]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/page_alloc.c
page_alloc: fix invalid watermark check on a negative value
[mirror_ubuntu-jammy-kernel.git] / mm / page_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <linux/buffer_head.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77 #include <asm/div64.h>
78 #include "internal.h"
79 #include "shuffle.h"
80 #include "page_reporting.h"
81
82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83 typedef int __bitwise fpi_t;
84
85 /* No special request */
86 #define FPI_NONE ((__force fpi_t)0)
87
88 /*
89 * Skip free page reporting notification for the (possibly merged) page.
90 * This does not hinder free page reporting from grabbing the page,
91 * reporting it and marking it "reported" - it only skips notifying
92 * the free page reporting infrastructure about a newly freed page. For
93 * example, used when temporarily pulling a page from a freelist and
94 * putting it back unmodified.
95 */
96 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
97
98 /*
99 * Place the (possibly merged) page to the tail of the freelist. Will ignore
100 * page shuffling (relevant code - e.g., memory onlining - is expected to
101 * shuffle the whole zone).
102 *
103 * Note: No code should rely on this flag for correctness - it's purely
104 * to allow for optimizations when handing back either fresh pages
105 * (memory onlining) or untouched pages (page isolation, free page
106 * reporting).
107 */
108 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
109
110 /*
111 * Don't poison memory with KASAN (only for the tag-based modes).
112 * During boot, all non-reserved memblock memory is exposed to page_alloc.
113 * Poisoning all that memory lengthens boot time, especially on systems with
114 * large amount of RAM. This flag is used to skip that poisoning.
115 * This is only done for the tag-based KASAN modes, as those are able to
116 * detect memory corruptions with the memory tags assigned by default.
117 * All memory allocated normally after boot gets poisoned as usual.
118 */
119 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
120
121 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
122 static DEFINE_MUTEX(pcp_batch_high_lock);
123 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
124
125 struct pagesets {
126 local_lock_t lock;
127 };
128 static DEFINE_PER_CPU(struct pagesets, pagesets) = {
129 .lock = INIT_LOCAL_LOCK(lock),
130 };
131
132 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
133 DEFINE_PER_CPU(int, numa_node);
134 EXPORT_PER_CPU_SYMBOL(numa_node);
135 #endif
136
137 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
138
139 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
140 /*
141 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
142 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
143 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
144 * defined in <linux/topology.h>.
145 */
146 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
147 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
148 #endif
149
150 /* work_structs for global per-cpu drains */
151 struct pcpu_drain {
152 struct zone *zone;
153 struct work_struct work;
154 };
155 static DEFINE_MUTEX(pcpu_drain_mutex);
156 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
157
158 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
159 volatile unsigned long latent_entropy __latent_entropy;
160 EXPORT_SYMBOL(latent_entropy);
161 #endif
162
163 /*
164 * Array of node states.
165 */
166 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
167 [N_POSSIBLE] = NODE_MASK_ALL,
168 [N_ONLINE] = { { [0] = 1UL } },
169 #ifndef CONFIG_NUMA
170 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
171 #ifdef CONFIG_HIGHMEM
172 [N_HIGH_MEMORY] = { { [0] = 1UL } },
173 #endif
174 [N_MEMORY] = { { [0] = 1UL } },
175 [N_CPU] = { { [0] = 1UL } },
176 #endif /* NUMA */
177 };
178 EXPORT_SYMBOL(node_states);
179
180 atomic_long_t _totalram_pages __read_mostly;
181 EXPORT_SYMBOL(_totalram_pages);
182 unsigned long totalreserve_pages __read_mostly;
183 unsigned long totalcma_pages __read_mostly;
184
185 int percpu_pagelist_high_fraction;
186 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
187 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
188 EXPORT_SYMBOL(init_on_alloc);
189
190 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
191 EXPORT_SYMBOL(init_on_free);
192
193 static bool _init_on_alloc_enabled_early __read_mostly
194 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
195 static int __init early_init_on_alloc(char *buf)
196 {
197
198 return kstrtobool(buf, &_init_on_alloc_enabled_early);
199 }
200 early_param("init_on_alloc", early_init_on_alloc);
201
202 static bool _init_on_free_enabled_early __read_mostly
203 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
204 static int __init early_init_on_free(char *buf)
205 {
206 return kstrtobool(buf, &_init_on_free_enabled_early);
207 }
208 early_param("init_on_free", early_init_on_free);
209
210 /*
211 * A cached value of the page's pageblock's migratetype, used when the page is
212 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
213 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
214 * Also the migratetype set in the page does not necessarily match the pcplist
215 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
216 * other index - this ensures that it will be put on the correct CMA freelist.
217 */
218 static inline int get_pcppage_migratetype(struct page *page)
219 {
220 return page->index;
221 }
222
223 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
224 {
225 page->index = migratetype;
226 }
227
228 #ifdef CONFIG_PM_SLEEP
229 /*
230 * The following functions are used by the suspend/hibernate code to temporarily
231 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
232 * while devices are suspended. To avoid races with the suspend/hibernate code,
233 * they should always be called with system_transition_mutex held
234 * (gfp_allowed_mask also should only be modified with system_transition_mutex
235 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
236 * with that modification).
237 */
238
239 static gfp_t saved_gfp_mask;
240
241 void pm_restore_gfp_mask(void)
242 {
243 WARN_ON(!mutex_is_locked(&system_transition_mutex));
244 if (saved_gfp_mask) {
245 gfp_allowed_mask = saved_gfp_mask;
246 saved_gfp_mask = 0;
247 }
248 }
249
250 void pm_restrict_gfp_mask(void)
251 {
252 WARN_ON(!mutex_is_locked(&system_transition_mutex));
253 WARN_ON(saved_gfp_mask);
254 saved_gfp_mask = gfp_allowed_mask;
255 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
256 }
257
258 bool pm_suspended_storage(void)
259 {
260 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
261 return false;
262 return true;
263 }
264 #endif /* CONFIG_PM_SLEEP */
265
266 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
267 unsigned int pageblock_order __read_mostly;
268 #endif
269
270 static void __free_pages_ok(struct page *page, unsigned int order,
271 fpi_t fpi_flags);
272
273 /*
274 * results with 256, 32 in the lowmem_reserve sysctl:
275 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
276 * 1G machine -> (16M dma, 784M normal, 224M high)
277 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
278 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
279 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
280 *
281 * TBD: should special case ZONE_DMA32 machines here - in those we normally
282 * don't need any ZONE_NORMAL reservation
283 */
284 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
285 #ifdef CONFIG_ZONE_DMA
286 [ZONE_DMA] = 256,
287 #endif
288 #ifdef CONFIG_ZONE_DMA32
289 [ZONE_DMA32] = 256,
290 #endif
291 [ZONE_NORMAL] = 32,
292 #ifdef CONFIG_HIGHMEM
293 [ZONE_HIGHMEM] = 0,
294 #endif
295 [ZONE_MOVABLE] = 0,
296 };
297
298 static char * const zone_names[MAX_NR_ZONES] = {
299 #ifdef CONFIG_ZONE_DMA
300 "DMA",
301 #endif
302 #ifdef CONFIG_ZONE_DMA32
303 "DMA32",
304 #endif
305 "Normal",
306 #ifdef CONFIG_HIGHMEM
307 "HighMem",
308 #endif
309 "Movable",
310 #ifdef CONFIG_ZONE_DEVICE
311 "Device",
312 #endif
313 };
314
315 const char * const migratetype_names[MIGRATE_TYPES] = {
316 "Unmovable",
317 "Movable",
318 "Reclaimable",
319 "HighAtomic",
320 #ifdef CONFIG_CMA
321 "CMA",
322 #endif
323 #ifdef CONFIG_MEMORY_ISOLATION
324 "Isolate",
325 #endif
326 };
327
328 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
329 [NULL_COMPOUND_DTOR] = NULL,
330 [COMPOUND_PAGE_DTOR] = free_compound_page,
331 #ifdef CONFIG_HUGETLB_PAGE
332 [HUGETLB_PAGE_DTOR] = free_huge_page,
333 #endif
334 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
335 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
336 #endif
337 };
338
339 int min_free_kbytes = 1024;
340 int user_min_free_kbytes = -1;
341 int watermark_boost_factor __read_mostly = 15000;
342 int watermark_scale_factor = 10;
343
344 static unsigned long nr_kernel_pages __initdata;
345 static unsigned long nr_all_pages __initdata;
346 static unsigned long dma_reserve __initdata;
347
348 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
349 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
350 static unsigned long required_kernelcore __initdata;
351 static unsigned long required_kernelcore_percent __initdata;
352 static unsigned long required_movablecore __initdata;
353 static unsigned long required_movablecore_percent __initdata;
354 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
355 static bool mirrored_kernelcore __meminitdata;
356
357 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
358 int movable_zone;
359 EXPORT_SYMBOL(movable_zone);
360
361 #if MAX_NUMNODES > 1
362 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
363 unsigned int nr_online_nodes __read_mostly = 1;
364 EXPORT_SYMBOL(nr_node_ids);
365 EXPORT_SYMBOL(nr_online_nodes);
366 #endif
367
368 int page_group_by_mobility_disabled __read_mostly;
369
370 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
371 /*
372 * During boot we initialize deferred pages on-demand, as needed, but once
373 * page_alloc_init_late() has finished, the deferred pages are all initialized,
374 * and we can permanently disable that path.
375 */
376 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
377
378 /*
379 * Calling kasan_poison_pages() only after deferred memory initialization
380 * has completed. Poisoning pages during deferred memory init will greatly
381 * lengthen the process and cause problem in large memory systems as the
382 * deferred pages initialization is done with interrupt disabled.
383 *
384 * Assuming that there will be no reference to those newly initialized
385 * pages before they are ever allocated, this should have no effect on
386 * KASAN memory tracking as the poison will be properly inserted at page
387 * allocation time. The only corner case is when pages are allocated by
388 * on-demand allocation and then freed again before the deferred pages
389 * initialization is done, but this is not likely to happen.
390 */
391 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
392 {
393 return static_branch_unlikely(&deferred_pages) ||
394 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
395 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
396 PageSkipKASanPoison(page);
397 }
398
399 /* Returns true if the struct page for the pfn is uninitialised */
400 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
401 {
402 int nid = early_pfn_to_nid(pfn);
403
404 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
405 return true;
406
407 return false;
408 }
409
410 /*
411 * Returns true when the remaining initialisation should be deferred until
412 * later in the boot cycle when it can be parallelised.
413 */
414 static bool __meminit
415 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
416 {
417 static unsigned long prev_end_pfn, nr_initialised;
418
419 /*
420 * prev_end_pfn static that contains the end of previous zone
421 * No need to protect because called very early in boot before smp_init.
422 */
423 if (prev_end_pfn != end_pfn) {
424 prev_end_pfn = end_pfn;
425 nr_initialised = 0;
426 }
427
428 /* Always populate low zones for address-constrained allocations */
429 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
430 return false;
431
432 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
433 return true;
434 /*
435 * We start only with one section of pages, more pages are added as
436 * needed until the rest of deferred pages are initialized.
437 */
438 nr_initialised++;
439 if ((nr_initialised > PAGES_PER_SECTION) &&
440 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
441 NODE_DATA(nid)->first_deferred_pfn = pfn;
442 return true;
443 }
444 return false;
445 }
446 #else
447 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
448 {
449 return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
450 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
451 PageSkipKASanPoison(page);
452 }
453
454 static inline bool early_page_uninitialised(unsigned long pfn)
455 {
456 return false;
457 }
458
459 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
460 {
461 return false;
462 }
463 #endif
464
465 /* Return a pointer to the bitmap storing bits affecting a block of pages */
466 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
467 unsigned long pfn)
468 {
469 #ifdef CONFIG_SPARSEMEM
470 return section_to_usemap(__pfn_to_section(pfn));
471 #else
472 return page_zone(page)->pageblock_flags;
473 #endif /* CONFIG_SPARSEMEM */
474 }
475
476 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
477 {
478 #ifdef CONFIG_SPARSEMEM
479 pfn &= (PAGES_PER_SECTION-1);
480 #else
481 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
482 #endif /* CONFIG_SPARSEMEM */
483 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
484 }
485
486 static __always_inline
487 unsigned long __get_pfnblock_flags_mask(const struct page *page,
488 unsigned long pfn,
489 unsigned long mask)
490 {
491 unsigned long *bitmap;
492 unsigned long bitidx, word_bitidx;
493 unsigned long word;
494
495 bitmap = get_pageblock_bitmap(page, pfn);
496 bitidx = pfn_to_bitidx(page, pfn);
497 word_bitidx = bitidx / BITS_PER_LONG;
498 bitidx &= (BITS_PER_LONG-1);
499
500 word = bitmap[word_bitidx];
501 return (word >> bitidx) & mask;
502 }
503
504 /**
505 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
506 * @page: The page within the block of interest
507 * @pfn: The target page frame number
508 * @mask: mask of bits that the caller is interested in
509 *
510 * Return: pageblock_bits flags
511 */
512 unsigned long get_pfnblock_flags_mask(const struct page *page,
513 unsigned long pfn, unsigned long mask)
514 {
515 return __get_pfnblock_flags_mask(page, pfn, mask);
516 }
517
518 static __always_inline int get_pfnblock_migratetype(const struct page *page,
519 unsigned long pfn)
520 {
521 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
522 }
523
524 /**
525 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
526 * @page: The page within the block of interest
527 * @flags: The flags to set
528 * @pfn: The target page frame number
529 * @mask: mask of bits that the caller is interested in
530 */
531 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
532 unsigned long pfn,
533 unsigned long mask)
534 {
535 unsigned long *bitmap;
536 unsigned long bitidx, word_bitidx;
537 unsigned long old_word, word;
538
539 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
540 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
541
542 bitmap = get_pageblock_bitmap(page, pfn);
543 bitidx = pfn_to_bitidx(page, pfn);
544 word_bitidx = bitidx / BITS_PER_LONG;
545 bitidx &= (BITS_PER_LONG-1);
546
547 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
548
549 mask <<= bitidx;
550 flags <<= bitidx;
551
552 word = READ_ONCE(bitmap[word_bitidx]);
553 for (;;) {
554 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
555 if (word == old_word)
556 break;
557 word = old_word;
558 }
559 }
560
561 void set_pageblock_migratetype(struct page *page, int migratetype)
562 {
563 if (unlikely(page_group_by_mobility_disabled &&
564 migratetype < MIGRATE_PCPTYPES))
565 migratetype = MIGRATE_UNMOVABLE;
566
567 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
568 page_to_pfn(page), MIGRATETYPE_MASK);
569 }
570
571 #ifdef CONFIG_DEBUG_VM
572 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
573 {
574 int ret = 0;
575 unsigned seq;
576 unsigned long pfn = page_to_pfn(page);
577 unsigned long sp, start_pfn;
578
579 do {
580 seq = zone_span_seqbegin(zone);
581 start_pfn = zone->zone_start_pfn;
582 sp = zone->spanned_pages;
583 if (!zone_spans_pfn(zone, pfn))
584 ret = 1;
585 } while (zone_span_seqretry(zone, seq));
586
587 if (ret)
588 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
589 pfn, zone_to_nid(zone), zone->name,
590 start_pfn, start_pfn + sp);
591
592 return ret;
593 }
594
595 static int page_is_consistent(struct zone *zone, struct page *page)
596 {
597 if (zone != page_zone(page))
598 return 0;
599
600 return 1;
601 }
602 /*
603 * Temporary debugging check for pages not lying within a given zone.
604 */
605 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
606 {
607 if (page_outside_zone_boundaries(zone, page))
608 return 1;
609 if (!page_is_consistent(zone, page))
610 return 1;
611
612 return 0;
613 }
614 #else
615 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
616 {
617 return 0;
618 }
619 #endif
620
621 static void bad_page(struct page *page, const char *reason)
622 {
623 static unsigned long resume;
624 static unsigned long nr_shown;
625 static unsigned long nr_unshown;
626
627 /*
628 * Allow a burst of 60 reports, then keep quiet for that minute;
629 * or allow a steady drip of one report per second.
630 */
631 if (nr_shown == 60) {
632 if (time_before(jiffies, resume)) {
633 nr_unshown++;
634 goto out;
635 }
636 if (nr_unshown) {
637 pr_alert(
638 "BUG: Bad page state: %lu messages suppressed\n",
639 nr_unshown);
640 nr_unshown = 0;
641 }
642 nr_shown = 0;
643 }
644 if (nr_shown++ == 0)
645 resume = jiffies + 60 * HZ;
646
647 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
648 current->comm, page_to_pfn(page));
649 dump_page(page, reason);
650
651 print_modules();
652 dump_stack();
653 out:
654 /* Leave bad fields for debug, except PageBuddy could make trouble */
655 page_mapcount_reset(page); /* remove PageBuddy */
656 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
657 }
658
659 static inline unsigned int order_to_pindex(int migratetype, int order)
660 {
661 int base = order;
662
663 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
664 if (order > PAGE_ALLOC_COSTLY_ORDER) {
665 VM_BUG_ON(order != pageblock_order);
666 base = PAGE_ALLOC_COSTLY_ORDER + 1;
667 }
668 #else
669 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
670 #endif
671
672 return (MIGRATE_PCPTYPES * base) + migratetype;
673 }
674
675 static inline int pindex_to_order(unsigned int pindex)
676 {
677 int order = pindex / MIGRATE_PCPTYPES;
678
679 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
680 if (order > PAGE_ALLOC_COSTLY_ORDER) {
681 order = pageblock_order;
682 VM_BUG_ON(order != pageblock_order);
683 }
684 #else
685 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
686 #endif
687
688 return order;
689 }
690
691 static inline bool pcp_allowed_order(unsigned int order)
692 {
693 if (order <= PAGE_ALLOC_COSTLY_ORDER)
694 return true;
695 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
696 if (order == pageblock_order)
697 return true;
698 #endif
699 return false;
700 }
701
702 static inline void free_the_page(struct page *page, unsigned int order)
703 {
704 if (pcp_allowed_order(order)) /* Via pcp? */
705 free_unref_page(page, order);
706 else
707 __free_pages_ok(page, order, FPI_NONE);
708 }
709
710 /*
711 * Higher-order pages are called "compound pages". They are structured thusly:
712 *
713 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
714 *
715 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
716 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
717 *
718 * The first tail page's ->compound_dtor holds the offset in array of compound
719 * page destructors. See compound_page_dtors.
720 *
721 * The first tail page's ->compound_order holds the order of allocation.
722 * This usage means that zero-order pages may not be compound.
723 */
724
725 void free_compound_page(struct page *page)
726 {
727 mem_cgroup_uncharge(page);
728 free_the_page(page, compound_order(page));
729 }
730
731 void prep_compound_page(struct page *page, unsigned int order)
732 {
733 int i;
734 int nr_pages = 1 << order;
735
736 __SetPageHead(page);
737 for (i = 1; i < nr_pages; i++) {
738 struct page *p = page + i;
739 p->mapping = TAIL_MAPPING;
740 set_compound_head(p, page);
741 }
742
743 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
744 set_compound_order(page, order);
745 atomic_set(compound_mapcount_ptr(page), -1);
746 if (hpage_pincount_available(page))
747 atomic_set(compound_pincount_ptr(page), 0);
748 }
749
750 #ifdef CONFIG_DEBUG_PAGEALLOC
751 unsigned int _debug_guardpage_minorder;
752
753 bool _debug_pagealloc_enabled_early __read_mostly
754 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
755 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
756 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
757 EXPORT_SYMBOL(_debug_pagealloc_enabled);
758
759 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
760
761 static int __init early_debug_pagealloc(char *buf)
762 {
763 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
764 }
765 early_param("debug_pagealloc", early_debug_pagealloc);
766
767 static int __init debug_guardpage_minorder_setup(char *buf)
768 {
769 unsigned long res;
770
771 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
772 pr_err("Bad debug_guardpage_minorder value\n");
773 return 0;
774 }
775 _debug_guardpage_minorder = res;
776 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
777 return 0;
778 }
779 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
780
781 static inline bool set_page_guard(struct zone *zone, struct page *page,
782 unsigned int order, int migratetype)
783 {
784 if (!debug_guardpage_enabled())
785 return false;
786
787 if (order >= debug_guardpage_minorder())
788 return false;
789
790 __SetPageGuard(page);
791 INIT_LIST_HEAD(&page->lru);
792 set_page_private(page, order);
793 /* Guard pages are not available for any usage */
794 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
795
796 return true;
797 }
798
799 static inline void clear_page_guard(struct zone *zone, struct page *page,
800 unsigned int order, int migratetype)
801 {
802 if (!debug_guardpage_enabled())
803 return;
804
805 __ClearPageGuard(page);
806
807 set_page_private(page, 0);
808 if (!is_migrate_isolate(migratetype))
809 __mod_zone_freepage_state(zone, (1 << order), migratetype);
810 }
811 #else
812 static inline bool set_page_guard(struct zone *zone, struct page *page,
813 unsigned int order, int migratetype) { return false; }
814 static inline void clear_page_guard(struct zone *zone, struct page *page,
815 unsigned int order, int migratetype) {}
816 #endif
817
818 /*
819 * Enable static keys related to various memory debugging and hardening options.
820 * Some override others, and depend on early params that are evaluated in the
821 * order of appearance. So we need to first gather the full picture of what was
822 * enabled, and then make decisions.
823 */
824 void init_mem_debugging_and_hardening(void)
825 {
826 bool page_poisoning_requested = false;
827
828 #ifdef CONFIG_PAGE_POISONING
829 /*
830 * Page poisoning is debug page alloc for some arches. If
831 * either of those options are enabled, enable poisoning.
832 */
833 if (page_poisoning_enabled() ||
834 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
835 debug_pagealloc_enabled())) {
836 static_branch_enable(&_page_poisoning_enabled);
837 page_poisoning_requested = true;
838 }
839 #endif
840
841 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
842 page_poisoning_requested) {
843 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
844 "will take precedence over init_on_alloc and init_on_free\n");
845 _init_on_alloc_enabled_early = false;
846 _init_on_free_enabled_early = false;
847 }
848
849 if (_init_on_alloc_enabled_early)
850 static_branch_enable(&init_on_alloc);
851 else
852 static_branch_disable(&init_on_alloc);
853
854 if (_init_on_free_enabled_early)
855 static_branch_enable(&init_on_free);
856 else
857 static_branch_disable(&init_on_free);
858
859 #ifdef CONFIG_DEBUG_PAGEALLOC
860 if (!debug_pagealloc_enabled())
861 return;
862
863 static_branch_enable(&_debug_pagealloc_enabled);
864
865 if (!debug_guardpage_minorder())
866 return;
867
868 static_branch_enable(&_debug_guardpage_enabled);
869 #endif
870 }
871
872 static inline void set_buddy_order(struct page *page, unsigned int order)
873 {
874 set_page_private(page, order);
875 __SetPageBuddy(page);
876 }
877
878 /*
879 * This function checks whether a page is free && is the buddy
880 * we can coalesce a page and its buddy if
881 * (a) the buddy is not in a hole (check before calling!) &&
882 * (b) the buddy is in the buddy system &&
883 * (c) a page and its buddy have the same order &&
884 * (d) a page and its buddy are in the same zone.
885 *
886 * For recording whether a page is in the buddy system, we set PageBuddy.
887 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
888 *
889 * For recording page's order, we use page_private(page).
890 */
891 static inline bool page_is_buddy(struct page *page, struct page *buddy,
892 unsigned int order)
893 {
894 if (!page_is_guard(buddy) && !PageBuddy(buddy))
895 return false;
896
897 if (buddy_order(buddy) != order)
898 return false;
899
900 /*
901 * zone check is done late to avoid uselessly calculating
902 * zone/node ids for pages that could never merge.
903 */
904 if (page_zone_id(page) != page_zone_id(buddy))
905 return false;
906
907 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
908
909 return true;
910 }
911
912 #ifdef CONFIG_COMPACTION
913 static inline struct capture_control *task_capc(struct zone *zone)
914 {
915 struct capture_control *capc = current->capture_control;
916
917 return unlikely(capc) &&
918 !(current->flags & PF_KTHREAD) &&
919 !capc->page &&
920 capc->cc->zone == zone ? capc : NULL;
921 }
922
923 static inline bool
924 compaction_capture(struct capture_control *capc, struct page *page,
925 int order, int migratetype)
926 {
927 if (!capc || order != capc->cc->order)
928 return false;
929
930 /* Do not accidentally pollute CMA or isolated regions*/
931 if (is_migrate_cma(migratetype) ||
932 is_migrate_isolate(migratetype))
933 return false;
934
935 /*
936 * Do not let lower order allocations pollute a movable pageblock.
937 * This might let an unmovable request use a reclaimable pageblock
938 * and vice-versa but no more than normal fallback logic which can
939 * have trouble finding a high-order free page.
940 */
941 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
942 return false;
943
944 capc->page = page;
945 return true;
946 }
947
948 #else
949 static inline struct capture_control *task_capc(struct zone *zone)
950 {
951 return NULL;
952 }
953
954 static inline bool
955 compaction_capture(struct capture_control *capc, struct page *page,
956 int order, int migratetype)
957 {
958 return false;
959 }
960 #endif /* CONFIG_COMPACTION */
961
962 /* Used for pages not on another list */
963 static inline void add_to_free_list(struct page *page, struct zone *zone,
964 unsigned int order, int migratetype)
965 {
966 struct free_area *area = &zone->free_area[order];
967
968 list_add(&page->lru, &area->free_list[migratetype]);
969 area->nr_free++;
970 }
971
972 /* Used for pages not on another list */
973 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
974 unsigned int order, int migratetype)
975 {
976 struct free_area *area = &zone->free_area[order];
977
978 list_add_tail(&page->lru, &area->free_list[migratetype]);
979 area->nr_free++;
980 }
981
982 /*
983 * Used for pages which are on another list. Move the pages to the tail
984 * of the list - so the moved pages won't immediately be considered for
985 * allocation again (e.g., optimization for memory onlining).
986 */
987 static inline void move_to_free_list(struct page *page, struct zone *zone,
988 unsigned int order, int migratetype)
989 {
990 struct free_area *area = &zone->free_area[order];
991
992 list_move_tail(&page->lru, &area->free_list[migratetype]);
993 }
994
995 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
996 unsigned int order)
997 {
998 /* clear reported state and update reported page count */
999 if (page_reported(page))
1000 __ClearPageReported(page);
1001
1002 list_del(&page->lru);
1003 __ClearPageBuddy(page);
1004 set_page_private(page, 0);
1005 zone->free_area[order].nr_free--;
1006 }
1007
1008 /*
1009 * If this is not the largest possible page, check if the buddy
1010 * of the next-highest order is free. If it is, it's possible
1011 * that pages are being freed that will coalesce soon. In case,
1012 * that is happening, add the free page to the tail of the list
1013 * so it's less likely to be used soon and more likely to be merged
1014 * as a higher order page
1015 */
1016 static inline bool
1017 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1018 struct page *page, unsigned int order)
1019 {
1020 struct page *higher_page, *higher_buddy;
1021 unsigned long combined_pfn;
1022
1023 if (order >= MAX_ORDER - 2)
1024 return false;
1025
1026 combined_pfn = buddy_pfn & pfn;
1027 higher_page = page + (combined_pfn - pfn);
1028 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1029 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1030
1031 return page_is_buddy(higher_page, higher_buddy, order + 1);
1032 }
1033
1034 /*
1035 * Freeing function for a buddy system allocator.
1036 *
1037 * The concept of a buddy system is to maintain direct-mapped table
1038 * (containing bit values) for memory blocks of various "orders".
1039 * The bottom level table contains the map for the smallest allocatable
1040 * units of memory (here, pages), and each level above it describes
1041 * pairs of units from the levels below, hence, "buddies".
1042 * At a high level, all that happens here is marking the table entry
1043 * at the bottom level available, and propagating the changes upward
1044 * as necessary, plus some accounting needed to play nicely with other
1045 * parts of the VM system.
1046 * At each level, we keep a list of pages, which are heads of continuous
1047 * free pages of length of (1 << order) and marked with PageBuddy.
1048 * Page's order is recorded in page_private(page) field.
1049 * So when we are allocating or freeing one, we can derive the state of the
1050 * other. That is, if we allocate a small block, and both were
1051 * free, the remainder of the region must be split into blocks.
1052 * If a block is freed, and its buddy is also free, then this
1053 * triggers coalescing into a block of larger size.
1054 *
1055 * -- nyc
1056 */
1057
1058 static inline void __free_one_page(struct page *page,
1059 unsigned long pfn,
1060 struct zone *zone, unsigned int order,
1061 int migratetype, fpi_t fpi_flags)
1062 {
1063 struct capture_control *capc = task_capc(zone);
1064 unsigned long buddy_pfn;
1065 unsigned long combined_pfn;
1066 unsigned int max_order;
1067 struct page *buddy;
1068 bool to_tail;
1069
1070 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1071
1072 VM_BUG_ON(!zone_is_initialized(zone));
1073 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1074
1075 VM_BUG_ON(migratetype == -1);
1076 if (likely(!is_migrate_isolate(migratetype)))
1077 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1078
1079 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1080 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1081
1082 continue_merging:
1083 while (order < max_order) {
1084 if (compaction_capture(capc, page, order, migratetype)) {
1085 __mod_zone_freepage_state(zone, -(1 << order),
1086 migratetype);
1087 return;
1088 }
1089 buddy_pfn = __find_buddy_pfn(pfn, order);
1090 buddy = page + (buddy_pfn - pfn);
1091
1092 if (!page_is_buddy(page, buddy, order))
1093 goto done_merging;
1094 /*
1095 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1096 * merge with it and move up one order.
1097 */
1098 if (page_is_guard(buddy))
1099 clear_page_guard(zone, buddy, order, migratetype);
1100 else
1101 del_page_from_free_list(buddy, zone, order);
1102 combined_pfn = buddy_pfn & pfn;
1103 page = page + (combined_pfn - pfn);
1104 pfn = combined_pfn;
1105 order++;
1106 }
1107 if (order < MAX_ORDER - 1) {
1108 /* If we are here, it means order is >= pageblock_order.
1109 * We want to prevent merge between freepages on isolate
1110 * pageblock and normal pageblock. Without this, pageblock
1111 * isolation could cause incorrect freepage or CMA accounting.
1112 *
1113 * We don't want to hit this code for the more frequent
1114 * low-order merging.
1115 */
1116 if (unlikely(has_isolate_pageblock(zone))) {
1117 int buddy_mt;
1118
1119 buddy_pfn = __find_buddy_pfn(pfn, order);
1120 buddy = page + (buddy_pfn - pfn);
1121 buddy_mt = get_pageblock_migratetype(buddy);
1122
1123 if (migratetype != buddy_mt
1124 && (is_migrate_isolate(migratetype) ||
1125 is_migrate_isolate(buddy_mt)))
1126 goto done_merging;
1127 }
1128 max_order = order + 1;
1129 goto continue_merging;
1130 }
1131
1132 done_merging:
1133 set_buddy_order(page, order);
1134
1135 if (fpi_flags & FPI_TO_TAIL)
1136 to_tail = true;
1137 else if (is_shuffle_order(order))
1138 to_tail = shuffle_pick_tail();
1139 else
1140 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1141
1142 if (to_tail)
1143 add_to_free_list_tail(page, zone, order, migratetype);
1144 else
1145 add_to_free_list(page, zone, order, migratetype);
1146
1147 /* Notify page reporting subsystem of freed page */
1148 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1149 page_reporting_notify_free(order);
1150 }
1151
1152 /*
1153 * A bad page could be due to a number of fields. Instead of multiple branches,
1154 * try and check multiple fields with one check. The caller must do a detailed
1155 * check if necessary.
1156 */
1157 static inline bool page_expected_state(struct page *page,
1158 unsigned long check_flags)
1159 {
1160 if (unlikely(atomic_read(&page->_mapcount) != -1))
1161 return false;
1162
1163 if (unlikely((unsigned long)page->mapping |
1164 page_ref_count(page) |
1165 #ifdef CONFIG_MEMCG
1166 page->memcg_data |
1167 #endif
1168 (page->flags & check_flags)))
1169 return false;
1170
1171 return true;
1172 }
1173
1174 static const char *page_bad_reason(struct page *page, unsigned long flags)
1175 {
1176 const char *bad_reason = NULL;
1177
1178 if (unlikely(atomic_read(&page->_mapcount) != -1))
1179 bad_reason = "nonzero mapcount";
1180 if (unlikely(page->mapping != NULL))
1181 bad_reason = "non-NULL mapping";
1182 if (unlikely(page_ref_count(page) != 0))
1183 bad_reason = "nonzero _refcount";
1184 if (unlikely(page->flags & flags)) {
1185 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1186 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1187 else
1188 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1189 }
1190 #ifdef CONFIG_MEMCG
1191 if (unlikely(page->memcg_data))
1192 bad_reason = "page still charged to cgroup";
1193 #endif
1194 return bad_reason;
1195 }
1196
1197 static void check_free_page_bad(struct page *page)
1198 {
1199 bad_page(page,
1200 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1201 }
1202
1203 static inline int check_free_page(struct page *page)
1204 {
1205 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1206 return 0;
1207
1208 /* Something has gone sideways, find it */
1209 check_free_page_bad(page);
1210 return 1;
1211 }
1212
1213 static int free_tail_pages_check(struct page *head_page, struct page *page)
1214 {
1215 int ret = 1;
1216
1217 /*
1218 * We rely page->lru.next never has bit 0 set, unless the page
1219 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1220 */
1221 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1222
1223 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1224 ret = 0;
1225 goto out;
1226 }
1227 switch (page - head_page) {
1228 case 1:
1229 /* the first tail page: ->mapping may be compound_mapcount() */
1230 if (unlikely(compound_mapcount(page))) {
1231 bad_page(page, "nonzero compound_mapcount");
1232 goto out;
1233 }
1234 break;
1235 case 2:
1236 /*
1237 * the second tail page: ->mapping is
1238 * deferred_list.next -- ignore value.
1239 */
1240 break;
1241 default:
1242 if (page->mapping != TAIL_MAPPING) {
1243 bad_page(page, "corrupted mapping in tail page");
1244 goto out;
1245 }
1246 break;
1247 }
1248 if (unlikely(!PageTail(page))) {
1249 bad_page(page, "PageTail not set");
1250 goto out;
1251 }
1252 if (unlikely(compound_head(page) != head_page)) {
1253 bad_page(page, "compound_head not consistent");
1254 goto out;
1255 }
1256 ret = 0;
1257 out:
1258 page->mapping = NULL;
1259 clear_compound_head(page);
1260 return ret;
1261 }
1262
1263 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
1264 {
1265 int i;
1266
1267 if (zero_tags) {
1268 for (i = 0; i < numpages; i++)
1269 tag_clear_highpage(page + i);
1270 return;
1271 }
1272
1273 /* s390's use of memset() could override KASAN redzones. */
1274 kasan_disable_current();
1275 for (i = 0; i < numpages; i++) {
1276 u8 tag = page_kasan_tag(page + i);
1277 page_kasan_tag_reset(page + i);
1278 clear_highpage(page + i);
1279 page_kasan_tag_set(page + i, tag);
1280 }
1281 kasan_enable_current();
1282 }
1283
1284 static __always_inline bool free_pages_prepare(struct page *page,
1285 unsigned int order, bool check_free, fpi_t fpi_flags)
1286 {
1287 int bad = 0;
1288 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1289
1290 VM_BUG_ON_PAGE(PageTail(page), page);
1291
1292 trace_mm_page_free(page, order);
1293
1294 if (unlikely(PageHWPoison(page)) && !order) {
1295 /*
1296 * Do not let hwpoison pages hit pcplists/buddy
1297 * Untie memcg state and reset page's owner
1298 */
1299 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1300 __memcg_kmem_uncharge_page(page, order);
1301 reset_page_owner(page, order);
1302 return false;
1303 }
1304
1305 /*
1306 * Check tail pages before head page information is cleared to
1307 * avoid checking PageCompound for order-0 pages.
1308 */
1309 if (unlikely(order)) {
1310 bool compound = PageCompound(page);
1311 int i;
1312
1313 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1314
1315 if (compound) {
1316 ClearPageDoubleMap(page);
1317 ClearPageHasHWPoisoned(page);
1318 }
1319 for (i = 1; i < (1 << order); i++) {
1320 if (compound)
1321 bad += free_tail_pages_check(page, page + i);
1322 if (unlikely(check_free_page(page + i))) {
1323 bad++;
1324 continue;
1325 }
1326 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1327 }
1328 }
1329 if (PageMappingFlags(page))
1330 page->mapping = NULL;
1331 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1332 __memcg_kmem_uncharge_page(page, order);
1333 if (check_free)
1334 bad += check_free_page(page);
1335 if (bad)
1336 return false;
1337
1338 page_cpupid_reset_last(page);
1339 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1340 reset_page_owner(page, order);
1341
1342 if (!PageHighMem(page)) {
1343 debug_check_no_locks_freed(page_address(page),
1344 PAGE_SIZE << order);
1345 debug_check_no_obj_freed(page_address(page),
1346 PAGE_SIZE << order);
1347 }
1348
1349 kernel_poison_pages(page, 1 << order);
1350
1351 /*
1352 * As memory initialization might be integrated into KASAN,
1353 * kasan_free_pages and kernel_init_free_pages must be
1354 * kept together to avoid discrepancies in behavior.
1355 *
1356 * With hardware tag-based KASAN, memory tags must be set before the
1357 * page becomes unavailable via debug_pagealloc or arch_free_page.
1358 */
1359 if (kasan_has_integrated_init()) {
1360 if (!skip_kasan_poison)
1361 kasan_free_pages(page, order);
1362 } else {
1363 bool init = want_init_on_free();
1364
1365 if (init)
1366 kernel_init_free_pages(page, 1 << order, false);
1367 if (!skip_kasan_poison)
1368 kasan_poison_pages(page, order, init);
1369 }
1370
1371 /*
1372 * arch_free_page() can make the page's contents inaccessible. s390
1373 * does this. So nothing which can access the page's contents should
1374 * happen after this.
1375 */
1376 arch_free_page(page, order);
1377
1378 debug_pagealloc_unmap_pages(page, 1 << order);
1379
1380 return true;
1381 }
1382
1383 #ifdef CONFIG_DEBUG_VM
1384 /*
1385 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1386 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1387 * moved from pcp lists to free lists.
1388 */
1389 static bool free_pcp_prepare(struct page *page, unsigned int order)
1390 {
1391 return free_pages_prepare(page, order, true, FPI_NONE);
1392 }
1393
1394 static bool bulkfree_pcp_prepare(struct page *page)
1395 {
1396 if (debug_pagealloc_enabled_static())
1397 return check_free_page(page);
1398 else
1399 return false;
1400 }
1401 #else
1402 /*
1403 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1404 * moving from pcp lists to free list in order to reduce overhead. With
1405 * debug_pagealloc enabled, they are checked also immediately when being freed
1406 * to the pcp lists.
1407 */
1408 static bool free_pcp_prepare(struct page *page, unsigned int order)
1409 {
1410 if (debug_pagealloc_enabled_static())
1411 return free_pages_prepare(page, order, true, FPI_NONE);
1412 else
1413 return free_pages_prepare(page, order, false, FPI_NONE);
1414 }
1415
1416 static bool bulkfree_pcp_prepare(struct page *page)
1417 {
1418 return check_free_page(page);
1419 }
1420 #endif /* CONFIG_DEBUG_VM */
1421
1422 static inline void prefetch_buddy(struct page *page)
1423 {
1424 unsigned long pfn = page_to_pfn(page);
1425 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1426 struct page *buddy = page + (buddy_pfn - pfn);
1427
1428 prefetch(buddy);
1429 }
1430
1431 /*
1432 * Frees a number of pages from the PCP lists
1433 * Assumes all pages on list are in same zone, and of same order.
1434 * count is the number of pages to free.
1435 *
1436 * If the zone was previously in an "all pages pinned" state then look to
1437 * see if this freeing clears that state.
1438 *
1439 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1440 * pinned" detection logic.
1441 */
1442 static void free_pcppages_bulk(struct zone *zone, int count,
1443 struct per_cpu_pages *pcp)
1444 {
1445 int pindex = 0;
1446 int batch_free = 0;
1447 int nr_freed = 0;
1448 unsigned int order;
1449 int prefetch_nr = READ_ONCE(pcp->batch);
1450 bool isolated_pageblocks;
1451 struct page *page, *tmp;
1452 LIST_HEAD(head);
1453
1454 /*
1455 * Ensure proper count is passed which otherwise would stuck in the
1456 * below while (list_empty(list)) loop.
1457 */
1458 count = min(pcp->count, count);
1459 while (count > 0) {
1460 struct list_head *list;
1461
1462 /*
1463 * Remove pages from lists in a round-robin fashion. A
1464 * batch_free count is maintained that is incremented when an
1465 * empty list is encountered. This is so more pages are freed
1466 * off fuller lists instead of spinning excessively around empty
1467 * lists
1468 */
1469 do {
1470 batch_free++;
1471 if (++pindex == NR_PCP_LISTS)
1472 pindex = 0;
1473 list = &pcp->lists[pindex];
1474 } while (list_empty(list));
1475
1476 /* This is the only non-empty list. Free them all. */
1477 if (batch_free == NR_PCP_LISTS)
1478 batch_free = count;
1479
1480 order = pindex_to_order(pindex);
1481 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1482 do {
1483 page = list_last_entry(list, struct page, lru);
1484 /* must delete to avoid corrupting pcp list */
1485 list_del(&page->lru);
1486 nr_freed += 1 << order;
1487 count -= 1 << order;
1488
1489 if (bulkfree_pcp_prepare(page))
1490 continue;
1491
1492 /* Encode order with the migratetype */
1493 page->index <<= NR_PCP_ORDER_WIDTH;
1494 page->index |= order;
1495
1496 list_add_tail(&page->lru, &head);
1497
1498 /*
1499 * We are going to put the page back to the global
1500 * pool, prefetch its buddy to speed up later access
1501 * under zone->lock. It is believed the overhead of
1502 * an additional test and calculating buddy_pfn here
1503 * can be offset by reduced memory latency later. To
1504 * avoid excessive prefetching due to large count, only
1505 * prefetch buddy for the first pcp->batch nr of pages.
1506 */
1507 if (prefetch_nr) {
1508 prefetch_buddy(page);
1509 prefetch_nr--;
1510 }
1511 } while (count > 0 && --batch_free && !list_empty(list));
1512 }
1513 pcp->count -= nr_freed;
1514
1515 /*
1516 * local_lock_irq held so equivalent to spin_lock_irqsave for
1517 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1518 */
1519 spin_lock(&zone->lock);
1520 isolated_pageblocks = has_isolate_pageblock(zone);
1521
1522 /*
1523 * Use safe version since after __free_one_page(),
1524 * page->lru.next will not point to original list.
1525 */
1526 list_for_each_entry_safe(page, tmp, &head, lru) {
1527 int mt = get_pcppage_migratetype(page);
1528
1529 /* mt has been encoded with the order (see above) */
1530 order = mt & NR_PCP_ORDER_MASK;
1531 mt >>= NR_PCP_ORDER_WIDTH;
1532
1533 /* MIGRATE_ISOLATE page should not go to pcplists */
1534 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1535 /* Pageblock could have been isolated meanwhile */
1536 if (unlikely(isolated_pageblocks))
1537 mt = get_pageblock_migratetype(page);
1538
1539 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1540 trace_mm_page_pcpu_drain(page, order, mt);
1541 }
1542 spin_unlock(&zone->lock);
1543 }
1544
1545 static void free_one_page(struct zone *zone,
1546 struct page *page, unsigned long pfn,
1547 unsigned int order,
1548 int migratetype, fpi_t fpi_flags)
1549 {
1550 unsigned long flags;
1551
1552 spin_lock_irqsave(&zone->lock, flags);
1553 if (unlikely(has_isolate_pageblock(zone) ||
1554 is_migrate_isolate(migratetype))) {
1555 migratetype = get_pfnblock_migratetype(page, pfn);
1556 }
1557 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1558 spin_unlock_irqrestore(&zone->lock, flags);
1559 }
1560
1561 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1562 unsigned long zone, int nid)
1563 {
1564 mm_zero_struct_page(page);
1565 set_page_links(page, zone, nid, pfn);
1566 init_page_count(page);
1567 page_mapcount_reset(page);
1568 page_cpupid_reset_last(page);
1569 page_kasan_tag_reset(page);
1570
1571 INIT_LIST_HEAD(&page->lru);
1572 #ifdef WANT_PAGE_VIRTUAL
1573 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1574 if (!is_highmem_idx(zone))
1575 set_page_address(page, __va(pfn << PAGE_SHIFT));
1576 #endif
1577 }
1578
1579 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1580 static void __meminit init_reserved_page(unsigned long pfn)
1581 {
1582 pg_data_t *pgdat;
1583 int nid, zid;
1584
1585 if (!early_page_uninitialised(pfn))
1586 return;
1587
1588 nid = early_pfn_to_nid(pfn);
1589 pgdat = NODE_DATA(nid);
1590
1591 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1592 struct zone *zone = &pgdat->node_zones[zid];
1593
1594 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1595 break;
1596 }
1597 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1598 }
1599 #else
1600 static inline void init_reserved_page(unsigned long pfn)
1601 {
1602 }
1603 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1604
1605 /*
1606 * Initialised pages do not have PageReserved set. This function is
1607 * called for each range allocated by the bootmem allocator and
1608 * marks the pages PageReserved. The remaining valid pages are later
1609 * sent to the buddy page allocator.
1610 */
1611 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1612 {
1613 unsigned long start_pfn = PFN_DOWN(start);
1614 unsigned long end_pfn = PFN_UP(end);
1615
1616 for (; start_pfn < end_pfn; start_pfn++) {
1617 if (pfn_valid(start_pfn)) {
1618 struct page *page = pfn_to_page(start_pfn);
1619
1620 init_reserved_page(start_pfn);
1621
1622 /* Avoid false-positive PageTail() */
1623 INIT_LIST_HEAD(&page->lru);
1624
1625 /*
1626 * no need for atomic set_bit because the struct
1627 * page is not visible yet so nobody should
1628 * access it yet.
1629 */
1630 __SetPageReserved(page);
1631 }
1632 }
1633 }
1634
1635 static void __free_pages_ok(struct page *page, unsigned int order,
1636 fpi_t fpi_flags)
1637 {
1638 unsigned long flags;
1639 int migratetype;
1640 unsigned long pfn = page_to_pfn(page);
1641 struct zone *zone = page_zone(page);
1642
1643 if (!free_pages_prepare(page, order, true, fpi_flags))
1644 return;
1645
1646 migratetype = get_pfnblock_migratetype(page, pfn);
1647
1648 spin_lock_irqsave(&zone->lock, flags);
1649 if (unlikely(has_isolate_pageblock(zone) ||
1650 is_migrate_isolate(migratetype))) {
1651 migratetype = get_pfnblock_migratetype(page, pfn);
1652 }
1653 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1654 spin_unlock_irqrestore(&zone->lock, flags);
1655
1656 __count_vm_events(PGFREE, 1 << order);
1657 }
1658
1659 void __free_pages_core(struct page *page, unsigned int order)
1660 {
1661 unsigned int nr_pages = 1 << order;
1662 struct page *p = page;
1663 unsigned int loop;
1664
1665 /*
1666 * When initializing the memmap, __init_single_page() sets the refcount
1667 * of all pages to 1 ("allocated"/"not free"). We have to set the
1668 * refcount of all involved pages to 0.
1669 */
1670 prefetchw(p);
1671 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1672 prefetchw(p + 1);
1673 __ClearPageReserved(p);
1674 set_page_count(p, 0);
1675 }
1676 __ClearPageReserved(p);
1677 set_page_count(p, 0);
1678
1679 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1680
1681 /*
1682 * Bypass PCP and place fresh pages right to the tail, primarily
1683 * relevant for memory onlining.
1684 */
1685 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1686 }
1687
1688 #ifdef CONFIG_NUMA
1689
1690 /*
1691 * During memory init memblocks map pfns to nids. The search is expensive and
1692 * this caches recent lookups. The implementation of __early_pfn_to_nid
1693 * treats start/end as pfns.
1694 */
1695 struct mminit_pfnnid_cache {
1696 unsigned long last_start;
1697 unsigned long last_end;
1698 int last_nid;
1699 };
1700
1701 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1702
1703 /*
1704 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1705 */
1706 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1707 struct mminit_pfnnid_cache *state)
1708 {
1709 unsigned long start_pfn, end_pfn;
1710 int nid;
1711
1712 if (state->last_start <= pfn && pfn < state->last_end)
1713 return state->last_nid;
1714
1715 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1716 if (nid != NUMA_NO_NODE) {
1717 state->last_start = start_pfn;
1718 state->last_end = end_pfn;
1719 state->last_nid = nid;
1720 }
1721
1722 return nid;
1723 }
1724
1725 int __meminit early_pfn_to_nid(unsigned long pfn)
1726 {
1727 static DEFINE_SPINLOCK(early_pfn_lock);
1728 int nid;
1729
1730 spin_lock(&early_pfn_lock);
1731 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1732 if (nid < 0)
1733 nid = first_online_node;
1734 spin_unlock(&early_pfn_lock);
1735
1736 return nid;
1737 }
1738 #endif /* CONFIG_NUMA */
1739
1740 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1741 unsigned int order)
1742 {
1743 if (early_page_uninitialised(pfn))
1744 return;
1745 __free_pages_core(page, order);
1746 }
1747
1748 /*
1749 * Check that the whole (or subset of) a pageblock given by the interval of
1750 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1751 * with the migration of free compaction scanner.
1752 *
1753 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1754 *
1755 * It's possible on some configurations to have a setup like node0 node1 node0
1756 * i.e. it's possible that all pages within a zones range of pages do not
1757 * belong to a single zone. We assume that a border between node0 and node1
1758 * can occur within a single pageblock, but not a node0 node1 node0
1759 * interleaving within a single pageblock. It is therefore sufficient to check
1760 * the first and last page of a pageblock and avoid checking each individual
1761 * page in a pageblock.
1762 */
1763 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1764 unsigned long end_pfn, struct zone *zone)
1765 {
1766 struct page *start_page;
1767 struct page *end_page;
1768
1769 /* end_pfn is one past the range we are checking */
1770 end_pfn--;
1771
1772 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1773 return NULL;
1774
1775 start_page = pfn_to_online_page(start_pfn);
1776 if (!start_page)
1777 return NULL;
1778
1779 if (page_zone(start_page) != zone)
1780 return NULL;
1781
1782 end_page = pfn_to_page(end_pfn);
1783
1784 /* This gives a shorter code than deriving page_zone(end_page) */
1785 if (page_zone_id(start_page) != page_zone_id(end_page))
1786 return NULL;
1787
1788 return start_page;
1789 }
1790
1791 void set_zone_contiguous(struct zone *zone)
1792 {
1793 unsigned long block_start_pfn = zone->zone_start_pfn;
1794 unsigned long block_end_pfn;
1795
1796 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1797 for (; block_start_pfn < zone_end_pfn(zone);
1798 block_start_pfn = block_end_pfn,
1799 block_end_pfn += pageblock_nr_pages) {
1800
1801 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1802
1803 if (!__pageblock_pfn_to_page(block_start_pfn,
1804 block_end_pfn, zone))
1805 return;
1806 cond_resched();
1807 }
1808
1809 /* We confirm that there is no hole */
1810 zone->contiguous = true;
1811 }
1812
1813 void clear_zone_contiguous(struct zone *zone)
1814 {
1815 zone->contiguous = false;
1816 }
1817
1818 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1819 static void __init deferred_free_range(unsigned long pfn,
1820 unsigned long nr_pages)
1821 {
1822 struct page *page;
1823 unsigned long i;
1824
1825 if (!nr_pages)
1826 return;
1827
1828 page = pfn_to_page(pfn);
1829
1830 /* Free a large naturally-aligned chunk if possible */
1831 if (nr_pages == pageblock_nr_pages &&
1832 (pfn & (pageblock_nr_pages - 1)) == 0) {
1833 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1834 __free_pages_core(page, pageblock_order);
1835 return;
1836 }
1837
1838 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1839 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1840 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1841 __free_pages_core(page, 0);
1842 }
1843 }
1844
1845 /* Completion tracking for deferred_init_memmap() threads */
1846 static atomic_t pgdat_init_n_undone __initdata;
1847 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1848
1849 static inline void __init pgdat_init_report_one_done(void)
1850 {
1851 if (atomic_dec_and_test(&pgdat_init_n_undone))
1852 complete(&pgdat_init_all_done_comp);
1853 }
1854
1855 /*
1856 * Returns true if page needs to be initialized or freed to buddy allocator.
1857 *
1858 * First we check if pfn is valid on architectures where it is possible to have
1859 * holes within pageblock_nr_pages. On systems where it is not possible, this
1860 * function is optimized out.
1861 *
1862 * Then, we check if a current large page is valid by only checking the validity
1863 * of the head pfn.
1864 */
1865 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1866 {
1867 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1868 return false;
1869 return true;
1870 }
1871
1872 /*
1873 * Free pages to buddy allocator. Try to free aligned pages in
1874 * pageblock_nr_pages sizes.
1875 */
1876 static void __init deferred_free_pages(unsigned long pfn,
1877 unsigned long end_pfn)
1878 {
1879 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1880 unsigned long nr_free = 0;
1881
1882 for (; pfn < end_pfn; pfn++) {
1883 if (!deferred_pfn_valid(pfn)) {
1884 deferred_free_range(pfn - nr_free, nr_free);
1885 nr_free = 0;
1886 } else if (!(pfn & nr_pgmask)) {
1887 deferred_free_range(pfn - nr_free, nr_free);
1888 nr_free = 1;
1889 } else {
1890 nr_free++;
1891 }
1892 }
1893 /* Free the last block of pages to allocator */
1894 deferred_free_range(pfn - nr_free, nr_free);
1895 }
1896
1897 /*
1898 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1899 * by performing it only once every pageblock_nr_pages.
1900 * Return number of pages initialized.
1901 */
1902 static unsigned long __init deferred_init_pages(struct zone *zone,
1903 unsigned long pfn,
1904 unsigned long end_pfn)
1905 {
1906 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1907 int nid = zone_to_nid(zone);
1908 unsigned long nr_pages = 0;
1909 int zid = zone_idx(zone);
1910 struct page *page = NULL;
1911
1912 for (; pfn < end_pfn; pfn++) {
1913 if (!deferred_pfn_valid(pfn)) {
1914 page = NULL;
1915 continue;
1916 } else if (!page || !(pfn & nr_pgmask)) {
1917 page = pfn_to_page(pfn);
1918 } else {
1919 page++;
1920 }
1921 __init_single_page(page, pfn, zid, nid);
1922 nr_pages++;
1923 }
1924 return (nr_pages);
1925 }
1926
1927 /*
1928 * This function is meant to pre-load the iterator for the zone init.
1929 * Specifically it walks through the ranges until we are caught up to the
1930 * first_init_pfn value and exits there. If we never encounter the value we
1931 * return false indicating there are no valid ranges left.
1932 */
1933 static bool __init
1934 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1935 unsigned long *spfn, unsigned long *epfn,
1936 unsigned long first_init_pfn)
1937 {
1938 u64 j;
1939
1940 /*
1941 * Start out by walking through the ranges in this zone that have
1942 * already been initialized. We don't need to do anything with them
1943 * so we just need to flush them out of the system.
1944 */
1945 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1946 if (*epfn <= first_init_pfn)
1947 continue;
1948 if (*spfn < first_init_pfn)
1949 *spfn = first_init_pfn;
1950 *i = j;
1951 return true;
1952 }
1953
1954 return false;
1955 }
1956
1957 /*
1958 * Initialize and free pages. We do it in two loops: first we initialize
1959 * struct page, then free to buddy allocator, because while we are
1960 * freeing pages we can access pages that are ahead (computing buddy
1961 * page in __free_one_page()).
1962 *
1963 * In order to try and keep some memory in the cache we have the loop
1964 * broken along max page order boundaries. This way we will not cause
1965 * any issues with the buddy page computation.
1966 */
1967 static unsigned long __init
1968 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1969 unsigned long *end_pfn)
1970 {
1971 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1972 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1973 unsigned long nr_pages = 0;
1974 u64 j = *i;
1975
1976 /* First we loop through and initialize the page values */
1977 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1978 unsigned long t;
1979
1980 if (mo_pfn <= *start_pfn)
1981 break;
1982
1983 t = min(mo_pfn, *end_pfn);
1984 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1985
1986 if (mo_pfn < *end_pfn) {
1987 *start_pfn = mo_pfn;
1988 break;
1989 }
1990 }
1991
1992 /* Reset values and now loop through freeing pages as needed */
1993 swap(j, *i);
1994
1995 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1996 unsigned long t;
1997
1998 if (mo_pfn <= spfn)
1999 break;
2000
2001 t = min(mo_pfn, epfn);
2002 deferred_free_pages(spfn, t);
2003
2004 if (mo_pfn <= epfn)
2005 break;
2006 }
2007
2008 return nr_pages;
2009 }
2010
2011 static void __init
2012 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2013 void *arg)
2014 {
2015 unsigned long spfn, epfn;
2016 struct zone *zone = arg;
2017 u64 i;
2018
2019 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2020
2021 /*
2022 * Initialize and free pages in MAX_ORDER sized increments so that we
2023 * can avoid introducing any issues with the buddy allocator.
2024 */
2025 while (spfn < end_pfn) {
2026 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2027 cond_resched();
2028 }
2029 }
2030
2031 /* An arch may override for more concurrency. */
2032 __weak int __init
2033 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2034 {
2035 return 1;
2036 }
2037
2038 /* Initialise remaining memory on a node */
2039 static int __init deferred_init_memmap(void *data)
2040 {
2041 pg_data_t *pgdat = data;
2042 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2043 unsigned long spfn = 0, epfn = 0;
2044 unsigned long first_init_pfn, flags;
2045 unsigned long start = jiffies;
2046 struct zone *zone;
2047 int zid, max_threads;
2048 u64 i;
2049
2050 /* Bind memory initialisation thread to a local node if possible */
2051 if (!cpumask_empty(cpumask))
2052 set_cpus_allowed_ptr(current, cpumask);
2053
2054 pgdat_resize_lock(pgdat, &flags);
2055 first_init_pfn = pgdat->first_deferred_pfn;
2056 if (first_init_pfn == ULONG_MAX) {
2057 pgdat_resize_unlock(pgdat, &flags);
2058 pgdat_init_report_one_done();
2059 return 0;
2060 }
2061
2062 /* Sanity check boundaries */
2063 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2064 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2065 pgdat->first_deferred_pfn = ULONG_MAX;
2066
2067 /*
2068 * Once we unlock here, the zone cannot be grown anymore, thus if an
2069 * interrupt thread must allocate this early in boot, zone must be
2070 * pre-grown prior to start of deferred page initialization.
2071 */
2072 pgdat_resize_unlock(pgdat, &flags);
2073
2074 /* Only the highest zone is deferred so find it */
2075 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2076 zone = pgdat->node_zones + zid;
2077 if (first_init_pfn < zone_end_pfn(zone))
2078 break;
2079 }
2080
2081 /* If the zone is empty somebody else may have cleared out the zone */
2082 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2083 first_init_pfn))
2084 goto zone_empty;
2085
2086 max_threads = deferred_page_init_max_threads(cpumask);
2087
2088 while (spfn < epfn) {
2089 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2090 struct padata_mt_job job = {
2091 .thread_fn = deferred_init_memmap_chunk,
2092 .fn_arg = zone,
2093 .start = spfn,
2094 .size = epfn_align - spfn,
2095 .align = PAGES_PER_SECTION,
2096 .min_chunk = PAGES_PER_SECTION,
2097 .max_threads = max_threads,
2098 };
2099
2100 padata_do_multithreaded(&job);
2101 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2102 epfn_align);
2103 }
2104 zone_empty:
2105 /* Sanity check that the next zone really is unpopulated */
2106 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2107
2108 pr_info("node %d deferred pages initialised in %ums\n",
2109 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2110
2111 pgdat_init_report_one_done();
2112 return 0;
2113 }
2114
2115 /*
2116 * If this zone has deferred pages, try to grow it by initializing enough
2117 * deferred pages to satisfy the allocation specified by order, rounded up to
2118 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2119 * of SECTION_SIZE bytes by initializing struct pages in increments of
2120 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2121 *
2122 * Return true when zone was grown, otherwise return false. We return true even
2123 * when we grow less than requested, to let the caller decide if there are
2124 * enough pages to satisfy the allocation.
2125 *
2126 * Note: We use noinline because this function is needed only during boot, and
2127 * it is called from a __ref function _deferred_grow_zone. This way we are
2128 * making sure that it is not inlined into permanent text section.
2129 */
2130 static noinline bool __init
2131 deferred_grow_zone(struct zone *zone, unsigned int order)
2132 {
2133 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2134 pg_data_t *pgdat = zone->zone_pgdat;
2135 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2136 unsigned long spfn, epfn, flags;
2137 unsigned long nr_pages = 0;
2138 u64 i;
2139
2140 /* Only the last zone may have deferred pages */
2141 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2142 return false;
2143
2144 pgdat_resize_lock(pgdat, &flags);
2145
2146 /*
2147 * If someone grew this zone while we were waiting for spinlock, return
2148 * true, as there might be enough pages already.
2149 */
2150 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2151 pgdat_resize_unlock(pgdat, &flags);
2152 return true;
2153 }
2154
2155 /* If the zone is empty somebody else may have cleared out the zone */
2156 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2157 first_deferred_pfn)) {
2158 pgdat->first_deferred_pfn = ULONG_MAX;
2159 pgdat_resize_unlock(pgdat, &flags);
2160 /* Retry only once. */
2161 return first_deferred_pfn != ULONG_MAX;
2162 }
2163
2164 /*
2165 * Initialize and free pages in MAX_ORDER sized increments so
2166 * that we can avoid introducing any issues with the buddy
2167 * allocator.
2168 */
2169 while (spfn < epfn) {
2170 /* update our first deferred PFN for this section */
2171 first_deferred_pfn = spfn;
2172
2173 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2174 touch_nmi_watchdog();
2175
2176 /* We should only stop along section boundaries */
2177 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2178 continue;
2179
2180 /* If our quota has been met we can stop here */
2181 if (nr_pages >= nr_pages_needed)
2182 break;
2183 }
2184
2185 pgdat->first_deferred_pfn = spfn;
2186 pgdat_resize_unlock(pgdat, &flags);
2187
2188 return nr_pages > 0;
2189 }
2190
2191 /*
2192 * deferred_grow_zone() is __init, but it is called from
2193 * get_page_from_freelist() during early boot until deferred_pages permanently
2194 * disables this call. This is why we have refdata wrapper to avoid warning,
2195 * and to ensure that the function body gets unloaded.
2196 */
2197 static bool __ref
2198 _deferred_grow_zone(struct zone *zone, unsigned int order)
2199 {
2200 return deferred_grow_zone(zone, order);
2201 }
2202
2203 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2204
2205 void __init page_alloc_init_late(void)
2206 {
2207 struct zone *zone;
2208 int nid;
2209
2210 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2211
2212 /* There will be num_node_state(N_MEMORY) threads */
2213 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2214 for_each_node_state(nid, N_MEMORY) {
2215 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2216 }
2217
2218 /* Block until all are initialised */
2219 wait_for_completion(&pgdat_init_all_done_comp);
2220
2221 /*
2222 * We initialized the rest of the deferred pages. Permanently disable
2223 * on-demand struct page initialization.
2224 */
2225 static_branch_disable(&deferred_pages);
2226
2227 /* Reinit limits that are based on free pages after the kernel is up */
2228 files_maxfiles_init();
2229 #endif
2230
2231 buffer_init();
2232
2233 /* Discard memblock private memory */
2234 memblock_discard();
2235
2236 for_each_node_state(nid, N_MEMORY)
2237 shuffle_free_memory(NODE_DATA(nid));
2238
2239 for_each_populated_zone(zone)
2240 set_zone_contiguous(zone);
2241 }
2242
2243 #ifdef CONFIG_CMA
2244 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2245 void __init init_cma_reserved_pageblock(struct page *page)
2246 {
2247 unsigned i = pageblock_nr_pages;
2248 struct page *p = page;
2249
2250 do {
2251 __ClearPageReserved(p);
2252 set_page_count(p, 0);
2253 } while (++p, --i);
2254
2255 set_pageblock_migratetype(page, MIGRATE_CMA);
2256
2257 if (pageblock_order >= MAX_ORDER) {
2258 i = pageblock_nr_pages;
2259 p = page;
2260 do {
2261 set_page_refcounted(p);
2262 __free_pages(p, MAX_ORDER - 1);
2263 p += MAX_ORDER_NR_PAGES;
2264 } while (i -= MAX_ORDER_NR_PAGES);
2265 } else {
2266 set_page_refcounted(page);
2267 __free_pages(page, pageblock_order);
2268 }
2269
2270 adjust_managed_page_count(page, pageblock_nr_pages);
2271 page_zone(page)->cma_pages += pageblock_nr_pages;
2272 }
2273 #endif
2274
2275 /*
2276 * The order of subdivision here is critical for the IO subsystem.
2277 * Please do not alter this order without good reasons and regression
2278 * testing. Specifically, as large blocks of memory are subdivided,
2279 * the order in which smaller blocks are delivered depends on the order
2280 * they're subdivided in this function. This is the primary factor
2281 * influencing the order in which pages are delivered to the IO
2282 * subsystem according to empirical testing, and this is also justified
2283 * by considering the behavior of a buddy system containing a single
2284 * large block of memory acted on by a series of small allocations.
2285 * This behavior is a critical factor in sglist merging's success.
2286 *
2287 * -- nyc
2288 */
2289 static inline void expand(struct zone *zone, struct page *page,
2290 int low, int high, int migratetype)
2291 {
2292 unsigned long size = 1 << high;
2293
2294 while (high > low) {
2295 high--;
2296 size >>= 1;
2297 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2298
2299 /*
2300 * Mark as guard pages (or page), that will allow to
2301 * merge back to allocator when buddy will be freed.
2302 * Corresponding page table entries will not be touched,
2303 * pages will stay not present in virtual address space
2304 */
2305 if (set_page_guard(zone, &page[size], high, migratetype))
2306 continue;
2307
2308 add_to_free_list(&page[size], zone, high, migratetype);
2309 set_buddy_order(&page[size], high);
2310 }
2311 }
2312
2313 static void check_new_page_bad(struct page *page)
2314 {
2315 if (unlikely(page->flags & __PG_HWPOISON)) {
2316 /* Don't complain about hwpoisoned pages */
2317 page_mapcount_reset(page); /* remove PageBuddy */
2318 return;
2319 }
2320
2321 bad_page(page,
2322 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2323 }
2324
2325 /*
2326 * This page is about to be returned from the page allocator
2327 */
2328 static inline int check_new_page(struct page *page)
2329 {
2330 if (likely(page_expected_state(page,
2331 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2332 return 0;
2333
2334 check_new_page_bad(page);
2335 return 1;
2336 }
2337
2338 #ifdef CONFIG_DEBUG_VM
2339 /*
2340 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2341 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2342 * also checked when pcp lists are refilled from the free lists.
2343 */
2344 static inline bool check_pcp_refill(struct page *page)
2345 {
2346 if (debug_pagealloc_enabled_static())
2347 return check_new_page(page);
2348 else
2349 return false;
2350 }
2351
2352 static inline bool check_new_pcp(struct page *page)
2353 {
2354 return check_new_page(page);
2355 }
2356 #else
2357 /*
2358 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2359 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2360 * enabled, they are also checked when being allocated from the pcp lists.
2361 */
2362 static inline bool check_pcp_refill(struct page *page)
2363 {
2364 return check_new_page(page);
2365 }
2366 static inline bool check_new_pcp(struct page *page)
2367 {
2368 if (debug_pagealloc_enabled_static())
2369 return check_new_page(page);
2370 else
2371 return false;
2372 }
2373 #endif /* CONFIG_DEBUG_VM */
2374
2375 static bool check_new_pages(struct page *page, unsigned int order)
2376 {
2377 int i;
2378 for (i = 0; i < (1 << order); i++) {
2379 struct page *p = page + i;
2380
2381 if (unlikely(check_new_page(p)))
2382 return true;
2383 }
2384
2385 return false;
2386 }
2387
2388 inline void post_alloc_hook(struct page *page, unsigned int order,
2389 gfp_t gfp_flags)
2390 {
2391 set_page_private(page, 0);
2392 set_page_refcounted(page);
2393
2394 arch_alloc_page(page, order);
2395 debug_pagealloc_map_pages(page, 1 << order);
2396
2397 /*
2398 * Page unpoisoning must happen before memory initialization.
2399 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2400 * allocations and the page unpoisoning code will complain.
2401 */
2402 kernel_unpoison_pages(page, 1 << order);
2403
2404 /*
2405 * As memory initialization might be integrated into KASAN,
2406 * kasan_alloc_pages and kernel_init_free_pages must be
2407 * kept together to avoid discrepancies in behavior.
2408 */
2409 if (kasan_has_integrated_init()) {
2410 kasan_alloc_pages(page, order, gfp_flags);
2411 } else {
2412 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2413
2414 kasan_unpoison_pages(page, order, init);
2415 if (init)
2416 kernel_init_free_pages(page, 1 << order,
2417 gfp_flags & __GFP_ZEROTAGS);
2418 }
2419
2420 set_page_owner(page, order, gfp_flags);
2421 }
2422
2423 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2424 unsigned int alloc_flags)
2425 {
2426 post_alloc_hook(page, order, gfp_flags);
2427
2428 if (order && (gfp_flags & __GFP_COMP))
2429 prep_compound_page(page, order);
2430
2431 /*
2432 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2433 * allocate the page. The expectation is that the caller is taking
2434 * steps that will free more memory. The caller should avoid the page
2435 * being used for !PFMEMALLOC purposes.
2436 */
2437 if (alloc_flags & ALLOC_NO_WATERMARKS)
2438 set_page_pfmemalloc(page);
2439 else
2440 clear_page_pfmemalloc(page);
2441 }
2442
2443 /*
2444 * Go through the free lists for the given migratetype and remove
2445 * the smallest available page from the freelists
2446 */
2447 static __always_inline
2448 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2449 int migratetype)
2450 {
2451 unsigned int current_order;
2452 struct free_area *area;
2453 struct page *page;
2454
2455 /* Find a page of the appropriate size in the preferred list */
2456 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2457 area = &(zone->free_area[current_order]);
2458 page = get_page_from_free_area(area, migratetype);
2459 if (!page)
2460 continue;
2461 del_page_from_free_list(page, zone, current_order);
2462 expand(zone, page, order, current_order, migratetype);
2463 set_pcppage_migratetype(page, migratetype);
2464 return page;
2465 }
2466
2467 return NULL;
2468 }
2469
2470
2471 /*
2472 * This array describes the order lists are fallen back to when
2473 * the free lists for the desirable migrate type are depleted
2474 */
2475 static int fallbacks[MIGRATE_TYPES][3] = {
2476 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2477 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2478 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2479 #ifdef CONFIG_CMA
2480 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2481 #endif
2482 #ifdef CONFIG_MEMORY_ISOLATION
2483 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2484 #endif
2485 };
2486
2487 #ifdef CONFIG_CMA
2488 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2489 unsigned int order)
2490 {
2491 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2492 }
2493 #else
2494 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2495 unsigned int order) { return NULL; }
2496 #endif
2497
2498 /*
2499 * Move the free pages in a range to the freelist tail of the requested type.
2500 * Note that start_page and end_pages are not aligned on a pageblock
2501 * boundary. If alignment is required, use move_freepages_block()
2502 */
2503 static int move_freepages(struct zone *zone,
2504 unsigned long start_pfn, unsigned long end_pfn,
2505 int migratetype, int *num_movable)
2506 {
2507 struct page *page;
2508 unsigned long pfn;
2509 unsigned int order;
2510 int pages_moved = 0;
2511
2512 for (pfn = start_pfn; pfn <= end_pfn;) {
2513 page = pfn_to_page(pfn);
2514 if (!PageBuddy(page)) {
2515 /*
2516 * We assume that pages that could be isolated for
2517 * migration are movable. But we don't actually try
2518 * isolating, as that would be expensive.
2519 */
2520 if (num_movable &&
2521 (PageLRU(page) || __PageMovable(page)))
2522 (*num_movable)++;
2523 pfn++;
2524 continue;
2525 }
2526
2527 /* Make sure we are not inadvertently changing nodes */
2528 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2529 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2530
2531 order = buddy_order(page);
2532 move_to_free_list(page, zone, order, migratetype);
2533 pfn += 1 << order;
2534 pages_moved += 1 << order;
2535 }
2536
2537 return pages_moved;
2538 }
2539
2540 int move_freepages_block(struct zone *zone, struct page *page,
2541 int migratetype, int *num_movable)
2542 {
2543 unsigned long start_pfn, end_pfn, pfn;
2544
2545 if (num_movable)
2546 *num_movable = 0;
2547
2548 pfn = page_to_pfn(page);
2549 start_pfn = pfn & ~(pageblock_nr_pages - 1);
2550 end_pfn = start_pfn + pageblock_nr_pages - 1;
2551
2552 /* Do not cross zone boundaries */
2553 if (!zone_spans_pfn(zone, start_pfn))
2554 start_pfn = pfn;
2555 if (!zone_spans_pfn(zone, end_pfn))
2556 return 0;
2557
2558 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2559 num_movable);
2560 }
2561
2562 static void change_pageblock_range(struct page *pageblock_page,
2563 int start_order, int migratetype)
2564 {
2565 int nr_pageblocks = 1 << (start_order - pageblock_order);
2566
2567 while (nr_pageblocks--) {
2568 set_pageblock_migratetype(pageblock_page, migratetype);
2569 pageblock_page += pageblock_nr_pages;
2570 }
2571 }
2572
2573 /*
2574 * When we are falling back to another migratetype during allocation, try to
2575 * steal extra free pages from the same pageblocks to satisfy further
2576 * allocations, instead of polluting multiple pageblocks.
2577 *
2578 * If we are stealing a relatively large buddy page, it is likely there will
2579 * be more free pages in the pageblock, so try to steal them all. For
2580 * reclaimable and unmovable allocations, we steal regardless of page size,
2581 * as fragmentation caused by those allocations polluting movable pageblocks
2582 * is worse than movable allocations stealing from unmovable and reclaimable
2583 * pageblocks.
2584 */
2585 static bool can_steal_fallback(unsigned int order, int start_mt)
2586 {
2587 /*
2588 * Leaving this order check is intended, although there is
2589 * relaxed order check in next check. The reason is that
2590 * we can actually steal whole pageblock if this condition met,
2591 * but, below check doesn't guarantee it and that is just heuristic
2592 * so could be changed anytime.
2593 */
2594 if (order >= pageblock_order)
2595 return true;
2596
2597 if (order >= pageblock_order / 2 ||
2598 start_mt == MIGRATE_RECLAIMABLE ||
2599 start_mt == MIGRATE_UNMOVABLE ||
2600 page_group_by_mobility_disabled)
2601 return true;
2602
2603 return false;
2604 }
2605
2606 static inline bool boost_watermark(struct zone *zone)
2607 {
2608 unsigned long max_boost;
2609
2610 if (!watermark_boost_factor)
2611 return false;
2612 /*
2613 * Don't bother in zones that are unlikely to produce results.
2614 * On small machines, including kdump capture kernels running
2615 * in a small area, boosting the watermark can cause an out of
2616 * memory situation immediately.
2617 */
2618 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2619 return false;
2620
2621 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2622 watermark_boost_factor, 10000);
2623
2624 /*
2625 * high watermark may be uninitialised if fragmentation occurs
2626 * very early in boot so do not boost. We do not fall
2627 * through and boost by pageblock_nr_pages as failing
2628 * allocations that early means that reclaim is not going
2629 * to help and it may even be impossible to reclaim the
2630 * boosted watermark resulting in a hang.
2631 */
2632 if (!max_boost)
2633 return false;
2634
2635 max_boost = max(pageblock_nr_pages, max_boost);
2636
2637 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2638 max_boost);
2639
2640 return true;
2641 }
2642
2643 /*
2644 * This function implements actual steal behaviour. If order is large enough,
2645 * we can steal whole pageblock. If not, we first move freepages in this
2646 * pageblock to our migratetype and determine how many already-allocated pages
2647 * are there in the pageblock with a compatible migratetype. If at least half
2648 * of pages are free or compatible, we can change migratetype of the pageblock
2649 * itself, so pages freed in the future will be put on the correct free list.
2650 */
2651 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2652 unsigned int alloc_flags, int start_type, bool whole_block)
2653 {
2654 unsigned int current_order = buddy_order(page);
2655 int free_pages, movable_pages, alike_pages;
2656 int old_block_type;
2657
2658 old_block_type = get_pageblock_migratetype(page);
2659
2660 /*
2661 * This can happen due to races and we want to prevent broken
2662 * highatomic accounting.
2663 */
2664 if (is_migrate_highatomic(old_block_type))
2665 goto single_page;
2666
2667 /* Take ownership for orders >= pageblock_order */
2668 if (current_order >= pageblock_order) {
2669 change_pageblock_range(page, current_order, start_type);
2670 goto single_page;
2671 }
2672
2673 /*
2674 * Boost watermarks to increase reclaim pressure to reduce the
2675 * likelihood of future fallbacks. Wake kswapd now as the node
2676 * may be balanced overall and kswapd will not wake naturally.
2677 */
2678 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2679 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2680
2681 /* We are not allowed to try stealing from the whole block */
2682 if (!whole_block)
2683 goto single_page;
2684
2685 free_pages = move_freepages_block(zone, page, start_type,
2686 &movable_pages);
2687 /*
2688 * Determine how many pages are compatible with our allocation.
2689 * For movable allocation, it's the number of movable pages which
2690 * we just obtained. For other types it's a bit more tricky.
2691 */
2692 if (start_type == MIGRATE_MOVABLE) {
2693 alike_pages = movable_pages;
2694 } else {
2695 /*
2696 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2697 * to MOVABLE pageblock, consider all non-movable pages as
2698 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2699 * vice versa, be conservative since we can't distinguish the
2700 * exact migratetype of non-movable pages.
2701 */
2702 if (old_block_type == MIGRATE_MOVABLE)
2703 alike_pages = pageblock_nr_pages
2704 - (free_pages + movable_pages);
2705 else
2706 alike_pages = 0;
2707 }
2708
2709 /* moving whole block can fail due to zone boundary conditions */
2710 if (!free_pages)
2711 goto single_page;
2712
2713 /*
2714 * If a sufficient number of pages in the block are either free or of
2715 * comparable migratability as our allocation, claim the whole block.
2716 */
2717 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2718 page_group_by_mobility_disabled)
2719 set_pageblock_migratetype(page, start_type);
2720
2721 return;
2722
2723 single_page:
2724 move_to_free_list(page, zone, current_order, start_type);
2725 }
2726
2727 /*
2728 * Check whether there is a suitable fallback freepage with requested order.
2729 * If only_stealable is true, this function returns fallback_mt only if
2730 * we can steal other freepages all together. This would help to reduce
2731 * fragmentation due to mixed migratetype pages in one pageblock.
2732 */
2733 int find_suitable_fallback(struct free_area *area, unsigned int order,
2734 int migratetype, bool only_stealable, bool *can_steal)
2735 {
2736 int i;
2737 int fallback_mt;
2738
2739 if (area->nr_free == 0)
2740 return -1;
2741
2742 *can_steal = false;
2743 for (i = 0;; i++) {
2744 fallback_mt = fallbacks[migratetype][i];
2745 if (fallback_mt == MIGRATE_TYPES)
2746 break;
2747
2748 if (free_area_empty(area, fallback_mt))
2749 continue;
2750
2751 if (can_steal_fallback(order, migratetype))
2752 *can_steal = true;
2753
2754 if (!only_stealable)
2755 return fallback_mt;
2756
2757 if (*can_steal)
2758 return fallback_mt;
2759 }
2760
2761 return -1;
2762 }
2763
2764 /*
2765 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2766 * there are no empty page blocks that contain a page with a suitable order
2767 */
2768 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2769 unsigned int alloc_order)
2770 {
2771 int mt;
2772 unsigned long max_managed, flags;
2773
2774 /*
2775 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2776 * Check is race-prone but harmless.
2777 */
2778 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2779 if (zone->nr_reserved_highatomic >= max_managed)
2780 return;
2781
2782 spin_lock_irqsave(&zone->lock, flags);
2783
2784 /* Recheck the nr_reserved_highatomic limit under the lock */
2785 if (zone->nr_reserved_highatomic >= max_managed)
2786 goto out_unlock;
2787
2788 /* Yoink! */
2789 mt = get_pageblock_migratetype(page);
2790 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2791 && !is_migrate_cma(mt)) {
2792 zone->nr_reserved_highatomic += pageblock_nr_pages;
2793 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2794 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2795 }
2796
2797 out_unlock:
2798 spin_unlock_irqrestore(&zone->lock, flags);
2799 }
2800
2801 /*
2802 * Used when an allocation is about to fail under memory pressure. This
2803 * potentially hurts the reliability of high-order allocations when under
2804 * intense memory pressure but failed atomic allocations should be easier
2805 * to recover from than an OOM.
2806 *
2807 * If @force is true, try to unreserve a pageblock even though highatomic
2808 * pageblock is exhausted.
2809 */
2810 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2811 bool force)
2812 {
2813 struct zonelist *zonelist = ac->zonelist;
2814 unsigned long flags;
2815 struct zoneref *z;
2816 struct zone *zone;
2817 struct page *page;
2818 int order;
2819 bool ret;
2820
2821 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2822 ac->nodemask) {
2823 /*
2824 * Preserve at least one pageblock unless memory pressure
2825 * is really high.
2826 */
2827 if (!force && zone->nr_reserved_highatomic <=
2828 pageblock_nr_pages)
2829 continue;
2830
2831 spin_lock_irqsave(&zone->lock, flags);
2832 for (order = 0; order < MAX_ORDER; order++) {
2833 struct free_area *area = &(zone->free_area[order]);
2834
2835 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2836 if (!page)
2837 continue;
2838
2839 /*
2840 * In page freeing path, migratetype change is racy so
2841 * we can counter several free pages in a pageblock
2842 * in this loop although we changed the pageblock type
2843 * from highatomic to ac->migratetype. So we should
2844 * adjust the count once.
2845 */
2846 if (is_migrate_highatomic_page(page)) {
2847 /*
2848 * It should never happen but changes to
2849 * locking could inadvertently allow a per-cpu
2850 * drain to add pages to MIGRATE_HIGHATOMIC
2851 * while unreserving so be safe and watch for
2852 * underflows.
2853 */
2854 zone->nr_reserved_highatomic -= min(
2855 pageblock_nr_pages,
2856 zone->nr_reserved_highatomic);
2857 }
2858
2859 /*
2860 * Convert to ac->migratetype and avoid the normal
2861 * pageblock stealing heuristics. Minimally, the caller
2862 * is doing the work and needs the pages. More
2863 * importantly, if the block was always converted to
2864 * MIGRATE_UNMOVABLE or another type then the number
2865 * of pageblocks that cannot be completely freed
2866 * may increase.
2867 */
2868 set_pageblock_migratetype(page, ac->migratetype);
2869 ret = move_freepages_block(zone, page, ac->migratetype,
2870 NULL);
2871 if (ret) {
2872 spin_unlock_irqrestore(&zone->lock, flags);
2873 return ret;
2874 }
2875 }
2876 spin_unlock_irqrestore(&zone->lock, flags);
2877 }
2878
2879 return false;
2880 }
2881
2882 /*
2883 * Try finding a free buddy page on the fallback list and put it on the free
2884 * list of requested migratetype, possibly along with other pages from the same
2885 * block, depending on fragmentation avoidance heuristics. Returns true if
2886 * fallback was found so that __rmqueue_smallest() can grab it.
2887 *
2888 * The use of signed ints for order and current_order is a deliberate
2889 * deviation from the rest of this file, to make the for loop
2890 * condition simpler.
2891 */
2892 static __always_inline bool
2893 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2894 unsigned int alloc_flags)
2895 {
2896 struct free_area *area;
2897 int current_order;
2898 int min_order = order;
2899 struct page *page;
2900 int fallback_mt;
2901 bool can_steal;
2902
2903 /*
2904 * Do not steal pages from freelists belonging to other pageblocks
2905 * i.e. orders < pageblock_order. If there are no local zones free,
2906 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2907 */
2908 if (alloc_flags & ALLOC_NOFRAGMENT)
2909 min_order = pageblock_order;
2910
2911 /*
2912 * Find the largest available free page in the other list. This roughly
2913 * approximates finding the pageblock with the most free pages, which
2914 * would be too costly to do exactly.
2915 */
2916 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2917 --current_order) {
2918 area = &(zone->free_area[current_order]);
2919 fallback_mt = find_suitable_fallback(area, current_order,
2920 start_migratetype, false, &can_steal);
2921 if (fallback_mt == -1)
2922 continue;
2923
2924 /*
2925 * We cannot steal all free pages from the pageblock and the
2926 * requested migratetype is movable. In that case it's better to
2927 * steal and split the smallest available page instead of the
2928 * largest available page, because even if the next movable
2929 * allocation falls back into a different pageblock than this
2930 * one, it won't cause permanent fragmentation.
2931 */
2932 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2933 && current_order > order)
2934 goto find_smallest;
2935
2936 goto do_steal;
2937 }
2938
2939 return false;
2940
2941 find_smallest:
2942 for (current_order = order; current_order < MAX_ORDER;
2943 current_order++) {
2944 area = &(zone->free_area[current_order]);
2945 fallback_mt = find_suitable_fallback(area, current_order,
2946 start_migratetype, false, &can_steal);
2947 if (fallback_mt != -1)
2948 break;
2949 }
2950
2951 /*
2952 * This should not happen - we already found a suitable fallback
2953 * when looking for the largest page.
2954 */
2955 VM_BUG_ON(current_order == MAX_ORDER);
2956
2957 do_steal:
2958 page = get_page_from_free_area(area, fallback_mt);
2959
2960 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2961 can_steal);
2962
2963 trace_mm_page_alloc_extfrag(page, order, current_order,
2964 start_migratetype, fallback_mt);
2965
2966 return true;
2967
2968 }
2969
2970 /*
2971 * Do the hard work of removing an element from the buddy allocator.
2972 * Call me with the zone->lock already held.
2973 */
2974 static __always_inline struct page *
2975 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2976 unsigned int alloc_flags)
2977 {
2978 struct page *page;
2979
2980 if (IS_ENABLED(CONFIG_CMA)) {
2981 /*
2982 * Balance movable allocations between regular and CMA areas by
2983 * allocating from CMA when over half of the zone's free memory
2984 * is in the CMA area.
2985 */
2986 if (alloc_flags & ALLOC_CMA &&
2987 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2988 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2989 page = __rmqueue_cma_fallback(zone, order);
2990 if (page)
2991 goto out;
2992 }
2993 }
2994 retry:
2995 page = __rmqueue_smallest(zone, order, migratetype);
2996 if (unlikely(!page)) {
2997 if (alloc_flags & ALLOC_CMA)
2998 page = __rmqueue_cma_fallback(zone, order);
2999
3000 if (!page && __rmqueue_fallback(zone, order, migratetype,
3001 alloc_flags))
3002 goto retry;
3003 }
3004 out:
3005 if (page)
3006 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3007 return page;
3008 }
3009
3010 /*
3011 * Obtain a specified number of elements from the buddy allocator, all under
3012 * a single hold of the lock, for efficiency. Add them to the supplied list.
3013 * Returns the number of new pages which were placed at *list.
3014 */
3015 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3016 unsigned long count, struct list_head *list,
3017 int migratetype, unsigned int alloc_flags)
3018 {
3019 int i, allocated = 0;
3020
3021 /*
3022 * local_lock_irq held so equivalent to spin_lock_irqsave for
3023 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3024 */
3025 spin_lock(&zone->lock);
3026 for (i = 0; i < count; ++i) {
3027 struct page *page = __rmqueue(zone, order, migratetype,
3028 alloc_flags);
3029 if (unlikely(page == NULL))
3030 break;
3031
3032 if (unlikely(check_pcp_refill(page)))
3033 continue;
3034
3035 /*
3036 * Split buddy pages returned by expand() are received here in
3037 * physical page order. The page is added to the tail of
3038 * caller's list. From the callers perspective, the linked list
3039 * is ordered by page number under some conditions. This is
3040 * useful for IO devices that can forward direction from the
3041 * head, thus also in the physical page order. This is useful
3042 * for IO devices that can merge IO requests if the physical
3043 * pages are ordered properly.
3044 */
3045 list_add_tail(&page->lru, list);
3046 allocated++;
3047 if (is_migrate_cma(get_pcppage_migratetype(page)))
3048 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3049 -(1 << order));
3050 }
3051
3052 /*
3053 * i pages were removed from the buddy list even if some leak due
3054 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3055 * on i. Do not confuse with 'allocated' which is the number of
3056 * pages added to the pcp list.
3057 */
3058 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3059 spin_unlock(&zone->lock);
3060 return allocated;
3061 }
3062
3063 #ifdef CONFIG_NUMA
3064 /*
3065 * Called from the vmstat counter updater to drain pagesets of this
3066 * currently executing processor on remote nodes after they have
3067 * expired.
3068 *
3069 * Note that this function must be called with the thread pinned to
3070 * a single processor.
3071 */
3072 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3073 {
3074 unsigned long flags;
3075 int to_drain, batch;
3076
3077 local_lock_irqsave(&pagesets.lock, flags);
3078 batch = READ_ONCE(pcp->batch);
3079 to_drain = min(pcp->count, batch);
3080 if (to_drain > 0)
3081 free_pcppages_bulk(zone, to_drain, pcp);
3082 local_unlock_irqrestore(&pagesets.lock, flags);
3083 }
3084 #endif
3085
3086 /*
3087 * Drain pcplists of the indicated processor and zone.
3088 *
3089 * The processor must either be the current processor and the
3090 * thread pinned to the current processor or a processor that
3091 * is not online.
3092 */
3093 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3094 {
3095 unsigned long flags;
3096 struct per_cpu_pages *pcp;
3097
3098 local_lock_irqsave(&pagesets.lock, flags);
3099
3100 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3101 if (pcp->count)
3102 free_pcppages_bulk(zone, pcp->count, pcp);
3103
3104 local_unlock_irqrestore(&pagesets.lock, flags);
3105 }
3106
3107 /*
3108 * Drain pcplists of all zones on the indicated processor.
3109 *
3110 * The processor must either be the current processor and the
3111 * thread pinned to the current processor or a processor that
3112 * is not online.
3113 */
3114 static void drain_pages(unsigned int cpu)
3115 {
3116 struct zone *zone;
3117
3118 for_each_populated_zone(zone) {
3119 drain_pages_zone(cpu, zone);
3120 }
3121 }
3122
3123 /*
3124 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3125 *
3126 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3127 * the single zone's pages.
3128 */
3129 void drain_local_pages(struct zone *zone)
3130 {
3131 int cpu = smp_processor_id();
3132
3133 if (zone)
3134 drain_pages_zone(cpu, zone);
3135 else
3136 drain_pages(cpu);
3137 }
3138
3139 static void drain_local_pages_wq(struct work_struct *work)
3140 {
3141 struct pcpu_drain *drain;
3142
3143 drain = container_of(work, struct pcpu_drain, work);
3144
3145 /*
3146 * drain_all_pages doesn't use proper cpu hotplug protection so
3147 * we can race with cpu offline when the WQ can move this from
3148 * a cpu pinned worker to an unbound one. We can operate on a different
3149 * cpu which is alright but we also have to make sure to not move to
3150 * a different one.
3151 */
3152 preempt_disable();
3153 drain_local_pages(drain->zone);
3154 preempt_enable();
3155 }
3156
3157 /*
3158 * The implementation of drain_all_pages(), exposing an extra parameter to
3159 * drain on all cpus.
3160 *
3161 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3162 * not empty. The check for non-emptiness can however race with a free to
3163 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3164 * that need the guarantee that every CPU has drained can disable the
3165 * optimizing racy check.
3166 */
3167 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3168 {
3169 int cpu;
3170
3171 /*
3172 * Allocate in the BSS so we won't require allocation in
3173 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3174 */
3175 static cpumask_t cpus_with_pcps;
3176
3177 /*
3178 * Make sure nobody triggers this path before mm_percpu_wq is fully
3179 * initialized.
3180 */
3181 if (WARN_ON_ONCE(!mm_percpu_wq))
3182 return;
3183
3184 /*
3185 * Do not drain if one is already in progress unless it's specific to
3186 * a zone. Such callers are primarily CMA and memory hotplug and need
3187 * the drain to be complete when the call returns.
3188 */
3189 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3190 if (!zone)
3191 return;
3192 mutex_lock(&pcpu_drain_mutex);
3193 }
3194
3195 /*
3196 * We don't care about racing with CPU hotplug event
3197 * as offline notification will cause the notified
3198 * cpu to drain that CPU pcps and on_each_cpu_mask
3199 * disables preemption as part of its processing
3200 */
3201 for_each_online_cpu(cpu) {
3202 struct per_cpu_pages *pcp;
3203 struct zone *z;
3204 bool has_pcps = false;
3205
3206 if (force_all_cpus) {
3207 /*
3208 * The pcp.count check is racy, some callers need a
3209 * guarantee that no cpu is missed.
3210 */
3211 has_pcps = true;
3212 } else if (zone) {
3213 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3214 if (pcp->count)
3215 has_pcps = true;
3216 } else {
3217 for_each_populated_zone(z) {
3218 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3219 if (pcp->count) {
3220 has_pcps = true;
3221 break;
3222 }
3223 }
3224 }
3225
3226 if (has_pcps)
3227 cpumask_set_cpu(cpu, &cpus_with_pcps);
3228 else
3229 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3230 }
3231
3232 for_each_cpu(cpu, &cpus_with_pcps) {
3233 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3234
3235 drain->zone = zone;
3236 INIT_WORK(&drain->work, drain_local_pages_wq);
3237 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3238 }
3239 for_each_cpu(cpu, &cpus_with_pcps)
3240 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3241
3242 mutex_unlock(&pcpu_drain_mutex);
3243 }
3244
3245 /*
3246 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3247 *
3248 * When zone parameter is non-NULL, spill just the single zone's pages.
3249 *
3250 * Note that this can be extremely slow as the draining happens in a workqueue.
3251 */
3252 void drain_all_pages(struct zone *zone)
3253 {
3254 __drain_all_pages(zone, false);
3255 }
3256
3257 #ifdef CONFIG_HIBERNATION
3258
3259 /*
3260 * Touch the watchdog for every WD_PAGE_COUNT pages.
3261 */
3262 #define WD_PAGE_COUNT (128*1024)
3263
3264 void mark_free_pages(struct zone *zone)
3265 {
3266 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3267 unsigned long flags;
3268 unsigned int order, t;
3269 struct page *page;
3270
3271 if (zone_is_empty(zone))
3272 return;
3273
3274 spin_lock_irqsave(&zone->lock, flags);
3275
3276 max_zone_pfn = zone_end_pfn(zone);
3277 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3278 if (pfn_valid(pfn)) {
3279 page = pfn_to_page(pfn);
3280
3281 if (!--page_count) {
3282 touch_nmi_watchdog();
3283 page_count = WD_PAGE_COUNT;
3284 }
3285
3286 if (page_zone(page) != zone)
3287 continue;
3288
3289 if (!swsusp_page_is_forbidden(page))
3290 swsusp_unset_page_free(page);
3291 }
3292
3293 for_each_migratetype_order(order, t) {
3294 list_for_each_entry(page,
3295 &zone->free_area[order].free_list[t], lru) {
3296 unsigned long i;
3297
3298 pfn = page_to_pfn(page);
3299 for (i = 0; i < (1UL << order); i++) {
3300 if (!--page_count) {
3301 touch_nmi_watchdog();
3302 page_count = WD_PAGE_COUNT;
3303 }
3304 swsusp_set_page_free(pfn_to_page(pfn + i));
3305 }
3306 }
3307 }
3308 spin_unlock_irqrestore(&zone->lock, flags);
3309 }
3310 #endif /* CONFIG_PM */
3311
3312 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3313 unsigned int order)
3314 {
3315 int migratetype;
3316
3317 if (!free_pcp_prepare(page, order))
3318 return false;
3319
3320 migratetype = get_pfnblock_migratetype(page, pfn);
3321 set_pcppage_migratetype(page, migratetype);
3322 return true;
3323 }
3324
3325 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3326 {
3327 int min_nr_free, max_nr_free;
3328
3329 /* Check for PCP disabled or boot pageset */
3330 if (unlikely(high < batch))
3331 return 1;
3332
3333 /* Leave at least pcp->batch pages on the list */
3334 min_nr_free = batch;
3335 max_nr_free = high - batch;
3336
3337 /*
3338 * Double the number of pages freed each time there is subsequent
3339 * freeing of pages without any allocation.
3340 */
3341 batch <<= pcp->free_factor;
3342 if (batch < max_nr_free)
3343 pcp->free_factor++;
3344 batch = clamp(batch, min_nr_free, max_nr_free);
3345
3346 return batch;
3347 }
3348
3349 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3350 {
3351 int high = READ_ONCE(pcp->high);
3352
3353 if (unlikely(!high))
3354 return 0;
3355
3356 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3357 return high;
3358
3359 /*
3360 * If reclaim is active, limit the number of pages that can be
3361 * stored on pcp lists
3362 */
3363 return min(READ_ONCE(pcp->batch) << 2, high);
3364 }
3365
3366 static void free_unref_page_commit(struct page *page, unsigned long pfn,
3367 int migratetype, unsigned int order)
3368 {
3369 struct zone *zone = page_zone(page);
3370 struct per_cpu_pages *pcp;
3371 int high;
3372 int pindex;
3373
3374 __count_vm_event(PGFREE);
3375 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3376 pindex = order_to_pindex(migratetype, order);
3377 list_add(&page->lru, &pcp->lists[pindex]);
3378 pcp->count += 1 << order;
3379 high = nr_pcp_high(pcp, zone);
3380 if (pcp->count >= high) {
3381 int batch = READ_ONCE(pcp->batch);
3382
3383 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3384 }
3385 }
3386
3387 /*
3388 * Free a pcp page
3389 */
3390 void free_unref_page(struct page *page, unsigned int order)
3391 {
3392 unsigned long flags;
3393 unsigned long pfn = page_to_pfn(page);
3394 int migratetype;
3395
3396 if (!free_unref_page_prepare(page, pfn, order))
3397 return;
3398
3399 /*
3400 * We only track unmovable, reclaimable and movable on pcp lists.
3401 * Place ISOLATE pages on the isolated list because they are being
3402 * offlined but treat HIGHATOMIC as movable pages so we can get those
3403 * areas back if necessary. Otherwise, we may have to free
3404 * excessively into the page allocator
3405 */
3406 migratetype = get_pcppage_migratetype(page);
3407 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3408 if (unlikely(is_migrate_isolate(migratetype))) {
3409 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3410 return;
3411 }
3412 migratetype = MIGRATE_MOVABLE;
3413 }
3414
3415 local_lock_irqsave(&pagesets.lock, flags);
3416 free_unref_page_commit(page, pfn, migratetype, order);
3417 local_unlock_irqrestore(&pagesets.lock, flags);
3418 }
3419
3420 /*
3421 * Free a list of 0-order pages
3422 */
3423 void free_unref_page_list(struct list_head *list)
3424 {
3425 struct page *page, *next;
3426 unsigned long flags, pfn;
3427 int batch_count = 0;
3428 int migratetype;
3429
3430 /* Prepare pages for freeing */
3431 list_for_each_entry_safe(page, next, list, lru) {
3432 pfn = page_to_pfn(page);
3433 if (!free_unref_page_prepare(page, pfn, 0)) {
3434 list_del(&page->lru);
3435 continue;
3436 }
3437
3438 /*
3439 * Free isolated pages directly to the allocator, see
3440 * comment in free_unref_page.
3441 */
3442 migratetype = get_pcppage_migratetype(page);
3443 if (unlikely(is_migrate_isolate(migratetype))) {
3444 list_del(&page->lru);
3445 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3446 continue;
3447 }
3448
3449 set_page_private(page, pfn);
3450 }
3451
3452 local_lock_irqsave(&pagesets.lock, flags);
3453 list_for_each_entry_safe(page, next, list, lru) {
3454 pfn = page_private(page);
3455 set_page_private(page, 0);
3456
3457 /*
3458 * Non-isolated types over MIGRATE_PCPTYPES get added
3459 * to the MIGRATE_MOVABLE pcp list.
3460 */
3461 migratetype = get_pcppage_migratetype(page);
3462 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3463 migratetype = MIGRATE_MOVABLE;
3464
3465 trace_mm_page_free_batched(page);
3466 free_unref_page_commit(page, pfn, migratetype, 0);
3467
3468 /*
3469 * Guard against excessive IRQ disabled times when we get
3470 * a large list of pages to free.
3471 */
3472 if (++batch_count == SWAP_CLUSTER_MAX) {
3473 local_unlock_irqrestore(&pagesets.lock, flags);
3474 batch_count = 0;
3475 local_lock_irqsave(&pagesets.lock, flags);
3476 }
3477 }
3478 local_unlock_irqrestore(&pagesets.lock, flags);
3479 }
3480
3481 /*
3482 * split_page takes a non-compound higher-order page, and splits it into
3483 * n (1<<order) sub-pages: page[0..n]
3484 * Each sub-page must be freed individually.
3485 *
3486 * Note: this is probably too low level an operation for use in drivers.
3487 * Please consult with lkml before using this in your driver.
3488 */
3489 void split_page(struct page *page, unsigned int order)
3490 {
3491 int i;
3492
3493 VM_BUG_ON_PAGE(PageCompound(page), page);
3494 VM_BUG_ON_PAGE(!page_count(page), page);
3495
3496 for (i = 1; i < (1 << order); i++)
3497 set_page_refcounted(page + i);
3498 split_page_owner(page, 1 << order);
3499 split_page_memcg(page, 1 << order);
3500 }
3501 EXPORT_SYMBOL_GPL(split_page);
3502
3503 int __isolate_free_page(struct page *page, unsigned int order)
3504 {
3505 unsigned long watermark;
3506 struct zone *zone;
3507 int mt;
3508
3509 BUG_ON(!PageBuddy(page));
3510
3511 zone = page_zone(page);
3512 mt = get_pageblock_migratetype(page);
3513
3514 if (!is_migrate_isolate(mt)) {
3515 /*
3516 * Obey watermarks as if the page was being allocated. We can
3517 * emulate a high-order watermark check with a raised order-0
3518 * watermark, because we already know our high-order page
3519 * exists.
3520 */
3521 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3522 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3523 return 0;
3524
3525 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3526 }
3527
3528 /* Remove page from free list */
3529
3530 del_page_from_free_list(page, zone, order);
3531
3532 /*
3533 * Set the pageblock if the isolated page is at least half of a
3534 * pageblock
3535 */
3536 if (order >= pageblock_order - 1) {
3537 struct page *endpage = page + (1 << order) - 1;
3538 for (; page < endpage; page += pageblock_nr_pages) {
3539 int mt = get_pageblock_migratetype(page);
3540 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3541 && !is_migrate_highatomic(mt))
3542 set_pageblock_migratetype(page,
3543 MIGRATE_MOVABLE);
3544 }
3545 }
3546
3547
3548 return 1UL << order;
3549 }
3550
3551 /**
3552 * __putback_isolated_page - Return a now-isolated page back where we got it
3553 * @page: Page that was isolated
3554 * @order: Order of the isolated page
3555 * @mt: The page's pageblock's migratetype
3556 *
3557 * This function is meant to return a page pulled from the free lists via
3558 * __isolate_free_page back to the free lists they were pulled from.
3559 */
3560 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3561 {
3562 struct zone *zone = page_zone(page);
3563
3564 /* zone lock should be held when this function is called */
3565 lockdep_assert_held(&zone->lock);
3566
3567 /* Return isolated page to tail of freelist. */
3568 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3569 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3570 }
3571
3572 /*
3573 * Update NUMA hit/miss statistics
3574 *
3575 * Must be called with interrupts disabled.
3576 */
3577 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3578 long nr_account)
3579 {
3580 #ifdef CONFIG_NUMA
3581 enum numa_stat_item local_stat = NUMA_LOCAL;
3582
3583 /* skip numa counters update if numa stats is disabled */
3584 if (!static_branch_likely(&vm_numa_stat_key))
3585 return;
3586
3587 if (zone_to_nid(z) != numa_node_id())
3588 local_stat = NUMA_OTHER;
3589
3590 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3591 __count_numa_events(z, NUMA_HIT, nr_account);
3592 else {
3593 __count_numa_events(z, NUMA_MISS, nr_account);
3594 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3595 }
3596 __count_numa_events(z, local_stat, nr_account);
3597 #endif
3598 }
3599
3600 /* Remove page from the per-cpu list, caller must protect the list */
3601 static inline
3602 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3603 int migratetype,
3604 unsigned int alloc_flags,
3605 struct per_cpu_pages *pcp,
3606 struct list_head *list)
3607 {
3608 struct page *page;
3609
3610 do {
3611 if (list_empty(list)) {
3612 int batch = READ_ONCE(pcp->batch);
3613 int alloced;
3614
3615 /*
3616 * Scale batch relative to order if batch implies
3617 * free pages can be stored on the PCP. Batch can
3618 * be 1 for small zones or for boot pagesets which
3619 * should never store free pages as the pages may
3620 * belong to arbitrary zones.
3621 */
3622 if (batch > 1)
3623 batch = max(batch >> order, 2);
3624 alloced = rmqueue_bulk(zone, order,
3625 batch, list,
3626 migratetype, alloc_flags);
3627
3628 pcp->count += alloced << order;
3629 if (unlikely(list_empty(list)))
3630 return NULL;
3631 }
3632
3633 page = list_first_entry(list, struct page, lru);
3634 list_del(&page->lru);
3635 pcp->count -= 1 << order;
3636 } while (check_new_pcp(page));
3637
3638 return page;
3639 }
3640
3641 /* Lock and remove page from the per-cpu list */
3642 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3643 struct zone *zone, unsigned int order,
3644 gfp_t gfp_flags, int migratetype,
3645 unsigned int alloc_flags)
3646 {
3647 struct per_cpu_pages *pcp;
3648 struct list_head *list;
3649 struct page *page;
3650 unsigned long flags;
3651
3652 local_lock_irqsave(&pagesets.lock, flags);
3653
3654 /*
3655 * On allocation, reduce the number of pages that are batch freed.
3656 * See nr_pcp_free() where free_factor is increased for subsequent
3657 * frees.
3658 */
3659 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3660 pcp->free_factor >>= 1;
3661 list = &pcp->lists[order_to_pindex(migratetype, order)];
3662 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3663 local_unlock_irqrestore(&pagesets.lock, flags);
3664 if (page) {
3665 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3666 zone_statistics(preferred_zone, zone, 1);
3667 }
3668 return page;
3669 }
3670
3671 /*
3672 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3673 */
3674 static inline
3675 struct page *rmqueue(struct zone *preferred_zone,
3676 struct zone *zone, unsigned int order,
3677 gfp_t gfp_flags, unsigned int alloc_flags,
3678 int migratetype)
3679 {
3680 unsigned long flags;
3681 struct page *page;
3682
3683 if (likely(pcp_allowed_order(order))) {
3684 /*
3685 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3686 * we need to skip it when CMA area isn't allowed.
3687 */
3688 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3689 migratetype != MIGRATE_MOVABLE) {
3690 page = rmqueue_pcplist(preferred_zone, zone, order,
3691 gfp_flags, migratetype, alloc_flags);
3692 goto out;
3693 }
3694 }
3695
3696 /*
3697 * We most definitely don't want callers attempting to
3698 * allocate greater than order-1 page units with __GFP_NOFAIL.
3699 */
3700 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3701 spin_lock_irqsave(&zone->lock, flags);
3702
3703 do {
3704 page = NULL;
3705 /*
3706 * order-0 request can reach here when the pcplist is skipped
3707 * due to non-CMA allocation context. HIGHATOMIC area is
3708 * reserved for high-order atomic allocation, so order-0
3709 * request should skip it.
3710 */
3711 if (order > 0 && alloc_flags & ALLOC_HARDER) {
3712 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3713 if (page)
3714 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3715 }
3716 if (!page)
3717 page = __rmqueue(zone, order, migratetype, alloc_flags);
3718 } while (page && check_new_pages(page, order));
3719 if (!page)
3720 goto failed;
3721
3722 __mod_zone_freepage_state(zone, -(1 << order),
3723 get_pcppage_migratetype(page));
3724 spin_unlock_irqrestore(&zone->lock, flags);
3725
3726 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3727 zone_statistics(preferred_zone, zone, 1);
3728
3729 out:
3730 /* Separate test+clear to avoid unnecessary atomics */
3731 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3732 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3733 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3734 }
3735
3736 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3737 return page;
3738
3739 failed:
3740 spin_unlock_irqrestore(&zone->lock, flags);
3741 return NULL;
3742 }
3743
3744 #ifdef CONFIG_FAIL_PAGE_ALLOC
3745
3746 static struct {
3747 struct fault_attr attr;
3748
3749 bool ignore_gfp_highmem;
3750 bool ignore_gfp_reclaim;
3751 u32 min_order;
3752 } fail_page_alloc = {
3753 .attr = FAULT_ATTR_INITIALIZER,
3754 .ignore_gfp_reclaim = true,
3755 .ignore_gfp_highmem = true,
3756 .min_order = 1,
3757 };
3758
3759 static int __init setup_fail_page_alloc(char *str)
3760 {
3761 return setup_fault_attr(&fail_page_alloc.attr, str);
3762 }
3763 __setup("fail_page_alloc=", setup_fail_page_alloc);
3764
3765 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3766 {
3767 if (order < fail_page_alloc.min_order)
3768 return false;
3769 if (gfp_mask & __GFP_NOFAIL)
3770 return false;
3771 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3772 return false;
3773 if (fail_page_alloc.ignore_gfp_reclaim &&
3774 (gfp_mask & __GFP_DIRECT_RECLAIM))
3775 return false;
3776
3777 return should_fail(&fail_page_alloc.attr, 1 << order);
3778 }
3779
3780 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3781
3782 static int __init fail_page_alloc_debugfs(void)
3783 {
3784 umode_t mode = S_IFREG | 0600;
3785 struct dentry *dir;
3786
3787 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3788 &fail_page_alloc.attr);
3789
3790 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3791 &fail_page_alloc.ignore_gfp_reclaim);
3792 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3793 &fail_page_alloc.ignore_gfp_highmem);
3794 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3795
3796 return 0;
3797 }
3798
3799 late_initcall(fail_page_alloc_debugfs);
3800
3801 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3802
3803 #else /* CONFIG_FAIL_PAGE_ALLOC */
3804
3805 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3806 {
3807 return false;
3808 }
3809
3810 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3811
3812 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3813 {
3814 return __should_fail_alloc_page(gfp_mask, order);
3815 }
3816 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3817
3818 static inline long __zone_watermark_unusable_free(struct zone *z,
3819 unsigned int order, unsigned int alloc_flags)
3820 {
3821 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3822 long unusable_free = (1 << order) - 1;
3823
3824 /*
3825 * If the caller does not have rights to ALLOC_HARDER then subtract
3826 * the high-atomic reserves. This will over-estimate the size of the
3827 * atomic reserve but it avoids a search.
3828 */
3829 if (likely(!alloc_harder))
3830 unusable_free += z->nr_reserved_highatomic;
3831
3832 #ifdef CONFIG_CMA
3833 /* If allocation can't use CMA areas don't use free CMA pages */
3834 if (!(alloc_flags & ALLOC_CMA))
3835 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3836 #endif
3837
3838 return unusable_free;
3839 }
3840
3841 /*
3842 * Return true if free base pages are above 'mark'. For high-order checks it
3843 * will return true of the order-0 watermark is reached and there is at least
3844 * one free page of a suitable size. Checking now avoids taking the zone lock
3845 * to check in the allocation paths if no pages are free.
3846 */
3847 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3848 int highest_zoneidx, unsigned int alloc_flags,
3849 long free_pages)
3850 {
3851 long min = mark;
3852 int o;
3853 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3854
3855 /* free_pages may go negative - that's OK */
3856 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3857
3858 if (alloc_flags & ALLOC_HIGH)
3859 min -= min / 2;
3860
3861 if (unlikely(alloc_harder)) {
3862 /*
3863 * OOM victims can try even harder than normal ALLOC_HARDER
3864 * users on the grounds that it's definitely going to be in
3865 * the exit path shortly and free memory. Any allocation it
3866 * makes during the free path will be small and short-lived.
3867 */
3868 if (alloc_flags & ALLOC_OOM)
3869 min -= min / 2;
3870 else
3871 min -= min / 4;
3872 }
3873
3874 /*
3875 * Check watermarks for an order-0 allocation request. If these
3876 * are not met, then a high-order request also cannot go ahead
3877 * even if a suitable page happened to be free.
3878 */
3879 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3880 return false;
3881
3882 /* If this is an order-0 request then the watermark is fine */
3883 if (!order)
3884 return true;
3885
3886 /* For a high-order request, check at least one suitable page is free */
3887 for (o = order; o < MAX_ORDER; o++) {
3888 struct free_area *area = &z->free_area[o];
3889 int mt;
3890
3891 if (!area->nr_free)
3892 continue;
3893
3894 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3895 if (!free_area_empty(area, mt))
3896 return true;
3897 }
3898
3899 #ifdef CONFIG_CMA
3900 if ((alloc_flags & ALLOC_CMA) &&
3901 !free_area_empty(area, MIGRATE_CMA)) {
3902 return true;
3903 }
3904 #endif
3905 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3906 return true;
3907 }
3908 return false;
3909 }
3910
3911 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3912 int highest_zoneidx, unsigned int alloc_flags)
3913 {
3914 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3915 zone_page_state(z, NR_FREE_PAGES));
3916 }
3917
3918 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3919 unsigned long mark, int highest_zoneidx,
3920 unsigned int alloc_flags, gfp_t gfp_mask)
3921 {
3922 long free_pages;
3923
3924 free_pages = zone_page_state(z, NR_FREE_PAGES);
3925
3926 /*
3927 * Fast check for order-0 only. If this fails then the reserves
3928 * need to be calculated.
3929 */
3930 if (!order) {
3931 long usable_free;
3932 long reserved;
3933
3934 usable_free = free_pages;
3935 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3936
3937 /* reserved may over estimate high-atomic reserves. */
3938 usable_free -= min(usable_free, reserved);
3939 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3940 return true;
3941 }
3942
3943 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3944 free_pages))
3945 return true;
3946 /*
3947 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3948 * when checking the min watermark. The min watermark is the
3949 * point where boosting is ignored so that kswapd is woken up
3950 * when below the low watermark.
3951 */
3952 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3953 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3954 mark = z->_watermark[WMARK_MIN];
3955 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3956 alloc_flags, free_pages);
3957 }
3958
3959 return false;
3960 }
3961
3962 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3963 unsigned long mark, int highest_zoneidx)
3964 {
3965 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3966
3967 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3968 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3969
3970 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3971 free_pages);
3972 }
3973
3974 #ifdef CONFIG_NUMA
3975 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3976 {
3977 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3978 node_reclaim_distance;
3979 }
3980 #else /* CONFIG_NUMA */
3981 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3982 {
3983 return true;
3984 }
3985 #endif /* CONFIG_NUMA */
3986
3987 /*
3988 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3989 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3990 * premature use of a lower zone may cause lowmem pressure problems that
3991 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3992 * probably too small. It only makes sense to spread allocations to avoid
3993 * fragmentation between the Normal and DMA32 zones.
3994 */
3995 static inline unsigned int
3996 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3997 {
3998 unsigned int alloc_flags;
3999
4000 /*
4001 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4002 * to save a branch.
4003 */
4004 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4005
4006 #ifdef CONFIG_ZONE_DMA32
4007 if (!zone)
4008 return alloc_flags;
4009
4010 if (zone_idx(zone) != ZONE_NORMAL)
4011 return alloc_flags;
4012
4013 /*
4014 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4015 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4016 * on UMA that if Normal is populated then so is DMA32.
4017 */
4018 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4019 if (nr_online_nodes > 1 && !populated_zone(--zone))
4020 return alloc_flags;
4021
4022 alloc_flags |= ALLOC_NOFRAGMENT;
4023 #endif /* CONFIG_ZONE_DMA32 */
4024 return alloc_flags;
4025 }
4026
4027 /* Must be called after current_gfp_context() which can change gfp_mask */
4028 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4029 unsigned int alloc_flags)
4030 {
4031 #ifdef CONFIG_CMA
4032 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4033 alloc_flags |= ALLOC_CMA;
4034 #endif
4035 return alloc_flags;
4036 }
4037
4038 /*
4039 * get_page_from_freelist goes through the zonelist trying to allocate
4040 * a page.
4041 */
4042 static struct page *
4043 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4044 const struct alloc_context *ac)
4045 {
4046 struct zoneref *z;
4047 struct zone *zone;
4048 struct pglist_data *last_pgdat_dirty_limit = NULL;
4049 bool no_fallback;
4050
4051 retry:
4052 /*
4053 * Scan zonelist, looking for a zone with enough free.
4054 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4055 */
4056 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4057 z = ac->preferred_zoneref;
4058 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4059 ac->nodemask) {
4060 struct page *page;
4061 unsigned long mark;
4062
4063 if (cpusets_enabled() &&
4064 (alloc_flags & ALLOC_CPUSET) &&
4065 !__cpuset_zone_allowed(zone, gfp_mask))
4066 continue;
4067 /*
4068 * When allocating a page cache page for writing, we
4069 * want to get it from a node that is within its dirty
4070 * limit, such that no single node holds more than its
4071 * proportional share of globally allowed dirty pages.
4072 * The dirty limits take into account the node's
4073 * lowmem reserves and high watermark so that kswapd
4074 * should be able to balance it without having to
4075 * write pages from its LRU list.
4076 *
4077 * XXX: For now, allow allocations to potentially
4078 * exceed the per-node dirty limit in the slowpath
4079 * (spread_dirty_pages unset) before going into reclaim,
4080 * which is important when on a NUMA setup the allowed
4081 * nodes are together not big enough to reach the
4082 * global limit. The proper fix for these situations
4083 * will require awareness of nodes in the
4084 * dirty-throttling and the flusher threads.
4085 */
4086 if (ac->spread_dirty_pages) {
4087 if (last_pgdat_dirty_limit == zone->zone_pgdat)
4088 continue;
4089
4090 if (!node_dirty_ok(zone->zone_pgdat)) {
4091 last_pgdat_dirty_limit = zone->zone_pgdat;
4092 continue;
4093 }
4094 }
4095
4096 if (no_fallback && nr_online_nodes > 1 &&
4097 zone != ac->preferred_zoneref->zone) {
4098 int local_nid;
4099
4100 /*
4101 * If moving to a remote node, retry but allow
4102 * fragmenting fallbacks. Locality is more important
4103 * than fragmentation avoidance.
4104 */
4105 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4106 if (zone_to_nid(zone) != local_nid) {
4107 alloc_flags &= ~ALLOC_NOFRAGMENT;
4108 goto retry;
4109 }
4110 }
4111
4112 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4113 if (!zone_watermark_fast(zone, order, mark,
4114 ac->highest_zoneidx, alloc_flags,
4115 gfp_mask)) {
4116 int ret;
4117
4118 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4119 /*
4120 * Watermark failed for this zone, but see if we can
4121 * grow this zone if it contains deferred pages.
4122 */
4123 if (static_branch_unlikely(&deferred_pages)) {
4124 if (_deferred_grow_zone(zone, order))
4125 goto try_this_zone;
4126 }
4127 #endif
4128 /* Checked here to keep the fast path fast */
4129 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4130 if (alloc_flags & ALLOC_NO_WATERMARKS)
4131 goto try_this_zone;
4132
4133 if (!node_reclaim_enabled() ||
4134 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4135 continue;
4136
4137 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4138 switch (ret) {
4139 case NODE_RECLAIM_NOSCAN:
4140 /* did not scan */
4141 continue;
4142 case NODE_RECLAIM_FULL:
4143 /* scanned but unreclaimable */
4144 continue;
4145 default:
4146 /* did we reclaim enough */
4147 if (zone_watermark_ok(zone, order, mark,
4148 ac->highest_zoneidx, alloc_flags))
4149 goto try_this_zone;
4150
4151 continue;
4152 }
4153 }
4154
4155 try_this_zone:
4156 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4157 gfp_mask, alloc_flags, ac->migratetype);
4158 if (page) {
4159 prep_new_page(page, order, gfp_mask, alloc_flags);
4160
4161 /*
4162 * If this is a high-order atomic allocation then check
4163 * if the pageblock should be reserved for the future
4164 */
4165 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4166 reserve_highatomic_pageblock(page, zone, order);
4167
4168 return page;
4169 } else {
4170 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4171 /* Try again if zone has deferred pages */
4172 if (static_branch_unlikely(&deferred_pages)) {
4173 if (_deferred_grow_zone(zone, order))
4174 goto try_this_zone;
4175 }
4176 #endif
4177 }
4178 }
4179
4180 /*
4181 * It's possible on a UMA machine to get through all zones that are
4182 * fragmented. If avoiding fragmentation, reset and try again.
4183 */
4184 if (no_fallback) {
4185 alloc_flags &= ~ALLOC_NOFRAGMENT;
4186 goto retry;
4187 }
4188
4189 return NULL;
4190 }
4191
4192 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4193 {
4194 unsigned int filter = SHOW_MEM_FILTER_NODES;
4195
4196 /*
4197 * This documents exceptions given to allocations in certain
4198 * contexts that are allowed to allocate outside current's set
4199 * of allowed nodes.
4200 */
4201 if (!(gfp_mask & __GFP_NOMEMALLOC))
4202 if (tsk_is_oom_victim(current) ||
4203 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4204 filter &= ~SHOW_MEM_FILTER_NODES;
4205 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4206 filter &= ~SHOW_MEM_FILTER_NODES;
4207
4208 show_mem(filter, nodemask);
4209 }
4210
4211 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4212 {
4213 struct va_format vaf;
4214 va_list args;
4215 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4216
4217 if ((gfp_mask & __GFP_NOWARN) ||
4218 !__ratelimit(&nopage_rs) ||
4219 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4220 return;
4221
4222 va_start(args, fmt);
4223 vaf.fmt = fmt;
4224 vaf.va = &args;
4225 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4226 current->comm, &vaf, gfp_mask, &gfp_mask,
4227 nodemask_pr_args(nodemask));
4228 va_end(args);
4229
4230 cpuset_print_current_mems_allowed();
4231 pr_cont("\n");
4232 dump_stack();
4233 warn_alloc_show_mem(gfp_mask, nodemask);
4234 }
4235
4236 static inline struct page *
4237 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4238 unsigned int alloc_flags,
4239 const struct alloc_context *ac)
4240 {
4241 struct page *page;
4242
4243 page = get_page_from_freelist(gfp_mask, order,
4244 alloc_flags|ALLOC_CPUSET, ac);
4245 /*
4246 * fallback to ignore cpuset restriction if our nodes
4247 * are depleted
4248 */
4249 if (!page)
4250 page = get_page_from_freelist(gfp_mask, order,
4251 alloc_flags, ac);
4252
4253 return page;
4254 }
4255
4256 static inline struct page *
4257 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4258 const struct alloc_context *ac, unsigned long *did_some_progress)
4259 {
4260 struct oom_control oc = {
4261 .zonelist = ac->zonelist,
4262 .nodemask = ac->nodemask,
4263 .memcg = NULL,
4264 .gfp_mask = gfp_mask,
4265 .order = order,
4266 };
4267 struct page *page;
4268
4269 *did_some_progress = 0;
4270
4271 /*
4272 * Acquire the oom lock. If that fails, somebody else is
4273 * making progress for us.
4274 */
4275 if (!mutex_trylock(&oom_lock)) {
4276 *did_some_progress = 1;
4277 schedule_timeout_uninterruptible(1);
4278 return NULL;
4279 }
4280
4281 /*
4282 * Go through the zonelist yet one more time, keep very high watermark
4283 * here, this is only to catch a parallel oom killing, we must fail if
4284 * we're still under heavy pressure. But make sure that this reclaim
4285 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4286 * allocation which will never fail due to oom_lock already held.
4287 */
4288 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4289 ~__GFP_DIRECT_RECLAIM, order,
4290 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4291 if (page)
4292 goto out;
4293
4294 /* Coredumps can quickly deplete all memory reserves */
4295 if (current->flags & PF_DUMPCORE)
4296 goto out;
4297 /* The OOM killer will not help higher order allocs */
4298 if (order > PAGE_ALLOC_COSTLY_ORDER)
4299 goto out;
4300 /*
4301 * We have already exhausted all our reclaim opportunities without any
4302 * success so it is time to admit defeat. We will skip the OOM killer
4303 * because it is very likely that the caller has a more reasonable
4304 * fallback than shooting a random task.
4305 *
4306 * The OOM killer may not free memory on a specific node.
4307 */
4308 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4309 goto out;
4310 /* The OOM killer does not needlessly kill tasks for lowmem */
4311 if (ac->highest_zoneidx < ZONE_NORMAL)
4312 goto out;
4313 if (pm_suspended_storage())
4314 goto out;
4315 /*
4316 * XXX: GFP_NOFS allocations should rather fail than rely on
4317 * other request to make a forward progress.
4318 * We are in an unfortunate situation where out_of_memory cannot
4319 * do much for this context but let's try it to at least get
4320 * access to memory reserved if the current task is killed (see
4321 * out_of_memory). Once filesystems are ready to handle allocation
4322 * failures more gracefully we should just bail out here.
4323 */
4324
4325 /* Exhausted what can be done so it's blame time */
4326 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4327 *did_some_progress = 1;
4328
4329 /*
4330 * Help non-failing allocations by giving them access to memory
4331 * reserves
4332 */
4333 if (gfp_mask & __GFP_NOFAIL)
4334 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4335 ALLOC_NO_WATERMARKS, ac);
4336 }
4337 out:
4338 mutex_unlock(&oom_lock);
4339 return page;
4340 }
4341
4342 /*
4343 * Maximum number of compaction retries with a progress before OOM
4344 * killer is consider as the only way to move forward.
4345 */
4346 #define MAX_COMPACT_RETRIES 16
4347
4348 #ifdef CONFIG_COMPACTION
4349 /* Try memory compaction for high-order allocations before reclaim */
4350 static struct page *
4351 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4352 unsigned int alloc_flags, const struct alloc_context *ac,
4353 enum compact_priority prio, enum compact_result *compact_result)
4354 {
4355 struct page *page = NULL;
4356 unsigned long pflags;
4357 unsigned int noreclaim_flag;
4358
4359 if (!order)
4360 return NULL;
4361
4362 psi_memstall_enter(&pflags);
4363 noreclaim_flag = memalloc_noreclaim_save();
4364
4365 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4366 prio, &page);
4367
4368 memalloc_noreclaim_restore(noreclaim_flag);
4369 psi_memstall_leave(&pflags);
4370
4371 if (*compact_result == COMPACT_SKIPPED)
4372 return NULL;
4373 /*
4374 * At least in one zone compaction wasn't deferred or skipped, so let's
4375 * count a compaction stall
4376 */
4377 count_vm_event(COMPACTSTALL);
4378
4379 /* Prep a captured page if available */
4380 if (page)
4381 prep_new_page(page, order, gfp_mask, alloc_flags);
4382
4383 /* Try get a page from the freelist if available */
4384 if (!page)
4385 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4386
4387 if (page) {
4388 struct zone *zone = page_zone(page);
4389
4390 zone->compact_blockskip_flush = false;
4391 compaction_defer_reset(zone, order, true);
4392 count_vm_event(COMPACTSUCCESS);
4393 return page;
4394 }
4395
4396 /*
4397 * It's bad if compaction run occurs and fails. The most likely reason
4398 * is that pages exist, but not enough to satisfy watermarks.
4399 */
4400 count_vm_event(COMPACTFAIL);
4401
4402 cond_resched();
4403
4404 return NULL;
4405 }
4406
4407 static inline bool
4408 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4409 enum compact_result compact_result,
4410 enum compact_priority *compact_priority,
4411 int *compaction_retries)
4412 {
4413 int max_retries = MAX_COMPACT_RETRIES;
4414 int min_priority;
4415 bool ret = false;
4416 int retries = *compaction_retries;
4417 enum compact_priority priority = *compact_priority;
4418
4419 if (!order)
4420 return false;
4421
4422 if (fatal_signal_pending(current))
4423 return false;
4424
4425 if (compaction_made_progress(compact_result))
4426 (*compaction_retries)++;
4427
4428 /*
4429 * compaction considers all the zone as desperately out of memory
4430 * so it doesn't really make much sense to retry except when the
4431 * failure could be caused by insufficient priority
4432 */
4433 if (compaction_failed(compact_result))
4434 goto check_priority;
4435
4436 /*
4437 * compaction was skipped because there are not enough order-0 pages
4438 * to work with, so we retry only if it looks like reclaim can help.
4439 */
4440 if (compaction_needs_reclaim(compact_result)) {
4441 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4442 goto out;
4443 }
4444
4445 /*
4446 * make sure the compaction wasn't deferred or didn't bail out early
4447 * due to locks contention before we declare that we should give up.
4448 * But the next retry should use a higher priority if allowed, so
4449 * we don't just keep bailing out endlessly.
4450 */
4451 if (compaction_withdrawn(compact_result)) {
4452 goto check_priority;
4453 }
4454
4455 /*
4456 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4457 * costly ones because they are de facto nofail and invoke OOM
4458 * killer to move on while costly can fail and users are ready
4459 * to cope with that. 1/4 retries is rather arbitrary but we
4460 * would need much more detailed feedback from compaction to
4461 * make a better decision.
4462 */
4463 if (order > PAGE_ALLOC_COSTLY_ORDER)
4464 max_retries /= 4;
4465 if (*compaction_retries <= max_retries) {
4466 ret = true;
4467 goto out;
4468 }
4469
4470 /*
4471 * Make sure there are attempts at the highest priority if we exhausted
4472 * all retries or failed at the lower priorities.
4473 */
4474 check_priority:
4475 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4476 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4477
4478 if (*compact_priority > min_priority) {
4479 (*compact_priority)--;
4480 *compaction_retries = 0;
4481 ret = true;
4482 }
4483 out:
4484 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4485 return ret;
4486 }
4487 #else
4488 static inline struct page *
4489 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4490 unsigned int alloc_flags, const struct alloc_context *ac,
4491 enum compact_priority prio, enum compact_result *compact_result)
4492 {
4493 *compact_result = COMPACT_SKIPPED;
4494 return NULL;
4495 }
4496
4497 static inline bool
4498 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4499 enum compact_result compact_result,
4500 enum compact_priority *compact_priority,
4501 int *compaction_retries)
4502 {
4503 struct zone *zone;
4504 struct zoneref *z;
4505
4506 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4507 return false;
4508
4509 /*
4510 * There are setups with compaction disabled which would prefer to loop
4511 * inside the allocator rather than hit the oom killer prematurely.
4512 * Let's give them a good hope and keep retrying while the order-0
4513 * watermarks are OK.
4514 */
4515 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4516 ac->highest_zoneidx, ac->nodemask) {
4517 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4518 ac->highest_zoneidx, alloc_flags))
4519 return true;
4520 }
4521 return false;
4522 }
4523 #endif /* CONFIG_COMPACTION */
4524
4525 #ifdef CONFIG_LOCKDEP
4526 static struct lockdep_map __fs_reclaim_map =
4527 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4528
4529 static bool __need_reclaim(gfp_t gfp_mask)
4530 {
4531 /* no reclaim without waiting on it */
4532 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4533 return false;
4534
4535 /* this guy won't enter reclaim */
4536 if (current->flags & PF_MEMALLOC)
4537 return false;
4538
4539 if (gfp_mask & __GFP_NOLOCKDEP)
4540 return false;
4541
4542 return true;
4543 }
4544
4545 void __fs_reclaim_acquire(unsigned long ip)
4546 {
4547 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4548 }
4549
4550 void __fs_reclaim_release(unsigned long ip)
4551 {
4552 lock_release(&__fs_reclaim_map, ip);
4553 }
4554
4555 void fs_reclaim_acquire(gfp_t gfp_mask)
4556 {
4557 gfp_mask = current_gfp_context(gfp_mask);
4558
4559 if (__need_reclaim(gfp_mask)) {
4560 if (gfp_mask & __GFP_FS)
4561 __fs_reclaim_acquire(_RET_IP_);
4562
4563 #ifdef CONFIG_MMU_NOTIFIER
4564 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4565 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4566 #endif
4567
4568 }
4569 }
4570 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4571
4572 void fs_reclaim_release(gfp_t gfp_mask)
4573 {
4574 gfp_mask = current_gfp_context(gfp_mask);
4575
4576 if (__need_reclaim(gfp_mask)) {
4577 if (gfp_mask & __GFP_FS)
4578 __fs_reclaim_release(_RET_IP_);
4579 }
4580 }
4581 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4582 #endif
4583
4584 /* Perform direct synchronous page reclaim */
4585 static unsigned long
4586 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4587 const struct alloc_context *ac)
4588 {
4589 unsigned int noreclaim_flag;
4590 unsigned long pflags, progress;
4591
4592 cond_resched();
4593
4594 /* We now go into synchronous reclaim */
4595 cpuset_memory_pressure_bump();
4596 psi_memstall_enter(&pflags);
4597 fs_reclaim_acquire(gfp_mask);
4598 noreclaim_flag = memalloc_noreclaim_save();
4599
4600 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4601 ac->nodemask);
4602
4603 memalloc_noreclaim_restore(noreclaim_flag);
4604 fs_reclaim_release(gfp_mask);
4605 psi_memstall_leave(&pflags);
4606
4607 cond_resched();
4608
4609 return progress;
4610 }
4611
4612 /* The really slow allocator path where we enter direct reclaim */
4613 static inline struct page *
4614 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4615 unsigned int alloc_flags, const struct alloc_context *ac,
4616 unsigned long *did_some_progress)
4617 {
4618 struct page *page = NULL;
4619 bool drained = false;
4620
4621 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4622 if (unlikely(!(*did_some_progress)))
4623 return NULL;
4624
4625 retry:
4626 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4627
4628 /*
4629 * If an allocation failed after direct reclaim, it could be because
4630 * pages are pinned on the per-cpu lists or in high alloc reserves.
4631 * Shrink them and try again
4632 */
4633 if (!page && !drained) {
4634 unreserve_highatomic_pageblock(ac, false);
4635 drain_all_pages(NULL);
4636 drained = true;
4637 goto retry;
4638 }
4639
4640 return page;
4641 }
4642
4643 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4644 const struct alloc_context *ac)
4645 {
4646 struct zoneref *z;
4647 struct zone *zone;
4648 pg_data_t *last_pgdat = NULL;
4649 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4650
4651 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4652 ac->nodemask) {
4653 if (last_pgdat != zone->zone_pgdat)
4654 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4655 last_pgdat = zone->zone_pgdat;
4656 }
4657 }
4658
4659 static inline unsigned int
4660 gfp_to_alloc_flags(gfp_t gfp_mask)
4661 {
4662 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4663
4664 /*
4665 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4666 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4667 * to save two branches.
4668 */
4669 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4670 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4671
4672 /*
4673 * The caller may dip into page reserves a bit more if the caller
4674 * cannot run direct reclaim, or if the caller has realtime scheduling
4675 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4676 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4677 */
4678 alloc_flags |= (__force int)
4679 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4680
4681 if (gfp_mask & __GFP_ATOMIC) {
4682 /*
4683 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4684 * if it can't schedule.
4685 */
4686 if (!(gfp_mask & __GFP_NOMEMALLOC))
4687 alloc_flags |= ALLOC_HARDER;
4688 /*
4689 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4690 * comment for __cpuset_node_allowed().
4691 */
4692 alloc_flags &= ~ALLOC_CPUSET;
4693 } else if (unlikely(rt_task(current)) && in_task())
4694 alloc_flags |= ALLOC_HARDER;
4695
4696 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4697
4698 return alloc_flags;
4699 }
4700
4701 static bool oom_reserves_allowed(struct task_struct *tsk)
4702 {
4703 if (!tsk_is_oom_victim(tsk))
4704 return false;
4705
4706 /*
4707 * !MMU doesn't have oom reaper so give access to memory reserves
4708 * only to the thread with TIF_MEMDIE set
4709 */
4710 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4711 return false;
4712
4713 return true;
4714 }
4715
4716 /*
4717 * Distinguish requests which really need access to full memory
4718 * reserves from oom victims which can live with a portion of it
4719 */
4720 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4721 {
4722 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4723 return 0;
4724 if (gfp_mask & __GFP_MEMALLOC)
4725 return ALLOC_NO_WATERMARKS;
4726 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4727 return ALLOC_NO_WATERMARKS;
4728 if (!in_interrupt()) {
4729 if (current->flags & PF_MEMALLOC)
4730 return ALLOC_NO_WATERMARKS;
4731 else if (oom_reserves_allowed(current))
4732 return ALLOC_OOM;
4733 }
4734
4735 return 0;
4736 }
4737
4738 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4739 {
4740 return !!__gfp_pfmemalloc_flags(gfp_mask);
4741 }
4742
4743 /*
4744 * Checks whether it makes sense to retry the reclaim to make a forward progress
4745 * for the given allocation request.
4746 *
4747 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4748 * without success, or when we couldn't even meet the watermark if we
4749 * reclaimed all remaining pages on the LRU lists.
4750 *
4751 * Returns true if a retry is viable or false to enter the oom path.
4752 */
4753 static inline bool
4754 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4755 struct alloc_context *ac, int alloc_flags,
4756 bool did_some_progress, int *no_progress_loops)
4757 {
4758 struct zone *zone;
4759 struct zoneref *z;
4760 bool ret = false;
4761
4762 /*
4763 * Costly allocations might have made a progress but this doesn't mean
4764 * their order will become available due to high fragmentation so
4765 * always increment the no progress counter for them
4766 */
4767 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4768 *no_progress_loops = 0;
4769 else
4770 (*no_progress_loops)++;
4771
4772 /*
4773 * Make sure we converge to OOM if we cannot make any progress
4774 * several times in the row.
4775 */
4776 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4777 /* Before OOM, exhaust highatomic_reserve */
4778 return unreserve_highatomic_pageblock(ac, true);
4779 }
4780
4781 /*
4782 * Keep reclaiming pages while there is a chance this will lead
4783 * somewhere. If none of the target zones can satisfy our allocation
4784 * request even if all reclaimable pages are considered then we are
4785 * screwed and have to go OOM.
4786 */
4787 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4788 ac->highest_zoneidx, ac->nodemask) {
4789 unsigned long available;
4790 unsigned long reclaimable;
4791 unsigned long min_wmark = min_wmark_pages(zone);
4792 bool wmark;
4793
4794 available = reclaimable = zone_reclaimable_pages(zone);
4795 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4796
4797 /*
4798 * Would the allocation succeed if we reclaimed all
4799 * reclaimable pages?
4800 */
4801 wmark = __zone_watermark_ok(zone, order, min_wmark,
4802 ac->highest_zoneidx, alloc_flags, available);
4803 trace_reclaim_retry_zone(z, order, reclaimable,
4804 available, min_wmark, *no_progress_loops, wmark);
4805 if (wmark) {
4806 /*
4807 * If we didn't make any progress and have a lot of
4808 * dirty + writeback pages then we should wait for
4809 * an IO to complete to slow down the reclaim and
4810 * prevent from pre mature OOM
4811 */
4812 if (!did_some_progress) {
4813 unsigned long write_pending;
4814
4815 write_pending = zone_page_state_snapshot(zone,
4816 NR_ZONE_WRITE_PENDING);
4817
4818 if (2 * write_pending > reclaimable) {
4819 congestion_wait(BLK_RW_ASYNC, HZ/10);
4820 return true;
4821 }
4822 }
4823
4824 ret = true;
4825 goto out;
4826 }
4827 }
4828
4829 out:
4830 /*
4831 * Memory allocation/reclaim might be called from a WQ context and the
4832 * current implementation of the WQ concurrency control doesn't
4833 * recognize that a particular WQ is congested if the worker thread is
4834 * looping without ever sleeping. Therefore we have to do a short sleep
4835 * here rather than calling cond_resched().
4836 */
4837 if (current->flags & PF_WQ_WORKER)
4838 schedule_timeout_uninterruptible(1);
4839 else
4840 cond_resched();
4841 return ret;
4842 }
4843
4844 static inline bool
4845 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4846 {
4847 /*
4848 * It's possible that cpuset's mems_allowed and the nodemask from
4849 * mempolicy don't intersect. This should be normally dealt with by
4850 * policy_nodemask(), but it's possible to race with cpuset update in
4851 * such a way the check therein was true, and then it became false
4852 * before we got our cpuset_mems_cookie here.
4853 * This assumes that for all allocations, ac->nodemask can come only
4854 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4855 * when it does not intersect with the cpuset restrictions) or the
4856 * caller can deal with a violated nodemask.
4857 */
4858 if (cpusets_enabled() && ac->nodemask &&
4859 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4860 ac->nodemask = NULL;
4861 return true;
4862 }
4863
4864 /*
4865 * When updating a task's mems_allowed or mempolicy nodemask, it is
4866 * possible to race with parallel threads in such a way that our
4867 * allocation can fail while the mask is being updated. If we are about
4868 * to fail, check if the cpuset changed during allocation and if so,
4869 * retry.
4870 */
4871 if (read_mems_allowed_retry(cpuset_mems_cookie))
4872 return true;
4873
4874 return false;
4875 }
4876
4877 static inline struct page *
4878 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4879 struct alloc_context *ac)
4880 {
4881 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4882 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4883 struct page *page = NULL;
4884 unsigned int alloc_flags;
4885 unsigned long did_some_progress;
4886 enum compact_priority compact_priority;
4887 enum compact_result compact_result;
4888 int compaction_retries;
4889 int no_progress_loops;
4890 unsigned int cpuset_mems_cookie;
4891 int reserve_flags;
4892
4893 /*
4894 * We also sanity check to catch abuse of atomic reserves being used by
4895 * callers that are not in atomic context.
4896 */
4897 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4898 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4899 gfp_mask &= ~__GFP_ATOMIC;
4900
4901 retry_cpuset:
4902 compaction_retries = 0;
4903 no_progress_loops = 0;
4904 compact_priority = DEF_COMPACT_PRIORITY;
4905 cpuset_mems_cookie = read_mems_allowed_begin();
4906
4907 /*
4908 * The fast path uses conservative alloc_flags to succeed only until
4909 * kswapd needs to be woken up, and to avoid the cost of setting up
4910 * alloc_flags precisely. So we do that now.
4911 */
4912 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4913
4914 /*
4915 * We need to recalculate the starting point for the zonelist iterator
4916 * because we might have used different nodemask in the fast path, or
4917 * there was a cpuset modification and we are retrying - otherwise we
4918 * could end up iterating over non-eligible zones endlessly.
4919 */
4920 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4921 ac->highest_zoneidx, ac->nodemask);
4922 if (!ac->preferred_zoneref->zone)
4923 goto nopage;
4924
4925 if (alloc_flags & ALLOC_KSWAPD)
4926 wake_all_kswapds(order, gfp_mask, ac);
4927
4928 /*
4929 * The adjusted alloc_flags might result in immediate success, so try
4930 * that first
4931 */
4932 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4933 if (page)
4934 goto got_pg;
4935
4936 /*
4937 * For costly allocations, try direct compaction first, as it's likely
4938 * that we have enough base pages and don't need to reclaim. For non-
4939 * movable high-order allocations, do that as well, as compaction will
4940 * try prevent permanent fragmentation by migrating from blocks of the
4941 * same migratetype.
4942 * Don't try this for allocations that are allowed to ignore
4943 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4944 */
4945 if (can_direct_reclaim &&
4946 (costly_order ||
4947 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4948 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4949 page = __alloc_pages_direct_compact(gfp_mask, order,
4950 alloc_flags, ac,
4951 INIT_COMPACT_PRIORITY,
4952 &compact_result);
4953 if (page)
4954 goto got_pg;
4955
4956 /*
4957 * Checks for costly allocations with __GFP_NORETRY, which
4958 * includes some THP page fault allocations
4959 */
4960 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4961 /*
4962 * If allocating entire pageblock(s) and compaction
4963 * failed because all zones are below low watermarks
4964 * or is prohibited because it recently failed at this
4965 * order, fail immediately unless the allocator has
4966 * requested compaction and reclaim retry.
4967 *
4968 * Reclaim is
4969 * - potentially very expensive because zones are far
4970 * below their low watermarks or this is part of very
4971 * bursty high order allocations,
4972 * - not guaranteed to help because isolate_freepages()
4973 * may not iterate over freed pages as part of its
4974 * linear scan, and
4975 * - unlikely to make entire pageblocks free on its
4976 * own.
4977 */
4978 if (compact_result == COMPACT_SKIPPED ||
4979 compact_result == COMPACT_DEFERRED)
4980 goto nopage;
4981
4982 /*
4983 * Looks like reclaim/compaction is worth trying, but
4984 * sync compaction could be very expensive, so keep
4985 * using async compaction.
4986 */
4987 compact_priority = INIT_COMPACT_PRIORITY;
4988 }
4989 }
4990
4991 retry:
4992 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4993 if (alloc_flags & ALLOC_KSWAPD)
4994 wake_all_kswapds(order, gfp_mask, ac);
4995
4996 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4997 if (reserve_flags)
4998 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
4999
5000 /*
5001 * Reset the nodemask and zonelist iterators if memory policies can be
5002 * ignored. These allocations are high priority and system rather than
5003 * user oriented.
5004 */
5005 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5006 ac->nodemask = NULL;
5007 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5008 ac->highest_zoneidx, ac->nodemask);
5009 }
5010
5011 /* Attempt with potentially adjusted zonelist and alloc_flags */
5012 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5013 if (page)
5014 goto got_pg;
5015
5016 /* Caller is not willing to reclaim, we can't balance anything */
5017 if (!can_direct_reclaim)
5018 goto nopage;
5019
5020 /* Avoid recursion of direct reclaim */
5021 if (current->flags & PF_MEMALLOC)
5022 goto nopage;
5023
5024 /* Try direct reclaim and then allocating */
5025 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5026 &did_some_progress);
5027 if (page)
5028 goto got_pg;
5029
5030 /* Try direct compaction and then allocating */
5031 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5032 compact_priority, &compact_result);
5033 if (page)
5034 goto got_pg;
5035
5036 /* Do not loop if specifically requested */
5037 if (gfp_mask & __GFP_NORETRY)
5038 goto nopage;
5039
5040 /*
5041 * Do not retry costly high order allocations unless they are
5042 * __GFP_RETRY_MAYFAIL
5043 */
5044 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5045 goto nopage;
5046
5047 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5048 did_some_progress > 0, &no_progress_loops))
5049 goto retry;
5050
5051 /*
5052 * It doesn't make any sense to retry for the compaction if the order-0
5053 * reclaim is not able to make any progress because the current
5054 * implementation of the compaction depends on the sufficient amount
5055 * of free memory (see __compaction_suitable)
5056 */
5057 if (did_some_progress > 0 &&
5058 should_compact_retry(ac, order, alloc_flags,
5059 compact_result, &compact_priority,
5060 &compaction_retries))
5061 goto retry;
5062
5063
5064 /* Deal with possible cpuset update races before we start OOM killing */
5065 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5066 goto retry_cpuset;
5067
5068 /* Reclaim has failed us, start killing things */
5069 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5070 if (page)
5071 goto got_pg;
5072
5073 /* Avoid allocations with no watermarks from looping endlessly */
5074 if (tsk_is_oom_victim(current) &&
5075 (alloc_flags & ALLOC_OOM ||
5076 (gfp_mask & __GFP_NOMEMALLOC)))
5077 goto nopage;
5078
5079 /* Retry as long as the OOM killer is making progress */
5080 if (did_some_progress) {
5081 no_progress_loops = 0;
5082 goto retry;
5083 }
5084
5085 nopage:
5086 /* Deal with possible cpuset update races before we fail */
5087 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5088 goto retry_cpuset;
5089
5090 /*
5091 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5092 * we always retry
5093 */
5094 if (gfp_mask & __GFP_NOFAIL) {
5095 /*
5096 * All existing users of the __GFP_NOFAIL are blockable, so warn
5097 * of any new users that actually require GFP_NOWAIT
5098 */
5099 if (WARN_ON_ONCE(!can_direct_reclaim))
5100 goto fail;
5101
5102 /*
5103 * PF_MEMALLOC request from this context is rather bizarre
5104 * because we cannot reclaim anything and only can loop waiting
5105 * for somebody to do a work for us
5106 */
5107 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5108
5109 /*
5110 * non failing costly orders are a hard requirement which we
5111 * are not prepared for much so let's warn about these users
5112 * so that we can identify them and convert them to something
5113 * else.
5114 */
5115 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5116
5117 /*
5118 * Help non-failing allocations by giving them access to memory
5119 * reserves but do not use ALLOC_NO_WATERMARKS because this
5120 * could deplete whole memory reserves which would just make
5121 * the situation worse
5122 */
5123 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5124 if (page)
5125 goto got_pg;
5126
5127 cond_resched();
5128 goto retry;
5129 }
5130 fail:
5131 warn_alloc(gfp_mask, ac->nodemask,
5132 "page allocation failure: order:%u", order);
5133 got_pg:
5134 return page;
5135 }
5136
5137 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5138 int preferred_nid, nodemask_t *nodemask,
5139 struct alloc_context *ac, gfp_t *alloc_gfp,
5140 unsigned int *alloc_flags)
5141 {
5142 ac->highest_zoneidx = gfp_zone(gfp_mask);
5143 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5144 ac->nodemask = nodemask;
5145 ac->migratetype = gfp_migratetype(gfp_mask);
5146
5147 if (cpusets_enabled()) {
5148 *alloc_gfp |= __GFP_HARDWALL;
5149 /*
5150 * When we are in the interrupt context, it is irrelevant
5151 * to the current task context. It means that any node ok.
5152 */
5153 if (in_task() && !ac->nodemask)
5154 ac->nodemask = &cpuset_current_mems_allowed;
5155 else
5156 *alloc_flags |= ALLOC_CPUSET;
5157 }
5158
5159 fs_reclaim_acquire(gfp_mask);
5160 fs_reclaim_release(gfp_mask);
5161
5162 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5163
5164 if (should_fail_alloc_page(gfp_mask, order))
5165 return false;
5166
5167 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5168
5169 /* Dirty zone balancing only done in the fast path */
5170 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5171
5172 /*
5173 * The preferred zone is used for statistics but crucially it is
5174 * also used as the starting point for the zonelist iterator. It
5175 * may get reset for allocations that ignore memory policies.
5176 */
5177 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5178 ac->highest_zoneidx, ac->nodemask);
5179
5180 return true;
5181 }
5182
5183 /*
5184 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5185 * @gfp: GFP flags for the allocation
5186 * @preferred_nid: The preferred NUMA node ID to allocate from
5187 * @nodemask: Set of nodes to allocate from, may be NULL
5188 * @nr_pages: The number of pages desired on the list or array
5189 * @page_list: Optional list to store the allocated pages
5190 * @page_array: Optional array to store the pages
5191 *
5192 * This is a batched version of the page allocator that attempts to
5193 * allocate nr_pages quickly. Pages are added to page_list if page_list
5194 * is not NULL, otherwise it is assumed that the page_array is valid.
5195 *
5196 * For lists, nr_pages is the number of pages that should be allocated.
5197 *
5198 * For arrays, only NULL elements are populated with pages and nr_pages
5199 * is the maximum number of pages that will be stored in the array.
5200 *
5201 * Returns the number of pages on the list or array.
5202 */
5203 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5204 nodemask_t *nodemask, int nr_pages,
5205 struct list_head *page_list,
5206 struct page **page_array)
5207 {
5208 struct page *page;
5209 unsigned long flags;
5210 struct zone *zone;
5211 struct zoneref *z;
5212 struct per_cpu_pages *pcp;
5213 struct list_head *pcp_list;
5214 struct alloc_context ac;
5215 gfp_t alloc_gfp;
5216 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5217 int nr_populated = 0, nr_account = 0;
5218
5219 /*
5220 * Skip populated array elements to determine if any pages need
5221 * to be allocated before disabling IRQs.
5222 */
5223 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5224 nr_populated++;
5225
5226 /* No pages requested? */
5227 if (unlikely(nr_pages <= 0))
5228 goto out;
5229
5230 /* Already populated array? */
5231 if (unlikely(page_array && nr_pages - nr_populated == 0))
5232 goto out;
5233
5234 /* Bulk allocator does not support memcg accounting. */
5235 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5236 goto failed;
5237
5238 /* Use the single page allocator for one page. */
5239 if (nr_pages - nr_populated == 1)
5240 goto failed;
5241
5242 #ifdef CONFIG_PAGE_OWNER
5243 /*
5244 * PAGE_OWNER may recurse into the allocator to allocate space to
5245 * save the stack with pagesets.lock held. Releasing/reacquiring
5246 * removes much of the performance benefit of bulk allocation so
5247 * force the caller to allocate one page at a time as it'll have
5248 * similar performance to added complexity to the bulk allocator.
5249 */
5250 if (static_branch_unlikely(&page_owner_inited))
5251 goto failed;
5252 #endif
5253
5254 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5255 gfp &= gfp_allowed_mask;
5256 alloc_gfp = gfp;
5257 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5258 goto out;
5259 gfp = alloc_gfp;
5260
5261 /* Find an allowed local zone that meets the low watermark. */
5262 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5263 unsigned long mark;
5264
5265 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5266 !__cpuset_zone_allowed(zone, gfp)) {
5267 continue;
5268 }
5269
5270 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5271 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5272 goto failed;
5273 }
5274
5275 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5276 if (zone_watermark_fast(zone, 0, mark,
5277 zonelist_zone_idx(ac.preferred_zoneref),
5278 alloc_flags, gfp)) {
5279 break;
5280 }
5281 }
5282
5283 /*
5284 * If there are no allowed local zones that meets the watermarks then
5285 * try to allocate a single page and reclaim if necessary.
5286 */
5287 if (unlikely(!zone))
5288 goto failed;
5289
5290 /* Attempt the batch allocation */
5291 local_lock_irqsave(&pagesets.lock, flags);
5292 pcp = this_cpu_ptr(zone->per_cpu_pageset);
5293 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5294
5295 while (nr_populated < nr_pages) {
5296
5297 /* Skip existing pages */
5298 if (page_array && page_array[nr_populated]) {
5299 nr_populated++;
5300 continue;
5301 }
5302
5303 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5304 pcp, pcp_list);
5305 if (unlikely(!page)) {
5306 /* Try and allocate at least one page */
5307 if (!nr_account)
5308 goto failed_irq;
5309 break;
5310 }
5311 nr_account++;
5312
5313 prep_new_page(page, 0, gfp, 0);
5314 if (page_list)
5315 list_add(&page->lru, page_list);
5316 else
5317 page_array[nr_populated] = page;
5318 nr_populated++;
5319 }
5320
5321 local_unlock_irqrestore(&pagesets.lock, flags);
5322
5323 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5324 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5325
5326 out:
5327 return nr_populated;
5328
5329 failed_irq:
5330 local_unlock_irqrestore(&pagesets.lock, flags);
5331
5332 failed:
5333 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5334 if (page) {
5335 if (page_list)
5336 list_add(&page->lru, page_list);
5337 else
5338 page_array[nr_populated] = page;
5339 nr_populated++;
5340 }
5341
5342 goto out;
5343 }
5344 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5345
5346 /*
5347 * This is the 'heart' of the zoned buddy allocator.
5348 */
5349 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5350 nodemask_t *nodemask)
5351 {
5352 struct page *page;
5353 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5354 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5355 struct alloc_context ac = { };
5356
5357 /*
5358 * There are several places where we assume that the order value is sane
5359 * so bail out early if the request is out of bound.
5360 */
5361 if (unlikely(order >= MAX_ORDER)) {
5362 WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5363 return NULL;
5364 }
5365
5366 gfp &= gfp_allowed_mask;
5367 /*
5368 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5369 * resp. GFP_NOIO which has to be inherited for all allocation requests
5370 * from a particular context which has been marked by
5371 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5372 * movable zones are not used during allocation.
5373 */
5374 gfp = current_gfp_context(gfp);
5375 alloc_gfp = gfp;
5376 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5377 &alloc_gfp, &alloc_flags))
5378 return NULL;
5379
5380 /*
5381 * Forbid the first pass from falling back to types that fragment
5382 * memory until all local zones are considered.
5383 */
5384 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5385
5386 /* First allocation attempt */
5387 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5388 if (likely(page))
5389 goto out;
5390
5391 alloc_gfp = gfp;
5392 ac.spread_dirty_pages = false;
5393
5394 /*
5395 * Restore the original nodemask if it was potentially replaced with
5396 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5397 */
5398 ac.nodemask = nodemask;
5399
5400 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5401
5402 out:
5403 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5404 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5405 __free_pages(page, order);
5406 page = NULL;
5407 }
5408
5409 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5410
5411 return page;
5412 }
5413 EXPORT_SYMBOL(__alloc_pages);
5414
5415 /*
5416 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5417 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5418 * you need to access high mem.
5419 */
5420 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5421 {
5422 struct page *page;
5423
5424 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5425 if (!page)
5426 return 0;
5427 return (unsigned long) page_address(page);
5428 }
5429 EXPORT_SYMBOL(__get_free_pages);
5430
5431 unsigned long get_zeroed_page(gfp_t gfp_mask)
5432 {
5433 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5434 }
5435 EXPORT_SYMBOL(get_zeroed_page);
5436
5437 /**
5438 * __free_pages - Free pages allocated with alloc_pages().
5439 * @page: The page pointer returned from alloc_pages().
5440 * @order: The order of the allocation.
5441 *
5442 * This function can free multi-page allocations that are not compound
5443 * pages. It does not check that the @order passed in matches that of
5444 * the allocation, so it is easy to leak memory. Freeing more memory
5445 * than was allocated will probably emit a warning.
5446 *
5447 * If the last reference to this page is speculative, it will be released
5448 * by put_page() which only frees the first page of a non-compound
5449 * allocation. To prevent the remaining pages from being leaked, we free
5450 * the subsequent pages here. If you want to use the page's reference
5451 * count to decide when to free the allocation, you should allocate a
5452 * compound page, and use put_page() instead of __free_pages().
5453 *
5454 * Context: May be called in interrupt context or while holding a normal
5455 * spinlock, but not in NMI context or while holding a raw spinlock.
5456 */
5457 void __free_pages(struct page *page, unsigned int order)
5458 {
5459 if (put_page_testzero(page))
5460 free_the_page(page, order);
5461 else if (!PageHead(page))
5462 while (order-- > 0)
5463 free_the_page(page + (1 << order), order);
5464 }
5465 EXPORT_SYMBOL(__free_pages);
5466
5467 void free_pages(unsigned long addr, unsigned int order)
5468 {
5469 if (addr != 0) {
5470 VM_BUG_ON(!virt_addr_valid((void *)addr));
5471 __free_pages(virt_to_page((void *)addr), order);
5472 }
5473 }
5474
5475 EXPORT_SYMBOL(free_pages);
5476
5477 /*
5478 * Page Fragment:
5479 * An arbitrary-length arbitrary-offset area of memory which resides
5480 * within a 0 or higher order page. Multiple fragments within that page
5481 * are individually refcounted, in the page's reference counter.
5482 *
5483 * The page_frag functions below provide a simple allocation framework for
5484 * page fragments. This is used by the network stack and network device
5485 * drivers to provide a backing region of memory for use as either an
5486 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5487 */
5488 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5489 gfp_t gfp_mask)
5490 {
5491 struct page *page = NULL;
5492 gfp_t gfp = gfp_mask;
5493
5494 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5495 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5496 __GFP_NOMEMALLOC;
5497 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5498 PAGE_FRAG_CACHE_MAX_ORDER);
5499 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5500 #endif
5501 if (unlikely(!page))
5502 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5503
5504 nc->va = page ? page_address(page) : NULL;
5505
5506 return page;
5507 }
5508
5509 void __page_frag_cache_drain(struct page *page, unsigned int count)
5510 {
5511 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5512
5513 if (page_ref_sub_and_test(page, count))
5514 free_the_page(page, compound_order(page));
5515 }
5516 EXPORT_SYMBOL(__page_frag_cache_drain);
5517
5518 void *page_frag_alloc_align(struct page_frag_cache *nc,
5519 unsigned int fragsz, gfp_t gfp_mask,
5520 unsigned int align_mask)
5521 {
5522 unsigned int size = PAGE_SIZE;
5523 struct page *page;
5524 int offset;
5525
5526 if (unlikely(!nc->va)) {
5527 refill:
5528 page = __page_frag_cache_refill(nc, gfp_mask);
5529 if (!page)
5530 return NULL;
5531
5532 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5533 /* if size can vary use size else just use PAGE_SIZE */
5534 size = nc->size;
5535 #endif
5536 /* Even if we own the page, we do not use atomic_set().
5537 * This would break get_page_unless_zero() users.
5538 */
5539 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5540
5541 /* reset page count bias and offset to start of new frag */
5542 nc->pfmemalloc = page_is_pfmemalloc(page);
5543 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5544 nc->offset = size;
5545 }
5546
5547 offset = nc->offset - fragsz;
5548 if (unlikely(offset < 0)) {
5549 page = virt_to_page(nc->va);
5550
5551 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5552 goto refill;
5553
5554 if (unlikely(nc->pfmemalloc)) {
5555 free_the_page(page, compound_order(page));
5556 goto refill;
5557 }
5558
5559 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5560 /* if size can vary use size else just use PAGE_SIZE */
5561 size = nc->size;
5562 #endif
5563 /* OK, page count is 0, we can safely set it */
5564 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5565
5566 /* reset page count bias and offset to start of new frag */
5567 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5568 offset = size - fragsz;
5569 }
5570
5571 nc->pagecnt_bias--;
5572 offset &= align_mask;
5573 nc->offset = offset;
5574
5575 return nc->va + offset;
5576 }
5577 EXPORT_SYMBOL(page_frag_alloc_align);
5578
5579 /*
5580 * Frees a page fragment allocated out of either a compound or order 0 page.
5581 */
5582 void page_frag_free(void *addr)
5583 {
5584 struct page *page = virt_to_head_page(addr);
5585
5586 if (unlikely(put_page_testzero(page)))
5587 free_the_page(page, compound_order(page));
5588 }
5589 EXPORT_SYMBOL(page_frag_free);
5590
5591 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5592 size_t size)
5593 {
5594 if (addr) {
5595 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5596 unsigned long used = addr + PAGE_ALIGN(size);
5597
5598 split_page(virt_to_page((void *)addr), order);
5599 while (used < alloc_end) {
5600 free_page(used);
5601 used += PAGE_SIZE;
5602 }
5603 }
5604 return (void *)addr;
5605 }
5606
5607 /**
5608 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5609 * @size: the number of bytes to allocate
5610 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5611 *
5612 * This function is similar to alloc_pages(), except that it allocates the
5613 * minimum number of pages to satisfy the request. alloc_pages() can only
5614 * allocate memory in power-of-two pages.
5615 *
5616 * This function is also limited by MAX_ORDER.
5617 *
5618 * Memory allocated by this function must be released by free_pages_exact().
5619 *
5620 * Return: pointer to the allocated area or %NULL in case of error.
5621 */
5622 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5623 {
5624 unsigned int order = get_order(size);
5625 unsigned long addr;
5626
5627 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5628 gfp_mask &= ~__GFP_COMP;
5629
5630 addr = __get_free_pages(gfp_mask, order);
5631 return make_alloc_exact(addr, order, size);
5632 }
5633 EXPORT_SYMBOL(alloc_pages_exact);
5634
5635 /**
5636 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5637 * pages on a node.
5638 * @nid: the preferred node ID where memory should be allocated
5639 * @size: the number of bytes to allocate
5640 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5641 *
5642 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5643 * back.
5644 *
5645 * Return: pointer to the allocated area or %NULL in case of error.
5646 */
5647 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5648 {
5649 unsigned int order = get_order(size);
5650 struct page *p;
5651
5652 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5653 gfp_mask &= ~__GFP_COMP;
5654
5655 p = alloc_pages_node(nid, gfp_mask, order);
5656 if (!p)
5657 return NULL;
5658 return make_alloc_exact((unsigned long)page_address(p), order, size);
5659 }
5660
5661 /**
5662 * free_pages_exact - release memory allocated via alloc_pages_exact()
5663 * @virt: the value returned by alloc_pages_exact.
5664 * @size: size of allocation, same value as passed to alloc_pages_exact().
5665 *
5666 * Release the memory allocated by a previous call to alloc_pages_exact.
5667 */
5668 void free_pages_exact(void *virt, size_t size)
5669 {
5670 unsigned long addr = (unsigned long)virt;
5671 unsigned long end = addr + PAGE_ALIGN(size);
5672
5673 while (addr < end) {
5674 free_page(addr);
5675 addr += PAGE_SIZE;
5676 }
5677 }
5678 EXPORT_SYMBOL(free_pages_exact);
5679
5680 /**
5681 * nr_free_zone_pages - count number of pages beyond high watermark
5682 * @offset: The zone index of the highest zone
5683 *
5684 * nr_free_zone_pages() counts the number of pages which are beyond the
5685 * high watermark within all zones at or below a given zone index. For each
5686 * zone, the number of pages is calculated as:
5687 *
5688 * nr_free_zone_pages = managed_pages - high_pages
5689 *
5690 * Return: number of pages beyond high watermark.
5691 */
5692 static unsigned long nr_free_zone_pages(int offset)
5693 {
5694 struct zoneref *z;
5695 struct zone *zone;
5696
5697 /* Just pick one node, since fallback list is circular */
5698 unsigned long sum = 0;
5699
5700 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5701
5702 for_each_zone_zonelist(zone, z, zonelist, offset) {
5703 unsigned long size = zone_managed_pages(zone);
5704 unsigned long high = high_wmark_pages(zone);
5705 if (size > high)
5706 sum += size - high;
5707 }
5708
5709 return sum;
5710 }
5711
5712 /**
5713 * nr_free_buffer_pages - count number of pages beyond high watermark
5714 *
5715 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5716 * watermark within ZONE_DMA and ZONE_NORMAL.
5717 *
5718 * Return: number of pages beyond high watermark within ZONE_DMA and
5719 * ZONE_NORMAL.
5720 */
5721 unsigned long nr_free_buffer_pages(void)
5722 {
5723 return nr_free_zone_pages(gfp_zone(GFP_USER));
5724 }
5725 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5726
5727 static inline void show_node(struct zone *zone)
5728 {
5729 if (IS_ENABLED(CONFIG_NUMA))
5730 printk("Node %d ", zone_to_nid(zone));
5731 }
5732
5733 long si_mem_available(void)
5734 {
5735 long available;
5736 unsigned long pagecache;
5737 unsigned long wmark_low = 0;
5738 unsigned long pages[NR_LRU_LISTS];
5739 unsigned long reclaimable;
5740 struct zone *zone;
5741 int lru;
5742
5743 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5744 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5745
5746 for_each_zone(zone)
5747 wmark_low += low_wmark_pages(zone);
5748
5749 /*
5750 * Estimate the amount of memory available for userspace allocations,
5751 * without causing swapping.
5752 */
5753 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5754
5755 /*
5756 * Not all the page cache can be freed, otherwise the system will
5757 * start swapping. Assume at least half of the page cache, or the
5758 * low watermark worth of cache, needs to stay.
5759 */
5760 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5761 pagecache -= min(pagecache / 2, wmark_low);
5762 available += pagecache;
5763
5764 /*
5765 * Part of the reclaimable slab and other kernel memory consists of
5766 * items that are in use, and cannot be freed. Cap this estimate at the
5767 * low watermark.
5768 */
5769 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5770 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5771 available += reclaimable - min(reclaimable / 2, wmark_low);
5772
5773 if (available < 0)
5774 available = 0;
5775 return available;
5776 }
5777 EXPORT_SYMBOL_GPL(si_mem_available);
5778
5779 void si_meminfo(struct sysinfo *val)
5780 {
5781 val->totalram = totalram_pages();
5782 val->sharedram = global_node_page_state(NR_SHMEM);
5783 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5784 val->bufferram = nr_blockdev_pages();
5785 val->totalhigh = totalhigh_pages();
5786 val->freehigh = nr_free_highpages();
5787 val->mem_unit = PAGE_SIZE;
5788 }
5789
5790 EXPORT_SYMBOL(si_meminfo);
5791
5792 #ifdef CONFIG_NUMA
5793 void si_meminfo_node(struct sysinfo *val, int nid)
5794 {
5795 int zone_type; /* needs to be signed */
5796 unsigned long managed_pages = 0;
5797 unsigned long managed_highpages = 0;
5798 unsigned long free_highpages = 0;
5799 pg_data_t *pgdat = NODE_DATA(nid);
5800
5801 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5802 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5803 val->totalram = managed_pages;
5804 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5805 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5806 #ifdef CONFIG_HIGHMEM
5807 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5808 struct zone *zone = &pgdat->node_zones[zone_type];
5809
5810 if (is_highmem(zone)) {
5811 managed_highpages += zone_managed_pages(zone);
5812 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5813 }
5814 }
5815 val->totalhigh = managed_highpages;
5816 val->freehigh = free_highpages;
5817 #else
5818 val->totalhigh = managed_highpages;
5819 val->freehigh = free_highpages;
5820 #endif
5821 val->mem_unit = PAGE_SIZE;
5822 }
5823 #endif
5824
5825 /*
5826 * Determine whether the node should be displayed or not, depending on whether
5827 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5828 */
5829 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5830 {
5831 if (!(flags & SHOW_MEM_FILTER_NODES))
5832 return false;
5833
5834 /*
5835 * no node mask - aka implicit memory numa policy. Do not bother with
5836 * the synchronization - read_mems_allowed_begin - because we do not
5837 * have to be precise here.
5838 */
5839 if (!nodemask)
5840 nodemask = &cpuset_current_mems_allowed;
5841
5842 return !node_isset(nid, *nodemask);
5843 }
5844
5845 #define K(x) ((x) << (PAGE_SHIFT-10))
5846
5847 static void show_migration_types(unsigned char type)
5848 {
5849 static const char types[MIGRATE_TYPES] = {
5850 [MIGRATE_UNMOVABLE] = 'U',
5851 [MIGRATE_MOVABLE] = 'M',
5852 [MIGRATE_RECLAIMABLE] = 'E',
5853 [MIGRATE_HIGHATOMIC] = 'H',
5854 #ifdef CONFIG_CMA
5855 [MIGRATE_CMA] = 'C',
5856 #endif
5857 #ifdef CONFIG_MEMORY_ISOLATION
5858 [MIGRATE_ISOLATE] = 'I',
5859 #endif
5860 };
5861 char tmp[MIGRATE_TYPES + 1];
5862 char *p = tmp;
5863 int i;
5864
5865 for (i = 0; i < MIGRATE_TYPES; i++) {
5866 if (type & (1 << i))
5867 *p++ = types[i];
5868 }
5869
5870 *p = '\0';
5871 printk(KERN_CONT "(%s) ", tmp);
5872 }
5873
5874 /*
5875 * Show free area list (used inside shift_scroll-lock stuff)
5876 * We also calculate the percentage fragmentation. We do this by counting the
5877 * memory on each free list with the exception of the first item on the list.
5878 *
5879 * Bits in @filter:
5880 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5881 * cpuset.
5882 */
5883 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5884 {
5885 unsigned long free_pcp = 0;
5886 int cpu;
5887 struct zone *zone;
5888 pg_data_t *pgdat;
5889
5890 for_each_populated_zone(zone) {
5891 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5892 continue;
5893
5894 for_each_online_cpu(cpu)
5895 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5896 }
5897
5898 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5899 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5900 " unevictable:%lu dirty:%lu writeback:%lu\n"
5901 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5902 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5903 " kernel_misc_reclaimable:%lu\n"
5904 " free:%lu free_pcp:%lu free_cma:%lu\n",
5905 global_node_page_state(NR_ACTIVE_ANON),
5906 global_node_page_state(NR_INACTIVE_ANON),
5907 global_node_page_state(NR_ISOLATED_ANON),
5908 global_node_page_state(NR_ACTIVE_FILE),
5909 global_node_page_state(NR_INACTIVE_FILE),
5910 global_node_page_state(NR_ISOLATED_FILE),
5911 global_node_page_state(NR_UNEVICTABLE),
5912 global_node_page_state(NR_FILE_DIRTY),
5913 global_node_page_state(NR_WRITEBACK),
5914 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5915 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5916 global_node_page_state(NR_FILE_MAPPED),
5917 global_node_page_state(NR_SHMEM),
5918 global_node_page_state(NR_PAGETABLE),
5919 global_zone_page_state(NR_BOUNCE),
5920 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
5921 global_zone_page_state(NR_FREE_PAGES),
5922 free_pcp,
5923 global_zone_page_state(NR_FREE_CMA_PAGES));
5924
5925 for_each_online_pgdat(pgdat) {
5926 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5927 continue;
5928
5929 printk("Node %d"
5930 " active_anon:%lukB"
5931 " inactive_anon:%lukB"
5932 " active_file:%lukB"
5933 " inactive_file:%lukB"
5934 " unevictable:%lukB"
5935 " isolated(anon):%lukB"
5936 " isolated(file):%lukB"
5937 " mapped:%lukB"
5938 " dirty:%lukB"
5939 " writeback:%lukB"
5940 " shmem:%lukB"
5941 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5942 " shmem_thp: %lukB"
5943 " shmem_pmdmapped: %lukB"
5944 " anon_thp: %lukB"
5945 #endif
5946 " writeback_tmp:%lukB"
5947 " kernel_stack:%lukB"
5948 #ifdef CONFIG_SHADOW_CALL_STACK
5949 " shadow_call_stack:%lukB"
5950 #endif
5951 " pagetables:%lukB"
5952 " all_unreclaimable? %s"
5953 "\n",
5954 pgdat->node_id,
5955 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5956 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5957 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5958 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5959 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5960 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5961 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5962 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5963 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5964 K(node_page_state(pgdat, NR_WRITEBACK)),
5965 K(node_page_state(pgdat, NR_SHMEM)),
5966 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5967 K(node_page_state(pgdat, NR_SHMEM_THPS)),
5968 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5969 K(node_page_state(pgdat, NR_ANON_THPS)),
5970 #endif
5971 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5972 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5973 #ifdef CONFIG_SHADOW_CALL_STACK
5974 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5975 #endif
5976 K(node_page_state(pgdat, NR_PAGETABLE)),
5977 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5978 "yes" : "no");
5979 }
5980
5981 for_each_populated_zone(zone) {
5982 int i;
5983
5984 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5985 continue;
5986
5987 free_pcp = 0;
5988 for_each_online_cpu(cpu)
5989 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5990
5991 show_node(zone);
5992 printk(KERN_CONT
5993 "%s"
5994 " free:%lukB"
5995 " min:%lukB"
5996 " low:%lukB"
5997 " high:%lukB"
5998 " reserved_highatomic:%luKB"
5999 " active_anon:%lukB"
6000 " inactive_anon:%lukB"
6001 " active_file:%lukB"
6002 " inactive_file:%lukB"
6003 " unevictable:%lukB"
6004 " writepending:%lukB"
6005 " present:%lukB"
6006 " managed:%lukB"
6007 " mlocked:%lukB"
6008 " bounce:%lukB"
6009 " free_pcp:%lukB"
6010 " local_pcp:%ukB"
6011 " free_cma:%lukB"
6012 "\n",
6013 zone->name,
6014 K(zone_page_state(zone, NR_FREE_PAGES)),
6015 K(min_wmark_pages(zone)),
6016 K(low_wmark_pages(zone)),
6017 K(high_wmark_pages(zone)),
6018 K(zone->nr_reserved_highatomic),
6019 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6020 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6021 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6022 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6023 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6024 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6025 K(zone->present_pages),
6026 K(zone_managed_pages(zone)),
6027 K(zone_page_state(zone, NR_MLOCK)),
6028 K(zone_page_state(zone, NR_BOUNCE)),
6029 K(free_pcp),
6030 K(this_cpu_read(zone->per_cpu_pageset->count)),
6031 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6032 printk("lowmem_reserve[]:");
6033 for (i = 0; i < MAX_NR_ZONES; i++)
6034 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6035 printk(KERN_CONT "\n");
6036 }
6037
6038 for_each_populated_zone(zone) {
6039 unsigned int order;
6040 unsigned long nr[MAX_ORDER], flags, total = 0;
6041 unsigned char types[MAX_ORDER];
6042
6043 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6044 continue;
6045 show_node(zone);
6046 printk(KERN_CONT "%s: ", zone->name);
6047
6048 spin_lock_irqsave(&zone->lock, flags);
6049 for (order = 0; order < MAX_ORDER; order++) {
6050 struct free_area *area = &zone->free_area[order];
6051 int type;
6052
6053 nr[order] = area->nr_free;
6054 total += nr[order] << order;
6055
6056 types[order] = 0;
6057 for (type = 0; type < MIGRATE_TYPES; type++) {
6058 if (!free_area_empty(area, type))
6059 types[order] |= 1 << type;
6060 }
6061 }
6062 spin_unlock_irqrestore(&zone->lock, flags);
6063 for (order = 0; order < MAX_ORDER; order++) {
6064 printk(KERN_CONT "%lu*%lukB ",
6065 nr[order], K(1UL) << order);
6066 if (nr[order])
6067 show_migration_types(types[order]);
6068 }
6069 printk(KERN_CONT "= %lukB\n", K(total));
6070 }
6071
6072 hugetlb_show_meminfo();
6073
6074 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6075
6076 show_swap_cache_info();
6077 }
6078
6079 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6080 {
6081 zoneref->zone = zone;
6082 zoneref->zone_idx = zone_idx(zone);
6083 }
6084
6085 /*
6086 * Builds allocation fallback zone lists.
6087 *
6088 * Add all populated zones of a node to the zonelist.
6089 */
6090 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6091 {
6092 struct zone *zone;
6093 enum zone_type zone_type = MAX_NR_ZONES;
6094 int nr_zones = 0;
6095
6096 do {
6097 zone_type--;
6098 zone = pgdat->node_zones + zone_type;
6099 if (populated_zone(zone)) {
6100 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6101 check_highest_zone(zone_type);
6102 }
6103 } while (zone_type);
6104
6105 return nr_zones;
6106 }
6107
6108 #ifdef CONFIG_NUMA
6109
6110 static int __parse_numa_zonelist_order(char *s)
6111 {
6112 /*
6113 * We used to support different zonelists modes but they turned
6114 * out to be just not useful. Let's keep the warning in place
6115 * if somebody still use the cmd line parameter so that we do
6116 * not fail it silently
6117 */
6118 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6119 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6120 return -EINVAL;
6121 }
6122 return 0;
6123 }
6124
6125 char numa_zonelist_order[] = "Node";
6126
6127 /*
6128 * sysctl handler for numa_zonelist_order
6129 */
6130 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6131 void *buffer, size_t *length, loff_t *ppos)
6132 {
6133 if (write)
6134 return __parse_numa_zonelist_order(buffer);
6135 return proc_dostring(table, write, buffer, length, ppos);
6136 }
6137
6138
6139 #define MAX_NODE_LOAD (nr_online_nodes)
6140 static int node_load[MAX_NUMNODES];
6141
6142 /**
6143 * find_next_best_node - find the next node that should appear in a given node's fallback list
6144 * @node: node whose fallback list we're appending
6145 * @used_node_mask: nodemask_t of already used nodes
6146 *
6147 * We use a number of factors to determine which is the next node that should
6148 * appear on a given node's fallback list. The node should not have appeared
6149 * already in @node's fallback list, and it should be the next closest node
6150 * according to the distance array (which contains arbitrary distance values
6151 * from each node to each node in the system), and should also prefer nodes
6152 * with no CPUs, since presumably they'll have very little allocation pressure
6153 * on them otherwise.
6154 *
6155 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6156 */
6157 int find_next_best_node(int node, nodemask_t *used_node_mask)
6158 {
6159 int n, val;
6160 int min_val = INT_MAX;
6161 int best_node = NUMA_NO_NODE;
6162
6163 /* Use the local node if we haven't already */
6164 if (!node_isset(node, *used_node_mask)) {
6165 node_set(node, *used_node_mask);
6166 return node;
6167 }
6168
6169 for_each_node_state(n, N_MEMORY) {
6170
6171 /* Don't want a node to appear more than once */
6172 if (node_isset(n, *used_node_mask))
6173 continue;
6174
6175 /* Use the distance array to find the distance */
6176 val = node_distance(node, n);
6177
6178 /* Penalize nodes under us ("prefer the next node") */
6179 val += (n < node);
6180
6181 /* Give preference to headless and unused nodes */
6182 if (!cpumask_empty(cpumask_of_node(n)))
6183 val += PENALTY_FOR_NODE_WITH_CPUS;
6184
6185 /* Slight preference for less loaded node */
6186 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6187 val += node_load[n];
6188
6189 if (val < min_val) {
6190 min_val = val;
6191 best_node = n;
6192 }
6193 }
6194
6195 if (best_node >= 0)
6196 node_set(best_node, *used_node_mask);
6197
6198 return best_node;
6199 }
6200
6201
6202 /*
6203 * Build zonelists ordered by node and zones within node.
6204 * This results in maximum locality--normal zone overflows into local
6205 * DMA zone, if any--but risks exhausting DMA zone.
6206 */
6207 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6208 unsigned nr_nodes)
6209 {
6210 struct zoneref *zonerefs;
6211 int i;
6212
6213 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6214
6215 for (i = 0; i < nr_nodes; i++) {
6216 int nr_zones;
6217
6218 pg_data_t *node = NODE_DATA(node_order[i]);
6219
6220 nr_zones = build_zonerefs_node(node, zonerefs);
6221 zonerefs += nr_zones;
6222 }
6223 zonerefs->zone = NULL;
6224 zonerefs->zone_idx = 0;
6225 }
6226
6227 /*
6228 * Build gfp_thisnode zonelists
6229 */
6230 static void build_thisnode_zonelists(pg_data_t *pgdat)
6231 {
6232 struct zoneref *zonerefs;
6233 int nr_zones;
6234
6235 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6236 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6237 zonerefs += nr_zones;
6238 zonerefs->zone = NULL;
6239 zonerefs->zone_idx = 0;
6240 }
6241
6242 /*
6243 * Build zonelists ordered by zone and nodes within zones.
6244 * This results in conserving DMA zone[s] until all Normal memory is
6245 * exhausted, but results in overflowing to remote node while memory
6246 * may still exist in local DMA zone.
6247 */
6248
6249 static void build_zonelists(pg_data_t *pgdat)
6250 {
6251 static int node_order[MAX_NUMNODES];
6252 int node, load, nr_nodes = 0;
6253 nodemask_t used_mask = NODE_MASK_NONE;
6254 int local_node, prev_node;
6255
6256 /* NUMA-aware ordering of nodes */
6257 local_node = pgdat->node_id;
6258 load = nr_online_nodes;
6259 prev_node = local_node;
6260
6261 memset(node_order, 0, sizeof(node_order));
6262 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6263 /*
6264 * We don't want to pressure a particular node.
6265 * So adding penalty to the first node in same
6266 * distance group to make it round-robin.
6267 */
6268 if (node_distance(local_node, node) !=
6269 node_distance(local_node, prev_node))
6270 node_load[node] = load;
6271
6272 node_order[nr_nodes++] = node;
6273 prev_node = node;
6274 load--;
6275 }
6276
6277 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6278 build_thisnode_zonelists(pgdat);
6279 }
6280
6281 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6282 /*
6283 * Return node id of node used for "local" allocations.
6284 * I.e., first node id of first zone in arg node's generic zonelist.
6285 * Used for initializing percpu 'numa_mem', which is used primarily
6286 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6287 */
6288 int local_memory_node(int node)
6289 {
6290 struct zoneref *z;
6291
6292 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6293 gfp_zone(GFP_KERNEL),
6294 NULL);
6295 return zone_to_nid(z->zone);
6296 }
6297 #endif
6298
6299 static void setup_min_unmapped_ratio(void);
6300 static void setup_min_slab_ratio(void);
6301 #else /* CONFIG_NUMA */
6302
6303 static void build_zonelists(pg_data_t *pgdat)
6304 {
6305 int node, local_node;
6306 struct zoneref *zonerefs;
6307 int nr_zones;
6308
6309 local_node = pgdat->node_id;
6310
6311 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6312 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6313 zonerefs += nr_zones;
6314
6315 /*
6316 * Now we build the zonelist so that it contains the zones
6317 * of all the other nodes.
6318 * We don't want to pressure a particular node, so when
6319 * building the zones for node N, we make sure that the
6320 * zones coming right after the local ones are those from
6321 * node N+1 (modulo N)
6322 */
6323 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6324 if (!node_online(node))
6325 continue;
6326 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6327 zonerefs += nr_zones;
6328 }
6329 for (node = 0; node < local_node; node++) {
6330 if (!node_online(node))
6331 continue;
6332 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6333 zonerefs += nr_zones;
6334 }
6335
6336 zonerefs->zone = NULL;
6337 zonerefs->zone_idx = 0;
6338 }
6339
6340 #endif /* CONFIG_NUMA */
6341
6342 /*
6343 * Boot pageset table. One per cpu which is going to be used for all
6344 * zones and all nodes. The parameters will be set in such a way
6345 * that an item put on a list will immediately be handed over to
6346 * the buddy list. This is safe since pageset manipulation is done
6347 * with interrupts disabled.
6348 *
6349 * The boot_pagesets must be kept even after bootup is complete for
6350 * unused processors and/or zones. They do play a role for bootstrapping
6351 * hotplugged processors.
6352 *
6353 * zoneinfo_show() and maybe other functions do
6354 * not check if the processor is online before following the pageset pointer.
6355 * Other parts of the kernel may not check if the zone is available.
6356 */
6357 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6358 /* These effectively disable the pcplists in the boot pageset completely */
6359 #define BOOT_PAGESET_HIGH 0
6360 #define BOOT_PAGESET_BATCH 1
6361 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6362 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6363 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6364
6365 static void __build_all_zonelists(void *data)
6366 {
6367 int nid;
6368 int __maybe_unused cpu;
6369 pg_data_t *self = data;
6370 static DEFINE_SPINLOCK(lock);
6371
6372 spin_lock(&lock);
6373
6374 #ifdef CONFIG_NUMA
6375 memset(node_load, 0, sizeof(node_load));
6376 #endif
6377
6378 /*
6379 * This node is hotadded and no memory is yet present. So just
6380 * building zonelists is fine - no need to touch other nodes.
6381 */
6382 if (self && !node_online(self->node_id)) {
6383 build_zonelists(self);
6384 } else {
6385 for_each_online_node(nid) {
6386 pg_data_t *pgdat = NODE_DATA(nid);
6387
6388 build_zonelists(pgdat);
6389 }
6390
6391 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6392 /*
6393 * We now know the "local memory node" for each node--
6394 * i.e., the node of the first zone in the generic zonelist.
6395 * Set up numa_mem percpu variable for on-line cpus. During
6396 * boot, only the boot cpu should be on-line; we'll init the
6397 * secondary cpus' numa_mem as they come on-line. During
6398 * node/memory hotplug, we'll fixup all on-line cpus.
6399 */
6400 for_each_online_cpu(cpu)
6401 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6402 #endif
6403 }
6404
6405 spin_unlock(&lock);
6406 }
6407
6408 static noinline void __init
6409 build_all_zonelists_init(void)
6410 {
6411 int cpu;
6412
6413 __build_all_zonelists(NULL);
6414
6415 /*
6416 * Initialize the boot_pagesets that are going to be used
6417 * for bootstrapping processors. The real pagesets for
6418 * each zone will be allocated later when the per cpu
6419 * allocator is available.
6420 *
6421 * boot_pagesets are used also for bootstrapping offline
6422 * cpus if the system is already booted because the pagesets
6423 * are needed to initialize allocators on a specific cpu too.
6424 * F.e. the percpu allocator needs the page allocator which
6425 * needs the percpu allocator in order to allocate its pagesets
6426 * (a chicken-egg dilemma).
6427 */
6428 for_each_possible_cpu(cpu)
6429 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6430
6431 mminit_verify_zonelist();
6432 cpuset_init_current_mems_allowed();
6433 }
6434
6435 /*
6436 * unless system_state == SYSTEM_BOOTING.
6437 *
6438 * __ref due to call of __init annotated helper build_all_zonelists_init
6439 * [protected by SYSTEM_BOOTING].
6440 */
6441 void __ref build_all_zonelists(pg_data_t *pgdat)
6442 {
6443 unsigned long vm_total_pages;
6444
6445 if (system_state == SYSTEM_BOOTING) {
6446 build_all_zonelists_init();
6447 } else {
6448 __build_all_zonelists(pgdat);
6449 /* cpuset refresh routine should be here */
6450 }
6451 /* Get the number of free pages beyond high watermark in all zones. */
6452 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6453 /*
6454 * Disable grouping by mobility if the number of pages in the
6455 * system is too low to allow the mechanism to work. It would be
6456 * more accurate, but expensive to check per-zone. This check is
6457 * made on memory-hotadd so a system can start with mobility
6458 * disabled and enable it later
6459 */
6460 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6461 page_group_by_mobility_disabled = 1;
6462 else
6463 page_group_by_mobility_disabled = 0;
6464
6465 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6466 nr_online_nodes,
6467 page_group_by_mobility_disabled ? "off" : "on",
6468 vm_total_pages);
6469 #ifdef CONFIG_NUMA
6470 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6471 #endif
6472 }
6473
6474 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6475 static bool __meminit
6476 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6477 {
6478 static struct memblock_region *r;
6479
6480 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6481 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6482 for_each_mem_region(r) {
6483 if (*pfn < memblock_region_memory_end_pfn(r))
6484 break;
6485 }
6486 }
6487 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6488 memblock_is_mirror(r)) {
6489 *pfn = memblock_region_memory_end_pfn(r);
6490 return true;
6491 }
6492 }
6493 return false;
6494 }
6495
6496 /*
6497 * Initially all pages are reserved - free ones are freed
6498 * up by memblock_free_all() once the early boot process is
6499 * done. Non-atomic initialization, single-pass.
6500 *
6501 * All aligned pageblocks are initialized to the specified migratetype
6502 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6503 * zone stats (e.g., nr_isolate_pageblock) are touched.
6504 */
6505 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6506 unsigned long start_pfn, unsigned long zone_end_pfn,
6507 enum meminit_context context,
6508 struct vmem_altmap *altmap, int migratetype)
6509 {
6510 unsigned long pfn, end_pfn = start_pfn + size;
6511 struct page *page;
6512
6513 if (highest_memmap_pfn < end_pfn - 1)
6514 highest_memmap_pfn = end_pfn - 1;
6515
6516 #ifdef CONFIG_ZONE_DEVICE
6517 /*
6518 * Honor reservation requested by the driver for this ZONE_DEVICE
6519 * memory. We limit the total number of pages to initialize to just
6520 * those that might contain the memory mapping. We will defer the
6521 * ZONE_DEVICE page initialization until after we have released
6522 * the hotplug lock.
6523 */
6524 if (zone == ZONE_DEVICE) {
6525 if (!altmap)
6526 return;
6527
6528 if (start_pfn == altmap->base_pfn)
6529 start_pfn += altmap->reserve;
6530 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6531 }
6532 #endif
6533
6534 for (pfn = start_pfn; pfn < end_pfn; ) {
6535 /*
6536 * There can be holes in boot-time mem_map[]s handed to this
6537 * function. They do not exist on hotplugged memory.
6538 */
6539 if (context == MEMINIT_EARLY) {
6540 if (overlap_memmap_init(zone, &pfn))
6541 continue;
6542 if (defer_init(nid, pfn, zone_end_pfn))
6543 break;
6544 }
6545
6546 page = pfn_to_page(pfn);
6547 __init_single_page(page, pfn, zone, nid);
6548 if (context == MEMINIT_HOTPLUG)
6549 __SetPageReserved(page);
6550
6551 /*
6552 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6553 * such that unmovable allocations won't be scattered all
6554 * over the place during system boot.
6555 */
6556 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6557 set_pageblock_migratetype(page, migratetype);
6558 cond_resched();
6559 }
6560 pfn++;
6561 }
6562 }
6563
6564 #ifdef CONFIG_ZONE_DEVICE
6565 void __ref memmap_init_zone_device(struct zone *zone,
6566 unsigned long start_pfn,
6567 unsigned long nr_pages,
6568 struct dev_pagemap *pgmap)
6569 {
6570 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6571 struct pglist_data *pgdat = zone->zone_pgdat;
6572 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6573 unsigned long zone_idx = zone_idx(zone);
6574 unsigned long start = jiffies;
6575 int nid = pgdat->node_id;
6576
6577 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6578 return;
6579
6580 /*
6581 * The call to memmap_init should have already taken care
6582 * of the pages reserved for the memmap, so we can just jump to
6583 * the end of that region and start processing the device pages.
6584 */
6585 if (altmap) {
6586 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6587 nr_pages = end_pfn - start_pfn;
6588 }
6589
6590 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6591 struct page *page = pfn_to_page(pfn);
6592
6593 __init_single_page(page, pfn, zone_idx, nid);
6594
6595 /*
6596 * Mark page reserved as it will need to wait for onlining
6597 * phase for it to be fully associated with a zone.
6598 *
6599 * We can use the non-atomic __set_bit operation for setting
6600 * the flag as we are still initializing the pages.
6601 */
6602 __SetPageReserved(page);
6603
6604 /*
6605 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6606 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6607 * ever freed or placed on a driver-private list.
6608 */
6609 page->pgmap = pgmap;
6610 page->zone_device_data = NULL;
6611
6612 /*
6613 * Mark the block movable so that blocks are reserved for
6614 * movable at startup. This will force kernel allocations
6615 * to reserve their blocks rather than leaking throughout
6616 * the address space during boot when many long-lived
6617 * kernel allocations are made.
6618 *
6619 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6620 * because this is done early in section_activate()
6621 */
6622 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6623 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6624 cond_resched();
6625 }
6626 }
6627
6628 pr_info("%s initialised %lu pages in %ums\n", __func__,
6629 nr_pages, jiffies_to_msecs(jiffies - start));
6630 }
6631
6632 #endif
6633 static void __meminit zone_init_free_lists(struct zone *zone)
6634 {
6635 unsigned int order, t;
6636 for_each_migratetype_order(order, t) {
6637 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6638 zone->free_area[order].nr_free = 0;
6639 }
6640 }
6641
6642 /*
6643 * Only struct pages that correspond to ranges defined by memblock.memory
6644 * are zeroed and initialized by going through __init_single_page() during
6645 * memmap_init_zone_range().
6646 *
6647 * But, there could be struct pages that correspond to holes in
6648 * memblock.memory. This can happen because of the following reasons:
6649 * - physical memory bank size is not necessarily the exact multiple of the
6650 * arbitrary section size
6651 * - early reserved memory may not be listed in memblock.memory
6652 * - memory layouts defined with memmap= kernel parameter may not align
6653 * nicely with memmap sections
6654 *
6655 * Explicitly initialize those struct pages so that:
6656 * - PG_Reserved is set
6657 * - zone and node links point to zone and node that span the page if the
6658 * hole is in the middle of a zone
6659 * - zone and node links point to adjacent zone/node if the hole falls on
6660 * the zone boundary; the pages in such holes will be prepended to the
6661 * zone/node above the hole except for the trailing pages in the last
6662 * section that will be appended to the zone/node below.
6663 */
6664 static void __init init_unavailable_range(unsigned long spfn,
6665 unsigned long epfn,
6666 int zone, int node)
6667 {
6668 unsigned long pfn;
6669 u64 pgcnt = 0;
6670
6671 for (pfn = spfn; pfn < epfn; pfn++) {
6672 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6673 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6674 + pageblock_nr_pages - 1;
6675 continue;
6676 }
6677 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6678 __SetPageReserved(pfn_to_page(pfn));
6679 pgcnt++;
6680 }
6681
6682 if (pgcnt)
6683 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6684 node, zone_names[zone], pgcnt);
6685 }
6686
6687 static void __init memmap_init_zone_range(struct zone *zone,
6688 unsigned long start_pfn,
6689 unsigned long end_pfn,
6690 unsigned long *hole_pfn)
6691 {
6692 unsigned long zone_start_pfn = zone->zone_start_pfn;
6693 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6694 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6695
6696 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6697 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6698
6699 if (start_pfn >= end_pfn)
6700 return;
6701
6702 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6703 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6704
6705 if (*hole_pfn < start_pfn)
6706 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6707
6708 *hole_pfn = end_pfn;
6709 }
6710
6711 static void __init memmap_init(void)
6712 {
6713 unsigned long start_pfn, end_pfn;
6714 unsigned long hole_pfn = 0;
6715 int i, j, zone_id = 0, nid;
6716
6717 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6718 struct pglist_data *node = NODE_DATA(nid);
6719
6720 for (j = 0; j < MAX_NR_ZONES; j++) {
6721 struct zone *zone = node->node_zones + j;
6722
6723 if (!populated_zone(zone))
6724 continue;
6725
6726 memmap_init_zone_range(zone, start_pfn, end_pfn,
6727 &hole_pfn);
6728 zone_id = j;
6729 }
6730 }
6731
6732 #ifdef CONFIG_SPARSEMEM
6733 /*
6734 * Initialize the memory map for hole in the range [memory_end,
6735 * section_end].
6736 * Append the pages in this hole to the highest zone in the last
6737 * node.
6738 * The call to init_unavailable_range() is outside the ifdef to
6739 * silence the compiler warining about zone_id set but not used;
6740 * for FLATMEM it is a nop anyway
6741 */
6742 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6743 if (hole_pfn < end_pfn)
6744 #endif
6745 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6746 }
6747
6748 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6749 phys_addr_t min_addr, int nid, bool exact_nid)
6750 {
6751 void *ptr;
6752
6753 if (exact_nid)
6754 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6755 MEMBLOCK_ALLOC_ACCESSIBLE,
6756 nid);
6757 else
6758 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6759 MEMBLOCK_ALLOC_ACCESSIBLE,
6760 nid);
6761
6762 if (ptr && size > 0)
6763 page_init_poison(ptr, size);
6764
6765 return ptr;
6766 }
6767
6768 static int zone_batchsize(struct zone *zone)
6769 {
6770 #ifdef CONFIG_MMU
6771 int batch;
6772
6773 /*
6774 * The number of pages to batch allocate is either ~0.1%
6775 * of the zone or 1MB, whichever is smaller. The batch
6776 * size is striking a balance between allocation latency
6777 * and zone lock contention.
6778 */
6779 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6780 batch /= 4; /* We effectively *= 4 below */
6781 if (batch < 1)
6782 batch = 1;
6783
6784 /*
6785 * Clamp the batch to a 2^n - 1 value. Having a power
6786 * of 2 value was found to be more likely to have
6787 * suboptimal cache aliasing properties in some cases.
6788 *
6789 * For example if 2 tasks are alternately allocating
6790 * batches of pages, one task can end up with a lot
6791 * of pages of one half of the possible page colors
6792 * and the other with pages of the other colors.
6793 */
6794 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6795
6796 return batch;
6797
6798 #else
6799 /* The deferral and batching of frees should be suppressed under NOMMU
6800 * conditions.
6801 *
6802 * The problem is that NOMMU needs to be able to allocate large chunks
6803 * of contiguous memory as there's no hardware page translation to
6804 * assemble apparent contiguous memory from discontiguous pages.
6805 *
6806 * Queueing large contiguous runs of pages for batching, however,
6807 * causes the pages to actually be freed in smaller chunks. As there
6808 * can be a significant delay between the individual batches being
6809 * recycled, this leads to the once large chunks of space being
6810 * fragmented and becoming unavailable for high-order allocations.
6811 */
6812 return 0;
6813 #endif
6814 }
6815
6816 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6817 {
6818 #ifdef CONFIG_MMU
6819 int high;
6820 int nr_split_cpus;
6821 unsigned long total_pages;
6822
6823 if (!percpu_pagelist_high_fraction) {
6824 /*
6825 * By default, the high value of the pcp is based on the zone
6826 * low watermark so that if they are full then background
6827 * reclaim will not be started prematurely.
6828 */
6829 total_pages = low_wmark_pages(zone);
6830 } else {
6831 /*
6832 * If percpu_pagelist_high_fraction is configured, the high
6833 * value is based on a fraction of the managed pages in the
6834 * zone.
6835 */
6836 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6837 }
6838
6839 /*
6840 * Split the high value across all online CPUs local to the zone. Note
6841 * that early in boot that CPUs may not be online yet and that during
6842 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6843 * onlined. For memory nodes that have no CPUs, split pcp->high across
6844 * all online CPUs to mitigate the risk that reclaim is triggered
6845 * prematurely due to pages stored on pcp lists.
6846 */
6847 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6848 if (!nr_split_cpus)
6849 nr_split_cpus = num_online_cpus();
6850 high = total_pages / nr_split_cpus;
6851
6852 /*
6853 * Ensure high is at least batch*4. The multiple is based on the
6854 * historical relationship between high and batch.
6855 */
6856 high = max(high, batch << 2);
6857
6858 return high;
6859 #else
6860 return 0;
6861 #endif
6862 }
6863
6864 /*
6865 * pcp->high and pcp->batch values are related and generally batch is lower
6866 * than high. They are also related to pcp->count such that count is lower
6867 * than high, and as soon as it reaches high, the pcplist is flushed.
6868 *
6869 * However, guaranteeing these relations at all times would require e.g. write
6870 * barriers here but also careful usage of read barriers at the read side, and
6871 * thus be prone to error and bad for performance. Thus the update only prevents
6872 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6873 * can cope with those fields changing asynchronously, and fully trust only the
6874 * pcp->count field on the local CPU with interrupts disabled.
6875 *
6876 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6877 * outside of boot time (or some other assurance that no concurrent updaters
6878 * exist).
6879 */
6880 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6881 unsigned long batch)
6882 {
6883 WRITE_ONCE(pcp->batch, batch);
6884 WRITE_ONCE(pcp->high, high);
6885 }
6886
6887 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6888 {
6889 int pindex;
6890
6891 memset(pcp, 0, sizeof(*pcp));
6892 memset(pzstats, 0, sizeof(*pzstats));
6893
6894 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6895 INIT_LIST_HEAD(&pcp->lists[pindex]);
6896
6897 /*
6898 * Set batch and high values safe for a boot pageset. A true percpu
6899 * pageset's initialization will update them subsequently. Here we don't
6900 * need to be as careful as pageset_update() as nobody can access the
6901 * pageset yet.
6902 */
6903 pcp->high = BOOT_PAGESET_HIGH;
6904 pcp->batch = BOOT_PAGESET_BATCH;
6905 pcp->free_factor = 0;
6906 }
6907
6908 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6909 unsigned long batch)
6910 {
6911 struct per_cpu_pages *pcp;
6912 int cpu;
6913
6914 for_each_possible_cpu(cpu) {
6915 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6916 pageset_update(pcp, high, batch);
6917 }
6918 }
6919
6920 /*
6921 * Calculate and set new high and batch values for all per-cpu pagesets of a
6922 * zone based on the zone's size.
6923 */
6924 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6925 {
6926 int new_high, new_batch;
6927
6928 new_batch = max(1, zone_batchsize(zone));
6929 new_high = zone_highsize(zone, new_batch, cpu_online);
6930
6931 if (zone->pageset_high == new_high &&
6932 zone->pageset_batch == new_batch)
6933 return;
6934
6935 zone->pageset_high = new_high;
6936 zone->pageset_batch = new_batch;
6937
6938 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6939 }
6940
6941 void __meminit setup_zone_pageset(struct zone *zone)
6942 {
6943 int cpu;
6944
6945 /* Size may be 0 on !SMP && !NUMA */
6946 if (sizeof(struct per_cpu_zonestat) > 0)
6947 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6948
6949 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6950 for_each_possible_cpu(cpu) {
6951 struct per_cpu_pages *pcp;
6952 struct per_cpu_zonestat *pzstats;
6953
6954 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6955 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6956 per_cpu_pages_init(pcp, pzstats);
6957 }
6958
6959 zone_set_pageset_high_and_batch(zone, 0);
6960 }
6961
6962 /*
6963 * Allocate per cpu pagesets and initialize them.
6964 * Before this call only boot pagesets were available.
6965 */
6966 void __init setup_per_cpu_pageset(void)
6967 {
6968 struct pglist_data *pgdat;
6969 struct zone *zone;
6970 int __maybe_unused cpu;
6971
6972 for_each_populated_zone(zone)
6973 setup_zone_pageset(zone);
6974
6975 #ifdef CONFIG_NUMA
6976 /*
6977 * Unpopulated zones continue using the boot pagesets.
6978 * The numa stats for these pagesets need to be reset.
6979 * Otherwise, they will end up skewing the stats of
6980 * the nodes these zones are associated with.
6981 */
6982 for_each_possible_cpu(cpu) {
6983 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6984 memset(pzstats->vm_numa_event, 0,
6985 sizeof(pzstats->vm_numa_event));
6986 }
6987 #endif
6988
6989 for_each_online_pgdat(pgdat)
6990 pgdat->per_cpu_nodestats =
6991 alloc_percpu(struct per_cpu_nodestat);
6992 }
6993
6994 static __meminit void zone_pcp_init(struct zone *zone)
6995 {
6996 /*
6997 * per cpu subsystem is not up at this point. The following code
6998 * relies on the ability of the linker to provide the
6999 * offset of a (static) per cpu variable into the per cpu area.
7000 */
7001 zone->per_cpu_pageset = &boot_pageset;
7002 zone->per_cpu_zonestats = &boot_zonestats;
7003 zone->pageset_high = BOOT_PAGESET_HIGH;
7004 zone->pageset_batch = BOOT_PAGESET_BATCH;
7005
7006 if (populated_zone(zone))
7007 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7008 zone->present_pages, zone_batchsize(zone));
7009 }
7010
7011 void __meminit init_currently_empty_zone(struct zone *zone,
7012 unsigned long zone_start_pfn,
7013 unsigned long size)
7014 {
7015 struct pglist_data *pgdat = zone->zone_pgdat;
7016 int zone_idx = zone_idx(zone) + 1;
7017
7018 if (zone_idx > pgdat->nr_zones)
7019 pgdat->nr_zones = zone_idx;
7020
7021 zone->zone_start_pfn = zone_start_pfn;
7022
7023 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7024 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7025 pgdat->node_id,
7026 (unsigned long)zone_idx(zone),
7027 zone_start_pfn, (zone_start_pfn + size));
7028
7029 zone_init_free_lists(zone);
7030 zone->initialized = 1;
7031 }
7032
7033 /**
7034 * get_pfn_range_for_nid - Return the start and end page frames for a node
7035 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7036 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7037 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7038 *
7039 * It returns the start and end page frame of a node based on information
7040 * provided by memblock_set_node(). If called for a node
7041 * with no available memory, a warning is printed and the start and end
7042 * PFNs will be 0.
7043 */
7044 void __init get_pfn_range_for_nid(unsigned int nid,
7045 unsigned long *start_pfn, unsigned long *end_pfn)
7046 {
7047 unsigned long this_start_pfn, this_end_pfn;
7048 int i;
7049
7050 *start_pfn = -1UL;
7051 *end_pfn = 0;
7052
7053 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7054 *start_pfn = min(*start_pfn, this_start_pfn);
7055 *end_pfn = max(*end_pfn, this_end_pfn);
7056 }
7057
7058 if (*start_pfn == -1UL)
7059 *start_pfn = 0;
7060 }
7061
7062 /*
7063 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7064 * assumption is made that zones within a node are ordered in monotonic
7065 * increasing memory addresses so that the "highest" populated zone is used
7066 */
7067 static void __init find_usable_zone_for_movable(void)
7068 {
7069 int zone_index;
7070 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7071 if (zone_index == ZONE_MOVABLE)
7072 continue;
7073
7074 if (arch_zone_highest_possible_pfn[zone_index] >
7075 arch_zone_lowest_possible_pfn[zone_index])
7076 break;
7077 }
7078
7079 VM_BUG_ON(zone_index == -1);
7080 movable_zone = zone_index;
7081 }
7082
7083 /*
7084 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7085 * because it is sized independent of architecture. Unlike the other zones,
7086 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7087 * in each node depending on the size of each node and how evenly kernelcore
7088 * is distributed. This helper function adjusts the zone ranges
7089 * provided by the architecture for a given node by using the end of the
7090 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7091 * zones within a node are in order of monotonic increases memory addresses
7092 */
7093 static void __init adjust_zone_range_for_zone_movable(int nid,
7094 unsigned long zone_type,
7095 unsigned long node_start_pfn,
7096 unsigned long node_end_pfn,
7097 unsigned long *zone_start_pfn,
7098 unsigned long *zone_end_pfn)
7099 {
7100 /* Only adjust if ZONE_MOVABLE is on this node */
7101 if (zone_movable_pfn[nid]) {
7102 /* Size ZONE_MOVABLE */
7103 if (zone_type == ZONE_MOVABLE) {
7104 *zone_start_pfn = zone_movable_pfn[nid];
7105 *zone_end_pfn = min(node_end_pfn,
7106 arch_zone_highest_possible_pfn[movable_zone]);
7107
7108 /* Adjust for ZONE_MOVABLE starting within this range */
7109 } else if (!mirrored_kernelcore &&
7110 *zone_start_pfn < zone_movable_pfn[nid] &&
7111 *zone_end_pfn > zone_movable_pfn[nid]) {
7112 *zone_end_pfn = zone_movable_pfn[nid];
7113
7114 /* Check if this whole range is within ZONE_MOVABLE */
7115 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7116 *zone_start_pfn = *zone_end_pfn;
7117 }
7118 }
7119
7120 /*
7121 * Return the number of pages a zone spans in a node, including holes
7122 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7123 */
7124 static unsigned long __init zone_spanned_pages_in_node(int nid,
7125 unsigned long zone_type,
7126 unsigned long node_start_pfn,
7127 unsigned long node_end_pfn,
7128 unsigned long *zone_start_pfn,
7129 unsigned long *zone_end_pfn)
7130 {
7131 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7132 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7133 /* When hotadd a new node from cpu_up(), the node should be empty */
7134 if (!node_start_pfn && !node_end_pfn)
7135 return 0;
7136
7137 /* Get the start and end of the zone */
7138 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7139 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7140 adjust_zone_range_for_zone_movable(nid, zone_type,
7141 node_start_pfn, node_end_pfn,
7142 zone_start_pfn, zone_end_pfn);
7143
7144 /* Check that this node has pages within the zone's required range */
7145 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7146 return 0;
7147
7148 /* Move the zone boundaries inside the node if necessary */
7149 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7150 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7151
7152 /* Return the spanned pages */
7153 return *zone_end_pfn - *zone_start_pfn;
7154 }
7155
7156 /*
7157 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7158 * then all holes in the requested range will be accounted for.
7159 */
7160 unsigned long __init __absent_pages_in_range(int nid,
7161 unsigned long range_start_pfn,
7162 unsigned long range_end_pfn)
7163 {
7164 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7165 unsigned long start_pfn, end_pfn;
7166 int i;
7167
7168 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7169 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7170 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7171 nr_absent -= end_pfn - start_pfn;
7172 }
7173 return nr_absent;
7174 }
7175
7176 /**
7177 * absent_pages_in_range - Return number of page frames in holes within a range
7178 * @start_pfn: The start PFN to start searching for holes
7179 * @end_pfn: The end PFN to stop searching for holes
7180 *
7181 * Return: the number of pages frames in memory holes within a range.
7182 */
7183 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7184 unsigned long end_pfn)
7185 {
7186 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7187 }
7188
7189 /* Return the number of page frames in holes in a zone on a node */
7190 static unsigned long __init zone_absent_pages_in_node(int nid,
7191 unsigned long zone_type,
7192 unsigned long node_start_pfn,
7193 unsigned long node_end_pfn)
7194 {
7195 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7196 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7197 unsigned long zone_start_pfn, zone_end_pfn;
7198 unsigned long nr_absent;
7199
7200 /* When hotadd a new node from cpu_up(), the node should be empty */
7201 if (!node_start_pfn && !node_end_pfn)
7202 return 0;
7203
7204 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7205 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7206
7207 adjust_zone_range_for_zone_movable(nid, zone_type,
7208 node_start_pfn, node_end_pfn,
7209 &zone_start_pfn, &zone_end_pfn);
7210 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7211
7212 /*
7213 * ZONE_MOVABLE handling.
7214 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7215 * and vice versa.
7216 */
7217 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7218 unsigned long start_pfn, end_pfn;
7219 struct memblock_region *r;
7220
7221 for_each_mem_region(r) {
7222 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7223 zone_start_pfn, zone_end_pfn);
7224 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7225 zone_start_pfn, zone_end_pfn);
7226
7227 if (zone_type == ZONE_MOVABLE &&
7228 memblock_is_mirror(r))
7229 nr_absent += end_pfn - start_pfn;
7230
7231 if (zone_type == ZONE_NORMAL &&
7232 !memblock_is_mirror(r))
7233 nr_absent += end_pfn - start_pfn;
7234 }
7235 }
7236
7237 return nr_absent;
7238 }
7239
7240 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7241 unsigned long node_start_pfn,
7242 unsigned long node_end_pfn)
7243 {
7244 unsigned long realtotalpages = 0, totalpages = 0;
7245 enum zone_type i;
7246
7247 for (i = 0; i < MAX_NR_ZONES; i++) {
7248 struct zone *zone = pgdat->node_zones + i;
7249 unsigned long zone_start_pfn, zone_end_pfn;
7250 unsigned long spanned, absent;
7251 unsigned long size, real_size;
7252
7253 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7254 node_start_pfn,
7255 node_end_pfn,
7256 &zone_start_pfn,
7257 &zone_end_pfn);
7258 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7259 node_start_pfn,
7260 node_end_pfn);
7261
7262 size = spanned;
7263 real_size = size - absent;
7264
7265 if (size)
7266 zone->zone_start_pfn = zone_start_pfn;
7267 else
7268 zone->zone_start_pfn = 0;
7269 zone->spanned_pages = size;
7270 zone->present_pages = real_size;
7271 #if defined(CONFIG_MEMORY_HOTPLUG)
7272 zone->present_early_pages = real_size;
7273 #endif
7274
7275 totalpages += size;
7276 realtotalpages += real_size;
7277 }
7278
7279 pgdat->node_spanned_pages = totalpages;
7280 pgdat->node_present_pages = realtotalpages;
7281 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7282 }
7283
7284 #ifndef CONFIG_SPARSEMEM
7285 /*
7286 * Calculate the size of the zone->blockflags rounded to an unsigned long
7287 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7288 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7289 * round what is now in bits to nearest long in bits, then return it in
7290 * bytes.
7291 */
7292 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7293 {
7294 unsigned long usemapsize;
7295
7296 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7297 usemapsize = roundup(zonesize, pageblock_nr_pages);
7298 usemapsize = usemapsize >> pageblock_order;
7299 usemapsize *= NR_PAGEBLOCK_BITS;
7300 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7301
7302 return usemapsize / 8;
7303 }
7304
7305 static void __ref setup_usemap(struct zone *zone)
7306 {
7307 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7308 zone->spanned_pages);
7309 zone->pageblock_flags = NULL;
7310 if (usemapsize) {
7311 zone->pageblock_flags =
7312 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7313 zone_to_nid(zone));
7314 if (!zone->pageblock_flags)
7315 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7316 usemapsize, zone->name, zone_to_nid(zone));
7317 }
7318 }
7319 #else
7320 static inline void setup_usemap(struct zone *zone) {}
7321 #endif /* CONFIG_SPARSEMEM */
7322
7323 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7324
7325 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7326 void __init set_pageblock_order(void)
7327 {
7328 unsigned int order;
7329
7330 /* Check that pageblock_nr_pages has not already been setup */
7331 if (pageblock_order)
7332 return;
7333
7334 if (HPAGE_SHIFT > PAGE_SHIFT)
7335 order = HUGETLB_PAGE_ORDER;
7336 else
7337 order = MAX_ORDER - 1;
7338
7339 /*
7340 * Assume the largest contiguous order of interest is a huge page.
7341 * This value may be variable depending on boot parameters on IA64 and
7342 * powerpc.
7343 */
7344 pageblock_order = order;
7345 }
7346 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7347
7348 /*
7349 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7350 * is unused as pageblock_order is set at compile-time. See
7351 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7352 * the kernel config
7353 */
7354 void __init set_pageblock_order(void)
7355 {
7356 }
7357
7358 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7359
7360 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7361 unsigned long present_pages)
7362 {
7363 unsigned long pages = spanned_pages;
7364
7365 /*
7366 * Provide a more accurate estimation if there are holes within
7367 * the zone and SPARSEMEM is in use. If there are holes within the
7368 * zone, each populated memory region may cost us one or two extra
7369 * memmap pages due to alignment because memmap pages for each
7370 * populated regions may not be naturally aligned on page boundary.
7371 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7372 */
7373 if (spanned_pages > present_pages + (present_pages >> 4) &&
7374 IS_ENABLED(CONFIG_SPARSEMEM))
7375 pages = present_pages;
7376
7377 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7378 }
7379
7380 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7381 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7382 {
7383 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7384
7385 spin_lock_init(&ds_queue->split_queue_lock);
7386 INIT_LIST_HEAD(&ds_queue->split_queue);
7387 ds_queue->split_queue_len = 0;
7388 }
7389 #else
7390 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7391 #endif
7392
7393 #ifdef CONFIG_COMPACTION
7394 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7395 {
7396 init_waitqueue_head(&pgdat->kcompactd_wait);
7397 }
7398 #else
7399 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7400 #endif
7401
7402 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7403 {
7404 pgdat_resize_init(pgdat);
7405
7406 pgdat_init_split_queue(pgdat);
7407 pgdat_init_kcompactd(pgdat);
7408
7409 init_waitqueue_head(&pgdat->kswapd_wait);
7410 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7411
7412 pgdat_page_ext_init(pgdat);
7413 lruvec_init(&pgdat->__lruvec);
7414 }
7415
7416 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7417 unsigned long remaining_pages)
7418 {
7419 atomic_long_set(&zone->managed_pages, remaining_pages);
7420 zone_set_nid(zone, nid);
7421 zone->name = zone_names[idx];
7422 zone->zone_pgdat = NODE_DATA(nid);
7423 spin_lock_init(&zone->lock);
7424 zone_seqlock_init(zone);
7425 zone_pcp_init(zone);
7426 }
7427
7428 /*
7429 * Set up the zone data structures
7430 * - init pgdat internals
7431 * - init all zones belonging to this node
7432 *
7433 * NOTE: this function is only called during memory hotplug
7434 */
7435 #ifdef CONFIG_MEMORY_HOTPLUG
7436 void __ref free_area_init_core_hotplug(int nid)
7437 {
7438 enum zone_type z;
7439 pg_data_t *pgdat = NODE_DATA(nid);
7440
7441 pgdat_init_internals(pgdat);
7442 for (z = 0; z < MAX_NR_ZONES; z++)
7443 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7444 }
7445 #endif
7446
7447 /*
7448 * Set up the zone data structures:
7449 * - mark all pages reserved
7450 * - mark all memory queues empty
7451 * - clear the memory bitmaps
7452 *
7453 * NOTE: pgdat should get zeroed by caller.
7454 * NOTE: this function is only called during early init.
7455 */
7456 static void __init free_area_init_core(struct pglist_data *pgdat)
7457 {
7458 enum zone_type j;
7459 int nid = pgdat->node_id;
7460
7461 pgdat_init_internals(pgdat);
7462 pgdat->per_cpu_nodestats = &boot_nodestats;
7463
7464 for (j = 0; j < MAX_NR_ZONES; j++) {
7465 struct zone *zone = pgdat->node_zones + j;
7466 unsigned long size, freesize, memmap_pages;
7467
7468 size = zone->spanned_pages;
7469 freesize = zone->present_pages;
7470
7471 /*
7472 * Adjust freesize so that it accounts for how much memory
7473 * is used by this zone for memmap. This affects the watermark
7474 * and per-cpu initialisations
7475 */
7476 memmap_pages = calc_memmap_size(size, freesize);
7477 if (!is_highmem_idx(j)) {
7478 if (freesize >= memmap_pages) {
7479 freesize -= memmap_pages;
7480 if (memmap_pages)
7481 pr_debug(" %s zone: %lu pages used for memmap\n",
7482 zone_names[j], memmap_pages);
7483 } else
7484 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7485 zone_names[j], memmap_pages, freesize);
7486 }
7487
7488 /* Account for reserved pages */
7489 if (j == 0 && freesize > dma_reserve) {
7490 freesize -= dma_reserve;
7491 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7492 }
7493
7494 if (!is_highmem_idx(j))
7495 nr_kernel_pages += freesize;
7496 /* Charge for highmem memmap if there are enough kernel pages */
7497 else if (nr_kernel_pages > memmap_pages * 2)
7498 nr_kernel_pages -= memmap_pages;
7499 nr_all_pages += freesize;
7500
7501 /*
7502 * Set an approximate value for lowmem here, it will be adjusted
7503 * when the bootmem allocator frees pages into the buddy system.
7504 * And all highmem pages will be managed by the buddy system.
7505 */
7506 zone_init_internals(zone, j, nid, freesize);
7507
7508 if (!size)
7509 continue;
7510
7511 set_pageblock_order();
7512 setup_usemap(zone);
7513 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7514 }
7515 }
7516
7517 #ifdef CONFIG_FLATMEM
7518 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7519 {
7520 unsigned long __maybe_unused start = 0;
7521 unsigned long __maybe_unused offset = 0;
7522
7523 /* Skip empty nodes */
7524 if (!pgdat->node_spanned_pages)
7525 return;
7526
7527 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7528 offset = pgdat->node_start_pfn - start;
7529 /* ia64 gets its own node_mem_map, before this, without bootmem */
7530 if (!pgdat->node_mem_map) {
7531 unsigned long size, end;
7532 struct page *map;
7533
7534 /*
7535 * The zone's endpoints aren't required to be MAX_ORDER
7536 * aligned but the node_mem_map endpoints must be in order
7537 * for the buddy allocator to function correctly.
7538 */
7539 end = pgdat_end_pfn(pgdat);
7540 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7541 size = (end - start) * sizeof(struct page);
7542 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7543 pgdat->node_id, false);
7544 if (!map)
7545 panic("Failed to allocate %ld bytes for node %d memory map\n",
7546 size, pgdat->node_id);
7547 pgdat->node_mem_map = map + offset;
7548 }
7549 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7550 __func__, pgdat->node_id, (unsigned long)pgdat,
7551 (unsigned long)pgdat->node_mem_map);
7552 #ifndef CONFIG_NUMA
7553 /*
7554 * With no DISCONTIG, the global mem_map is just set as node 0's
7555 */
7556 if (pgdat == NODE_DATA(0)) {
7557 mem_map = NODE_DATA(0)->node_mem_map;
7558 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7559 mem_map -= offset;
7560 }
7561 #endif
7562 }
7563 #else
7564 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7565 #endif /* CONFIG_FLATMEM */
7566
7567 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7568 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7569 {
7570 pgdat->first_deferred_pfn = ULONG_MAX;
7571 }
7572 #else
7573 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7574 #endif
7575
7576 static void __init free_area_init_node(int nid)
7577 {
7578 pg_data_t *pgdat = NODE_DATA(nid);
7579 unsigned long start_pfn = 0;
7580 unsigned long end_pfn = 0;
7581
7582 /* pg_data_t should be reset to zero when it's allocated */
7583 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7584
7585 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7586
7587 pgdat->node_id = nid;
7588 pgdat->node_start_pfn = start_pfn;
7589 pgdat->per_cpu_nodestats = NULL;
7590
7591 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7592 (u64)start_pfn << PAGE_SHIFT,
7593 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7594 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7595
7596 alloc_node_mem_map(pgdat);
7597 pgdat_set_deferred_range(pgdat);
7598
7599 free_area_init_core(pgdat);
7600 }
7601
7602 void __init free_area_init_memoryless_node(int nid)
7603 {
7604 free_area_init_node(nid);
7605 }
7606
7607 #if MAX_NUMNODES > 1
7608 /*
7609 * Figure out the number of possible node ids.
7610 */
7611 void __init setup_nr_node_ids(void)
7612 {
7613 unsigned int highest;
7614
7615 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7616 nr_node_ids = highest + 1;
7617 }
7618 #endif
7619
7620 /**
7621 * node_map_pfn_alignment - determine the maximum internode alignment
7622 *
7623 * This function should be called after node map is populated and sorted.
7624 * It calculates the maximum power of two alignment which can distinguish
7625 * all the nodes.
7626 *
7627 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7628 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7629 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7630 * shifted, 1GiB is enough and this function will indicate so.
7631 *
7632 * This is used to test whether pfn -> nid mapping of the chosen memory
7633 * model has fine enough granularity to avoid incorrect mapping for the
7634 * populated node map.
7635 *
7636 * Return: the determined alignment in pfn's. 0 if there is no alignment
7637 * requirement (single node).
7638 */
7639 unsigned long __init node_map_pfn_alignment(void)
7640 {
7641 unsigned long accl_mask = 0, last_end = 0;
7642 unsigned long start, end, mask;
7643 int last_nid = NUMA_NO_NODE;
7644 int i, nid;
7645
7646 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7647 if (!start || last_nid < 0 || last_nid == nid) {
7648 last_nid = nid;
7649 last_end = end;
7650 continue;
7651 }
7652
7653 /*
7654 * Start with a mask granular enough to pin-point to the
7655 * start pfn and tick off bits one-by-one until it becomes
7656 * too coarse to separate the current node from the last.
7657 */
7658 mask = ~((1 << __ffs(start)) - 1);
7659 while (mask && last_end <= (start & (mask << 1)))
7660 mask <<= 1;
7661
7662 /* accumulate all internode masks */
7663 accl_mask |= mask;
7664 }
7665
7666 /* convert mask to number of pages */
7667 return ~accl_mask + 1;
7668 }
7669
7670 /**
7671 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7672 *
7673 * Return: the minimum PFN based on information provided via
7674 * memblock_set_node().
7675 */
7676 unsigned long __init find_min_pfn_with_active_regions(void)
7677 {
7678 return PHYS_PFN(memblock_start_of_DRAM());
7679 }
7680
7681 /*
7682 * early_calculate_totalpages()
7683 * Sum pages in active regions for movable zone.
7684 * Populate N_MEMORY for calculating usable_nodes.
7685 */
7686 static unsigned long __init early_calculate_totalpages(void)
7687 {
7688 unsigned long totalpages = 0;
7689 unsigned long start_pfn, end_pfn;
7690 int i, nid;
7691
7692 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7693 unsigned long pages = end_pfn - start_pfn;
7694
7695 totalpages += pages;
7696 if (pages)
7697 node_set_state(nid, N_MEMORY);
7698 }
7699 return totalpages;
7700 }
7701
7702 /*
7703 * Find the PFN the Movable zone begins in each node. Kernel memory
7704 * is spread evenly between nodes as long as the nodes have enough
7705 * memory. When they don't, some nodes will have more kernelcore than
7706 * others
7707 */
7708 static void __init find_zone_movable_pfns_for_nodes(void)
7709 {
7710 int i, nid;
7711 unsigned long usable_startpfn;
7712 unsigned long kernelcore_node, kernelcore_remaining;
7713 /* save the state before borrow the nodemask */
7714 nodemask_t saved_node_state = node_states[N_MEMORY];
7715 unsigned long totalpages = early_calculate_totalpages();
7716 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7717 struct memblock_region *r;
7718
7719 /* Need to find movable_zone earlier when movable_node is specified. */
7720 find_usable_zone_for_movable();
7721
7722 /*
7723 * If movable_node is specified, ignore kernelcore and movablecore
7724 * options.
7725 */
7726 if (movable_node_is_enabled()) {
7727 for_each_mem_region(r) {
7728 if (!memblock_is_hotpluggable(r))
7729 continue;
7730
7731 nid = memblock_get_region_node(r);
7732
7733 usable_startpfn = PFN_DOWN(r->base);
7734 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7735 min(usable_startpfn, zone_movable_pfn[nid]) :
7736 usable_startpfn;
7737 }
7738
7739 goto out2;
7740 }
7741
7742 /*
7743 * If kernelcore=mirror is specified, ignore movablecore option
7744 */
7745 if (mirrored_kernelcore) {
7746 bool mem_below_4gb_not_mirrored = false;
7747
7748 for_each_mem_region(r) {
7749 if (memblock_is_mirror(r))
7750 continue;
7751
7752 nid = memblock_get_region_node(r);
7753
7754 usable_startpfn = memblock_region_memory_base_pfn(r);
7755
7756 if (usable_startpfn < 0x100000) {
7757 mem_below_4gb_not_mirrored = true;
7758 continue;
7759 }
7760
7761 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7762 min(usable_startpfn, zone_movable_pfn[nid]) :
7763 usable_startpfn;
7764 }
7765
7766 if (mem_below_4gb_not_mirrored)
7767 pr_warn("This configuration results in unmirrored kernel memory.\n");
7768
7769 goto out2;
7770 }
7771
7772 /*
7773 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7774 * amount of necessary memory.
7775 */
7776 if (required_kernelcore_percent)
7777 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7778 10000UL;
7779 if (required_movablecore_percent)
7780 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7781 10000UL;
7782
7783 /*
7784 * If movablecore= was specified, calculate what size of
7785 * kernelcore that corresponds so that memory usable for
7786 * any allocation type is evenly spread. If both kernelcore
7787 * and movablecore are specified, then the value of kernelcore
7788 * will be used for required_kernelcore if it's greater than
7789 * what movablecore would have allowed.
7790 */
7791 if (required_movablecore) {
7792 unsigned long corepages;
7793
7794 /*
7795 * Round-up so that ZONE_MOVABLE is at least as large as what
7796 * was requested by the user
7797 */
7798 required_movablecore =
7799 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7800 required_movablecore = min(totalpages, required_movablecore);
7801 corepages = totalpages - required_movablecore;
7802
7803 required_kernelcore = max(required_kernelcore, corepages);
7804 }
7805
7806 /*
7807 * If kernelcore was not specified or kernelcore size is larger
7808 * than totalpages, there is no ZONE_MOVABLE.
7809 */
7810 if (!required_kernelcore || required_kernelcore >= totalpages)
7811 goto out;
7812
7813 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7814 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7815
7816 restart:
7817 /* Spread kernelcore memory as evenly as possible throughout nodes */
7818 kernelcore_node = required_kernelcore / usable_nodes;
7819 for_each_node_state(nid, N_MEMORY) {
7820 unsigned long start_pfn, end_pfn;
7821
7822 /*
7823 * Recalculate kernelcore_node if the division per node
7824 * now exceeds what is necessary to satisfy the requested
7825 * amount of memory for the kernel
7826 */
7827 if (required_kernelcore < kernelcore_node)
7828 kernelcore_node = required_kernelcore / usable_nodes;
7829
7830 /*
7831 * As the map is walked, we track how much memory is usable
7832 * by the kernel using kernelcore_remaining. When it is
7833 * 0, the rest of the node is usable by ZONE_MOVABLE
7834 */
7835 kernelcore_remaining = kernelcore_node;
7836
7837 /* Go through each range of PFNs within this node */
7838 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7839 unsigned long size_pages;
7840
7841 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7842 if (start_pfn >= end_pfn)
7843 continue;
7844
7845 /* Account for what is only usable for kernelcore */
7846 if (start_pfn < usable_startpfn) {
7847 unsigned long kernel_pages;
7848 kernel_pages = min(end_pfn, usable_startpfn)
7849 - start_pfn;
7850
7851 kernelcore_remaining -= min(kernel_pages,
7852 kernelcore_remaining);
7853 required_kernelcore -= min(kernel_pages,
7854 required_kernelcore);
7855
7856 /* Continue if range is now fully accounted */
7857 if (end_pfn <= usable_startpfn) {
7858
7859 /*
7860 * Push zone_movable_pfn to the end so
7861 * that if we have to rebalance
7862 * kernelcore across nodes, we will
7863 * not double account here
7864 */
7865 zone_movable_pfn[nid] = end_pfn;
7866 continue;
7867 }
7868 start_pfn = usable_startpfn;
7869 }
7870
7871 /*
7872 * The usable PFN range for ZONE_MOVABLE is from
7873 * start_pfn->end_pfn. Calculate size_pages as the
7874 * number of pages used as kernelcore
7875 */
7876 size_pages = end_pfn - start_pfn;
7877 if (size_pages > kernelcore_remaining)
7878 size_pages = kernelcore_remaining;
7879 zone_movable_pfn[nid] = start_pfn + size_pages;
7880
7881 /*
7882 * Some kernelcore has been met, update counts and
7883 * break if the kernelcore for this node has been
7884 * satisfied
7885 */
7886 required_kernelcore -= min(required_kernelcore,
7887 size_pages);
7888 kernelcore_remaining -= size_pages;
7889 if (!kernelcore_remaining)
7890 break;
7891 }
7892 }
7893
7894 /*
7895 * If there is still required_kernelcore, we do another pass with one
7896 * less node in the count. This will push zone_movable_pfn[nid] further
7897 * along on the nodes that still have memory until kernelcore is
7898 * satisfied
7899 */
7900 usable_nodes--;
7901 if (usable_nodes && required_kernelcore > usable_nodes)
7902 goto restart;
7903
7904 out2:
7905 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7906 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7907 unsigned long start_pfn, end_pfn;
7908
7909 zone_movable_pfn[nid] =
7910 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7911
7912 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7913 if (zone_movable_pfn[nid] >= end_pfn)
7914 zone_movable_pfn[nid] = 0;
7915 }
7916
7917 out:
7918 /* restore the node_state */
7919 node_states[N_MEMORY] = saved_node_state;
7920 }
7921
7922 /* Any regular or high memory on that node ? */
7923 static void check_for_memory(pg_data_t *pgdat, int nid)
7924 {
7925 enum zone_type zone_type;
7926
7927 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7928 struct zone *zone = &pgdat->node_zones[zone_type];
7929 if (populated_zone(zone)) {
7930 if (IS_ENABLED(CONFIG_HIGHMEM))
7931 node_set_state(nid, N_HIGH_MEMORY);
7932 if (zone_type <= ZONE_NORMAL)
7933 node_set_state(nid, N_NORMAL_MEMORY);
7934 break;
7935 }
7936 }
7937 }
7938
7939 /*
7940 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7941 * such cases we allow max_zone_pfn sorted in the descending order
7942 */
7943 bool __weak arch_has_descending_max_zone_pfns(void)
7944 {
7945 return false;
7946 }
7947
7948 /**
7949 * free_area_init - Initialise all pg_data_t and zone data
7950 * @max_zone_pfn: an array of max PFNs for each zone
7951 *
7952 * This will call free_area_init_node() for each active node in the system.
7953 * Using the page ranges provided by memblock_set_node(), the size of each
7954 * zone in each node and their holes is calculated. If the maximum PFN
7955 * between two adjacent zones match, it is assumed that the zone is empty.
7956 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7957 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7958 * starts where the previous one ended. For example, ZONE_DMA32 starts
7959 * at arch_max_dma_pfn.
7960 */
7961 void __init free_area_init(unsigned long *max_zone_pfn)
7962 {
7963 unsigned long start_pfn, end_pfn;
7964 int i, nid, zone;
7965 bool descending;
7966
7967 /* Record where the zone boundaries are */
7968 memset(arch_zone_lowest_possible_pfn, 0,
7969 sizeof(arch_zone_lowest_possible_pfn));
7970 memset(arch_zone_highest_possible_pfn, 0,
7971 sizeof(arch_zone_highest_possible_pfn));
7972
7973 start_pfn = find_min_pfn_with_active_regions();
7974 descending = arch_has_descending_max_zone_pfns();
7975
7976 for (i = 0; i < MAX_NR_ZONES; i++) {
7977 if (descending)
7978 zone = MAX_NR_ZONES - i - 1;
7979 else
7980 zone = i;
7981
7982 if (zone == ZONE_MOVABLE)
7983 continue;
7984
7985 end_pfn = max(max_zone_pfn[zone], start_pfn);
7986 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7987 arch_zone_highest_possible_pfn[zone] = end_pfn;
7988
7989 start_pfn = end_pfn;
7990 }
7991
7992 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7993 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7994 find_zone_movable_pfns_for_nodes();
7995
7996 /* Print out the zone ranges */
7997 pr_info("Zone ranges:\n");
7998 for (i = 0; i < MAX_NR_ZONES; i++) {
7999 if (i == ZONE_MOVABLE)
8000 continue;
8001 pr_info(" %-8s ", zone_names[i]);
8002 if (arch_zone_lowest_possible_pfn[i] ==
8003 arch_zone_highest_possible_pfn[i])
8004 pr_cont("empty\n");
8005 else
8006 pr_cont("[mem %#018Lx-%#018Lx]\n",
8007 (u64)arch_zone_lowest_possible_pfn[i]
8008 << PAGE_SHIFT,
8009 ((u64)arch_zone_highest_possible_pfn[i]
8010 << PAGE_SHIFT) - 1);
8011 }
8012
8013 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
8014 pr_info("Movable zone start for each node\n");
8015 for (i = 0; i < MAX_NUMNODES; i++) {
8016 if (zone_movable_pfn[i])
8017 pr_info(" Node %d: %#018Lx\n", i,
8018 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8019 }
8020
8021 /*
8022 * Print out the early node map, and initialize the
8023 * subsection-map relative to active online memory ranges to
8024 * enable future "sub-section" extensions of the memory map.
8025 */
8026 pr_info("Early memory node ranges\n");
8027 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8028 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8029 (u64)start_pfn << PAGE_SHIFT,
8030 ((u64)end_pfn << PAGE_SHIFT) - 1);
8031 subsection_map_init(start_pfn, end_pfn - start_pfn);
8032 }
8033
8034 /* Initialise every node */
8035 mminit_verify_pageflags_layout();
8036 setup_nr_node_ids();
8037 for_each_online_node(nid) {
8038 pg_data_t *pgdat = NODE_DATA(nid);
8039 free_area_init_node(nid);
8040
8041 /* Any memory on that node */
8042 if (pgdat->node_present_pages)
8043 node_set_state(nid, N_MEMORY);
8044 check_for_memory(pgdat, nid);
8045 }
8046
8047 memmap_init();
8048 }
8049
8050 static int __init cmdline_parse_core(char *p, unsigned long *core,
8051 unsigned long *percent)
8052 {
8053 unsigned long long coremem;
8054 char *endptr;
8055
8056 if (!p)
8057 return -EINVAL;
8058
8059 /* Value may be a percentage of total memory, otherwise bytes */
8060 coremem = simple_strtoull(p, &endptr, 0);
8061 if (*endptr == '%') {
8062 /* Paranoid check for percent values greater than 100 */
8063 WARN_ON(coremem > 100);
8064
8065 *percent = coremem;
8066 } else {
8067 coremem = memparse(p, &p);
8068 /* Paranoid check that UL is enough for the coremem value */
8069 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8070
8071 *core = coremem >> PAGE_SHIFT;
8072 *percent = 0UL;
8073 }
8074 return 0;
8075 }
8076
8077 /*
8078 * kernelcore=size sets the amount of memory for use for allocations that
8079 * cannot be reclaimed or migrated.
8080 */
8081 static int __init cmdline_parse_kernelcore(char *p)
8082 {
8083 /* parse kernelcore=mirror */
8084 if (parse_option_str(p, "mirror")) {
8085 mirrored_kernelcore = true;
8086 return 0;
8087 }
8088
8089 return cmdline_parse_core(p, &required_kernelcore,
8090 &required_kernelcore_percent);
8091 }
8092
8093 /*
8094 * movablecore=size sets the amount of memory for use for allocations that
8095 * can be reclaimed or migrated.
8096 */
8097 static int __init cmdline_parse_movablecore(char *p)
8098 {
8099 return cmdline_parse_core(p, &required_movablecore,
8100 &required_movablecore_percent);
8101 }
8102
8103 early_param("kernelcore", cmdline_parse_kernelcore);
8104 early_param("movablecore", cmdline_parse_movablecore);
8105
8106 void adjust_managed_page_count(struct page *page, long count)
8107 {
8108 atomic_long_add(count, &page_zone(page)->managed_pages);
8109 totalram_pages_add(count);
8110 #ifdef CONFIG_HIGHMEM
8111 if (PageHighMem(page))
8112 totalhigh_pages_add(count);
8113 #endif
8114 }
8115 EXPORT_SYMBOL(adjust_managed_page_count);
8116
8117 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8118 {
8119 void *pos;
8120 unsigned long pages = 0;
8121
8122 start = (void *)PAGE_ALIGN((unsigned long)start);
8123 end = (void *)((unsigned long)end & PAGE_MASK);
8124 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8125 struct page *page = virt_to_page(pos);
8126 void *direct_map_addr;
8127
8128 /*
8129 * 'direct_map_addr' might be different from 'pos'
8130 * because some architectures' virt_to_page()
8131 * work with aliases. Getting the direct map
8132 * address ensures that we get a _writeable_
8133 * alias for the memset().
8134 */
8135 direct_map_addr = page_address(page);
8136 /*
8137 * Perform a kasan-unchecked memset() since this memory
8138 * has not been initialized.
8139 */
8140 direct_map_addr = kasan_reset_tag(direct_map_addr);
8141 if ((unsigned int)poison <= 0xFF)
8142 memset(direct_map_addr, poison, PAGE_SIZE);
8143
8144 free_reserved_page(page);
8145 }
8146
8147 if (pages && s)
8148 pr_info("Freeing %s memory: %ldK\n",
8149 s, pages << (PAGE_SHIFT - 10));
8150
8151 return pages;
8152 }
8153
8154 void __init mem_init_print_info(void)
8155 {
8156 unsigned long physpages, codesize, datasize, rosize, bss_size;
8157 unsigned long init_code_size, init_data_size;
8158
8159 physpages = get_num_physpages();
8160 codesize = _etext - _stext;
8161 datasize = _edata - _sdata;
8162 rosize = __end_rodata - __start_rodata;
8163 bss_size = __bss_stop - __bss_start;
8164 init_data_size = __init_end - __init_begin;
8165 init_code_size = _einittext - _sinittext;
8166
8167 /*
8168 * Detect special cases and adjust section sizes accordingly:
8169 * 1) .init.* may be embedded into .data sections
8170 * 2) .init.text.* may be out of [__init_begin, __init_end],
8171 * please refer to arch/tile/kernel/vmlinux.lds.S.
8172 * 3) .rodata.* may be embedded into .text or .data sections.
8173 */
8174 #define adj_init_size(start, end, size, pos, adj) \
8175 do { \
8176 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8177 size -= adj; \
8178 } while (0)
8179
8180 adj_init_size(__init_begin, __init_end, init_data_size,
8181 _sinittext, init_code_size);
8182 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8183 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8184 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8185 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8186
8187 #undef adj_init_size
8188
8189 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8190 #ifdef CONFIG_HIGHMEM
8191 ", %luK highmem"
8192 #endif
8193 ")\n",
8194 nr_free_pages() << (PAGE_SHIFT - 10),
8195 physpages << (PAGE_SHIFT - 10),
8196 codesize >> 10, datasize >> 10, rosize >> 10,
8197 (init_data_size + init_code_size) >> 10, bss_size >> 10,
8198 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
8199 totalcma_pages << (PAGE_SHIFT - 10)
8200 #ifdef CONFIG_HIGHMEM
8201 , totalhigh_pages() << (PAGE_SHIFT - 10)
8202 #endif
8203 );
8204 }
8205
8206 /**
8207 * set_dma_reserve - set the specified number of pages reserved in the first zone
8208 * @new_dma_reserve: The number of pages to mark reserved
8209 *
8210 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8211 * In the DMA zone, a significant percentage may be consumed by kernel image
8212 * and other unfreeable allocations which can skew the watermarks badly. This
8213 * function may optionally be used to account for unfreeable pages in the
8214 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8215 * smaller per-cpu batchsize.
8216 */
8217 void __init set_dma_reserve(unsigned long new_dma_reserve)
8218 {
8219 dma_reserve = new_dma_reserve;
8220 }
8221
8222 static int page_alloc_cpu_dead(unsigned int cpu)
8223 {
8224 struct zone *zone;
8225
8226 lru_add_drain_cpu(cpu);
8227 drain_pages(cpu);
8228
8229 /*
8230 * Spill the event counters of the dead processor
8231 * into the current processors event counters.
8232 * This artificially elevates the count of the current
8233 * processor.
8234 */
8235 vm_events_fold_cpu(cpu);
8236
8237 /*
8238 * Zero the differential counters of the dead processor
8239 * so that the vm statistics are consistent.
8240 *
8241 * This is only okay since the processor is dead and cannot
8242 * race with what we are doing.
8243 */
8244 cpu_vm_stats_fold(cpu);
8245
8246 for_each_populated_zone(zone)
8247 zone_pcp_update(zone, 0);
8248
8249 return 0;
8250 }
8251
8252 static int page_alloc_cpu_online(unsigned int cpu)
8253 {
8254 struct zone *zone;
8255
8256 for_each_populated_zone(zone)
8257 zone_pcp_update(zone, 1);
8258 return 0;
8259 }
8260
8261 #ifdef CONFIG_NUMA
8262 int hashdist = HASHDIST_DEFAULT;
8263
8264 static int __init set_hashdist(char *str)
8265 {
8266 if (!str)
8267 return 0;
8268 hashdist = simple_strtoul(str, &str, 0);
8269 return 1;
8270 }
8271 __setup("hashdist=", set_hashdist);
8272 #endif
8273
8274 void __init page_alloc_init(void)
8275 {
8276 int ret;
8277
8278 #ifdef CONFIG_NUMA
8279 if (num_node_state(N_MEMORY) == 1)
8280 hashdist = 0;
8281 #endif
8282
8283 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8284 "mm/page_alloc:pcp",
8285 page_alloc_cpu_online,
8286 page_alloc_cpu_dead);
8287 WARN_ON(ret < 0);
8288 }
8289
8290 /*
8291 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8292 * or min_free_kbytes changes.
8293 */
8294 static void calculate_totalreserve_pages(void)
8295 {
8296 struct pglist_data *pgdat;
8297 unsigned long reserve_pages = 0;
8298 enum zone_type i, j;
8299
8300 for_each_online_pgdat(pgdat) {
8301
8302 pgdat->totalreserve_pages = 0;
8303
8304 for (i = 0; i < MAX_NR_ZONES; i++) {
8305 struct zone *zone = pgdat->node_zones + i;
8306 long max = 0;
8307 unsigned long managed_pages = zone_managed_pages(zone);
8308
8309 /* Find valid and maximum lowmem_reserve in the zone */
8310 for (j = i; j < MAX_NR_ZONES; j++) {
8311 if (zone->lowmem_reserve[j] > max)
8312 max = zone->lowmem_reserve[j];
8313 }
8314
8315 /* we treat the high watermark as reserved pages. */
8316 max += high_wmark_pages(zone);
8317
8318 if (max > managed_pages)
8319 max = managed_pages;
8320
8321 pgdat->totalreserve_pages += max;
8322
8323 reserve_pages += max;
8324 }
8325 }
8326 totalreserve_pages = reserve_pages;
8327 }
8328
8329 /*
8330 * setup_per_zone_lowmem_reserve - called whenever
8331 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8332 * has a correct pages reserved value, so an adequate number of
8333 * pages are left in the zone after a successful __alloc_pages().
8334 */
8335 static void setup_per_zone_lowmem_reserve(void)
8336 {
8337 struct pglist_data *pgdat;
8338 enum zone_type i, j;
8339
8340 for_each_online_pgdat(pgdat) {
8341 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8342 struct zone *zone = &pgdat->node_zones[i];
8343 int ratio = sysctl_lowmem_reserve_ratio[i];
8344 bool clear = !ratio || !zone_managed_pages(zone);
8345 unsigned long managed_pages = 0;
8346
8347 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8348 struct zone *upper_zone = &pgdat->node_zones[j];
8349
8350 managed_pages += zone_managed_pages(upper_zone);
8351
8352 if (clear)
8353 zone->lowmem_reserve[j] = 0;
8354 else
8355 zone->lowmem_reserve[j] = managed_pages / ratio;
8356 }
8357 }
8358 }
8359
8360 /* update totalreserve_pages */
8361 calculate_totalreserve_pages();
8362 }
8363
8364 static void __setup_per_zone_wmarks(void)
8365 {
8366 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8367 unsigned long lowmem_pages = 0;
8368 struct zone *zone;
8369 unsigned long flags;
8370
8371 /* Calculate total number of !ZONE_HIGHMEM pages */
8372 for_each_zone(zone) {
8373 if (!is_highmem(zone))
8374 lowmem_pages += zone_managed_pages(zone);
8375 }
8376
8377 for_each_zone(zone) {
8378 u64 tmp;
8379
8380 spin_lock_irqsave(&zone->lock, flags);
8381 tmp = (u64)pages_min * zone_managed_pages(zone);
8382 do_div(tmp, lowmem_pages);
8383 if (is_highmem(zone)) {
8384 /*
8385 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8386 * need highmem pages, so cap pages_min to a small
8387 * value here.
8388 *
8389 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8390 * deltas control async page reclaim, and so should
8391 * not be capped for highmem.
8392 */
8393 unsigned long min_pages;
8394
8395 min_pages = zone_managed_pages(zone) / 1024;
8396 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8397 zone->_watermark[WMARK_MIN] = min_pages;
8398 } else {
8399 /*
8400 * If it's a lowmem zone, reserve a number of pages
8401 * proportionate to the zone's size.
8402 */
8403 zone->_watermark[WMARK_MIN] = tmp;
8404 }
8405
8406 /*
8407 * Set the kswapd watermarks distance according to the
8408 * scale factor in proportion to available memory, but
8409 * ensure a minimum size on small systems.
8410 */
8411 tmp = max_t(u64, tmp >> 2,
8412 mult_frac(zone_managed_pages(zone),
8413 watermark_scale_factor, 10000));
8414
8415 zone->watermark_boost = 0;
8416 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8417 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8418
8419 spin_unlock_irqrestore(&zone->lock, flags);
8420 }
8421
8422 /* update totalreserve_pages */
8423 calculate_totalreserve_pages();
8424 }
8425
8426 /**
8427 * setup_per_zone_wmarks - called when min_free_kbytes changes
8428 * or when memory is hot-{added|removed}
8429 *
8430 * Ensures that the watermark[min,low,high] values for each zone are set
8431 * correctly with respect to min_free_kbytes.
8432 */
8433 void setup_per_zone_wmarks(void)
8434 {
8435 struct zone *zone;
8436 static DEFINE_SPINLOCK(lock);
8437
8438 spin_lock(&lock);
8439 __setup_per_zone_wmarks();
8440 spin_unlock(&lock);
8441
8442 /*
8443 * The watermark size have changed so update the pcpu batch
8444 * and high limits or the limits may be inappropriate.
8445 */
8446 for_each_zone(zone)
8447 zone_pcp_update(zone, 0);
8448 }
8449
8450 /*
8451 * Initialise min_free_kbytes.
8452 *
8453 * For small machines we want it small (128k min). For large machines
8454 * we want it large (256MB max). But it is not linear, because network
8455 * bandwidth does not increase linearly with machine size. We use
8456 *
8457 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8458 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8459 *
8460 * which yields
8461 *
8462 * 16MB: 512k
8463 * 32MB: 724k
8464 * 64MB: 1024k
8465 * 128MB: 1448k
8466 * 256MB: 2048k
8467 * 512MB: 2896k
8468 * 1024MB: 4096k
8469 * 2048MB: 5792k
8470 * 4096MB: 8192k
8471 * 8192MB: 11584k
8472 * 16384MB: 16384k
8473 */
8474 int __meminit init_per_zone_wmark_min(void)
8475 {
8476 unsigned long lowmem_kbytes;
8477 int new_min_free_kbytes;
8478
8479 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8480 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8481
8482 if (new_min_free_kbytes > user_min_free_kbytes) {
8483 min_free_kbytes = new_min_free_kbytes;
8484 if (min_free_kbytes < 128)
8485 min_free_kbytes = 128;
8486 if (min_free_kbytes > 262144)
8487 min_free_kbytes = 262144;
8488 } else {
8489 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8490 new_min_free_kbytes, user_min_free_kbytes);
8491 }
8492 setup_per_zone_wmarks();
8493 refresh_zone_stat_thresholds();
8494 setup_per_zone_lowmem_reserve();
8495
8496 #ifdef CONFIG_NUMA
8497 setup_min_unmapped_ratio();
8498 setup_min_slab_ratio();
8499 #endif
8500
8501 khugepaged_min_free_kbytes_update();
8502
8503 return 0;
8504 }
8505 postcore_initcall(init_per_zone_wmark_min)
8506
8507 /*
8508 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8509 * that we can call two helper functions whenever min_free_kbytes
8510 * changes.
8511 */
8512 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8513 void *buffer, size_t *length, loff_t *ppos)
8514 {
8515 int rc;
8516
8517 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8518 if (rc)
8519 return rc;
8520
8521 if (write) {
8522 user_min_free_kbytes = min_free_kbytes;
8523 setup_per_zone_wmarks();
8524 }
8525 return 0;
8526 }
8527
8528 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8529 void *buffer, size_t *length, loff_t *ppos)
8530 {
8531 int rc;
8532
8533 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8534 if (rc)
8535 return rc;
8536
8537 if (write)
8538 setup_per_zone_wmarks();
8539
8540 return 0;
8541 }
8542
8543 #ifdef CONFIG_NUMA
8544 static void setup_min_unmapped_ratio(void)
8545 {
8546 pg_data_t *pgdat;
8547 struct zone *zone;
8548
8549 for_each_online_pgdat(pgdat)
8550 pgdat->min_unmapped_pages = 0;
8551
8552 for_each_zone(zone)
8553 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8554 sysctl_min_unmapped_ratio) / 100;
8555 }
8556
8557
8558 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8559 void *buffer, size_t *length, loff_t *ppos)
8560 {
8561 int rc;
8562
8563 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8564 if (rc)
8565 return rc;
8566
8567 setup_min_unmapped_ratio();
8568
8569 return 0;
8570 }
8571
8572 static void setup_min_slab_ratio(void)
8573 {
8574 pg_data_t *pgdat;
8575 struct zone *zone;
8576
8577 for_each_online_pgdat(pgdat)
8578 pgdat->min_slab_pages = 0;
8579
8580 for_each_zone(zone)
8581 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8582 sysctl_min_slab_ratio) / 100;
8583 }
8584
8585 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8586 void *buffer, size_t *length, loff_t *ppos)
8587 {
8588 int rc;
8589
8590 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8591 if (rc)
8592 return rc;
8593
8594 setup_min_slab_ratio();
8595
8596 return 0;
8597 }
8598 #endif
8599
8600 /*
8601 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8602 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8603 * whenever sysctl_lowmem_reserve_ratio changes.
8604 *
8605 * The reserve ratio obviously has absolutely no relation with the
8606 * minimum watermarks. The lowmem reserve ratio can only make sense
8607 * if in function of the boot time zone sizes.
8608 */
8609 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8610 void *buffer, size_t *length, loff_t *ppos)
8611 {
8612 int i;
8613
8614 proc_dointvec_minmax(table, write, buffer, length, ppos);
8615
8616 for (i = 0; i < MAX_NR_ZONES; i++) {
8617 if (sysctl_lowmem_reserve_ratio[i] < 1)
8618 sysctl_lowmem_reserve_ratio[i] = 0;
8619 }
8620
8621 setup_per_zone_lowmem_reserve();
8622 return 0;
8623 }
8624
8625 /*
8626 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8627 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8628 * pagelist can have before it gets flushed back to buddy allocator.
8629 */
8630 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8631 int write, void *buffer, size_t *length, loff_t *ppos)
8632 {
8633 struct zone *zone;
8634 int old_percpu_pagelist_high_fraction;
8635 int ret;
8636
8637 mutex_lock(&pcp_batch_high_lock);
8638 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8639
8640 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8641 if (!write || ret < 0)
8642 goto out;
8643
8644 /* Sanity checking to avoid pcp imbalance */
8645 if (percpu_pagelist_high_fraction &&
8646 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8647 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8648 ret = -EINVAL;
8649 goto out;
8650 }
8651
8652 /* No change? */
8653 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8654 goto out;
8655
8656 for_each_populated_zone(zone)
8657 zone_set_pageset_high_and_batch(zone, 0);
8658 out:
8659 mutex_unlock(&pcp_batch_high_lock);
8660 return ret;
8661 }
8662
8663 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8664 /*
8665 * Returns the number of pages that arch has reserved but
8666 * is not known to alloc_large_system_hash().
8667 */
8668 static unsigned long __init arch_reserved_kernel_pages(void)
8669 {
8670 return 0;
8671 }
8672 #endif
8673
8674 /*
8675 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8676 * machines. As memory size is increased the scale is also increased but at
8677 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8678 * quadruples the scale is increased by one, which means the size of hash table
8679 * only doubles, instead of quadrupling as well.
8680 * Because 32-bit systems cannot have large physical memory, where this scaling
8681 * makes sense, it is disabled on such platforms.
8682 */
8683 #if __BITS_PER_LONG > 32
8684 #define ADAPT_SCALE_BASE (64ul << 30)
8685 #define ADAPT_SCALE_SHIFT 2
8686 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8687 #endif
8688
8689 /*
8690 * allocate a large system hash table from bootmem
8691 * - it is assumed that the hash table must contain an exact power-of-2
8692 * quantity of entries
8693 * - limit is the number of hash buckets, not the total allocation size
8694 */
8695 void *__init alloc_large_system_hash(const char *tablename,
8696 unsigned long bucketsize,
8697 unsigned long numentries,
8698 int scale,
8699 int flags,
8700 unsigned int *_hash_shift,
8701 unsigned int *_hash_mask,
8702 unsigned long low_limit,
8703 unsigned long high_limit)
8704 {
8705 unsigned long long max = high_limit;
8706 unsigned long log2qty, size;
8707 void *table = NULL;
8708 gfp_t gfp_flags;
8709 bool virt;
8710 bool huge;
8711
8712 /* allow the kernel cmdline to have a say */
8713 if (!numentries) {
8714 /* round applicable memory size up to nearest megabyte */
8715 numentries = nr_kernel_pages;
8716 numentries -= arch_reserved_kernel_pages();
8717
8718 /* It isn't necessary when PAGE_SIZE >= 1MB */
8719 if (PAGE_SHIFT < 20)
8720 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8721
8722 #if __BITS_PER_LONG > 32
8723 if (!high_limit) {
8724 unsigned long adapt;
8725
8726 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8727 adapt <<= ADAPT_SCALE_SHIFT)
8728 scale++;
8729 }
8730 #endif
8731
8732 /* limit to 1 bucket per 2^scale bytes of low memory */
8733 if (scale > PAGE_SHIFT)
8734 numentries >>= (scale - PAGE_SHIFT);
8735 else
8736 numentries <<= (PAGE_SHIFT - scale);
8737
8738 /* Make sure we've got at least a 0-order allocation.. */
8739 if (unlikely(flags & HASH_SMALL)) {
8740 /* Makes no sense without HASH_EARLY */
8741 WARN_ON(!(flags & HASH_EARLY));
8742 if (!(numentries >> *_hash_shift)) {
8743 numentries = 1UL << *_hash_shift;
8744 BUG_ON(!numentries);
8745 }
8746 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8747 numentries = PAGE_SIZE / bucketsize;
8748 }
8749 numentries = roundup_pow_of_two(numentries);
8750
8751 /* limit allocation size to 1/16 total memory by default */
8752 if (max == 0) {
8753 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8754 do_div(max, bucketsize);
8755 }
8756 max = min(max, 0x80000000ULL);
8757
8758 if (numentries < low_limit)
8759 numentries = low_limit;
8760 if (numentries > max)
8761 numentries = max;
8762
8763 log2qty = ilog2(numentries);
8764
8765 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8766 do {
8767 virt = false;
8768 size = bucketsize << log2qty;
8769 if (flags & HASH_EARLY) {
8770 if (flags & HASH_ZERO)
8771 table = memblock_alloc(size, SMP_CACHE_BYTES);
8772 else
8773 table = memblock_alloc_raw(size,
8774 SMP_CACHE_BYTES);
8775 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8776 table = __vmalloc(size, gfp_flags);
8777 virt = true;
8778 huge = is_vm_area_hugepages(table);
8779 } else {
8780 /*
8781 * If bucketsize is not a power-of-two, we may free
8782 * some pages at the end of hash table which
8783 * alloc_pages_exact() automatically does
8784 */
8785 table = alloc_pages_exact(size, gfp_flags);
8786 kmemleak_alloc(table, size, 1, gfp_flags);
8787 }
8788 } while (!table && size > PAGE_SIZE && --log2qty);
8789
8790 if (!table)
8791 panic("Failed to allocate %s hash table\n", tablename);
8792
8793 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8794 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8795 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8796
8797 if (_hash_shift)
8798 *_hash_shift = log2qty;
8799 if (_hash_mask)
8800 *_hash_mask = (1 << log2qty) - 1;
8801
8802 return table;
8803 }
8804
8805 /*
8806 * This function checks whether pageblock includes unmovable pages or not.
8807 *
8808 * PageLRU check without isolation or lru_lock could race so that
8809 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8810 * check without lock_page also may miss some movable non-lru pages at
8811 * race condition. So you can't expect this function should be exact.
8812 *
8813 * Returns a page without holding a reference. If the caller wants to
8814 * dereference that page (e.g., dumping), it has to make sure that it
8815 * cannot get removed (e.g., via memory unplug) concurrently.
8816 *
8817 */
8818 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8819 int migratetype, int flags)
8820 {
8821 unsigned long iter = 0;
8822 unsigned long pfn = page_to_pfn(page);
8823 unsigned long offset = pfn % pageblock_nr_pages;
8824
8825 if (is_migrate_cma_page(page)) {
8826 /*
8827 * CMA allocations (alloc_contig_range) really need to mark
8828 * isolate CMA pageblocks even when they are not movable in fact
8829 * so consider them movable here.
8830 */
8831 if (is_migrate_cma(migratetype))
8832 return NULL;
8833
8834 return page;
8835 }
8836
8837 for (; iter < pageblock_nr_pages - offset; iter++) {
8838 page = pfn_to_page(pfn + iter);
8839
8840 /*
8841 * Both, bootmem allocations and memory holes are marked
8842 * PG_reserved and are unmovable. We can even have unmovable
8843 * allocations inside ZONE_MOVABLE, for example when
8844 * specifying "movablecore".
8845 */
8846 if (PageReserved(page))
8847 return page;
8848
8849 /*
8850 * If the zone is movable and we have ruled out all reserved
8851 * pages then it should be reasonably safe to assume the rest
8852 * is movable.
8853 */
8854 if (zone_idx(zone) == ZONE_MOVABLE)
8855 continue;
8856
8857 /*
8858 * Hugepages are not in LRU lists, but they're movable.
8859 * THPs are on the LRU, but need to be counted as #small pages.
8860 * We need not scan over tail pages because we don't
8861 * handle each tail page individually in migration.
8862 */
8863 if (PageHuge(page) || PageTransCompound(page)) {
8864 struct page *head = compound_head(page);
8865 unsigned int skip_pages;
8866
8867 if (PageHuge(page)) {
8868 if (!hugepage_migration_supported(page_hstate(head)))
8869 return page;
8870 } else if (!PageLRU(head) && !__PageMovable(head)) {
8871 return page;
8872 }
8873
8874 skip_pages = compound_nr(head) - (page - head);
8875 iter += skip_pages - 1;
8876 continue;
8877 }
8878
8879 /*
8880 * We can't use page_count without pin a page
8881 * because another CPU can free compound page.
8882 * This check already skips compound tails of THP
8883 * because their page->_refcount is zero at all time.
8884 */
8885 if (!page_ref_count(page)) {
8886 if (PageBuddy(page))
8887 iter += (1 << buddy_order(page)) - 1;
8888 continue;
8889 }
8890
8891 /*
8892 * The HWPoisoned page may be not in buddy system, and
8893 * page_count() is not 0.
8894 */
8895 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8896 continue;
8897
8898 /*
8899 * We treat all PageOffline() pages as movable when offlining
8900 * to give drivers a chance to decrement their reference count
8901 * in MEM_GOING_OFFLINE in order to indicate that these pages
8902 * can be offlined as there are no direct references anymore.
8903 * For actually unmovable PageOffline() where the driver does
8904 * not support this, we will fail later when trying to actually
8905 * move these pages that still have a reference count > 0.
8906 * (false negatives in this function only)
8907 */
8908 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8909 continue;
8910
8911 if (__PageMovable(page) || PageLRU(page))
8912 continue;
8913
8914 /*
8915 * If there are RECLAIMABLE pages, we need to check
8916 * it. But now, memory offline itself doesn't call
8917 * shrink_node_slabs() and it still to be fixed.
8918 */
8919 return page;
8920 }
8921 return NULL;
8922 }
8923
8924 #ifdef CONFIG_CONTIG_ALLOC
8925 static unsigned long pfn_max_align_down(unsigned long pfn)
8926 {
8927 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8928 pageblock_nr_pages) - 1);
8929 }
8930
8931 static unsigned long pfn_max_align_up(unsigned long pfn)
8932 {
8933 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8934 pageblock_nr_pages));
8935 }
8936
8937 #if defined(CONFIG_DYNAMIC_DEBUG) || \
8938 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8939 /* Usage: See admin-guide/dynamic-debug-howto.rst */
8940 static void alloc_contig_dump_pages(struct list_head *page_list)
8941 {
8942 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8943
8944 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8945 struct page *page;
8946
8947 dump_stack();
8948 list_for_each_entry(page, page_list, lru)
8949 dump_page(page, "migration failure");
8950 }
8951 }
8952 #else
8953 static inline void alloc_contig_dump_pages(struct list_head *page_list)
8954 {
8955 }
8956 #endif
8957
8958 /* [start, end) must belong to a single zone. */
8959 static int __alloc_contig_migrate_range(struct compact_control *cc,
8960 unsigned long start, unsigned long end)
8961 {
8962 /* This function is based on compact_zone() from compaction.c. */
8963 unsigned int nr_reclaimed;
8964 unsigned long pfn = start;
8965 unsigned int tries = 0;
8966 int ret = 0;
8967 struct migration_target_control mtc = {
8968 .nid = zone_to_nid(cc->zone),
8969 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8970 };
8971
8972 lru_cache_disable();
8973
8974 while (pfn < end || !list_empty(&cc->migratepages)) {
8975 if (fatal_signal_pending(current)) {
8976 ret = -EINTR;
8977 break;
8978 }
8979
8980 if (list_empty(&cc->migratepages)) {
8981 cc->nr_migratepages = 0;
8982 ret = isolate_migratepages_range(cc, pfn, end);
8983 if (ret && ret != -EAGAIN)
8984 break;
8985 pfn = cc->migrate_pfn;
8986 tries = 0;
8987 } else if (++tries == 5) {
8988 ret = -EBUSY;
8989 break;
8990 }
8991
8992 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8993 &cc->migratepages);
8994 cc->nr_migratepages -= nr_reclaimed;
8995
8996 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8997 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
8998
8999 /*
9000 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9001 * to retry again over this error, so do the same here.
9002 */
9003 if (ret == -ENOMEM)
9004 break;
9005 }
9006
9007 lru_cache_enable();
9008 if (ret < 0) {
9009 if (ret == -EBUSY)
9010 alloc_contig_dump_pages(&cc->migratepages);
9011 putback_movable_pages(&cc->migratepages);
9012 return ret;
9013 }
9014 return 0;
9015 }
9016
9017 /**
9018 * alloc_contig_range() -- tries to allocate given range of pages
9019 * @start: start PFN to allocate
9020 * @end: one-past-the-last PFN to allocate
9021 * @migratetype: migratetype of the underlying pageblocks (either
9022 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9023 * in range must have the same migratetype and it must
9024 * be either of the two.
9025 * @gfp_mask: GFP mask to use during compaction
9026 *
9027 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9028 * aligned. The PFN range must belong to a single zone.
9029 *
9030 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9031 * pageblocks in the range. Once isolated, the pageblocks should not
9032 * be modified by others.
9033 *
9034 * Return: zero on success or negative error code. On success all
9035 * pages which PFN is in [start, end) are allocated for the caller and
9036 * need to be freed with free_contig_range().
9037 */
9038 int alloc_contig_range(unsigned long start, unsigned long end,
9039 unsigned migratetype, gfp_t gfp_mask)
9040 {
9041 unsigned long outer_start, outer_end;
9042 unsigned int order;
9043 int ret = 0;
9044
9045 struct compact_control cc = {
9046 .nr_migratepages = 0,
9047 .order = -1,
9048 .zone = page_zone(pfn_to_page(start)),
9049 .mode = MIGRATE_SYNC,
9050 .ignore_skip_hint = true,
9051 .no_set_skip_hint = true,
9052 .gfp_mask = current_gfp_context(gfp_mask),
9053 .alloc_contig = true,
9054 };
9055 INIT_LIST_HEAD(&cc.migratepages);
9056
9057 /*
9058 * What we do here is we mark all pageblocks in range as
9059 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9060 * have different sizes, and due to the way page allocator
9061 * work, we align the range to biggest of the two pages so
9062 * that page allocator won't try to merge buddies from
9063 * different pageblocks and change MIGRATE_ISOLATE to some
9064 * other migration type.
9065 *
9066 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9067 * migrate the pages from an unaligned range (ie. pages that
9068 * we are interested in). This will put all the pages in
9069 * range back to page allocator as MIGRATE_ISOLATE.
9070 *
9071 * When this is done, we take the pages in range from page
9072 * allocator removing them from the buddy system. This way
9073 * page allocator will never consider using them.
9074 *
9075 * This lets us mark the pageblocks back as
9076 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9077 * aligned range but not in the unaligned, original range are
9078 * put back to page allocator so that buddy can use them.
9079 */
9080
9081 ret = start_isolate_page_range(pfn_max_align_down(start),
9082 pfn_max_align_up(end), migratetype, 0);
9083 if (ret)
9084 return ret;
9085
9086 drain_all_pages(cc.zone);
9087
9088 /*
9089 * In case of -EBUSY, we'd like to know which page causes problem.
9090 * So, just fall through. test_pages_isolated() has a tracepoint
9091 * which will report the busy page.
9092 *
9093 * It is possible that busy pages could become available before
9094 * the call to test_pages_isolated, and the range will actually be
9095 * allocated. So, if we fall through be sure to clear ret so that
9096 * -EBUSY is not accidentally used or returned to caller.
9097 */
9098 ret = __alloc_contig_migrate_range(&cc, start, end);
9099 if (ret && ret != -EBUSY)
9100 goto done;
9101 ret = 0;
9102
9103 /*
9104 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9105 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9106 * more, all pages in [start, end) are free in page allocator.
9107 * What we are going to do is to allocate all pages from
9108 * [start, end) (that is remove them from page allocator).
9109 *
9110 * The only problem is that pages at the beginning and at the
9111 * end of interesting range may be not aligned with pages that
9112 * page allocator holds, ie. they can be part of higher order
9113 * pages. Because of this, we reserve the bigger range and
9114 * once this is done free the pages we are not interested in.
9115 *
9116 * We don't have to hold zone->lock here because the pages are
9117 * isolated thus they won't get removed from buddy.
9118 */
9119
9120 order = 0;
9121 outer_start = start;
9122 while (!PageBuddy(pfn_to_page(outer_start))) {
9123 if (++order >= MAX_ORDER) {
9124 outer_start = start;
9125 break;
9126 }
9127 outer_start &= ~0UL << order;
9128 }
9129
9130 if (outer_start != start) {
9131 order = buddy_order(pfn_to_page(outer_start));
9132
9133 /*
9134 * outer_start page could be small order buddy page and
9135 * it doesn't include start page. Adjust outer_start
9136 * in this case to report failed page properly
9137 * on tracepoint in test_pages_isolated()
9138 */
9139 if (outer_start + (1UL << order) <= start)
9140 outer_start = start;
9141 }
9142
9143 /* Make sure the range is really isolated. */
9144 if (test_pages_isolated(outer_start, end, 0)) {
9145 ret = -EBUSY;
9146 goto done;
9147 }
9148
9149 /* Grab isolated pages from freelists. */
9150 outer_end = isolate_freepages_range(&cc, outer_start, end);
9151 if (!outer_end) {
9152 ret = -EBUSY;
9153 goto done;
9154 }
9155
9156 /* Free head and tail (if any) */
9157 if (start != outer_start)
9158 free_contig_range(outer_start, start - outer_start);
9159 if (end != outer_end)
9160 free_contig_range(end, outer_end - end);
9161
9162 done:
9163 undo_isolate_page_range(pfn_max_align_down(start),
9164 pfn_max_align_up(end), migratetype);
9165 return ret;
9166 }
9167 EXPORT_SYMBOL(alloc_contig_range);
9168
9169 static int __alloc_contig_pages(unsigned long start_pfn,
9170 unsigned long nr_pages, gfp_t gfp_mask)
9171 {
9172 unsigned long end_pfn = start_pfn + nr_pages;
9173
9174 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9175 gfp_mask);
9176 }
9177
9178 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9179 unsigned long nr_pages)
9180 {
9181 unsigned long i, end_pfn = start_pfn + nr_pages;
9182 struct page *page;
9183
9184 for (i = start_pfn; i < end_pfn; i++) {
9185 page = pfn_to_online_page(i);
9186 if (!page)
9187 return false;
9188
9189 if (page_zone(page) != z)
9190 return false;
9191
9192 if (PageReserved(page))
9193 return false;
9194 }
9195 return true;
9196 }
9197
9198 static bool zone_spans_last_pfn(const struct zone *zone,
9199 unsigned long start_pfn, unsigned long nr_pages)
9200 {
9201 unsigned long last_pfn = start_pfn + nr_pages - 1;
9202
9203 return zone_spans_pfn(zone, last_pfn);
9204 }
9205
9206 /**
9207 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9208 * @nr_pages: Number of contiguous pages to allocate
9209 * @gfp_mask: GFP mask to limit search and used during compaction
9210 * @nid: Target node
9211 * @nodemask: Mask for other possible nodes
9212 *
9213 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9214 * on an applicable zonelist to find a contiguous pfn range which can then be
9215 * tried for allocation with alloc_contig_range(). This routine is intended
9216 * for allocation requests which can not be fulfilled with the buddy allocator.
9217 *
9218 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9219 * power of two then the alignment is guaranteed to be to the given nr_pages
9220 * (e.g. 1GB request would be aligned to 1GB).
9221 *
9222 * Allocated pages can be freed with free_contig_range() or by manually calling
9223 * __free_page() on each allocated page.
9224 *
9225 * Return: pointer to contiguous pages on success, or NULL if not successful.
9226 */
9227 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9228 int nid, nodemask_t *nodemask)
9229 {
9230 unsigned long ret, pfn, flags;
9231 struct zonelist *zonelist;
9232 struct zone *zone;
9233 struct zoneref *z;
9234
9235 zonelist = node_zonelist(nid, gfp_mask);
9236 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9237 gfp_zone(gfp_mask), nodemask) {
9238 spin_lock_irqsave(&zone->lock, flags);
9239
9240 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9241 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9242 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9243 /*
9244 * We release the zone lock here because
9245 * alloc_contig_range() will also lock the zone
9246 * at some point. If there's an allocation
9247 * spinning on this lock, it may win the race
9248 * and cause alloc_contig_range() to fail...
9249 */
9250 spin_unlock_irqrestore(&zone->lock, flags);
9251 ret = __alloc_contig_pages(pfn, nr_pages,
9252 gfp_mask);
9253 if (!ret)
9254 return pfn_to_page(pfn);
9255 spin_lock_irqsave(&zone->lock, flags);
9256 }
9257 pfn += nr_pages;
9258 }
9259 spin_unlock_irqrestore(&zone->lock, flags);
9260 }
9261 return NULL;
9262 }
9263 #endif /* CONFIG_CONTIG_ALLOC */
9264
9265 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9266 {
9267 unsigned long count = 0;
9268
9269 for (; nr_pages--; pfn++) {
9270 struct page *page = pfn_to_page(pfn);
9271
9272 count += page_count(page) != 1;
9273 __free_page(page);
9274 }
9275 WARN(count != 0, "%lu pages are still in use!\n", count);
9276 }
9277 EXPORT_SYMBOL(free_contig_range);
9278
9279 /*
9280 * The zone indicated has a new number of managed_pages; batch sizes and percpu
9281 * page high values need to be recalculated.
9282 */
9283 void zone_pcp_update(struct zone *zone, int cpu_online)
9284 {
9285 mutex_lock(&pcp_batch_high_lock);
9286 zone_set_pageset_high_and_batch(zone, cpu_online);
9287 mutex_unlock(&pcp_batch_high_lock);
9288 }
9289
9290 /*
9291 * Effectively disable pcplists for the zone by setting the high limit to 0
9292 * and draining all cpus. A concurrent page freeing on another CPU that's about
9293 * to put the page on pcplist will either finish before the drain and the page
9294 * will be drained, or observe the new high limit and skip the pcplist.
9295 *
9296 * Must be paired with a call to zone_pcp_enable().
9297 */
9298 void zone_pcp_disable(struct zone *zone)
9299 {
9300 mutex_lock(&pcp_batch_high_lock);
9301 __zone_set_pageset_high_and_batch(zone, 0, 1);
9302 __drain_all_pages(zone, true);
9303 }
9304
9305 void zone_pcp_enable(struct zone *zone)
9306 {
9307 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9308 mutex_unlock(&pcp_batch_high_lock);
9309 }
9310
9311 void zone_pcp_reset(struct zone *zone)
9312 {
9313 int cpu;
9314 struct per_cpu_zonestat *pzstats;
9315
9316 if (zone->per_cpu_pageset != &boot_pageset) {
9317 for_each_online_cpu(cpu) {
9318 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9319 drain_zonestat(zone, pzstats);
9320 }
9321 free_percpu(zone->per_cpu_pageset);
9322 free_percpu(zone->per_cpu_zonestats);
9323 zone->per_cpu_pageset = &boot_pageset;
9324 zone->per_cpu_zonestats = &boot_zonestats;
9325 }
9326 }
9327
9328 #ifdef CONFIG_MEMORY_HOTREMOVE
9329 /*
9330 * All pages in the range must be in a single zone, must not contain holes,
9331 * must span full sections, and must be isolated before calling this function.
9332 */
9333 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9334 {
9335 unsigned long pfn = start_pfn;
9336 struct page *page;
9337 struct zone *zone;
9338 unsigned int order;
9339 unsigned long flags;
9340
9341 offline_mem_sections(pfn, end_pfn);
9342 zone = page_zone(pfn_to_page(pfn));
9343 spin_lock_irqsave(&zone->lock, flags);
9344 while (pfn < end_pfn) {
9345 page = pfn_to_page(pfn);
9346 /*
9347 * The HWPoisoned page may be not in buddy system, and
9348 * page_count() is not 0.
9349 */
9350 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9351 pfn++;
9352 continue;
9353 }
9354 /*
9355 * At this point all remaining PageOffline() pages have a
9356 * reference count of 0 and can simply be skipped.
9357 */
9358 if (PageOffline(page)) {
9359 BUG_ON(page_count(page));
9360 BUG_ON(PageBuddy(page));
9361 pfn++;
9362 continue;
9363 }
9364
9365 BUG_ON(page_count(page));
9366 BUG_ON(!PageBuddy(page));
9367 order = buddy_order(page);
9368 del_page_from_free_list(page, zone, order);
9369 pfn += (1 << order);
9370 }
9371 spin_unlock_irqrestore(&zone->lock, flags);
9372 }
9373 #endif
9374
9375 bool is_free_buddy_page(struct page *page)
9376 {
9377 struct zone *zone = page_zone(page);
9378 unsigned long pfn = page_to_pfn(page);
9379 unsigned long flags;
9380 unsigned int order;
9381
9382 spin_lock_irqsave(&zone->lock, flags);
9383 for (order = 0; order < MAX_ORDER; order++) {
9384 struct page *page_head = page - (pfn & ((1 << order) - 1));
9385
9386 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9387 break;
9388 }
9389 spin_unlock_irqrestore(&zone->lock, flags);
9390
9391 return order < MAX_ORDER;
9392 }
9393
9394 #ifdef CONFIG_MEMORY_FAILURE
9395 /*
9396 * Break down a higher-order page in sub-pages, and keep our target out of
9397 * buddy allocator.
9398 */
9399 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9400 struct page *target, int low, int high,
9401 int migratetype)
9402 {
9403 unsigned long size = 1 << high;
9404 struct page *current_buddy, *next_page;
9405
9406 while (high > low) {
9407 high--;
9408 size >>= 1;
9409
9410 if (target >= &page[size]) {
9411 next_page = page + size;
9412 current_buddy = page;
9413 } else {
9414 next_page = page;
9415 current_buddy = page + size;
9416 }
9417
9418 if (set_page_guard(zone, current_buddy, high, migratetype))
9419 continue;
9420
9421 if (current_buddy != target) {
9422 add_to_free_list(current_buddy, zone, high, migratetype);
9423 set_buddy_order(current_buddy, high);
9424 page = next_page;
9425 }
9426 }
9427 }
9428
9429 /*
9430 * Take a page that will be marked as poisoned off the buddy allocator.
9431 */
9432 bool take_page_off_buddy(struct page *page)
9433 {
9434 struct zone *zone = page_zone(page);
9435 unsigned long pfn = page_to_pfn(page);
9436 unsigned long flags;
9437 unsigned int order;
9438 bool ret = false;
9439
9440 spin_lock_irqsave(&zone->lock, flags);
9441 for (order = 0; order < MAX_ORDER; order++) {
9442 struct page *page_head = page - (pfn & ((1 << order) - 1));
9443 int page_order = buddy_order(page_head);
9444
9445 if (PageBuddy(page_head) && page_order >= order) {
9446 unsigned long pfn_head = page_to_pfn(page_head);
9447 int migratetype = get_pfnblock_migratetype(page_head,
9448 pfn_head);
9449
9450 del_page_from_free_list(page_head, zone, page_order);
9451 break_down_buddy_pages(zone, page_head, page, 0,
9452 page_order, migratetype);
9453 if (!is_migrate_isolate(migratetype))
9454 __mod_zone_freepage_state(zone, -1, migratetype);
9455 ret = true;
9456 break;
9457 }
9458 if (page_count(page_head) > 0)
9459 break;
9460 }
9461 spin_unlock_irqrestore(&zone->lock, flags);
9462 return ret;
9463 }
9464 #endif
9465
9466 #ifdef CONFIG_ZONE_DMA
9467 bool has_managed_dma(void)
9468 {
9469 struct pglist_data *pgdat;
9470
9471 for_each_online_pgdat(pgdat) {
9472 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9473
9474 if (managed_zone(zone))
9475 return true;
9476 }
9477 return false;
9478 }
9479 #endif /* CONFIG_ZONE_DMA */