
1752 /*
1753 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1754 * skip over zones that are not allowed by the cpuset, or that have
1755 * been recently (in last second) found to be nearly full. See further
1756 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1757 * that have to skip over a lot of full or unallowed zones.
1758 *
1759 * If the zonelist cache is present in the passed zonelist, then
1760 * returns a pointer to the allowed node mask (either the current
1761 * tasks mems_allowed, or node_states[N_MEMORY].)
1762 *
1763 * If the zonelist cache is not available for this zonelist, does
1764 * nothing and returns NULL.
1765 *
1766 * If the fullzones BITMAP in the zonelist cache is stale (more than
1767 * a second since last zap'd) then we zap it out (clear its bits.)
1768 *
1769 * We hold off even calling zlc_setup, until after we've checked the
1770 * first zone in the zonelist, on the theory that most allocations will
1771 * be satisfied from that first zone, so best to examine that zone as
1772 * quickly as we can.
1773 */
1774 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1775 {
1776 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1777 nodemask_t *allowednodes; /* zonelist_cache approximation */
1778
1779 zlc = zonelist->zlcache_ptr;
1780 if (!zlc)
1781 return NULL;
1782
1783 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1784 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1785 zlc->last_full_zap = jiffies;
1786 }
1787
1788 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1789 &cpuset_current_mems_allowed :
1790 &node_states[N_MEMORY];
1791 return allowednodes;
1792 }
1793
1794 /*
1795 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1796 * if it is worth looking at further for free memory:
1797 * 1) Check that the zone isn't thought to be full (doesn't have its
1798 * bit set in the zonelist_cache fullzones BITMAP).
1799 * 2) Check that the zones node (obtained from the zonelist_cache
1800 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1801 * Return true (non-zero) if zone is worth looking at further, or
1802 * else return false (zero) if it is not.
1803 *
1804 * This check -ignores- the distinction between various watermarks,
1805 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1806 * found to be full for any variation of these watermarks, it will
1807 * be considered full for up to one second by all requests, unless
1808 * we are so low on memory on all allowed nodes that we are forced
1809 * into the second scan of the zonelist.
1810 *
1811 * In the second scan we ignore this zonelist cache and exactly
1812 * apply the watermarks to all zones, even it is slower to do so.
1813 * We are low on memory in the second scan, and should leave no stone
1814 * unturned looking for a free page.
1815 */
1816 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1817 nodemask_t *allowednodes)
1818 {
1819 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1820 int i; /* index of *z in zonelist zones */
1821 int n; /* node that zone *z is on */
1822
1823 zlc = zonelist->zlcache_ptr;
1824 if (!zlc)
1825 return 1;
1826
1827 i = z - zonelist->_zonerefs;
1828 n = zlc->z_to_n[i];
1829
1830 /* This zone is worth trying if it is allowed but not full */
1831 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1832 }
1833
1834 /*
1835 * Given 'z' scanning a zonelist, set the corresponding bit in
1836 * zlc->fullzones, so that subsequent attempts to allocate a page
1837 * from that zone don't waste time re-examining it.
1838 */
1839 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1840 {
1841 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1842 int i; /* index of *z in zonelist zones */
1843
1844 zlc = zonelist->zlcache_ptr;
1845 if (!zlc)
1846 return;
1847
1848 i = z - zonelist->_zonerefs;
1849
1850 set_bit(i, zlc->fullzones);
1851 }
1852
1853 /*
1854 * clear all zones full, called after direct reclaim makes progress so that
1855 * a zone that was recently full is not skipped over for up to a second
1856 */
1857 static void zlc_clear_zones_full(struct zonelist *zonelist)
1858 {
1859 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1860
1861 zlc = zonelist->zlcache_ptr;
1862 if (!zlc)
1863 return;
1864
1865 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1866 }
1867
1868 static bool zone_local(struct zone *local_zone, struct zone *zone)
1869 {
1870 return local_zone->node == zone->node;
1871 }
1872
1873 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1874 {
1875 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1876 RECLAIM_DISTANCE;
1877 }
1878
1879 #else /* CONFIG_NUMA */
1880
1881 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1882 {
1883 return NULL;
1884 }
1885
1886 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1887 nodemask_t *allowednodes)
1888 {
1889 return 1;
1890 }
1891
1892 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1893 {
1894 }
1895
1896 static void zlc_clear_zones_full(struct zonelist *zonelist)
1897 {
1898 }
1899
1900 static bool zone_local(struct zone *local_zone, struct zone *zone)
1901 {
1902 return true;
1903 }
1904
1905 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1906 {
1907 return true;
1908 }
1909
1910 #endif /* CONFIG_NUMA */
1911
1912 /*
1913 * get_page_from_freelist goes through the zonelist trying to allocate
1914 * a page.
1915 */
1916 static struct page *
1917 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1918 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1919 struct zone *preferred_zone, int classzone_idx, int migratetype)
1920 {
1921 struct zoneref *z;
1922 struct page *page = NULL;
1923 struct zone *zone;
1924 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1925 int zlc_active = 0; /* set if using zonelist_cache */
1926 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1927 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
1928 (gfp_mask & __GFP_WRITE);
1929
1930 zonelist_scan:
1931 /*
1932 * Scan zonelist, looking for a zone with enough free.
1933 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1934 */
1935 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1936 high_zoneidx, nodemask) {
1937 unsigned long mark;
1938
1939 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1940 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1941 continue;
1942 if (cpusets_enabled() &&
1943 (alloc_flags & ALLOC_CPUSET) &&
1944 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1945 continue;
1946 /*
1947 * Distribute pages in proportion to the individual
1948 * zone size to ensure fair page aging. The zone a
1949 * page was allocated in should have no effect on the
1950 * time the page has in memory before being reclaimed.
1951 */
1952 if (alloc_flags & ALLOC_FAIR) {
1953 if (!zone_local(preferred_zone, zone))
1954 continue;
1955 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1956 continue;
1957 }
1958 /*
1959 * When allocating a page cache page for writing, we
1960 * want to get it from a zone that is within its dirty
1961 * limit, such that no single zone holds more than its
1962 * proportional share of globally allowed dirty pages.
1963 * The dirty limits take into account the zone's
1964 * lowmem reserves and high watermark so that kswapd
1965 * should be able to balance it without having to
1966 * write pages from its LRU list.
1967 *
1968 * This may look like it could increase pressure on
1969 * lower zones by failing allocations in higher zones
1970 * before they are full. But the pages that do spill
1971 * over are limited as the lower zones are protected
1972 * by this very same mechanism. It should not become
1973 * a practical burden to them.
1974 *
1975 * XXX: For now, allow allocations to potentially
1976 * exceed the per-zone dirty limit in the slowpath
1977 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1978 * which is important when on a NUMA setup the allowed
1979 * zones are together not big enough to reach the
1980 * global limit. The proper fix for these situations
1981 * will require awareness of zones in the
1982 * dirty-throttling and the flusher threads.
1983 */
1984 if (consider_zone_dirty && !zone_dirty_ok(zone))
1985 continue;
1986
1987 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1988 if (!zone_watermark_ok(zone, order, mark,
1989 classzone_idx, alloc_flags)) {
1990 int ret;
1991
1992 /* Checked here to keep the fast path fast */
1993 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1994 if (alloc_flags & ALLOC_NO_WATERMARKS)
1995 goto try_this_zone;
1996
1997 if (IS_ENABLED(CONFIG_NUMA) &&
1998 !did_zlc_setup && nr_online_nodes > 1) {
1999 /*
2000 * we do zlc_setup if there are multiple nodes
2001 * and before considering the first zone allowed
2002 * by the cpuset.
2003 */
2004 allowednodes = zlc_setup(zonelist, alloc_flags);
2005 zlc_active = 1;
2006 did_zlc_setup = 1;
2007 }
2008
2009 if (zone_reclaim_mode == 0 ||
2010 !zone_allows_reclaim(preferred_zone, zone))
2011 goto this_zone_full;
2012
2013 /*
2014 * As we may have just activated ZLC, check if the first
2015 * eligible zone has failed zone_reclaim recently.
2016 */
2017 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2018 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2019 continue;
2020
2021 ret = zone_reclaim(zone, gfp_mask, order);
2022 switch (ret) {
2023 case ZONE_RECLAIM_NOSCAN:
2024 /* did not scan */
2025 continue;
2026 case ZONE_RECLAIM_FULL:
2027 /* scanned but unreclaimable */
2028 continue;
2029 default:
2030 /* did we reclaim enough */
2031 if (zone_watermark_ok(zone, order, mark,
2032 classzone_idx, alloc_flags))
2033 goto try_this_zone;
2034
2035 /*
2036 * Failed to reclaim enough to meet watermark.
2037 * Only mark the zone full if checking the min
2038 * watermark or if we failed to reclaim just
2039 * 1<<order pages or else the page allocator
2040 * fastpath will prematurely mark zones full
2041 * when the watermark is between the low and
2042 * min watermarks.
2043 */
2044 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2045 ret == ZONE_RECLAIM_SOME)
2046 goto this_zone_full;
2047
2048 continue;
2049 }
2050 }
2051
2052 try_this_zone:
2053 page = buffered_rmqueue(preferred_zone, zone, order,
2054 gfp_mask, migratetype);
2055 if (page)
2056 break;
2057 this_zone_full:
2058 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2059 zlc_mark_zone_full(zonelist, z);
2060 }
2061
2062 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
2063 /* Disable zlc cache for second zonelist scan */
2064 zlc_active = 0;
2065 goto zonelist_scan;
2066 }
2067
2068 if (page)
2069 /*
2070 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2071 * necessary to allocate the page. The expectation is
2072 * that the caller is taking steps that will free more
2073 * memory. The caller should avoid the page being used
2074 * for !PFMEMALLOC purposes.
2075 */
2076 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2077
2078 return page;
2079 }
2080
2081 /*
2082 * Large machines with many possible nodes should not always dump per-node
2083 * meminfo in irq context.
2084 */
2085 static inline bool should_suppress_show_mem(void)
2086 {
2087 bool ret = false;
2088
2089 #if NODES_SHIFT > 8
2090 ret = in_interrupt();
2091 #endif
2092 return ret;
2093 }
2094
2095 static DEFINE_RATELIMIT_STATE(nopage_rs,
2096 DEFAULT_RATELIMIT_INTERVAL,
2097 DEFAULT_RATELIMIT_BURST);
2098
2099 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2100 {
2101 unsigned int filter = SHOW_MEM_FILTER_NODES;
2102
2103 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2104 debug_guardpage_minorder() > 0)
2105 return;
2106
2107 /*
2108 * This documents exceptions given to allocations in certain
2109 * contexts that are allowed to allocate outside current's set
2110 * of allowed nodes.
2111 */
2112 if (!(gfp_mask & __GFP_NOMEMALLOC))
2113 if (test_thread_flag(TIF_MEMDIE) ||
2114 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2115 filter &= ~SHOW_MEM_FILTER_NODES;
2116 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2117 filter &= ~SHOW_MEM_FILTER_NODES;
2118
2119 if (fmt) {
2120 struct va_format vaf;
2121 va_list args;
2122
2123 va_start(args, fmt);
2124
2125 vaf.fmt = fmt;
2126 vaf.va = &args;
2127
2128 pr_warn("%pV", &vaf);
2129
2130 va_end(args);
2131 }
2132
2133 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2134 current->comm, order, gfp_mask);
2135
2136 dump_stack();
2137 if (!should_suppress_show_mem())
2138 show_mem(filter);
2139 }
2140
2141 static inline int
2142 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2143 unsigned long did_some_progress,
2144 unsigned long pages_reclaimed)
2145 {
2146 /* Do not loop if specifically requested */
2147 if (gfp_mask & __GFP_NORETRY)
2148 return 0;
2149
2150 /* Always retry if specifically requested */
2151 if (gfp_mask & __GFP_NOFAIL)
2152 return 1;
2153
2154 /*
2155 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2156 * making forward progress without invoking OOM. Suspend also disables
2157 * storage devices so kswapd will not help. Bail if we are suspending.
2158 */
2159 if (!did_some_progress && pm_suspended_storage())
2160 return 0;
2161
2162 /*
2163 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2164 * means __GFP_NOFAIL, but that may not be true in other
2165 * implementations.
2166 */
2167 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2168 return 1;
2169
2170 /*
2171 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2172 * specified, then we retry until we no longer reclaim any pages
2173 * (above), or we've reclaimed an order of pages at least as
2174 * large as the allocation's order. In both cases, if the
2175 * allocation still fails, we stop retrying.
2176 */
2177 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2178 return 1;
2179
2180 return 0;
2181 }
2182
2183 static inline struct page *
2184 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2185 struct zonelist *zonelist, enum zone_type high_zoneidx,
2186 nodemask_t *nodemask, struct zone *preferred_zone,
2187 int classzone_idx, int migratetype)
2188 {
2189 struct page *page;
2190
2191 /* Acquire the OOM killer lock for the zones in zonelist */
2192 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2193 schedule_timeout_uninterruptible(1);
2194 return NULL;
2195 }
2196
2197 /*
2198 * Go through the zonelist yet one more time, keep very high watermark
2199 * here, this is only to catch a parallel oom killing, we must fail if
2200 * we're still under heavy pressure.
2201 */
2202 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2203 order, zonelist, high_zoneidx,
2204 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2205 preferred_zone, classzone_idx, migratetype);
2206 if (page)
2207 goto out;
2208
2209 if (!(gfp_mask & __GFP_NOFAIL)) {
2210 /* The OOM killer will not help higher order allocs */
2211 if (order > PAGE_ALLOC_COSTLY_ORDER)
2212 goto out;
2213 /* The OOM killer does not needlessly kill tasks for lowmem */
2214 if (high_zoneidx < ZONE_NORMAL)
2215 goto out;
2216 /*
2217 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2218 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2219 * The caller should handle page allocation failure by itself if
2220 * it specifies __GFP_THISNODE.
2221 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2222 */
2223 if (gfp_mask & __GFP_THISNODE)
2224 goto out;
2225 }
2226 /* Exhausted what can be done so it's blamo time */
2227 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2228
2229 out:
2230 clear_zonelist_oom(zonelist, gfp_mask);
2231 return page;
2232 }
2233
2234 #ifdef CONFIG_COMPACTION
2235 /* Try memory compaction for high-order allocations before reclaim */
2236 static struct page *
2237 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2238 struct zonelist *zonelist, enum zone_type high_zoneidx,
2239 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2240 int classzone_idx, int migratetype, enum migrate_mode mode,
2241 bool *contended_compaction, bool *deferred_compaction,
2242 unsigned long *did_some_progress)
2243 {
2244 if (!order)
2245 return NULL;
2246
2247 if (compaction_deferred(preferred_zone, order)) {
2248 *deferred_compaction = true;
2249 return NULL;
2250 }
2251
2252 current->flags |= PF_MEMALLOC;
2253 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2254 nodemask, mode,
2255 contended_compaction);
2256 current->flags &= ~PF_MEMALLOC;
2257
2258 if (*did_some_progress != COMPACT_SKIPPED) {
2259 struct page *page;
2260
2261 /* Page migration frees to the PCP lists but we want merging */
2262 drain_pages(get_cpu());
2263 put_cpu();
2264
2265 page = get_page_from_freelist(gfp_mask, nodemask,
2266 order, zonelist, high_zoneidx,
2267 alloc_flags & ~ALLOC_NO_WATERMARKS,
2268 preferred_zone, classzone_idx, migratetype);
2269 if (page) {
2270 preferred_zone->compact_blockskip_flush = false;
2271 compaction_defer_reset(preferred_zone, order, true);
2272 count_vm_event(COMPACTSUCCESS);
2273 return page;
2274 }
2275
2276 /*
2277 * It's bad if compaction run occurs and fails.
2278 * The most likely reason is that pages exist,
2279 * but not enough to satisfy watermarks.
2280 */
2281 count_vm_event(COMPACTFAIL);
2282
2283 /*
2284 * As async compaction considers a subset of pageblocks, only
2285 * defer if the failure was a sync compaction failure.
2286 */
2287 if (mode != MIGRATE_ASYNC)
2288 defer_compaction(preferred_zone, order);
2289
2290 cond_resched();
2291 }
2292
2293 return NULL;
2294 }
2295 #else
2296 static inline struct page *
2297 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2298 struct zonelist *zonelist, enum zone_type high_zoneidx,
2299 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2300 int classzone_idx, int migratetype,
2301 enum migrate_mode mode, bool *contended_compaction,
2302 bool *deferred_compaction, unsigned long *did_some_progress)
2303 {
2304 return NULL;
2305 }
2306 #endif /* CONFIG_COMPACTION */
2307
2308 /* Perform direct synchronous page reclaim */
2309 static int
2310 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2311 nodemask_t *nodemask)
2312 {
2313 struct reclaim_state reclaim_state;
2314 int progress;
2315
2316 cond_resched();
2317
2318 /* We now go into synchronous reclaim */
2319 cpuset_memory_pressure_bump();
2320 current->flags |= PF_MEMALLOC;
2321 lockdep_set_current_reclaim_state(gfp_mask);
2322 reclaim_state.reclaimed_slab = 0;
2323 current->reclaim_state = &reclaim_state;
2324
2325 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2326
2327 current->reclaim_state = NULL;
2328 lockdep_clear_current_reclaim_state();
2329 current->flags &= ~PF_MEMALLOC;
2330
2331 cond_resched();
2332
2333 return progress;
2334 }
2335
2336 /* The really slow allocator path where we enter direct reclaim */
2337 static inline struct page *
2338 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2339 struct zonelist *zonelist, enum zone_type high_zoneidx,
2340 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2341 int classzone_idx, int migratetype, unsigned long *did_some_progress)
2342 {
2343 struct page *page = NULL;
2344 bool drained = false;
2345
2346 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2347 nodemask);
2348 if (unlikely(!(*did_some_progress)))
2349 return NULL;
2350
2351 /* After successful reclaim, reconsider all zones for allocation */
2352 if (IS_ENABLED(CONFIG_NUMA))
2353 zlc_clear_zones_full(zonelist);
2354
2355 retry:
2356 page = get_page_from_freelist(gfp_mask, nodemask, order,
2357 zonelist, high_zoneidx,
2358 alloc_flags & ~ALLOC_NO_WATERMARKS,
2359 preferred_zone, classzone_idx,
2360 migratetype);
2361
2362 /*
2363 * If an allocation failed after direct reclaim, it could be because
2364 * pages are pinned on the per-cpu lists. Drain them and try again
2365 */
2366 if (!page && !drained) {
2367 drain_all_pages();
2368 drained = true;
2369 goto retry;
2370 }
2371
2372 return page;
2373 }
2374
2375 /*
2376 * This is called in the allocator slow-path if the allocation request is of
2377 * sufficient urgency to ignore watermarks and take other desperate measures
2378 */
2379 static inline struct page *
2380 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2381 struct zonelist *zonelist, enum zone_type high_zoneidx,
2382 nodemask_t *nodemask, struct zone *preferred_zone,
2383 int classzone_idx, int migratetype)
2384 {
2385 struct page *page;
2386
2387 do {
2388 page = get_page_from_freelist(gfp_mask, nodemask, order,
2389 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2390 preferred_zone, classzone_idx, migratetype);
2391
2392 if (!page && gfp_mask & __GFP_NOFAIL)
2393 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2394 } while (!page && (gfp_mask & __GFP_NOFAIL));
2395
2396 return page;
2397 }
2398
2399 static void reset_alloc_batches(struct zonelist *zonelist,
2400 enum zone_type high_zoneidx,
2401 struct zone *preferred_zone)
2402 {
2403 struct zoneref *z;
2404 struct zone *zone;
2405
2406 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2407 /*
2408 * Only reset the batches of zones that were actually
2409 * considered in the fairness pass, we don't want to
2410 * trash fairness information for zones that are not
2411 * actually part of this zonelist's round-robin cycle.
2412 */
2413 if (!zone_local(preferred_zone, zone))
2414 continue;
2415 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2416 high_wmark_pages(zone) - low_wmark_pages(zone) -
2417 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2418 }
2419 }
2420
2421 static void wake_all_kswapds(unsigned int order,
2422 struct zonelist *zonelist,
2423 enum zone_type high_zoneidx,
2424 struct zone *preferred_zone)
2425 {
2426 struct zoneref *z;
2427 struct zone *zone;
2428
2429 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2430 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2431 }
2432
2433 static inline int
2434 gfp_to_alloc_flags(gfp_t gfp_mask)
2435 {
2436 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2437 const gfp_t wait = gfp_mask & __GFP_WAIT;
2438
2439 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2440 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2441
2442 /*
2443 * The caller may dip into page reserves a bit more if the caller
2444 * cannot run direct reclaim, or if the caller has realtime scheduling
2445 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2446 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2447 */
2448 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2449
2450 if (!wait) {
2451 /*
2452 * Not worth trying to allocate harder for
2453 * __GFP_NOMEMALLOC even if it can't schedule.
2454 */
2455 if (!(gfp_mask & __GFP_NOMEMALLOC))
2456 alloc_flags |= ALLOC_HARDER;
2457 /*
2458 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2459 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2460 */
2461 alloc_flags &= ~ALLOC_CPUSET;
2462 } else if (unlikely(rt_task(current)) && !in_interrupt())
2463 alloc_flags |= ALLOC_HARDER;
2464
2465 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2466 if (gfp_mask & __GFP_MEMALLOC)
2467 alloc_flags |= ALLOC_NO_WATERMARKS;
2468 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2469 alloc_flags |= ALLOC_NO_WATERMARKS;
2470 else if (!in_interrupt() &&
2471 ((current->flags & PF_MEMALLOC) ||
2472 unlikely(test_thread_flag(TIF_MEMDIE))))
2473 alloc_flags |= ALLOC_NO_WATERMARKS;
2474 }
2475 #ifdef CONFIG_CMA
2476 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2477 alloc_flags |= ALLOC_CMA;
2478 #endif
2479 return alloc_flags;
2480 }
2481
2482 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2483 {
2484 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2485 }
2486
2487 static inline struct page *
2488 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2489 struct zonelist *zonelist, enum zone_type high_zoneidx,
2490 nodemask_t *nodemask, struct zone *preferred_zone,
2491 int classzone_idx, int migratetype)
2492 {
2493 const gfp_t wait = gfp_mask & __GFP_WAIT;
2494 struct page *page = NULL;
2495 int alloc_flags;
2496 unsigned long pages_reclaimed = 0;
2497 unsigned long did_some_progress;
2498 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2499 bool deferred_compaction = false;
2500 bool contended_compaction = false;
2501
2502 /*
2503 * In the slowpath, we sanity check order to avoid ever trying to
2504 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2505 * be using allocators in order of preference for an area that is
2506 * too large.
2507 */
2508 if (order >= MAX_ORDER) {
2509 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2510 return NULL;
2511 }
2512
2513 /*
2514 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2515 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2516 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2517 * using a larger set of nodes after it has established that the
2518 * allowed per node queues are empty and that nodes are
2519 * over allocated.
2520 */
2521 if (IS_ENABLED(CONFIG_NUMA) &&
2522 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2523 goto nopage;
2524
2525 restart:
2526 if (!(gfp_mask & __GFP_NO_KSWAPD))
2527 wake_all_kswapds(order, zonelist, high_zoneidx, preferred_zone);
2528
2529 /*
2530 * OK, we're below the kswapd watermark and have kicked background
2531 * reclaim. Now things get more complex, so set up alloc_flags according
2532 * to how we want to proceed.
2533 */
2534 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2535
2536 /*
2537 * Find the true preferred zone if the allocation is unconstrained by
2538 * cpusets.
2539 */
2540 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2541 struct zoneref *preferred_zoneref;
2542 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2543 NULL, &preferred_zone);
2544 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2545 }
2546
2547 rebalance:
2548 /* This is the last chance, in general, before the goto nopage. */
2549 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2550 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2551 preferred_zone, classzone_idx, migratetype);
2552 if (page)
2553 goto got_pg;
2554
2555 /* Allocate without watermarks if the context allows */
2556 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2557 /*
2558 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2559 * the allocation is high priority and these type of
2560 * allocations are system rather than user orientated
2561 */
2562 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2563
2564 page = __alloc_pages_high_priority(gfp_mask, order,
2565 zonelist, high_zoneidx, nodemask,
2566 preferred_zone, classzone_idx, migratetype);
2567 if (page) {
2568 goto got_pg;
2569 }
2570 }
2571
2572 /* Atomic allocations - we can't balance anything */
2573 if (!wait) {
2574 /*
2575 * All existing users of the deprecated __GFP_NOFAIL are
2576 * blockable, so warn of any new users that actually allow this
2577 * type of allocation to fail.
2578 */
2579 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2580 goto nopage;
2581 }
2582
2583 /* Avoid recursion of direct reclaim */
2584 if (current->flags & PF_MEMALLOC)
2585 goto nopage;
2586
2587 /* Avoid allocations with no watermarks from looping endlessly */
2588 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2589 goto nopage;
2590
2591 /*
2592 * Try direct compaction. The first pass is asynchronous. Subsequent
2593 * attempts after direct reclaim are synchronous
2594 */
2595 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2596 high_zoneidx, nodemask, alloc_flags,
2597 preferred_zone,
2598 classzone_idx, migratetype,
2599 migration_mode, &contended_compaction,
2600 &deferred_compaction,
2601 &did_some_progress);
2602 if (page)
2603 goto got_pg;
2604
2605 /*
2606 * It can become very expensive to allocate transparent hugepages at
2607 * fault, so use asynchronous memory compaction for THP unless it is
2608 * khugepaged trying to collapse.
2609 */
2610 if (!(gfp_mask & __GFP_NO_KSWAPD) || (current->flags & PF_KTHREAD))
2611 migration_mode = MIGRATE_SYNC_LIGHT;
2612
2613 /*
2614 * If compaction is deferred for high-order allocations, it is because
2615 * sync compaction recently failed. In this is the case and the caller
2616 * requested a movable allocation that does not heavily disrupt the
2617 * system then fail the allocation instead of entering direct reclaim.
2618 */
2619 if ((deferred_compaction || contended_compaction) &&
2620 (gfp_mask & __GFP_NO_KSWAPD))
2621 goto nopage;
2622
2623 /* Try direct reclaim and then allocating */
2624 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2625 zonelist, high_zoneidx,
2626 nodemask,
2627 alloc_flags, preferred_zone,
2628 classzone_idx, migratetype,
2629 &did_some_progress);
2630 if (page)
2631 goto got_pg;
2632
2633 /*
2634 * If we failed to make any progress reclaiming, then we are
2635 * running out of options and have to consider going OOM
2636 */
2637 if (!did_some_progress) {
2638 if (oom_gfp_allowed(gfp_mask)) {
2639 if (oom_killer_disabled)
2640 goto nopage;
2641 /* Coredumps can quickly deplete all memory reserves */
2642 if ((current->flags & PF_DUMPCORE) &&
2643 !(gfp_mask & __GFP_NOFAIL))
2644 goto nopage;
2645 page = __alloc_pages_may_oom(gfp_mask, order,
2646 zonelist, high_zoneidx,
2647 nodemask, preferred_zone,
2648 classzone_idx, migratetype);
2649 if (page)
2650 goto got_pg;
2651
2652 if (!(gfp_mask & __GFP_NOFAIL)) {
2653 /*
2654 * The oom killer is not called for high-order
2655 * allocations that may fail, so if no progress
2656 * is being made, there are no other options and
2657 * retrying is unlikely to help.
2658 */
2659 if (order > PAGE_ALLOC_COSTLY_ORDER)
2660 goto nopage;
2661 /*
2662 * The oom killer is not called for lowmem
2663 * allocations to prevent needlessly killing
2664 * innocent tasks.
2665 */
2666 if (high_zoneidx < ZONE_NORMAL)
2667 goto nopage;
2668 }
2669
2670 goto restart;
2671 }
2672 }
2673
2674 /* Check if we should retry the allocation */
2675 pages_reclaimed += did_some_progress;
2676 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2677 pages_reclaimed)) {
2678 /* Wait for some write requests to complete then retry */
2679 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2680 goto rebalance;
2681 } else {
2682 /*
2683 * High-order allocations do not necessarily loop after
2684 * direct reclaim and reclaim/compaction depends on compaction
2685 * being called after reclaim so call directly if necessary
2686 */
2687 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2688 high_zoneidx, nodemask, alloc_flags,
2689 preferred_zone,
2690 classzone_idx, migratetype,
2691 migration_mode, &contended_compaction,
2692 &deferred_compaction,
2693 &did_some_progress);
2694 if (page)
2695 goto got_pg;
2696 }
2697
2698 nopage:
2699 warn_alloc_failed(gfp_mask, order, NULL);
2700 return page;
2701 got_pg:
2702 if (kmemcheck_enabled)
2703 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2704
2705 return page;
2706 }
2707
2708 /*
2709 * This is the 'heart' of the zoned buddy allocator.
2710 */
2711 struct page *
2712 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2713 struct zonelist *zonelist, nodemask_t *nodemask)
2714 {
2715 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2716 struct zone *preferred_zone;
2717 struct zoneref *preferred_zoneref;
2718 struct page *page = NULL;
2719 int migratetype = allocflags_to_migratetype(gfp_mask);
2720 unsigned int cpuset_mems_cookie;
2721 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2722 int classzone_idx;
2723
2724 gfp_mask &= gfp_allowed_mask;
2725
2726 lockdep_trace_alloc(gfp_mask);
2727
2728 might_sleep_if(gfp_mask & __GFP_WAIT);
2729
2730 if (should_fail_alloc_page(gfp_mask, order))
2731 return NULL;
2732
2733 /*
2734 * Check the zones suitable for the gfp_mask contain at least one
2735 * valid zone. It's possible to have an empty zonelist as a result
2736 * of GFP_THISNODE and a memoryless node
2737 */
2738 if (unlikely(!zonelist->_zonerefs->zone))
2739 return NULL;
2740
2741 retry_cpuset:
2742 cpuset_mems_cookie = read_mems_allowed_begin();
2743
2744 /* The preferred zone is used for statistics later */
2745 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2746 nodemask ? : &cpuset_current_mems_allowed,
2747 &preferred_zone);
2748 if (!preferred_zone)
2749 goto out;
2750 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2751
2752 #ifdef CONFIG_CMA
2753 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2754 alloc_flags |= ALLOC_CMA;
2755 #endif
2756 retry:
2757 /* First allocation attempt */
2758 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2759 zonelist, high_zoneidx, alloc_flags,
2760 preferred_zone, classzone_idx, migratetype);
2761 if (unlikely(!page)) {
2762 /*
2763 * The first pass makes sure allocations are spread
2764 * fairly within the local node. However, the local
2765 * node might have free pages left after the fairness
2766 * batches are exhausted, and remote zones haven't
2767 * even been considered yet. Try once more without
2768 * fairness, and include remote zones now, before
2769 * entering the slowpath and waking kswapd: prefer
2770 * spilling to a remote zone over swapping locally.
2771 */
2772 if (alloc_flags & ALLOC_FAIR) {
2773 reset_alloc_batches(zonelist, high_zoneidx,
2774 preferred_zone);
2775 alloc_flags &= ~ALLOC_FAIR;
2776 goto retry;
2777 }
2778 /*
2779 * Runtime PM, block IO and its error handling path
2780 * can deadlock because I/O on the device might not
2781 * complete.
2782 */
2783 gfp_mask = memalloc_noio_flags(gfp_mask);
2784 page = __alloc_pages_slowpath(gfp_mask, order,
2785 zonelist, high_zoneidx, nodemask,
2786 preferred_zone, classzone_idx, migratetype);
2787 }
2788
2789 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2790
2791 out:
2792 /*
2793 * When updating a task's mems_allowed, it is possible to race with
2794 * parallel threads in such a way that an allocation can fail while
2795 * the mask is being updated. If a page allocation is about to fail,
2796 * check if the cpuset changed during allocation and if so, retry.
2797 */
2798 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2799 goto retry_cpuset;
2800
2801 return page;
2802 }
2803 EXPORT_SYMBOL(__alloc_pages_nodemask);
2804
2805 /*
2806 * Common helper functions.
2807 */
2808 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2809 {
2810 struct page *page;
2811
2812 /*
2813 * __get_free_pages() returns a 32-bit address, which cannot represent
2814 * a highmem page
2815 */
2816 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2817
2818 page = alloc_pages(gfp_mask, order);
2819 if (!page)
2820 return 0;
2821 return (unsigned long) page_address(page);
2822 }
2823 EXPORT_SYMBOL(__get_free_pages);
2824
2825 unsigned long get_zeroed_page(gfp_t gfp_mask)
2826 {
2827 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2828 }
2829 EXPORT_SYMBOL(get_zeroed_page);
2830
2831 void __free_pages(struct page *page, unsigned int order)
2832 {
2833 if (put_page_testzero(page)) {
2834 if (order == 0)
2835 free_hot_cold_page(page, false);
2836 else
2837 __free_pages_ok(page, order);
2838 }
2839 }
2840
2841 EXPORT_SYMBOL(__free_pages);
2842
2843 void free_pages(unsigned long addr, unsigned int order)
2844 {
2845 if (addr != 0) {
2846 VM_BUG_ON(!virt_addr_valid((void *)addr));
2847 __free_pages(virt_to_page((void *)addr), order);
2848 }
2849 }
2850
2851 EXPORT_SYMBOL(free_pages);
2852
2853 /*
2854 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2855 * of the current memory cgroup.
2856 *
2857 * It should be used when the caller would like to use kmalloc, but since the
2858 * allocation is large, it has to fall back to the page allocator.
2859 */
2860 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2861 {
2862 struct page *page;
2863 struct mem_cgroup *memcg = NULL;
2864
2865 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2866 return NULL;
2867 page = alloc_pages(gfp_mask, order);
2868 memcg_kmem_commit_charge(page, memcg, order);
2869 return page;
2870 }
2871
2872 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2873 {
2874 struct page *page;
2875 struct mem_cgroup *memcg = NULL;
2876
2877 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2878 return NULL;
2879 page = alloc_pages_node(nid, gfp_mask, order);
2880 memcg_kmem_commit_charge(page, memcg, order);
2881 return page;
2882 }
2883
2884 /*
2885 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2886 * alloc_kmem_pages.
2887 */
2888 void __free_kmem_pages(struct page *page, unsigned int order)
2889 {
2890 memcg_kmem_uncharge_pages(page, order);
2891 __free_pages(page, order);
2892 }
2893
2894 void free_kmem_pages(unsigned long addr, unsigned int order)
2895 {
2896 if (addr != 0) {
2897 VM_BUG_ON(!virt_addr_valid((void *)addr));
2898 __free_kmem_pages(virt_to_page((void *)addr), order);
2899 }
2900 }
2901
2902 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2903 {
2904 if (addr) {
2905 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2906 unsigned long used = addr + PAGE_ALIGN(size);
2907
2908 split_page(virt_to_page((void *)addr), order);
2909 while (used < alloc_end) {
2910 free_page(used);
2911 used += PAGE_SIZE;
2912 }
2913 }
2914 return (void *)addr;
2915 }
2916
2917 /**
2918 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2919 * @size: the number of bytes to allocate
2920 * @gfp_mask: GFP flags for the allocation
2921 *
2922 * This function is similar to alloc_pages(), except that it allocates the
2923 * minimum number of pages to satisfy the request. alloc_pages() can only
2924 * allocate memory in power-of-two pages.
2925 *
2926 * This function is also limited by MAX_ORDER.
2927 *
2928 * Memory allocated by this function must be released by free_pages_exact().
2929 */
2930 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2931 {
2932 unsigned int order = get_order(size);
2933 unsigned long addr;
2934
2935 addr = __get_free_pages(gfp_mask, order);
2936 return make_alloc_exact(addr, order, size);
2937 }
2938 EXPORT_SYMBOL(alloc_pages_exact);
2939
2940 /**
2941 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2942 * pages on a node.
2943 * @nid: the preferred node ID where memory should be allocated
2944 * @size: the number of bytes to allocate
2945 * @gfp_mask: GFP flags for the allocation
2946 *
2947 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2948 * back.
2949 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2950 * but is not exact.
2951 */
2952 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2953 {
2954 unsigned order = get_order(size);
2955 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2956 if (!p)
2957 return NULL;
2958 return make_alloc_exact((unsigned long)page_address(p), order, size);
2959 }
2960 EXPORT_SYMBOL(alloc_pages_exact_nid);
2961
2962 /**
2963 * free_pages_exact - release memory allocated via alloc_pages_exact()
2964 * @virt: the value returned by alloc_pages_exact.
2965 * @size: size of allocation, same value as passed to alloc_pages_exact().
2966 *
2967 * Release the memory allocated by a previous call to alloc_pages_exact.
2968 */
2969 void free_pages_exact(void *virt, size_t size)
2970 {
2971 unsigned long addr = (unsigned long)virt;
2972 unsigned long end = addr + PAGE_ALIGN(size);
2973
2974 while (addr < end) {
2975 free_page(addr);
2976 addr += PAGE_SIZE;
2977 }
2978 }
2979 EXPORT_SYMBOL(free_pages_exact);
2980
2981 /**
2982 * nr_free_zone_pages - count number of pages beyond high watermark
2983 * @offset: The zone index of the highest zone
2984 *
2985 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2986 * high watermark within all zones at or below a given zone index. For each
2987 * zone, the number of pages is calculated as:
2988 * managed_pages - high_pages
2989 */
2990 static unsigned long nr_free_zone_pages(int offset)
2991 {
2992 struct zoneref *z;
2993 struct zone *zone;
2994
2995 /* Just pick one node, since fallback list is circular */
2996 unsigned long sum = 0;
2997
2998 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2999
3000 for_each_zone_zonelist(zone, z, zonelist, offset) {
3001 unsigned long size = zone->managed_pages;
3002 unsigned long high = high_wmark_pages(zone);
3003 if (size > high)
3004 sum += size - high;
3005 }
3006
3007 return sum;
3008 }
3009
3010 /**
3011 * nr_free_buffer_pages - count number of pages beyond high watermark
3012 *
3013 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3014 * watermark within ZONE_DMA and ZONE_NORMAL.
3015 */
3016 unsigned long nr_free_buffer_pages(void)
3017 {
3018 return nr_free_zone_pages(gfp_zone(GFP_USER));
3019 }
3020 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3021
3022 /**
3023 * nr_free_pagecache_pages - count number of pages beyond high watermark
3024 *
3025 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3026 * high watermark within all zones.
3027 */
3028 unsigned long nr_free_pagecache_pages(void)
3029 {
3030 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3031 }
3032
3033 static inline void show_node(struct zone *zone)
3034 {
3035 if (IS_ENABLED(CONFIG_NUMA))
3036 printk("Node %d ", zone_to_nid(zone));
3037 }
3038
3039 void si_meminfo(struct sysinfo *val)
3040 {
3041 val->totalram = totalram_pages;
3042 val->sharedram = 0;
3043 val->freeram = global_page_state(NR_FREE_PAGES);
3044 val->bufferram = nr_blockdev_pages();
3045 val->totalhigh = totalhigh_pages;
3046 val->freehigh = nr_free_highpages();
3047 val->mem_unit = PAGE_SIZE;
3048 }
3049
3050 EXPORT_SYMBOL(si_meminfo);
3051
3052 #ifdef CONFIG_NUMA
3053 void si_meminfo_node(struct sysinfo *val, int nid)
3054 {
3055 int zone_type; /* needs to be signed */
3056 unsigned long managed_pages = 0;
3057 pg_data_t *pgdat = NODE_DATA(nid);
3058
3059 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3060 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3061 val->totalram = managed_pages;
3062 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3063 #ifdef CONFIG_HIGHMEM
3064 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3065 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3066 NR_FREE_PAGES);
3067 #else
3068 val->totalhigh = 0;
3069 val->freehigh = 0;
3070 #endif
3071 val->mem_unit = PAGE_SIZE;
3072 }
3073 #endif
3074
3075 /*
3076 * Determine whether the node should be displayed or not, depending on whether
3077 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3078 */
3079 bool skip_free_areas_node(unsigned int flags, int nid)
3080 {
3081 bool ret = false;
3082 unsigned int cpuset_mems_cookie;
3083
3084 if (!(flags & SHOW_MEM_FILTER_NODES))
3085 goto out;
3086
3087 do {
3088 cpuset_mems_cookie = read_mems_allowed_begin();
3089 ret = !node_isset(nid, cpuset_current_mems_allowed);
3090 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3091 out:
3092 return ret;
3093 }
3094
3095 #define K(x) ((x) << (PAGE_SHIFT-10))
3096
3097 static void show_migration_types(unsigned char type)
3098 {
3099 static const char types[MIGRATE_TYPES] = {
3100 [MIGRATE_UNMOVABLE] = 'U',
3101 [MIGRATE_RECLAIMABLE] = 'E',
3102 [MIGRATE_MOVABLE] = 'M',
3103 [MIGRATE_RESERVE] = 'R',
3104 #ifdef CONFIG_CMA
3105 [MIGRATE_CMA] = 'C',
3106 #endif
3107 #ifdef CONFIG_MEMORY_ISOLATION
3108 [MIGRATE_ISOLATE] = 'I',
3109 #endif
3110 };
3111 char tmp[MIGRATE_TYPES + 1];
3112 char *p = tmp;
3113 int i;
3114
3115 for (i = 0; i < MIGRATE_TYPES; i++) {
3116 if (type & (1 << i))
3117 *p++ = types[i];
3118 }
3119
3120 *p = '\0';
3121 printk("(%s) ", tmp);
3122 }
3123
3124 /*
3125 * Show free area list (used inside shift_scroll-lock stuff)
3126 * We also calculate the percentage fragmentation. We do this by counting the
3127 * memory on each free list with the exception of the first item on the list.
3128 * Suppresses nodes that are not allowed by current's cpuset if
3129 * SHOW_MEM_FILTER_NODES is passed.
3130 */
3131 void show_free_areas(unsigned int filter)
3132 {
3133 int cpu;
3134 struct zone *zone;
3135
3136 for_each_populated_zone(zone) {
3137 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3138 continue;
3139 show_node(zone);
3140 printk("%s per-cpu:\n", zone->name);
3141
3142 for_each_online_cpu(cpu) {
3143 struct per_cpu_pageset *pageset;
3144
3145 pageset = per_cpu_ptr(zone->pageset, cpu);
3146
3147 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3148 cpu, pageset->pcp.high,
3149 pageset->pcp.batch, pageset->pcp.count);
3150 }
3151 }
3152
3153 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3154 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3155 " unevictable:%lu"
3156 " dirty:%lu writeback:%lu unstable:%lu\n"
3157 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3158 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3159 " free_cma:%lu\n",
3160 global_page_state(NR_ACTIVE_ANON),
3161 global_page_state(NR_INACTIVE_ANON),
3162 global_page_state(NR_ISOLATED_ANON),
3163 global_page_state(NR_ACTIVE_FILE),
3164 global_page_state(NR_INACTIVE_FILE),
3165 global_page_state(NR_ISOLATED_FILE),
3166 global_page_state(NR_UNEVICTABLE),
3167 global_page_state(NR_FILE_DIRTY),
3168 global_page_state(NR_WRITEBACK),
3169 global_page_state(NR_UNSTABLE_NFS),
3170 global_page_state(NR_FREE_PAGES),
3171 global_page_state(NR_SLAB_RECLAIMABLE),
3172 global_page_state(NR_SLAB_UNRECLAIMABLE),
3173 global_page_state(NR_FILE_MAPPED),
3174 global_page_state(NR_SHMEM),
3175 global_page_state(NR_PAGETABLE),
3176 global_page_state(NR_BOUNCE),
3177 global_page_state(NR_FREE_CMA_PAGES));
3178
3179 for_each_populated_zone(zone) {
3180 int i;
3181
3182 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3183 continue;
3184 show_node(zone);
3185 printk("%s"
3186 " free:%lukB"
3187 " min:%lukB"
3188 " low:%lukB"
3189 " high:%lukB"
3190 " active_anon:%lukB"
3191 " inactive_anon:%lukB"
3192 " active_file:%lukB"
3193 " inactive_file:%lukB"
3194 " unevictable:%lukB"
3195 " isolated(anon):%lukB"
3196 " isolated(file):%lukB"
3197 " present:%lukB"
3198 " managed:%lukB"
3199 " mlocked:%lukB"
3200 " dirty:%lukB"
3201 " writeback:%lukB"
3202 " mapped:%lukB"
3203 " shmem:%lukB"
3204 " slab_reclaimable:%lukB"
3205 " slab_unreclaimable:%lukB"
3206 " kernel_stack:%lukB"
3207 " pagetables:%lukB"
3208 " unstable:%lukB"
3209 " bounce:%lukB"
3210 " free_cma:%lukB"
3211 " writeback_tmp:%lukB"
3212 " pages_scanned:%lu"
3213 " all_unreclaimable? %s"
3214 "\n",
3215 zone->name,
3216 K(zone_page_state(zone, NR_FREE_PAGES)),
3217 K(min_wmark_pages(zone)),
3218 K(low_wmark_pages(zone)),
3219 K(high_wmark_pages(zone)),
3220 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3221 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3222 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3223 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3224 K(zone_page_state(zone, NR_UNEVICTABLE)),
3225 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3226 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3227 K(zone->present_pages),
3228 K(zone->managed_pages),
3229 K(zone_page_state(zone, NR_MLOCK)),
3230 K(zone_page_state(zone, NR_FILE_DIRTY)),
3231 K(zone_page_state(zone, NR_WRITEBACK)),
3232 K(zone_page_state(zone, NR_FILE_MAPPED)),
3233 K(zone_page_state(zone, NR_SHMEM)),
3234 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3235 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3236 zone_page_state(zone, NR_KERNEL_STACK) *
3237 THREAD_SIZE / 1024,
3238 K(zone_page_state(zone, NR_PAGETABLE)),
3239 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3240 K(zone_page_state(zone, NR_BOUNCE)),
3241 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3242 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3243 zone->pages_scanned,
3244 (!zone_reclaimable(zone) ? "yes" : "no")
3245 );
3246 printk("lowmem_reserve[]:");
3247 for (i = 0; i < MAX_NR_ZONES; i++)
3248 printk(" %lu", zone->lowmem_reserve[i]);
3249 printk("\n");
3250 }
3251
3252 for_each_populated_zone(zone) {
3253 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3254 unsigned char types[MAX_ORDER];
3255
3256 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3257 continue;
3258 show_node(zone);
3259 printk("%s: ", zone->name);
3260
3261 spin_lock_irqsave(&zone->lock, flags);
3262 for (order = 0; order < MAX_ORDER; order++) {
3263 struct free_area *area = &zone->free_area[order];
3264 int type;
3265
3266 nr[order] = area->nr_free;
3267 total += nr[order] << order;
3268
3269 types[order] = 0;
3270 for (type = 0; type < MIGRATE_TYPES; type++) {
3271 if (!list_empty(&area->free_list[type]))
3272 types[order] |= 1 << type;
3273 }
3274 }
3275 spin_unlock_irqrestore(&zone->lock, flags);
3276 for (order = 0; order < MAX_ORDER; order++) {
3277 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3278 if (nr[order])
3279 show_migration_types(types[order]);
3280 }
3281 printk("= %lukB\n", K(total));
3282 }
3283
3284 hugetlb_show_meminfo();
3285
3286 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3287
3288 show_swap_cache_info();
3289 }
3290
3291 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3292 {
3293 zoneref->zone = zone;
3294 zoneref->zone_idx = zone_idx(zone);
3295 }
3296
3297 /*
3298 * Builds allocation fallback zone lists.
3299 *
3300 * Add all populated zones of a node to the zonelist.
3301 */
3302 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3303 int nr_zones)
3304 {
3305 struct zone *zone;
3306 enum zone_type zone_type = MAX_NR_ZONES;
3307
3308 do {
3309 zone_type--;
3310 zone = pgdat->node_zones + zone_type;
3311 if (populated_zone(zone)) {
3312 zoneref_set_zone(zone,
3313 &zonelist->_zonerefs[nr_zones++]);
3314 check_highest_zone(zone_type);
3315 }
3316 } while (zone_type);
3317
3318 return nr_zones;
3319 }
3320
3321
3322 /*
3323 * zonelist_order:
3324 * 0 = automatic detection of better ordering.
3325 * 1 = order by ([node] distance, -zonetype)
3326 * 2 = order by (-zonetype, [node] distance)
3327 *
3328 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3329 * the same zonelist. So only NUMA can configure this param.
3330 */
3331 #define ZONELIST_ORDER_DEFAULT 0
3332 #define ZONELIST_ORDER_NODE 1
3333 #define ZONELIST_ORDER_ZONE 2
3334
3335 /* zonelist order in the kernel.
3336 * set_zonelist_order() will set this to NODE or ZONE.
3337 */
3338 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3339 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3340
3341
3342 #ifdef CONFIG_NUMA
3343 /* The value user specified ....changed by config */
3344 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3345 /* string for sysctl */
3346 #define NUMA_ZONELIST_ORDER_LEN 16
3347 char numa_zonelist_order[16] = "default";
3348
3349 /*
3350 * interface for configure zonelist ordering.
3351 * command line option "numa_zonelist_order"
3352 * = "[dD]efault - default, automatic configuration.
3353 * = "[nN]ode - order by node locality, then by zone within node
3354 * = "[zZ]one - order by zone, then by locality within zone
3355 */
3356
3357 static int __parse_numa_zonelist_order(char *s)
3358 {
3359 if (*s == 'd' || *s == 'D') {
3360 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3361 } else if (*s == 'n' || *s == 'N') {
3362 user_zonelist_order = ZONELIST_ORDER_NODE;
3363 } else if (*s == 'z' || *s == 'Z') {
3364 user_zonelist_order = ZONELIST_ORDER_ZONE;
3365 } else {
3366 printk(KERN_WARNING
3367 "Ignoring invalid numa_zonelist_order value: "
3368 "%s\n", s);
3369 return -EINVAL;
3370 }
3371 return 0;
3372 }
3373
3374 static __init int setup_numa_zonelist_order(char *s)
3375 {
3376 int ret;
3377
3378 if (!s)
3379 return 0;
3380
3381 ret = __parse_numa_zonelist_order(s);
3382 if (ret == 0)
3383 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3384
3385 return ret;
3386 }
3387 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3388
3389 /*
3390 * sysctl handler for numa_zonelist_order
3391 */
3392 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3393 void __user *buffer, size_t *length,
3394 loff_t *ppos)
3395 {
3396 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3397 int ret;
3398 static DEFINE_MUTEX(zl_order_mutex);
3399
3400 mutex_lock(&zl_order_mutex);
3401 if (write) {
3402 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3403 ret = -EINVAL;
3404 goto out;
3405 }
3406 strcpy(saved_string, (char *)table->data);
3407 }
3408 ret = proc_dostring(table, write, buffer, length, ppos);
3409 if (ret)
3410 goto out;
3411 if (write) {
3412 int oldval = user_zonelist_order;
3413
3414 ret = __parse_numa_zonelist_order((char *)table->data);
3415 if (ret) {
3416 /*
3417 * bogus value. restore saved string
3418 */
3419 strncpy((char *)table->data, saved_string,
3420 NUMA_ZONELIST_ORDER_LEN);
3421 user_zonelist_order = oldval;
3422 } else if (oldval != user_zonelist_order) {
3423 mutex_lock(&zonelists_mutex);
3424 build_all_zonelists(NULL, NULL);
3425 mutex_unlock(&zonelists_mutex);
3426 }
3427 }
3428 out:
3429 mutex_unlock(&zl_order_mutex);
3430 return ret;
3431 }
3432
3433
3434 #define MAX_NODE_LOAD (nr_online_nodes)
3435 static int node_load[MAX_NUMNODES];
3436
3437 /**
3438 * find_next_best_node - find the next node that should appear in a given node's fallback list
3439 * @node: node whose fallback list we're appending
3440 * @used_node_mask: nodemask_t of already used nodes
3441 *
3442 * We use a number of factors to determine which is the next node that should
3443 * appear on a given node's fallback list. The node should not have appeared
3444 * already in @node's fallback list, and it should be the next closest node
3445 * according to the distance array (which contains arbitrary distance values
3446 * from each node to each node in the system), and should also prefer nodes
3447 * with no CPUs, since presumably they'll have very little allocation pressure
3448 * on them otherwise.
3449 * It returns -1 if no node is found.
3450 */
3451 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3452 {
3453 int n, val;
3454 int min_val = INT_MAX;
3455 int best_node = NUMA_NO_NODE;
3456 const struct cpumask *tmp = cpumask_of_node(0);
3457
3458 /* Use the local node if we haven't already */
3459 if (!node_isset(node, *used_node_mask)) {
3460 node_set(node, *used_node_mask);
3461 return node;
3462 }
3463
3464 for_each_node_state(n, N_MEMORY) {
3465
3466 /* Don't want a node to appear more than once */
3467 if (node_isset(n, *used_node_mask))
3468 continue;
3469
3470 /* Use the distance array to find the distance */
3471 val = node_distance(node, n);
3472
3473 /* Penalize nodes under us ("prefer the next node") */
3474 val += (n < node);
3475
3476 /* Give preference to headless and unused nodes */
3477 tmp = cpumask_of_node(n);
3478 if (!cpumask_empty(tmp))
3479 val += PENALTY_FOR_NODE_WITH_CPUS;
3480
3481 /* Slight preference for less loaded node */
3482 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3483 val += node_load[n];
3484
3485 if (val < min_val) {
3486 min_val = val;
3487 best_node = n;
3488 }
3489 }
3490
3491 if (best_node >= 0)
3492 node_set(best_node, *used_node_mask);
3493
3494 return best_node;
3495 }
3496
3497
3498 /*
3499 * Build zonelists ordered by node and zones within node.
3500 * This results in maximum locality--normal zone overflows into local
3501 * DMA zone, if any--but risks exhausting DMA zone.
3502 */
3503 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3504 {
3505 int j;
3506 struct zonelist *zonelist;
3507
3508 zonelist = &pgdat->node_zonelists[0];
3509 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3510 ;
3511 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3512 zonelist->_zonerefs[j].zone = NULL;
3513 zonelist->_zonerefs[j].zone_idx = 0;
3514 }
3515
3516 /*
3517 * Build gfp_thisnode zonelists
3518 */
3519 static void build_thisnode_zonelists(pg_data_t *pgdat)
3520 {
3521 int j;
3522 struct zonelist *zonelist;
3523
3524 zonelist = &pgdat->node_zonelists[1];
3525 j = build_zonelists_node(pgdat, zonelist, 0);
3526 zonelist->_zonerefs[j].zone = NULL;
3527 zonelist->_zonerefs[j].zone_idx = 0;
3528 }
3529
3530 /*
3531 * Build zonelists ordered by zone and nodes within zones.
3532 * This results in conserving DMA zone[s] until all Normal memory is
3533 * exhausted, but results in overflowing to remote node while memory
3534 * may still exist in local DMA zone.
3535 */
3536 static int node_order[MAX_NUMNODES];
3537
3538 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3539 {
3540 int pos, j, node;
3541 int zone_type; /* needs to be signed */
3542 struct zone *z;
3543 struct zonelist *zonelist;
3544
3545 zonelist = &pgdat->node_zonelists[0];
3546 pos = 0;
3547 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3548 for (j = 0; j < nr_nodes; j++) {
3549 node = node_order[j];
3550 z = &NODE_DATA(node)->node_zones[zone_type];
3551 if (populated_zone(z)) {
3552 zoneref_set_zone(z,
3553 &zonelist->_zonerefs[pos++]);
3554 check_highest_zone(zone_type);
3555 }
3556 }
3557 }
3558 zonelist->_zonerefs[pos].zone = NULL;
3559 zonelist->_zonerefs[pos].zone_idx = 0;
3560 }
3561
3562 static int default_zonelist_order(void)
3563 {
3564 int nid, zone_type;
3565 unsigned long low_kmem_size, total_size;
3566 struct zone *z;
3567 int average_size;
3568 /*
3569 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3570 * If they are really small and used heavily, the system can fall
3571 * into OOM very easily.
3572 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3573 */
3574 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3575 low_kmem_size = 0;
3576 total_size = 0;
3577 for_each_online_node(nid) {
3578 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3579 z = &NODE_DATA(nid)->node_zones[zone_type];
3580 if (populated_zone(z)) {
3581 if (zone_type < ZONE_NORMAL)
3582 low_kmem_size += z->managed_pages;
3583 total_size += z->managed_pages;
3584 } else if (zone_type == ZONE_NORMAL) {
3585 /*
3586 * If any node has only lowmem, then node order
3587 * is preferred to allow kernel allocations
3588 * locally; otherwise, they can easily infringe
3589 * on other nodes when there is an abundance of
3590 * lowmem available to allocate from.
3591 */
3592 return ZONELIST_ORDER_NODE;
3593 }
3594 }
3595 }
3596 if (!low_kmem_size || /* there are no DMA area. */
3597 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3598 return ZONELIST_ORDER_NODE;
3599 /*
3600 * look into each node's config.
3601 * If there is a node whose DMA/DMA32 memory is very big area on
3602 * local memory, NODE_ORDER may be suitable.
3603 */
3604 average_size = total_size /
3605 (nodes_weight(node_states[N_MEMORY]) + 1);
3606 for_each_online_node(nid) {
3607 low_kmem_size = 0;
3608 total_size = 0;
3609 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3610 z = &NODE_DATA(nid)->node_zones[zone_type];
3611 if (populated_zone(z)) {
3612 if (zone_type < ZONE_NORMAL)
3613 low_kmem_size += z->present_pages;
3614 total_size += z->present_pages;
3615 }
3616 }
3617 if (low_kmem_size &&
3618 total_size > average_size && /* ignore small node */
3619 low_kmem_size > total_size * 70/100)
3620 return ZONELIST_ORDER_NODE;
3621 }
3622 return ZONELIST_ORDER_ZONE;
3623 }
3624
3625 static void set_zonelist_order(void)
3626 {
3627 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3628 current_zonelist_order = default_zonelist_order();
3629 else
3630 current_zonelist_order = user_zonelist_order;
3631 }
3632
3633 static void build_zonelists(pg_data_t *pgdat)
3634 {
3635 int j, node, load;
3636 enum zone_type i;
3637 nodemask_t used_mask;
3638 int local_node, prev_node;
3639 struct zonelist *zonelist;
3640 int order = current_zonelist_order;
3641
3642 /* initialize zonelists */
3643 for (i = 0; i < MAX_ZONELISTS; i++) {
3644 zonelist = pgdat->node_zonelists + i;
3645 zonelist->_zonerefs[0].zone = NULL;
3646 zonelist->_zonerefs[0].zone_idx = 0;
3647 }
3648
3649 /* NUMA-aware ordering of nodes */
3650 local_node = pgdat->node_id;
3651 load = nr_online_nodes;
3652 prev_node = local_node;
3653 nodes_clear(used_mask);
3654
3655 memset(node_order, 0, sizeof(node_order));
3656 j = 0;
3657
3658 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3659 /*
3660 * We don't want to pressure a particular node.
3661 * So adding penalty to the first node in same
3662 * distance group to make it round-robin.
3663 */
3664 if (node_distance(local_node, node) !=
3665 node_distance(local_node, prev_node))
3666 node_load[node] = load;
3667
3668 prev_node = node;
3669 load--;
3670 if (order == ZONELIST_ORDER_NODE)
3671 build_zonelists_in_node_order(pgdat, node);
3672 else
3673 node_order[j++] = node; /* remember order */
3674 }
3675
3676 if (order == ZONELIST_ORDER_ZONE) {
3677 /* calculate node order -- i.e., DMA last! */
3678 build_zonelists_in_zone_order(pgdat, j);
3679 }
3680
3681 build_thisnode_zonelists(pgdat);
3682 }
3683
3684 /* Construct the zonelist performance cache - see further mmzone.h */
3685 static void build_zonelist_cache(pg_data_t *pgdat)
3686 {
3687 struct zonelist *zonelist;
3688 struct zonelist_cache *zlc;
3689 struct zoneref *z;
3690
3691 zonelist = &pgdat->node_zonelists[0];
3692 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3693 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3694 for (z = zonelist->_zonerefs; z->zone; z++)
3695 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3696 }
3697
3698 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3699 /*
3700 * Return node id of node used for "local" allocations.
3701 * I.e., first node id of first zone in arg node's generic zonelist.
3702 * Used for initializing percpu 'numa_mem', which is used primarily
3703 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3704 */
3705 int local_memory_node(int node)
3706 {
3707 struct zone *zone;
3708
3709 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3710 gfp_zone(GFP_KERNEL),
3711 NULL,
3712 &zone);
3713 return zone->node;
3714 }
3715 #endif
3716
3717 #else /* CONFIG_NUMA */
3718
3719 static void set_zonelist_order(void)
3720 {
3721 current_zonelist_order = ZONELIST_ORDER_ZONE;
3722 }
3723
3724 static void build_zonelists(pg_data_t *pgdat)
3725 {
3726 int node, local_node;
3727 enum zone_type j;
3728 struct zonelist *zonelist;
3729
3730 local_node = pgdat->node_id;
3731
3732 zonelist = &pgdat->node_zonelists[0];
3733 j = build_zonelists_node(pgdat, zonelist, 0);
3734
3735 /*
3736 * Now we build the zonelist so that it contains the zones
3737 * of all the other nodes.
3738 * We don't want to pressure a particular node, so when
3739 * building the zones for node N, we make sure that the
3740 * zones coming right after the local ones are those from
3741 * node N+1 (modulo N)
3742 */
3743 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3744 if (!node_online(node))
3745 continue;
3746 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3747 }
3748 for (node = 0; node < local_node; node++) {
3749 if (!node_online(node))
3750 continue;
3751 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3752 }
3753
3754 zonelist->_zonerefs[j].zone = NULL;
3755 zonelist->_zonerefs[j].zone_idx = 0;
3756 }
3757
3758 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3759 static void build_zonelist_cache(pg_data_t *pgdat)
3760 {
3761 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3762 }
3763
3764 #endif /* CONFIG_NUMA */
3765
3766 /*
3767 * Boot pageset table. One per cpu which is going to be used for all
3768 * zones and all nodes. The parameters will be set in such a way
3769 * that an item put on a list will immediately be handed over to
3770 * the buddy list. This is safe since pageset manipulation is done
3771 * with interrupts disabled.
3772 *
3773 * The boot_pagesets must be kept even after bootup is complete for
3774 * unused processors and/or zones. They do play a role for bootstrapping
3775 * hotplugged processors.
3776 *
3777 * zoneinfo_show() and maybe other functions do
3778 * not check if the processor is online before following the pageset pointer.
3779 * Other parts of the kernel may not check if the zone is available.
3780 */
3781 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3782 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3783 static void setup_zone_pageset(struct zone *zone);
3784
3785 /*
3786 * Global mutex to protect against size modification of zonelists
3787 * as well as to serialize pageset setup for the new populated zone.
3788 */
3789 DEFINE_MUTEX(zonelists_mutex);
3790
3791 /* return values int ....just for stop_machine() */
3792 static int __build_all_zonelists(void *data)
3793 {
3794 int nid;
3795 int cpu;
3796 pg_data_t *self = data;
3797
3798 #ifdef CONFIG_NUMA
3799 memset(node_load, 0, sizeof(node_load));
3800 #endif
3801
3802 if (self && !node_online(self->node_id)) {
3803 build_zonelists(self);
3804 build_zonelist_cache(self);
3805 }
3806
3807 for_each_online_node(nid) {
3808 pg_data_t *pgdat = NODE_DATA(nid);
3809
3810 build_zonelists(pgdat);
3811 build_zonelist_cache(pgdat);
3812 }
3813
3814 /*
3815 * Initialize the boot_pagesets that are going to be used
3816 * for bootstrapping processors. The real pagesets for
3817 * each zone will be allocated later when the per cpu
3818 * allocator is available.
3819 *
3820 * boot_pagesets are used also for bootstrapping offline
3821 * cpus if the system is already booted because the pagesets
3822 * are needed to initialize allocators on a specific cpu too.
3823 * F.e. the percpu allocator needs the page allocator which
3824 * needs the percpu allocator in order to allocate its pagesets
3825 * (a chicken-egg dilemma).
3826 */
3827 for_each_possible_cpu(cpu) {
3828 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3829
3830 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3831 /*
3832 * We now know the "local memory node" for each node--
3833 * i.e., the node of the first zone in the generic zonelist.
3834 * Set up numa_mem percpu variable for on-line cpus. During
3835 * boot, only the boot cpu should be on-line; we'll init the
3836 * secondary cpus' numa_mem as they come on-line. During
3837 * node/memory hotplug, we'll fixup all on-line cpus.
3838 */
3839 if (cpu_online(cpu))
3840 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3841 #endif
3842 }
3843
3844 return 0;
3845 }
3846
3847 /*
3848 * Called with zonelists_mutex held always
3849 * unless system_state == SYSTEM_BOOTING.
3850 */
3851 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3852 {
3853 set_zonelist_order();
3854
3855 if (system_state == SYSTEM_BOOTING) {
3856 __build_all_zonelists(NULL);
3857 mminit_verify_zonelist();
3858 cpuset_init_current_mems_allowed();
3859 } else {
3860 #ifdef CONFIG_MEMORY_HOTPLUG
3861 if (zone)
3862 setup_zone_pageset(zone);
3863 #endif
3864 /* we have to stop all cpus to guarantee there is no user
3865 of zonelist */
3866 stop_machine(__build_all_zonelists, pgdat, NULL);
3867 /* cpuset refresh routine should be here */
3868 }
3869 vm_total_pages = nr_free_pagecache_pages();
3870 /*
3871 * Disable grouping by mobility if the number of pages in the
3872 * system is too low to allow the mechanism to work. It would be
3873 * more accurate, but expensive to check per-zone. This check is
3874 * made on memory-hotadd so a system can start with mobility
3875 * disabled and enable it later
3876 */
3877 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3878 page_group_by_mobility_disabled = 1;
3879 else
3880 page_group_by_mobility_disabled = 0;
3881
3882 printk("Built %i zonelists in %s order, mobility grouping %s. "
3883 "Total pages: %ld\n",
3884 nr_online_nodes,
3885 zonelist_order_name[current_zonelist_order],
3886 page_group_by_mobility_disabled ? "off" : "on",
3887 vm_total_pages);
3888 #ifdef CONFIG_NUMA
3889 printk("Policy zone: %s\n", zone_names[policy_zone]);
3890 #endif
3891 }
3892
3893 /*
3894 * Helper functions to size the waitqueue hash table.
3895 * Essentially these want to choose hash table sizes sufficiently
3896 * large so that collisions trying to wait on pages are rare.
3897 * But in fact, the number of active page waitqueues on typical
3898 * systems is ridiculously low, less than 200. So this is even
3899 * conservative, even though it seems large.
3900 *
3901 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3902 * waitqueues, i.e. the size of the waitq table given the number of pages.
3903 */
3904 #define PAGES_PER_WAITQUEUE 256
3905
3906 #ifndef CONFIG_MEMORY_HOTPLUG
3907 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3908 {
3909 unsigned long size = 1;
3910
3911 pages /= PAGES_PER_WAITQUEUE;
3912
3913 while (size < pages)
3914 size <<= 1;
3915
3916 /*
3917 * Once we have dozens or even hundreds of threads sleeping
3918 * on IO we've got bigger problems than wait queue collision.
3919 * Limit the size of the wait table to a reasonable size.
3920 */
3921 size = min(size, 4096UL);
3922
3923 return max(size, 4UL);
3924 }
3925 #else
3926 /*
3927 * A zone's size might be changed by hot-add, so it is not possible to determine
3928 * a suitable size for its wait_table. So we use the maximum size now.
3929 *
3930 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3931 *
3932 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3933 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3934 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3935 *
3936 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3937 * or more by the traditional way. (See above). It equals:
3938 *
3939 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3940 * ia64(16K page size) : = ( 8G + 4M)byte.
3941 * powerpc (64K page size) : = (32G +16M)byte.
3942 */
3943 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3944 {
3945 return 4096UL;
3946 }
3947 #endif
3948
3949 /*
3950 * This is an integer logarithm so that shifts can be used later
3951 * to extract the more random high bits from the multiplicative
3952 * hash function before the remainder is taken.
3953 */
3954 static inline unsigned long wait_table_bits(unsigned long size)
3955 {
3956 return ffz(~size);
3957 }
3958
3959 /*
3960 * Check if a pageblock contains reserved pages
3961 */
3962 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3963 {
3964 unsigned long pfn;
3965
3966 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3967 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3968 return 1;
3969 }
3970 return 0;
3971 }
3972
3973 /*
3974 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3975 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3976 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3977 * higher will lead to a bigger reserve which will get freed as contiguous
3978 * blocks as reclaim kicks in
3979 */
3980 static void setup_zone_migrate_reserve(struct zone *zone)
3981 {
3982 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3983 struct page *page;
3984 unsigned long block_migratetype;
3985 int reserve;
3986 int old_reserve;
3987
3988 /*
3989 * Get the start pfn, end pfn and the number of blocks to reserve
3990 * We have to be careful to be aligned to pageblock_nr_pages to
3991 * make sure that we always check pfn_valid for the first page in
3992 * the block.
3993 */
3994 start_pfn = zone->zone_start_pfn;
3995 end_pfn = zone_end_pfn(zone);
3996 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3997 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3998 pageblock_order;
3999
4000 /*
4001 * Reserve blocks are generally in place to help high-order atomic
4002 * allocations that are short-lived. A min_free_kbytes value that
4003 * would result in more than 2 reserve blocks for atomic allocations
4004 * is assumed to be in place to help anti-fragmentation for the
4005 * future allocation of hugepages at runtime.
4006 */
4007 reserve = min(2, reserve);
4008 old_reserve = zone->nr_migrate_reserve_block;
4009
4010 /* When memory hot-add, we almost always need to do nothing */
4011 if (reserve == old_reserve)
4012 return;
4013 zone->nr_migrate_reserve_block = reserve;
4014
4015 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4016 if (!pfn_valid(pfn))
4017 continue;
4018 page = pfn_to_page(pfn);
4019
4020 /* Watch out for overlapping nodes */
4021 if (page_to_nid(page) != zone_to_nid(zone))
4022 continue;
4023
4024 block_migratetype = get_pageblock_migratetype(page);
4025
4026 /* Only test what is necessary when the reserves are not met */
4027 if (reserve > 0) {
4028 /*
4029 * Blocks with reserved pages will never free, skip
4030 * them.
4031 */
4032 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4033 if (pageblock_is_reserved(pfn, block_end_pfn))
4034 continue;
4035
4036 /* If this block is reserved, account for it */
4037 if (block_migratetype == MIGRATE_RESERVE) {
4038 reserve--;
4039 continue;
4040 }
4041
4042 /* Suitable for reserving if this block is movable */
4043 if (block_migratetype == MIGRATE_MOVABLE) {
4044 set_pageblock_migratetype(page,
4045 MIGRATE_RESERVE);
4046 move_freepages_block(zone, page,
4047 MIGRATE_RESERVE);
4048 reserve--;
4049 continue;
4050 }
4051 } else if (!old_reserve) {
4052 /*
4053 * At boot time we don't need to scan the whole zone
4054 * for turning off MIGRATE_RESERVE.
4055 */
4056 break;
4057 }
4058
4059 /*
4060 * If the reserve is met and this is a previous reserved block,
4061 * take it back
4062 */
4063 if (block_migratetype == MIGRATE_RESERVE) {
4064 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4065 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4066 }
4067 }
4068 }
4069
4070 /*
4071 * Initially all pages are reserved - free ones are freed
4072 * up by free_all_bootmem() once the early boot process is
4073 * done. Non-atomic initialization, single-pass.
4074 */
4075 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4076 unsigned long start_pfn, enum memmap_context context)
4077 {
4078 struct page *page;
4079 unsigned long end_pfn = start_pfn + size;
4080 unsigned long pfn;
4081 struct zone *z;
4082
4083 if (highest_memmap_pfn < end_pfn - 1)
4084 highest_memmap_pfn = end_pfn - 1;
4085
4086 z = &NODE_DATA(nid)->node_zones[zone];
4087 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4088 /*
4089 * There can be holes in boot-time mem_map[]s
4090 * handed to this function. They do not
4091 * exist on hotplugged memory.
4092 */
4093 if (context == MEMMAP_EARLY) {
4094 if (!early_pfn_valid(pfn))
4095 continue;
4096 if (!early_pfn_in_nid(pfn, nid))
4097 continue;
4098 }
4099 page = pfn_to_page(pfn);
4100 set_page_links(page, zone, nid, pfn);
4101 mminit_verify_page_links(page, zone, nid, pfn);
4102 init_page_count(page);
4103 page_mapcount_reset(page);
4104 page_cpupid_reset_last(page);
4105 SetPageReserved(page);
4106 /*
4107 * Mark the block movable so that blocks are reserved for
4108 * movable at startup. This will force kernel allocations
4109 * to reserve their blocks rather than leaking throughout
4110 * the address space during boot when many long-lived
4111 * kernel allocations are made. Later some blocks near
4112 * the start are marked MIGRATE_RESERVE by
4113 * setup_zone_migrate_reserve()
4114 *
4115 * bitmap is created for zone's valid pfn range. but memmap
4116 * can be created for invalid pages (for alignment)
4117 * check here not to call set_pageblock_migratetype() against
4118 * pfn out of zone.
4119 */
4120 if ((z->zone_start_pfn <= pfn)
4121 && (pfn < zone_end_pfn(z))
4122 && !(pfn & (pageblock_nr_pages - 1)))
4123 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4124
4125 INIT_LIST_HEAD(&page->lru);
4126 #ifdef WANT_PAGE_VIRTUAL
4127 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4128 if (!is_highmem_idx(zone))
4129 set_page_address(page, __va(pfn << PAGE_SHIFT));
4130 #endif
4131 }
4132 }
4133
4134 static void __meminit zone_init_free_lists(struct zone *zone)
4135 {
4136 unsigned int order, t;
4137 for_each_migratetype_order(order, t) {
4138 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4139 zone->free_area[order].nr_free = 0;
4140 }
4141 }
4142
4143 #ifndef __HAVE_ARCH_MEMMAP_INIT
4144 #define memmap_init(size, nid, zone, start_pfn) \
4145 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4146 #endif
4147
4148 static int __meminit zone_batchsize(struct zone *zone)
4149 {
4150 #ifdef CONFIG_MMU
4151 int batch;
4152
4153 /*
4154 * The per-cpu-pages pools are set to around 1000th of the
4155 * size of the zone. But no more than 1/2 of a meg.
4156 *
4157 * OK, so we don't know how big the cache is. So guess.
4158 */
4159 batch = zone->managed_pages / 1024;
4160 if (batch * PAGE_SIZE > 512 * 1024)
4161 batch = (512 * 1024) / PAGE_SIZE;
4162 batch /= 4; /* We effectively *= 4 below */
4163 if (batch < 1)
4164 batch = 1;
4165
4166 /*
4167 * Clamp the batch to a 2^n - 1 value. Having a power
4168 * of 2 value was found to be more likely to have
4169 * suboptimal cache aliasing properties in some cases.
4170 *
4171 * For example if 2 tasks are alternately allocating
4172 * batches of pages, one task can end up with a lot
4173 * of pages of one half of the possible page colors
4174 * and the other with pages of the other colors.
4175 */
4176 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4177
4178 return batch;
4179
4180 #else
4181 /* The deferral and batching of frees should be suppressed under NOMMU
4182 * conditions.
4183 *
4184 * The problem is that NOMMU needs to be able to allocate large chunks
4185 * of contiguous memory as there's no hardware page translation to
4186 * assemble apparent contiguous memory from discontiguous pages.
4187 *
4188 * Queueing large contiguous runs of pages for batching, however,
4189 * causes the pages to actually be freed in smaller chunks. As there
4190 * can be a significant delay between the individual batches being
4191 * recycled, this leads to the once large chunks of space being
4192 * fragmented and becoming unavailable for high-order allocations.
4193 */
4194 return 0;
4195 #endif
4196 }
4197
4198 /*
4199 * pcp->high and pcp->batch values are related and dependent on one another:
4200 * ->batch must never be higher then ->high.
4201 * The following function updates them in a safe manner without read side
4202 * locking.
4203 *
4204 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4205 * those fields changing asynchronously (acording the the above rule).
4206 *
4207 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4208 * outside of boot time (or some other assurance that no concurrent updaters
4209 * exist).
4210 */
4211 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4212 unsigned long batch)
4213 {
4214 /* start with a fail safe value for batch */
4215 pcp->batch = 1;
4216 smp_wmb();
4217
4218 /* Update high, then batch, in order */
4219 pcp->high = high;
4220 smp_wmb();
4221
4222 pcp->batch = batch;
4223 }
4224
4225 /* a companion to pageset_set_high() */
4226 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4227 {
4228 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4229 }
4230
4231 static void pageset_init(struct per_cpu_pageset *p)
4232 {
4233 struct per_cpu_pages *pcp;
4234 int migratetype;
4235
4236 memset(p, 0, sizeof(*p));
4237
4238 pcp = &p->pcp;
4239 pcp->count = 0;
4240 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4241 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4242 }
4243
4244 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4245 {
4246 pageset_init(p);
4247 pageset_set_batch(p, batch);
4248 }
4249
4250 /*
4251 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4252 * to the value high for the pageset p.
4253 */
4254 static void pageset_set_high(struct per_cpu_pageset *p,
4255 unsigned long high)
4256 {
4257 unsigned long batch = max(1UL, high / 4);
4258 if ((high / 4) > (PAGE_SHIFT * 8))
4259 batch = PAGE_SHIFT * 8;
4260
4261 pageset_update(&p->pcp, high, batch);
4262 }
4263
4264 static void __meminit pageset_set_high_and_batch(struct zone *zone,
4265 struct per_cpu_pageset *pcp)
4266 {
4267 if (percpu_pagelist_fraction)
4268 pageset_set_high(pcp,
4269 (zone->managed_pages /
4270 percpu_pagelist_fraction));
4271 else
4272 pageset_set_batch(pcp, zone_batchsize(zone));
4273 }
4274
4275 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4276 {
4277 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4278
4279 pageset_init(pcp);
4280 pageset_set_high_and_batch(zone, pcp);
4281 }
4282
4283 static void __meminit setup_zone_pageset(struct zone *zone)
4284 {
4285 int cpu;
4286 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4287 for_each_possible_cpu(cpu)
4288 zone_pageset_init(zone, cpu);
4289 }
4290
4291 /*
4292 * Allocate per cpu pagesets and initialize them.
4293 * Before this call only boot pagesets were available.
4294 */
4295 void __init setup_per_cpu_pageset(void)
4296 {
4297 struct zone *zone;
4298
4299 for_each_populated_zone(zone)
4300 setup_zone_pageset(zone);
4301 }
4302
4303 static noinline __init_refok
4304 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4305 {
4306 int i;
4307 size_t alloc_size;
4308
4309 /*
4310 * The per-page waitqueue mechanism uses hashed waitqueues
4311 * per zone.
4312 */
4313 zone->wait_table_hash_nr_entries =
4314 wait_table_hash_nr_entries(zone_size_pages);
4315 zone->wait_table_bits =
4316 wait_table_bits(zone->wait_table_hash_nr_entries);
4317 alloc_size = zone->wait_table_hash_nr_entries
4318 * sizeof(wait_queue_head_t);
4319
4320 if (!slab_is_available()) {
4321 zone->wait_table = (wait_queue_head_t *)
4322 memblock_virt_alloc_node_nopanic(
4323 alloc_size, zone->zone_pgdat->node_id);
4324 } else {
4325 /*
4326 * This case means that a zone whose size was 0 gets new memory
4327 * via memory hot-add.
4328 * But it may be the case that a new node was hot-added. In
4329 * this case vmalloc() will not be able to use this new node's
4330 * memory - this wait_table must be initialized to use this new
4331 * node itself as well.
4332 * To use this new node's memory, further consideration will be
4333 * necessary.
4334 */
4335 zone->wait_table = vmalloc(alloc_size);
4336 }
4337 if (!zone->wait_table)
4338 return -ENOMEM;
4339
4340 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4341 init_waitqueue_head(zone->wait_table + i);
4342
4343 return 0;
4344 }
4345
4346 static __meminit void zone_pcp_init(struct zone *zone)
4347 {
4348 /*
4349 * per cpu subsystem is not up at this point. The following code
4350 * relies on the ability of the linker to provide the
4351 * offset of a (static) per cpu variable into the per cpu area.
4352 */
4353 zone->pageset = &boot_pageset;
4354
4355 if (populated_zone(zone))
4356 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4357 zone->name, zone->present_pages,
4358 zone_batchsize(zone));
4359 }
4360
4361 int __meminit init_currently_empty_zone(struct zone *zone,
4362 unsigned long zone_start_pfn,
4363 unsigned long size,
4364 enum memmap_context context)
4365 {
4366 struct pglist_data *pgdat = zone->zone_pgdat;
4367 int ret;
4368 ret = zone_wait_table_init(zone, size);
4369 if (ret)
4370 return ret;
4371 pgdat->nr_zones = zone_idx(zone) + 1;
4372
4373 zone->zone_start_pfn = zone_start_pfn;
4374
4375 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4376 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4377 pgdat->node_id,
4378 (unsigned long)zone_idx(zone),
4379 zone_start_pfn, (zone_start_pfn + size));
4380
4381 zone_init_free_lists(zone);
4382
4383 return 0;
4384 }
4385
4386 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4387 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4388 /*
4389 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4390 */
4391 int __meminit __early_pfn_to_nid(unsigned long pfn)
4392 {
4393 unsigned long start_pfn, end_pfn;
4394 int nid;
4395 /*
4396 * NOTE: The following SMP-unsafe globals are only used early in boot
4397 * when the kernel is running single-threaded.
4398 */
4399 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4400 static int __meminitdata last_nid;
4401
4402 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4403 return last_nid;
4404
4405 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4406 if (nid != -1) {
4407 last_start_pfn = start_pfn;
4408 last_end_pfn = end_pfn;
4409 last_nid = nid;
4410 }
4411
4412 return nid;
4413 }
4414 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4415
4416 int __meminit early_pfn_to_nid(unsigned long pfn)
4417 {
4418 int nid;
4419
4420 nid = __early_pfn_to_nid(pfn);
4421 if (nid >= 0)
4422 return nid;
4423 /* just returns 0 */
4424 return 0;
4425 }
4426
4427 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4428 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4429 {
4430 int nid;
4431
4432 nid = __early_pfn_to_nid(pfn);
4433 if (nid >= 0 && nid != node)
4434 return false;
4435 return true;
4436 }
4437 #endif
4438
4439 /**
4440 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4441 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4442 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4443 *
4444 * If an architecture guarantees that all ranges registered contain no holes
4445 * and may be freed, this this function may be used instead of calling
4446 * memblock_free_early_nid() manually.
4447 */
4448 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4449 {
4450 unsigned long start_pfn, end_pfn;
4451 int i, this_nid;
4452
4453 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4454 start_pfn = min(start_pfn, max_low_pfn);
4455 end_pfn = min(end_pfn, max_low_pfn);
4456
4457 if (start_pfn < end_pfn)
4458 memblock_free_early_nid(PFN_PHYS(start_pfn),
4459 (end_pfn - start_pfn) << PAGE_SHIFT,
4460 this_nid);
4461 }
4462 }
4463
4464 /**
4465 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4466 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4467 *
4468 * If an architecture guarantees that all ranges registered contain no holes and may
4469 * be freed, this function may be used instead of calling memory_present() manually.
4470 */
4471 void __init sparse_memory_present_with_active_regions(int nid)
4472 {
4473 unsigned long start_pfn, end_pfn;
4474 int i, this_nid;
4475
4476 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4477 memory_present(this_nid, start_pfn, end_pfn);
4478 }
4479
4480 /**
4481 * get_pfn_range_for_nid - Return the start and end page frames for a node
4482 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4483 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4484 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4485 *
4486 * It returns the start and end page frame of a node based on information
4487 * provided by memblock_set_node(). If called for a node
4488 * with no available memory, a warning is printed and the start and end
4489 * PFNs will be 0.
4490 */
4491 void __meminit get_pfn_range_for_nid(unsigned int nid,
4492 unsigned long *start_pfn, unsigned long *end_pfn)
4493 {
4494 unsigned long this_start_pfn, this_end_pfn;
4495 int i;
4496
4497 *start_pfn = -1UL;
4498 *end_pfn = 0;
4499
4500 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4501 *start_pfn = min(*start_pfn, this_start_pfn);
4502 *end_pfn = max(*end_pfn, this_end_pfn);
4503 }
4504
4505 if (*start_pfn == -1UL)
4506 *start_pfn = 0;
4507 }
4508
4509 /*
4510 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4511 * assumption is made that zones within a node are ordered in monotonic
4512 * increasing memory addresses so that the "highest" populated zone is used
4513 */
4514 static void __init find_usable_zone_for_movable(void)
4515 {
4516 int zone_index;
4517 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4518 if (zone_index == ZONE_MOVABLE)
4519 continue;
4520
4521 if (arch_zone_highest_possible_pfn[zone_index] >
4522 arch_zone_lowest_possible_pfn[zone_index])
4523 break;
4524 }
4525
4526 VM_BUG_ON(zone_index == -1);
4527 movable_zone = zone_index;
4528 }
4529
4530 /*
4531 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4532 * because it is sized independent of architecture. Unlike the other zones,
4533 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4534 * in each node depending on the size of each node and how evenly kernelcore
4535 * is distributed. This helper function adjusts the zone ranges
4536 * provided by the architecture for a given node by using the end of the
4537 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4538 * zones within a node are in order of monotonic increases memory addresses
4539 */
4540 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4541 unsigned long zone_type,
4542 unsigned long node_start_pfn,
4543 unsigned long node_end_pfn,
4544 unsigned long *zone_start_pfn,
4545 unsigned long *zone_end_pfn)
4546 {
4547 /* Only adjust if ZONE_MOVABLE is on this node */
4548 if (zone_movable_pfn[nid]) {
4549 /* Size ZONE_MOVABLE */
4550 if (zone_type == ZONE_MOVABLE) {
4551 *zone_start_pfn = zone_movable_pfn[nid];
4552 *zone_end_pfn = min(node_end_pfn,
4553 arch_zone_highest_possible_pfn[movable_zone]);
4554
4555 /* Adjust for ZONE_MOVABLE starting within this range */
4556 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4557 *zone_end_pfn > zone_movable_pfn[nid]) {
4558 *zone_end_pfn = zone_movable_pfn[nid];
4559
4560 /* Check if this whole range is within ZONE_MOVABLE */
4561 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4562 *zone_start_pfn = *zone_end_pfn;
4563 }
4564 }
4565
4566 /*
4567 * Return the number of pages a zone spans in a node, including holes
4568 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4569 */
4570 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4571 unsigned long zone_type,
4572 unsigned long node_start_pfn,
4573 unsigned long node_end_pfn,
4574 unsigned long *ignored)
4575 {
4576 unsigned long zone_start_pfn, zone_end_pfn;
4577
4578 /* Get the start and end of the zone */
4579 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4580 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4581 adjust_zone_range_for_zone_movable(nid, zone_type,
4582 node_start_pfn, node_end_pfn,
4583 &zone_start_pfn, &zone_end_pfn);
4584
4585 /* Check that this node has pages within the zone's required range */
4586 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4587 return 0;
4588
4589 /* Move the zone boundaries inside the node if necessary */
4590 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4591 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4592
4593 /* Return the spanned pages */
4594 return zone_end_pfn - zone_start_pfn;
4595 }
4596
4597 /*
4598 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4599 * then all holes in the requested range will be accounted for.
4600 */
4601 unsigned long __meminit __absent_pages_in_range(int nid,
4602 unsigned long range_start_pfn,
4603 unsigned long range_end_pfn)
4604 {
4605 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4606 unsigned long start_pfn, end_pfn;
4607 int i;
4608
4609 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4610 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4611 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4612 nr_absent -= end_pfn - start_pfn;
4613 }
4614 return nr_absent;
4615 }
4616
4617 /**
4618 * absent_pages_in_range - Return number of page frames in holes within a range
4619 * @start_pfn: The start PFN to start searching for holes
4620 * @end_pfn: The end PFN to stop searching for holes
4621 *
4622 * It returns the number of pages frames in memory holes within a range.
4623 */
4624 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4625 unsigned long end_pfn)
4626 {
4627 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4628 }
4629
4630 /* Return the number of page frames in holes in a zone on a node */
4631 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4632 unsigned long zone_type,
4633 unsigned long node_start_pfn,
4634 unsigned long node_end_pfn,
4635 unsigned long *ignored)
4636 {
4637 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4638 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4639 unsigned long zone_start_pfn, zone_end_pfn;
4640
4641 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4642 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4643
4644 adjust_zone_range_for_zone_movable(nid, zone_type,
4645 node_start_pfn, node_end_pfn,
4646 &zone_start_pfn, &zone_end_pfn);
4647 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4648 }
4649
4650 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4651 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4652 unsigned long zone_type,
4653 unsigned long node_start_pfn,
4654 unsigned long node_end_pfn,
4655 unsigned long *zones_size)
4656 {
4657 return zones_size[zone_type];
4658 }
4659
4660 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4661 unsigned long zone_type,
4662 unsigned long node_start_pfn,
4663 unsigned long node_end_pfn,
4664 unsigned long *zholes_size)
4665 {
4666 if (!zholes_size)
4667 return 0;
4668
4669 return zholes_size[zone_type];
4670 }
4671
4672 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4673
4674 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4675 unsigned long node_start_pfn,
4676 unsigned long node_end_pfn,
4677 unsigned long *zones_size,
4678 unsigned long *zholes_size)
4679 {
4680 unsigned long realtotalpages, totalpages = 0;
4681 enum zone_type i;
4682
4683 for (i = 0; i < MAX_NR_ZONES; i++)
4684 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4685 node_start_pfn,
4686 node_end_pfn,
4687 zones_size);
4688 pgdat->node_spanned_pages = totalpages;
4689
4690 realtotalpages = totalpages;
4691 for (i = 0; i < MAX_NR_ZONES; i++)
4692 realtotalpages -=
4693 zone_absent_pages_in_node(pgdat->node_id, i,
4694 node_start_pfn, node_end_pfn,
4695 zholes_size);
4696 pgdat->node_present_pages = realtotalpages;
4697 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4698 realtotalpages);
4699 }
4700
4701 #ifndef CONFIG_SPARSEMEM
4702 /*
4703 * Calculate the size of the zone->blockflags rounded to an unsigned long
4704 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4705 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4706 * round what is now in bits to nearest long in bits, then return it in
4707 * bytes.
4708 */
4709 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4710 {
4711 unsigned long usemapsize;
4712
4713 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4714 usemapsize = roundup(zonesize, pageblock_nr_pages);
4715 usemapsize = usemapsize >> pageblock_order;
4716 usemapsize *= NR_PAGEBLOCK_BITS;
4717 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4718
4719 return usemapsize / 8;
4720 }
4721
4722 static void __init setup_usemap(struct pglist_data *pgdat,
4723 struct zone *zone,
4724 unsigned long zone_start_pfn,
4725 unsigned long zonesize)
4726 {
4727 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4728 zone->pageblock_flags = NULL;
4729 if (usemapsize)
4730 zone->pageblock_flags =
4731 memblock_virt_alloc_node_nopanic(usemapsize,
4732 pgdat->node_id);
4733 }
4734 #else
4735 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4736 unsigned long zone_start_pfn, unsigned long zonesize) {}
4737 #endif /* CONFIG_SPARSEMEM */
4738
4739 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4740
4741 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4742 void __paginginit set_pageblock_order(void)
4743 {
4744 unsigned int order;
4745
4746 /* Check that pageblock_nr_pages has not already been setup */
4747 if (pageblock_order)
4748 return;
4749
4750 if (HPAGE_SHIFT > PAGE_SHIFT)
4751 order = HUGETLB_PAGE_ORDER;
4752 else
4753 order = MAX_ORDER - 1;
4754
4755 /*
4756 * Assume the largest contiguous order of interest is a huge page.
4757 * This value may be variable depending on boot parameters on IA64 and
4758 * powerpc.
4759 */
4760 pageblock_order = order;
4761 }
4762 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4763
4764 /*
4765 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4766 * is unused as pageblock_order is set at compile-time. See
4767 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4768 * the kernel config
4769 */
4770 void __paginginit set_pageblock_order(void)
4771 {
4772 }
4773
4774 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4775
4776 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4777 unsigned long present_pages)
4778 {
4779 unsigned long pages = spanned_pages;
4780
4781 /*
4782 * Provide a more accurate estimation if there are holes within
4783 * the zone and SPARSEMEM is in use. If there are holes within the
4784 * zone, each populated memory region may cost us one or two extra
4785 * memmap pages due to alignment because memmap pages for each
4786 * populated regions may not naturally algined on page boundary.
4787 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4788 */
4789 if (spanned_pages > present_pages + (present_pages >> 4) &&
4790 IS_ENABLED(CONFIG_SPARSEMEM))
4791 pages = present_pages;
4792
4793 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4794 }
4795
4796 /*
4797 * Set up the zone data structures:
4798 * - mark all pages reserved
4799 * - mark all memory queues empty
4800 * - clear the memory bitmaps
4801 *
4802 * NOTE: pgdat should get zeroed by caller.
4803 */
4804 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4805 unsigned long node_start_pfn, unsigned long node_end_pfn,
4806 unsigned long *zones_size, unsigned long *zholes_size)
4807 {
4808 enum zone_type j;
4809 int nid = pgdat->node_id;
4810 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4811 int ret;
4812
4813 pgdat_resize_init(pgdat);
4814 #ifdef CONFIG_NUMA_BALANCING
4815 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4816 pgdat->numabalancing_migrate_nr_pages = 0;
4817 pgdat->numabalancing_migrate_next_window = jiffies;
4818 #endif
4819 init_waitqueue_head(&pgdat->kswapd_wait);
4820 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4821 pgdat_page_cgroup_init(pgdat);
4822
4823 for (j = 0; j < MAX_NR_ZONES; j++) {
4824 struct zone *zone = pgdat->node_zones + j;
4825 unsigned long size, realsize, freesize, memmap_pages;
4826
4827 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4828 node_end_pfn, zones_size);
4829 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4830 node_start_pfn,
4831 node_end_pfn,
4832 zholes_size);
4833
4834 /*
4835 * Adjust freesize so that it accounts for how much memory
4836 * is used by this zone for memmap. This affects the watermark
4837 * and per-cpu initialisations
4838 */
4839 memmap_pages = calc_memmap_size(size, realsize);
4840 if (freesize >= memmap_pages) {
4841 freesize -= memmap_pages;
4842 if (memmap_pages)
4843 printk(KERN_DEBUG
4844 " %s zone: %lu pages used for memmap\n",
4845 zone_names[j], memmap_pages);
4846 } else
4847 printk(KERN_WARNING
4848 " %s zone: %lu pages exceeds freesize %lu\n",
4849 zone_names[j], memmap_pages, freesize);
4850
4851 /* Account for reserved pages */
4852 if (j == 0 && freesize > dma_reserve) {
4853 freesize -= dma_reserve;
4854 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4855 zone_names[0], dma_reserve);
4856 }
4857
4858 if (!is_highmem_idx(j))
4859 nr_kernel_pages += freesize;
4860 /* Charge for highmem memmap if there are enough kernel pages */
4861 else if (nr_kernel_pages > memmap_pages * 2)
4862 nr_kernel_pages -= memmap_pages;
4863 nr_all_pages += freesize;
4864
4865 zone->spanned_pages = size;
4866 zone->present_pages = realsize;
4867 /*
4868 * Set an approximate value for lowmem here, it will be adjusted
4869 * when the bootmem allocator frees pages into the buddy system.
4870 * And all highmem pages will be managed by the buddy system.
4871 */
4872 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4873 #ifdef CONFIG_NUMA
4874 zone->node = nid;
4875 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4876 / 100;
4877 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4878 #endif
4879 zone->name = zone_names[j];
4880 spin_lock_init(&zone->lock);
4881 spin_lock_init(&zone->lru_lock);
4882 zone_seqlock_init(zone);
4883 zone->zone_pgdat = pgdat;
4884 zone_pcp_init(zone);
4885
4886 /* For bootup, initialized properly in watermark setup */
4887 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4888
4889 lruvec_init(&zone->lruvec);
4890 if (!size)
4891 continue;
4892
4893 set_pageblock_order();
4894 setup_usemap(pgdat, zone, zone_start_pfn, size);
4895 ret = init_currently_empty_zone(zone, zone_start_pfn,
4896 size, MEMMAP_EARLY);
4897 BUG_ON(ret);
4898 memmap_init(size, nid, j, zone_start_pfn);
4899 zone_start_pfn += size;
4900 }
4901 }
4902
4903 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4904 {
4905 /* Skip empty nodes */
4906 if (!pgdat->node_spanned_pages)
4907 return;
4908
4909 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4910 /* ia64 gets its own node_mem_map, before this, without bootmem */
4911 if (!pgdat->node_mem_map) {
4912 unsigned long size, start, end;
4913 struct page *map;
4914
4915 /*
4916 * The zone's endpoints aren't required to be MAX_ORDER
4917 * aligned but the node_mem_map endpoints must be in order
4918 * for the buddy allocator to function correctly.
4919 */
4920 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4921 end = pgdat_end_pfn(pgdat);
4922 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4923 size = (end - start) * sizeof(struct page);
4924 map = alloc_remap(pgdat->node_id, size);
4925 if (!map)
4926 map = memblock_virt_alloc_node_nopanic(size,
4927 pgdat->node_id);
4928 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4929 }
4930 #ifndef CONFIG_NEED_MULTIPLE_NODES
4931 /*
4932 * With no DISCONTIG, the global mem_map is just set as node 0's
4933 */
4934 if (pgdat == NODE_DATA(0)) {
4935 mem_map = NODE_DATA(0)->node_mem_map;
4936 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4937 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4938 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4939 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4940 }
4941 #endif
4942 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4943 }
4944
4945 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4946 unsigned long node_start_pfn, unsigned long *zholes_size)
4947 {
4948 pg_data_t *pgdat = NODE_DATA(nid);
4949 unsigned long start_pfn = 0;
4950 unsigned long end_pfn = 0;
4951
4952 /* pg_data_t should be reset to zero when it's allocated */
4953 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4954
4955 pgdat->node_id = nid;
4956 pgdat->node_start_pfn = node_start_pfn;
4957 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4958 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4959 #endif
4960 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4961 zones_size, zholes_size);
4962
4963 alloc_node_mem_map(pgdat);
4964 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4965 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4966 nid, (unsigned long)pgdat,
4967 (unsigned long)pgdat->node_mem_map);
4968 #endif
4969
4970 free_area_init_core(pgdat, start_pfn, end_pfn,
4971 zones_size, zholes_size);
4972 }
4973
4974 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4975
4976 #if MAX_NUMNODES > 1
4977 /*
4978 * Figure out the number of possible node ids.
4979 */
4980 void __init setup_nr_node_ids(void)
4981 {
4982 unsigned int node;
4983 unsigned int highest = 0;
4984
4985 for_each_node_mask(node, node_possible_map)
4986 highest = node;
4987 nr_node_ids = highest + 1;
4988 }
4989 #endif
4990
4991 /**
4992 * node_map_pfn_alignment - determine the maximum internode alignment
4993 *
4994 * This function should be called after node map is populated and sorted.
4995 * It calculates the maximum power of two alignment which can distinguish
4996 * all the nodes.
4997 *
4998 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4999 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5000 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5001 * shifted, 1GiB is enough and this function will indicate so.
5002 *
5003 * This is used to test whether pfn -> nid mapping of the chosen memory
5004 * model has fine enough granularity to avoid incorrect mapping for the
5005 * populated node map.
5006 *
5007 * Returns the determined alignment in pfn's. 0 if there is no alignment
5008 * requirement (single node).
5009 */
5010 unsigned long __init node_map_pfn_alignment(void)
5011 {
5012 unsigned long accl_mask = 0, last_end = 0;
5013 unsigned long start, end, mask;
5014 int last_nid = -1;
5015 int i, nid;
5016
5017 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5018 if (!start || last_nid < 0 || last_nid == nid) {
5019 last_nid = nid;
5020 last_end = end;
5021 continue;
5022 }
5023
5024 /*
5025 * Start with a mask granular enough to pin-point to the
5026 * start pfn and tick off bits one-by-one until it becomes
5027 * too coarse to separate the current node from the last.
5028 */
5029 mask = ~((1 << __ffs(start)) - 1);
5030 while (mask && last_end <= (start & (mask << 1)))
5031 mask <<= 1;
5032
5033 /* accumulate all internode masks */
5034 accl_mask |= mask;
5035 }
5036
5037 /* convert mask to number of pages */
5038 return ~accl_mask + 1;
5039 }
5040
5041 /* Find the lowest pfn for a node */
5042 static unsigned long __init find_min_pfn_for_node(int nid)
5043 {
5044 unsigned long min_pfn = ULONG_MAX;
5045 unsigned long start_pfn;
5046 int i;
5047
5048 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5049 min_pfn = min(min_pfn, start_pfn);
5050
5051 if (min_pfn == ULONG_MAX) {
5052 printk(KERN_WARNING
5053 "Could not find start_pfn for node %d\n", nid);
5054 return 0;
5055 }
5056
5057 return min_pfn;
5058 }
5059
5060 /**
5061 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5062 *
5063 * It returns the minimum PFN based on information provided via
5064 * memblock_set_node().
5065 */
5066 unsigned long __init find_min_pfn_with_active_regions(void)
5067 {
5068 return find_min_pfn_for_node(MAX_NUMNODES);
5069 }
5070
5071 /*
5072 * early_calculate_totalpages()
5073 * Sum pages in active regions for movable zone.
5074 * Populate N_MEMORY for calculating usable_nodes.
5075 */
5076 static unsigned long __init early_calculate_totalpages(void)
5077 {
5078 unsigned long totalpages = 0;
5079 unsigned long start_pfn, end_pfn;
5080 int i, nid;
5081
5082 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5083 unsigned long pages = end_pfn - start_pfn;
5084
5085 totalpages += pages;
5086 if (pages)
5087 node_set_state(nid, N_MEMORY);
5088 }
5089 return totalpages;
5090 }
5091
5092 /*
5093 * Find the PFN the Movable zone begins in each node. Kernel memory
5094 * is spread evenly between nodes as long as the nodes have enough
5095 * memory. When they don't, some nodes will have more kernelcore than
5096 * others
5097 */
5098 static void __init find_zone_movable_pfns_for_nodes(void)
5099 {
5100 int i, nid;
5101 unsigned long usable_startpfn;
5102 unsigned long kernelcore_node, kernelcore_remaining;
5103 /* save the state before borrow the nodemask */
5104 nodemask_t saved_node_state = node_states[N_MEMORY];
5105 unsigned long totalpages = early_calculate_totalpages();
5106 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5107 struct memblock_region *r;
5108
5109 /* Need to find movable_zone earlier when movable_node is specified. */
5110 find_usable_zone_for_movable();
5111
5112 /*
5113 * If movable_node is specified, ignore kernelcore and movablecore
5114 * options.
5115 */
5116 if (movable_node_is_enabled()) {
5117 for_each_memblock(memory, r) {
5118 if (!memblock_is_hotpluggable(r))
5119 continue;
5120
5121 nid = r->nid;
5122
5123 usable_startpfn = PFN_DOWN(r->base);
5124 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5125 min(usable_startpfn, zone_movable_pfn[nid]) :
5126 usable_startpfn;
5127 }
5128
5129 goto out2;
5130 }
5131
5132 /*
5133 * If movablecore=nn[KMG] was specified, calculate what size of
5134 * kernelcore that corresponds so that memory usable for
5135 * any allocation type is evenly spread. If both kernelcore
5136 * and movablecore are specified, then the value of kernelcore
5137 * will be used for required_kernelcore if it's greater than
5138 * what movablecore would have allowed.
5139 */
5140 if (required_movablecore) {
5141 unsigned long corepages;
5142
5143 /*
5144 * Round-up so that ZONE_MOVABLE is at least as large as what
5145 * was requested by the user
5146 */
5147 required_movablecore =
5148 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5149 corepages = totalpages - required_movablecore;
5150
5151 required_kernelcore = max(required_kernelcore, corepages);
5152 }
5153
5154 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5155 if (!required_kernelcore)
5156 goto out;
5157
5158 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5159 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5160
5161 restart:
5162 /* Spread kernelcore memory as evenly as possible throughout nodes */
5163 kernelcore_node = required_kernelcore / usable_nodes;
5164 for_each_node_state(nid, N_MEMORY) {
5165 unsigned long start_pfn, end_pfn;
5166
5167 /*
5168 * Recalculate kernelcore_node if the division per node
5169 * now exceeds what is necessary to satisfy the requested
5170 * amount of memory for the kernel
5171 */
5172 if (required_kernelcore < kernelcore_node)
5173 kernelcore_node = required_kernelcore / usable_nodes;
5174
5175 /*
5176 * As the map is walked, we track how much memory is usable
5177 * by the kernel using kernelcore_remaining. When it is
5178 * 0, the rest of the node is usable by ZONE_MOVABLE
5179 */
5180 kernelcore_remaining = kernelcore_node;
5181
5182 /* Go through each range of PFNs within this node */
5183 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5184 unsigned long size_pages;
5185
5186 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5187 if (start_pfn >= end_pfn)
5188 continue;
5189
5190 /* Account for what is only usable for kernelcore */
5191 if (start_pfn < usable_startpfn) {
5192 unsigned long kernel_pages;
5193 kernel_pages = min(end_pfn, usable_startpfn)
5194 - start_pfn;
5195
5196 kernelcore_remaining -= min(kernel_pages,
5197 kernelcore_remaining);
5198 required_kernelcore -= min(kernel_pages,
5199 required_kernelcore);
5200
5201 /* Continue if range is now fully accounted */
5202 if (end_pfn <= usable_startpfn) {
5203
5204 /*
5205 * Push zone_movable_pfn to the end so
5206 * that if we have to rebalance
5207 * kernelcore across nodes, we will
5208 * not double account here
5209 */
5210 zone_movable_pfn[nid] = end_pfn;
5211 continue;
5212 }
5213 start_pfn = usable_startpfn;
5214 }
5215
5216 /*
5217 * The usable PFN range for ZONE_MOVABLE is from
5218 * start_pfn->end_pfn. Calculate size_pages as the
5219 * number of pages used as kernelcore
5220 */
5221 size_pages = end_pfn - start_pfn;
5222 if (size_pages > kernelcore_remaining)
5223 size_pages = kernelcore_remaining;
5224 zone_movable_pfn[nid] = start_pfn + size_pages;
5225
5226 /*
5227 * Some kernelcore has been met, update counts and
5228 * break if the kernelcore for this node has been
5229 * satisfied
5230 */
5231 required_kernelcore -= min(required_kernelcore,
5232 size_pages);
5233 kernelcore_remaining -= size_pages;
5234 if (!kernelcore_remaining)
5235 break;
5236 }
5237 }
5238
5239 /*
5240 * If there is still required_kernelcore, we do another pass with one
5241 * less node in the count. This will push zone_movable_pfn[nid] further
5242 * along on the nodes that still have memory until kernelcore is
5243 * satisfied
5244 */
5245 usable_nodes--;
5246 if (usable_nodes && required_kernelcore > usable_nodes)
5247 goto restart;
5248
5249 out2:
5250 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5251 for (nid = 0; nid < MAX_NUMNODES; nid++)
5252 zone_movable_pfn[nid] =
5253 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5254
5255 out:
5256 /* restore the node_state */
5257 node_states[N_MEMORY] = saved_node_state;
5258 }
5259
5260 /* Any regular or high memory on that node ? */
5261 static void check_for_memory(pg_data_t *pgdat, int nid)
5262 {
5263 enum zone_type zone_type;
5264
5265 if (N_MEMORY == N_NORMAL_MEMORY)
5266 return;
5267
5268 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5269 struct zone *zone = &pgdat->node_zones[zone_type];
5270 if (populated_zone(zone)) {
5271 node_set_state(nid, N_HIGH_MEMORY);
5272 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5273 zone_type <= ZONE_NORMAL)
5274 node_set_state(nid, N_NORMAL_MEMORY);
5275 break;
5276 }
5277 }
5278 }
5279
5280 /**
5281 * free_area_init_nodes - Initialise all pg_data_t and zone data
5282 * @max_zone_pfn: an array of max PFNs for each zone
5283 *
5284 * This will call free_area_init_node() for each active node in the system.
5285 * Using the page ranges provided by memblock_set_node(), the size of each
5286 * zone in each node and their holes is calculated. If the maximum PFN
5287 * between two adjacent zones match, it is assumed that the zone is empty.
5288 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5289 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5290 * starts where the previous one ended. For example, ZONE_DMA32 starts
5291 * at arch_max_dma_pfn.
5292 */
5293 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5294 {
5295 unsigned long start_pfn, end_pfn;
5296 int i, nid;
5297
5298 /* Record where the zone boundaries are */
5299 memset(arch_zone_lowest_possible_pfn, 0,
5300 sizeof(arch_zone_lowest_possible_pfn));
5301 memset(arch_zone_highest_possible_pfn, 0,
5302 sizeof(arch_zone_highest_possible_pfn));
5303 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5304 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5305 for (i = 1; i < MAX_NR_ZONES; i++) {
5306 if (i == ZONE_MOVABLE)
5307 continue;
5308 arch_zone_lowest_possible_pfn[i] =
5309 arch_zone_highest_possible_pfn[i-1];
5310 arch_zone_highest_possible_pfn[i] =
5311 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5312 }
5313 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5314 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5315
5316 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5317 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5318 find_zone_movable_pfns_for_nodes();
5319
5320 /* Print out the zone ranges */
5321 printk("Zone ranges:\n");
5322 for (i = 0; i < MAX_NR_ZONES; i++) {
5323 if (i == ZONE_MOVABLE)
5324 continue;
5325 printk(KERN_CONT " %-8s ", zone_names[i]);
5326 if (arch_zone_lowest_possible_pfn[i] ==
5327 arch_zone_highest_possible_pfn[i])
5328 printk(KERN_CONT "empty\n");
5329 else
5330 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5331 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5332 (arch_zone_highest_possible_pfn[i]
5333 << PAGE_SHIFT) - 1);
5334 }
5335
5336 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5337 printk("Movable zone start for each node\n");
5338 for (i = 0; i < MAX_NUMNODES; i++) {
5339 if (zone_movable_pfn[i])
5340 printk(" Node %d: %#010lx\n", i,
5341 zone_movable_pfn[i] << PAGE_SHIFT);
5342 }
5343
5344 /* Print out the early node map */
5345 printk("Early memory node ranges\n");
5346 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5347 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5348 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5349
5350 /* Initialise every node */
5351 mminit_verify_pageflags_layout();
5352 setup_nr_node_ids();
5353 for_each_online_node(nid) {
5354 pg_data_t *pgdat = NODE_DATA(nid);
5355 free_area_init_node(nid, NULL,
5356 find_min_pfn_for_node(nid), NULL);
5357
5358 /* Any memory on that node */
5359 if (pgdat->node_present_pages)
5360 node_set_state(nid, N_MEMORY);
5361 check_for_memory(pgdat, nid);
5362 }
5363 }
5364
5365 static int __init cmdline_parse_core(char *p, unsigned long *core)
5366 {
5367 unsigned long long coremem;
5368 if (!p)
5369 return -EINVAL;
5370
5371 coremem = memparse(p, &p);
5372 *core = coremem >> PAGE_SHIFT;
5373
5374 /* Paranoid check that UL is enough for the coremem value */
5375 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5376
5377 return 0;
5378 }
5379
5380 /*
5381 * kernelcore=size sets the amount of memory for use for allocations that
5382 * cannot be reclaimed or migrated.
5383 */
5384 static int __init cmdline_parse_kernelcore(char *p)
5385 {
5386 return cmdline_parse_core(p, &required_kernelcore);
5387 }
5388
5389 /*
5390 * movablecore=size sets the amount of memory for use for allocations that
5391 * can be reclaimed or migrated.
5392 */
5393 static int __init cmdline_parse_movablecore(char *p)
5394 {
5395 return cmdline_parse_core(p, &required_movablecore);
5396 }
5397
5398 early_param("kernelcore", cmdline_parse_kernelcore);
5399 early_param("movablecore", cmdline_parse_movablecore);
5400
5401 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5402
5403 void adjust_managed_page_count(struct page *page, long count)
5404 {
5405 spin_lock(&managed_page_count_lock);
5406 page_zone(page)->managed_pages += count;
5407 totalram_pages += count;
5408 #ifdef CONFIG_HIGHMEM
5409 if (PageHighMem(page))
5410 totalhigh_pages += count;
5411 #endif
5412 spin_unlock(&managed_page_count_lock);
5413 }
5414 EXPORT_SYMBOL(adjust_managed_page_count);
5415
5416 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5417 {
5418 void *pos;
5419 unsigned long pages = 0;
5420
5421 start = (void *)PAGE_ALIGN((unsigned long)start);
5422 end = (void *)((unsigned long)end & PAGE_MASK);
5423 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5424 if ((unsigned int)poison <= 0xFF)
5425 memset(pos, poison, PAGE_SIZE);
5426 free_reserved_page(virt_to_page(pos));
5427 }
5428
5429 if (pages && s)
5430 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5431 s, pages << (PAGE_SHIFT - 10), start, end);
5432
5433 return pages;
5434 }
5435 EXPORT_SYMBOL(free_reserved_area);
5436
5437 #ifdef CONFIG_HIGHMEM
5438 void free_highmem_page(struct page *page)
5439 {
5440 __free_reserved_page(page);
5441 totalram_pages++;
5442 page_zone(page)->managed_pages++;
5443 totalhigh_pages++;
5444 }
5445 #endif
5446
5447
5448 void __init mem_init_print_info(const char *str)
5449 {
5450 unsigned long physpages, codesize, datasize, rosize, bss_size;
5451 unsigned long init_code_size, init_data_size;
5452
5453 physpages = get_num_physpages();
5454 codesize = _etext - _stext;
5455 datasize = _edata - _sdata;
5456 rosize = __end_rodata - __start_rodata;
5457 bss_size = __bss_stop - __bss_start;
5458 init_data_size = __init_end - __init_begin;
5459 init_code_size = _einittext - _sinittext;
5460
5461 /*
5462 * Detect special cases and adjust section sizes accordingly:
5463 * 1) .init.* may be embedded into .data sections
5464 * 2) .init.text.* may be out of [__init_begin, __init_end],
5465 * please refer to arch/tile/kernel/vmlinux.lds.S.
5466 * 3) .rodata.* may be embedded into .text or .data sections.
5467 */
5468 #define adj_init_size(start, end, size, pos, adj) \
5469 do { \
5470 if (start <= pos && pos < end && size > adj) \
5471 size -= adj; \
5472 } while (0)
5473
5474 adj_init_size(__init_begin, __init_end, init_data_size,
5475 _sinittext, init_code_size);
5476 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5477 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5478 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5479 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5480
5481 #undef adj_init_size
5482
5483 printk("Memory: %luK/%luK available "
5484 "(%luK kernel code, %luK rwdata, %luK rodata, "
5485 "%luK init, %luK bss, %luK reserved"
5486 #ifdef CONFIG_HIGHMEM
5487 ", %luK highmem"
5488 #endif
5489 "%s%s)\n",
5490 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5491 codesize >> 10, datasize >> 10, rosize >> 10,
5492 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5493 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5494 #ifdef CONFIG_HIGHMEM
5495 totalhigh_pages << (PAGE_SHIFT-10),
5496 #endif
5497 str ? ", " : "", str ? str : "");
5498 }
5499
5500 /**
5501 * set_dma_reserve - set the specified number of pages reserved in the first zone
5502 * @new_dma_reserve: The number of pages to mark reserved
5503 *
5504 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5505 * In the DMA zone, a significant percentage may be consumed by kernel image
5506 * and other unfreeable allocations which can skew the watermarks badly. This
5507 * function may optionally be used to account for unfreeable pages in the
5508 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5509 * smaller per-cpu batchsize.
5510 */
5511 void __init set_dma_reserve(unsigned long new_dma_reserve)
5512 {
5513 dma_reserve = new_dma_reserve;
5514 }
5515
5516 void __init free_area_init(unsigned long *zones_size)
5517 {
5518 free_area_init_node(0, zones_size,
5519 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5520 }
5521
5522 static int page_alloc_cpu_notify(struct notifier_block *self,
5523 unsigned long action, void *hcpu)
5524 {
5525 int cpu = (unsigned long)hcpu;
5526
5527 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5528 lru_add_drain_cpu(cpu);
5529 drain_pages(cpu);
5530
5531 /*
5532 * Spill the event counters of the dead processor
5533 * into the current processors event counters.
5534 * This artificially elevates the count of the current
5535 * processor.
5536 */
5537 vm_events_fold_cpu(cpu);
5538
5539 /*
5540 * Zero the differential counters of the dead processor
5541 * so that the vm statistics are consistent.
5542 *
5543 * This is only okay since the processor is dead and cannot
5544 * race with what we are doing.
5545 */
5546 cpu_vm_stats_fold(cpu);
5547 }
5548 return NOTIFY_OK;
5549 }
5550
5551 void __init page_alloc_init(void)
5552 {
5553 hotcpu_notifier(page_alloc_cpu_notify, 0);
5554 }
5555
5556 /*
5557 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5558 * or min_free_kbytes changes.
5559 */
5560 static void calculate_totalreserve_pages(void)
5561 {
5562 struct pglist_data *pgdat;
5563 unsigned long reserve_pages = 0;
5564 enum zone_type i, j;
5565
5566 for_each_online_pgdat(pgdat) {
5567 for (i = 0; i < MAX_NR_ZONES; i++) {
5568 struct zone *zone = pgdat->node_zones + i;
5569 unsigned long max = 0;
5570
5571 /* Find valid and maximum lowmem_reserve in the zone */
5572 for (j = i; j < MAX_NR_ZONES; j++) {
5573 if (zone->lowmem_reserve[j] > max)
5574 max = zone->lowmem_reserve[j];
5575 }
5576
5577 /* we treat the high watermark as reserved pages. */
5578 max += high_wmark_pages(zone);
5579
5580 if (max > zone->managed_pages)
5581 max = zone->managed_pages;
5582 reserve_pages += max;
5583 /*
5584 * Lowmem reserves are not available to
5585 * GFP_HIGHUSER page cache allocations and
5586 * kswapd tries to balance zones to their high
5587 * watermark. As a result, neither should be
5588 * regarded as dirtyable memory, to prevent a
5589 * situation where reclaim has to clean pages
5590 * in order to balance the zones.
5591 */
5592 zone->dirty_balance_reserve = max;
5593 }
5594 }
5595 dirty_balance_reserve = reserve_pages;
5596 totalreserve_pages = reserve_pages;
5597 }
5598
5599 /*
5600 * setup_per_zone_lowmem_reserve - called whenever
5601 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5602 * has a correct pages reserved value, so an adequate number of
5603 * pages are left in the zone after a successful __alloc_pages().
5604 */
5605 static void setup_per_zone_lowmem_reserve(void)
5606 {
5607 struct pglist_data *pgdat;
5608 enum zone_type j, idx;
5609
5610 for_each_online_pgdat(pgdat) {
5611 for (j = 0; j < MAX_NR_ZONES; j++) {
5612 struct zone *zone = pgdat->node_zones + j;
5613 unsigned long managed_pages = zone->managed_pages;
5614
5615 zone->lowmem_reserve[j] = 0;
5616
5617 idx = j;
5618 while (idx) {
5619 struct zone *lower_zone;
5620
5621 idx--;
5622
5623 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5624 sysctl_lowmem_reserve_ratio[idx] = 1;
5625
5626 lower_zone = pgdat->node_zones + idx;
5627 lower_zone->lowmem_reserve[j] = managed_pages /
5628 sysctl_lowmem_reserve_ratio[idx];
5629 managed_pages += lower_zone->managed_pages;
5630 }
5631 }
5632 }
5633
5634 /* update totalreserve_pages */
5635 calculate_totalreserve_pages();
5636 }
5637
5638 static void __setup_per_zone_wmarks(void)
5639 {
5640 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5641 unsigned long lowmem_pages = 0;
5642 struct zone *zone;
5643 unsigned long flags;
5644
5645 /* Calculate total number of !ZONE_HIGHMEM pages */
5646 for_each_zone(zone) {
5647 if (!is_highmem(zone))
5648 lowmem_pages += zone->managed_pages;
5649 }
5650
5651 for_each_zone(zone) {
5652 u64 tmp;
5653
5654 spin_lock_irqsave(&zone->lock, flags);
5655 tmp = (u64)pages_min * zone->managed_pages;
5656 do_div(tmp, lowmem_pages);
5657 if (is_highmem(zone)) {
5658 /*
5659 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5660 * need highmem pages, so cap pages_min to a small
5661 * value here.
5662 *
5663 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5664 * deltas controls asynch page reclaim, and so should
5665 * not be capped for highmem.
5666 */
5667 unsigned long min_pages;
5668
5669 min_pages = zone->managed_pages / 1024;
5670 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5671 zone->watermark[WMARK_MIN] = min_pages;
5672 } else {
5673 /*
5674 * If it's a lowmem zone, reserve a number of pages
5675 * proportionate to the zone's size.
5676 */
5677 zone->watermark[WMARK_MIN] = tmp;
5678 }
5679
5680 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5681 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5682
5683 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5684 high_wmark_pages(zone) -
5685 low_wmark_pages(zone) -
5686 zone_page_state(zone, NR_ALLOC_BATCH));
5687
5688 setup_zone_migrate_reserve(zone);
5689 spin_unlock_irqrestore(&zone->lock, flags);
5690 }
5691
5692 /* update totalreserve_pages */
5693 calculate_totalreserve_pages();
5694 }
5695
5696 /**
5697 * setup_per_zone_wmarks - called when min_free_kbytes changes
5698 * or when memory is hot-{added|removed}
5699 *
5700 * Ensures that the watermark[min,low,high] values for each zone are set
5701 * correctly with respect to min_free_kbytes.
5702 */
5703 void setup_per_zone_wmarks(void)
5704 {
5705 mutex_lock(&zonelists_mutex);
5706 __setup_per_zone_wmarks();
5707 mutex_unlock(&zonelists_mutex);
5708 }
5709
5710 /*
5711 * The inactive anon list should be small enough that the VM never has to
5712 * do too much work, but large enough that each inactive page has a chance
5713 * to be referenced again before it is swapped out.
5714 *
5715 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5716 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5717 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5718 * the anonymous pages are kept on the inactive list.
5719 *
5720 * total target max
5721 * memory ratio inactive anon
5722 * -------------------------------------
5723 * 10MB 1 5MB
5724 * 100MB 1 50MB
5725 * 1GB 3 250MB
5726 * 10GB 10 0.9GB
5727 * 100GB 31 3GB
5728 * 1TB 101 10GB
5729 * 10TB 320 32GB
5730 */
5731 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5732 {
5733 unsigned int gb, ratio;
5734
5735 /* Zone size in gigabytes */
5736 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5737 if (gb)
5738 ratio = int_sqrt(10 * gb);
5739 else
5740 ratio = 1;
5741
5742 zone->inactive_ratio = ratio;
5743 }
5744
5745 static void __meminit setup_per_zone_inactive_ratio(void)
5746 {
5747 struct zone *zone;
5748
5749 for_each_zone(zone)
5750 calculate_zone_inactive_ratio(zone);
5751 }
5752
5753 /*
5754 * Initialise min_free_kbytes.
5755 *
5756 * For small machines we want it small (128k min). For large machines
5757 * we want it large (64MB max). But it is not linear, because network
5758 * bandwidth does not increase linearly with machine size. We use
5759 *
5760 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5761 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5762 *
5763 * which yields
5764 *
5765 * 16MB: 512k
5766 * 32MB: 724k
5767 * 64MB: 1024k
5768 * 128MB: 1448k
5769 * 256MB: 2048k
5770 * 512MB: 2896k
5771 * 1024MB: 4096k
5772 * 2048MB: 5792k
5773 * 4096MB: 8192k
5774 * 8192MB: 11584k
5775 * 16384MB: 16384k
5776 */
5777 int __meminit init_per_zone_wmark_min(void)
5778 {
5779 unsigned long lowmem_kbytes;
5780 int new_min_free_kbytes;
5781
5782 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5783 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5784
5785 if (new_min_free_kbytes > user_min_free_kbytes) {
5786 min_free_kbytes = new_min_free_kbytes;
5787 if (min_free_kbytes < 128)
5788 min_free_kbytes = 128;
5789 if (min_free_kbytes > 65536)
5790 min_free_kbytes = 65536;
5791 } else {
5792 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5793 new_min_free_kbytes, user_min_free_kbytes);
5794 }
5795 setup_per_zone_wmarks();
5796 refresh_zone_stat_thresholds();
5797 setup_per_zone_lowmem_reserve();
5798 setup_per_zone_inactive_ratio();
5799 return 0;
5800 }
5801 module_init(init_per_zone_wmark_min)
5802
5803 /*
5804 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5805 * that we can call two helper functions whenever min_free_kbytes
5806 * changes.
5807 */
5808 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5809 void __user *buffer, size_t *length, loff_t *ppos)
5810 {
5811 int rc;
5812
5813 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5814 if (rc)
5815 return rc;
5816
5817 if (write) {
5818 user_min_free_kbytes = min_free_kbytes;
5819 setup_per_zone_wmarks();
5820 }
5821 return 0;
5822 }
5823
5824 #ifdef CONFIG_NUMA
5825 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5826 void __user *buffer, size_t *length, loff_t *ppos)
5827 {
5828 struct zone *zone;
5829 int rc;
5830
5831 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5832 if (rc)
5833 return rc;
5834
5835 for_each_zone(zone)
5836 zone->min_unmapped_pages = (zone->managed_pages *
5837 sysctl_min_unmapped_ratio) / 100;
5838 return 0;
5839 }
5840
5841 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5842 void __user *buffer, size_t *length, loff_t *ppos)
5843 {
5844 struct zone *zone;
5845 int rc;
5846
5847 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5848 if (rc)
5849 return rc;
5850
5851 for_each_zone(zone)
5852 zone->min_slab_pages = (zone->managed_pages *
5853 sysctl_min_slab_ratio) / 100;
5854 return 0;
5855 }
5856 #endif
5857
5858 /*
5859 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5860 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5861 * whenever sysctl_lowmem_reserve_ratio changes.
5862 *
5863 * The reserve ratio obviously has absolutely no relation with the
5864 * minimum watermarks. The lowmem reserve ratio can only make sense
5865 * if in function of the boot time zone sizes.
5866 */
5867 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5868 void __user *buffer, size_t *length, loff_t *ppos)
5869 {
5870 proc_dointvec_minmax(table, write, buffer, length, ppos);
5871 setup_per_zone_lowmem_reserve();
5872 return 0;
5873 }
5874
5875 /*
5876 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5877 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5878 * pagelist can have before it gets flushed back to buddy allocator.
5879 */
5880 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5881 void __user *buffer, size_t *length, loff_t *ppos)
5882 {
5883 struct zone *zone;
5884 unsigned int cpu;
5885 int ret;
5886
5887 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5888 if (!write || (ret < 0))
5889 return ret;
5890
5891 mutex_lock(&pcp_batch_high_lock);
5892 for_each_populated_zone(zone) {
5893 unsigned long high;
5894 high = zone->managed_pages / percpu_pagelist_fraction;
5895 for_each_possible_cpu(cpu)
5896 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5897 high);
5898 }
5899 mutex_unlock(&pcp_batch_high_lock);
5900 return 0;
5901 }
5902
5903 int hashdist = HASHDIST_DEFAULT;
5904
5905 #ifdef CONFIG_NUMA
5906 static int __init set_hashdist(char *str)
5907 {
5908 if (!str)
5909 return 0;
5910 hashdist = simple_strtoul(str, &str, 0);
5911 return 1;
5912 }
5913 __setup("hashdist=", set_hashdist);
5914 #endif
5915
5916 /*
5917 * allocate a large system hash table from bootmem
5918 * - it is assumed that the hash table must contain an exact power-of-2
5919 * quantity of entries
5920 * - limit is the number of hash buckets, not the total allocation size
5921 */
5922 void *__init alloc_large_system_hash(const char *tablename,
5923 unsigned long bucketsize,
5924 unsigned long numentries,
5925 int scale,
5926 int flags,
5927 unsigned int *_hash_shift,
5928 unsigned int *_hash_mask,
5929 unsigned long low_limit,
5930 unsigned long high_limit)
5931 {
5932 unsigned long long max = high_limit;
5933 unsigned long log2qty, size;
5934 void *table = NULL;
5935
5936 /* allow the kernel cmdline to have a say */
5937 if (!numentries) {
5938 /* round applicable memory size up to nearest megabyte */
5939 numentries = nr_kernel_pages;
5940
5941 /* It isn't necessary when PAGE_SIZE >= 1MB */
5942 if (PAGE_SHIFT < 20)
5943 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5944
5945 /* limit to 1 bucket per 2^scale bytes of low memory */
5946 if (scale > PAGE_SHIFT)
5947 numentries >>= (scale - PAGE_SHIFT);
5948 else
5949 numentries <<= (PAGE_SHIFT - scale);
5950
5951 /* Make sure we've got at least a 0-order allocation.. */
5952 if (unlikely(flags & HASH_SMALL)) {
5953 /* Makes no sense without HASH_EARLY */
5954 WARN_ON(!(flags & HASH_EARLY));
5955 if (!(numentries >> *_hash_shift)) {
5956 numentries = 1UL << *_hash_shift;
5957 BUG_ON(!numentries);
5958 }
5959 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5960 numentries = PAGE_SIZE / bucketsize;
5961 }
5962 numentries = roundup_pow_of_two(numentries);
5963
5964 /* limit allocation size to 1/16 total memory by default */
5965 if (max == 0) {
5966 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5967 do_div(max, bucketsize);
5968 }
5969 max = min(max, 0x80000000ULL);
5970
5971 if (numentries < low_limit)
5972 numentries = low_limit;
5973 if (numentries > max)
5974 numentries = max;
5975
5976 log2qty = ilog2(numentries);
5977
5978 do {
5979 size = bucketsize << log2qty;
5980 if (flags & HASH_EARLY)
5981 table = memblock_virt_alloc_nopanic(size, 0);
5982 else if (hashdist)
5983 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5984 else {
5985 /*
5986 * If bucketsize is not a power-of-two, we may free
5987 * some pages at the end of hash table which
5988 * alloc_pages_exact() automatically does
5989 */
5990 if (get_order(size) < MAX_ORDER) {
5991 table = alloc_pages_exact(size, GFP_ATOMIC);
5992 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5993 }
5994 }
5995 } while (!table && size > PAGE_SIZE && --log2qty);
5996
5997 if (!table)
5998 panic("Failed to allocate %s hash table\n", tablename);
5999
6000 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6001 tablename,
6002 (1UL << log2qty),
6003 ilog2(size) - PAGE_SHIFT,
6004 size);
6005
6006 if (_hash_shift)
6007 *_hash_shift = log2qty;
6008 if (_hash_mask)
6009 *_hash_mask = (1 << log2qty) - 1;
6010
6011 return table;
6012 }
6013
6014 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6015 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6016 unsigned long pfn)
6017 {
6018 #ifdef CONFIG_SPARSEMEM
6019 return __pfn_to_section(pfn)->pageblock_flags;
6020 #else
6021 return zone->pageblock_flags;
6022 #endif /* CONFIG_SPARSEMEM */
6023 }
6024
6025 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6026 {
6027 #ifdef CONFIG_SPARSEMEM
6028 pfn &= (PAGES_PER_SECTION-1);
6029 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6030 #else
6031 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6032 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6033 #endif /* CONFIG_SPARSEMEM */
6034 }
6035
6036 /**
6037 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
6038 * @page: The page within the block of interest
6039 * @start_bitidx: The first bit of interest to retrieve
6040 * @end_bitidx: The last bit of interest
6041 * returns pageblock_bits flags
6042 */
6043 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6044 unsigned long end_bitidx,
6045 unsigned long mask)
6046 {
6047 struct zone *zone;
6048 unsigned long *bitmap;
6049 unsigned long bitidx, word_bitidx;
6050 unsigned long word;
6051
6052 zone = page_zone(page);
6053 bitmap = get_pageblock_bitmap(zone, pfn);
6054 bitidx = pfn_to_bitidx(zone, pfn);
6055 word_bitidx = bitidx / BITS_PER_LONG;
6056 bitidx &= (BITS_PER_LONG-1);
6057
6058 word = bitmap[word_bitidx];
6059 bitidx += end_bitidx;
6060 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6061 }
6062
6063 /**
6064 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6065 * @page: The page within the block of interest
6066 * @start_bitidx: The first bit of interest
6067 * @end_bitidx: The last bit of interest
6068 * @flags: The flags to set
6069 */
6070 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6071 unsigned long pfn,
6072 unsigned long end_bitidx,
6073 unsigned long mask)
6074 {
6075 struct zone *zone;
6076 unsigned long *bitmap;
6077 unsigned long bitidx, word_bitidx;
6078 unsigned long old_word, word;
6079
6080 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6081
6082 zone = page_zone(page);
6083 bitmap = get_pageblock_bitmap(zone, pfn);
6084 bitidx = pfn_to_bitidx(zone, pfn);
6085 word_bitidx = bitidx / BITS_PER_LONG;
6086 bitidx &= (BITS_PER_LONG-1);
6087
6088 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6089
6090 bitidx += end_bitidx;
6091 mask <<= (BITS_PER_LONG - bitidx - 1);
6092 flags <<= (BITS_PER_LONG - bitidx - 1);
6093
6094 word = ACCESS_ONCE(bitmap[word_bitidx]);
6095 for (;;) {
6096 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6097 if (word == old_word)
6098 break;
6099 word = old_word;
6100 }
6101 }
6102
6103 /*
6104 * This function checks whether pageblock includes unmovable pages or not.
6105 * If @count is not zero, it is okay to include less @count unmovable pages
6106 *
6107 * PageLRU check without isolation or lru_lock could race so that
6108 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6109 * expect this function should be exact.
6110 */
6111 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6112 bool skip_hwpoisoned_pages)
6113 {
6114 unsigned long pfn, iter, found;
6115 int mt;
6116
6117 /*
6118 * For avoiding noise data, lru_add_drain_all() should be called
6119 * If ZONE_MOVABLE, the zone never contains unmovable pages
6120 */
6121 if (zone_idx(zone) == ZONE_MOVABLE)
6122 return false;
6123 mt = get_pageblock_migratetype(page);
6124 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6125 return false;
6126
6127 pfn = page_to_pfn(page);
6128 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6129 unsigned long check = pfn + iter;
6130
6131 if (!pfn_valid_within(check))
6132 continue;
6133
6134 page = pfn_to_page(check);
6135
6136 /*
6137 * Hugepages are not in LRU lists, but they're movable.
6138 * We need not scan over tail pages bacause we don't
6139 * handle each tail page individually in migration.
6140 */
6141 if (PageHuge(page)) {
6142 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6143 continue;
6144 }
6145
6146 /*
6147 * We can't use page_count without pin a page
6148 * because another CPU can free compound page.
6149 * This check already skips compound tails of THP
6150 * because their page->_count is zero at all time.
6151 */
6152 if (!atomic_read(&page->_count)) {
6153 if (PageBuddy(page))
6154 iter += (1 << page_order(page)) - 1;
6155 continue;
6156 }
6157
6158 /*
6159 * The HWPoisoned page may be not in buddy system, and
6160 * page_count() is not 0.
6161 */
6162 if (skip_hwpoisoned_pages && PageHWPoison(page))
6163 continue;
6164
6165 if (!PageLRU(page))
6166 found++;
6167 /*
6168 * If there are RECLAIMABLE pages, we need to check it.
6169 * But now, memory offline itself doesn't call shrink_slab()
6170 * and it still to be fixed.
6171 */
6172 /*
6173 * If the page is not RAM, page_count()should be 0.
6174 * we don't need more check. This is an _used_ not-movable page.
6175 *
6176 * The problematic thing here is PG_reserved pages. PG_reserved
6177 * is set to both of a memory hole page and a _used_ kernel
6178 * page at boot.
6179 */
6180 if (found > count)
6181 return true;
6182 }
6183 return false;
6184 }
6185
6186 bool is_pageblock_removable_nolock(struct page *page)
6187 {
6188 struct zone *zone;
6189 unsigned long pfn;
6190
6191 /*
6192 * We have to be careful here because we are iterating over memory
6193 * sections which are not zone aware so we might end up outside of
6194 * the zone but still within the section.
6195 * We have to take care about the node as well. If the node is offline
6196 * its NODE_DATA will be NULL - see page_zone.
6197 */
6198 if (!node_online(page_to_nid(page)))
6199 return false;
6200
6201 zone = page_zone(page);
6202 pfn = page_to_pfn(page);
6203 if (!zone_spans_pfn(zone, pfn))
6204 return false;
6205
6206 return !has_unmovable_pages(zone, page, 0, true);
6207 }
6208
6209 #ifdef CONFIG_CMA
6210
6211 static unsigned long pfn_max_align_down(unsigned long pfn)
6212 {
6213 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6214 pageblock_nr_pages) - 1);
6215 }
6216
6217 static unsigned long pfn_max_align_up(unsigned long pfn)
6218 {
6219 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6220 pageblock_nr_pages));
6221 }
6222
6223 /* [start, end) must belong to a single zone. */
6224 static int __alloc_contig_migrate_range(struct compact_control *cc,
6225 unsigned long start, unsigned long end)
6226 {
6227 /* This function is based on compact_zone() from compaction.c. */
6228 unsigned long nr_reclaimed;
6229 unsigned long pfn = start;
6230 unsigned int tries = 0;
6231 int ret = 0;
6232
6233 migrate_prep();
6234
6235 while (pfn < end || !list_empty(&cc->migratepages)) {
6236 if (fatal_signal_pending(current)) {
6237 ret = -EINTR;
6238 break;
6239 }
6240
6241 if (list_empty(&cc->migratepages)) {
6242 cc->nr_migratepages = 0;
6243 pfn = isolate_migratepages_range(cc->zone, cc,
6244 pfn, end, true);
6245 if (!pfn) {
6246 ret = -EINTR;
6247 break;
6248 }
6249 tries = 0;
6250 } else if (++tries == 5) {
6251 ret = ret < 0 ? ret : -EBUSY;
6252 break;
6253 }
6254
6255 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6256 &cc->migratepages);
6257 cc->nr_migratepages -= nr_reclaimed;
6258
6259 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6260 NULL, 0, cc->mode, MR_CMA);
6261 }
6262 if (ret < 0) {
6263 putback_movable_pages(&cc->migratepages);
6264 return ret;
6265 }
6266 return 0;
6267 }
6268
6269 /**
6270 * alloc_contig_range() -- tries to allocate given range of pages
6271 * @start: start PFN to allocate
6272 * @end: one-past-the-last PFN to allocate
6273 * @migratetype: migratetype of the underlaying pageblocks (either
6274 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6275 * in range must have the same migratetype and it must
6276 * be either of the two.
6277 *
6278 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6279 * aligned, however it's the caller's responsibility to guarantee that
6280 * we are the only thread that changes migrate type of pageblocks the
6281 * pages fall in.
6282 *
6283 * The PFN range must belong to a single zone.
6284 *
6285 * Returns zero on success or negative error code. On success all
6286 * pages which PFN is in [start, end) are allocated for the caller and
6287 * need to be freed with free_contig_range().
6288 */
6289 int alloc_contig_range(unsigned long start, unsigned long end,
6290 unsigned migratetype)
6291 {
6292 unsigned long outer_start, outer_end;
6293 int ret = 0, order;
6294
6295 struct compact_control cc = {
6296 .nr_migratepages = 0,
6297 .order = -1,
6298 .zone = page_zone(pfn_to_page(start)),
6299 .mode = MIGRATE_SYNC,
6300 .ignore_skip_hint = true,
6301 };
6302 INIT_LIST_HEAD(&cc.migratepages);
6303
6304 /*
6305 * What we do here is we mark all pageblocks in range as
6306 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6307 * have different sizes, and due to the way page allocator
6308 * work, we align the range to biggest of the two pages so
6309 * that page allocator won't try to merge buddies from
6310 * different pageblocks and change MIGRATE_ISOLATE to some
6311 * other migration type.
6312 *
6313 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6314 * migrate the pages from an unaligned range (ie. pages that
6315 * we are interested in). This will put all the pages in
6316 * range back to page allocator as MIGRATE_ISOLATE.
6317 *
6318 * When this is done, we take the pages in range from page
6319 * allocator removing them from the buddy system. This way
6320 * page allocator will never consider using them.
6321 *
6322 * This lets us mark the pageblocks back as
6323 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6324 * aligned range but not in the unaligned, original range are
6325 * put back to page allocator so that buddy can use them.
6326 */
6327
6328 ret = start_isolate_page_range(pfn_max_align_down(start),
6329 pfn_max_align_up(end), migratetype,
6330 false);
6331 if (ret)
6332 return ret;
6333
6334 ret = __alloc_contig_migrate_range(&cc, start, end);
6335 if (ret)
6336 goto done;
6337
6338 /*
6339 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6340 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6341 * more, all pages in [start, end) are free in page allocator.
6342 * What we are going to do is to allocate all pages from
6343 * [start, end) (that is remove them from page allocator).
6344 *
6345 * The only problem is that pages at the beginning and at the
6346 * end of interesting range may be not aligned with pages that
6347 * page allocator holds, ie. they can be part of higher order
6348 * pages. Because of this, we reserve the bigger range and
6349 * once this is done free the pages we are not interested in.
6350 *
6351 * We don't have to hold zone->lock here because the pages are
6352 * isolated thus they won't get removed from buddy.
6353 */
6354
6355 lru_add_drain_all();
6356 drain_all_pages();
6357
6358 order = 0;
6359 outer_start = start;
6360 while (!PageBuddy(pfn_to_page(outer_start))) {
6361 if (++order >= MAX_ORDER) {
6362 ret = -EBUSY;
6363 goto done;
6364 }
6365 outer_start &= ~0UL << order;
6366 }
6367
6368 /* Make sure the range is really isolated. */
6369 if (test_pages_isolated(outer_start, end, false)) {
6370 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6371 outer_start, end);
6372 ret = -EBUSY;
6373 goto done;
6374 }
6375
6376
6377 /* Grab isolated pages from freelists. */
6378 outer_end = isolate_freepages_range(&cc, outer_start, end);
6379 if (!outer_end) {
6380 ret = -EBUSY;
6381 goto done;
6382 }
6383
6384 /* Free head and tail (if any) */
6385 if (start != outer_start)
6386 free_contig_range(outer_start, start - outer_start);
6387 if (end != outer_end)
6388 free_contig_range(end, outer_end - end);
6389
6390 done:
6391 undo_isolate_page_range(pfn_max_align_down(start),
6392 pfn_max_align_up(end), migratetype);
6393 return ret;
6394 }
6395
6396 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6397 {
6398 unsigned int count = 0;
6399
6400 for (; nr_pages--; pfn++) {
6401 struct page *page = pfn_to_page(pfn);
6402
6403 count += page_count(page) != 1;
6404 __free_page(page);
6405 }
6406 WARN(count != 0, "%d pages are still in use!\n", count);
6407 }
6408 #endif
6409
6410 #ifdef CONFIG_MEMORY_HOTPLUG
6411 /*
6412 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6413 * page high values need to be recalulated.
6414 */
6415 void __meminit zone_pcp_update(struct zone *zone)
6416 {
6417 unsigned cpu;
6418 mutex_lock(&pcp_batch_high_lock);
6419 for_each_possible_cpu(cpu)
6420 pageset_set_high_and_batch(zone,
6421 per_cpu_ptr(zone->pageset, cpu));
6422 mutex_unlock(&pcp_batch_high_lock);
6423 }
6424 #endif
6425
6426 void zone_pcp_reset(struct zone *zone)
6427 {
6428 unsigned long flags;
6429 int cpu;
6430 struct per_cpu_pageset *pset;
6431
6432 /* avoid races with drain_pages() */
6433 local_irq_save(flags);
6434 if (zone->pageset != &boot_pageset) {
6435 for_each_online_cpu(cpu) {
6436 pset = per_cpu_ptr(zone->pageset, cpu);
6437 drain_zonestat(zone, pset);
6438 }
6439 free_percpu(zone->pageset);
6440 zone->pageset = &boot_pageset;
6441 }
6442 local_irq_restore(flags);
6443 }
6444
6445 #ifdef CONFIG_MEMORY_HOTREMOVE
6446 /*
6447 * All pages in the range must be isolated before calling this.
6448 */
6449 void
6450 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6451 {
6452 struct page *page;
6453 struct zone *zone;
6454 unsigned int order, i;
6455 unsigned long pfn;
6456 unsigned long flags;
6457 /* find the first valid pfn */
6458 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6459 if (pfn_valid(pfn))
6460 break;
6461 if (pfn == end_pfn)
6462 return;
6463 zone = page_zone(pfn_to_page(pfn));
6464 spin_lock_irqsave(&zone->lock, flags);
6465 pfn = start_pfn;
6466 while (pfn < end_pfn) {
6467 if (!pfn_valid(pfn)) {
6468 pfn++;
6469 continue;
6470 }
6471 page = pfn_to_page(pfn);
6472 /*
6473 * The HWPoisoned page may be not in buddy system, and
6474 * page_count() is not 0.
6475 */
6476 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6477 pfn++;
6478 SetPageReserved(page);
6479 continue;
6480 }
6481
6482 BUG_ON(page_count(page));
6483 BUG_ON(!PageBuddy(page));
6484 order = page_order(page);
6485 #ifdef CONFIG_DEBUG_VM
6486 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6487 pfn, 1 << order, end_pfn);
6488 #endif
6489 list_del(&page->lru);
6490 rmv_page_order(page);
6491 zone->free_area[order].nr_free--;
6492 for (i = 0; i < (1 << order); i++)
6493 SetPageReserved((page+i));
6494 pfn += (1 << order);
6495 }
6496 spin_unlock_irqrestore(&zone->lock, flags);
6497 }
6498 #endif
6499
6500 #ifdef CONFIG_MEMORY_FAILURE
6501 bool is_free_buddy_page(struct page *page)
6502 {
6503 struct zone *zone = page_zone(page);
6504 unsigned long pfn = page_to_pfn(page);
6505 unsigned long flags;
6506 unsigned int order;
6507
6508 spin_lock_irqsave(&zone->lock, flags);
6509 for (order = 0; order < MAX_ORDER; order++) {
6510 struct page *page_head = page - (pfn & ((1 << order) - 1));
6511
6512 if (PageBuddy(page_head) && page_order(page_head) >= order)
6513 break;
6514 }
6515 spin_unlock_irqrestore(&zone->lock, flags);
6516
6517 return order < MAX_ORDER;
6518 }
6519 #endif
6520
6521 static const struct trace_print_flags pageflag_names[] = {
6522 {1UL << PG_locked, "locked" },
6523 {1UL << PG_error, "error" },
6524 {1UL << PG_referenced, "referenced" },
6525 {1UL << PG_uptodate, "uptodate" },
6526 {1UL << PG_dirty, "dirty" },
6527 {1UL << PG_lru, "lru" },
6528 {1UL << PG_active, "active" },
6529 {1UL << PG_slab, "slab" },
6530 {1UL << PG_owner_priv_1, "owner_priv_1" },
6531 {1UL << PG_arch_1, "arch_1" },
6532 {1UL << PG_reserved, "reserved" },
6533 {1UL << PG_private, "private" },
6534 {1UL << PG_private_2, "private_2" },
6535 {1UL << PG_writeback, "writeback" },
6536 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6537 {1UL << PG_head, "head" },
6538 {1UL << PG_tail, "tail" },
6539 #else
6540 {1UL << PG_compound, "compound" },
6541 #endif
6542 {1UL << PG_swapcache, "swapcache" },
6543 {1UL << PG_mappedtodisk, "mappedtodisk" },
6544 {1UL << PG_reclaim, "reclaim" },
6545 {1UL << PG_swapbacked, "swapbacked" },
6546 {1UL << PG_unevictable, "unevictable" },
6547 #ifdef CONFIG_MMU
6548 {1UL << PG_mlocked, "mlocked" },
6549 #endif
6550 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6551 {1UL << PG_uncached, "uncached" },
6552 #endif
6553 #ifdef CONFIG_MEMORY_FAILURE
6554 {1UL << PG_hwpoison, "hwpoison" },
6555 #endif
6556 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6557 {1UL << PG_compound_lock, "compound_lock" },
6558 #endif
6559 };
6560
6561 static void dump_page_flags(unsigned long flags)
6562 {
6563 const char *delim = "";
6564 unsigned long mask;
6565 int i;
6566
6567 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6568
6569 printk(KERN_ALERT "page flags: %#lx(", flags);
6570
6571 /* remove zone id */
6572 flags &= (1UL << NR_PAGEFLAGS) - 1;
6573
6574 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6575
6576 mask = pageflag_names[i].mask;
6577 if ((flags & mask) != mask)
6578 continue;
6579
6580 flags &= ~mask;
6581 printk("%s%s", delim, pageflag_names[i].name);
6582 delim = "|";
6583 }
6584
6585 /* check for left over flags */
6586 if (flags)
6587 printk("%s%#lx", delim, flags);
6588
6589 printk(")\n");
6590 }
6591
6592 void dump_page_badflags(struct page *page, const char *reason,
6593 unsigned long badflags)
6594 {
6595 printk(KERN_ALERT
6596 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6597 page, atomic_read(&page->_count), page_mapcount(page),
6598 page->mapping, page->index);
6599 dump_page_flags(page->flags);
6600 if (reason)
6601 pr_alert("page dumped because: %s\n", reason);
6602 if (page->flags & badflags) {
6603 pr_alert("bad because of flags:\n");
6604 dump_page_flags(page->flags & badflags);
6605 }
6606 mem_cgroup_print_bad_page(page);
6607 }
6608
6609 void dump_page(struct page *page, const char *reason)
6610 {
6611 dump_page_badflags(page, reason, 0);
6612 }
6613 EXPORT_SYMBOL(dump_page);