]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/page_alloc.c
block: partition: convert percpu ref
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/rwsem.h>
22 #include <linux/pagemap.h>
23 #include <linux/jiffies.h>
24 #include <linux/bootmem.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kmemcheck.h>
29 #include <linux/kasan.h>
30 #include <linux/module.h>
31 #include <linux/suspend.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/slab.h>
35 #include <linux/ratelimit.h>
36 #include <linux/oom.h>
37 #include <linux/notifier.h>
38 #include <linux/topology.h>
39 #include <linux/sysctl.h>
40 #include <linux/cpu.h>
41 #include <linux/cpuset.h>
42 #include <linux/memory_hotplug.h>
43 #include <linux/nodemask.h>
44 #include <linux/vmalloc.h>
45 #include <linux/vmstat.h>
46 #include <linux/mempolicy.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
70 #include "internal.h"
71
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock);
74 #define MIN_PERCPU_PAGELIST_FRACTION (8)
75
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node);
78 EXPORT_PER_CPU_SYMBOL(numa_node);
79 #endif
80
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 /*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
90 int _node_numa_mem_[MAX_NUMNODES];
91 #endif
92
93 /*
94 * Array of node states.
95 */
96 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99 #ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
103 #endif
104 #ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
106 #endif
107 [N_CPU] = { { [0] = 1UL } },
108 #endif /* NUMA */
109 };
110 EXPORT_SYMBOL(node_states);
111
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock);
114
115 unsigned long totalram_pages __read_mostly;
116 unsigned long totalreserve_pages __read_mostly;
117 unsigned long totalcma_pages __read_mostly;
118 /*
119 * When calculating the number of globally allowed dirty pages, there
120 * is a certain number of per-zone reserves that should not be
121 * considered dirtyable memory. This is the sum of those reserves
122 * over all existing zones that contribute dirtyable memory.
123 */
124 unsigned long dirty_balance_reserve __read_mostly;
125
126 int percpu_pagelist_fraction;
127 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
128
129 #ifdef CONFIG_PM_SLEEP
130 /*
131 * The following functions are used by the suspend/hibernate code to temporarily
132 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
133 * while devices are suspended. To avoid races with the suspend/hibernate code,
134 * they should always be called with pm_mutex held (gfp_allowed_mask also should
135 * only be modified with pm_mutex held, unless the suspend/hibernate code is
136 * guaranteed not to run in parallel with that modification).
137 */
138
139 static gfp_t saved_gfp_mask;
140
141 void pm_restore_gfp_mask(void)
142 {
143 WARN_ON(!mutex_is_locked(&pm_mutex));
144 if (saved_gfp_mask) {
145 gfp_allowed_mask = saved_gfp_mask;
146 saved_gfp_mask = 0;
147 }
148 }
149
150 void pm_restrict_gfp_mask(void)
151 {
152 WARN_ON(!mutex_is_locked(&pm_mutex));
153 WARN_ON(saved_gfp_mask);
154 saved_gfp_mask = gfp_allowed_mask;
155 gfp_allowed_mask &= ~GFP_IOFS;
156 }
157
158 bool pm_suspended_storage(void)
159 {
160 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
161 return false;
162 return true;
163 }
164 #endif /* CONFIG_PM_SLEEP */
165
166 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
167 int pageblock_order __read_mostly;
168 #endif
169
170 static void __free_pages_ok(struct page *page, unsigned int order);
171
172 /*
173 * results with 256, 32 in the lowmem_reserve sysctl:
174 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
175 * 1G machine -> (16M dma, 784M normal, 224M high)
176 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
177 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
178 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
179 *
180 * TBD: should special case ZONE_DMA32 machines here - in those we normally
181 * don't need any ZONE_NORMAL reservation
182 */
183 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
184 #ifdef CONFIG_ZONE_DMA
185 256,
186 #endif
187 #ifdef CONFIG_ZONE_DMA32
188 256,
189 #endif
190 #ifdef CONFIG_HIGHMEM
191 32,
192 #endif
193 32,
194 };
195
196 EXPORT_SYMBOL(totalram_pages);
197
198 static char * const zone_names[MAX_NR_ZONES] = {
199 #ifdef CONFIG_ZONE_DMA
200 "DMA",
201 #endif
202 #ifdef CONFIG_ZONE_DMA32
203 "DMA32",
204 #endif
205 "Normal",
206 #ifdef CONFIG_HIGHMEM
207 "HighMem",
208 #endif
209 "Movable",
210 };
211
212 int min_free_kbytes = 1024;
213 int user_min_free_kbytes = -1;
214
215 static unsigned long __meminitdata nr_kernel_pages;
216 static unsigned long __meminitdata nr_all_pages;
217 static unsigned long __meminitdata dma_reserve;
218
219 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
220 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
221 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
222 static unsigned long __initdata required_kernelcore;
223 static unsigned long __initdata required_movablecore;
224 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
225
226 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
227 int movable_zone;
228 EXPORT_SYMBOL(movable_zone);
229 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
230
231 #if MAX_NUMNODES > 1
232 int nr_node_ids __read_mostly = MAX_NUMNODES;
233 int nr_online_nodes __read_mostly = 1;
234 EXPORT_SYMBOL(nr_node_ids);
235 EXPORT_SYMBOL(nr_online_nodes);
236 #endif
237
238 int page_group_by_mobility_disabled __read_mostly;
239
240 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
241 static inline void reset_deferred_meminit(pg_data_t *pgdat)
242 {
243 pgdat->first_deferred_pfn = ULONG_MAX;
244 }
245
246 /* Returns true if the struct page for the pfn is uninitialised */
247 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
248 {
249 int nid = early_pfn_to_nid(pfn);
250
251 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
252 return true;
253
254 return false;
255 }
256
257 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
258 {
259 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
260 return true;
261
262 return false;
263 }
264
265 /*
266 * Returns false when the remaining initialisation should be deferred until
267 * later in the boot cycle when it can be parallelised.
268 */
269 static inline bool update_defer_init(pg_data_t *pgdat,
270 unsigned long pfn, unsigned long zone_end,
271 unsigned long *nr_initialised)
272 {
273 /* Always populate low zones for address-contrained allocations */
274 if (zone_end < pgdat_end_pfn(pgdat))
275 return true;
276
277 /* Initialise at least 2G of the highest zone */
278 (*nr_initialised)++;
279 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
280 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
281 pgdat->first_deferred_pfn = pfn;
282 return false;
283 }
284
285 return true;
286 }
287 #else
288 static inline void reset_deferred_meminit(pg_data_t *pgdat)
289 {
290 }
291
292 static inline bool early_page_uninitialised(unsigned long pfn)
293 {
294 return false;
295 }
296
297 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
298 {
299 return false;
300 }
301
302 static inline bool update_defer_init(pg_data_t *pgdat,
303 unsigned long pfn, unsigned long zone_end,
304 unsigned long *nr_initialised)
305 {
306 return true;
307 }
308 #endif
309
310
311 void set_pageblock_migratetype(struct page *page, int migratetype)
312 {
313 if (unlikely(page_group_by_mobility_disabled &&
314 migratetype < MIGRATE_PCPTYPES))
315 migratetype = MIGRATE_UNMOVABLE;
316
317 set_pageblock_flags_group(page, (unsigned long)migratetype,
318 PB_migrate, PB_migrate_end);
319 }
320
321 #ifdef CONFIG_DEBUG_VM
322 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
323 {
324 int ret = 0;
325 unsigned seq;
326 unsigned long pfn = page_to_pfn(page);
327 unsigned long sp, start_pfn;
328
329 do {
330 seq = zone_span_seqbegin(zone);
331 start_pfn = zone->zone_start_pfn;
332 sp = zone->spanned_pages;
333 if (!zone_spans_pfn(zone, pfn))
334 ret = 1;
335 } while (zone_span_seqretry(zone, seq));
336
337 if (ret)
338 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
339 pfn, zone_to_nid(zone), zone->name,
340 start_pfn, start_pfn + sp);
341
342 return ret;
343 }
344
345 static int page_is_consistent(struct zone *zone, struct page *page)
346 {
347 if (!pfn_valid_within(page_to_pfn(page)))
348 return 0;
349 if (zone != page_zone(page))
350 return 0;
351
352 return 1;
353 }
354 /*
355 * Temporary debugging check for pages not lying within a given zone.
356 */
357 static int bad_range(struct zone *zone, struct page *page)
358 {
359 if (page_outside_zone_boundaries(zone, page))
360 return 1;
361 if (!page_is_consistent(zone, page))
362 return 1;
363
364 return 0;
365 }
366 #else
367 static inline int bad_range(struct zone *zone, struct page *page)
368 {
369 return 0;
370 }
371 #endif
372
373 static void bad_page(struct page *page, const char *reason,
374 unsigned long bad_flags)
375 {
376 static unsigned long resume;
377 static unsigned long nr_shown;
378 static unsigned long nr_unshown;
379
380 /* Don't complain about poisoned pages */
381 if (PageHWPoison(page)) {
382 page_mapcount_reset(page); /* remove PageBuddy */
383 return;
384 }
385
386 /*
387 * Allow a burst of 60 reports, then keep quiet for that minute;
388 * or allow a steady drip of one report per second.
389 */
390 if (nr_shown == 60) {
391 if (time_before(jiffies, resume)) {
392 nr_unshown++;
393 goto out;
394 }
395 if (nr_unshown) {
396 printk(KERN_ALERT
397 "BUG: Bad page state: %lu messages suppressed\n",
398 nr_unshown);
399 nr_unshown = 0;
400 }
401 nr_shown = 0;
402 }
403 if (nr_shown++ == 0)
404 resume = jiffies + 60 * HZ;
405
406 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
407 current->comm, page_to_pfn(page));
408 dump_page_badflags(page, reason, bad_flags);
409
410 print_modules();
411 dump_stack();
412 out:
413 /* Leave bad fields for debug, except PageBuddy could make trouble */
414 page_mapcount_reset(page); /* remove PageBuddy */
415 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
416 }
417
418 /*
419 * Higher-order pages are called "compound pages". They are structured thusly:
420 *
421 * The first PAGE_SIZE page is called the "head page".
422 *
423 * The remaining PAGE_SIZE pages are called "tail pages".
424 *
425 * All pages have PG_compound set. All tail pages have their ->first_page
426 * pointing at the head page.
427 *
428 * The first tail page's ->lru.next holds the address of the compound page's
429 * put_page() function. Its ->lru.prev holds the order of allocation.
430 * This usage means that zero-order pages may not be compound.
431 */
432
433 static void free_compound_page(struct page *page)
434 {
435 __free_pages_ok(page, compound_order(page));
436 }
437
438 void prep_compound_page(struct page *page, unsigned long order)
439 {
440 int i;
441 int nr_pages = 1 << order;
442
443 set_compound_page_dtor(page, free_compound_page);
444 set_compound_order(page, order);
445 __SetPageHead(page);
446 for (i = 1; i < nr_pages; i++) {
447 struct page *p = page + i;
448 set_page_count(p, 0);
449 p->first_page = page;
450 /* Make sure p->first_page is always valid for PageTail() */
451 smp_wmb();
452 __SetPageTail(p);
453 }
454 }
455
456 #ifdef CONFIG_DEBUG_PAGEALLOC
457 unsigned int _debug_guardpage_minorder;
458 bool _debug_pagealloc_enabled __read_mostly;
459 bool _debug_guardpage_enabled __read_mostly;
460
461 static int __init early_debug_pagealloc(char *buf)
462 {
463 if (!buf)
464 return -EINVAL;
465
466 if (strcmp(buf, "on") == 0)
467 _debug_pagealloc_enabled = true;
468
469 return 0;
470 }
471 early_param("debug_pagealloc", early_debug_pagealloc);
472
473 static bool need_debug_guardpage(void)
474 {
475 /* If we don't use debug_pagealloc, we don't need guard page */
476 if (!debug_pagealloc_enabled())
477 return false;
478
479 return true;
480 }
481
482 static void init_debug_guardpage(void)
483 {
484 if (!debug_pagealloc_enabled())
485 return;
486
487 _debug_guardpage_enabled = true;
488 }
489
490 struct page_ext_operations debug_guardpage_ops = {
491 .need = need_debug_guardpage,
492 .init = init_debug_guardpage,
493 };
494
495 static int __init debug_guardpage_minorder_setup(char *buf)
496 {
497 unsigned long res;
498
499 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
500 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
501 return 0;
502 }
503 _debug_guardpage_minorder = res;
504 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
505 return 0;
506 }
507 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
508
509 static inline void set_page_guard(struct zone *zone, struct page *page,
510 unsigned int order, int migratetype)
511 {
512 struct page_ext *page_ext;
513
514 if (!debug_guardpage_enabled())
515 return;
516
517 page_ext = lookup_page_ext(page);
518 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
519
520 INIT_LIST_HEAD(&page->lru);
521 set_page_private(page, order);
522 /* Guard pages are not available for any usage */
523 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
524 }
525
526 static inline void clear_page_guard(struct zone *zone, struct page *page,
527 unsigned int order, int migratetype)
528 {
529 struct page_ext *page_ext;
530
531 if (!debug_guardpage_enabled())
532 return;
533
534 page_ext = lookup_page_ext(page);
535 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
536
537 set_page_private(page, 0);
538 if (!is_migrate_isolate(migratetype))
539 __mod_zone_freepage_state(zone, (1 << order), migratetype);
540 }
541 #else
542 struct page_ext_operations debug_guardpage_ops = { NULL, };
543 static inline void set_page_guard(struct zone *zone, struct page *page,
544 unsigned int order, int migratetype) {}
545 static inline void clear_page_guard(struct zone *zone, struct page *page,
546 unsigned int order, int migratetype) {}
547 #endif
548
549 static inline void set_page_order(struct page *page, unsigned int order)
550 {
551 set_page_private(page, order);
552 __SetPageBuddy(page);
553 }
554
555 static inline void rmv_page_order(struct page *page)
556 {
557 __ClearPageBuddy(page);
558 set_page_private(page, 0);
559 }
560
561 /*
562 * This function checks whether a page is free && is the buddy
563 * we can do coalesce a page and its buddy if
564 * (a) the buddy is not in a hole &&
565 * (b) the buddy is in the buddy system &&
566 * (c) a page and its buddy have the same order &&
567 * (d) a page and its buddy are in the same zone.
568 *
569 * For recording whether a page is in the buddy system, we set ->_mapcount
570 * PAGE_BUDDY_MAPCOUNT_VALUE.
571 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
572 * serialized by zone->lock.
573 *
574 * For recording page's order, we use page_private(page).
575 */
576 static inline int page_is_buddy(struct page *page, struct page *buddy,
577 unsigned int order)
578 {
579 if (!pfn_valid_within(page_to_pfn(buddy)))
580 return 0;
581
582 if (page_is_guard(buddy) && page_order(buddy) == order) {
583 if (page_zone_id(page) != page_zone_id(buddy))
584 return 0;
585
586 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
587
588 return 1;
589 }
590
591 if (PageBuddy(buddy) && page_order(buddy) == order) {
592 /*
593 * zone check is done late to avoid uselessly
594 * calculating zone/node ids for pages that could
595 * never merge.
596 */
597 if (page_zone_id(page) != page_zone_id(buddy))
598 return 0;
599
600 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
601
602 return 1;
603 }
604 return 0;
605 }
606
607 /*
608 * Freeing function for a buddy system allocator.
609 *
610 * The concept of a buddy system is to maintain direct-mapped table
611 * (containing bit values) for memory blocks of various "orders".
612 * The bottom level table contains the map for the smallest allocatable
613 * units of memory (here, pages), and each level above it describes
614 * pairs of units from the levels below, hence, "buddies".
615 * At a high level, all that happens here is marking the table entry
616 * at the bottom level available, and propagating the changes upward
617 * as necessary, plus some accounting needed to play nicely with other
618 * parts of the VM system.
619 * At each level, we keep a list of pages, which are heads of continuous
620 * free pages of length of (1 << order) and marked with _mapcount
621 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
622 * field.
623 * So when we are allocating or freeing one, we can derive the state of the
624 * other. That is, if we allocate a small block, and both were
625 * free, the remainder of the region must be split into blocks.
626 * If a block is freed, and its buddy is also free, then this
627 * triggers coalescing into a block of larger size.
628 *
629 * -- nyc
630 */
631
632 static inline void __free_one_page(struct page *page,
633 unsigned long pfn,
634 struct zone *zone, unsigned int order,
635 int migratetype)
636 {
637 unsigned long page_idx;
638 unsigned long combined_idx;
639 unsigned long uninitialized_var(buddy_idx);
640 struct page *buddy;
641 int max_order = MAX_ORDER;
642
643 VM_BUG_ON(!zone_is_initialized(zone));
644 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
645
646 VM_BUG_ON(migratetype == -1);
647 if (is_migrate_isolate(migratetype)) {
648 /*
649 * We restrict max order of merging to prevent merge
650 * between freepages on isolate pageblock and normal
651 * pageblock. Without this, pageblock isolation
652 * could cause incorrect freepage accounting.
653 */
654 max_order = min(MAX_ORDER, pageblock_order + 1);
655 } else {
656 __mod_zone_freepage_state(zone, 1 << order, migratetype);
657 }
658
659 page_idx = pfn & ((1 << max_order) - 1);
660
661 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
662 VM_BUG_ON_PAGE(bad_range(zone, page), page);
663
664 while (order < max_order - 1) {
665 buddy_idx = __find_buddy_index(page_idx, order);
666 buddy = page + (buddy_idx - page_idx);
667 if (!page_is_buddy(page, buddy, order))
668 break;
669 /*
670 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
671 * merge with it and move up one order.
672 */
673 if (page_is_guard(buddy)) {
674 clear_page_guard(zone, buddy, order, migratetype);
675 } else {
676 list_del(&buddy->lru);
677 zone->free_area[order].nr_free--;
678 rmv_page_order(buddy);
679 }
680 combined_idx = buddy_idx & page_idx;
681 page = page + (combined_idx - page_idx);
682 page_idx = combined_idx;
683 order++;
684 }
685 set_page_order(page, order);
686
687 /*
688 * If this is not the largest possible page, check if the buddy
689 * of the next-highest order is free. If it is, it's possible
690 * that pages are being freed that will coalesce soon. In case,
691 * that is happening, add the free page to the tail of the list
692 * so it's less likely to be used soon and more likely to be merged
693 * as a higher order page
694 */
695 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
696 struct page *higher_page, *higher_buddy;
697 combined_idx = buddy_idx & page_idx;
698 higher_page = page + (combined_idx - page_idx);
699 buddy_idx = __find_buddy_index(combined_idx, order + 1);
700 higher_buddy = higher_page + (buddy_idx - combined_idx);
701 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
702 list_add_tail(&page->lru,
703 &zone->free_area[order].free_list[migratetype]);
704 goto out;
705 }
706 }
707
708 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
709 out:
710 zone->free_area[order].nr_free++;
711 }
712
713 static inline int free_pages_check(struct page *page)
714 {
715 const char *bad_reason = NULL;
716 unsigned long bad_flags = 0;
717
718 if (unlikely(page_mapcount(page)))
719 bad_reason = "nonzero mapcount";
720 if (unlikely(page->mapping != NULL))
721 bad_reason = "non-NULL mapping";
722 if (unlikely(atomic_read(&page->_count) != 0))
723 bad_reason = "nonzero _count";
724 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
725 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
726 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
727 }
728 #ifdef CONFIG_MEMCG
729 if (unlikely(page->mem_cgroup))
730 bad_reason = "page still charged to cgroup";
731 #endif
732 if (unlikely(bad_reason)) {
733 bad_page(page, bad_reason, bad_flags);
734 return 1;
735 }
736 page_cpupid_reset_last(page);
737 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
738 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
739 return 0;
740 }
741
742 /*
743 * Frees a number of pages from the PCP lists
744 * Assumes all pages on list are in same zone, and of same order.
745 * count is the number of pages to free.
746 *
747 * If the zone was previously in an "all pages pinned" state then look to
748 * see if this freeing clears that state.
749 *
750 * And clear the zone's pages_scanned counter, to hold off the "all pages are
751 * pinned" detection logic.
752 */
753 static void free_pcppages_bulk(struct zone *zone, int count,
754 struct per_cpu_pages *pcp)
755 {
756 int migratetype = 0;
757 int batch_free = 0;
758 int to_free = count;
759 unsigned long nr_scanned;
760
761 spin_lock(&zone->lock);
762 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
763 if (nr_scanned)
764 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
765
766 while (to_free) {
767 struct page *page;
768 struct list_head *list;
769
770 /*
771 * Remove pages from lists in a round-robin fashion. A
772 * batch_free count is maintained that is incremented when an
773 * empty list is encountered. This is so more pages are freed
774 * off fuller lists instead of spinning excessively around empty
775 * lists
776 */
777 do {
778 batch_free++;
779 if (++migratetype == MIGRATE_PCPTYPES)
780 migratetype = 0;
781 list = &pcp->lists[migratetype];
782 } while (list_empty(list));
783
784 /* This is the only non-empty list. Free them all. */
785 if (batch_free == MIGRATE_PCPTYPES)
786 batch_free = to_free;
787
788 do {
789 int mt; /* migratetype of the to-be-freed page */
790
791 page = list_entry(list->prev, struct page, lru);
792 /* must delete as __free_one_page list manipulates */
793 list_del(&page->lru);
794 mt = get_freepage_migratetype(page);
795 if (unlikely(has_isolate_pageblock(zone)))
796 mt = get_pageblock_migratetype(page);
797
798 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
799 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
800 trace_mm_page_pcpu_drain(page, 0, mt);
801 } while (--to_free && --batch_free && !list_empty(list));
802 }
803 spin_unlock(&zone->lock);
804 }
805
806 static void free_one_page(struct zone *zone,
807 struct page *page, unsigned long pfn,
808 unsigned int order,
809 int migratetype)
810 {
811 unsigned long nr_scanned;
812 spin_lock(&zone->lock);
813 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
814 if (nr_scanned)
815 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
816
817 if (unlikely(has_isolate_pageblock(zone) ||
818 is_migrate_isolate(migratetype))) {
819 migratetype = get_pfnblock_migratetype(page, pfn);
820 }
821 __free_one_page(page, pfn, zone, order, migratetype);
822 spin_unlock(&zone->lock);
823 }
824
825 static int free_tail_pages_check(struct page *head_page, struct page *page)
826 {
827 if (!IS_ENABLED(CONFIG_DEBUG_VM))
828 return 0;
829 if (unlikely(!PageTail(page))) {
830 bad_page(page, "PageTail not set", 0);
831 return 1;
832 }
833 if (unlikely(page->first_page != head_page)) {
834 bad_page(page, "first_page not consistent", 0);
835 return 1;
836 }
837 return 0;
838 }
839
840 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
841 unsigned long zone, int nid)
842 {
843 set_page_links(page, zone, nid, pfn);
844 init_page_count(page);
845 page_mapcount_reset(page);
846 page_cpupid_reset_last(page);
847
848 INIT_LIST_HEAD(&page->lru);
849 #ifdef WANT_PAGE_VIRTUAL
850 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
851 if (!is_highmem_idx(zone))
852 set_page_address(page, __va(pfn << PAGE_SHIFT));
853 #endif
854 }
855
856 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
857 int nid)
858 {
859 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
860 }
861
862 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
863 static void init_reserved_page(unsigned long pfn)
864 {
865 pg_data_t *pgdat;
866 int nid, zid;
867
868 if (!early_page_uninitialised(pfn))
869 return;
870
871 nid = early_pfn_to_nid(pfn);
872 pgdat = NODE_DATA(nid);
873
874 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
875 struct zone *zone = &pgdat->node_zones[zid];
876
877 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
878 break;
879 }
880 __init_single_pfn(pfn, zid, nid);
881 }
882 #else
883 static inline void init_reserved_page(unsigned long pfn)
884 {
885 }
886 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
887
888 /*
889 * Initialised pages do not have PageReserved set. This function is
890 * called for each range allocated by the bootmem allocator and
891 * marks the pages PageReserved. The remaining valid pages are later
892 * sent to the buddy page allocator.
893 */
894 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
895 {
896 unsigned long start_pfn = PFN_DOWN(start);
897 unsigned long end_pfn = PFN_UP(end);
898
899 for (; start_pfn < end_pfn; start_pfn++) {
900 if (pfn_valid(start_pfn)) {
901 struct page *page = pfn_to_page(start_pfn);
902
903 init_reserved_page(start_pfn);
904 SetPageReserved(page);
905 }
906 }
907 }
908
909 static bool free_pages_prepare(struct page *page, unsigned int order)
910 {
911 bool compound = PageCompound(page);
912 int i, bad = 0;
913
914 VM_BUG_ON_PAGE(PageTail(page), page);
915 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
916
917 trace_mm_page_free(page, order);
918 kmemcheck_free_shadow(page, order);
919 kasan_free_pages(page, order);
920
921 if (PageAnon(page))
922 page->mapping = NULL;
923 bad += free_pages_check(page);
924 for (i = 1; i < (1 << order); i++) {
925 if (compound)
926 bad += free_tail_pages_check(page, page + i);
927 bad += free_pages_check(page + i);
928 }
929 if (bad)
930 return false;
931
932 reset_page_owner(page, order);
933
934 if (!PageHighMem(page)) {
935 debug_check_no_locks_freed(page_address(page),
936 PAGE_SIZE << order);
937 debug_check_no_obj_freed(page_address(page),
938 PAGE_SIZE << order);
939 }
940 arch_free_page(page, order);
941 kernel_map_pages(page, 1 << order, 0);
942
943 return true;
944 }
945
946 static void __free_pages_ok(struct page *page, unsigned int order)
947 {
948 unsigned long flags;
949 int migratetype;
950 unsigned long pfn = page_to_pfn(page);
951
952 if (!free_pages_prepare(page, order))
953 return;
954
955 migratetype = get_pfnblock_migratetype(page, pfn);
956 local_irq_save(flags);
957 __count_vm_events(PGFREE, 1 << order);
958 set_freepage_migratetype(page, migratetype);
959 free_one_page(page_zone(page), page, pfn, order, migratetype);
960 local_irq_restore(flags);
961 }
962
963 static void __init __free_pages_boot_core(struct page *page,
964 unsigned long pfn, unsigned int order)
965 {
966 unsigned int nr_pages = 1 << order;
967 struct page *p = page;
968 unsigned int loop;
969
970 prefetchw(p);
971 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
972 prefetchw(p + 1);
973 __ClearPageReserved(p);
974 set_page_count(p, 0);
975 }
976 __ClearPageReserved(p);
977 set_page_count(p, 0);
978
979 page_zone(page)->managed_pages += nr_pages;
980 set_page_refcounted(page);
981 __free_pages(page, order);
982 }
983
984 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
985 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
986 /* Only safe to use early in boot when initialisation is single-threaded */
987 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
988
989 int __meminit early_pfn_to_nid(unsigned long pfn)
990 {
991 int nid;
992
993 /* The system will behave unpredictably otherwise */
994 BUG_ON(system_state != SYSTEM_BOOTING);
995
996 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
997 if (nid >= 0)
998 return nid;
999 /* just returns 0 */
1000 return 0;
1001 }
1002 #endif
1003
1004 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1005 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1006 struct mminit_pfnnid_cache *state)
1007 {
1008 int nid;
1009
1010 nid = __early_pfn_to_nid(pfn, state);
1011 if (nid >= 0 && nid != node)
1012 return false;
1013 return true;
1014 }
1015
1016 /* Only safe to use early in boot when initialisation is single-threaded */
1017 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1018 {
1019 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1020 }
1021
1022 #else
1023
1024 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1025 {
1026 return true;
1027 }
1028 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1029 struct mminit_pfnnid_cache *state)
1030 {
1031 return true;
1032 }
1033 #endif
1034
1035
1036 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1037 unsigned int order)
1038 {
1039 if (early_page_uninitialised(pfn))
1040 return;
1041 return __free_pages_boot_core(page, pfn, order);
1042 }
1043
1044 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1045 static void __init deferred_free_range(struct page *page,
1046 unsigned long pfn, int nr_pages)
1047 {
1048 int i;
1049
1050 if (!page)
1051 return;
1052
1053 /* Free a large naturally-aligned chunk if possible */
1054 if (nr_pages == MAX_ORDER_NR_PAGES &&
1055 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1056 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1057 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1058 return;
1059 }
1060
1061 for (i = 0; i < nr_pages; i++, page++, pfn++)
1062 __free_pages_boot_core(page, pfn, 0);
1063 }
1064
1065 static __initdata DECLARE_RWSEM(pgdat_init_rwsem);
1066
1067 /* Initialise remaining memory on a node */
1068 static int __init deferred_init_memmap(void *data)
1069 {
1070 pg_data_t *pgdat = data;
1071 int nid = pgdat->node_id;
1072 struct mminit_pfnnid_cache nid_init_state = { };
1073 unsigned long start = jiffies;
1074 unsigned long nr_pages = 0;
1075 unsigned long walk_start, walk_end;
1076 int i, zid;
1077 struct zone *zone;
1078 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1079 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1080
1081 if (first_init_pfn == ULONG_MAX) {
1082 up_read(&pgdat_init_rwsem);
1083 return 0;
1084 }
1085
1086 /* Bind memory initialisation thread to a local node if possible */
1087 if (!cpumask_empty(cpumask))
1088 set_cpus_allowed_ptr(current, cpumask);
1089
1090 /* Sanity check boundaries */
1091 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1092 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1093 pgdat->first_deferred_pfn = ULONG_MAX;
1094
1095 /* Only the highest zone is deferred so find it */
1096 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1097 zone = pgdat->node_zones + zid;
1098 if (first_init_pfn < zone_end_pfn(zone))
1099 break;
1100 }
1101
1102 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1103 unsigned long pfn, end_pfn;
1104 struct page *page = NULL;
1105 struct page *free_base_page = NULL;
1106 unsigned long free_base_pfn = 0;
1107 int nr_to_free = 0;
1108
1109 end_pfn = min(walk_end, zone_end_pfn(zone));
1110 pfn = first_init_pfn;
1111 if (pfn < walk_start)
1112 pfn = walk_start;
1113 if (pfn < zone->zone_start_pfn)
1114 pfn = zone->zone_start_pfn;
1115
1116 for (; pfn < end_pfn; pfn++) {
1117 if (!pfn_valid_within(pfn))
1118 goto free_range;
1119
1120 /*
1121 * Ensure pfn_valid is checked every
1122 * MAX_ORDER_NR_PAGES for memory holes
1123 */
1124 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1125 if (!pfn_valid(pfn)) {
1126 page = NULL;
1127 goto free_range;
1128 }
1129 }
1130
1131 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1132 page = NULL;
1133 goto free_range;
1134 }
1135
1136 /* Minimise pfn page lookups and scheduler checks */
1137 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1138 page++;
1139 } else {
1140 nr_pages += nr_to_free;
1141 deferred_free_range(free_base_page,
1142 free_base_pfn, nr_to_free);
1143 free_base_page = NULL;
1144 free_base_pfn = nr_to_free = 0;
1145
1146 page = pfn_to_page(pfn);
1147 cond_resched();
1148 }
1149
1150 if (page->flags) {
1151 VM_BUG_ON(page_zone(page) != zone);
1152 goto free_range;
1153 }
1154
1155 __init_single_page(page, pfn, zid, nid);
1156 if (!free_base_page) {
1157 free_base_page = page;
1158 free_base_pfn = pfn;
1159 nr_to_free = 0;
1160 }
1161 nr_to_free++;
1162
1163 /* Where possible, batch up pages for a single free */
1164 continue;
1165 free_range:
1166 /* Free the current block of pages to allocator */
1167 nr_pages += nr_to_free;
1168 deferred_free_range(free_base_page, free_base_pfn,
1169 nr_to_free);
1170 free_base_page = NULL;
1171 free_base_pfn = nr_to_free = 0;
1172 }
1173
1174 first_init_pfn = max(end_pfn, first_init_pfn);
1175 }
1176
1177 /* Sanity check that the next zone really is unpopulated */
1178 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1179
1180 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1181 jiffies_to_msecs(jiffies - start));
1182 up_read(&pgdat_init_rwsem);
1183 return 0;
1184 }
1185
1186 void __init page_alloc_init_late(void)
1187 {
1188 int nid;
1189
1190 for_each_node_state(nid, N_MEMORY) {
1191 down_read(&pgdat_init_rwsem);
1192 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1193 }
1194
1195 /* Block until all are initialised */
1196 down_write(&pgdat_init_rwsem);
1197 up_write(&pgdat_init_rwsem);
1198 }
1199 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1200
1201 #ifdef CONFIG_CMA
1202 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1203 void __init init_cma_reserved_pageblock(struct page *page)
1204 {
1205 unsigned i = pageblock_nr_pages;
1206 struct page *p = page;
1207
1208 do {
1209 __ClearPageReserved(p);
1210 set_page_count(p, 0);
1211 } while (++p, --i);
1212
1213 set_pageblock_migratetype(page, MIGRATE_CMA);
1214
1215 if (pageblock_order >= MAX_ORDER) {
1216 i = pageblock_nr_pages;
1217 p = page;
1218 do {
1219 set_page_refcounted(p);
1220 __free_pages(p, MAX_ORDER - 1);
1221 p += MAX_ORDER_NR_PAGES;
1222 } while (i -= MAX_ORDER_NR_PAGES);
1223 } else {
1224 set_page_refcounted(page);
1225 __free_pages(page, pageblock_order);
1226 }
1227
1228 adjust_managed_page_count(page, pageblock_nr_pages);
1229 }
1230 #endif
1231
1232 /*
1233 * The order of subdivision here is critical for the IO subsystem.
1234 * Please do not alter this order without good reasons and regression
1235 * testing. Specifically, as large blocks of memory are subdivided,
1236 * the order in which smaller blocks are delivered depends on the order
1237 * they're subdivided in this function. This is the primary factor
1238 * influencing the order in which pages are delivered to the IO
1239 * subsystem according to empirical testing, and this is also justified
1240 * by considering the behavior of a buddy system containing a single
1241 * large block of memory acted on by a series of small allocations.
1242 * This behavior is a critical factor in sglist merging's success.
1243 *
1244 * -- nyc
1245 */
1246 static inline void expand(struct zone *zone, struct page *page,
1247 int low, int high, struct free_area *area,
1248 int migratetype)
1249 {
1250 unsigned long size = 1 << high;
1251
1252 while (high > low) {
1253 area--;
1254 high--;
1255 size >>= 1;
1256 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1257
1258 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1259 debug_guardpage_enabled() &&
1260 high < debug_guardpage_minorder()) {
1261 /*
1262 * Mark as guard pages (or page), that will allow to
1263 * merge back to allocator when buddy will be freed.
1264 * Corresponding page table entries will not be touched,
1265 * pages will stay not present in virtual address space
1266 */
1267 set_page_guard(zone, &page[size], high, migratetype);
1268 continue;
1269 }
1270 list_add(&page[size].lru, &area->free_list[migratetype]);
1271 area->nr_free++;
1272 set_page_order(&page[size], high);
1273 }
1274 }
1275
1276 /*
1277 * This page is about to be returned from the page allocator
1278 */
1279 static inline int check_new_page(struct page *page)
1280 {
1281 const char *bad_reason = NULL;
1282 unsigned long bad_flags = 0;
1283
1284 if (unlikely(page_mapcount(page)))
1285 bad_reason = "nonzero mapcount";
1286 if (unlikely(page->mapping != NULL))
1287 bad_reason = "non-NULL mapping";
1288 if (unlikely(atomic_read(&page->_count) != 0))
1289 bad_reason = "nonzero _count";
1290 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1291 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1292 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1293 }
1294 #ifdef CONFIG_MEMCG
1295 if (unlikely(page->mem_cgroup))
1296 bad_reason = "page still charged to cgroup";
1297 #endif
1298 if (unlikely(bad_reason)) {
1299 bad_page(page, bad_reason, bad_flags);
1300 return 1;
1301 }
1302 return 0;
1303 }
1304
1305 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1306 int alloc_flags)
1307 {
1308 int i;
1309
1310 for (i = 0; i < (1 << order); i++) {
1311 struct page *p = page + i;
1312 if (unlikely(check_new_page(p)))
1313 return 1;
1314 }
1315
1316 set_page_private(page, 0);
1317 set_page_refcounted(page);
1318
1319 arch_alloc_page(page, order);
1320 kernel_map_pages(page, 1 << order, 1);
1321 kasan_alloc_pages(page, order);
1322
1323 if (gfp_flags & __GFP_ZERO)
1324 for (i = 0; i < (1 << order); i++)
1325 clear_highpage(page + i);
1326
1327 if (order && (gfp_flags & __GFP_COMP))
1328 prep_compound_page(page, order);
1329
1330 set_page_owner(page, order, gfp_flags);
1331
1332 /*
1333 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
1334 * allocate the page. The expectation is that the caller is taking
1335 * steps that will free more memory. The caller should avoid the page
1336 * being used for !PFMEMALLOC purposes.
1337 */
1338 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1339
1340 return 0;
1341 }
1342
1343 /*
1344 * Go through the free lists for the given migratetype and remove
1345 * the smallest available page from the freelists
1346 */
1347 static inline
1348 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1349 int migratetype)
1350 {
1351 unsigned int current_order;
1352 struct free_area *area;
1353 struct page *page;
1354
1355 /* Find a page of the appropriate size in the preferred list */
1356 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1357 area = &(zone->free_area[current_order]);
1358 if (list_empty(&area->free_list[migratetype]))
1359 continue;
1360
1361 page = list_entry(area->free_list[migratetype].next,
1362 struct page, lru);
1363 list_del(&page->lru);
1364 rmv_page_order(page);
1365 area->nr_free--;
1366 expand(zone, page, order, current_order, area, migratetype);
1367 set_freepage_migratetype(page, migratetype);
1368 return page;
1369 }
1370
1371 return NULL;
1372 }
1373
1374
1375 /*
1376 * This array describes the order lists are fallen back to when
1377 * the free lists for the desirable migrate type are depleted
1378 */
1379 static int fallbacks[MIGRATE_TYPES][4] = {
1380 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1381 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1382 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1383 #ifdef CONFIG_CMA
1384 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
1385 #endif
1386 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
1387 #ifdef CONFIG_MEMORY_ISOLATION
1388 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
1389 #endif
1390 };
1391
1392 #ifdef CONFIG_CMA
1393 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1394 unsigned int order)
1395 {
1396 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1397 }
1398 #else
1399 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1400 unsigned int order) { return NULL; }
1401 #endif
1402
1403 /*
1404 * Move the free pages in a range to the free lists of the requested type.
1405 * Note that start_page and end_pages are not aligned on a pageblock
1406 * boundary. If alignment is required, use move_freepages_block()
1407 */
1408 int move_freepages(struct zone *zone,
1409 struct page *start_page, struct page *end_page,
1410 int migratetype)
1411 {
1412 struct page *page;
1413 unsigned long order;
1414 int pages_moved = 0;
1415
1416 #ifndef CONFIG_HOLES_IN_ZONE
1417 /*
1418 * page_zone is not safe to call in this context when
1419 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1420 * anyway as we check zone boundaries in move_freepages_block().
1421 * Remove at a later date when no bug reports exist related to
1422 * grouping pages by mobility
1423 */
1424 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1425 #endif
1426
1427 for (page = start_page; page <= end_page;) {
1428 /* Make sure we are not inadvertently changing nodes */
1429 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1430
1431 if (!pfn_valid_within(page_to_pfn(page))) {
1432 page++;
1433 continue;
1434 }
1435
1436 if (!PageBuddy(page)) {
1437 page++;
1438 continue;
1439 }
1440
1441 order = page_order(page);
1442 list_move(&page->lru,
1443 &zone->free_area[order].free_list[migratetype]);
1444 set_freepage_migratetype(page, migratetype);
1445 page += 1 << order;
1446 pages_moved += 1 << order;
1447 }
1448
1449 return pages_moved;
1450 }
1451
1452 int move_freepages_block(struct zone *zone, struct page *page,
1453 int migratetype)
1454 {
1455 unsigned long start_pfn, end_pfn;
1456 struct page *start_page, *end_page;
1457
1458 start_pfn = page_to_pfn(page);
1459 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1460 start_page = pfn_to_page(start_pfn);
1461 end_page = start_page + pageblock_nr_pages - 1;
1462 end_pfn = start_pfn + pageblock_nr_pages - 1;
1463
1464 /* Do not cross zone boundaries */
1465 if (!zone_spans_pfn(zone, start_pfn))
1466 start_page = page;
1467 if (!zone_spans_pfn(zone, end_pfn))
1468 return 0;
1469
1470 return move_freepages(zone, start_page, end_page, migratetype);
1471 }
1472
1473 static void change_pageblock_range(struct page *pageblock_page,
1474 int start_order, int migratetype)
1475 {
1476 int nr_pageblocks = 1 << (start_order - pageblock_order);
1477
1478 while (nr_pageblocks--) {
1479 set_pageblock_migratetype(pageblock_page, migratetype);
1480 pageblock_page += pageblock_nr_pages;
1481 }
1482 }
1483
1484 /*
1485 * When we are falling back to another migratetype during allocation, try to
1486 * steal extra free pages from the same pageblocks to satisfy further
1487 * allocations, instead of polluting multiple pageblocks.
1488 *
1489 * If we are stealing a relatively large buddy page, it is likely there will
1490 * be more free pages in the pageblock, so try to steal them all. For
1491 * reclaimable and unmovable allocations, we steal regardless of page size,
1492 * as fragmentation caused by those allocations polluting movable pageblocks
1493 * is worse than movable allocations stealing from unmovable and reclaimable
1494 * pageblocks.
1495 */
1496 static bool can_steal_fallback(unsigned int order, int start_mt)
1497 {
1498 /*
1499 * Leaving this order check is intended, although there is
1500 * relaxed order check in next check. The reason is that
1501 * we can actually steal whole pageblock if this condition met,
1502 * but, below check doesn't guarantee it and that is just heuristic
1503 * so could be changed anytime.
1504 */
1505 if (order >= pageblock_order)
1506 return true;
1507
1508 if (order >= pageblock_order / 2 ||
1509 start_mt == MIGRATE_RECLAIMABLE ||
1510 start_mt == MIGRATE_UNMOVABLE ||
1511 page_group_by_mobility_disabled)
1512 return true;
1513
1514 return false;
1515 }
1516
1517 /*
1518 * This function implements actual steal behaviour. If order is large enough,
1519 * we can steal whole pageblock. If not, we first move freepages in this
1520 * pageblock and check whether half of pages are moved or not. If half of
1521 * pages are moved, we can change migratetype of pageblock and permanently
1522 * use it's pages as requested migratetype in the future.
1523 */
1524 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1525 int start_type)
1526 {
1527 int current_order = page_order(page);
1528 int pages;
1529
1530 /* Take ownership for orders >= pageblock_order */
1531 if (current_order >= pageblock_order) {
1532 change_pageblock_range(page, current_order, start_type);
1533 return;
1534 }
1535
1536 pages = move_freepages_block(zone, page, start_type);
1537
1538 /* Claim the whole block if over half of it is free */
1539 if (pages >= (1 << (pageblock_order-1)) ||
1540 page_group_by_mobility_disabled)
1541 set_pageblock_migratetype(page, start_type);
1542 }
1543
1544 /*
1545 * Check whether there is a suitable fallback freepage with requested order.
1546 * If only_stealable is true, this function returns fallback_mt only if
1547 * we can steal other freepages all together. This would help to reduce
1548 * fragmentation due to mixed migratetype pages in one pageblock.
1549 */
1550 int find_suitable_fallback(struct free_area *area, unsigned int order,
1551 int migratetype, bool only_stealable, bool *can_steal)
1552 {
1553 int i;
1554 int fallback_mt;
1555
1556 if (area->nr_free == 0)
1557 return -1;
1558
1559 *can_steal = false;
1560 for (i = 0;; i++) {
1561 fallback_mt = fallbacks[migratetype][i];
1562 if (fallback_mt == MIGRATE_RESERVE)
1563 break;
1564
1565 if (list_empty(&area->free_list[fallback_mt]))
1566 continue;
1567
1568 if (can_steal_fallback(order, migratetype))
1569 *can_steal = true;
1570
1571 if (!only_stealable)
1572 return fallback_mt;
1573
1574 if (*can_steal)
1575 return fallback_mt;
1576 }
1577
1578 return -1;
1579 }
1580
1581 /* Remove an element from the buddy allocator from the fallback list */
1582 static inline struct page *
1583 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1584 {
1585 struct free_area *area;
1586 unsigned int current_order;
1587 struct page *page;
1588 int fallback_mt;
1589 bool can_steal;
1590
1591 /* Find the largest possible block of pages in the other list */
1592 for (current_order = MAX_ORDER-1;
1593 current_order >= order && current_order <= MAX_ORDER-1;
1594 --current_order) {
1595 area = &(zone->free_area[current_order]);
1596 fallback_mt = find_suitable_fallback(area, current_order,
1597 start_migratetype, false, &can_steal);
1598 if (fallback_mt == -1)
1599 continue;
1600
1601 page = list_entry(area->free_list[fallback_mt].next,
1602 struct page, lru);
1603 if (can_steal)
1604 steal_suitable_fallback(zone, page, start_migratetype);
1605
1606 /* Remove the page from the freelists */
1607 area->nr_free--;
1608 list_del(&page->lru);
1609 rmv_page_order(page);
1610
1611 expand(zone, page, order, current_order, area,
1612 start_migratetype);
1613 /*
1614 * The freepage_migratetype may differ from pageblock's
1615 * migratetype depending on the decisions in
1616 * try_to_steal_freepages(). This is OK as long as it
1617 * does not differ for MIGRATE_CMA pageblocks. For CMA
1618 * we need to make sure unallocated pages flushed from
1619 * pcp lists are returned to the correct freelist.
1620 */
1621 set_freepage_migratetype(page, start_migratetype);
1622
1623 trace_mm_page_alloc_extfrag(page, order, current_order,
1624 start_migratetype, fallback_mt);
1625
1626 return page;
1627 }
1628
1629 return NULL;
1630 }
1631
1632 /*
1633 * Do the hard work of removing an element from the buddy allocator.
1634 * Call me with the zone->lock already held.
1635 */
1636 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1637 int migratetype)
1638 {
1639 struct page *page;
1640
1641 retry_reserve:
1642 page = __rmqueue_smallest(zone, order, migratetype);
1643
1644 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1645 if (migratetype == MIGRATE_MOVABLE)
1646 page = __rmqueue_cma_fallback(zone, order);
1647
1648 if (!page)
1649 page = __rmqueue_fallback(zone, order, migratetype);
1650
1651 /*
1652 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1653 * is used because __rmqueue_smallest is an inline function
1654 * and we want just one call site
1655 */
1656 if (!page) {
1657 migratetype = MIGRATE_RESERVE;
1658 goto retry_reserve;
1659 }
1660 }
1661
1662 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1663 return page;
1664 }
1665
1666 /*
1667 * Obtain a specified number of elements from the buddy allocator, all under
1668 * a single hold of the lock, for efficiency. Add them to the supplied list.
1669 * Returns the number of new pages which were placed at *list.
1670 */
1671 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1672 unsigned long count, struct list_head *list,
1673 int migratetype, bool cold)
1674 {
1675 int i;
1676
1677 spin_lock(&zone->lock);
1678 for (i = 0; i < count; ++i) {
1679 struct page *page = __rmqueue(zone, order, migratetype);
1680 if (unlikely(page == NULL))
1681 break;
1682
1683 /*
1684 * Split buddy pages returned by expand() are received here
1685 * in physical page order. The page is added to the callers and
1686 * list and the list head then moves forward. From the callers
1687 * perspective, the linked list is ordered by page number in
1688 * some conditions. This is useful for IO devices that can
1689 * merge IO requests if the physical pages are ordered
1690 * properly.
1691 */
1692 if (likely(!cold))
1693 list_add(&page->lru, list);
1694 else
1695 list_add_tail(&page->lru, list);
1696 list = &page->lru;
1697 if (is_migrate_cma(get_freepage_migratetype(page)))
1698 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1699 -(1 << order));
1700 }
1701 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1702 spin_unlock(&zone->lock);
1703 return i;
1704 }
1705
1706 #ifdef CONFIG_NUMA
1707 /*
1708 * Called from the vmstat counter updater to drain pagesets of this
1709 * currently executing processor on remote nodes after they have
1710 * expired.
1711 *
1712 * Note that this function must be called with the thread pinned to
1713 * a single processor.
1714 */
1715 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1716 {
1717 unsigned long flags;
1718 int to_drain, batch;
1719
1720 local_irq_save(flags);
1721 batch = READ_ONCE(pcp->batch);
1722 to_drain = min(pcp->count, batch);
1723 if (to_drain > 0) {
1724 free_pcppages_bulk(zone, to_drain, pcp);
1725 pcp->count -= to_drain;
1726 }
1727 local_irq_restore(flags);
1728 }
1729 #endif
1730
1731 /*
1732 * Drain pcplists of the indicated processor and zone.
1733 *
1734 * The processor must either be the current processor and the
1735 * thread pinned to the current processor or a processor that
1736 * is not online.
1737 */
1738 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1739 {
1740 unsigned long flags;
1741 struct per_cpu_pageset *pset;
1742 struct per_cpu_pages *pcp;
1743
1744 local_irq_save(flags);
1745 pset = per_cpu_ptr(zone->pageset, cpu);
1746
1747 pcp = &pset->pcp;
1748 if (pcp->count) {
1749 free_pcppages_bulk(zone, pcp->count, pcp);
1750 pcp->count = 0;
1751 }
1752 local_irq_restore(flags);
1753 }
1754
1755 /*
1756 * Drain pcplists of all zones on the indicated processor.
1757 *
1758 * The processor must either be the current processor and the
1759 * thread pinned to the current processor or a processor that
1760 * is not online.
1761 */
1762 static void drain_pages(unsigned int cpu)
1763 {
1764 struct zone *zone;
1765
1766 for_each_populated_zone(zone) {
1767 drain_pages_zone(cpu, zone);
1768 }
1769 }
1770
1771 /*
1772 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1773 *
1774 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1775 * the single zone's pages.
1776 */
1777 void drain_local_pages(struct zone *zone)
1778 {
1779 int cpu = smp_processor_id();
1780
1781 if (zone)
1782 drain_pages_zone(cpu, zone);
1783 else
1784 drain_pages(cpu);
1785 }
1786
1787 /*
1788 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1789 *
1790 * When zone parameter is non-NULL, spill just the single zone's pages.
1791 *
1792 * Note that this code is protected against sending an IPI to an offline
1793 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1794 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1795 * nothing keeps CPUs from showing up after we populated the cpumask and
1796 * before the call to on_each_cpu_mask().
1797 */
1798 void drain_all_pages(struct zone *zone)
1799 {
1800 int cpu;
1801
1802 /*
1803 * Allocate in the BSS so we wont require allocation in
1804 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1805 */
1806 static cpumask_t cpus_with_pcps;
1807
1808 /*
1809 * We don't care about racing with CPU hotplug event
1810 * as offline notification will cause the notified
1811 * cpu to drain that CPU pcps and on_each_cpu_mask
1812 * disables preemption as part of its processing
1813 */
1814 for_each_online_cpu(cpu) {
1815 struct per_cpu_pageset *pcp;
1816 struct zone *z;
1817 bool has_pcps = false;
1818
1819 if (zone) {
1820 pcp = per_cpu_ptr(zone->pageset, cpu);
1821 if (pcp->pcp.count)
1822 has_pcps = true;
1823 } else {
1824 for_each_populated_zone(z) {
1825 pcp = per_cpu_ptr(z->pageset, cpu);
1826 if (pcp->pcp.count) {
1827 has_pcps = true;
1828 break;
1829 }
1830 }
1831 }
1832
1833 if (has_pcps)
1834 cpumask_set_cpu(cpu, &cpus_with_pcps);
1835 else
1836 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1837 }
1838 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1839 zone, 1);
1840 }
1841
1842 #ifdef CONFIG_HIBERNATION
1843
1844 void mark_free_pages(struct zone *zone)
1845 {
1846 unsigned long pfn, max_zone_pfn;
1847 unsigned long flags;
1848 unsigned int order, t;
1849 struct list_head *curr;
1850
1851 if (zone_is_empty(zone))
1852 return;
1853
1854 spin_lock_irqsave(&zone->lock, flags);
1855
1856 max_zone_pfn = zone_end_pfn(zone);
1857 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1858 if (pfn_valid(pfn)) {
1859 struct page *page = pfn_to_page(pfn);
1860
1861 if (!swsusp_page_is_forbidden(page))
1862 swsusp_unset_page_free(page);
1863 }
1864
1865 for_each_migratetype_order(order, t) {
1866 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1867 unsigned long i;
1868
1869 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1870 for (i = 0; i < (1UL << order); i++)
1871 swsusp_set_page_free(pfn_to_page(pfn + i));
1872 }
1873 }
1874 spin_unlock_irqrestore(&zone->lock, flags);
1875 }
1876 #endif /* CONFIG_PM */
1877
1878 /*
1879 * Free a 0-order page
1880 * cold == true ? free a cold page : free a hot page
1881 */
1882 void free_hot_cold_page(struct page *page, bool cold)
1883 {
1884 struct zone *zone = page_zone(page);
1885 struct per_cpu_pages *pcp;
1886 unsigned long flags;
1887 unsigned long pfn = page_to_pfn(page);
1888 int migratetype;
1889
1890 if (!free_pages_prepare(page, 0))
1891 return;
1892
1893 migratetype = get_pfnblock_migratetype(page, pfn);
1894 set_freepage_migratetype(page, migratetype);
1895 local_irq_save(flags);
1896 __count_vm_event(PGFREE);
1897
1898 /*
1899 * We only track unmovable, reclaimable and movable on pcp lists.
1900 * Free ISOLATE pages back to the allocator because they are being
1901 * offlined but treat RESERVE as movable pages so we can get those
1902 * areas back if necessary. Otherwise, we may have to free
1903 * excessively into the page allocator
1904 */
1905 if (migratetype >= MIGRATE_PCPTYPES) {
1906 if (unlikely(is_migrate_isolate(migratetype))) {
1907 free_one_page(zone, page, pfn, 0, migratetype);
1908 goto out;
1909 }
1910 migratetype = MIGRATE_MOVABLE;
1911 }
1912
1913 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1914 if (!cold)
1915 list_add(&page->lru, &pcp->lists[migratetype]);
1916 else
1917 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1918 pcp->count++;
1919 if (pcp->count >= pcp->high) {
1920 unsigned long batch = READ_ONCE(pcp->batch);
1921 free_pcppages_bulk(zone, batch, pcp);
1922 pcp->count -= batch;
1923 }
1924
1925 out:
1926 local_irq_restore(flags);
1927 }
1928
1929 /*
1930 * Free a list of 0-order pages
1931 */
1932 void free_hot_cold_page_list(struct list_head *list, bool cold)
1933 {
1934 struct page *page, *next;
1935
1936 list_for_each_entry_safe(page, next, list, lru) {
1937 trace_mm_page_free_batched(page, cold);
1938 free_hot_cold_page(page, cold);
1939 }
1940 }
1941
1942 /*
1943 * split_page takes a non-compound higher-order page, and splits it into
1944 * n (1<<order) sub-pages: page[0..n]
1945 * Each sub-page must be freed individually.
1946 *
1947 * Note: this is probably too low level an operation for use in drivers.
1948 * Please consult with lkml before using this in your driver.
1949 */
1950 void split_page(struct page *page, unsigned int order)
1951 {
1952 int i;
1953
1954 VM_BUG_ON_PAGE(PageCompound(page), page);
1955 VM_BUG_ON_PAGE(!page_count(page), page);
1956
1957 #ifdef CONFIG_KMEMCHECK
1958 /*
1959 * Split shadow pages too, because free(page[0]) would
1960 * otherwise free the whole shadow.
1961 */
1962 if (kmemcheck_page_is_tracked(page))
1963 split_page(virt_to_page(page[0].shadow), order);
1964 #endif
1965
1966 set_page_owner(page, 0, 0);
1967 for (i = 1; i < (1 << order); i++) {
1968 set_page_refcounted(page + i);
1969 set_page_owner(page + i, 0, 0);
1970 }
1971 }
1972 EXPORT_SYMBOL_GPL(split_page);
1973
1974 int __isolate_free_page(struct page *page, unsigned int order)
1975 {
1976 unsigned long watermark;
1977 struct zone *zone;
1978 int mt;
1979
1980 BUG_ON(!PageBuddy(page));
1981
1982 zone = page_zone(page);
1983 mt = get_pageblock_migratetype(page);
1984
1985 if (!is_migrate_isolate(mt)) {
1986 /* Obey watermarks as if the page was being allocated */
1987 watermark = low_wmark_pages(zone) + (1 << order);
1988 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1989 return 0;
1990
1991 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1992 }
1993
1994 /* Remove page from free list */
1995 list_del(&page->lru);
1996 zone->free_area[order].nr_free--;
1997 rmv_page_order(page);
1998
1999 /* Set the pageblock if the isolated page is at least a pageblock */
2000 if (order >= pageblock_order - 1) {
2001 struct page *endpage = page + (1 << order) - 1;
2002 for (; page < endpage; page += pageblock_nr_pages) {
2003 int mt = get_pageblock_migratetype(page);
2004 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2005 set_pageblock_migratetype(page,
2006 MIGRATE_MOVABLE);
2007 }
2008 }
2009
2010 set_page_owner(page, order, 0);
2011 return 1UL << order;
2012 }
2013
2014 /*
2015 * Similar to split_page except the page is already free. As this is only
2016 * being used for migration, the migratetype of the block also changes.
2017 * As this is called with interrupts disabled, the caller is responsible
2018 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2019 * are enabled.
2020 *
2021 * Note: this is probably too low level an operation for use in drivers.
2022 * Please consult with lkml before using this in your driver.
2023 */
2024 int split_free_page(struct page *page)
2025 {
2026 unsigned int order;
2027 int nr_pages;
2028
2029 order = page_order(page);
2030
2031 nr_pages = __isolate_free_page(page, order);
2032 if (!nr_pages)
2033 return 0;
2034
2035 /* Split into individual pages */
2036 set_page_refcounted(page);
2037 split_page(page, order);
2038 return nr_pages;
2039 }
2040
2041 /*
2042 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2043 */
2044 static inline
2045 struct page *buffered_rmqueue(struct zone *preferred_zone,
2046 struct zone *zone, unsigned int order,
2047 gfp_t gfp_flags, int migratetype)
2048 {
2049 unsigned long flags;
2050 struct page *page;
2051 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2052
2053 if (likely(order == 0)) {
2054 struct per_cpu_pages *pcp;
2055 struct list_head *list;
2056
2057 local_irq_save(flags);
2058 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2059 list = &pcp->lists[migratetype];
2060 if (list_empty(list)) {
2061 pcp->count += rmqueue_bulk(zone, 0,
2062 pcp->batch, list,
2063 migratetype, cold);
2064 if (unlikely(list_empty(list)))
2065 goto failed;
2066 }
2067
2068 if (cold)
2069 page = list_entry(list->prev, struct page, lru);
2070 else
2071 page = list_entry(list->next, struct page, lru);
2072
2073 list_del(&page->lru);
2074 pcp->count--;
2075 } else {
2076 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2077 /*
2078 * __GFP_NOFAIL is not to be used in new code.
2079 *
2080 * All __GFP_NOFAIL callers should be fixed so that they
2081 * properly detect and handle allocation failures.
2082 *
2083 * We most definitely don't want callers attempting to
2084 * allocate greater than order-1 page units with
2085 * __GFP_NOFAIL.
2086 */
2087 WARN_ON_ONCE(order > 1);
2088 }
2089 spin_lock_irqsave(&zone->lock, flags);
2090 page = __rmqueue(zone, order, migratetype);
2091 spin_unlock(&zone->lock);
2092 if (!page)
2093 goto failed;
2094 __mod_zone_freepage_state(zone, -(1 << order),
2095 get_freepage_migratetype(page));
2096 }
2097
2098 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2099 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2100 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2101 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2102
2103 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2104 zone_statistics(preferred_zone, zone, gfp_flags);
2105 local_irq_restore(flags);
2106
2107 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2108 return page;
2109
2110 failed:
2111 local_irq_restore(flags);
2112 return NULL;
2113 }
2114
2115 #ifdef CONFIG_FAIL_PAGE_ALLOC
2116
2117 static struct {
2118 struct fault_attr attr;
2119
2120 u32 ignore_gfp_highmem;
2121 u32 ignore_gfp_wait;
2122 u32 min_order;
2123 } fail_page_alloc = {
2124 .attr = FAULT_ATTR_INITIALIZER,
2125 .ignore_gfp_wait = 1,
2126 .ignore_gfp_highmem = 1,
2127 .min_order = 1,
2128 };
2129
2130 static int __init setup_fail_page_alloc(char *str)
2131 {
2132 return setup_fault_attr(&fail_page_alloc.attr, str);
2133 }
2134 __setup("fail_page_alloc=", setup_fail_page_alloc);
2135
2136 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2137 {
2138 if (order < fail_page_alloc.min_order)
2139 return false;
2140 if (gfp_mask & __GFP_NOFAIL)
2141 return false;
2142 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2143 return false;
2144 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
2145 return false;
2146
2147 return should_fail(&fail_page_alloc.attr, 1 << order);
2148 }
2149
2150 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2151
2152 static int __init fail_page_alloc_debugfs(void)
2153 {
2154 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2155 struct dentry *dir;
2156
2157 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2158 &fail_page_alloc.attr);
2159 if (IS_ERR(dir))
2160 return PTR_ERR(dir);
2161
2162 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2163 &fail_page_alloc.ignore_gfp_wait))
2164 goto fail;
2165 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2166 &fail_page_alloc.ignore_gfp_highmem))
2167 goto fail;
2168 if (!debugfs_create_u32("min-order", mode, dir,
2169 &fail_page_alloc.min_order))
2170 goto fail;
2171
2172 return 0;
2173 fail:
2174 debugfs_remove_recursive(dir);
2175
2176 return -ENOMEM;
2177 }
2178
2179 late_initcall(fail_page_alloc_debugfs);
2180
2181 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2182
2183 #else /* CONFIG_FAIL_PAGE_ALLOC */
2184
2185 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2186 {
2187 return false;
2188 }
2189
2190 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2191
2192 /*
2193 * Return true if free pages are above 'mark'. This takes into account the order
2194 * of the allocation.
2195 */
2196 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2197 unsigned long mark, int classzone_idx, int alloc_flags,
2198 long free_pages)
2199 {
2200 /* free_pages may go negative - that's OK */
2201 long min = mark;
2202 int o;
2203 long free_cma = 0;
2204
2205 free_pages -= (1 << order) - 1;
2206 if (alloc_flags & ALLOC_HIGH)
2207 min -= min / 2;
2208 if (alloc_flags & ALLOC_HARDER)
2209 min -= min / 4;
2210 #ifdef CONFIG_CMA
2211 /* If allocation can't use CMA areas don't use free CMA pages */
2212 if (!(alloc_flags & ALLOC_CMA))
2213 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
2214 #endif
2215
2216 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
2217 return false;
2218 for (o = 0; o < order; o++) {
2219 /* At the next order, this order's pages become unavailable */
2220 free_pages -= z->free_area[o].nr_free << o;
2221
2222 /* Require fewer higher order pages to be free */
2223 min >>= 1;
2224
2225 if (free_pages <= min)
2226 return false;
2227 }
2228 return true;
2229 }
2230
2231 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2232 int classzone_idx, int alloc_flags)
2233 {
2234 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2235 zone_page_state(z, NR_FREE_PAGES));
2236 }
2237
2238 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2239 unsigned long mark, int classzone_idx, int alloc_flags)
2240 {
2241 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2242
2243 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2244 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2245
2246 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2247 free_pages);
2248 }
2249
2250 #ifdef CONFIG_NUMA
2251 /*
2252 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
2253 * skip over zones that are not allowed by the cpuset, or that have
2254 * been recently (in last second) found to be nearly full. See further
2255 * comments in mmzone.h. Reduces cache footprint of zonelist scans
2256 * that have to skip over a lot of full or unallowed zones.
2257 *
2258 * If the zonelist cache is present in the passed zonelist, then
2259 * returns a pointer to the allowed node mask (either the current
2260 * tasks mems_allowed, or node_states[N_MEMORY].)
2261 *
2262 * If the zonelist cache is not available for this zonelist, does
2263 * nothing and returns NULL.
2264 *
2265 * If the fullzones BITMAP in the zonelist cache is stale (more than
2266 * a second since last zap'd) then we zap it out (clear its bits.)
2267 *
2268 * We hold off even calling zlc_setup, until after we've checked the
2269 * first zone in the zonelist, on the theory that most allocations will
2270 * be satisfied from that first zone, so best to examine that zone as
2271 * quickly as we can.
2272 */
2273 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2274 {
2275 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2276 nodemask_t *allowednodes; /* zonelist_cache approximation */
2277
2278 zlc = zonelist->zlcache_ptr;
2279 if (!zlc)
2280 return NULL;
2281
2282 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
2283 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2284 zlc->last_full_zap = jiffies;
2285 }
2286
2287 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
2288 &cpuset_current_mems_allowed :
2289 &node_states[N_MEMORY];
2290 return allowednodes;
2291 }
2292
2293 /*
2294 * Given 'z' scanning a zonelist, run a couple of quick checks to see
2295 * if it is worth looking at further for free memory:
2296 * 1) Check that the zone isn't thought to be full (doesn't have its
2297 * bit set in the zonelist_cache fullzones BITMAP).
2298 * 2) Check that the zones node (obtained from the zonelist_cache
2299 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
2300 * Return true (non-zero) if zone is worth looking at further, or
2301 * else return false (zero) if it is not.
2302 *
2303 * This check -ignores- the distinction between various watermarks,
2304 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
2305 * found to be full for any variation of these watermarks, it will
2306 * be considered full for up to one second by all requests, unless
2307 * we are so low on memory on all allowed nodes that we are forced
2308 * into the second scan of the zonelist.
2309 *
2310 * In the second scan we ignore this zonelist cache and exactly
2311 * apply the watermarks to all zones, even it is slower to do so.
2312 * We are low on memory in the second scan, and should leave no stone
2313 * unturned looking for a free page.
2314 */
2315 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
2316 nodemask_t *allowednodes)
2317 {
2318 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2319 int i; /* index of *z in zonelist zones */
2320 int n; /* node that zone *z is on */
2321
2322 zlc = zonelist->zlcache_ptr;
2323 if (!zlc)
2324 return 1;
2325
2326 i = z - zonelist->_zonerefs;
2327 n = zlc->z_to_n[i];
2328
2329 /* This zone is worth trying if it is allowed but not full */
2330 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
2331 }
2332
2333 /*
2334 * Given 'z' scanning a zonelist, set the corresponding bit in
2335 * zlc->fullzones, so that subsequent attempts to allocate a page
2336 * from that zone don't waste time re-examining it.
2337 */
2338 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2339 {
2340 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2341 int i; /* index of *z in zonelist zones */
2342
2343 zlc = zonelist->zlcache_ptr;
2344 if (!zlc)
2345 return;
2346
2347 i = z - zonelist->_zonerefs;
2348
2349 set_bit(i, zlc->fullzones);
2350 }
2351
2352 /*
2353 * clear all zones full, called after direct reclaim makes progress so that
2354 * a zone that was recently full is not skipped over for up to a second
2355 */
2356 static void zlc_clear_zones_full(struct zonelist *zonelist)
2357 {
2358 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2359
2360 zlc = zonelist->zlcache_ptr;
2361 if (!zlc)
2362 return;
2363
2364 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2365 }
2366
2367 static bool zone_local(struct zone *local_zone, struct zone *zone)
2368 {
2369 return local_zone->node == zone->node;
2370 }
2371
2372 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2373 {
2374 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2375 RECLAIM_DISTANCE;
2376 }
2377
2378 #else /* CONFIG_NUMA */
2379
2380 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2381 {
2382 return NULL;
2383 }
2384
2385 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
2386 nodemask_t *allowednodes)
2387 {
2388 return 1;
2389 }
2390
2391 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2392 {
2393 }
2394
2395 static void zlc_clear_zones_full(struct zonelist *zonelist)
2396 {
2397 }
2398
2399 static bool zone_local(struct zone *local_zone, struct zone *zone)
2400 {
2401 return true;
2402 }
2403
2404 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2405 {
2406 return true;
2407 }
2408
2409 #endif /* CONFIG_NUMA */
2410
2411 static void reset_alloc_batches(struct zone *preferred_zone)
2412 {
2413 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2414
2415 do {
2416 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2417 high_wmark_pages(zone) - low_wmark_pages(zone) -
2418 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2419 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2420 } while (zone++ != preferred_zone);
2421 }
2422
2423 /*
2424 * get_page_from_freelist goes through the zonelist trying to allocate
2425 * a page.
2426 */
2427 static struct page *
2428 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2429 const struct alloc_context *ac)
2430 {
2431 struct zonelist *zonelist = ac->zonelist;
2432 struct zoneref *z;
2433 struct page *page = NULL;
2434 struct zone *zone;
2435 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2436 int zlc_active = 0; /* set if using zonelist_cache */
2437 int did_zlc_setup = 0; /* just call zlc_setup() one time */
2438 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2439 (gfp_mask & __GFP_WRITE);
2440 int nr_fair_skipped = 0;
2441 bool zonelist_rescan;
2442
2443 zonelist_scan:
2444 zonelist_rescan = false;
2445
2446 /*
2447 * Scan zonelist, looking for a zone with enough free.
2448 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2449 */
2450 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2451 ac->nodemask) {
2452 unsigned long mark;
2453
2454 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2455 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2456 continue;
2457 if (cpusets_enabled() &&
2458 (alloc_flags & ALLOC_CPUSET) &&
2459 !cpuset_zone_allowed(zone, gfp_mask))
2460 continue;
2461 /*
2462 * Distribute pages in proportion to the individual
2463 * zone size to ensure fair page aging. The zone a
2464 * page was allocated in should have no effect on the
2465 * time the page has in memory before being reclaimed.
2466 */
2467 if (alloc_flags & ALLOC_FAIR) {
2468 if (!zone_local(ac->preferred_zone, zone))
2469 break;
2470 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2471 nr_fair_skipped++;
2472 continue;
2473 }
2474 }
2475 /*
2476 * When allocating a page cache page for writing, we
2477 * want to get it from a zone that is within its dirty
2478 * limit, such that no single zone holds more than its
2479 * proportional share of globally allowed dirty pages.
2480 * The dirty limits take into account the zone's
2481 * lowmem reserves and high watermark so that kswapd
2482 * should be able to balance it without having to
2483 * write pages from its LRU list.
2484 *
2485 * This may look like it could increase pressure on
2486 * lower zones by failing allocations in higher zones
2487 * before they are full. But the pages that do spill
2488 * over are limited as the lower zones are protected
2489 * by this very same mechanism. It should not become
2490 * a practical burden to them.
2491 *
2492 * XXX: For now, allow allocations to potentially
2493 * exceed the per-zone dirty limit in the slowpath
2494 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2495 * which is important when on a NUMA setup the allowed
2496 * zones are together not big enough to reach the
2497 * global limit. The proper fix for these situations
2498 * will require awareness of zones in the
2499 * dirty-throttling and the flusher threads.
2500 */
2501 if (consider_zone_dirty && !zone_dirty_ok(zone))
2502 continue;
2503
2504 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2505 if (!zone_watermark_ok(zone, order, mark,
2506 ac->classzone_idx, alloc_flags)) {
2507 int ret;
2508
2509 /* Checked here to keep the fast path fast */
2510 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2511 if (alloc_flags & ALLOC_NO_WATERMARKS)
2512 goto try_this_zone;
2513
2514 if (IS_ENABLED(CONFIG_NUMA) &&
2515 !did_zlc_setup && nr_online_nodes > 1) {
2516 /*
2517 * we do zlc_setup if there are multiple nodes
2518 * and before considering the first zone allowed
2519 * by the cpuset.
2520 */
2521 allowednodes = zlc_setup(zonelist, alloc_flags);
2522 zlc_active = 1;
2523 did_zlc_setup = 1;
2524 }
2525
2526 if (zone_reclaim_mode == 0 ||
2527 !zone_allows_reclaim(ac->preferred_zone, zone))
2528 goto this_zone_full;
2529
2530 /*
2531 * As we may have just activated ZLC, check if the first
2532 * eligible zone has failed zone_reclaim recently.
2533 */
2534 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2535 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2536 continue;
2537
2538 ret = zone_reclaim(zone, gfp_mask, order);
2539 switch (ret) {
2540 case ZONE_RECLAIM_NOSCAN:
2541 /* did not scan */
2542 continue;
2543 case ZONE_RECLAIM_FULL:
2544 /* scanned but unreclaimable */
2545 continue;
2546 default:
2547 /* did we reclaim enough */
2548 if (zone_watermark_ok(zone, order, mark,
2549 ac->classzone_idx, alloc_flags))
2550 goto try_this_zone;
2551
2552 /*
2553 * Failed to reclaim enough to meet watermark.
2554 * Only mark the zone full if checking the min
2555 * watermark or if we failed to reclaim just
2556 * 1<<order pages or else the page allocator
2557 * fastpath will prematurely mark zones full
2558 * when the watermark is between the low and
2559 * min watermarks.
2560 */
2561 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2562 ret == ZONE_RECLAIM_SOME)
2563 goto this_zone_full;
2564
2565 continue;
2566 }
2567 }
2568
2569 try_this_zone:
2570 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2571 gfp_mask, ac->migratetype);
2572 if (page) {
2573 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2574 goto try_this_zone;
2575 return page;
2576 }
2577 this_zone_full:
2578 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2579 zlc_mark_zone_full(zonelist, z);
2580 }
2581
2582 /*
2583 * The first pass makes sure allocations are spread fairly within the
2584 * local node. However, the local node might have free pages left
2585 * after the fairness batches are exhausted, and remote zones haven't
2586 * even been considered yet. Try once more without fairness, and
2587 * include remote zones now, before entering the slowpath and waking
2588 * kswapd: prefer spilling to a remote zone over swapping locally.
2589 */
2590 if (alloc_flags & ALLOC_FAIR) {
2591 alloc_flags &= ~ALLOC_FAIR;
2592 if (nr_fair_skipped) {
2593 zonelist_rescan = true;
2594 reset_alloc_batches(ac->preferred_zone);
2595 }
2596 if (nr_online_nodes > 1)
2597 zonelist_rescan = true;
2598 }
2599
2600 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2601 /* Disable zlc cache for second zonelist scan */
2602 zlc_active = 0;
2603 zonelist_rescan = true;
2604 }
2605
2606 if (zonelist_rescan)
2607 goto zonelist_scan;
2608
2609 return NULL;
2610 }
2611
2612 /*
2613 * Large machines with many possible nodes should not always dump per-node
2614 * meminfo in irq context.
2615 */
2616 static inline bool should_suppress_show_mem(void)
2617 {
2618 bool ret = false;
2619
2620 #if NODES_SHIFT > 8
2621 ret = in_interrupt();
2622 #endif
2623 return ret;
2624 }
2625
2626 static DEFINE_RATELIMIT_STATE(nopage_rs,
2627 DEFAULT_RATELIMIT_INTERVAL,
2628 DEFAULT_RATELIMIT_BURST);
2629
2630 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2631 {
2632 unsigned int filter = SHOW_MEM_FILTER_NODES;
2633
2634 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2635 debug_guardpage_minorder() > 0)
2636 return;
2637
2638 /*
2639 * This documents exceptions given to allocations in certain
2640 * contexts that are allowed to allocate outside current's set
2641 * of allowed nodes.
2642 */
2643 if (!(gfp_mask & __GFP_NOMEMALLOC))
2644 if (test_thread_flag(TIF_MEMDIE) ||
2645 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2646 filter &= ~SHOW_MEM_FILTER_NODES;
2647 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2648 filter &= ~SHOW_MEM_FILTER_NODES;
2649
2650 if (fmt) {
2651 struct va_format vaf;
2652 va_list args;
2653
2654 va_start(args, fmt);
2655
2656 vaf.fmt = fmt;
2657 vaf.va = &args;
2658
2659 pr_warn("%pV", &vaf);
2660
2661 va_end(args);
2662 }
2663
2664 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2665 current->comm, order, gfp_mask);
2666
2667 dump_stack();
2668 if (!should_suppress_show_mem())
2669 show_mem(filter);
2670 }
2671
2672 static inline struct page *
2673 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2674 const struct alloc_context *ac, unsigned long *did_some_progress)
2675 {
2676 struct page *page;
2677
2678 *did_some_progress = 0;
2679
2680 /*
2681 * Acquire the oom lock. If that fails, somebody else is
2682 * making progress for us.
2683 */
2684 if (!mutex_trylock(&oom_lock)) {
2685 *did_some_progress = 1;
2686 schedule_timeout_uninterruptible(1);
2687 return NULL;
2688 }
2689
2690 /*
2691 * Go through the zonelist yet one more time, keep very high watermark
2692 * here, this is only to catch a parallel oom killing, we must fail if
2693 * we're still under heavy pressure.
2694 */
2695 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2696 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2697 if (page)
2698 goto out;
2699
2700 if (!(gfp_mask & __GFP_NOFAIL)) {
2701 /* Coredumps can quickly deplete all memory reserves */
2702 if (current->flags & PF_DUMPCORE)
2703 goto out;
2704 /* The OOM killer will not help higher order allocs */
2705 if (order > PAGE_ALLOC_COSTLY_ORDER)
2706 goto out;
2707 /* The OOM killer does not needlessly kill tasks for lowmem */
2708 if (ac->high_zoneidx < ZONE_NORMAL)
2709 goto out;
2710 /* The OOM killer does not compensate for IO-less reclaim */
2711 if (!(gfp_mask & __GFP_FS)) {
2712 /*
2713 * XXX: Page reclaim didn't yield anything,
2714 * and the OOM killer can't be invoked, but
2715 * keep looping as per tradition.
2716 */
2717 *did_some_progress = 1;
2718 goto out;
2719 }
2720 if (pm_suspended_storage())
2721 goto out;
2722 /* The OOM killer may not free memory on a specific node */
2723 if (gfp_mask & __GFP_THISNODE)
2724 goto out;
2725 }
2726 /* Exhausted what can be done so it's blamo time */
2727 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)
2728 || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2729 *did_some_progress = 1;
2730 out:
2731 mutex_unlock(&oom_lock);
2732 return page;
2733 }
2734
2735 #ifdef CONFIG_COMPACTION
2736 /* Try memory compaction for high-order allocations before reclaim */
2737 static struct page *
2738 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2739 int alloc_flags, const struct alloc_context *ac,
2740 enum migrate_mode mode, int *contended_compaction,
2741 bool *deferred_compaction)
2742 {
2743 unsigned long compact_result;
2744 struct page *page;
2745
2746 if (!order)
2747 return NULL;
2748
2749 current->flags |= PF_MEMALLOC;
2750 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2751 mode, contended_compaction);
2752 current->flags &= ~PF_MEMALLOC;
2753
2754 switch (compact_result) {
2755 case COMPACT_DEFERRED:
2756 *deferred_compaction = true;
2757 /* fall-through */
2758 case COMPACT_SKIPPED:
2759 return NULL;
2760 default:
2761 break;
2762 }
2763
2764 /*
2765 * At least in one zone compaction wasn't deferred or skipped, so let's
2766 * count a compaction stall
2767 */
2768 count_vm_event(COMPACTSTALL);
2769
2770 page = get_page_from_freelist(gfp_mask, order,
2771 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2772
2773 if (page) {
2774 struct zone *zone = page_zone(page);
2775
2776 zone->compact_blockskip_flush = false;
2777 compaction_defer_reset(zone, order, true);
2778 count_vm_event(COMPACTSUCCESS);
2779 return page;
2780 }
2781
2782 /*
2783 * It's bad if compaction run occurs and fails. The most likely reason
2784 * is that pages exist, but not enough to satisfy watermarks.
2785 */
2786 count_vm_event(COMPACTFAIL);
2787
2788 cond_resched();
2789
2790 return NULL;
2791 }
2792 #else
2793 static inline struct page *
2794 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2795 int alloc_flags, const struct alloc_context *ac,
2796 enum migrate_mode mode, int *contended_compaction,
2797 bool *deferred_compaction)
2798 {
2799 return NULL;
2800 }
2801 #endif /* CONFIG_COMPACTION */
2802
2803 /* Perform direct synchronous page reclaim */
2804 static int
2805 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2806 const struct alloc_context *ac)
2807 {
2808 struct reclaim_state reclaim_state;
2809 int progress;
2810
2811 cond_resched();
2812
2813 /* We now go into synchronous reclaim */
2814 cpuset_memory_pressure_bump();
2815 current->flags |= PF_MEMALLOC;
2816 lockdep_set_current_reclaim_state(gfp_mask);
2817 reclaim_state.reclaimed_slab = 0;
2818 current->reclaim_state = &reclaim_state;
2819
2820 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2821 ac->nodemask);
2822
2823 current->reclaim_state = NULL;
2824 lockdep_clear_current_reclaim_state();
2825 current->flags &= ~PF_MEMALLOC;
2826
2827 cond_resched();
2828
2829 return progress;
2830 }
2831
2832 /* The really slow allocator path where we enter direct reclaim */
2833 static inline struct page *
2834 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2835 int alloc_flags, const struct alloc_context *ac,
2836 unsigned long *did_some_progress)
2837 {
2838 struct page *page = NULL;
2839 bool drained = false;
2840
2841 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2842 if (unlikely(!(*did_some_progress)))
2843 return NULL;
2844
2845 /* After successful reclaim, reconsider all zones for allocation */
2846 if (IS_ENABLED(CONFIG_NUMA))
2847 zlc_clear_zones_full(ac->zonelist);
2848
2849 retry:
2850 page = get_page_from_freelist(gfp_mask, order,
2851 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2852
2853 /*
2854 * If an allocation failed after direct reclaim, it could be because
2855 * pages are pinned on the per-cpu lists. Drain them and try again
2856 */
2857 if (!page && !drained) {
2858 drain_all_pages(NULL);
2859 drained = true;
2860 goto retry;
2861 }
2862
2863 return page;
2864 }
2865
2866 /*
2867 * This is called in the allocator slow-path if the allocation request is of
2868 * sufficient urgency to ignore watermarks and take other desperate measures
2869 */
2870 static inline struct page *
2871 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2872 const struct alloc_context *ac)
2873 {
2874 struct page *page;
2875
2876 do {
2877 page = get_page_from_freelist(gfp_mask, order,
2878 ALLOC_NO_WATERMARKS, ac);
2879
2880 if (!page && gfp_mask & __GFP_NOFAIL)
2881 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2882 HZ/50);
2883 } while (!page && (gfp_mask & __GFP_NOFAIL));
2884
2885 return page;
2886 }
2887
2888 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2889 {
2890 struct zoneref *z;
2891 struct zone *zone;
2892
2893 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2894 ac->high_zoneidx, ac->nodemask)
2895 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2896 }
2897
2898 static inline int
2899 gfp_to_alloc_flags(gfp_t gfp_mask)
2900 {
2901 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2902 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2903
2904 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2905 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2906
2907 /*
2908 * The caller may dip into page reserves a bit more if the caller
2909 * cannot run direct reclaim, or if the caller has realtime scheduling
2910 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2911 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2912 */
2913 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2914
2915 if (atomic) {
2916 /*
2917 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2918 * if it can't schedule.
2919 */
2920 if (!(gfp_mask & __GFP_NOMEMALLOC))
2921 alloc_flags |= ALLOC_HARDER;
2922 /*
2923 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2924 * comment for __cpuset_node_allowed().
2925 */
2926 alloc_flags &= ~ALLOC_CPUSET;
2927 } else if (unlikely(rt_task(current)) && !in_interrupt())
2928 alloc_flags |= ALLOC_HARDER;
2929
2930 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2931 if (gfp_mask & __GFP_MEMALLOC)
2932 alloc_flags |= ALLOC_NO_WATERMARKS;
2933 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2934 alloc_flags |= ALLOC_NO_WATERMARKS;
2935 else if (!in_interrupt() &&
2936 ((current->flags & PF_MEMALLOC) ||
2937 unlikely(test_thread_flag(TIF_MEMDIE))))
2938 alloc_flags |= ALLOC_NO_WATERMARKS;
2939 }
2940 #ifdef CONFIG_CMA
2941 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2942 alloc_flags |= ALLOC_CMA;
2943 #endif
2944 return alloc_flags;
2945 }
2946
2947 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2948 {
2949 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2950 }
2951
2952 static inline struct page *
2953 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2954 struct alloc_context *ac)
2955 {
2956 const gfp_t wait = gfp_mask & __GFP_WAIT;
2957 struct page *page = NULL;
2958 int alloc_flags;
2959 unsigned long pages_reclaimed = 0;
2960 unsigned long did_some_progress;
2961 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2962 bool deferred_compaction = false;
2963 int contended_compaction = COMPACT_CONTENDED_NONE;
2964
2965 /*
2966 * In the slowpath, we sanity check order to avoid ever trying to
2967 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2968 * be using allocators in order of preference for an area that is
2969 * too large.
2970 */
2971 if (order >= MAX_ORDER) {
2972 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2973 return NULL;
2974 }
2975
2976 /*
2977 * If this allocation cannot block and it is for a specific node, then
2978 * fail early. There's no need to wakeup kswapd or retry for a
2979 * speculative node-specific allocation.
2980 */
2981 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait)
2982 goto nopage;
2983
2984 retry:
2985 if (!(gfp_mask & __GFP_NO_KSWAPD))
2986 wake_all_kswapds(order, ac);
2987
2988 /*
2989 * OK, we're below the kswapd watermark and have kicked background
2990 * reclaim. Now things get more complex, so set up alloc_flags according
2991 * to how we want to proceed.
2992 */
2993 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2994
2995 /*
2996 * Find the true preferred zone if the allocation is unconstrained by
2997 * cpusets.
2998 */
2999 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3000 struct zoneref *preferred_zoneref;
3001 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3002 ac->high_zoneidx, NULL, &ac->preferred_zone);
3003 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3004 }
3005
3006 /* This is the last chance, in general, before the goto nopage. */
3007 page = get_page_from_freelist(gfp_mask, order,
3008 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3009 if (page)
3010 goto got_pg;
3011
3012 /* Allocate without watermarks if the context allows */
3013 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3014 /*
3015 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3016 * the allocation is high priority and these type of
3017 * allocations are system rather than user orientated
3018 */
3019 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3020
3021 page = __alloc_pages_high_priority(gfp_mask, order, ac);
3022
3023 if (page) {
3024 goto got_pg;
3025 }
3026 }
3027
3028 /* Atomic allocations - we can't balance anything */
3029 if (!wait) {
3030 /*
3031 * All existing users of the deprecated __GFP_NOFAIL are
3032 * blockable, so warn of any new users that actually allow this
3033 * type of allocation to fail.
3034 */
3035 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3036 goto nopage;
3037 }
3038
3039 /* Avoid recursion of direct reclaim */
3040 if (current->flags & PF_MEMALLOC)
3041 goto nopage;
3042
3043 /* Avoid allocations with no watermarks from looping endlessly */
3044 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3045 goto nopage;
3046
3047 /*
3048 * Try direct compaction. The first pass is asynchronous. Subsequent
3049 * attempts after direct reclaim are synchronous
3050 */
3051 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3052 migration_mode,
3053 &contended_compaction,
3054 &deferred_compaction);
3055 if (page)
3056 goto got_pg;
3057
3058 /* Checks for THP-specific high-order allocations */
3059 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
3060 /*
3061 * If compaction is deferred for high-order allocations, it is
3062 * because sync compaction recently failed. If this is the case
3063 * and the caller requested a THP allocation, we do not want
3064 * to heavily disrupt the system, so we fail the allocation
3065 * instead of entering direct reclaim.
3066 */
3067 if (deferred_compaction)
3068 goto nopage;
3069
3070 /*
3071 * In all zones where compaction was attempted (and not
3072 * deferred or skipped), lock contention has been detected.
3073 * For THP allocation we do not want to disrupt the others
3074 * so we fallback to base pages instead.
3075 */
3076 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3077 goto nopage;
3078
3079 /*
3080 * If compaction was aborted due to need_resched(), we do not
3081 * want to further increase allocation latency, unless it is
3082 * khugepaged trying to collapse.
3083 */
3084 if (contended_compaction == COMPACT_CONTENDED_SCHED
3085 && !(current->flags & PF_KTHREAD))
3086 goto nopage;
3087 }
3088
3089 /*
3090 * It can become very expensive to allocate transparent hugepages at
3091 * fault, so use asynchronous memory compaction for THP unless it is
3092 * khugepaged trying to collapse.
3093 */
3094 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
3095 (current->flags & PF_KTHREAD))
3096 migration_mode = MIGRATE_SYNC_LIGHT;
3097
3098 /* Try direct reclaim and then allocating */
3099 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3100 &did_some_progress);
3101 if (page)
3102 goto got_pg;
3103
3104 /* Do not loop if specifically requested */
3105 if (gfp_mask & __GFP_NORETRY)
3106 goto noretry;
3107
3108 /* Keep reclaiming pages as long as there is reasonable progress */
3109 pages_reclaimed += did_some_progress;
3110 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3111 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3112 /* Wait for some write requests to complete then retry */
3113 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3114 goto retry;
3115 }
3116
3117 /* Reclaim has failed us, start killing things */
3118 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3119 if (page)
3120 goto got_pg;
3121
3122 /* Retry as long as the OOM killer is making progress */
3123 if (did_some_progress)
3124 goto retry;
3125
3126 noretry:
3127 /*
3128 * High-order allocations do not necessarily loop after
3129 * direct reclaim and reclaim/compaction depends on compaction
3130 * being called after reclaim so call directly if necessary
3131 */
3132 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3133 ac, migration_mode,
3134 &contended_compaction,
3135 &deferred_compaction);
3136 if (page)
3137 goto got_pg;
3138 nopage:
3139 warn_alloc_failed(gfp_mask, order, NULL);
3140 got_pg:
3141 return page;
3142 }
3143
3144 /*
3145 * This is the 'heart' of the zoned buddy allocator.
3146 */
3147 struct page *
3148 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3149 struct zonelist *zonelist, nodemask_t *nodemask)
3150 {
3151 struct zoneref *preferred_zoneref;
3152 struct page *page = NULL;
3153 unsigned int cpuset_mems_cookie;
3154 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3155 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3156 struct alloc_context ac = {
3157 .high_zoneidx = gfp_zone(gfp_mask),
3158 .nodemask = nodemask,
3159 .migratetype = gfpflags_to_migratetype(gfp_mask),
3160 };
3161
3162 gfp_mask &= gfp_allowed_mask;
3163
3164 lockdep_trace_alloc(gfp_mask);
3165
3166 might_sleep_if(gfp_mask & __GFP_WAIT);
3167
3168 if (should_fail_alloc_page(gfp_mask, order))
3169 return NULL;
3170
3171 /*
3172 * Check the zones suitable for the gfp_mask contain at least one
3173 * valid zone. It's possible to have an empty zonelist as a result
3174 * of __GFP_THISNODE and a memoryless node
3175 */
3176 if (unlikely(!zonelist->_zonerefs->zone))
3177 return NULL;
3178
3179 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3180 alloc_flags |= ALLOC_CMA;
3181
3182 retry_cpuset:
3183 cpuset_mems_cookie = read_mems_allowed_begin();
3184
3185 /* We set it here, as __alloc_pages_slowpath might have changed it */
3186 ac.zonelist = zonelist;
3187 /* The preferred zone is used for statistics later */
3188 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3189 ac.nodemask ? : &cpuset_current_mems_allowed,
3190 &ac.preferred_zone);
3191 if (!ac.preferred_zone)
3192 goto out;
3193 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3194
3195 /* First allocation attempt */
3196 alloc_mask = gfp_mask|__GFP_HARDWALL;
3197 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3198 if (unlikely(!page)) {
3199 /*
3200 * Runtime PM, block IO and its error handling path
3201 * can deadlock because I/O on the device might not
3202 * complete.
3203 */
3204 alloc_mask = memalloc_noio_flags(gfp_mask);
3205
3206 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3207 }
3208
3209 if (kmemcheck_enabled && page)
3210 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3211
3212 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3213
3214 out:
3215 /*
3216 * When updating a task's mems_allowed, it is possible to race with
3217 * parallel threads in such a way that an allocation can fail while
3218 * the mask is being updated. If a page allocation is about to fail,
3219 * check if the cpuset changed during allocation and if so, retry.
3220 */
3221 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3222 goto retry_cpuset;
3223
3224 return page;
3225 }
3226 EXPORT_SYMBOL(__alloc_pages_nodemask);
3227
3228 /*
3229 * Common helper functions.
3230 */
3231 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3232 {
3233 struct page *page;
3234
3235 /*
3236 * __get_free_pages() returns a 32-bit address, which cannot represent
3237 * a highmem page
3238 */
3239 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3240
3241 page = alloc_pages(gfp_mask, order);
3242 if (!page)
3243 return 0;
3244 return (unsigned long) page_address(page);
3245 }
3246 EXPORT_SYMBOL(__get_free_pages);
3247
3248 unsigned long get_zeroed_page(gfp_t gfp_mask)
3249 {
3250 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3251 }
3252 EXPORT_SYMBOL(get_zeroed_page);
3253
3254 void __free_pages(struct page *page, unsigned int order)
3255 {
3256 if (put_page_testzero(page)) {
3257 if (order == 0)
3258 free_hot_cold_page(page, false);
3259 else
3260 __free_pages_ok(page, order);
3261 }
3262 }
3263
3264 EXPORT_SYMBOL(__free_pages);
3265
3266 void free_pages(unsigned long addr, unsigned int order)
3267 {
3268 if (addr != 0) {
3269 VM_BUG_ON(!virt_addr_valid((void *)addr));
3270 __free_pages(virt_to_page((void *)addr), order);
3271 }
3272 }
3273
3274 EXPORT_SYMBOL(free_pages);
3275
3276 /*
3277 * Page Fragment:
3278 * An arbitrary-length arbitrary-offset area of memory which resides
3279 * within a 0 or higher order page. Multiple fragments within that page
3280 * are individually refcounted, in the page's reference counter.
3281 *
3282 * The page_frag functions below provide a simple allocation framework for
3283 * page fragments. This is used by the network stack and network device
3284 * drivers to provide a backing region of memory for use as either an
3285 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3286 */
3287 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3288 gfp_t gfp_mask)
3289 {
3290 struct page *page = NULL;
3291 gfp_t gfp = gfp_mask;
3292
3293 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3294 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3295 __GFP_NOMEMALLOC;
3296 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3297 PAGE_FRAG_CACHE_MAX_ORDER);
3298 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3299 #endif
3300 if (unlikely(!page))
3301 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3302
3303 nc->va = page ? page_address(page) : NULL;
3304
3305 return page;
3306 }
3307
3308 void *__alloc_page_frag(struct page_frag_cache *nc,
3309 unsigned int fragsz, gfp_t gfp_mask)
3310 {
3311 unsigned int size = PAGE_SIZE;
3312 struct page *page;
3313 int offset;
3314
3315 if (unlikely(!nc->va)) {
3316 refill:
3317 page = __page_frag_refill(nc, gfp_mask);
3318 if (!page)
3319 return NULL;
3320
3321 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3322 /* if size can vary use size else just use PAGE_SIZE */
3323 size = nc->size;
3324 #endif
3325 /* Even if we own the page, we do not use atomic_set().
3326 * This would break get_page_unless_zero() users.
3327 */
3328 atomic_add(size - 1, &page->_count);
3329
3330 /* reset page count bias and offset to start of new frag */
3331 nc->pfmemalloc = page->pfmemalloc;
3332 nc->pagecnt_bias = size;
3333 nc->offset = size;
3334 }
3335
3336 offset = nc->offset - fragsz;
3337 if (unlikely(offset < 0)) {
3338 page = virt_to_page(nc->va);
3339
3340 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3341 goto refill;
3342
3343 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3344 /* if size can vary use size else just use PAGE_SIZE */
3345 size = nc->size;
3346 #endif
3347 /* OK, page count is 0, we can safely set it */
3348 atomic_set(&page->_count, size);
3349
3350 /* reset page count bias and offset to start of new frag */
3351 nc->pagecnt_bias = size;
3352 offset = size - fragsz;
3353 }
3354
3355 nc->pagecnt_bias--;
3356 nc->offset = offset;
3357
3358 return nc->va + offset;
3359 }
3360 EXPORT_SYMBOL(__alloc_page_frag);
3361
3362 /*
3363 * Frees a page fragment allocated out of either a compound or order 0 page.
3364 */
3365 void __free_page_frag(void *addr)
3366 {
3367 struct page *page = virt_to_head_page(addr);
3368
3369 if (unlikely(put_page_testzero(page)))
3370 __free_pages_ok(page, compound_order(page));
3371 }
3372 EXPORT_SYMBOL(__free_page_frag);
3373
3374 /*
3375 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3376 * of the current memory cgroup.
3377 *
3378 * It should be used when the caller would like to use kmalloc, but since the
3379 * allocation is large, it has to fall back to the page allocator.
3380 */
3381 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3382 {
3383 struct page *page;
3384 struct mem_cgroup *memcg = NULL;
3385
3386 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3387 return NULL;
3388 page = alloc_pages(gfp_mask, order);
3389 memcg_kmem_commit_charge(page, memcg, order);
3390 return page;
3391 }
3392
3393 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3394 {
3395 struct page *page;
3396 struct mem_cgroup *memcg = NULL;
3397
3398 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3399 return NULL;
3400 page = alloc_pages_node(nid, gfp_mask, order);
3401 memcg_kmem_commit_charge(page, memcg, order);
3402 return page;
3403 }
3404
3405 /*
3406 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3407 * alloc_kmem_pages.
3408 */
3409 void __free_kmem_pages(struct page *page, unsigned int order)
3410 {
3411 memcg_kmem_uncharge_pages(page, order);
3412 __free_pages(page, order);
3413 }
3414
3415 void free_kmem_pages(unsigned long addr, unsigned int order)
3416 {
3417 if (addr != 0) {
3418 VM_BUG_ON(!virt_addr_valid((void *)addr));
3419 __free_kmem_pages(virt_to_page((void *)addr), order);
3420 }
3421 }
3422
3423 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3424 {
3425 if (addr) {
3426 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3427 unsigned long used = addr + PAGE_ALIGN(size);
3428
3429 split_page(virt_to_page((void *)addr), order);
3430 while (used < alloc_end) {
3431 free_page(used);
3432 used += PAGE_SIZE;
3433 }
3434 }
3435 return (void *)addr;
3436 }
3437
3438 /**
3439 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3440 * @size: the number of bytes to allocate
3441 * @gfp_mask: GFP flags for the allocation
3442 *
3443 * This function is similar to alloc_pages(), except that it allocates the
3444 * minimum number of pages to satisfy the request. alloc_pages() can only
3445 * allocate memory in power-of-two pages.
3446 *
3447 * This function is also limited by MAX_ORDER.
3448 *
3449 * Memory allocated by this function must be released by free_pages_exact().
3450 */
3451 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3452 {
3453 unsigned int order = get_order(size);
3454 unsigned long addr;
3455
3456 addr = __get_free_pages(gfp_mask, order);
3457 return make_alloc_exact(addr, order, size);
3458 }
3459 EXPORT_SYMBOL(alloc_pages_exact);
3460
3461 /**
3462 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3463 * pages on a node.
3464 * @nid: the preferred node ID where memory should be allocated
3465 * @size: the number of bytes to allocate
3466 * @gfp_mask: GFP flags for the allocation
3467 *
3468 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3469 * back.
3470 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3471 * but is not exact.
3472 */
3473 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3474 {
3475 unsigned order = get_order(size);
3476 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3477 if (!p)
3478 return NULL;
3479 return make_alloc_exact((unsigned long)page_address(p), order, size);
3480 }
3481
3482 /**
3483 * free_pages_exact - release memory allocated via alloc_pages_exact()
3484 * @virt: the value returned by alloc_pages_exact.
3485 * @size: size of allocation, same value as passed to alloc_pages_exact().
3486 *
3487 * Release the memory allocated by a previous call to alloc_pages_exact.
3488 */
3489 void free_pages_exact(void *virt, size_t size)
3490 {
3491 unsigned long addr = (unsigned long)virt;
3492 unsigned long end = addr + PAGE_ALIGN(size);
3493
3494 while (addr < end) {
3495 free_page(addr);
3496 addr += PAGE_SIZE;
3497 }
3498 }
3499 EXPORT_SYMBOL(free_pages_exact);
3500
3501 /**
3502 * nr_free_zone_pages - count number of pages beyond high watermark
3503 * @offset: The zone index of the highest zone
3504 *
3505 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3506 * high watermark within all zones at or below a given zone index. For each
3507 * zone, the number of pages is calculated as:
3508 * managed_pages - high_pages
3509 */
3510 static unsigned long nr_free_zone_pages(int offset)
3511 {
3512 struct zoneref *z;
3513 struct zone *zone;
3514
3515 /* Just pick one node, since fallback list is circular */
3516 unsigned long sum = 0;
3517
3518 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3519
3520 for_each_zone_zonelist(zone, z, zonelist, offset) {
3521 unsigned long size = zone->managed_pages;
3522 unsigned long high = high_wmark_pages(zone);
3523 if (size > high)
3524 sum += size - high;
3525 }
3526
3527 return sum;
3528 }
3529
3530 /**
3531 * nr_free_buffer_pages - count number of pages beyond high watermark
3532 *
3533 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3534 * watermark within ZONE_DMA and ZONE_NORMAL.
3535 */
3536 unsigned long nr_free_buffer_pages(void)
3537 {
3538 return nr_free_zone_pages(gfp_zone(GFP_USER));
3539 }
3540 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3541
3542 /**
3543 * nr_free_pagecache_pages - count number of pages beyond high watermark
3544 *
3545 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3546 * high watermark within all zones.
3547 */
3548 unsigned long nr_free_pagecache_pages(void)
3549 {
3550 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3551 }
3552
3553 static inline void show_node(struct zone *zone)
3554 {
3555 if (IS_ENABLED(CONFIG_NUMA))
3556 printk("Node %d ", zone_to_nid(zone));
3557 }
3558
3559 void si_meminfo(struct sysinfo *val)
3560 {
3561 val->totalram = totalram_pages;
3562 val->sharedram = global_page_state(NR_SHMEM);
3563 val->freeram = global_page_state(NR_FREE_PAGES);
3564 val->bufferram = nr_blockdev_pages();
3565 val->totalhigh = totalhigh_pages;
3566 val->freehigh = nr_free_highpages();
3567 val->mem_unit = PAGE_SIZE;
3568 }
3569
3570 EXPORT_SYMBOL(si_meminfo);
3571
3572 #ifdef CONFIG_NUMA
3573 void si_meminfo_node(struct sysinfo *val, int nid)
3574 {
3575 int zone_type; /* needs to be signed */
3576 unsigned long managed_pages = 0;
3577 pg_data_t *pgdat = NODE_DATA(nid);
3578
3579 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3580 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3581 val->totalram = managed_pages;
3582 val->sharedram = node_page_state(nid, NR_SHMEM);
3583 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3584 #ifdef CONFIG_HIGHMEM
3585 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3586 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3587 NR_FREE_PAGES);
3588 #else
3589 val->totalhigh = 0;
3590 val->freehigh = 0;
3591 #endif
3592 val->mem_unit = PAGE_SIZE;
3593 }
3594 #endif
3595
3596 /*
3597 * Determine whether the node should be displayed or not, depending on whether
3598 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3599 */
3600 bool skip_free_areas_node(unsigned int flags, int nid)
3601 {
3602 bool ret = false;
3603 unsigned int cpuset_mems_cookie;
3604
3605 if (!(flags & SHOW_MEM_FILTER_NODES))
3606 goto out;
3607
3608 do {
3609 cpuset_mems_cookie = read_mems_allowed_begin();
3610 ret = !node_isset(nid, cpuset_current_mems_allowed);
3611 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3612 out:
3613 return ret;
3614 }
3615
3616 #define K(x) ((x) << (PAGE_SHIFT-10))
3617
3618 static void show_migration_types(unsigned char type)
3619 {
3620 static const char types[MIGRATE_TYPES] = {
3621 [MIGRATE_UNMOVABLE] = 'U',
3622 [MIGRATE_RECLAIMABLE] = 'E',
3623 [MIGRATE_MOVABLE] = 'M',
3624 [MIGRATE_RESERVE] = 'R',
3625 #ifdef CONFIG_CMA
3626 [MIGRATE_CMA] = 'C',
3627 #endif
3628 #ifdef CONFIG_MEMORY_ISOLATION
3629 [MIGRATE_ISOLATE] = 'I',
3630 #endif
3631 };
3632 char tmp[MIGRATE_TYPES + 1];
3633 char *p = tmp;
3634 int i;
3635
3636 for (i = 0; i < MIGRATE_TYPES; i++) {
3637 if (type & (1 << i))
3638 *p++ = types[i];
3639 }
3640
3641 *p = '\0';
3642 printk("(%s) ", tmp);
3643 }
3644
3645 /*
3646 * Show free area list (used inside shift_scroll-lock stuff)
3647 * We also calculate the percentage fragmentation. We do this by counting the
3648 * memory on each free list with the exception of the first item on the list.
3649 *
3650 * Bits in @filter:
3651 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3652 * cpuset.
3653 */
3654 void show_free_areas(unsigned int filter)
3655 {
3656 unsigned long free_pcp = 0;
3657 int cpu;
3658 struct zone *zone;
3659
3660 for_each_populated_zone(zone) {
3661 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3662 continue;
3663
3664 for_each_online_cpu(cpu)
3665 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3666 }
3667
3668 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3669 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3670 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3671 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3672 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3673 " free:%lu free_pcp:%lu free_cma:%lu\n",
3674 global_page_state(NR_ACTIVE_ANON),
3675 global_page_state(NR_INACTIVE_ANON),
3676 global_page_state(NR_ISOLATED_ANON),
3677 global_page_state(NR_ACTIVE_FILE),
3678 global_page_state(NR_INACTIVE_FILE),
3679 global_page_state(NR_ISOLATED_FILE),
3680 global_page_state(NR_UNEVICTABLE),
3681 global_page_state(NR_FILE_DIRTY),
3682 global_page_state(NR_WRITEBACK),
3683 global_page_state(NR_UNSTABLE_NFS),
3684 global_page_state(NR_SLAB_RECLAIMABLE),
3685 global_page_state(NR_SLAB_UNRECLAIMABLE),
3686 global_page_state(NR_FILE_MAPPED),
3687 global_page_state(NR_SHMEM),
3688 global_page_state(NR_PAGETABLE),
3689 global_page_state(NR_BOUNCE),
3690 global_page_state(NR_FREE_PAGES),
3691 free_pcp,
3692 global_page_state(NR_FREE_CMA_PAGES));
3693
3694 for_each_populated_zone(zone) {
3695 int i;
3696
3697 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3698 continue;
3699
3700 free_pcp = 0;
3701 for_each_online_cpu(cpu)
3702 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3703
3704 show_node(zone);
3705 printk("%s"
3706 " free:%lukB"
3707 " min:%lukB"
3708 " low:%lukB"
3709 " high:%lukB"
3710 " active_anon:%lukB"
3711 " inactive_anon:%lukB"
3712 " active_file:%lukB"
3713 " inactive_file:%lukB"
3714 " unevictable:%lukB"
3715 " isolated(anon):%lukB"
3716 " isolated(file):%lukB"
3717 " present:%lukB"
3718 " managed:%lukB"
3719 " mlocked:%lukB"
3720 " dirty:%lukB"
3721 " writeback:%lukB"
3722 " mapped:%lukB"
3723 " shmem:%lukB"
3724 " slab_reclaimable:%lukB"
3725 " slab_unreclaimable:%lukB"
3726 " kernel_stack:%lukB"
3727 " pagetables:%lukB"
3728 " unstable:%lukB"
3729 " bounce:%lukB"
3730 " free_pcp:%lukB"
3731 " local_pcp:%ukB"
3732 " free_cma:%lukB"
3733 " writeback_tmp:%lukB"
3734 " pages_scanned:%lu"
3735 " all_unreclaimable? %s"
3736 "\n",
3737 zone->name,
3738 K(zone_page_state(zone, NR_FREE_PAGES)),
3739 K(min_wmark_pages(zone)),
3740 K(low_wmark_pages(zone)),
3741 K(high_wmark_pages(zone)),
3742 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3743 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3744 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3745 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3746 K(zone_page_state(zone, NR_UNEVICTABLE)),
3747 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3748 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3749 K(zone->present_pages),
3750 K(zone->managed_pages),
3751 K(zone_page_state(zone, NR_MLOCK)),
3752 K(zone_page_state(zone, NR_FILE_DIRTY)),
3753 K(zone_page_state(zone, NR_WRITEBACK)),
3754 K(zone_page_state(zone, NR_FILE_MAPPED)),
3755 K(zone_page_state(zone, NR_SHMEM)),
3756 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3757 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3758 zone_page_state(zone, NR_KERNEL_STACK) *
3759 THREAD_SIZE / 1024,
3760 K(zone_page_state(zone, NR_PAGETABLE)),
3761 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3762 K(zone_page_state(zone, NR_BOUNCE)),
3763 K(free_pcp),
3764 K(this_cpu_read(zone->pageset->pcp.count)),
3765 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3766 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3767 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3768 (!zone_reclaimable(zone) ? "yes" : "no")
3769 );
3770 printk("lowmem_reserve[]:");
3771 for (i = 0; i < MAX_NR_ZONES; i++)
3772 printk(" %ld", zone->lowmem_reserve[i]);
3773 printk("\n");
3774 }
3775
3776 for_each_populated_zone(zone) {
3777 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3778 unsigned char types[MAX_ORDER];
3779
3780 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3781 continue;
3782 show_node(zone);
3783 printk("%s: ", zone->name);
3784
3785 spin_lock_irqsave(&zone->lock, flags);
3786 for (order = 0; order < MAX_ORDER; order++) {
3787 struct free_area *area = &zone->free_area[order];
3788 int type;
3789
3790 nr[order] = area->nr_free;
3791 total += nr[order] << order;
3792
3793 types[order] = 0;
3794 for (type = 0; type < MIGRATE_TYPES; type++) {
3795 if (!list_empty(&area->free_list[type]))
3796 types[order] |= 1 << type;
3797 }
3798 }
3799 spin_unlock_irqrestore(&zone->lock, flags);
3800 for (order = 0; order < MAX_ORDER; order++) {
3801 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3802 if (nr[order])
3803 show_migration_types(types[order]);
3804 }
3805 printk("= %lukB\n", K(total));
3806 }
3807
3808 hugetlb_show_meminfo();
3809
3810 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3811
3812 show_swap_cache_info();
3813 }
3814
3815 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3816 {
3817 zoneref->zone = zone;
3818 zoneref->zone_idx = zone_idx(zone);
3819 }
3820
3821 /*
3822 * Builds allocation fallback zone lists.
3823 *
3824 * Add all populated zones of a node to the zonelist.
3825 */
3826 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3827 int nr_zones)
3828 {
3829 struct zone *zone;
3830 enum zone_type zone_type = MAX_NR_ZONES;
3831
3832 do {
3833 zone_type--;
3834 zone = pgdat->node_zones + zone_type;
3835 if (populated_zone(zone)) {
3836 zoneref_set_zone(zone,
3837 &zonelist->_zonerefs[nr_zones++]);
3838 check_highest_zone(zone_type);
3839 }
3840 } while (zone_type);
3841
3842 return nr_zones;
3843 }
3844
3845
3846 /*
3847 * zonelist_order:
3848 * 0 = automatic detection of better ordering.
3849 * 1 = order by ([node] distance, -zonetype)
3850 * 2 = order by (-zonetype, [node] distance)
3851 *
3852 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3853 * the same zonelist. So only NUMA can configure this param.
3854 */
3855 #define ZONELIST_ORDER_DEFAULT 0
3856 #define ZONELIST_ORDER_NODE 1
3857 #define ZONELIST_ORDER_ZONE 2
3858
3859 /* zonelist order in the kernel.
3860 * set_zonelist_order() will set this to NODE or ZONE.
3861 */
3862 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3863 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3864
3865
3866 #ifdef CONFIG_NUMA
3867 /* The value user specified ....changed by config */
3868 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3869 /* string for sysctl */
3870 #define NUMA_ZONELIST_ORDER_LEN 16
3871 char numa_zonelist_order[16] = "default";
3872
3873 /*
3874 * interface for configure zonelist ordering.
3875 * command line option "numa_zonelist_order"
3876 * = "[dD]efault - default, automatic configuration.
3877 * = "[nN]ode - order by node locality, then by zone within node
3878 * = "[zZ]one - order by zone, then by locality within zone
3879 */
3880
3881 static int __parse_numa_zonelist_order(char *s)
3882 {
3883 if (*s == 'd' || *s == 'D') {
3884 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3885 } else if (*s == 'n' || *s == 'N') {
3886 user_zonelist_order = ZONELIST_ORDER_NODE;
3887 } else if (*s == 'z' || *s == 'Z') {
3888 user_zonelist_order = ZONELIST_ORDER_ZONE;
3889 } else {
3890 printk(KERN_WARNING
3891 "Ignoring invalid numa_zonelist_order value: "
3892 "%s\n", s);
3893 return -EINVAL;
3894 }
3895 return 0;
3896 }
3897
3898 static __init int setup_numa_zonelist_order(char *s)
3899 {
3900 int ret;
3901
3902 if (!s)
3903 return 0;
3904
3905 ret = __parse_numa_zonelist_order(s);
3906 if (ret == 0)
3907 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3908
3909 return ret;
3910 }
3911 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3912
3913 /*
3914 * sysctl handler for numa_zonelist_order
3915 */
3916 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3917 void __user *buffer, size_t *length,
3918 loff_t *ppos)
3919 {
3920 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3921 int ret;
3922 static DEFINE_MUTEX(zl_order_mutex);
3923
3924 mutex_lock(&zl_order_mutex);
3925 if (write) {
3926 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3927 ret = -EINVAL;
3928 goto out;
3929 }
3930 strcpy(saved_string, (char *)table->data);
3931 }
3932 ret = proc_dostring(table, write, buffer, length, ppos);
3933 if (ret)
3934 goto out;
3935 if (write) {
3936 int oldval = user_zonelist_order;
3937
3938 ret = __parse_numa_zonelist_order((char *)table->data);
3939 if (ret) {
3940 /*
3941 * bogus value. restore saved string
3942 */
3943 strncpy((char *)table->data, saved_string,
3944 NUMA_ZONELIST_ORDER_LEN);
3945 user_zonelist_order = oldval;
3946 } else if (oldval != user_zonelist_order) {
3947 mutex_lock(&zonelists_mutex);
3948 build_all_zonelists(NULL, NULL);
3949 mutex_unlock(&zonelists_mutex);
3950 }
3951 }
3952 out:
3953 mutex_unlock(&zl_order_mutex);
3954 return ret;
3955 }
3956
3957
3958 #define MAX_NODE_LOAD (nr_online_nodes)
3959 static int node_load[MAX_NUMNODES];
3960
3961 /**
3962 * find_next_best_node - find the next node that should appear in a given node's fallback list
3963 * @node: node whose fallback list we're appending
3964 * @used_node_mask: nodemask_t of already used nodes
3965 *
3966 * We use a number of factors to determine which is the next node that should
3967 * appear on a given node's fallback list. The node should not have appeared
3968 * already in @node's fallback list, and it should be the next closest node
3969 * according to the distance array (which contains arbitrary distance values
3970 * from each node to each node in the system), and should also prefer nodes
3971 * with no CPUs, since presumably they'll have very little allocation pressure
3972 * on them otherwise.
3973 * It returns -1 if no node is found.
3974 */
3975 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3976 {
3977 int n, val;
3978 int min_val = INT_MAX;
3979 int best_node = NUMA_NO_NODE;
3980 const struct cpumask *tmp = cpumask_of_node(0);
3981
3982 /* Use the local node if we haven't already */
3983 if (!node_isset(node, *used_node_mask)) {
3984 node_set(node, *used_node_mask);
3985 return node;
3986 }
3987
3988 for_each_node_state(n, N_MEMORY) {
3989
3990 /* Don't want a node to appear more than once */
3991 if (node_isset(n, *used_node_mask))
3992 continue;
3993
3994 /* Use the distance array to find the distance */
3995 val = node_distance(node, n);
3996
3997 /* Penalize nodes under us ("prefer the next node") */
3998 val += (n < node);
3999
4000 /* Give preference to headless and unused nodes */
4001 tmp = cpumask_of_node(n);
4002 if (!cpumask_empty(tmp))
4003 val += PENALTY_FOR_NODE_WITH_CPUS;
4004
4005 /* Slight preference for less loaded node */
4006 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4007 val += node_load[n];
4008
4009 if (val < min_val) {
4010 min_val = val;
4011 best_node = n;
4012 }
4013 }
4014
4015 if (best_node >= 0)
4016 node_set(best_node, *used_node_mask);
4017
4018 return best_node;
4019 }
4020
4021
4022 /*
4023 * Build zonelists ordered by node and zones within node.
4024 * This results in maximum locality--normal zone overflows into local
4025 * DMA zone, if any--but risks exhausting DMA zone.
4026 */
4027 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4028 {
4029 int j;
4030 struct zonelist *zonelist;
4031
4032 zonelist = &pgdat->node_zonelists[0];
4033 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4034 ;
4035 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4036 zonelist->_zonerefs[j].zone = NULL;
4037 zonelist->_zonerefs[j].zone_idx = 0;
4038 }
4039
4040 /*
4041 * Build gfp_thisnode zonelists
4042 */
4043 static void build_thisnode_zonelists(pg_data_t *pgdat)
4044 {
4045 int j;
4046 struct zonelist *zonelist;
4047
4048 zonelist = &pgdat->node_zonelists[1];
4049 j = build_zonelists_node(pgdat, zonelist, 0);
4050 zonelist->_zonerefs[j].zone = NULL;
4051 zonelist->_zonerefs[j].zone_idx = 0;
4052 }
4053
4054 /*
4055 * Build zonelists ordered by zone and nodes within zones.
4056 * This results in conserving DMA zone[s] until all Normal memory is
4057 * exhausted, but results in overflowing to remote node while memory
4058 * may still exist in local DMA zone.
4059 */
4060 static int node_order[MAX_NUMNODES];
4061
4062 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4063 {
4064 int pos, j, node;
4065 int zone_type; /* needs to be signed */
4066 struct zone *z;
4067 struct zonelist *zonelist;
4068
4069 zonelist = &pgdat->node_zonelists[0];
4070 pos = 0;
4071 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4072 for (j = 0; j < nr_nodes; j++) {
4073 node = node_order[j];
4074 z = &NODE_DATA(node)->node_zones[zone_type];
4075 if (populated_zone(z)) {
4076 zoneref_set_zone(z,
4077 &zonelist->_zonerefs[pos++]);
4078 check_highest_zone(zone_type);
4079 }
4080 }
4081 }
4082 zonelist->_zonerefs[pos].zone = NULL;
4083 zonelist->_zonerefs[pos].zone_idx = 0;
4084 }
4085
4086 #if defined(CONFIG_64BIT)
4087 /*
4088 * Devices that require DMA32/DMA are relatively rare and do not justify a
4089 * penalty to every machine in case the specialised case applies. Default
4090 * to Node-ordering on 64-bit NUMA machines
4091 */
4092 static int default_zonelist_order(void)
4093 {
4094 return ZONELIST_ORDER_NODE;
4095 }
4096 #else
4097 /*
4098 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4099 * by the kernel. If processes running on node 0 deplete the low memory zone
4100 * then reclaim will occur more frequency increasing stalls and potentially
4101 * be easier to OOM if a large percentage of the zone is under writeback or
4102 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4103 * Hence, default to zone ordering on 32-bit.
4104 */
4105 static int default_zonelist_order(void)
4106 {
4107 return ZONELIST_ORDER_ZONE;
4108 }
4109 #endif /* CONFIG_64BIT */
4110
4111 static void set_zonelist_order(void)
4112 {
4113 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4114 current_zonelist_order = default_zonelist_order();
4115 else
4116 current_zonelist_order = user_zonelist_order;
4117 }
4118
4119 static void build_zonelists(pg_data_t *pgdat)
4120 {
4121 int j, node, load;
4122 enum zone_type i;
4123 nodemask_t used_mask;
4124 int local_node, prev_node;
4125 struct zonelist *zonelist;
4126 int order = current_zonelist_order;
4127
4128 /* initialize zonelists */
4129 for (i = 0; i < MAX_ZONELISTS; i++) {
4130 zonelist = pgdat->node_zonelists + i;
4131 zonelist->_zonerefs[0].zone = NULL;
4132 zonelist->_zonerefs[0].zone_idx = 0;
4133 }
4134
4135 /* NUMA-aware ordering of nodes */
4136 local_node = pgdat->node_id;
4137 load = nr_online_nodes;
4138 prev_node = local_node;
4139 nodes_clear(used_mask);
4140
4141 memset(node_order, 0, sizeof(node_order));
4142 j = 0;
4143
4144 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4145 /*
4146 * We don't want to pressure a particular node.
4147 * So adding penalty to the first node in same
4148 * distance group to make it round-robin.
4149 */
4150 if (node_distance(local_node, node) !=
4151 node_distance(local_node, prev_node))
4152 node_load[node] = load;
4153
4154 prev_node = node;
4155 load--;
4156 if (order == ZONELIST_ORDER_NODE)
4157 build_zonelists_in_node_order(pgdat, node);
4158 else
4159 node_order[j++] = node; /* remember order */
4160 }
4161
4162 if (order == ZONELIST_ORDER_ZONE) {
4163 /* calculate node order -- i.e., DMA last! */
4164 build_zonelists_in_zone_order(pgdat, j);
4165 }
4166
4167 build_thisnode_zonelists(pgdat);
4168 }
4169
4170 /* Construct the zonelist performance cache - see further mmzone.h */
4171 static void build_zonelist_cache(pg_data_t *pgdat)
4172 {
4173 struct zonelist *zonelist;
4174 struct zonelist_cache *zlc;
4175 struct zoneref *z;
4176
4177 zonelist = &pgdat->node_zonelists[0];
4178 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
4179 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
4180 for (z = zonelist->_zonerefs; z->zone; z++)
4181 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
4182 }
4183
4184 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4185 /*
4186 * Return node id of node used for "local" allocations.
4187 * I.e., first node id of first zone in arg node's generic zonelist.
4188 * Used for initializing percpu 'numa_mem', which is used primarily
4189 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4190 */
4191 int local_memory_node(int node)
4192 {
4193 struct zone *zone;
4194
4195 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4196 gfp_zone(GFP_KERNEL),
4197 NULL,
4198 &zone);
4199 return zone->node;
4200 }
4201 #endif
4202
4203 #else /* CONFIG_NUMA */
4204
4205 static void set_zonelist_order(void)
4206 {
4207 current_zonelist_order = ZONELIST_ORDER_ZONE;
4208 }
4209
4210 static void build_zonelists(pg_data_t *pgdat)
4211 {
4212 int node, local_node;
4213 enum zone_type j;
4214 struct zonelist *zonelist;
4215
4216 local_node = pgdat->node_id;
4217
4218 zonelist = &pgdat->node_zonelists[0];
4219 j = build_zonelists_node(pgdat, zonelist, 0);
4220
4221 /*
4222 * Now we build the zonelist so that it contains the zones
4223 * of all the other nodes.
4224 * We don't want to pressure a particular node, so when
4225 * building the zones for node N, we make sure that the
4226 * zones coming right after the local ones are those from
4227 * node N+1 (modulo N)
4228 */
4229 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4230 if (!node_online(node))
4231 continue;
4232 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4233 }
4234 for (node = 0; node < local_node; node++) {
4235 if (!node_online(node))
4236 continue;
4237 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4238 }
4239
4240 zonelist->_zonerefs[j].zone = NULL;
4241 zonelist->_zonerefs[j].zone_idx = 0;
4242 }
4243
4244 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
4245 static void build_zonelist_cache(pg_data_t *pgdat)
4246 {
4247 pgdat->node_zonelists[0].zlcache_ptr = NULL;
4248 }
4249
4250 #endif /* CONFIG_NUMA */
4251
4252 /*
4253 * Boot pageset table. One per cpu which is going to be used for all
4254 * zones and all nodes. The parameters will be set in such a way
4255 * that an item put on a list will immediately be handed over to
4256 * the buddy list. This is safe since pageset manipulation is done
4257 * with interrupts disabled.
4258 *
4259 * The boot_pagesets must be kept even after bootup is complete for
4260 * unused processors and/or zones. They do play a role for bootstrapping
4261 * hotplugged processors.
4262 *
4263 * zoneinfo_show() and maybe other functions do
4264 * not check if the processor is online before following the pageset pointer.
4265 * Other parts of the kernel may not check if the zone is available.
4266 */
4267 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4268 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4269 static void setup_zone_pageset(struct zone *zone);
4270
4271 /*
4272 * Global mutex to protect against size modification of zonelists
4273 * as well as to serialize pageset setup for the new populated zone.
4274 */
4275 DEFINE_MUTEX(zonelists_mutex);
4276
4277 /* return values int ....just for stop_machine() */
4278 static int __build_all_zonelists(void *data)
4279 {
4280 int nid;
4281 int cpu;
4282 pg_data_t *self = data;
4283
4284 #ifdef CONFIG_NUMA
4285 memset(node_load, 0, sizeof(node_load));
4286 #endif
4287
4288 if (self && !node_online(self->node_id)) {
4289 build_zonelists(self);
4290 build_zonelist_cache(self);
4291 }
4292
4293 for_each_online_node(nid) {
4294 pg_data_t *pgdat = NODE_DATA(nid);
4295
4296 build_zonelists(pgdat);
4297 build_zonelist_cache(pgdat);
4298 }
4299
4300 /*
4301 * Initialize the boot_pagesets that are going to be used
4302 * for bootstrapping processors. The real pagesets for
4303 * each zone will be allocated later when the per cpu
4304 * allocator is available.
4305 *
4306 * boot_pagesets are used also for bootstrapping offline
4307 * cpus if the system is already booted because the pagesets
4308 * are needed to initialize allocators on a specific cpu too.
4309 * F.e. the percpu allocator needs the page allocator which
4310 * needs the percpu allocator in order to allocate its pagesets
4311 * (a chicken-egg dilemma).
4312 */
4313 for_each_possible_cpu(cpu) {
4314 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4315
4316 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4317 /*
4318 * We now know the "local memory node" for each node--
4319 * i.e., the node of the first zone in the generic zonelist.
4320 * Set up numa_mem percpu variable for on-line cpus. During
4321 * boot, only the boot cpu should be on-line; we'll init the
4322 * secondary cpus' numa_mem as they come on-line. During
4323 * node/memory hotplug, we'll fixup all on-line cpus.
4324 */
4325 if (cpu_online(cpu))
4326 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4327 #endif
4328 }
4329
4330 return 0;
4331 }
4332
4333 static noinline void __init
4334 build_all_zonelists_init(void)
4335 {
4336 __build_all_zonelists(NULL);
4337 mminit_verify_zonelist();
4338 cpuset_init_current_mems_allowed();
4339 }
4340
4341 /*
4342 * Called with zonelists_mutex held always
4343 * unless system_state == SYSTEM_BOOTING.
4344 *
4345 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4346 * [we're only called with non-NULL zone through __meminit paths] and
4347 * (2) call of __init annotated helper build_all_zonelists_init
4348 * [protected by SYSTEM_BOOTING].
4349 */
4350 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4351 {
4352 set_zonelist_order();
4353
4354 if (system_state == SYSTEM_BOOTING) {
4355 build_all_zonelists_init();
4356 } else {
4357 #ifdef CONFIG_MEMORY_HOTPLUG
4358 if (zone)
4359 setup_zone_pageset(zone);
4360 #endif
4361 /* we have to stop all cpus to guarantee there is no user
4362 of zonelist */
4363 stop_machine(__build_all_zonelists, pgdat, NULL);
4364 /* cpuset refresh routine should be here */
4365 }
4366 vm_total_pages = nr_free_pagecache_pages();
4367 /*
4368 * Disable grouping by mobility if the number of pages in the
4369 * system is too low to allow the mechanism to work. It would be
4370 * more accurate, but expensive to check per-zone. This check is
4371 * made on memory-hotadd so a system can start with mobility
4372 * disabled and enable it later
4373 */
4374 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4375 page_group_by_mobility_disabled = 1;
4376 else
4377 page_group_by_mobility_disabled = 0;
4378
4379 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
4380 "Total pages: %ld\n",
4381 nr_online_nodes,
4382 zonelist_order_name[current_zonelist_order],
4383 page_group_by_mobility_disabled ? "off" : "on",
4384 vm_total_pages);
4385 #ifdef CONFIG_NUMA
4386 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4387 #endif
4388 }
4389
4390 /*
4391 * Helper functions to size the waitqueue hash table.
4392 * Essentially these want to choose hash table sizes sufficiently
4393 * large so that collisions trying to wait on pages are rare.
4394 * But in fact, the number of active page waitqueues on typical
4395 * systems is ridiculously low, less than 200. So this is even
4396 * conservative, even though it seems large.
4397 *
4398 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4399 * waitqueues, i.e. the size of the waitq table given the number of pages.
4400 */
4401 #define PAGES_PER_WAITQUEUE 256
4402
4403 #ifndef CONFIG_MEMORY_HOTPLUG
4404 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4405 {
4406 unsigned long size = 1;
4407
4408 pages /= PAGES_PER_WAITQUEUE;
4409
4410 while (size < pages)
4411 size <<= 1;
4412
4413 /*
4414 * Once we have dozens or even hundreds of threads sleeping
4415 * on IO we've got bigger problems than wait queue collision.
4416 * Limit the size of the wait table to a reasonable size.
4417 */
4418 size = min(size, 4096UL);
4419
4420 return max(size, 4UL);
4421 }
4422 #else
4423 /*
4424 * A zone's size might be changed by hot-add, so it is not possible to determine
4425 * a suitable size for its wait_table. So we use the maximum size now.
4426 *
4427 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4428 *
4429 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4430 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4431 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4432 *
4433 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4434 * or more by the traditional way. (See above). It equals:
4435 *
4436 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4437 * ia64(16K page size) : = ( 8G + 4M)byte.
4438 * powerpc (64K page size) : = (32G +16M)byte.
4439 */
4440 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4441 {
4442 return 4096UL;
4443 }
4444 #endif
4445
4446 /*
4447 * This is an integer logarithm so that shifts can be used later
4448 * to extract the more random high bits from the multiplicative
4449 * hash function before the remainder is taken.
4450 */
4451 static inline unsigned long wait_table_bits(unsigned long size)
4452 {
4453 return ffz(~size);
4454 }
4455
4456 /*
4457 * Check if a pageblock contains reserved pages
4458 */
4459 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4460 {
4461 unsigned long pfn;
4462
4463 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4464 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4465 return 1;
4466 }
4467 return 0;
4468 }
4469
4470 /*
4471 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4472 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4473 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4474 * higher will lead to a bigger reserve which will get freed as contiguous
4475 * blocks as reclaim kicks in
4476 */
4477 static void setup_zone_migrate_reserve(struct zone *zone)
4478 {
4479 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4480 struct page *page;
4481 unsigned long block_migratetype;
4482 int reserve;
4483 int old_reserve;
4484
4485 /*
4486 * Get the start pfn, end pfn and the number of blocks to reserve
4487 * We have to be careful to be aligned to pageblock_nr_pages to
4488 * make sure that we always check pfn_valid for the first page in
4489 * the block.
4490 */
4491 start_pfn = zone->zone_start_pfn;
4492 end_pfn = zone_end_pfn(zone);
4493 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4494 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4495 pageblock_order;
4496
4497 /*
4498 * Reserve blocks are generally in place to help high-order atomic
4499 * allocations that are short-lived. A min_free_kbytes value that
4500 * would result in more than 2 reserve blocks for atomic allocations
4501 * is assumed to be in place to help anti-fragmentation for the
4502 * future allocation of hugepages at runtime.
4503 */
4504 reserve = min(2, reserve);
4505 old_reserve = zone->nr_migrate_reserve_block;
4506
4507 /* When memory hot-add, we almost always need to do nothing */
4508 if (reserve == old_reserve)
4509 return;
4510 zone->nr_migrate_reserve_block = reserve;
4511
4512 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4513 if (!early_page_nid_uninitialised(pfn, zone_to_nid(zone)))
4514 return;
4515
4516 if (!pfn_valid(pfn))
4517 continue;
4518 page = pfn_to_page(pfn);
4519
4520 /* Watch out for overlapping nodes */
4521 if (page_to_nid(page) != zone_to_nid(zone))
4522 continue;
4523
4524 block_migratetype = get_pageblock_migratetype(page);
4525
4526 /* Only test what is necessary when the reserves are not met */
4527 if (reserve > 0) {
4528 /*
4529 * Blocks with reserved pages will never free, skip
4530 * them.
4531 */
4532 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4533 if (pageblock_is_reserved(pfn, block_end_pfn))
4534 continue;
4535
4536 /* If this block is reserved, account for it */
4537 if (block_migratetype == MIGRATE_RESERVE) {
4538 reserve--;
4539 continue;
4540 }
4541
4542 /* Suitable for reserving if this block is movable */
4543 if (block_migratetype == MIGRATE_MOVABLE) {
4544 set_pageblock_migratetype(page,
4545 MIGRATE_RESERVE);
4546 move_freepages_block(zone, page,
4547 MIGRATE_RESERVE);
4548 reserve--;
4549 continue;
4550 }
4551 } else if (!old_reserve) {
4552 /*
4553 * At boot time we don't need to scan the whole zone
4554 * for turning off MIGRATE_RESERVE.
4555 */
4556 break;
4557 }
4558
4559 /*
4560 * If the reserve is met and this is a previous reserved block,
4561 * take it back
4562 */
4563 if (block_migratetype == MIGRATE_RESERVE) {
4564 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4565 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4566 }
4567 }
4568 }
4569
4570 /*
4571 * Initially all pages are reserved - free ones are freed
4572 * up by free_all_bootmem() once the early boot process is
4573 * done. Non-atomic initialization, single-pass.
4574 */
4575 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4576 unsigned long start_pfn, enum memmap_context context)
4577 {
4578 pg_data_t *pgdat = NODE_DATA(nid);
4579 unsigned long end_pfn = start_pfn + size;
4580 unsigned long pfn;
4581 struct zone *z;
4582 unsigned long nr_initialised = 0;
4583
4584 if (highest_memmap_pfn < end_pfn - 1)
4585 highest_memmap_pfn = end_pfn - 1;
4586
4587 z = &pgdat->node_zones[zone];
4588 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4589 /*
4590 * There can be holes in boot-time mem_map[]s
4591 * handed to this function. They do not
4592 * exist on hotplugged memory.
4593 */
4594 if (context == MEMMAP_EARLY) {
4595 if (!early_pfn_valid(pfn))
4596 continue;
4597 if (!early_pfn_in_nid(pfn, nid))
4598 continue;
4599 if (!update_defer_init(pgdat, pfn, end_pfn,
4600 &nr_initialised))
4601 break;
4602 }
4603
4604 /*
4605 * Mark the block movable so that blocks are reserved for
4606 * movable at startup. This will force kernel allocations
4607 * to reserve their blocks rather than leaking throughout
4608 * the address space during boot when many long-lived
4609 * kernel allocations are made. Later some blocks near
4610 * the start are marked MIGRATE_RESERVE by
4611 * setup_zone_migrate_reserve()
4612 *
4613 * bitmap is created for zone's valid pfn range. but memmap
4614 * can be created for invalid pages (for alignment)
4615 * check here not to call set_pageblock_migratetype() against
4616 * pfn out of zone.
4617 */
4618 if (!(pfn & (pageblock_nr_pages - 1))) {
4619 struct page *page = pfn_to_page(pfn);
4620
4621 __init_single_page(page, pfn, zone, nid);
4622 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4623 } else {
4624 __init_single_pfn(pfn, zone, nid);
4625 }
4626 }
4627 }
4628
4629 static void __meminit zone_init_free_lists(struct zone *zone)
4630 {
4631 unsigned int order, t;
4632 for_each_migratetype_order(order, t) {
4633 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4634 zone->free_area[order].nr_free = 0;
4635 }
4636 }
4637
4638 #ifndef __HAVE_ARCH_MEMMAP_INIT
4639 #define memmap_init(size, nid, zone, start_pfn) \
4640 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4641 #endif
4642
4643 static int zone_batchsize(struct zone *zone)
4644 {
4645 #ifdef CONFIG_MMU
4646 int batch;
4647
4648 /*
4649 * The per-cpu-pages pools are set to around 1000th of the
4650 * size of the zone. But no more than 1/2 of a meg.
4651 *
4652 * OK, so we don't know how big the cache is. So guess.
4653 */
4654 batch = zone->managed_pages / 1024;
4655 if (batch * PAGE_SIZE > 512 * 1024)
4656 batch = (512 * 1024) / PAGE_SIZE;
4657 batch /= 4; /* We effectively *= 4 below */
4658 if (batch < 1)
4659 batch = 1;
4660
4661 /*
4662 * Clamp the batch to a 2^n - 1 value. Having a power
4663 * of 2 value was found to be more likely to have
4664 * suboptimal cache aliasing properties in some cases.
4665 *
4666 * For example if 2 tasks are alternately allocating
4667 * batches of pages, one task can end up with a lot
4668 * of pages of one half of the possible page colors
4669 * and the other with pages of the other colors.
4670 */
4671 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4672
4673 return batch;
4674
4675 #else
4676 /* The deferral and batching of frees should be suppressed under NOMMU
4677 * conditions.
4678 *
4679 * The problem is that NOMMU needs to be able to allocate large chunks
4680 * of contiguous memory as there's no hardware page translation to
4681 * assemble apparent contiguous memory from discontiguous pages.
4682 *
4683 * Queueing large contiguous runs of pages for batching, however,
4684 * causes the pages to actually be freed in smaller chunks. As there
4685 * can be a significant delay between the individual batches being
4686 * recycled, this leads to the once large chunks of space being
4687 * fragmented and becoming unavailable for high-order allocations.
4688 */
4689 return 0;
4690 #endif
4691 }
4692
4693 /*
4694 * pcp->high and pcp->batch values are related and dependent on one another:
4695 * ->batch must never be higher then ->high.
4696 * The following function updates them in a safe manner without read side
4697 * locking.
4698 *
4699 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4700 * those fields changing asynchronously (acording the the above rule).
4701 *
4702 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4703 * outside of boot time (or some other assurance that no concurrent updaters
4704 * exist).
4705 */
4706 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4707 unsigned long batch)
4708 {
4709 /* start with a fail safe value for batch */
4710 pcp->batch = 1;
4711 smp_wmb();
4712
4713 /* Update high, then batch, in order */
4714 pcp->high = high;
4715 smp_wmb();
4716
4717 pcp->batch = batch;
4718 }
4719
4720 /* a companion to pageset_set_high() */
4721 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4722 {
4723 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4724 }
4725
4726 static void pageset_init(struct per_cpu_pageset *p)
4727 {
4728 struct per_cpu_pages *pcp;
4729 int migratetype;
4730
4731 memset(p, 0, sizeof(*p));
4732
4733 pcp = &p->pcp;
4734 pcp->count = 0;
4735 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4736 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4737 }
4738
4739 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4740 {
4741 pageset_init(p);
4742 pageset_set_batch(p, batch);
4743 }
4744
4745 /*
4746 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4747 * to the value high for the pageset p.
4748 */
4749 static void pageset_set_high(struct per_cpu_pageset *p,
4750 unsigned long high)
4751 {
4752 unsigned long batch = max(1UL, high / 4);
4753 if ((high / 4) > (PAGE_SHIFT * 8))
4754 batch = PAGE_SHIFT * 8;
4755
4756 pageset_update(&p->pcp, high, batch);
4757 }
4758
4759 static void pageset_set_high_and_batch(struct zone *zone,
4760 struct per_cpu_pageset *pcp)
4761 {
4762 if (percpu_pagelist_fraction)
4763 pageset_set_high(pcp,
4764 (zone->managed_pages /
4765 percpu_pagelist_fraction));
4766 else
4767 pageset_set_batch(pcp, zone_batchsize(zone));
4768 }
4769
4770 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4771 {
4772 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4773
4774 pageset_init(pcp);
4775 pageset_set_high_and_batch(zone, pcp);
4776 }
4777
4778 static void __meminit setup_zone_pageset(struct zone *zone)
4779 {
4780 int cpu;
4781 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4782 for_each_possible_cpu(cpu)
4783 zone_pageset_init(zone, cpu);
4784 }
4785
4786 /*
4787 * Allocate per cpu pagesets and initialize them.
4788 * Before this call only boot pagesets were available.
4789 */
4790 void __init setup_per_cpu_pageset(void)
4791 {
4792 struct zone *zone;
4793
4794 for_each_populated_zone(zone)
4795 setup_zone_pageset(zone);
4796 }
4797
4798 static noinline __init_refok
4799 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4800 {
4801 int i;
4802 size_t alloc_size;
4803
4804 /*
4805 * The per-page waitqueue mechanism uses hashed waitqueues
4806 * per zone.
4807 */
4808 zone->wait_table_hash_nr_entries =
4809 wait_table_hash_nr_entries(zone_size_pages);
4810 zone->wait_table_bits =
4811 wait_table_bits(zone->wait_table_hash_nr_entries);
4812 alloc_size = zone->wait_table_hash_nr_entries
4813 * sizeof(wait_queue_head_t);
4814
4815 if (!slab_is_available()) {
4816 zone->wait_table = (wait_queue_head_t *)
4817 memblock_virt_alloc_node_nopanic(
4818 alloc_size, zone->zone_pgdat->node_id);
4819 } else {
4820 /*
4821 * This case means that a zone whose size was 0 gets new memory
4822 * via memory hot-add.
4823 * But it may be the case that a new node was hot-added. In
4824 * this case vmalloc() will not be able to use this new node's
4825 * memory - this wait_table must be initialized to use this new
4826 * node itself as well.
4827 * To use this new node's memory, further consideration will be
4828 * necessary.
4829 */
4830 zone->wait_table = vmalloc(alloc_size);
4831 }
4832 if (!zone->wait_table)
4833 return -ENOMEM;
4834
4835 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4836 init_waitqueue_head(zone->wait_table + i);
4837
4838 return 0;
4839 }
4840
4841 static __meminit void zone_pcp_init(struct zone *zone)
4842 {
4843 /*
4844 * per cpu subsystem is not up at this point. The following code
4845 * relies on the ability of the linker to provide the
4846 * offset of a (static) per cpu variable into the per cpu area.
4847 */
4848 zone->pageset = &boot_pageset;
4849
4850 if (populated_zone(zone))
4851 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4852 zone->name, zone->present_pages,
4853 zone_batchsize(zone));
4854 }
4855
4856 int __meminit init_currently_empty_zone(struct zone *zone,
4857 unsigned long zone_start_pfn,
4858 unsigned long size,
4859 enum memmap_context context)
4860 {
4861 struct pglist_data *pgdat = zone->zone_pgdat;
4862 int ret;
4863 ret = zone_wait_table_init(zone, size);
4864 if (ret)
4865 return ret;
4866 pgdat->nr_zones = zone_idx(zone) + 1;
4867
4868 zone->zone_start_pfn = zone_start_pfn;
4869
4870 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4871 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4872 pgdat->node_id,
4873 (unsigned long)zone_idx(zone),
4874 zone_start_pfn, (zone_start_pfn + size));
4875
4876 zone_init_free_lists(zone);
4877
4878 return 0;
4879 }
4880
4881 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4882 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4883
4884 /*
4885 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4886 */
4887 int __meminit __early_pfn_to_nid(unsigned long pfn,
4888 struct mminit_pfnnid_cache *state)
4889 {
4890 unsigned long start_pfn, end_pfn;
4891 int nid;
4892
4893 if (state->last_start <= pfn && pfn < state->last_end)
4894 return state->last_nid;
4895
4896 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4897 if (nid != -1) {
4898 state->last_start = start_pfn;
4899 state->last_end = end_pfn;
4900 state->last_nid = nid;
4901 }
4902
4903 return nid;
4904 }
4905 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4906
4907 /**
4908 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4909 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4910 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4911 *
4912 * If an architecture guarantees that all ranges registered contain no holes
4913 * and may be freed, this this function may be used instead of calling
4914 * memblock_free_early_nid() manually.
4915 */
4916 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4917 {
4918 unsigned long start_pfn, end_pfn;
4919 int i, this_nid;
4920
4921 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4922 start_pfn = min(start_pfn, max_low_pfn);
4923 end_pfn = min(end_pfn, max_low_pfn);
4924
4925 if (start_pfn < end_pfn)
4926 memblock_free_early_nid(PFN_PHYS(start_pfn),
4927 (end_pfn - start_pfn) << PAGE_SHIFT,
4928 this_nid);
4929 }
4930 }
4931
4932 /**
4933 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4934 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4935 *
4936 * If an architecture guarantees that all ranges registered contain no holes and may
4937 * be freed, this function may be used instead of calling memory_present() manually.
4938 */
4939 void __init sparse_memory_present_with_active_regions(int nid)
4940 {
4941 unsigned long start_pfn, end_pfn;
4942 int i, this_nid;
4943
4944 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4945 memory_present(this_nid, start_pfn, end_pfn);
4946 }
4947
4948 /**
4949 * get_pfn_range_for_nid - Return the start and end page frames for a node
4950 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4951 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4952 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4953 *
4954 * It returns the start and end page frame of a node based on information
4955 * provided by memblock_set_node(). If called for a node
4956 * with no available memory, a warning is printed and the start and end
4957 * PFNs will be 0.
4958 */
4959 void __meminit get_pfn_range_for_nid(unsigned int nid,
4960 unsigned long *start_pfn, unsigned long *end_pfn)
4961 {
4962 unsigned long this_start_pfn, this_end_pfn;
4963 int i;
4964
4965 *start_pfn = -1UL;
4966 *end_pfn = 0;
4967
4968 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4969 *start_pfn = min(*start_pfn, this_start_pfn);
4970 *end_pfn = max(*end_pfn, this_end_pfn);
4971 }
4972
4973 if (*start_pfn == -1UL)
4974 *start_pfn = 0;
4975 }
4976
4977 /*
4978 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4979 * assumption is made that zones within a node are ordered in monotonic
4980 * increasing memory addresses so that the "highest" populated zone is used
4981 */
4982 static void __init find_usable_zone_for_movable(void)
4983 {
4984 int zone_index;
4985 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4986 if (zone_index == ZONE_MOVABLE)
4987 continue;
4988
4989 if (arch_zone_highest_possible_pfn[zone_index] >
4990 arch_zone_lowest_possible_pfn[zone_index])
4991 break;
4992 }
4993
4994 VM_BUG_ON(zone_index == -1);
4995 movable_zone = zone_index;
4996 }
4997
4998 /*
4999 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5000 * because it is sized independent of architecture. Unlike the other zones,
5001 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5002 * in each node depending on the size of each node and how evenly kernelcore
5003 * is distributed. This helper function adjusts the zone ranges
5004 * provided by the architecture for a given node by using the end of the
5005 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5006 * zones within a node are in order of monotonic increases memory addresses
5007 */
5008 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5009 unsigned long zone_type,
5010 unsigned long node_start_pfn,
5011 unsigned long node_end_pfn,
5012 unsigned long *zone_start_pfn,
5013 unsigned long *zone_end_pfn)
5014 {
5015 /* Only adjust if ZONE_MOVABLE is on this node */
5016 if (zone_movable_pfn[nid]) {
5017 /* Size ZONE_MOVABLE */
5018 if (zone_type == ZONE_MOVABLE) {
5019 *zone_start_pfn = zone_movable_pfn[nid];
5020 *zone_end_pfn = min(node_end_pfn,
5021 arch_zone_highest_possible_pfn[movable_zone]);
5022
5023 /* Adjust for ZONE_MOVABLE starting within this range */
5024 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
5025 *zone_end_pfn > zone_movable_pfn[nid]) {
5026 *zone_end_pfn = zone_movable_pfn[nid];
5027
5028 /* Check if this whole range is within ZONE_MOVABLE */
5029 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5030 *zone_start_pfn = *zone_end_pfn;
5031 }
5032 }
5033
5034 /*
5035 * Return the number of pages a zone spans in a node, including holes
5036 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5037 */
5038 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5039 unsigned long zone_type,
5040 unsigned long node_start_pfn,
5041 unsigned long node_end_pfn,
5042 unsigned long *ignored)
5043 {
5044 unsigned long zone_start_pfn, zone_end_pfn;
5045
5046 /* Get the start and end of the zone */
5047 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5048 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5049 adjust_zone_range_for_zone_movable(nid, zone_type,
5050 node_start_pfn, node_end_pfn,
5051 &zone_start_pfn, &zone_end_pfn);
5052
5053 /* Check that this node has pages within the zone's required range */
5054 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
5055 return 0;
5056
5057 /* Move the zone boundaries inside the node if necessary */
5058 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
5059 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
5060
5061 /* Return the spanned pages */
5062 return zone_end_pfn - zone_start_pfn;
5063 }
5064
5065 /*
5066 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5067 * then all holes in the requested range will be accounted for.
5068 */
5069 unsigned long __meminit __absent_pages_in_range(int nid,
5070 unsigned long range_start_pfn,
5071 unsigned long range_end_pfn)
5072 {
5073 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5074 unsigned long start_pfn, end_pfn;
5075 int i;
5076
5077 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5078 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5079 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5080 nr_absent -= end_pfn - start_pfn;
5081 }
5082 return nr_absent;
5083 }
5084
5085 /**
5086 * absent_pages_in_range - Return number of page frames in holes within a range
5087 * @start_pfn: The start PFN to start searching for holes
5088 * @end_pfn: The end PFN to stop searching for holes
5089 *
5090 * It returns the number of pages frames in memory holes within a range.
5091 */
5092 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5093 unsigned long end_pfn)
5094 {
5095 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5096 }
5097
5098 /* Return the number of page frames in holes in a zone on a node */
5099 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5100 unsigned long zone_type,
5101 unsigned long node_start_pfn,
5102 unsigned long node_end_pfn,
5103 unsigned long *ignored)
5104 {
5105 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5106 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5107 unsigned long zone_start_pfn, zone_end_pfn;
5108
5109 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5110 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5111
5112 adjust_zone_range_for_zone_movable(nid, zone_type,
5113 node_start_pfn, node_end_pfn,
5114 &zone_start_pfn, &zone_end_pfn);
5115 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5116 }
5117
5118 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5119 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5120 unsigned long zone_type,
5121 unsigned long node_start_pfn,
5122 unsigned long node_end_pfn,
5123 unsigned long *zones_size)
5124 {
5125 return zones_size[zone_type];
5126 }
5127
5128 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5129 unsigned long zone_type,
5130 unsigned long node_start_pfn,
5131 unsigned long node_end_pfn,
5132 unsigned long *zholes_size)
5133 {
5134 if (!zholes_size)
5135 return 0;
5136
5137 return zholes_size[zone_type];
5138 }
5139
5140 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5141
5142 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5143 unsigned long node_start_pfn,
5144 unsigned long node_end_pfn,
5145 unsigned long *zones_size,
5146 unsigned long *zholes_size)
5147 {
5148 unsigned long realtotalpages = 0, totalpages = 0;
5149 enum zone_type i;
5150
5151 for (i = 0; i < MAX_NR_ZONES; i++) {
5152 struct zone *zone = pgdat->node_zones + i;
5153 unsigned long size, real_size;
5154
5155 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5156 node_start_pfn,
5157 node_end_pfn,
5158 zones_size);
5159 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5160 node_start_pfn, node_end_pfn,
5161 zholes_size);
5162 zone->spanned_pages = size;
5163 zone->present_pages = real_size;
5164
5165 totalpages += size;
5166 realtotalpages += real_size;
5167 }
5168
5169 pgdat->node_spanned_pages = totalpages;
5170 pgdat->node_present_pages = realtotalpages;
5171 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5172 realtotalpages);
5173 }
5174
5175 #ifndef CONFIG_SPARSEMEM
5176 /*
5177 * Calculate the size of the zone->blockflags rounded to an unsigned long
5178 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5179 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5180 * round what is now in bits to nearest long in bits, then return it in
5181 * bytes.
5182 */
5183 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5184 {
5185 unsigned long usemapsize;
5186
5187 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5188 usemapsize = roundup(zonesize, pageblock_nr_pages);
5189 usemapsize = usemapsize >> pageblock_order;
5190 usemapsize *= NR_PAGEBLOCK_BITS;
5191 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5192
5193 return usemapsize / 8;
5194 }
5195
5196 static void __init setup_usemap(struct pglist_data *pgdat,
5197 struct zone *zone,
5198 unsigned long zone_start_pfn,
5199 unsigned long zonesize)
5200 {
5201 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5202 zone->pageblock_flags = NULL;
5203 if (usemapsize)
5204 zone->pageblock_flags =
5205 memblock_virt_alloc_node_nopanic(usemapsize,
5206 pgdat->node_id);
5207 }
5208 #else
5209 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5210 unsigned long zone_start_pfn, unsigned long zonesize) {}
5211 #endif /* CONFIG_SPARSEMEM */
5212
5213 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5214
5215 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5216 void __paginginit set_pageblock_order(void)
5217 {
5218 unsigned int order;
5219
5220 /* Check that pageblock_nr_pages has not already been setup */
5221 if (pageblock_order)
5222 return;
5223
5224 if (HPAGE_SHIFT > PAGE_SHIFT)
5225 order = HUGETLB_PAGE_ORDER;
5226 else
5227 order = MAX_ORDER - 1;
5228
5229 /*
5230 * Assume the largest contiguous order of interest is a huge page.
5231 * This value may be variable depending on boot parameters on IA64 and
5232 * powerpc.
5233 */
5234 pageblock_order = order;
5235 }
5236 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5237
5238 /*
5239 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5240 * is unused as pageblock_order is set at compile-time. See
5241 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5242 * the kernel config
5243 */
5244 void __paginginit set_pageblock_order(void)
5245 {
5246 }
5247
5248 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5249
5250 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5251 unsigned long present_pages)
5252 {
5253 unsigned long pages = spanned_pages;
5254
5255 /*
5256 * Provide a more accurate estimation if there are holes within
5257 * the zone and SPARSEMEM is in use. If there are holes within the
5258 * zone, each populated memory region may cost us one or two extra
5259 * memmap pages due to alignment because memmap pages for each
5260 * populated regions may not naturally algined on page boundary.
5261 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5262 */
5263 if (spanned_pages > present_pages + (present_pages >> 4) &&
5264 IS_ENABLED(CONFIG_SPARSEMEM))
5265 pages = present_pages;
5266
5267 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5268 }
5269
5270 /*
5271 * Set up the zone data structures:
5272 * - mark all pages reserved
5273 * - mark all memory queues empty
5274 * - clear the memory bitmaps
5275 *
5276 * NOTE: pgdat should get zeroed by caller.
5277 */
5278 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
5279 unsigned long node_start_pfn, unsigned long node_end_pfn)
5280 {
5281 enum zone_type j;
5282 int nid = pgdat->node_id;
5283 unsigned long zone_start_pfn = pgdat->node_start_pfn;
5284 int ret;
5285
5286 pgdat_resize_init(pgdat);
5287 #ifdef CONFIG_NUMA_BALANCING
5288 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5289 pgdat->numabalancing_migrate_nr_pages = 0;
5290 pgdat->numabalancing_migrate_next_window = jiffies;
5291 #endif
5292 init_waitqueue_head(&pgdat->kswapd_wait);
5293 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5294 pgdat_page_ext_init(pgdat);
5295
5296 for (j = 0; j < MAX_NR_ZONES; j++) {
5297 struct zone *zone = pgdat->node_zones + j;
5298 unsigned long size, realsize, freesize, memmap_pages;
5299
5300 size = zone->spanned_pages;
5301 realsize = freesize = zone->present_pages;
5302
5303 /*
5304 * Adjust freesize so that it accounts for how much memory
5305 * is used by this zone for memmap. This affects the watermark
5306 * and per-cpu initialisations
5307 */
5308 memmap_pages = calc_memmap_size(size, realsize);
5309 if (!is_highmem_idx(j)) {
5310 if (freesize >= memmap_pages) {
5311 freesize -= memmap_pages;
5312 if (memmap_pages)
5313 printk(KERN_DEBUG
5314 " %s zone: %lu pages used for memmap\n",
5315 zone_names[j], memmap_pages);
5316 } else
5317 printk(KERN_WARNING
5318 " %s zone: %lu pages exceeds freesize %lu\n",
5319 zone_names[j], memmap_pages, freesize);
5320 }
5321
5322 /* Account for reserved pages */
5323 if (j == 0 && freesize > dma_reserve) {
5324 freesize -= dma_reserve;
5325 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5326 zone_names[0], dma_reserve);
5327 }
5328
5329 if (!is_highmem_idx(j))
5330 nr_kernel_pages += freesize;
5331 /* Charge for highmem memmap if there are enough kernel pages */
5332 else if (nr_kernel_pages > memmap_pages * 2)
5333 nr_kernel_pages -= memmap_pages;
5334 nr_all_pages += freesize;
5335
5336 /*
5337 * Set an approximate value for lowmem here, it will be adjusted
5338 * when the bootmem allocator frees pages into the buddy system.
5339 * And all highmem pages will be managed by the buddy system.
5340 */
5341 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5342 #ifdef CONFIG_NUMA
5343 zone->node = nid;
5344 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5345 / 100;
5346 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5347 #endif
5348 zone->name = zone_names[j];
5349 spin_lock_init(&zone->lock);
5350 spin_lock_init(&zone->lru_lock);
5351 zone_seqlock_init(zone);
5352 zone->zone_pgdat = pgdat;
5353 zone_pcp_init(zone);
5354
5355 /* For bootup, initialized properly in watermark setup */
5356 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5357
5358 lruvec_init(&zone->lruvec);
5359 if (!size)
5360 continue;
5361
5362 set_pageblock_order();
5363 setup_usemap(pgdat, zone, zone_start_pfn, size);
5364 ret = init_currently_empty_zone(zone, zone_start_pfn,
5365 size, MEMMAP_EARLY);
5366 BUG_ON(ret);
5367 memmap_init(size, nid, j, zone_start_pfn);
5368 zone_start_pfn += size;
5369 }
5370 }
5371
5372 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5373 {
5374 /* Skip empty nodes */
5375 if (!pgdat->node_spanned_pages)
5376 return;
5377
5378 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5379 /* ia64 gets its own node_mem_map, before this, without bootmem */
5380 if (!pgdat->node_mem_map) {
5381 unsigned long size, start, end;
5382 struct page *map;
5383
5384 /*
5385 * The zone's endpoints aren't required to be MAX_ORDER
5386 * aligned but the node_mem_map endpoints must be in order
5387 * for the buddy allocator to function correctly.
5388 */
5389 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5390 end = pgdat_end_pfn(pgdat);
5391 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5392 size = (end - start) * sizeof(struct page);
5393 map = alloc_remap(pgdat->node_id, size);
5394 if (!map)
5395 map = memblock_virt_alloc_node_nopanic(size,
5396 pgdat->node_id);
5397 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
5398 }
5399 #ifndef CONFIG_NEED_MULTIPLE_NODES
5400 /*
5401 * With no DISCONTIG, the global mem_map is just set as node 0's
5402 */
5403 if (pgdat == NODE_DATA(0)) {
5404 mem_map = NODE_DATA(0)->node_mem_map;
5405 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5406 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5407 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
5408 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5409 }
5410 #endif
5411 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5412 }
5413
5414 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5415 unsigned long node_start_pfn, unsigned long *zholes_size)
5416 {
5417 pg_data_t *pgdat = NODE_DATA(nid);
5418 unsigned long start_pfn = 0;
5419 unsigned long end_pfn = 0;
5420
5421 /* pg_data_t should be reset to zero when it's allocated */
5422 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5423
5424 reset_deferred_meminit(pgdat);
5425 pgdat->node_id = nid;
5426 pgdat->node_start_pfn = node_start_pfn;
5427 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5428 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5429 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5430 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
5431 #endif
5432 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5433 zones_size, zholes_size);
5434
5435 alloc_node_mem_map(pgdat);
5436 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5437 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5438 nid, (unsigned long)pgdat,
5439 (unsigned long)pgdat->node_mem_map);
5440 #endif
5441
5442 free_area_init_core(pgdat, start_pfn, end_pfn);
5443 }
5444
5445 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5446
5447 #if MAX_NUMNODES > 1
5448 /*
5449 * Figure out the number of possible node ids.
5450 */
5451 void __init setup_nr_node_ids(void)
5452 {
5453 unsigned int node;
5454 unsigned int highest = 0;
5455
5456 for_each_node_mask(node, node_possible_map)
5457 highest = node;
5458 nr_node_ids = highest + 1;
5459 }
5460 #endif
5461
5462 /**
5463 * node_map_pfn_alignment - determine the maximum internode alignment
5464 *
5465 * This function should be called after node map is populated and sorted.
5466 * It calculates the maximum power of two alignment which can distinguish
5467 * all the nodes.
5468 *
5469 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5470 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5471 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5472 * shifted, 1GiB is enough and this function will indicate so.
5473 *
5474 * This is used to test whether pfn -> nid mapping of the chosen memory
5475 * model has fine enough granularity to avoid incorrect mapping for the
5476 * populated node map.
5477 *
5478 * Returns the determined alignment in pfn's. 0 if there is no alignment
5479 * requirement (single node).
5480 */
5481 unsigned long __init node_map_pfn_alignment(void)
5482 {
5483 unsigned long accl_mask = 0, last_end = 0;
5484 unsigned long start, end, mask;
5485 int last_nid = -1;
5486 int i, nid;
5487
5488 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5489 if (!start || last_nid < 0 || last_nid == nid) {
5490 last_nid = nid;
5491 last_end = end;
5492 continue;
5493 }
5494
5495 /*
5496 * Start with a mask granular enough to pin-point to the
5497 * start pfn and tick off bits one-by-one until it becomes
5498 * too coarse to separate the current node from the last.
5499 */
5500 mask = ~((1 << __ffs(start)) - 1);
5501 while (mask && last_end <= (start & (mask << 1)))
5502 mask <<= 1;
5503
5504 /* accumulate all internode masks */
5505 accl_mask |= mask;
5506 }
5507
5508 /* convert mask to number of pages */
5509 return ~accl_mask + 1;
5510 }
5511
5512 /* Find the lowest pfn for a node */
5513 static unsigned long __init find_min_pfn_for_node(int nid)
5514 {
5515 unsigned long min_pfn = ULONG_MAX;
5516 unsigned long start_pfn;
5517 int i;
5518
5519 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5520 min_pfn = min(min_pfn, start_pfn);
5521
5522 if (min_pfn == ULONG_MAX) {
5523 printk(KERN_WARNING
5524 "Could not find start_pfn for node %d\n", nid);
5525 return 0;
5526 }
5527
5528 return min_pfn;
5529 }
5530
5531 /**
5532 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5533 *
5534 * It returns the minimum PFN based on information provided via
5535 * memblock_set_node().
5536 */
5537 unsigned long __init find_min_pfn_with_active_regions(void)
5538 {
5539 return find_min_pfn_for_node(MAX_NUMNODES);
5540 }
5541
5542 /*
5543 * early_calculate_totalpages()
5544 * Sum pages in active regions for movable zone.
5545 * Populate N_MEMORY for calculating usable_nodes.
5546 */
5547 static unsigned long __init early_calculate_totalpages(void)
5548 {
5549 unsigned long totalpages = 0;
5550 unsigned long start_pfn, end_pfn;
5551 int i, nid;
5552
5553 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5554 unsigned long pages = end_pfn - start_pfn;
5555
5556 totalpages += pages;
5557 if (pages)
5558 node_set_state(nid, N_MEMORY);
5559 }
5560 return totalpages;
5561 }
5562
5563 /*
5564 * Find the PFN the Movable zone begins in each node. Kernel memory
5565 * is spread evenly between nodes as long as the nodes have enough
5566 * memory. When they don't, some nodes will have more kernelcore than
5567 * others
5568 */
5569 static void __init find_zone_movable_pfns_for_nodes(void)
5570 {
5571 int i, nid;
5572 unsigned long usable_startpfn;
5573 unsigned long kernelcore_node, kernelcore_remaining;
5574 /* save the state before borrow the nodemask */
5575 nodemask_t saved_node_state = node_states[N_MEMORY];
5576 unsigned long totalpages = early_calculate_totalpages();
5577 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5578 struct memblock_region *r;
5579
5580 /* Need to find movable_zone earlier when movable_node is specified. */
5581 find_usable_zone_for_movable();
5582
5583 /*
5584 * If movable_node is specified, ignore kernelcore and movablecore
5585 * options.
5586 */
5587 if (movable_node_is_enabled()) {
5588 for_each_memblock(memory, r) {
5589 if (!memblock_is_hotpluggable(r))
5590 continue;
5591
5592 nid = r->nid;
5593
5594 usable_startpfn = PFN_DOWN(r->base);
5595 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5596 min(usable_startpfn, zone_movable_pfn[nid]) :
5597 usable_startpfn;
5598 }
5599
5600 goto out2;
5601 }
5602
5603 /*
5604 * If movablecore=nn[KMG] was specified, calculate what size of
5605 * kernelcore that corresponds so that memory usable for
5606 * any allocation type is evenly spread. If both kernelcore
5607 * and movablecore are specified, then the value of kernelcore
5608 * will be used for required_kernelcore if it's greater than
5609 * what movablecore would have allowed.
5610 */
5611 if (required_movablecore) {
5612 unsigned long corepages;
5613
5614 /*
5615 * Round-up so that ZONE_MOVABLE is at least as large as what
5616 * was requested by the user
5617 */
5618 required_movablecore =
5619 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5620 corepages = totalpages - required_movablecore;
5621
5622 required_kernelcore = max(required_kernelcore, corepages);
5623 }
5624
5625 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5626 if (!required_kernelcore)
5627 goto out;
5628
5629 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5630 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5631
5632 restart:
5633 /* Spread kernelcore memory as evenly as possible throughout nodes */
5634 kernelcore_node = required_kernelcore / usable_nodes;
5635 for_each_node_state(nid, N_MEMORY) {
5636 unsigned long start_pfn, end_pfn;
5637
5638 /*
5639 * Recalculate kernelcore_node if the division per node
5640 * now exceeds what is necessary to satisfy the requested
5641 * amount of memory for the kernel
5642 */
5643 if (required_kernelcore < kernelcore_node)
5644 kernelcore_node = required_kernelcore / usable_nodes;
5645
5646 /*
5647 * As the map is walked, we track how much memory is usable
5648 * by the kernel using kernelcore_remaining. When it is
5649 * 0, the rest of the node is usable by ZONE_MOVABLE
5650 */
5651 kernelcore_remaining = kernelcore_node;
5652
5653 /* Go through each range of PFNs within this node */
5654 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5655 unsigned long size_pages;
5656
5657 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5658 if (start_pfn >= end_pfn)
5659 continue;
5660
5661 /* Account for what is only usable for kernelcore */
5662 if (start_pfn < usable_startpfn) {
5663 unsigned long kernel_pages;
5664 kernel_pages = min(end_pfn, usable_startpfn)
5665 - start_pfn;
5666
5667 kernelcore_remaining -= min(kernel_pages,
5668 kernelcore_remaining);
5669 required_kernelcore -= min(kernel_pages,
5670 required_kernelcore);
5671
5672 /* Continue if range is now fully accounted */
5673 if (end_pfn <= usable_startpfn) {
5674
5675 /*
5676 * Push zone_movable_pfn to the end so
5677 * that if we have to rebalance
5678 * kernelcore across nodes, we will
5679 * not double account here
5680 */
5681 zone_movable_pfn[nid] = end_pfn;
5682 continue;
5683 }
5684 start_pfn = usable_startpfn;
5685 }
5686
5687 /*
5688 * The usable PFN range for ZONE_MOVABLE is from
5689 * start_pfn->end_pfn. Calculate size_pages as the
5690 * number of pages used as kernelcore
5691 */
5692 size_pages = end_pfn - start_pfn;
5693 if (size_pages > kernelcore_remaining)
5694 size_pages = kernelcore_remaining;
5695 zone_movable_pfn[nid] = start_pfn + size_pages;
5696
5697 /*
5698 * Some kernelcore has been met, update counts and
5699 * break if the kernelcore for this node has been
5700 * satisfied
5701 */
5702 required_kernelcore -= min(required_kernelcore,
5703 size_pages);
5704 kernelcore_remaining -= size_pages;
5705 if (!kernelcore_remaining)
5706 break;
5707 }
5708 }
5709
5710 /*
5711 * If there is still required_kernelcore, we do another pass with one
5712 * less node in the count. This will push zone_movable_pfn[nid] further
5713 * along on the nodes that still have memory until kernelcore is
5714 * satisfied
5715 */
5716 usable_nodes--;
5717 if (usable_nodes && required_kernelcore > usable_nodes)
5718 goto restart;
5719
5720 out2:
5721 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5722 for (nid = 0; nid < MAX_NUMNODES; nid++)
5723 zone_movable_pfn[nid] =
5724 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5725
5726 out:
5727 /* restore the node_state */
5728 node_states[N_MEMORY] = saved_node_state;
5729 }
5730
5731 /* Any regular or high memory on that node ? */
5732 static void check_for_memory(pg_data_t *pgdat, int nid)
5733 {
5734 enum zone_type zone_type;
5735
5736 if (N_MEMORY == N_NORMAL_MEMORY)
5737 return;
5738
5739 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5740 struct zone *zone = &pgdat->node_zones[zone_type];
5741 if (populated_zone(zone)) {
5742 node_set_state(nid, N_HIGH_MEMORY);
5743 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5744 zone_type <= ZONE_NORMAL)
5745 node_set_state(nid, N_NORMAL_MEMORY);
5746 break;
5747 }
5748 }
5749 }
5750
5751 /**
5752 * free_area_init_nodes - Initialise all pg_data_t and zone data
5753 * @max_zone_pfn: an array of max PFNs for each zone
5754 *
5755 * This will call free_area_init_node() for each active node in the system.
5756 * Using the page ranges provided by memblock_set_node(), the size of each
5757 * zone in each node and their holes is calculated. If the maximum PFN
5758 * between two adjacent zones match, it is assumed that the zone is empty.
5759 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5760 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5761 * starts where the previous one ended. For example, ZONE_DMA32 starts
5762 * at arch_max_dma_pfn.
5763 */
5764 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5765 {
5766 unsigned long start_pfn, end_pfn;
5767 int i, nid;
5768
5769 /* Record where the zone boundaries are */
5770 memset(arch_zone_lowest_possible_pfn, 0,
5771 sizeof(arch_zone_lowest_possible_pfn));
5772 memset(arch_zone_highest_possible_pfn, 0,
5773 sizeof(arch_zone_highest_possible_pfn));
5774 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5775 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5776 for (i = 1; i < MAX_NR_ZONES; i++) {
5777 if (i == ZONE_MOVABLE)
5778 continue;
5779 arch_zone_lowest_possible_pfn[i] =
5780 arch_zone_highest_possible_pfn[i-1];
5781 arch_zone_highest_possible_pfn[i] =
5782 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5783 }
5784 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5785 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5786
5787 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5788 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5789 find_zone_movable_pfns_for_nodes();
5790
5791 /* Print out the zone ranges */
5792 pr_info("Zone ranges:\n");
5793 for (i = 0; i < MAX_NR_ZONES; i++) {
5794 if (i == ZONE_MOVABLE)
5795 continue;
5796 pr_info(" %-8s ", zone_names[i]);
5797 if (arch_zone_lowest_possible_pfn[i] ==
5798 arch_zone_highest_possible_pfn[i])
5799 pr_cont("empty\n");
5800 else
5801 pr_cont("[mem %#018Lx-%#018Lx]\n",
5802 (u64)arch_zone_lowest_possible_pfn[i]
5803 << PAGE_SHIFT,
5804 ((u64)arch_zone_highest_possible_pfn[i]
5805 << PAGE_SHIFT) - 1);
5806 }
5807
5808 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5809 pr_info("Movable zone start for each node\n");
5810 for (i = 0; i < MAX_NUMNODES; i++) {
5811 if (zone_movable_pfn[i])
5812 pr_info(" Node %d: %#018Lx\n", i,
5813 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5814 }
5815
5816 /* Print out the early node map */
5817 pr_info("Early memory node ranges\n");
5818 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5819 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5820 (u64)start_pfn << PAGE_SHIFT,
5821 ((u64)end_pfn << PAGE_SHIFT) - 1);
5822
5823 /* Initialise every node */
5824 mminit_verify_pageflags_layout();
5825 setup_nr_node_ids();
5826 for_each_online_node(nid) {
5827 pg_data_t *pgdat = NODE_DATA(nid);
5828 free_area_init_node(nid, NULL,
5829 find_min_pfn_for_node(nid), NULL);
5830
5831 /* Any memory on that node */
5832 if (pgdat->node_present_pages)
5833 node_set_state(nid, N_MEMORY);
5834 check_for_memory(pgdat, nid);
5835 }
5836 }
5837
5838 static int __init cmdline_parse_core(char *p, unsigned long *core)
5839 {
5840 unsigned long long coremem;
5841 if (!p)
5842 return -EINVAL;
5843
5844 coremem = memparse(p, &p);
5845 *core = coremem >> PAGE_SHIFT;
5846
5847 /* Paranoid check that UL is enough for the coremem value */
5848 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5849
5850 return 0;
5851 }
5852
5853 /*
5854 * kernelcore=size sets the amount of memory for use for allocations that
5855 * cannot be reclaimed or migrated.
5856 */
5857 static int __init cmdline_parse_kernelcore(char *p)
5858 {
5859 return cmdline_parse_core(p, &required_kernelcore);
5860 }
5861
5862 /*
5863 * movablecore=size sets the amount of memory for use for allocations that
5864 * can be reclaimed or migrated.
5865 */
5866 static int __init cmdline_parse_movablecore(char *p)
5867 {
5868 return cmdline_parse_core(p, &required_movablecore);
5869 }
5870
5871 early_param("kernelcore", cmdline_parse_kernelcore);
5872 early_param("movablecore", cmdline_parse_movablecore);
5873
5874 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5875
5876 void adjust_managed_page_count(struct page *page, long count)
5877 {
5878 spin_lock(&managed_page_count_lock);
5879 page_zone(page)->managed_pages += count;
5880 totalram_pages += count;
5881 #ifdef CONFIG_HIGHMEM
5882 if (PageHighMem(page))
5883 totalhigh_pages += count;
5884 #endif
5885 spin_unlock(&managed_page_count_lock);
5886 }
5887 EXPORT_SYMBOL(adjust_managed_page_count);
5888
5889 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5890 {
5891 void *pos;
5892 unsigned long pages = 0;
5893
5894 start = (void *)PAGE_ALIGN((unsigned long)start);
5895 end = (void *)((unsigned long)end & PAGE_MASK);
5896 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5897 if ((unsigned int)poison <= 0xFF)
5898 memset(pos, poison, PAGE_SIZE);
5899 free_reserved_page(virt_to_page(pos));
5900 }
5901
5902 if (pages && s)
5903 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5904 s, pages << (PAGE_SHIFT - 10), start, end);
5905
5906 return pages;
5907 }
5908 EXPORT_SYMBOL(free_reserved_area);
5909
5910 #ifdef CONFIG_HIGHMEM
5911 void free_highmem_page(struct page *page)
5912 {
5913 __free_reserved_page(page);
5914 totalram_pages++;
5915 page_zone(page)->managed_pages++;
5916 totalhigh_pages++;
5917 }
5918 #endif
5919
5920
5921 void __init mem_init_print_info(const char *str)
5922 {
5923 unsigned long physpages, codesize, datasize, rosize, bss_size;
5924 unsigned long init_code_size, init_data_size;
5925
5926 physpages = get_num_physpages();
5927 codesize = _etext - _stext;
5928 datasize = _edata - _sdata;
5929 rosize = __end_rodata - __start_rodata;
5930 bss_size = __bss_stop - __bss_start;
5931 init_data_size = __init_end - __init_begin;
5932 init_code_size = _einittext - _sinittext;
5933
5934 /*
5935 * Detect special cases and adjust section sizes accordingly:
5936 * 1) .init.* may be embedded into .data sections
5937 * 2) .init.text.* may be out of [__init_begin, __init_end],
5938 * please refer to arch/tile/kernel/vmlinux.lds.S.
5939 * 3) .rodata.* may be embedded into .text or .data sections.
5940 */
5941 #define adj_init_size(start, end, size, pos, adj) \
5942 do { \
5943 if (start <= pos && pos < end && size > adj) \
5944 size -= adj; \
5945 } while (0)
5946
5947 adj_init_size(__init_begin, __init_end, init_data_size,
5948 _sinittext, init_code_size);
5949 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5950 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5951 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5952 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5953
5954 #undef adj_init_size
5955
5956 pr_info("Memory: %luK/%luK available "
5957 "(%luK kernel code, %luK rwdata, %luK rodata, "
5958 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5959 #ifdef CONFIG_HIGHMEM
5960 ", %luK highmem"
5961 #endif
5962 "%s%s)\n",
5963 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5964 codesize >> 10, datasize >> 10, rosize >> 10,
5965 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5966 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5967 totalcma_pages << (PAGE_SHIFT-10),
5968 #ifdef CONFIG_HIGHMEM
5969 totalhigh_pages << (PAGE_SHIFT-10),
5970 #endif
5971 str ? ", " : "", str ? str : "");
5972 }
5973
5974 /**
5975 * set_dma_reserve - set the specified number of pages reserved in the first zone
5976 * @new_dma_reserve: The number of pages to mark reserved
5977 *
5978 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5979 * In the DMA zone, a significant percentage may be consumed by kernel image
5980 * and other unfreeable allocations which can skew the watermarks badly. This
5981 * function may optionally be used to account for unfreeable pages in the
5982 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5983 * smaller per-cpu batchsize.
5984 */
5985 void __init set_dma_reserve(unsigned long new_dma_reserve)
5986 {
5987 dma_reserve = new_dma_reserve;
5988 }
5989
5990 void __init free_area_init(unsigned long *zones_size)
5991 {
5992 free_area_init_node(0, zones_size,
5993 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5994 }
5995
5996 static int page_alloc_cpu_notify(struct notifier_block *self,
5997 unsigned long action, void *hcpu)
5998 {
5999 int cpu = (unsigned long)hcpu;
6000
6001 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6002 lru_add_drain_cpu(cpu);
6003 drain_pages(cpu);
6004
6005 /*
6006 * Spill the event counters of the dead processor
6007 * into the current processors event counters.
6008 * This artificially elevates the count of the current
6009 * processor.
6010 */
6011 vm_events_fold_cpu(cpu);
6012
6013 /*
6014 * Zero the differential counters of the dead processor
6015 * so that the vm statistics are consistent.
6016 *
6017 * This is only okay since the processor is dead and cannot
6018 * race with what we are doing.
6019 */
6020 cpu_vm_stats_fold(cpu);
6021 }
6022 return NOTIFY_OK;
6023 }
6024
6025 void __init page_alloc_init(void)
6026 {
6027 hotcpu_notifier(page_alloc_cpu_notify, 0);
6028 }
6029
6030 /*
6031 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
6032 * or min_free_kbytes changes.
6033 */
6034 static void calculate_totalreserve_pages(void)
6035 {
6036 struct pglist_data *pgdat;
6037 unsigned long reserve_pages = 0;
6038 enum zone_type i, j;
6039
6040 for_each_online_pgdat(pgdat) {
6041 for (i = 0; i < MAX_NR_ZONES; i++) {
6042 struct zone *zone = pgdat->node_zones + i;
6043 long max = 0;
6044
6045 /* Find valid and maximum lowmem_reserve in the zone */
6046 for (j = i; j < MAX_NR_ZONES; j++) {
6047 if (zone->lowmem_reserve[j] > max)
6048 max = zone->lowmem_reserve[j];
6049 }
6050
6051 /* we treat the high watermark as reserved pages. */
6052 max += high_wmark_pages(zone);
6053
6054 if (max > zone->managed_pages)
6055 max = zone->managed_pages;
6056 reserve_pages += max;
6057 /*
6058 * Lowmem reserves are not available to
6059 * GFP_HIGHUSER page cache allocations and
6060 * kswapd tries to balance zones to their high
6061 * watermark. As a result, neither should be
6062 * regarded as dirtyable memory, to prevent a
6063 * situation where reclaim has to clean pages
6064 * in order to balance the zones.
6065 */
6066 zone->dirty_balance_reserve = max;
6067 }
6068 }
6069 dirty_balance_reserve = reserve_pages;
6070 totalreserve_pages = reserve_pages;
6071 }
6072
6073 /*
6074 * setup_per_zone_lowmem_reserve - called whenever
6075 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
6076 * has a correct pages reserved value, so an adequate number of
6077 * pages are left in the zone after a successful __alloc_pages().
6078 */
6079 static void setup_per_zone_lowmem_reserve(void)
6080 {
6081 struct pglist_data *pgdat;
6082 enum zone_type j, idx;
6083
6084 for_each_online_pgdat(pgdat) {
6085 for (j = 0; j < MAX_NR_ZONES; j++) {
6086 struct zone *zone = pgdat->node_zones + j;
6087 unsigned long managed_pages = zone->managed_pages;
6088
6089 zone->lowmem_reserve[j] = 0;
6090
6091 idx = j;
6092 while (idx) {
6093 struct zone *lower_zone;
6094
6095 idx--;
6096
6097 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6098 sysctl_lowmem_reserve_ratio[idx] = 1;
6099
6100 lower_zone = pgdat->node_zones + idx;
6101 lower_zone->lowmem_reserve[j] = managed_pages /
6102 sysctl_lowmem_reserve_ratio[idx];
6103 managed_pages += lower_zone->managed_pages;
6104 }
6105 }
6106 }
6107
6108 /* update totalreserve_pages */
6109 calculate_totalreserve_pages();
6110 }
6111
6112 static void __setup_per_zone_wmarks(void)
6113 {
6114 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6115 unsigned long lowmem_pages = 0;
6116 struct zone *zone;
6117 unsigned long flags;
6118
6119 /* Calculate total number of !ZONE_HIGHMEM pages */
6120 for_each_zone(zone) {
6121 if (!is_highmem(zone))
6122 lowmem_pages += zone->managed_pages;
6123 }
6124
6125 for_each_zone(zone) {
6126 u64 tmp;
6127
6128 spin_lock_irqsave(&zone->lock, flags);
6129 tmp = (u64)pages_min * zone->managed_pages;
6130 do_div(tmp, lowmem_pages);
6131 if (is_highmem(zone)) {
6132 /*
6133 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6134 * need highmem pages, so cap pages_min to a small
6135 * value here.
6136 *
6137 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6138 * deltas control asynch page reclaim, and so should
6139 * not be capped for highmem.
6140 */
6141 unsigned long min_pages;
6142
6143 min_pages = zone->managed_pages / 1024;
6144 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6145 zone->watermark[WMARK_MIN] = min_pages;
6146 } else {
6147 /*
6148 * If it's a lowmem zone, reserve a number of pages
6149 * proportionate to the zone's size.
6150 */
6151 zone->watermark[WMARK_MIN] = tmp;
6152 }
6153
6154 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6155 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
6156
6157 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6158 high_wmark_pages(zone) - low_wmark_pages(zone) -
6159 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6160
6161 setup_zone_migrate_reserve(zone);
6162 spin_unlock_irqrestore(&zone->lock, flags);
6163 }
6164
6165 /* update totalreserve_pages */
6166 calculate_totalreserve_pages();
6167 }
6168
6169 /**
6170 * setup_per_zone_wmarks - called when min_free_kbytes changes
6171 * or when memory is hot-{added|removed}
6172 *
6173 * Ensures that the watermark[min,low,high] values for each zone are set
6174 * correctly with respect to min_free_kbytes.
6175 */
6176 void setup_per_zone_wmarks(void)
6177 {
6178 mutex_lock(&zonelists_mutex);
6179 __setup_per_zone_wmarks();
6180 mutex_unlock(&zonelists_mutex);
6181 }
6182
6183 /*
6184 * The inactive anon list should be small enough that the VM never has to
6185 * do too much work, but large enough that each inactive page has a chance
6186 * to be referenced again before it is swapped out.
6187 *
6188 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6189 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6190 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6191 * the anonymous pages are kept on the inactive list.
6192 *
6193 * total target max
6194 * memory ratio inactive anon
6195 * -------------------------------------
6196 * 10MB 1 5MB
6197 * 100MB 1 50MB
6198 * 1GB 3 250MB
6199 * 10GB 10 0.9GB
6200 * 100GB 31 3GB
6201 * 1TB 101 10GB
6202 * 10TB 320 32GB
6203 */
6204 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6205 {
6206 unsigned int gb, ratio;
6207
6208 /* Zone size in gigabytes */
6209 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6210 if (gb)
6211 ratio = int_sqrt(10 * gb);
6212 else
6213 ratio = 1;
6214
6215 zone->inactive_ratio = ratio;
6216 }
6217
6218 static void __meminit setup_per_zone_inactive_ratio(void)
6219 {
6220 struct zone *zone;
6221
6222 for_each_zone(zone)
6223 calculate_zone_inactive_ratio(zone);
6224 }
6225
6226 /*
6227 * Initialise min_free_kbytes.
6228 *
6229 * For small machines we want it small (128k min). For large machines
6230 * we want it large (64MB max). But it is not linear, because network
6231 * bandwidth does not increase linearly with machine size. We use
6232 *
6233 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6234 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6235 *
6236 * which yields
6237 *
6238 * 16MB: 512k
6239 * 32MB: 724k
6240 * 64MB: 1024k
6241 * 128MB: 1448k
6242 * 256MB: 2048k
6243 * 512MB: 2896k
6244 * 1024MB: 4096k
6245 * 2048MB: 5792k
6246 * 4096MB: 8192k
6247 * 8192MB: 11584k
6248 * 16384MB: 16384k
6249 */
6250 int __meminit init_per_zone_wmark_min(void)
6251 {
6252 unsigned long lowmem_kbytes;
6253 int new_min_free_kbytes;
6254
6255 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6256 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6257
6258 if (new_min_free_kbytes > user_min_free_kbytes) {
6259 min_free_kbytes = new_min_free_kbytes;
6260 if (min_free_kbytes < 128)
6261 min_free_kbytes = 128;
6262 if (min_free_kbytes > 65536)
6263 min_free_kbytes = 65536;
6264 } else {
6265 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6266 new_min_free_kbytes, user_min_free_kbytes);
6267 }
6268 setup_per_zone_wmarks();
6269 refresh_zone_stat_thresholds();
6270 setup_per_zone_lowmem_reserve();
6271 setup_per_zone_inactive_ratio();
6272 return 0;
6273 }
6274 module_init(init_per_zone_wmark_min)
6275
6276 /*
6277 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6278 * that we can call two helper functions whenever min_free_kbytes
6279 * changes.
6280 */
6281 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6282 void __user *buffer, size_t *length, loff_t *ppos)
6283 {
6284 int rc;
6285
6286 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6287 if (rc)
6288 return rc;
6289
6290 if (write) {
6291 user_min_free_kbytes = min_free_kbytes;
6292 setup_per_zone_wmarks();
6293 }
6294 return 0;
6295 }
6296
6297 #ifdef CONFIG_NUMA
6298 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6299 void __user *buffer, size_t *length, loff_t *ppos)
6300 {
6301 struct zone *zone;
6302 int rc;
6303
6304 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6305 if (rc)
6306 return rc;
6307
6308 for_each_zone(zone)
6309 zone->min_unmapped_pages = (zone->managed_pages *
6310 sysctl_min_unmapped_ratio) / 100;
6311 return 0;
6312 }
6313
6314 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6315 void __user *buffer, size_t *length, loff_t *ppos)
6316 {
6317 struct zone *zone;
6318 int rc;
6319
6320 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6321 if (rc)
6322 return rc;
6323
6324 for_each_zone(zone)
6325 zone->min_slab_pages = (zone->managed_pages *
6326 sysctl_min_slab_ratio) / 100;
6327 return 0;
6328 }
6329 #endif
6330
6331 /*
6332 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6333 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6334 * whenever sysctl_lowmem_reserve_ratio changes.
6335 *
6336 * The reserve ratio obviously has absolutely no relation with the
6337 * minimum watermarks. The lowmem reserve ratio can only make sense
6338 * if in function of the boot time zone sizes.
6339 */
6340 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6341 void __user *buffer, size_t *length, loff_t *ppos)
6342 {
6343 proc_dointvec_minmax(table, write, buffer, length, ppos);
6344 setup_per_zone_lowmem_reserve();
6345 return 0;
6346 }
6347
6348 /*
6349 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6350 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6351 * pagelist can have before it gets flushed back to buddy allocator.
6352 */
6353 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6354 void __user *buffer, size_t *length, loff_t *ppos)
6355 {
6356 struct zone *zone;
6357 int old_percpu_pagelist_fraction;
6358 int ret;
6359
6360 mutex_lock(&pcp_batch_high_lock);
6361 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6362
6363 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6364 if (!write || ret < 0)
6365 goto out;
6366
6367 /* Sanity checking to avoid pcp imbalance */
6368 if (percpu_pagelist_fraction &&
6369 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6370 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6371 ret = -EINVAL;
6372 goto out;
6373 }
6374
6375 /* No change? */
6376 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6377 goto out;
6378
6379 for_each_populated_zone(zone) {
6380 unsigned int cpu;
6381
6382 for_each_possible_cpu(cpu)
6383 pageset_set_high_and_batch(zone,
6384 per_cpu_ptr(zone->pageset, cpu));
6385 }
6386 out:
6387 mutex_unlock(&pcp_batch_high_lock);
6388 return ret;
6389 }
6390
6391 #ifdef CONFIG_NUMA
6392 int hashdist = HASHDIST_DEFAULT;
6393
6394 static int __init set_hashdist(char *str)
6395 {
6396 if (!str)
6397 return 0;
6398 hashdist = simple_strtoul(str, &str, 0);
6399 return 1;
6400 }
6401 __setup("hashdist=", set_hashdist);
6402 #endif
6403
6404 /*
6405 * allocate a large system hash table from bootmem
6406 * - it is assumed that the hash table must contain an exact power-of-2
6407 * quantity of entries
6408 * - limit is the number of hash buckets, not the total allocation size
6409 */
6410 void *__init alloc_large_system_hash(const char *tablename,
6411 unsigned long bucketsize,
6412 unsigned long numentries,
6413 int scale,
6414 int flags,
6415 unsigned int *_hash_shift,
6416 unsigned int *_hash_mask,
6417 unsigned long low_limit,
6418 unsigned long high_limit)
6419 {
6420 unsigned long long max = high_limit;
6421 unsigned long log2qty, size;
6422 void *table = NULL;
6423
6424 /* allow the kernel cmdline to have a say */
6425 if (!numentries) {
6426 /* round applicable memory size up to nearest megabyte */
6427 numentries = nr_kernel_pages;
6428
6429 /* It isn't necessary when PAGE_SIZE >= 1MB */
6430 if (PAGE_SHIFT < 20)
6431 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6432
6433 /* limit to 1 bucket per 2^scale bytes of low memory */
6434 if (scale > PAGE_SHIFT)
6435 numentries >>= (scale - PAGE_SHIFT);
6436 else
6437 numentries <<= (PAGE_SHIFT - scale);
6438
6439 /* Make sure we've got at least a 0-order allocation.. */
6440 if (unlikely(flags & HASH_SMALL)) {
6441 /* Makes no sense without HASH_EARLY */
6442 WARN_ON(!(flags & HASH_EARLY));
6443 if (!(numentries >> *_hash_shift)) {
6444 numentries = 1UL << *_hash_shift;
6445 BUG_ON(!numentries);
6446 }
6447 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6448 numentries = PAGE_SIZE / bucketsize;
6449 }
6450 numentries = roundup_pow_of_two(numentries);
6451
6452 /* limit allocation size to 1/16 total memory by default */
6453 if (max == 0) {
6454 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6455 do_div(max, bucketsize);
6456 }
6457 max = min(max, 0x80000000ULL);
6458
6459 if (numentries < low_limit)
6460 numentries = low_limit;
6461 if (numentries > max)
6462 numentries = max;
6463
6464 log2qty = ilog2(numentries);
6465
6466 do {
6467 size = bucketsize << log2qty;
6468 if (flags & HASH_EARLY)
6469 table = memblock_virt_alloc_nopanic(size, 0);
6470 else if (hashdist)
6471 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6472 else {
6473 /*
6474 * If bucketsize is not a power-of-two, we may free
6475 * some pages at the end of hash table which
6476 * alloc_pages_exact() automatically does
6477 */
6478 if (get_order(size) < MAX_ORDER) {
6479 table = alloc_pages_exact(size, GFP_ATOMIC);
6480 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6481 }
6482 }
6483 } while (!table && size > PAGE_SIZE && --log2qty);
6484
6485 if (!table)
6486 panic("Failed to allocate %s hash table\n", tablename);
6487
6488 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6489 tablename,
6490 (1UL << log2qty),
6491 ilog2(size) - PAGE_SHIFT,
6492 size);
6493
6494 if (_hash_shift)
6495 *_hash_shift = log2qty;
6496 if (_hash_mask)
6497 *_hash_mask = (1 << log2qty) - 1;
6498
6499 return table;
6500 }
6501
6502 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6503 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6504 unsigned long pfn)
6505 {
6506 #ifdef CONFIG_SPARSEMEM
6507 return __pfn_to_section(pfn)->pageblock_flags;
6508 #else
6509 return zone->pageblock_flags;
6510 #endif /* CONFIG_SPARSEMEM */
6511 }
6512
6513 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6514 {
6515 #ifdef CONFIG_SPARSEMEM
6516 pfn &= (PAGES_PER_SECTION-1);
6517 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6518 #else
6519 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6520 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6521 #endif /* CONFIG_SPARSEMEM */
6522 }
6523
6524 /**
6525 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6526 * @page: The page within the block of interest
6527 * @pfn: The target page frame number
6528 * @end_bitidx: The last bit of interest to retrieve
6529 * @mask: mask of bits that the caller is interested in
6530 *
6531 * Return: pageblock_bits flags
6532 */
6533 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6534 unsigned long end_bitidx,
6535 unsigned long mask)
6536 {
6537 struct zone *zone;
6538 unsigned long *bitmap;
6539 unsigned long bitidx, word_bitidx;
6540 unsigned long word;
6541
6542 zone = page_zone(page);
6543 bitmap = get_pageblock_bitmap(zone, pfn);
6544 bitidx = pfn_to_bitidx(zone, pfn);
6545 word_bitidx = bitidx / BITS_PER_LONG;
6546 bitidx &= (BITS_PER_LONG-1);
6547
6548 word = bitmap[word_bitidx];
6549 bitidx += end_bitidx;
6550 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6551 }
6552
6553 /**
6554 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6555 * @page: The page within the block of interest
6556 * @flags: The flags to set
6557 * @pfn: The target page frame number
6558 * @end_bitidx: The last bit of interest
6559 * @mask: mask of bits that the caller is interested in
6560 */
6561 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6562 unsigned long pfn,
6563 unsigned long end_bitidx,
6564 unsigned long mask)
6565 {
6566 struct zone *zone;
6567 unsigned long *bitmap;
6568 unsigned long bitidx, word_bitidx;
6569 unsigned long old_word, word;
6570
6571 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6572
6573 zone = page_zone(page);
6574 bitmap = get_pageblock_bitmap(zone, pfn);
6575 bitidx = pfn_to_bitidx(zone, pfn);
6576 word_bitidx = bitidx / BITS_PER_LONG;
6577 bitidx &= (BITS_PER_LONG-1);
6578
6579 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6580
6581 bitidx += end_bitidx;
6582 mask <<= (BITS_PER_LONG - bitidx - 1);
6583 flags <<= (BITS_PER_LONG - bitidx - 1);
6584
6585 word = READ_ONCE(bitmap[word_bitidx]);
6586 for (;;) {
6587 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6588 if (word == old_word)
6589 break;
6590 word = old_word;
6591 }
6592 }
6593
6594 /*
6595 * This function checks whether pageblock includes unmovable pages or not.
6596 * If @count is not zero, it is okay to include less @count unmovable pages
6597 *
6598 * PageLRU check without isolation or lru_lock could race so that
6599 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6600 * expect this function should be exact.
6601 */
6602 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6603 bool skip_hwpoisoned_pages)
6604 {
6605 unsigned long pfn, iter, found;
6606 int mt;
6607
6608 /*
6609 * For avoiding noise data, lru_add_drain_all() should be called
6610 * If ZONE_MOVABLE, the zone never contains unmovable pages
6611 */
6612 if (zone_idx(zone) == ZONE_MOVABLE)
6613 return false;
6614 mt = get_pageblock_migratetype(page);
6615 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6616 return false;
6617
6618 pfn = page_to_pfn(page);
6619 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6620 unsigned long check = pfn + iter;
6621
6622 if (!pfn_valid_within(check))
6623 continue;
6624
6625 page = pfn_to_page(check);
6626
6627 /*
6628 * Hugepages are not in LRU lists, but they're movable.
6629 * We need not scan over tail pages bacause we don't
6630 * handle each tail page individually in migration.
6631 */
6632 if (PageHuge(page)) {
6633 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6634 continue;
6635 }
6636
6637 /*
6638 * We can't use page_count without pin a page
6639 * because another CPU can free compound page.
6640 * This check already skips compound tails of THP
6641 * because their page->_count is zero at all time.
6642 */
6643 if (!atomic_read(&page->_count)) {
6644 if (PageBuddy(page))
6645 iter += (1 << page_order(page)) - 1;
6646 continue;
6647 }
6648
6649 /*
6650 * The HWPoisoned page may be not in buddy system, and
6651 * page_count() is not 0.
6652 */
6653 if (skip_hwpoisoned_pages && PageHWPoison(page))
6654 continue;
6655
6656 if (!PageLRU(page))
6657 found++;
6658 /*
6659 * If there are RECLAIMABLE pages, we need to check
6660 * it. But now, memory offline itself doesn't call
6661 * shrink_node_slabs() and it still to be fixed.
6662 */
6663 /*
6664 * If the page is not RAM, page_count()should be 0.
6665 * we don't need more check. This is an _used_ not-movable page.
6666 *
6667 * The problematic thing here is PG_reserved pages. PG_reserved
6668 * is set to both of a memory hole page and a _used_ kernel
6669 * page at boot.
6670 */
6671 if (found > count)
6672 return true;
6673 }
6674 return false;
6675 }
6676
6677 bool is_pageblock_removable_nolock(struct page *page)
6678 {
6679 struct zone *zone;
6680 unsigned long pfn;
6681
6682 /*
6683 * We have to be careful here because we are iterating over memory
6684 * sections which are not zone aware so we might end up outside of
6685 * the zone but still within the section.
6686 * We have to take care about the node as well. If the node is offline
6687 * its NODE_DATA will be NULL - see page_zone.
6688 */
6689 if (!node_online(page_to_nid(page)))
6690 return false;
6691
6692 zone = page_zone(page);
6693 pfn = page_to_pfn(page);
6694 if (!zone_spans_pfn(zone, pfn))
6695 return false;
6696
6697 return !has_unmovable_pages(zone, page, 0, true);
6698 }
6699
6700 #ifdef CONFIG_CMA
6701
6702 static unsigned long pfn_max_align_down(unsigned long pfn)
6703 {
6704 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6705 pageblock_nr_pages) - 1);
6706 }
6707
6708 static unsigned long pfn_max_align_up(unsigned long pfn)
6709 {
6710 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6711 pageblock_nr_pages));
6712 }
6713
6714 /* [start, end) must belong to a single zone. */
6715 static int __alloc_contig_migrate_range(struct compact_control *cc,
6716 unsigned long start, unsigned long end)
6717 {
6718 /* This function is based on compact_zone() from compaction.c. */
6719 unsigned long nr_reclaimed;
6720 unsigned long pfn = start;
6721 unsigned int tries = 0;
6722 int ret = 0;
6723
6724 migrate_prep();
6725
6726 while (pfn < end || !list_empty(&cc->migratepages)) {
6727 if (fatal_signal_pending(current)) {
6728 ret = -EINTR;
6729 break;
6730 }
6731
6732 if (list_empty(&cc->migratepages)) {
6733 cc->nr_migratepages = 0;
6734 pfn = isolate_migratepages_range(cc, pfn, end);
6735 if (!pfn) {
6736 ret = -EINTR;
6737 break;
6738 }
6739 tries = 0;
6740 } else if (++tries == 5) {
6741 ret = ret < 0 ? ret : -EBUSY;
6742 break;
6743 }
6744
6745 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6746 &cc->migratepages);
6747 cc->nr_migratepages -= nr_reclaimed;
6748
6749 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6750 NULL, 0, cc->mode, MR_CMA);
6751 }
6752 if (ret < 0) {
6753 putback_movable_pages(&cc->migratepages);
6754 return ret;
6755 }
6756 return 0;
6757 }
6758
6759 /**
6760 * alloc_contig_range() -- tries to allocate given range of pages
6761 * @start: start PFN to allocate
6762 * @end: one-past-the-last PFN to allocate
6763 * @migratetype: migratetype of the underlaying pageblocks (either
6764 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6765 * in range must have the same migratetype and it must
6766 * be either of the two.
6767 *
6768 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6769 * aligned, however it's the caller's responsibility to guarantee that
6770 * we are the only thread that changes migrate type of pageblocks the
6771 * pages fall in.
6772 *
6773 * The PFN range must belong to a single zone.
6774 *
6775 * Returns zero on success or negative error code. On success all
6776 * pages which PFN is in [start, end) are allocated for the caller and
6777 * need to be freed with free_contig_range().
6778 */
6779 int alloc_contig_range(unsigned long start, unsigned long end,
6780 unsigned migratetype)
6781 {
6782 unsigned long outer_start, outer_end;
6783 int ret = 0, order;
6784
6785 struct compact_control cc = {
6786 .nr_migratepages = 0,
6787 .order = -1,
6788 .zone = page_zone(pfn_to_page(start)),
6789 .mode = MIGRATE_SYNC,
6790 .ignore_skip_hint = true,
6791 };
6792 INIT_LIST_HEAD(&cc.migratepages);
6793
6794 /*
6795 * What we do here is we mark all pageblocks in range as
6796 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6797 * have different sizes, and due to the way page allocator
6798 * work, we align the range to biggest of the two pages so
6799 * that page allocator won't try to merge buddies from
6800 * different pageblocks and change MIGRATE_ISOLATE to some
6801 * other migration type.
6802 *
6803 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6804 * migrate the pages from an unaligned range (ie. pages that
6805 * we are interested in). This will put all the pages in
6806 * range back to page allocator as MIGRATE_ISOLATE.
6807 *
6808 * When this is done, we take the pages in range from page
6809 * allocator removing them from the buddy system. This way
6810 * page allocator will never consider using them.
6811 *
6812 * This lets us mark the pageblocks back as
6813 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6814 * aligned range but not in the unaligned, original range are
6815 * put back to page allocator so that buddy can use them.
6816 */
6817
6818 ret = start_isolate_page_range(pfn_max_align_down(start),
6819 pfn_max_align_up(end), migratetype,
6820 false);
6821 if (ret)
6822 return ret;
6823
6824 ret = __alloc_contig_migrate_range(&cc, start, end);
6825 if (ret)
6826 goto done;
6827
6828 /*
6829 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6830 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6831 * more, all pages in [start, end) are free in page allocator.
6832 * What we are going to do is to allocate all pages from
6833 * [start, end) (that is remove them from page allocator).
6834 *
6835 * The only problem is that pages at the beginning and at the
6836 * end of interesting range may be not aligned with pages that
6837 * page allocator holds, ie. they can be part of higher order
6838 * pages. Because of this, we reserve the bigger range and
6839 * once this is done free the pages we are not interested in.
6840 *
6841 * We don't have to hold zone->lock here because the pages are
6842 * isolated thus they won't get removed from buddy.
6843 */
6844
6845 lru_add_drain_all();
6846 drain_all_pages(cc.zone);
6847
6848 order = 0;
6849 outer_start = start;
6850 while (!PageBuddy(pfn_to_page(outer_start))) {
6851 if (++order >= MAX_ORDER) {
6852 ret = -EBUSY;
6853 goto done;
6854 }
6855 outer_start &= ~0UL << order;
6856 }
6857
6858 /* Make sure the range is really isolated. */
6859 if (test_pages_isolated(outer_start, end, false)) {
6860 pr_info("%s: [%lx, %lx) PFNs busy\n",
6861 __func__, outer_start, end);
6862 ret = -EBUSY;
6863 goto done;
6864 }
6865
6866 /* Grab isolated pages from freelists. */
6867 outer_end = isolate_freepages_range(&cc, outer_start, end);
6868 if (!outer_end) {
6869 ret = -EBUSY;
6870 goto done;
6871 }
6872
6873 /* Free head and tail (if any) */
6874 if (start != outer_start)
6875 free_contig_range(outer_start, start - outer_start);
6876 if (end != outer_end)
6877 free_contig_range(end, outer_end - end);
6878
6879 done:
6880 undo_isolate_page_range(pfn_max_align_down(start),
6881 pfn_max_align_up(end), migratetype);
6882 return ret;
6883 }
6884
6885 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6886 {
6887 unsigned int count = 0;
6888
6889 for (; nr_pages--; pfn++) {
6890 struct page *page = pfn_to_page(pfn);
6891
6892 count += page_count(page) != 1;
6893 __free_page(page);
6894 }
6895 WARN(count != 0, "%d pages are still in use!\n", count);
6896 }
6897 #endif
6898
6899 #ifdef CONFIG_MEMORY_HOTPLUG
6900 /*
6901 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6902 * page high values need to be recalulated.
6903 */
6904 void __meminit zone_pcp_update(struct zone *zone)
6905 {
6906 unsigned cpu;
6907 mutex_lock(&pcp_batch_high_lock);
6908 for_each_possible_cpu(cpu)
6909 pageset_set_high_and_batch(zone,
6910 per_cpu_ptr(zone->pageset, cpu));
6911 mutex_unlock(&pcp_batch_high_lock);
6912 }
6913 #endif
6914
6915 void zone_pcp_reset(struct zone *zone)
6916 {
6917 unsigned long flags;
6918 int cpu;
6919 struct per_cpu_pageset *pset;
6920
6921 /* avoid races with drain_pages() */
6922 local_irq_save(flags);
6923 if (zone->pageset != &boot_pageset) {
6924 for_each_online_cpu(cpu) {
6925 pset = per_cpu_ptr(zone->pageset, cpu);
6926 drain_zonestat(zone, pset);
6927 }
6928 free_percpu(zone->pageset);
6929 zone->pageset = &boot_pageset;
6930 }
6931 local_irq_restore(flags);
6932 }
6933
6934 #ifdef CONFIG_MEMORY_HOTREMOVE
6935 /*
6936 * All pages in the range must be isolated before calling this.
6937 */
6938 void
6939 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6940 {
6941 struct page *page;
6942 struct zone *zone;
6943 unsigned int order, i;
6944 unsigned long pfn;
6945 unsigned long flags;
6946 /* find the first valid pfn */
6947 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6948 if (pfn_valid(pfn))
6949 break;
6950 if (pfn == end_pfn)
6951 return;
6952 zone = page_zone(pfn_to_page(pfn));
6953 spin_lock_irqsave(&zone->lock, flags);
6954 pfn = start_pfn;
6955 while (pfn < end_pfn) {
6956 if (!pfn_valid(pfn)) {
6957 pfn++;
6958 continue;
6959 }
6960 page = pfn_to_page(pfn);
6961 /*
6962 * The HWPoisoned page may be not in buddy system, and
6963 * page_count() is not 0.
6964 */
6965 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6966 pfn++;
6967 SetPageReserved(page);
6968 continue;
6969 }
6970
6971 BUG_ON(page_count(page));
6972 BUG_ON(!PageBuddy(page));
6973 order = page_order(page);
6974 #ifdef CONFIG_DEBUG_VM
6975 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6976 pfn, 1 << order, end_pfn);
6977 #endif
6978 list_del(&page->lru);
6979 rmv_page_order(page);
6980 zone->free_area[order].nr_free--;
6981 for (i = 0; i < (1 << order); i++)
6982 SetPageReserved((page+i));
6983 pfn += (1 << order);
6984 }
6985 spin_unlock_irqrestore(&zone->lock, flags);
6986 }
6987 #endif
6988
6989 #ifdef CONFIG_MEMORY_FAILURE
6990 bool is_free_buddy_page(struct page *page)
6991 {
6992 struct zone *zone = page_zone(page);
6993 unsigned long pfn = page_to_pfn(page);
6994 unsigned long flags;
6995 unsigned int order;
6996
6997 spin_lock_irqsave(&zone->lock, flags);
6998 for (order = 0; order < MAX_ORDER; order++) {
6999 struct page *page_head = page - (pfn & ((1 << order) - 1));
7000
7001 if (PageBuddy(page_head) && page_order(page_head) >= order)
7002 break;
7003 }
7004 spin_unlock_irqrestore(&zone->lock, flags);
7005
7006 return order < MAX_ORDER;
7007 }
7008 #endif