]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/page_alloc.c
mm, hugetlb: use pte_present() instead of pmd_present() in follow_huge_pmd()
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68
69 #include <asm/sections.h>
70 #include <asm/tlbflush.h>
71 #include <asm/div64.h>
72 #include "internal.h"
73
74 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
75 static DEFINE_MUTEX(pcp_batch_high_lock);
76 #define MIN_PERCPU_PAGELIST_FRACTION (8)
77
78 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
79 DEFINE_PER_CPU(int, numa_node);
80 EXPORT_PER_CPU_SYMBOL(numa_node);
81 #endif
82
83 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
84 /*
85 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
86 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
87 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
88 * defined in <linux/topology.h>.
89 */
90 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
91 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
92 int _node_numa_mem_[MAX_NUMNODES];
93 #endif
94
95 /* work_structs for global per-cpu drains */
96 DEFINE_MUTEX(pcpu_drain_mutex);
97 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
98
99 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
100 volatile unsigned long latent_entropy __latent_entropy;
101 EXPORT_SYMBOL(latent_entropy);
102 #endif
103
104 /*
105 * Array of node states.
106 */
107 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
108 [N_POSSIBLE] = NODE_MASK_ALL,
109 [N_ONLINE] = { { [0] = 1UL } },
110 #ifndef CONFIG_NUMA
111 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
112 #ifdef CONFIG_HIGHMEM
113 [N_HIGH_MEMORY] = { { [0] = 1UL } },
114 #endif
115 #ifdef CONFIG_MOVABLE_NODE
116 [N_MEMORY] = { { [0] = 1UL } },
117 #endif
118 [N_CPU] = { { [0] = 1UL } },
119 #endif /* NUMA */
120 };
121 EXPORT_SYMBOL(node_states);
122
123 /* Protect totalram_pages and zone->managed_pages */
124 static DEFINE_SPINLOCK(managed_page_count_lock);
125
126 unsigned long totalram_pages __read_mostly;
127 unsigned long totalreserve_pages __read_mostly;
128 unsigned long totalcma_pages __read_mostly;
129
130 int percpu_pagelist_fraction;
131 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
132
133 /*
134 * A cached value of the page's pageblock's migratetype, used when the page is
135 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
136 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
137 * Also the migratetype set in the page does not necessarily match the pcplist
138 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
139 * other index - this ensures that it will be put on the correct CMA freelist.
140 */
141 static inline int get_pcppage_migratetype(struct page *page)
142 {
143 return page->index;
144 }
145
146 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
147 {
148 page->index = migratetype;
149 }
150
151 #ifdef CONFIG_PM_SLEEP
152 /*
153 * The following functions are used by the suspend/hibernate code to temporarily
154 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
155 * while devices are suspended. To avoid races with the suspend/hibernate code,
156 * they should always be called with pm_mutex held (gfp_allowed_mask also should
157 * only be modified with pm_mutex held, unless the suspend/hibernate code is
158 * guaranteed not to run in parallel with that modification).
159 */
160
161 static gfp_t saved_gfp_mask;
162
163 void pm_restore_gfp_mask(void)
164 {
165 WARN_ON(!mutex_is_locked(&pm_mutex));
166 if (saved_gfp_mask) {
167 gfp_allowed_mask = saved_gfp_mask;
168 saved_gfp_mask = 0;
169 }
170 }
171
172 void pm_restrict_gfp_mask(void)
173 {
174 WARN_ON(!mutex_is_locked(&pm_mutex));
175 WARN_ON(saved_gfp_mask);
176 saved_gfp_mask = gfp_allowed_mask;
177 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
178 }
179
180 bool pm_suspended_storage(void)
181 {
182 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
183 return false;
184 return true;
185 }
186 #endif /* CONFIG_PM_SLEEP */
187
188 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
189 unsigned int pageblock_order __read_mostly;
190 #endif
191
192 static void __free_pages_ok(struct page *page, unsigned int order);
193
194 /*
195 * results with 256, 32 in the lowmem_reserve sysctl:
196 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
197 * 1G machine -> (16M dma, 784M normal, 224M high)
198 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
199 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
200 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
201 *
202 * TBD: should special case ZONE_DMA32 machines here - in those we normally
203 * don't need any ZONE_NORMAL reservation
204 */
205 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
206 #ifdef CONFIG_ZONE_DMA
207 256,
208 #endif
209 #ifdef CONFIG_ZONE_DMA32
210 256,
211 #endif
212 #ifdef CONFIG_HIGHMEM
213 32,
214 #endif
215 32,
216 };
217
218 EXPORT_SYMBOL(totalram_pages);
219
220 static char * const zone_names[MAX_NR_ZONES] = {
221 #ifdef CONFIG_ZONE_DMA
222 "DMA",
223 #endif
224 #ifdef CONFIG_ZONE_DMA32
225 "DMA32",
226 #endif
227 "Normal",
228 #ifdef CONFIG_HIGHMEM
229 "HighMem",
230 #endif
231 "Movable",
232 #ifdef CONFIG_ZONE_DEVICE
233 "Device",
234 #endif
235 };
236
237 char * const migratetype_names[MIGRATE_TYPES] = {
238 "Unmovable",
239 "Movable",
240 "Reclaimable",
241 "HighAtomic",
242 #ifdef CONFIG_CMA
243 "CMA",
244 #endif
245 #ifdef CONFIG_MEMORY_ISOLATION
246 "Isolate",
247 #endif
248 };
249
250 compound_page_dtor * const compound_page_dtors[] = {
251 NULL,
252 free_compound_page,
253 #ifdef CONFIG_HUGETLB_PAGE
254 free_huge_page,
255 #endif
256 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
257 free_transhuge_page,
258 #endif
259 };
260
261 int min_free_kbytes = 1024;
262 int user_min_free_kbytes = -1;
263 int watermark_scale_factor = 10;
264
265 static unsigned long __meminitdata nr_kernel_pages;
266 static unsigned long __meminitdata nr_all_pages;
267 static unsigned long __meminitdata dma_reserve;
268
269 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
270 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
271 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
272 static unsigned long __initdata required_kernelcore;
273 static unsigned long __initdata required_movablecore;
274 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
275 static bool mirrored_kernelcore;
276
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
281
282 #if MAX_NUMNODES > 1
283 int nr_node_ids __read_mostly = MAX_NUMNODES;
284 int nr_online_nodes __read_mostly = 1;
285 EXPORT_SYMBOL(nr_node_ids);
286 EXPORT_SYMBOL(nr_online_nodes);
287 #endif
288
289 int page_group_by_mobility_disabled __read_mostly;
290
291 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
292 static inline void reset_deferred_meminit(pg_data_t *pgdat)
293 {
294 pgdat->first_deferred_pfn = ULONG_MAX;
295 }
296
297 /* Returns true if the struct page for the pfn is uninitialised */
298 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
299 {
300 int nid = early_pfn_to_nid(pfn);
301
302 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
303 return true;
304
305 return false;
306 }
307
308 /*
309 * Returns false when the remaining initialisation should be deferred until
310 * later in the boot cycle when it can be parallelised.
311 */
312 static inline bool update_defer_init(pg_data_t *pgdat,
313 unsigned long pfn, unsigned long zone_end,
314 unsigned long *nr_initialised)
315 {
316 unsigned long max_initialise;
317
318 /* Always populate low zones for address-contrained allocations */
319 if (zone_end < pgdat_end_pfn(pgdat))
320 return true;
321 /*
322 * Initialise at least 2G of a node but also take into account that
323 * two large system hashes that can take up 1GB for 0.25TB/node.
324 */
325 max_initialise = max(2UL << (30 - PAGE_SHIFT),
326 (pgdat->node_spanned_pages >> 8));
327
328 (*nr_initialised)++;
329 if ((*nr_initialised > max_initialise) &&
330 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
331 pgdat->first_deferred_pfn = pfn;
332 return false;
333 }
334
335 return true;
336 }
337 #else
338 static inline void reset_deferred_meminit(pg_data_t *pgdat)
339 {
340 }
341
342 static inline bool early_page_uninitialised(unsigned long pfn)
343 {
344 return false;
345 }
346
347 static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350 {
351 return true;
352 }
353 #endif
354
355 /* Return a pointer to the bitmap storing bits affecting a block of pages */
356 static inline unsigned long *get_pageblock_bitmap(struct page *page,
357 unsigned long pfn)
358 {
359 #ifdef CONFIG_SPARSEMEM
360 return __pfn_to_section(pfn)->pageblock_flags;
361 #else
362 return page_zone(page)->pageblock_flags;
363 #endif /* CONFIG_SPARSEMEM */
364 }
365
366 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
367 {
368 #ifdef CONFIG_SPARSEMEM
369 pfn &= (PAGES_PER_SECTION-1);
370 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
371 #else
372 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
373 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
374 #endif /* CONFIG_SPARSEMEM */
375 }
376
377 /**
378 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
379 * @page: The page within the block of interest
380 * @pfn: The target page frame number
381 * @end_bitidx: The last bit of interest to retrieve
382 * @mask: mask of bits that the caller is interested in
383 *
384 * Return: pageblock_bits flags
385 */
386 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
387 unsigned long pfn,
388 unsigned long end_bitidx,
389 unsigned long mask)
390 {
391 unsigned long *bitmap;
392 unsigned long bitidx, word_bitidx;
393 unsigned long word;
394
395 bitmap = get_pageblock_bitmap(page, pfn);
396 bitidx = pfn_to_bitidx(page, pfn);
397 word_bitidx = bitidx / BITS_PER_LONG;
398 bitidx &= (BITS_PER_LONG-1);
399
400 word = bitmap[word_bitidx];
401 bitidx += end_bitidx;
402 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
403 }
404
405 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
406 unsigned long end_bitidx,
407 unsigned long mask)
408 {
409 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
410 }
411
412 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
413 {
414 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
415 }
416
417 /**
418 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
419 * @page: The page within the block of interest
420 * @flags: The flags to set
421 * @pfn: The target page frame number
422 * @end_bitidx: The last bit of interest
423 * @mask: mask of bits that the caller is interested in
424 */
425 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
426 unsigned long pfn,
427 unsigned long end_bitidx,
428 unsigned long mask)
429 {
430 unsigned long *bitmap;
431 unsigned long bitidx, word_bitidx;
432 unsigned long old_word, word;
433
434 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
435
436 bitmap = get_pageblock_bitmap(page, pfn);
437 bitidx = pfn_to_bitidx(page, pfn);
438 word_bitidx = bitidx / BITS_PER_LONG;
439 bitidx &= (BITS_PER_LONG-1);
440
441 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
442
443 bitidx += end_bitidx;
444 mask <<= (BITS_PER_LONG - bitidx - 1);
445 flags <<= (BITS_PER_LONG - bitidx - 1);
446
447 word = READ_ONCE(bitmap[word_bitidx]);
448 for (;;) {
449 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
450 if (word == old_word)
451 break;
452 word = old_word;
453 }
454 }
455
456 void set_pageblock_migratetype(struct page *page, int migratetype)
457 {
458 if (unlikely(page_group_by_mobility_disabled &&
459 migratetype < MIGRATE_PCPTYPES))
460 migratetype = MIGRATE_UNMOVABLE;
461
462 set_pageblock_flags_group(page, (unsigned long)migratetype,
463 PB_migrate, PB_migrate_end);
464 }
465
466 #ifdef CONFIG_DEBUG_VM
467 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
468 {
469 int ret = 0;
470 unsigned seq;
471 unsigned long pfn = page_to_pfn(page);
472 unsigned long sp, start_pfn;
473
474 do {
475 seq = zone_span_seqbegin(zone);
476 start_pfn = zone->zone_start_pfn;
477 sp = zone->spanned_pages;
478 if (!zone_spans_pfn(zone, pfn))
479 ret = 1;
480 } while (zone_span_seqretry(zone, seq));
481
482 if (ret)
483 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
484 pfn, zone_to_nid(zone), zone->name,
485 start_pfn, start_pfn + sp);
486
487 return ret;
488 }
489
490 static int page_is_consistent(struct zone *zone, struct page *page)
491 {
492 if (!pfn_valid_within(page_to_pfn(page)))
493 return 0;
494 if (zone != page_zone(page))
495 return 0;
496
497 return 1;
498 }
499 /*
500 * Temporary debugging check for pages not lying within a given zone.
501 */
502 static int bad_range(struct zone *zone, struct page *page)
503 {
504 if (page_outside_zone_boundaries(zone, page))
505 return 1;
506 if (!page_is_consistent(zone, page))
507 return 1;
508
509 return 0;
510 }
511 #else
512 static inline int bad_range(struct zone *zone, struct page *page)
513 {
514 return 0;
515 }
516 #endif
517
518 static void bad_page(struct page *page, const char *reason,
519 unsigned long bad_flags)
520 {
521 static unsigned long resume;
522 static unsigned long nr_shown;
523 static unsigned long nr_unshown;
524
525 /*
526 * Allow a burst of 60 reports, then keep quiet for that minute;
527 * or allow a steady drip of one report per second.
528 */
529 if (nr_shown == 60) {
530 if (time_before(jiffies, resume)) {
531 nr_unshown++;
532 goto out;
533 }
534 if (nr_unshown) {
535 pr_alert(
536 "BUG: Bad page state: %lu messages suppressed\n",
537 nr_unshown);
538 nr_unshown = 0;
539 }
540 nr_shown = 0;
541 }
542 if (nr_shown++ == 0)
543 resume = jiffies + 60 * HZ;
544
545 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
546 current->comm, page_to_pfn(page));
547 __dump_page(page, reason);
548 bad_flags &= page->flags;
549 if (bad_flags)
550 pr_alert("bad because of flags: %#lx(%pGp)\n",
551 bad_flags, &bad_flags);
552 dump_page_owner(page);
553
554 print_modules();
555 dump_stack();
556 out:
557 /* Leave bad fields for debug, except PageBuddy could make trouble */
558 page_mapcount_reset(page); /* remove PageBuddy */
559 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
560 }
561
562 /*
563 * Higher-order pages are called "compound pages". They are structured thusly:
564 *
565 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
566 *
567 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
568 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
569 *
570 * The first tail page's ->compound_dtor holds the offset in array of compound
571 * page destructors. See compound_page_dtors.
572 *
573 * The first tail page's ->compound_order holds the order of allocation.
574 * This usage means that zero-order pages may not be compound.
575 */
576
577 void free_compound_page(struct page *page)
578 {
579 __free_pages_ok(page, compound_order(page));
580 }
581
582 void prep_compound_page(struct page *page, unsigned int order)
583 {
584 int i;
585 int nr_pages = 1 << order;
586
587 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
588 set_compound_order(page, order);
589 __SetPageHead(page);
590 for (i = 1; i < nr_pages; i++) {
591 struct page *p = page + i;
592 set_page_count(p, 0);
593 p->mapping = TAIL_MAPPING;
594 set_compound_head(p, page);
595 }
596 atomic_set(compound_mapcount_ptr(page), -1);
597 }
598
599 #ifdef CONFIG_DEBUG_PAGEALLOC
600 unsigned int _debug_guardpage_minorder;
601 bool _debug_pagealloc_enabled __read_mostly
602 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
603 EXPORT_SYMBOL(_debug_pagealloc_enabled);
604 bool _debug_guardpage_enabled __read_mostly;
605
606 static int __init early_debug_pagealloc(char *buf)
607 {
608 if (!buf)
609 return -EINVAL;
610 return kstrtobool(buf, &_debug_pagealloc_enabled);
611 }
612 early_param("debug_pagealloc", early_debug_pagealloc);
613
614 static bool need_debug_guardpage(void)
615 {
616 /* If we don't use debug_pagealloc, we don't need guard page */
617 if (!debug_pagealloc_enabled())
618 return false;
619
620 if (!debug_guardpage_minorder())
621 return false;
622
623 return true;
624 }
625
626 static void init_debug_guardpage(void)
627 {
628 if (!debug_pagealloc_enabled())
629 return;
630
631 if (!debug_guardpage_minorder())
632 return;
633
634 _debug_guardpage_enabled = true;
635 }
636
637 struct page_ext_operations debug_guardpage_ops = {
638 .need = need_debug_guardpage,
639 .init = init_debug_guardpage,
640 };
641
642 static int __init debug_guardpage_minorder_setup(char *buf)
643 {
644 unsigned long res;
645
646 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
647 pr_err("Bad debug_guardpage_minorder value\n");
648 return 0;
649 }
650 _debug_guardpage_minorder = res;
651 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
652 return 0;
653 }
654 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
655
656 static inline bool set_page_guard(struct zone *zone, struct page *page,
657 unsigned int order, int migratetype)
658 {
659 struct page_ext *page_ext;
660
661 if (!debug_guardpage_enabled())
662 return false;
663
664 if (order >= debug_guardpage_minorder())
665 return false;
666
667 page_ext = lookup_page_ext(page);
668 if (unlikely(!page_ext))
669 return false;
670
671 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
672
673 INIT_LIST_HEAD(&page->lru);
674 set_page_private(page, order);
675 /* Guard pages are not available for any usage */
676 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
677
678 return true;
679 }
680
681 static inline void clear_page_guard(struct zone *zone, struct page *page,
682 unsigned int order, int migratetype)
683 {
684 struct page_ext *page_ext;
685
686 if (!debug_guardpage_enabled())
687 return;
688
689 page_ext = lookup_page_ext(page);
690 if (unlikely(!page_ext))
691 return;
692
693 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
694
695 set_page_private(page, 0);
696 if (!is_migrate_isolate(migratetype))
697 __mod_zone_freepage_state(zone, (1 << order), migratetype);
698 }
699 #else
700 struct page_ext_operations debug_guardpage_ops;
701 static inline bool set_page_guard(struct zone *zone, struct page *page,
702 unsigned int order, int migratetype) { return false; }
703 static inline void clear_page_guard(struct zone *zone, struct page *page,
704 unsigned int order, int migratetype) {}
705 #endif
706
707 static inline void set_page_order(struct page *page, unsigned int order)
708 {
709 set_page_private(page, order);
710 __SetPageBuddy(page);
711 }
712
713 static inline void rmv_page_order(struct page *page)
714 {
715 __ClearPageBuddy(page);
716 set_page_private(page, 0);
717 }
718
719 /*
720 * This function checks whether a page is free && is the buddy
721 * we can do coalesce a page and its buddy if
722 * (a) the buddy is not in a hole (check before calling!) &&
723 * (b) the buddy is in the buddy system &&
724 * (c) a page and its buddy have the same order &&
725 * (d) a page and its buddy are in the same zone.
726 *
727 * For recording whether a page is in the buddy system, we set ->_mapcount
728 * PAGE_BUDDY_MAPCOUNT_VALUE.
729 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
730 * serialized by zone->lock.
731 *
732 * For recording page's order, we use page_private(page).
733 */
734 static inline int page_is_buddy(struct page *page, struct page *buddy,
735 unsigned int order)
736 {
737 if (page_is_guard(buddy) && page_order(buddy) == order) {
738 if (page_zone_id(page) != page_zone_id(buddy))
739 return 0;
740
741 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
742
743 return 1;
744 }
745
746 if (PageBuddy(buddy) && page_order(buddy) == order) {
747 /*
748 * zone check is done late to avoid uselessly
749 * calculating zone/node ids for pages that could
750 * never merge.
751 */
752 if (page_zone_id(page) != page_zone_id(buddy))
753 return 0;
754
755 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
756
757 return 1;
758 }
759 return 0;
760 }
761
762 /*
763 * Freeing function for a buddy system allocator.
764 *
765 * The concept of a buddy system is to maintain direct-mapped table
766 * (containing bit values) for memory blocks of various "orders".
767 * The bottom level table contains the map for the smallest allocatable
768 * units of memory (here, pages), and each level above it describes
769 * pairs of units from the levels below, hence, "buddies".
770 * At a high level, all that happens here is marking the table entry
771 * at the bottom level available, and propagating the changes upward
772 * as necessary, plus some accounting needed to play nicely with other
773 * parts of the VM system.
774 * At each level, we keep a list of pages, which are heads of continuous
775 * free pages of length of (1 << order) and marked with _mapcount
776 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
777 * field.
778 * So when we are allocating or freeing one, we can derive the state of the
779 * other. That is, if we allocate a small block, and both were
780 * free, the remainder of the region must be split into blocks.
781 * If a block is freed, and its buddy is also free, then this
782 * triggers coalescing into a block of larger size.
783 *
784 * -- nyc
785 */
786
787 static inline void __free_one_page(struct page *page,
788 unsigned long pfn,
789 struct zone *zone, unsigned int order,
790 int migratetype)
791 {
792 unsigned long combined_pfn;
793 unsigned long uninitialized_var(buddy_pfn);
794 struct page *buddy;
795 unsigned int max_order;
796
797 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
798
799 VM_BUG_ON(!zone_is_initialized(zone));
800 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
801
802 VM_BUG_ON(migratetype == -1);
803 if (likely(!is_migrate_isolate(migratetype)))
804 __mod_zone_freepage_state(zone, 1 << order, migratetype);
805
806 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
807 VM_BUG_ON_PAGE(bad_range(zone, page), page);
808
809 continue_merging:
810 while (order < max_order - 1) {
811 buddy_pfn = __find_buddy_pfn(pfn, order);
812 buddy = page + (buddy_pfn - pfn);
813
814 if (!pfn_valid_within(buddy_pfn))
815 goto done_merging;
816 if (!page_is_buddy(page, buddy, order))
817 goto done_merging;
818 /*
819 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
820 * merge with it and move up one order.
821 */
822 if (page_is_guard(buddy)) {
823 clear_page_guard(zone, buddy, order, migratetype);
824 } else {
825 list_del(&buddy->lru);
826 zone->free_area[order].nr_free--;
827 rmv_page_order(buddy);
828 }
829 combined_pfn = buddy_pfn & pfn;
830 page = page + (combined_pfn - pfn);
831 pfn = combined_pfn;
832 order++;
833 }
834 if (max_order < MAX_ORDER) {
835 /* If we are here, it means order is >= pageblock_order.
836 * We want to prevent merge between freepages on isolate
837 * pageblock and normal pageblock. Without this, pageblock
838 * isolation could cause incorrect freepage or CMA accounting.
839 *
840 * We don't want to hit this code for the more frequent
841 * low-order merging.
842 */
843 if (unlikely(has_isolate_pageblock(zone))) {
844 int buddy_mt;
845
846 buddy_pfn = __find_buddy_pfn(pfn, order);
847 buddy = page + (buddy_pfn - pfn);
848 buddy_mt = get_pageblock_migratetype(buddy);
849
850 if (migratetype != buddy_mt
851 && (is_migrate_isolate(migratetype) ||
852 is_migrate_isolate(buddy_mt)))
853 goto done_merging;
854 }
855 max_order++;
856 goto continue_merging;
857 }
858
859 done_merging:
860 set_page_order(page, order);
861
862 /*
863 * If this is not the largest possible page, check if the buddy
864 * of the next-highest order is free. If it is, it's possible
865 * that pages are being freed that will coalesce soon. In case,
866 * that is happening, add the free page to the tail of the list
867 * so it's less likely to be used soon and more likely to be merged
868 * as a higher order page
869 */
870 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
871 struct page *higher_page, *higher_buddy;
872 combined_pfn = buddy_pfn & pfn;
873 higher_page = page + (combined_pfn - pfn);
874 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
875 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
876 if (pfn_valid_within(buddy_pfn) &&
877 page_is_buddy(higher_page, higher_buddy, order + 1)) {
878 list_add_tail(&page->lru,
879 &zone->free_area[order].free_list[migratetype]);
880 goto out;
881 }
882 }
883
884 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
885 out:
886 zone->free_area[order].nr_free++;
887 }
888
889 /*
890 * A bad page could be due to a number of fields. Instead of multiple branches,
891 * try and check multiple fields with one check. The caller must do a detailed
892 * check if necessary.
893 */
894 static inline bool page_expected_state(struct page *page,
895 unsigned long check_flags)
896 {
897 if (unlikely(atomic_read(&page->_mapcount) != -1))
898 return false;
899
900 if (unlikely((unsigned long)page->mapping |
901 page_ref_count(page) |
902 #ifdef CONFIG_MEMCG
903 (unsigned long)page->mem_cgroup |
904 #endif
905 (page->flags & check_flags)))
906 return false;
907
908 return true;
909 }
910
911 static void free_pages_check_bad(struct page *page)
912 {
913 const char *bad_reason;
914 unsigned long bad_flags;
915
916 bad_reason = NULL;
917 bad_flags = 0;
918
919 if (unlikely(atomic_read(&page->_mapcount) != -1))
920 bad_reason = "nonzero mapcount";
921 if (unlikely(page->mapping != NULL))
922 bad_reason = "non-NULL mapping";
923 if (unlikely(page_ref_count(page) != 0))
924 bad_reason = "nonzero _refcount";
925 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
926 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
927 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
928 }
929 #ifdef CONFIG_MEMCG
930 if (unlikely(page->mem_cgroup))
931 bad_reason = "page still charged to cgroup";
932 #endif
933 bad_page(page, bad_reason, bad_flags);
934 }
935
936 static inline int free_pages_check(struct page *page)
937 {
938 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
939 return 0;
940
941 /* Something has gone sideways, find it */
942 free_pages_check_bad(page);
943 return 1;
944 }
945
946 static int free_tail_pages_check(struct page *head_page, struct page *page)
947 {
948 int ret = 1;
949
950 /*
951 * We rely page->lru.next never has bit 0 set, unless the page
952 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
953 */
954 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
955
956 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
957 ret = 0;
958 goto out;
959 }
960 switch (page - head_page) {
961 case 1:
962 /* the first tail page: ->mapping is compound_mapcount() */
963 if (unlikely(compound_mapcount(page))) {
964 bad_page(page, "nonzero compound_mapcount", 0);
965 goto out;
966 }
967 break;
968 case 2:
969 /*
970 * the second tail page: ->mapping is
971 * page_deferred_list().next -- ignore value.
972 */
973 break;
974 default:
975 if (page->mapping != TAIL_MAPPING) {
976 bad_page(page, "corrupted mapping in tail page", 0);
977 goto out;
978 }
979 break;
980 }
981 if (unlikely(!PageTail(page))) {
982 bad_page(page, "PageTail not set", 0);
983 goto out;
984 }
985 if (unlikely(compound_head(page) != head_page)) {
986 bad_page(page, "compound_head not consistent", 0);
987 goto out;
988 }
989 ret = 0;
990 out:
991 page->mapping = NULL;
992 clear_compound_head(page);
993 return ret;
994 }
995
996 static __always_inline bool free_pages_prepare(struct page *page,
997 unsigned int order, bool check_free)
998 {
999 int bad = 0;
1000
1001 VM_BUG_ON_PAGE(PageTail(page), page);
1002
1003 trace_mm_page_free(page, order);
1004 kmemcheck_free_shadow(page, order);
1005
1006 /*
1007 * Check tail pages before head page information is cleared to
1008 * avoid checking PageCompound for order-0 pages.
1009 */
1010 if (unlikely(order)) {
1011 bool compound = PageCompound(page);
1012 int i;
1013
1014 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1015
1016 if (compound)
1017 ClearPageDoubleMap(page);
1018 for (i = 1; i < (1 << order); i++) {
1019 if (compound)
1020 bad += free_tail_pages_check(page, page + i);
1021 if (unlikely(free_pages_check(page + i))) {
1022 bad++;
1023 continue;
1024 }
1025 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1026 }
1027 }
1028 if (PageMappingFlags(page))
1029 page->mapping = NULL;
1030 if (memcg_kmem_enabled() && PageKmemcg(page))
1031 memcg_kmem_uncharge(page, order);
1032 if (check_free)
1033 bad += free_pages_check(page);
1034 if (bad)
1035 return false;
1036
1037 page_cpupid_reset_last(page);
1038 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1039 reset_page_owner(page, order);
1040
1041 if (!PageHighMem(page)) {
1042 debug_check_no_locks_freed(page_address(page),
1043 PAGE_SIZE << order);
1044 debug_check_no_obj_freed(page_address(page),
1045 PAGE_SIZE << order);
1046 }
1047 arch_free_page(page, order);
1048 kernel_poison_pages(page, 1 << order, 0);
1049 kernel_map_pages(page, 1 << order, 0);
1050 kasan_free_pages(page, order);
1051
1052 return true;
1053 }
1054
1055 #ifdef CONFIG_DEBUG_VM
1056 static inline bool free_pcp_prepare(struct page *page)
1057 {
1058 return free_pages_prepare(page, 0, true);
1059 }
1060
1061 static inline bool bulkfree_pcp_prepare(struct page *page)
1062 {
1063 return false;
1064 }
1065 #else
1066 static bool free_pcp_prepare(struct page *page)
1067 {
1068 return free_pages_prepare(page, 0, false);
1069 }
1070
1071 static bool bulkfree_pcp_prepare(struct page *page)
1072 {
1073 return free_pages_check(page);
1074 }
1075 #endif /* CONFIG_DEBUG_VM */
1076
1077 /*
1078 * Frees a number of pages from the PCP lists
1079 * Assumes all pages on list are in same zone, and of same order.
1080 * count is the number of pages to free.
1081 *
1082 * If the zone was previously in an "all pages pinned" state then look to
1083 * see if this freeing clears that state.
1084 *
1085 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1086 * pinned" detection logic.
1087 */
1088 static void free_pcppages_bulk(struct zone *zone, int count,
1089 struct per_cpu_pages *pcp)
1090 {
1091 int migratetype = 0;
1092 int batch_free = 0;
1093 unsigned long nr_scanned, flags;
1094 bool isolated_pageblocks;
1095
1096 spin_lock_irqsave(&zone->lock, flags);
1097 isolated_pageblocks = has_isolate_pageblock(zone);
1098 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1099 if (nr_scanned)
1100 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1101
1102 while (count) {
1103 struct page *page;
1104 struct list_head *list;
1105
1106 /*
1107 * Remove pages from lists in a round-robin fashion. A
1108 * batch_free count is maintained that is incremented when an
1109 * empty list is encountered. This is so more pages are freed
1110 * off fuller lists instead of spinning excessively around empty
1111 * lists
1112 */
1113 do {
1114 batch_free++;
1115 if (++migratetype == MIGRATE_PCPTYPES)
1116 migratetype = 0;
1117 list = &pcp->lists[migratetype];
1118 } while (list_empty(list));
1119
1120 /* This is the only non-empty list. Free them all. */
1121 if (batch_free == MIGRATE_PCPTYPES)
1122 batch_free = count;
1123
1124 do {
1125 int mt; /* migratetype of the to-be-freed page */
1126
1127 page = list_last_entry(list, struct page, lru);
1128 /* must delete as __free_one_page list manipulates */
1129 list_del(&page->lru);
1130
1131 mt = get_pcppage_migratetype(page);
1132 /* MIGRATE_ISOLATE page should not go to pcplists */
1133 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1134 /* Pageblock could have been isolated meanwhile */
1135 if (unlikely(isolated_pageblocks))
1136 mt = get_pageblock_migratetype(page);
1137
1138 if (bulkfree_pcp_prepare(page))
1139 continue;
1140
1141 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1142 trace_mm_page_pcpu_drain(page, 0, mt);
1143 } while (--count && --batch_free && !list_empty(list));
1144 }
1145 spin_unlock_irqrestore(&zone->lock, flags);
1146 }
1147
1148 static void free_one_page(struct zone *zone,
1149 struct page *page, unsigned long pfn,
1150 unsigned int order,
1151 int migratetype)
1152 {
1153 unsigned long nr_scanned, flags;
1154 spin_lock_irqsave(&zone->lock, flags);
1155 __count_vm_events(PGFREE, 1 << order);
1156 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1157 if (nr_scanned)
1158 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1159
1160 if (unlikely(has_isolate_pageblock(zone) ||
1161 is_migrate_isolate(migratetype))) {
1162 migratetype = get_pfnblock_migratetype(page, pfn);
1163 }
1164 __free_one_page(page, pfn, zone, order, migratetype);
1165 spin_unlock_irqrestore(&zone->lock, flags);
1166 }
1167
1168 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1169 unsigned long zone, int nid)
1170 {
1171 set_page_links(page, zone, nid, pfn);
1172 init_page_count(page);
1173 page_mapcount_reset(page);
1174 page_cpupid_reset_last(page);
1175
1176 INIT_LIST_HEAD(&page->lru);
1177 #ifdef WANT_PAGE_VIRTUAL
1178 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1179 if (!is_highmem_idx(zone))
1180 set_page_address(page, __va(pfn << PAGE_SHIFT));
1181 #endif
1182 }
1183
1184 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1185 int nid)
1186 {
1187 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1188 }
1189
1190 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1191 static void init_reserved_page(unsigned long pfn)
1192 {
1193 pg_data_t *pgdat;
1194 int nid, zid;
1195
1196 if (!early_page_uninitialised(pfn))
1197 return;
1198
1199 nid = early_pfn_to_nid(pfn);
1200 pgdat = NODE_DATA(nid);
1201
1202 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1203 struct zone *zone = &pgdat->node_zones[zid];
1204
1205 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1206 break;
1207 }
1208 __init_single_pfn(pfn, zid, nid);
1209 }
1210 #else
1211 static inline void init_reserved_page(unsigned long pfn)
1212 {
1213 }
1214 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1215
1216 /*
1217 * Initialised pages do not have PageReserved set. This function is
1218 * called for each range allocated by the bootmem allocator and
1219 * marks the pages PageReserved. The remaining valid pages are later
1220 * sent to the buddy page allocator.
1221 */
1222 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1223 {
1224 unsigned long start_pfn = PFN_DOWN(start);
1225 unsigned long end_pfn = PFN_UP(end);
1226
1227 for (; start_pfn < end_pfn; start_pfn++) {
1228 if (pfn_valid(start_pfn)) {
1229 struct page *page = pfn_to_page(start_pfn);
1230
1231 init_reserved_page(start_pfn);
1232
1233 /* Avoid false-positive PageTail() */
1234 INIT_LIST_HEAD(&page->lru);
1235
1236 SetPageReserved(page);
1237 }
1238 }
1239 }
1240
1241 static void __free_pages_ok(struct page *page, unsigned int order)
1242 {
1243 int migratetype;
1244 unsigned long pfn = page_to_pfn(page);
1245
1246 if (!free_pages_prepare(page, order, true))
1247 return;
1248
1249 migratetype = get_pfnblock_migratetype(page, pfn);
1250 free_one_page(page_zone(page), page, pfn, order, migratetype);
1251 }
1252
1253 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1254 {
1255 unsigned int nr_pages = 1 << order;
1256 struct page *p = page;
1257 unsigned int loop;
1258
1259 prefetchw(p);
1260 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1261 prefetchw(p + 1);
1262 __ClearPageReserved(p);
1263 set_page_count(p, 0);
1264 }
1265 __ClearPageReserved(p);
1266 set_page_count(p, 0);
1267
1268 page_zone(page)->managed_pages += nr_pages;
1269 set_page_refcounted(page);
1270 __free_pages(page, order);
1271 }
1272
1273 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1274 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1275
1276 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1277
1278 int __meminit early_pfn_to_nid(unsigned long pfn)
1279 {
1280 static DEFINE_SPINLOCK(early_pfn_lock);
1281 int nid;
1282
1283 spin_lock(&early_pfn_lock);
1284 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1285 if (nid < 0)
1286 nid = first_online_node;
1287 spin_unlock(&early_pfn_lock);
1288
1289 return nid;
1290 }
1291 #endif
1292
1293 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1294 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1295 struct mminit_pfnnid_cache *state)
1296 {
1297 int nid;
1298
1299 nid = __early_pfn_to_nid(pfn, state);
1300 if (nid >= 0 && nid != node)
1301 return false;
1302 return true;
1303 }
1304
1305 /* Only safe to use early in boot when initialisation is single-threaded */
1306 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1307 {
1308 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1309 }
1310
1311 #else
1312
1313 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1314 {
1315 return true;
1316 }
1317 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1318 struct mminit_pfnnid_cache *state)
1319 {
1320 return true;
1321 }
1322 #endif
1323
1324
1325 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1326 unsigned int order)
1327 {
1328 if (early_page_uninitialised(pfn))
1329 return;
1330 return __free_pages_boot_core(page, order);
1331 }
1332
1333 /*
1334 * Check that the whole (or subset of) a pageblock given by the interval of
1335 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1336 * with the migration of free compaction scanner. The scanners then need to
1337 * use only pfn_valid_within() check for arches that allow holes within
1338 * pageblocks.
1339 *
1340 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1341 *
1342 * It's possible on some configurations to have a setup like node0 node1 node0
1343 * i.e. it's possible that all pages within a zones range of pages do not
1344 * belong to a single zone. We assume that a border between node0 and node1
1345 * can occur within a single pageblock, but not a node0 node1 node0
1346 * interleaving within a single pageblock. It is therefore sufficient to check
1347 * the first and last page of a pageblock and avoid checking each individual
1348 * page in a pageblock.
1349 */
1350 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1351 unsigned long end_pfn, struct zone *zone)
1352 {
1353 struct page *start_page;
1354 struct page *end_page;
1355
1356 /* end_pfn is one past the range we are checking */
1357 end_pfn--;
1358
1359 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1360 return NULL;
1361
1362 start_page = pfn_to_page(start_pfn);
1363
1364 if (page_zone(start_page) != zone)
1365 return NULL;
1366
1367 end_page = pfn_to_page(end_pfn);
1368
1369 /* This gives a shorter code than deriving page_zone(end_page) */
1370 if (page_zone_id(start_page) != page_zone_id(end_page))
1371 return NULL;
1372
1373 return start_page;
1374 }
1375
1376 void set_zone_contiguous(struct zone *zone)
1377 {
1378 unsigned long block_start_pfn = zone->zone_start_pfn;
1379 unsigned long block_end_pfn;
1380
1381 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1382 for (; block_start_pfn < zone_end_pfn(zone);
1383 block_start_pfn = block_end_pfn,
1384 block_end_pfn += pageblock_nr_pages) {
1385
1386 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1387
1388 if (!__pageblock_pfn_to_page(block_start_pfn,
1389 block_end_pfn, zone))
1390 return;
1391 }
1392
1393 /* We confirm that there is no hole */
1394 zone->contiguous = true;
1395 }
1396
1397 void clear_zone_contiguous(struct zone *zone)
1398 {
1399 zone->contiguous = false;
1400 }
1401
1402 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1403 static void __init deferred_free_range(struct page *page,
1404 unsigned long pfn, int nr_pages)
1405 {
1406 int i;
1407
1408 if (!page)
1409 return;
1410
1411 /* Free a large naturally-aligned chunk if possible */
1412 if (nr_pages == pageblock_nr_pages &&
1413 (pfn & (pageblock_nr_pages - 1)) == 0) {
1414 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1415 __free_pages_boot_core(page, pageblock_order);
1416 return;
1417 }
1418
1419 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1420 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1421 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1422 __free_pages_boot_core(page, 0);
1423 }
1424 }
1425
1426 /* Completion tracking for deferred_init_memmap() threads */
1427 static atomic_t pgdat_init_n_undone __initdata;
1428 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1429
1430 static inline void __init pgdat_init_report_one_done(void)
1431 {
1432 if (atomic_dec_and_test(&pgdat_init_n_undone))
1433 complete(&pgdat_init_all_done_comp);
1434 }
1435
1436 /* Initialise remaining memory on a node */
1437 static int __init deferred_init_memmap(void *data)
1438 {
1439 pg_data_t *pgdat = data;
1440 int nid = pgdat->node_id;
1441 struct mminit_pfnnid_cache nid_init_state = { };
1442 unsigned long start = jiffies;
1443 unsigned long nr_pages = 0;
1444 unsigned long walk_start, walk_end;
1445 int i, zid;
1446 struct zone *zone;
1447 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1448 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1449
1450 if (first_init_pfn == ULONG_MAX) {
1451 pgdat_init_report_one_done();
1452 return 0;
1453 }
1454
1455 /* Bind memory initialisation thread to a local node if possible */
1456 if (!cpumask_empty(cpumask))
1457 set_cpus_allowed_ptr(current, cpumask);
1458
1459 /* Sanity check boundaries */
1460 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1461 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1462 pgdat->first_deferred_pfn = ULONG_MAX;
1463
1464 /* Only the highest zone is deferred so find it */
1465 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1466 zone = pgdat->node_zones + zid;
1467 if (first_init_pfn < zone_end_pfn(zone))
1468 break;
1469 }
1470
1471 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1472 unsigned long pfn, end_pfn;
1473 struct page *page = NULL;
1474 struct page *free_base_page = NULL;
1475 unsigned long free_base_pfn = 0;
1476 int nr_to_free = 0;
1477
1478 end_pfn = min(walk_end, zone_end_pfn(zone));
1479 pfn = first_init_pfn;
1480 if (pfn < walk_start)
1481 pfn = walk_start;
1482 if (pfn < zone->zone_start_pfn)
1483 pfn = zone->zone_start_pfn;
1484
1485 for (; pfn < end_pfn; pfn++) {
1486 if (!pfn_valid_within(pfn))
1487 goto free_range;
1488
1489 /*
1490 * Ensure pfn_valid is checked every
1491 * pageblock_nr_pages for memory holes
1492 */
1493 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1494 if (!pfn_valid(pfn)) {
1495 page = NULL;
1496 goto free_range;
1497 }
1498 }
1499
1500 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1501 page = NULL;
1502 goto free_range;
1503 }
1504
1505 /* Minimise pfn page lookups and scheduler checks */
1506 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1507 page++;
1508 } else {
1509 nr_pages += nr_to_free;
1510 deferred_free_range(free_base_page,
1511 free_base_pfn, nr_to_free);
1512 free_base_page = NULL;
1513 free_base_pfn = nr_to_free = 0;
1514
1515 page = pfn_to_page(pfn);
1516 cond_resched();
1517 }
1518
1519 if (page->flags) {
1520 VM_BUG_ON(page_zone(page) != zone);
1521 goto free_range;
1522 }
1523
1524 __init_single_page(page, pfn, zid, nid);
1525 if (!free_base_page) {
1526 free_base_page = page;
1527 free_base_pfn = pfn;
1528 nr_to_free = 0;
1529 }
1530 nr_to_free++;
1531
1532 /* Where possible, batch up pages for a single free */
1533 continue;
1534 free_range:
1535 /* Free the current block of pages to allocator */
1536 nr_pages += nr_to_free;
1537 deferred_free_range(free_base_page, free_base_pfn,
1538 nr_to_free);
1539 free_base_page = NULL;
1540 free_base_pfn = nr_to_free = 0;
1541 }
1542 /* Free the last block of pages to allocator */
1543 nr_pages += nr_to_free;
1544 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1545
1546 first_init_pfn = max(end_pfn, first_init_pfn);
1547 }
1548
1549 /* Sanity check that the next zone really is unpopulated */
1550 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1551
1552 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1553 jiffies_to_msecs(jiffies - start));
1554
1555 pgdat_init_report_one_done();
1556 return 0;
1557 }
1558 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1559
1560 void __init page_alloc_init_late(void)
1561 {
1562 struct zone *zone;
1563
1564 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1565 int nid;
1566
1567 /* There will be num_node_state(N_MEMORY) threads */
1568 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1569 for_each_node_state(nid, N_MEMORY) {
1570 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1571 }
1572
1573 /* Block until all are initialised */
1574 wait_for_completion(&pgdat_init_all_done_comp);
1575
1576 /* Reinit limits that are based on free pages after the kernel is up */
1577 files_maxfiles_init();
1578 #endif
1579
1580 for_each_populated_zone(zone)
1581 set_zone_contiguous(zone);
1582 }
1583
1584 #ifdef CONFIG_CMA
1585 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1586 void __init init_cma_reserved_pageblock(struct page *page)
1587 {
1588 unsigned i = pageblock_nr_pages;
1589 struct page *p = page;
1590
1591 do {
1592 __ClearPageReserved(p);
1593 set_page_count(p, 0);
1594 } while (++p, --i);
1595
1596 set_pageblock_migratetype(page, MIGRATE_CMA);
1597
1598 if (pageblock_order >= MAX_ORDER) {
1599 i = pageblock_nr_pages;
1600 p = page;
1601 do {
1602 set_page_refcounted(p);
1603 __free_pages(p, MAX_ORDER - 1);
1604 p += MAX_ORDER_NR_PAGES;
1605 } while (i -= MAX_ORDER_NR_PAGES);
1606 } else {
1607 set_page_refcounted(page);
1608 __free_pages(page, pageblock_order);
1609 }
1610
1611 adjust_managed_page_count(page, pageblock_nr_pages);
1612 }
1613 #endif
1614
1615 /*
1616 * The order of subdivision here is critical for the IO subsystem.
1617 * Please do not alter this order without good reasons and regression
1618 * testing. Specifically, as large blocks of memory are subdivided,
1619 * the order in which smaller blocks are delivered depends on the order
1620 * they're subdivided in this function. This is the primary factor
1621 * influencing the order in which pages are delivered to the IO
1622 * subsystem according to empirical testing, and this is also justified
1623 * by considering the behavior of a buddy system containing a single
1624 * large block of memory acted on by a series of small allocations.
1625 * This behavior is a critical factor in sglist merging's success.
1626 *
1627 * -- nyc
1628 */
1629 static inline void expand(struct zone *zone, struct page *page,
1630 int low, int high, struct free_area *area,
1631 int migratetype)
1632 {
1633 unsigned long size = 1 << high;
1634
1635 while (high > low) {
1636 area--;
1637 high--;
1638 size >>= 1;
1639 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1640
1641 /*
1642 * Mark as guard pages (or page), that will allow to
1643 * merge back to allocator when buddy will be freed.
1644 * Corresponding page table entries will not be touched,
1645 * pages will stay not present in virtual address space
1646 */
1647 if (set_page_guard(zone, &page[size], high, migratetype))
1648 continue;
1649
1650 list_add(&page[size].lru, &area->free_list[migratetype]);
1651 area->nr_free++;
1652 set_page_order(&page[size], high);
1653 }
1654 }
1655
1656 static void check_new_page_bad(struct page *page)
1657 {
1658 const char *bad_reason = NULL;
1659 unsigned long bad_flags = 0;
1660
1661 if (unlikely(atomic_read(&page->_mapcount) != -1))
1662 bad_reason = "nonzero mapcount";
1663 if (unlikely(page->mapping != NULL))
1664 bad_reason = "non-NULL mapping";
1665 if (unlikely(page_ref_count(page) != 0))
1666 bad_reason = "nonzero _count";
1667 if (unlikely(page->flags & __PG_HWPOISON)) {
1668 bad_reason = "HWPoisoned (hardware-corrupted)";
1669 bad_flags = __PG_HWPOISON;
1670 /* Don't complain about hwpoisoned pages */
1671 page_mapcount_reset(page); /* remove PageBuddy */
1672 return;
1673 }
1674 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1675 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1676 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1677 }
1678 #ifdef CONFIG_MEMCG
1679 if (unlikely(page->mem_cgroup))
1680 bad_reason = "page still charged to cgroup";
1681 #endif
1682 bad_page(page, bad_reason, bad_flags);
1683 }
1684
1685 /*
1686 * This page is about to be returned from the page allocator
1687 */
1688 static inline int check_new_page(struct page *page)
1689 {
1690 if (likely(page_expected_state(page,
1691 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1692 return 0;
1693
1694 check_new_page_bad(page);
1695 return 1;
1696 }
1697
1698 static inline bool free_pages_prezeroed(bool poisoned)
1699 {
1700 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1701 page_poisoning_enabled() && poisoned;
1702 }
1703
1704 #ifdef CONFIG_DEBUG_VM
1705 static bool check_pcp_refill(struct page *page)
1706 {
1707 return false;
1708 }
1709
1710 static bool check_new_pcp(struct page *page)
1711 {
1712 return check_new_page(page);
1713 }
1714 #else
1715 static bool check_pcp_refill(struct page *page)
1716 {
1717 return check_new_page(page);
1718 }
1719 static bool check_new_pcp(struct page *page)
1720 {
1721 return false;
1722 }
1723 #endif /* CONFIG_DEBUG_VM */
1724
1725 static bool check_new_pages(struct page *page, unsigned int order)
1726 {
1727 int i;
1728 for (i = 0; i < (1 << order); i++) {
1729 struct page *p = page + i;
1730
1731 if (unlikely(check_new_page(p)))
1732 return true;
1733 }
1734
1735 return false;
1736 }
1737
1738 inline void post_alloc_hook(struct page *page, unsigned int order,
1739 gfp_t gfp_flags)
1740 {
1741 set_page_private(page, 0);
1742 set_page_refcounted(page);
1743
1744 arch_alloc_page(page, order);
1745 kernel_map_pages(page, 1 << order, 1);
1746 kernel_poison_pages(page, 1 << order, 1);
1747 kasan_alloc_pages(page, order);
1748 set_page_owner(page, order, gfp_flags);
1749 }
1750
1751 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1752 unsigned int alloc_flags)
1753 {
1754 int i;
1755 bool poisoned = true;
1756
1757 for (i = 0; i < (1 << order); i++) {
1758 struct page *p = page + i;
1759 if (poisoned)
1760 poisoned &= page_is_poisoned(p);
1761 }
1762
1763 post_alloc_hook(page, order, gfp_flags);
1764
1765 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1766 for (i = 0; i < (1 << order); i++)
1767 clear_highpage(page + i);
1768
1769 if (order && (gfp_flags & __GFP_COMP))
1770 prep_compound_page(page, order);
1771
1772 /*
1773 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1774 * allocate the page. The expectation is that the caller is taking
1775 * steps that will free more memory. The caller should avoid the page
1776 * being used for !PFMEMALLOC purposes.
1777 */
1778 if (alloc_flags & ALLOC_NO_WATERMARKS)
1779 set_page_pfmemalloc(page);
1780 else
1781 clear_page_pfmemalloc(page);
1782 }
1783
1784 /*
1785 * Go through the free lists for the given migratetype and remove
1786 * the smallest available page from the freelists
1787 */
1788 static inline
1789 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1790 int migratetype)
1791 {
1792 unsigned int current_order;
1793 struct free_area *area;
1794 struct page *page;
1795
1796 /* Find a page of the appropriate size in the preferred list */
1797 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1798 area = &(zone->free_area[current_order]);
1799 page = list_first_entry_or_null(&area->free_list[migratetype],
1800 struct page, lru);
1801 if (!page)
1802 continue;
1803 list_del(&page->lru);
1804 rmv_page_order(page);
1805 area->nr_free--;
1806 expand(zone, page, order, current_order, area, migratetype);
1807 set_pcppage_migratetype(page, migratetype);
1808 return page;
1809 }
1810
1811 return NULL;
1812 }
1813
1814
1815 /*
1816 * This array describes the order lists are fallen back to when
1817 * the free lists for the desirable migrate type are depleted
1818 */
1819 static int fallbacks[MIGRATE_TYPES][4] = {
1820 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1821 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1822 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1823 #ifdef CONFIG_CMA
1824 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1825 #endif
1826 #ifdef CONFIG_MEMORY_ISOLATION
1827 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1828 #endif
1829 };
1830
1831 #ifdef CONFIG_CMA
1832 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1833 unsigned int order)
1834 {
1835 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1836 }
1837 #else
1838 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1839 unsigned int order) { return NULL; }
1840 #endif
1841
1842 /*
1843 * Move the free pages in a range to the free lists of the requested type.
1844 * Note that start_page and end_pages are not aligned on a pageblock
1845 * boundary. If alignment is required, use move_freepages_block()
1846 */
1847 int move_freepages(struct zone *zone,
1848 struct page *start_page, struct page *end_page,
1849 int migratetype)
1850 {
1851 struct page *page;
1852 unsigned int order;
1853 int pages_moved = 0;
1854
1855 #ifndef CONFIG_HOLES_IN_ZONE
1856 /*
1857 * page_zone is not safe to call in this context when
1858 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1859 * anyway as we check zone boundaries in move_freepages_block().
1860 * Remove at a later date when no bug reports exist related to
1861 * grouping pages by mobility
1862 */
1863 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1864 #endif
1865
1866 for (page = start_page; page <= end_page;) {
1867 if (!pfn_valid_within(page_to_pfn(page))) {
1868 page++;
1869 continue;
1870 }
1871
1872 /* Make sure we are not inadvertently changing nodes */
1873 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1874
1875 if (!PageBuddy(page)) {
1876 page++;
1877 continue;
1878 }
1879
1880 order = page_order(page);
1881 list_move(&page->lru,
1882 &zone->free_area[order].free_list[migratetype]);
1883 page += 1 << order;
1884 pages_moved += 1 << order;
1885 }
1886
1887 return pages_moved;
1888 }
1889
1890 int move_freepages_block(struct zone *zone, struct page *page,
1891 int migratetype)
1892 {
1893 unsigned long start_pfn, end_pfn;
1894 struct page *start_page, *end_page;
1895
1896 start_pfn = page_to_pfn(page);
1897 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1898 start_page = pfn_to_page(start_pfn);
1899 end_page = start_page + pageblock_nr_pages - 1;
1900 end_pfn = start_pfn + pageblock_nr_pages - 1;
1901
1902 /* Do not cross zone boundaries */
1903 if (!zone_spans_pfn(zone, start_pfn))
1904 start_page = page;
1905 if (!zone_spans_pfn(zone, end_pfn))
1906 return 0;
1907
1908 return move_freepages(zone, start_page, end_page, migratetype);
1909 }
1910
1911 static void change_pageblock_range(struct page *pageblock_page,
1912 int start_order, int migratetype)
1913 {
1914 int nr_pageblocks = 1 << (start_order - pageblock_order);
1915
1916 while (nr_pageblocks--) {
1917 set_pageblock_migratetype(pageblock_page, migratetype);
1918 pageblock_page += pageblock_nr_pages;
1919 }
1920 }
1921
1922 /*
1923 * When we are falling back to another migratetype during allocation, try to
1924 * steal extra free pages from the same pageblocks to satisfy further
1925 * allocations, instead of polluting multiple pageblocks.
1926 *
1927 * If we are stealing a relatively large buddy page, it is likely there will
1928 * be more free pages in the pageblock, so try to steal them all. For
1929 * reclaimable and unmovable allocations, we steal regardless of page size,
1930 * as fragmentation caused by those allocations polluting movable pageblocks
1931 * is worse than movable allocations stealing from unmovable and reclaimable
1932 * pageblocks.
1933 */
1934 static bool can_steal_fallback(unsigned int order, int start_mt)
1935 {
1936 /*
1937 * Leaving this order check is intended, although there is
1938 * relaxed order check in next check. The reason is that
1939 * we can actually steal whole pageblock if this condition met,
1940 * but, below check doesn't guarantee it and that is just heuristic
1941 * so could be changed anytime.
1942 */
1943 if (order >= pageblock_order)
1944 return true;
1945
1946 if (order >= pageblock_order / 2 ||
1947 start_mt == MIGRATE_RECLAIMABLE ||
1948 start_mt == MIGRATE_UNMOVABLE ||
1949 page_group_by_mobility_disabled)
1950 return true;
1951
1952 return false;
1953 }
1954
1955 /*
1956 * This function implements actual steal behaviour. If order is large enough,
1957 * we can steal whole pageblock. If not, we first move freepages in this
1958 * pageblock and check whether half of pages are moved or not. If half of
1959 * pages are moved, we can change migratetype of pageblock and permanently
1960 * use it's pages as requested migratetype in the future.
1961 */
1962 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1963 int start_type)
1964 {
1965 unsigned int current_order = page_order(page);
1966 int pages;
1967
1968 /* Take ownership for orders >= pageblock_order */
1969 if (current_order >= pageblock_order) {
1970 change_pageblock_range(page, current_order, start_type);
1971 return;
1972 }
1973
1974 pages = move_freepages_block(zone, page, start_type);
1975
1976 /* Claim the whole block if over half of it is free */
1977 if (pages >= (1 << (pageblock_order-1)) ||
1978 page_group_by_mobility_disabled)
1979 set_pageblock_migratetype(page, start_type);
1980 }
1981
1982 /*
1983 * Check whether there is a suitable fallback freepage with requested order.
1984 * If only_stealable is true, this function returns fallback_mt only if
1985 * we can steal other freepages all together. This would help to reduce
1986 * fragmentation due to mixed migratetype pages in one pageblock.
1987 */
1988 int find_suitable_fallback(struct free_area *area, unsigned int order,
1989 int migratetype, bool only_stealable, bool *can_steal)
1990 {
1991 int i;
1992 int fallback_mt;
1993
1994 if (area->nr_free == 0)
1995 return -1;
1996
1997 *can_steal = false;
1998 for (i = 0;; i++) {
1999 fallback_mt = fallbacks[migratetype][i];
2000 if (fallback_mt == MIGRATE_TYPES)
2001 break;
2002
2003 if (list_empty(&area->free_list[fallback_mt]))
2004 continue;
2005
2006 if (can_steal_fallback(order, migratetype))
2007 *can_steal = true;
2008
2009 if (!only_stealable)
2010 return fallback_mt;
2011
2012 if (*can_steal)
2013 return fallback_mt;
2014 }
2015
2016 return -1;
2017 }
2018
2019 /*
2020 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2021 * there are no empty page blocks that contain a page with a suitable order
2022 */
2023 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2024 unsigned int alloc_order)
2025 {
2026 int mt;
2027 unsigned long max_managed, flags;
2028
2029 /*
2030 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2031 * Check is race-prone but harmless.
2032 */
2033 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2034 if (zone->nr_reserved_highatomic >= max_managed)
2035 return;
2036
2037 spin_lock_irqsave(&zone->lock, flags);
2038
2039 /* Recheck the nr_reserved_highatomic limit under the lock */
2040 if (zone->nr_reserved_highatomic >= max_managed)
2041 goto out_unlock;
2042
2043 /* Yoink! */
2044 mt = get_pageblock_migratetype(page);
2045 if (mt != MIGRATE_HIGHATOMIC &&
2046 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2047 zone->nr_reserved_highatomic += pageblock_nr_pages;
2048 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2049 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2050 }
2051
2052 out_unlock:
2053 spin_unlock_irqrestore(&zone->lock, flags);
2054 }
2055
2056 /*
2057 * Used when an allocation is about to fail under memory pressure. This
2058 * potentially hurts the reliability of high-order allocations when under
2059 * intense memory pressure but failed atomic allocations should be easier
2060 * to recover from than an OOM.
2061 *
2062 * If @force is true, try to unreserve a pageblock even though highatomic
2063 * pageblock is exhausted.
2064 */
2065 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2066 bool force)
2067 {
2068 struct zonelist *zonelist = ac->zonelist;
2069 unsigned long flags;
2070 struct zoneref *z;
2071 struct zone *zone;
2072 struct page *page;
2073 int order;
2074 bool ret;
2075
2076 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2077 ac->nodemask) {
2078 /*
2079 * Preserve at least one pageblock unless memory pressure
2080 * is really high.
2081 */
2082 if (!force && zone->nr_reserved_highatomic <=
2083 pageblock_nr_pages)
2084 continue;
2085
2086 spin_lock_irqsave(&zone->lock, flags);
2087 for (order = 0; order < MAX_ORDER; order++) {
2088 struct free_area *area = &(zone->free_area[order]);
2089
2090 page = list_first_entry_or_null(
2091 &area->free_list[MIGRATE_HIGHATOMIC],
2092 struct page, lru);
2093 if (!page)
2094 continue;
2095
2096 /*
2097 * In page freeing path, migratetype change is racy so
2098 * we can counter several free pages in a pageblock
2099 * in this loop althoug we changed the pageblock type
2100 * from highatomic to ac->migratetype. So we should
2101 * adjust the count once.
2102 */
2103 if (get_pageblock_migratetype(page) ==
2104 MIGRATE_HIGHATOMIC) {
2105 /*
2106 * It should never happen but changes to
2107 * locking could inadvertently allow a per-cpu
2108 * drain to add pages to MIGRATE_HIGHATOMIC
2109 * while unreserving so be safe and watch for
2110 * underflows.
2111 */
2112 zone->nr_reserved_highatomic -= min(
2113 pageblock_nr_pages,
2114 zone->nr_reserved_highatomic);
2115 }
2116
2117 /*
2118 * Convert to ac->migratetype and avoid the normal
2119 * pageblock stealing heuristics. Minimally, the caller
2120 * is doing the work and needs the pages. More
2121 * importantly, if the block was always converted to
2122 * MIGRATE_UNMOVABLE or another type then the number
2123 * of pageblocks that cannot be completely freed
2124 * may increase.
2125 */
2126 set_pageblock_migratetype(page, ac->migratetype);
2127 ret = move_freepages_block(zone, page, ac->migratetype);
2128 if (ret) {
2129 spin_unlock_irqrestore(&zone->lock, flags);
2130 return ret;
2131 }
2132 }
2133 spin_unlock_irqrestore(&zone->lock, flags);
2134 }
2135
2136 return false;
2137 }
2138
2139 /* Remove an element from the buddy allocator from the fallback list */
2140 static inline struct page *
2141 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2142 {
2143 struct free_area *area;
2144 unsigned int current_order;
2145 struct page *page;
2146 int fallback_mt;
2147 bool can_steal;
2148
2149 /* Find the largest possible block of pages in the other list */
2150 for (current_order = MAX_ORDER-1;
2151 current_order >= order && current_order <= MAX_ORDER-1;
2152 --current_order) {
2153 area = &(zone->free_area[current_order]);
2154 fallback_mt = find_suitable_fallback(area, current_order,
2155 start_migratetype, false, &can_steal);
2156 if (fallback_mt == -1)
2157 continue;
2158
2159 page = list_first_entry(&area->free_list[fallback_mt],
2160 struct page, lru);
2161 if (can_steal &&
2162 get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
2163 steal_suitable_fallback(zone, page, start_migratetype);
2164
2165 /* Remove the page from the freelists */
2166 area->nr_free--;
2167 list_del(&page->lru);
2168 rmv_page_order(page);
2169
2170 expand(zone, page, order, current_order, area,
2171 start_migratetype);
2172 /*
2173 * The pcppage_migratetype may differ from pageblock's
2174 * migratetype depending on the decisions in
2175 * find_suitable_fallback(). This is OK as long as it does not
2176 * differ for MIGRATE_CMA pageblocks. Those can be used as
2177 * fallback only via special __rmqueue_cma_fallback() function
2178 */
2179 set_pcppage_migratetype(page, start_migratetype);
2180
2181 trace_mm_page_alloc_extfrag(page, order, current_order,
2182 start_migratetype, fallback_mt);
2183
2184 return page;
2185 }
2186
2187 return NULL;
2188 }
2189
2190 /*
2191 * Do the hard work of removing an element from the buddy allocator.
2192 * Call me with the zone->lock already held.
2193 */
2194 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2195 int migratetype)
2196 {
2197 struct page *page;
2198
2199 page = __rmqueue_smallest(zone, order, migratetype);
2200 if (unlikely(!page)) {
2201 if (migratetype == MIGRATE_MOVABLE)
2202 page = __rmqueue_cma_fallback(zone, order);
2203
2204 if (!page)
2205 page = __rmqueue_fallback(zone, order, migratetype);
2206 }
2207
2208 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2209 return page;
2210 }
2211
2212 /*
2213 * Obtain a specified number of elements from the buddy allocator, all under
2214 * a single hold of the lock, for efficiency. Add them to the supplied list.
2215 * Returns the number of new pages which were placed at *list.
2216 */
2217 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2218 unsigned long count, struct list_head *list,
2219 int migratetype, bool cold)
2220 {
2221 int i, alloced = 0;
2222 unsigned long flags;
2223
2224 spin_lock_irqsave(&zone->lock, flags);
2225 for (i = 0; i < count; ++i) {
2226 struct page *page = __rmqueue(zone, order, migratetype);
2227 if (unlikely(page == NULL))
2228 break;
2229
2230 if (unlikely(check_pcp_refill(page)))
2231 continue;
2232
2233 /*
2234 * Split buddy pages returned by expand() are received here
2235 * in physical page order. The page is added to the callers and
2236 * list and the list head then moves forward. From the callers
2237 * perspective, the linked list is ordered by page number in
2238 * some conditions. This is useful for IO devices that can
2239 * merge IO requests if the physical pages are ordered
2240 * properly.
2241 */
2242 if (likely(!cold))
2243 list_add(&page->lru, list);
2244 else
2245 list_add_tail(&page->lru, list);
2246 list = &page->lru;
2247 alloced++;
2248 if (is_migrate_cma(get_pcppage_migratetype(page)))
2249 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2250 -(1 << order));
2251 }
2252
2253 /*
2254 * i pages were removed from the buddy list even if some leak due
2255 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2256 * on i. Do not confuse with 'alloced' which is the number of
2257 * pages added to the pcp list.
2258 */
2259 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2260 spin_unlock_irqrestore(&zone->lock, flags);
2261 return alloced;
2262 }
2263
2264 #ifdef CONFIG_NUMA
2265 /*
2266 * Called from the vmstat counter updater to drain pagesets of this
2267 * currently executing processor on remote nodes after they have
2268 * expired.
2269 *
2270 * Note that this function must be called with the thread pinned to
2271 * a single processor.
2272 */
2273 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2274 {
2275 unsigned long flags;
2276 int to_drain, batch;
2277
2278 local_irq_save(flags);
2279 batch = READ_ONCE(pcp->batch);
2280 to_drain = min(pcp->count, batch);
2281 if (to_drain > 0) {
2282 free_pcppages_bulk(zone, to_drain, pcp);
2283 pcp->count -= to_drain;
2284 }
2285 local_irq_restore(flags);
2286 }
2287 #endif
2288
2289 /*
2290 * Drain pcplists of the indicated processor and zone.
2291 *
2292 * The processor must either be the current processor and the
2293 * thread pinned to the current processor or a processor that
2294 * is not online.
2295 */
2296 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2297 {
2298 unsigned long flags;
2299 struct per_cpu_pageset *pset;
2300 struct per_cpu_pages *pcp;
2301
2302 local_irq_save(flags);
2303 pset = per_cpu_ptr(zone->pageset, cpu);
2304
2305 pcp = &pset->pcp;
2306 if (pcp->count) {
2307 free_pcppages_bulk(zone, pcp->count, pcp);
2308 pcp->count = 0;
2309 }
2310 local_irq_restore(flags);
2311 }
2312
2313 /*
2314 * Drain pcplists of all zones on the indicated processor.
2315 *
2316 * The processor must either be the current processor and the
2317 * thread pinned to the current processor or a processor that
2318 * is not online.
2319 */
2320 static void drain_pages(unsigned int cpu)
2321 {
2322 struct zone *zone;
2323
2324 for_each_populated_zone(zone) {
2325 drain_pages_zone(cpu, zone);
2326 }
2327 }
2328
2329 /*
2330 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2331 *
2332 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2333 * the single zone's pages.
2334 */
2335 void drain_local_pages(struct zone *zone)
2336 {
2337 int cpu = smp_processor_id();
2338
2339 if (zone)
2340 drain_pages_zone(cpu, zone);
2341 else
2342 drain_pages(cpu);
2343 }
2344
2345 static void drain_local_pages_wq(struct work_struct *work)
2346 {
2347 /*
2348 * drain_all_pages doesn't use proper cpu hotplug protection so
2349 * we can race with cpu offline when the WQ can move this from
2350 * a cpu pinned worker to an unbound one. We can operate on a different
2351 * cpu which is allright but we also have to make sure to not move to
2352 * a different one.
2353 */
2354 preempt_disable();
2355 drain_local_pages(NULL);
2356 preempt_enable();
2357 }
2358
2359 /*
2360 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2361 *
2362 * When zone parameter is non-NULL, spill just the single zone's pages.
2363 *
2364 * Note that this can be extremely slow as the draining happens in a workqueue.
2365 */
2366 void drain_all_pages(struct zone *zone)
2367 {
2368 int cpu;
2369
2370 /*
2371 * Allocate in the BSS so we wont require allocation in
2372 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2373 */
2374 static cpumask_t cpus_with_pcps;
2375
2376 /* Workqueues cannot recurse */
2377 if (current->flags & PF_WQ_WORKER)
2378 return;
2379
2380 /*
2381 * Do not drain if one is already in progress unless it's specific to
2382 * a zone. Such callers are primarily CMA and memory hotplug and need
2383 * the drain to be complete when the call returns.
2384 */
2385 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2386 if (!zone)
2387 return;
2388 mutex_lock(&pcpu_drain_mutex);
2389 }
2390
2391 /*
2392 * We don't care about racing with CPU hotplug event
2393 * as offline notification will cause the notified
2394 * cpu to drain that CPU pcps and on_each_cpu_mask
2395 * disables preemption as part of its processing
2396 */
2397 for_each_online_cpu(cpu) {
2398 struct per_cpu_pageset *pcp;
2399 struct zone *z;
2400 bool has_pcps = false;
2401
2402 if (zone) {
2403 pcp = per_cpu_ptr(zone->pageset, cpu);
2404 if (pcp->pcp.count)
2405 has_pcps = true;
2406 } else {
2407 for_each_populated_zone(z) {
2408 pcp = per_cpu_ptr(z->pageset, cpu);
2409 if (pcp->pcp.count) {
2410 has_pcps = true;
2411 break;
2412 }
2413 }
2414 }
2415
2416 if (has_pcps)
2417 cpumask_set_cpu(cpu, &cpus_with_pcps);
2418 else
2419 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2420 }
2421
2422 for_each_cpu(cpu, &cpus_with_pcps) {
2423 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2424 INIT_WORK(work, drain_local_pages_wq);
2425 schedule_work_on(cpu, work);
2426 }
2427 for_each_cpu(cpu, &cpus_with_pcps)
2428 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2429
2430 mutex_unlock(&pcpu_drain_mutex);
2431 }
2432
2433 #ifdef CONFIG_HIBERNATION
2434
2435 void mark_free_pages(struct zone *zone)
2436 {
2437 unsigned long pfn, max_zone_pfn;
2438 unsigned long flags;
2439 unsigned int order, t;
2440 struct page *page;
2441
2442 if (zone_is_empty(zone))
2443 return;
2444
2445 spin_lock_irqsave(&zone->lock, flags);
2446
2447 max_zone_pfn = zone_end_pfn(zone);
2448 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2449 if (pfn_valid(pfn)) {
2450 page = pfn_to_page(pfn);
2451
2452 if (page_zone(page) != zone)
2453 continue;
2454
2455 if (!swsusp_page_is_forbidden(page))
2456 swsusp_unset_page_free(page);
2457 }
2458
2459 for_each_migratetype_order(order, t) {
2460 list_for_each_entry(page,
2461 &zone->free_area[order].free_list[t], lru) {
2462 unsigned long i;
2463
2464 pfn = page_to_pfn(page);
2465 for (i = 0; i < (1UL << order); i++)
2466 swsusp_set_page_free(pfn_to_page(pfn + i));
2467 }
2468 }
2469 spin_unlock_irqrestore(&zone->lock, flags);
2470 }
2471 #endif /* CONFIG_PM */
2472
2473 /*
2474 * Free a 0-order page
2475 * cold == true ? free a cold page : free a hot page
2476 */
2477 void free_hot_cold_page(struct page *page, bool cold)
2478 {
2479 struct zone *zone = page_zone(page);
2480 struct per_cpu_pages *pcp;
2481 unsigned long pfn = page_to_pfn(page);
2482 int migratetype;
2483
2484 if (in_interrupt()) {
2485 __free_pages_ok(page, 0);
2486 return;
2487 }
2488
2489 if (!free_pcp_prepare(page))
2490 return;
2491
2492 migratetype = get_pfnblock_migratetype(page, pfn);
2493 set_pcppage_migratetype(page, migratetype);
2494 preempt_disable();
2495
2496 /*
2497 * We only track unmovable, reclaimable and movable on pcp lists.
2498 * Free ISOLATE pages back to the allocator because they are being
2499 * offlined but treat RESERVE as movable pages so we can get those
2500 * areas back if necessary. Otherwise, we may have to free
2501 * excessively into the page allocator
2502 */
2503 if (migratetype >= MIGRATE_PCPTYPES) {
2504 if (unlikely(is_migrate_isolate(migratetype))) {
2505 free_one_page(zone, page, pfn, 0, migratetype);
2506 goto out;
2507 }
2508 migratetype = MIGRATE_MOVABLE;
2509 }
2510
2511 __count_vm_event(PGFREE);
2512 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2513 if (!cold)
2514 list_add(&page->lru, &pcp->lists[migratetype]);
2515 else
2516 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2517 pcp->count++;
2518 if (pcp->count >= pcp->high) {
2519 unsigned long batch = READ_ONCE(pcp->batch);
2520 free_pcppages_bulk(zone, batch, pcp);
2521 pcp->count -= batch;
2522 }
2523
2524 out:
2525 preempt_enable();
2526 }
2527
2528 /*
2529 * Free a list of 0-order pages
2530 */
2531 void free_hot_cold_page_list(struct list_head *list, bool cold)
2532 {
2533 struct page *page, *next;
2534
2535 list_for_each_entry_safe(page, next, list, lru) {
2536 trace_mm_page_free_batched(page, cold);
2537 free_hot_cold_page(page, cold);
2538 }
2539 }
2540
2541 /*
2542 * split_page takes a non-compound higher-order page, and splits it into
2543 * n (1<<order) sub-pages: page[0..n]
2544 * Each sub-page must be freed individually.
2545 *
2546 * Note: this is probably too low level an operation for use in drivers.
2547 * Please consult with lkml before using this in your driver.
2548 */
2549 void split_page(struct page *page, unsigned int order)
2550 {
2551 int i;
2552
2553 VM_BUG_ON_PAGE(PageCompound(page), page);
2554 VM_BUG_ON_PAGE(!page_count(page), page);
2555
2556 #ifdef CONFIG_KMEMCHECK
2557 /*
2558 * Split shadow pages too, because free(page[0]) would
2559 * otherwise free the whole shadow.
2560 */
2561 if (kmemcheck_page_is_tracked(page))
2562 split_page(virt_to_page(page[0].shadow), order);
2563 #endif
2564
2565 for (i = 1; i < (1 << order); i++)
2566 set_page_refcounted(page + i);
2567 split_page_owner(page, order);
2568 }
2569 EXPORT_SYMBOL_GPL(split_page);
2570
2571 int __isolate_free_page(struct page *page, unsigned int order)
2572 {
2573 unsigned long watermark;
2574 struct zone *zone;
2575 int mt;
2576
2577 BUG_ON(!PageBuddy(page));
2578
2579 zone = page_zone(page);
2580 mt = get_pageblock_migratetype(page);
2581
2582 if (!is_migrate_isolate(mt)) {
2583 /*
2584 * Obey watermarks as if the page was being allocated. We can
2585 * emulate a high-order watermark check with a raised order-0
2586 * watermark, because we already know our high-order page
2587 * exists.
2588 */
2589 watermark = min_wmark_pages(zone) + (1UL << order);
2590 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2591 return 0;
2592
2593 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2594 }
2595
2596 /* Remove page from free list */
2597 list_del(&page->lru);
2598 zone->free_area[order].nr_free--;
2599 rmv_page_order(page);
2600
2601 /*
2602 * Set the pageblock if the isolated page is at least half of a
2603 * pageblock
2604 */
2605 if (order >= pageblock_order - 1) {
2606 struct page *endpage = page + (1 << order) - 1;
2607 for (; page < endpage; page += pageblock_nr_pages) {
2608 int mt = get_pageblock_migratetype(page);
2609 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2610 && mt != MIGRATE_HIGHATOMIC)
2611 set_pageblock_migratetype(page,
2612 MIGRATE_MOVABLE);
2613 }
2614 }
2615
2616
2617 return 1UL << order;
2618 }
2619
2620 /*
2621 * Update NUMA hit/miss statistics
2622 *
2623 * Must be called with interrupts disabled.
2624 */
2625 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2626 {
2627 #ifdef CONFIG_NUMA
2628 enum zone_stat_item local_stat = NUMA_LOCAL;
2629
2630 if (z->node != numa_node_id())
2631 local_stat = NUMA_OTHER;
2632
2633 if (z->node == preferred_zone->node)
2634 __inc_zone_state(z, NUMA_HIT);
2635 else {
2636 __inc_zone_state(z, NUMA_MISS);
2637 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2638 }
2639 __inc_zone_state(z, local_stat);
2640 #endif
2641 }
2642
2643 /* Remove page from the per-cpu list, caller must protect the list */
2644 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2645 bool cold, struct per_cpu_pages *pcp,
2646 struct list_head *list)
2647 {
2648 struct page *page;
2649
2650 VM_BUG_ON(in_interrupt());
2651
2652 do {
2653 if (list_empty(list)) {
2654 pcp->count += rmqueue_bulk(zone, 0,
2655 pcp->batch, list,
2656 migratetype, cold);
2657 if (unlikely(list_empty(list)))
2658 return NULL;
2659 }
2660
2661 if (cold)
2662 page = list_last_entry(list, struct page, lru);
2663 else
2664 page = list_first_entry(list, struct page, lru);
2665
2666 list_del(&page->lru);
2667 pcp->count--;
2668 } while (check_new_pcp(page));
2669
2670 return page;
2671 }
2672
2673 /* Lock and remove page from the per-cpu list */
2674 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2675 struct zone *zone, unsigned int order,
2676 gfp_t gfp_flags, int migratetype)
2677 {
2678 struct per_cpu_pages *pcp;
2679 struct list_head *list;
2680 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2681 struct page *page;
2682
2683 preempt_disable();
2684 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2685 list = &pcp->lists[migratetype];
2686 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2687 if (page) {
2688 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2689 zone_statistics(preferred_zone, zone);
2690 }
2691 preempt_enable();
2692 return page;
2693 }
2694
2695 /*
2696 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2697 */
2698 static inline
2699 struct page *rmqueue(struct zone *preferred_zone,
2700 struct zone *zone, unsigned int order,
2701 gfp_t gfp_flags, unsigned int alloc_flags,
2702 int migratetype)
2703 {
2704 unsigned long flags;
2705 struct page *page;
2706
2707 if (likely(order == 0) && !in_interrupt()) {
2708 page = rmqueue_pcplist(preferred_zone, zone, order,
2709 gfp_flags, migratetype);
2710 goto out;
2711 }
2712
2713 /*
2714 * We most definitely don't want callers attempting to
2715 * allocate greater than order-1 page units with __GFP_NOFAIL.
2716 */
2717 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2718 spin_lock_irqsave(&zone->lock, flags);
2719
2720 do {
2721 page = NULL;
2722 if (alloc_flags & ALLOC_HARDER) {
2723 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2724 if (page)
2725 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2726 }
2727 if (!page)
2728 page = __rmqueue(zone, order, migratetype);
2729 } while (page && check_new_pages(page, order));
2730 spin_unlock(&zone->lock);
2731 if (!page)
2732 goto failed;
2733 __mod_zone_freepage_state(zone, -(1 << order),
2734 get_pcppage_migratetype(page));
2735
2736 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2737 zone_statistics(preferred_zone, zone);
2738 local_irq_restore(flags);
2739
2740 out:
2741 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2742 return page;
2743
2744 failed:
2745 local_irq_restore(flags);
2746 return NULL;
2747 }
2748
2749 #ifdef CONFIG_FAIL_PAGE_ALLOC
2750
2751 static struct {
2752 struct fault_attr attr;
2753
2754 bool ignore_gfp_highmem;
2755 bool ignore_gfp_reclaim;
2756 u32 min_order;
2757 } fail_page_alloc = {
2758 .attr = FAULT_ATTR_INITIALIZER,
2759 .ignore_gfp_reclaim = true,
2760 .ignore_gfp_highmem = true,
2761 .min_order = 1,
2762 };
2763
2764 static int __init setup_fail_page_alloc(char *str)
2765 {
2766 return setup_fault_attr(&fail_page_alloc.attr, str);
2767 }
2768 __setup("fail_page_alloc=", setup_fail_page_alloc);
2769
2770 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2771 {
2772 if (order < fail_page_alloc.min_order)
2773 return false;
2774 if (gfp_mask & __GFP_NOFAIL)
2775 return false;
2776 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2777 return false;
2778 if (fail_page_alloc.ignore_gfp_reclaim &&
2779 (gfp_mask & __GFP_DIRECT_RECLAIM))
2780 return false;
2781
2782 return should_fail(&fail_page_alloc.attr, 1 << order);
2783 }
2784
2785 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2786
2787 static int __init fail_page_alloc_debugfs(void)
2788 {
2789 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2790 struct dentry *dir;
2791
2792 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2793 &fail_page_alloc.attr);
2794 if (IS_ERR(dir))
2795 return PTR_ERR(dir);
2796
2797 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2798 &fail_page_alloc.ignore_gfp_reclaim))
2799 goto fail;
2800 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2801 &fail_page_alloc.ignore_gfp_highmem))
2802 goto fail;
2803 if (!debugfs_create_u32("min-order", mode, dir,
2804 &fail_page_alloc.min_order))
2805 goto fail;
2806
2807 return 0;
2808 fail:
2809 debugfs_remove_recursive(dir);
2810
2811 return -ENOMEM;
2812 }
2813
2814 late_initcall(fail_page_alloc_debugfs);
2815
2816 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2817
2818 #else /* CONFIG_FAIL_PAGE_ALLOC */
2819
2820 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2821 {
2822 return false;
2823 }
2824
2825 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2826
2827 /*
2828 * Return true if free base pages are above 'mark'. For high-order checks it
2829 * will return true of the order-0 watermark is reached and there is at least
2830 * one free page of a suitable size. Checking now avoids taking the zone lock
2831 * to check in the allocation paths if no pages are free.
2832 */
2833 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2834 int classzone_idx, unsigned int alloc_flags,
2835 long free_pages)
2836 {
2837 long min = mark;
2838 int o;
2839 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2840
2841 /* free_pages may go negative - that's OK */
2842 free_pages -= (1 << order) - 1;
2843
2844 if (alloc_flags & ALLOC_HIGH)
2845 min -= min / 2;
2846
2847 /*
2848 * If the caller does not have rights to ALLOC_HARDER then subtract
2849 * the high-atomic reserves. This will over-estimate the size of the
2850 * atomic reserve but it avoids a search.
2851 */
2852 if (likely(!alloc_harder))
2853 free_pages -= z->nr_reserved_highatomic;
2854 else
2855 min -= min / 4;
2856
2857 #ifdef CONFIG_CMA
2858 /* If allocation can't use CMA areas don't use free CMA pages */
2859 if (!(alloc_flags & ALLOC_CMA))
2860 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2861 #endif
2862
2863 /*
2864 * Check watermarks for an order-0 allocation request. If these
2865 * are not met, then a high-order request also cannot go ahead
2866 * even if a suitable page happened to be free.
2867 */
2868 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2869 return false;
2870
2871 /* If this is an order-0 request then the watermark is fine */
2872 if (!order)
2873 return true;
2874
2875 /* For a high-order request, check at least one suitable page is free */
2876 for (o = order; o < MAX_ORDER; o++) {
2877 struct free_area *area = &z->free_area[o];
2878 int mt;
2879
2880 if (!area->nr_free)
2881 continue;
2882
2883 if (alloc_harder)
2884 return true;
2885
2886 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2887 if (!list_empty(&area->free_list[mt]))
2888 return true;
2889 }
2890
2891 #ifdef CONFIG_CMA
2892 if ((alloc_flags & ALLOC_CMA) &&
2893 !list_empty(&area->free_list[MIGRATE_CMA])) {
2894 return true;
2895 }
2896 #endif
2897 }
2898 return false;
2899 }
2900
2901 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2902 int classzone_idx, unsigned int alloc_flags)
2903 {
2904 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2905 zone_page_state(z, NR_FREE_PAGES));
2906 }
2907
2908 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2909 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2910 {
2911 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2912 long cma_pages = 0;
2913
2914 #ifdef CONFIG_CMA
2915 /* If allocation can't use CMA areas don't use free CMA pages */
2916 if (!(alloc_flags & ALLOC_CMA))
2917 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2918 #endif
2919
2920 /*
2921 * Fast check for order-0 only. If this fails then the reserves
2922 * need to be calculated. There is a corner case where the check
2923 * passes but only the high-order atomic reserve are free. If
2924 * the caller is !atomic then it'll uselessly search the free
2925 * list. That corner case is then slower but it is harmless.
2926 */
2927 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2928 return true;
2929
2930 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2931 free_pages);
2932 }
2933
2934 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2935 unsigned long mark, int classzone_idx)
2936 {
2937 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2938
2939 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2940 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2941
2942 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2943 free_pages);
2944 }
2945
2946 #ifdef CONFIG_NUMA
2947 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2948 {
2949 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2950 RECLAIM_DISTANCE;
2951 }
2952 #else /* CONFIG_NUMA */
2953 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2954 {
2955 return true;
2956 }
2957 #endif /* CONFIG_NUMA */
2958
2959 /*
2960 * get_page_from_freelist goes through the zonelist trying to allocate
2961 * a page.
2962 */
2963 static struct page *
2964 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2965 const struct alloc_context *ac)
2966 {
2967 struct zoneref *z = ac->preferred_zoneref;
2968 struct zone *zone;
2969 struct pglist_data *last_pgdat_dirty_limit = NULL;
2970
2971 /*
2972 * Scan zonelist, looking for a zone with enough free.
2973 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2974 */
2975 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2976 ac->nodemask) {
2977 struct page *page;
2978 unsigned long mark;
2979
2980 if (cpusets_enabled() &&
2981 (alloc_flags & ALLOC_CPUSET) &&
2982 !__cpuset_zone_allowed(zone, gfp_mask))
2983 continue;
2984 /*
2985 * When allocating a page cache page for writing, we
2986 * want to get it from a node that is within its dirty
2987 * limit, such that no single node holds more than its
2988 * proportional share of globally allowed dirty pages.
2989 * The dirty limits take into account the node's
2990 * lowmem reserves and high watermark so that kswapd
2991 * should be able to balance it without having to
2992 * write pages from its LRU list.
2993 *
2994 * XXX: For now, allow allocations to potentially
2995 * exceed the per-node dirty limit in the slowpath
2996 * (spread_dirty_pages unset) before going into reclaim,
2997 * which is important when on a NUMA setup the allowed
2998 * nodes are together not big enough to reach the
2999 * global limit. The proper fix for these situations
3000 * will require awareness of nodes in the
3001 * dirty-throttling and the flusher threads.
3002 */
3003 if (ac->spread_dirty_pages) {
3004 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3005 continue;
3006
3007 if (!node_dirty_ok(zone->zone_pgdat)) {
3008 last_pgdat_dirty_limit = zone->zone_pgdat;
3009 continue;
3010 }
3011 }
3012
3013 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3014 if (!zone_watermark_fast(zone, order, mark,
3015 ac_classzone_idx(ac), alloc_flags)) {
3016 int ret;
3017
3018 /* Checked here to keep the fast path fast */
3019 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3020 if (alloc_flags & ALLOC_NO_WATERMARKS)
3021 goto try_this_zone;
3022
3023 if (node_reclaim_mode == 0 ||
3024 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3025 continue;
3026
3027 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3028 switch (ret) {
3029 case NODE_RECLAIM_NOSCAN:
3030 /* did not scan */
3031 continue;
3032 case NODE_RECLAIM_FULL:
3033 /* scanned but unreclaimable */
3034 continue;
3035 default:
3036 /* did we reclaim enough */
3037 if (zone_watermark_ok(zone, order, mark,
3038 ac_classzone_idx(ac), alloc_flags))
3039 goto try_this_zone;
3040
3041 continue;
3042 }
3043 }
3044
3045 try_this_zone:
3046 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3047 gfp_mask, alloc_flags, ac->migratetype);
3048 if (page) {
3049 prep_new_page(page, order, gfp_mask, alloc_flags);
3050
3051 /*
3052 * If this is a high-order atomic allocation then check
3053 * if the pageblock should be reserved for the future
3054 */
3055 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3056 reserve_highatomic_pageblock(page, zone, order);
3057
3058 return page;
3059 }
3060 }
3061
3062 return NULL;
3063 }
3064
3065 /*
3066 * Large machines with many possible nodes should not always dump per-node
3067 * meminfo in irq context.
3068 */
3069 static inline bool should_suppress_show_mem(void)
3070 {
3071 bool ret = false;
3072
3073 #if NODES_SHIFT > 8
3074 ret = in_interrupt();
3075 #endif
3076 return ret;
3077 }
3078
3079 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3080 {
3081 unsigned int filter = SHOW_MEM_FILTER_NODES;
3082 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3083
3084 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3085 return;
3086
3087 /*
3088 * This documents exceptions given to allocations in certain
3089 * contexts that are allowed to allocate outside current's set
3090 * of allowed nodes.
3091 */
3092 if (!(gfp_mask & __GFP_NOMEMALLOC))
3093 if (test_thread_flag(TIF_MEMDIE) ||
3094 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3095 filter &= ~SHOW_MEM_FILTER_NODES;
3096 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3097 filter &= ~SHOW_MEM_FILTER_NODES;
3098
3099 show_mem(filter, nodemask);
3100 }
3101
3102 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3103 {
3104 struct va_format vaf;
3105 va_list args;
3106 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3107 DEFAULT_RATELIMIT_BURST);
3108
3109 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3110 debug_guardpage_minorder() > 0)
3111 return;
3112
3113 pr_warn("%s: ", current->comm);
3114
3115 va_start(args, fmt);
3116 vaf.fmt = fmt;
3117 vaf.va = &args;
3118 pr_cont("%pV", &vaf);
3119 va_end(args);
3120
3121 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3122 if (nodemask)
3123 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3124 else
3125 pr_cont("(null)\n");
3126
3127 cpuset_print_current_mems_allowed();
3128
3129 dump_stack();
3130 warn_alloc_show_mem(gfp_mask, nodemask);
3131 }
3132
3133 static inline struct page *
3134 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3135 unsigned int alloc_flags,
3136 const struct alloc_context *ac)
3137 {
3138 struct page *page;
3139
3140 page = get_page_from_freelist(gfp_mask, order,
3141 alloc_flags|ALLOC_CPUSET, ac);
3142 /*
3143 * fallback to ignore cpuset restriction if our nodes
3144 * are depleted
3145 */
3146 if (!page)
3147 page = get_page_from_freelist(gfp_mask, order,
3148 alloc_flags, ac);
3149
3150 return page;
3151 }
3152
3153 static inline struct page *
3154 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3155 const struct alloc_context *ac, unsigned long *did_some_progress)
3156 {
3157 struct oom_control oc = {
3158 .zonelist = ac->zonelist,
3159 .nodemask = ac->nodemask,
3160 .memcg = NULL,
3161 .gfp_mask = gfp_mask,
3162 .order = order,
3163 };
3164 struct page *page;
3165
3166 *did_some_progress = 0;
3167
3168 /*
3169 * Acquire the oom lock. If that fails, somebody else is
3170 * making progress for us.
3171 */
3172 if (!mutex_trylock(&oom_lock)) {
3173 *did_some_progress = 1;
3174 schedule_timeout_uninterruptible(1);
3175 return NULL;
3176 }
3177
3178 /*
3179 * Go through the zonelist yet one more time, keep very high watermark
3180 * here, this is only to catch a parallel oom killing, we must fail if
3181 * we're still under heavy pressure.
3182 */
3183 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3184 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3185 if (page)
3186 goto out;
3187
3188 /* Coredumps can quickly deplete all memory reserves */
3189 if (current->flags & PF_DUMPCORE)
3190 goto out;
3191 /* The OOM killer will not help higher order allocs */
3192 if (order > PAGE_ALLOC_COSTLY_ORDER)
3193 goto out;
3194 /* The OOM killer does not needlessly kill tasks for lowmem */
3195 if (ac->high_zoneidx < ZONE_NORMAL)
3196 goto out;
3197 if (pm_suspended_storage())
3198 goto out;
3199 /*
3200 * XXX: GFP_NOFS allocations should rather fail than rely on
3201 * other request to make a forward progress.
3202 * We are in an unfortunate situation where out_of_memory cannot
3203 * do much for this context but let's try it to at least get
3204 * access to memory reserved if the current task is killed (see
3205 * out_of_memory). Once filesystems are ready to handle allocation
3206 * failures more gracefully we should just bail out here.
3207 */
3208
3209 /* The OOM killer may not free memory on a specific node */
3210 if (gfp_mask & __GFP_THISNODE)
3211 goto out;
3212
3213 /* Exhausted what can be done so it's blamo time */
3214 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3215 *did_some_progress = 1;
3216
3217 /*
3218 * Help non-failing allocations by giving them access to memory
3219 * reserves
3220 */
3221 if (gfp_mask & __GFP_NOFAIL)
3222 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3223 ALLOC_NO_WATERMARKS, ac);
3224 }
3225 out:
3226 mutex_unlock(&oom_lock);
3227 return page;
3228 }
3229
3230 /*
3231 * Maximum number of compaction retries wit a progress before OOM
3232 * killer is consider as the only way to move forward.
3233 */
3234 #define MAX_COMPACT_RETRIES 16
3235
3236 #ifdef CONFIG_COMPACTION
3237 /* Try memory compaction for high-order allocations before reclaim */
3238 static struct page *
3239 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3240 unsigned int alloc_flags, const struct alloc_context *ac,
3241 enum compact_priority prio, enum compact_result *compact_result)
3242 {
3243 struct page *page;
3244
3245 if (!order)
3246 return NULL;
3247
3248 current->flags |= PF_MEMALLOC;
3249 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3250 prio);
3251 current->flags &= ~PF_MEMALLOC;
3252
3253 if (*compact_result <= COMPACT_INACTIVE)
3254 return NULL;
3255
3256 /*
3257 * At least in one zone compaction wasn't deferred or skipped, so let's
3258 * count a compaction stall
3259 */
3260 count_vm_event(COMPACTSTALL);
3261
3262 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3263
3264 if (page) {
3265 struct zone *zone = page_zone(page);
3266
3267 zone->compact_blockskip_flush = false;
3268 compaction_defer_reset(zone, order, true);
3269 count_vm_event(COMPACTSUCCESS);
3270 return page;
3271 }
3272
3273 /*
3274 * It's bad if compaction run occurs and fails. The most likely reason
3275 * is that pages exist, but not enough to satisfy watermarks.
3276 */
3277 count_vm_event(COMPACTFAIL);
3278
3279 cond_resched();
3280
3281 return NULL;
3282 }
3283
3284 static inline bool
3285 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3286 enum compact_result compact_result,
3287 enum compact_priority *compact_priority,
3288 int *compaction_retries)
3289 {
3290 int max_retries = MAX_COMPACT_RETRIES;
3291 int min_priority;
3292 bool ret = false;
3293 int retries = *compaction_retries;
3294 enum compact_priority priority = *compact_priority;
3295
3296 if (!order)
3297 return false;
3298
3299 if (compaction_made_progress(compact_result))
3300 (*compaction_retries)++;
3301
3302 /*
3303 * compaction considers all the zone as desperately out of memory
3304 * so it doesn't really make much sense to retry except when the
3305 * failure could be caused by insufficient priority
3306 */
3307 if (compaction_failed(compact_result))
3308 goto check_priority;
3309
3310 /*
3311 * make sure the compaction wasn't deferred or didn't bail out early
3312 * due to locks contention before we declare that we should give up.
3313 * But do not retry if the given zonelist is not suitable for
3314 * compaction.
3315 */
3316 if (compaction_withdrawn(compact_result)) {
3317 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3318 goto out;
3319 }
3320
3321 /*
3322 * !costly requests are much more important than __GFP_REPEAT
3323 * costly ones because they are de facto nofail and invoke OOM
3324 * killer to move on while costly can fail and users are ready
3325 * to cope with that. 1/4 retries is rather arbitrary but we
3326 * would need much more detailed feedback from compaction to
3327 * make a better decision.
3328 */
3329 if (order > PAGE_ALLOC_COSTLY_ORDER)
3330 max_retries /= 4;
3331 if (*compaction_retries <= max_retries) {
3332 ret = true;
3333 goto out;
3334 }
3335
3336 /*
3337 * Make sure there are attempts at the highest priority if we exhausted
3338 * all retries or failed at the lower priorities.
3339 */
3340 check_priority:
3341 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3342 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3343
3344 if (*compact_priority > min_priority) {
3345 (*compact_priority)--;
3346 *compaction_retries = 0;
3347 ret = true;
3348 }
3349 out:
3350 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3351 return ret;
3352 }
3353 #else
3354 static inline struct page *
3355 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3356 unsigned int alloc_flags, const struct alloc_context *ac,
3357 enum compact_priority prio, enum compact_result *compact_result)
3358 {
3359 *compact_result = COMPACT_SKIPPED;
3360 return NULL;
3361 }
3362
3363 static inline bool
3364 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3365 enum compact_result compact_result,
3366 enum compact_priority *compact_priority,
3367 int *compaction_retries)
3368 {
3369 struct zone *zone;
3370 struct zoneref *z;
3371
3372 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3373 return false;
3374
3375 /*
3376 * There are setups with compaction disabled which would prefer to loop
3377 * inside the allocator rather than hit the oom killer prematurely.
3378 * Let's give them a good hope and keep retrying while the order-0
3379 * watermarks are OK.
3380 */
3381 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3382 ac->nodemask) {
3383 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3384 ac_classzone_idx(ac), alloc_flags))
3385 return true;
3386 }
3387 return false;
3388 }
3389 #endif /* CONFIG_COMPACTION */
3390
3391 /* Perform direct synchronous page reclaim */
3392 static int
3393 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3394 const struct alloc_context *ac)
3395 {
3396 struct reclaim_state reclaim_state;
3397 int progress;
3398
3399 cond_resched();
3400
3401 /* We now go into synchronous reclaim */
3402 cpuset_memory_pressure_bump();
3403 current->flags |= PF_MEMALLOC;
3404 lockdep_set_current_reclaim_state(gfp_mask);
3405 reclaim_state.reclaimed_slab = 0;
3406 current->reclaim_state = &reclaim_state;
3407
3408 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3409 ac->nodemask);
3410
3411 current->reclaim_state = NULL;
3412 lockdep_clear_current_reclaim_state();
3413 current->flags &= ~PF_MEMALLOC;
3414
3415 cond_resched();
3416
3417 return progress;
3418 }
3419
3420 /* The really slow allocator path where we enter direct reclaim */
3421 static inline struct page *
3422 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3423 unsigned int alloc_flags, const struct alloc_context *ac,
3424 unsigned long *did_some_progress)
3425 {
3426 struct page *page = NULL;
3427 bool drained = false;
3428
3429 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3430 if (unlikely(!(*did_some_progress)))
3431 return NULL;
3432
3433 retry:
3434 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3435
3436 /*
3437 * If an allocation failed after direct reclaim, it could be because
3438 * pages are pinned on the per-cpu lists or in high alloc reserves.
3439 * Shrink them them and try again
3440 */
3441 if (!page && !drained) {
3442 unreserve_highatomic_pageblock(ac, false);
3443 drain_all_pages(NULL);
3444 drained = true;
3445 goto retry;
3446 }
3447
3448 return page;
3449 }
3450
3451 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3452 {
3453 struct zoneref *z;
3454 struct zone *zone;
3455 pg_data_t *last_pgdat = NULL;
3456
3457 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3458 ac->high_zoneidx, ac->nodemask) {
3459 if (last_pgdat != zone->zone_pgdat)
3460 wakeup_kswapd(zone, order, ac->high_zoneidx);
3461 last_pgdat = zone->zone_pgdat;
3462 }
3463 }
3464
3465 static inline unsigned int
3466 gfp_to_alloc_flags(gfp_t gfp_mask)
3467 {
3468 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3469
3470 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3471 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3472
3473 /*
3474 * The caller may dip into page reserves a bit more if the caller
3475 * cannot run direct reclaim, or if the caller has realtime scheduling
3476 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3477 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3478 */
3479 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3480
3481 if (gfp_mask & __GFP_ATOMIC) {
3482 /*
3483 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3484 * if it can't schedule.
3485 */
3486 if (!(gfp_mask & __GFP_NOMEMALLOC))
3487 alloc_flags |= ALLOC_HARDER;
3488 /*
3489 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3490 * comment for __cpuset_node_allowed().
3491 */
3492 alloc_flags &= ~ALLOC_CPUSET;
3493 } else if (unlikely(rt_task(current)) && !in_interrupt())
3494 alloc_flags |= ALLOC_HARDER;
3495
3496 #ifdef CONFIG_CMA
3497 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3498 alloc_flags |= ALLOC_CMA;
3499 #endif
3500 return alloc_flags;
3501 }
3502
3503 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3504 {
3505 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3506 return false;
3507
3508 if (gfp_mask & __GFP_MEMALLOC)
3509 return true;
3510 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3511 return true;
3512 if (!in_interrupt() &&
3513 ((current->flags & PF_MEMALLOC) ||
3514 unlikely(test_thread_flag(TIF_MEMDIE))))
3515 return true;
3516
3517 return false;
3518 }
3519
3520 /*
3521 * Maximum number of reclaim retries without any progress before OOM killer
3522 * is consider as the only way to move forward.
3523 */
3524 #define MAX_RECLAIM_RETRIES 16
3525
3526 /*
3527 * Checks whether it makes sense to retry the reclaim to make a forward progress
3528 * for the given allocation request.
3529 * The reclaim feedback represented by did_some_progress (any progress during
3530 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3531 * any progress in a row) is considered as well as the reclaimable pages on the
3532 * applicable zone list (with a backoff mechanism which is a function of
3533 * no_progress_loops).
3534 *
3535 * Returns true if a retry is viable or false to enter the oom path.
3536 */
3537 static inline bool
3538 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3539 struct alloc_context *ac, int alloc_flags,
3540 bool did_some_progress, int *no_progress_loops)
3541 {
3542 struct zone *zone;
3543 struct zoneref *z;
3544
3545 /*
3546 * Costly allocations might have made a progress but this doesn't mean
3547 * their order will become available due to high fragmentation so
3548 * always increment the no progress counter for them
3549 */
3550 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3551 *no_progress_loops = 0;
3552 else
3553 (*no_progress_loops)++;
3554
3555 /*
3556 * Make sure we converge to OOM if we cannot make any progress
3557 * several times in the row.
3558 */
3559 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3560 /* Before OOM, exhaust highatomic_reserve */
3561 return unreserve_highatomic_pageblock(ac, true);
3562 }
3563
3564 /*
3565 * Keep reclaiming pages while there is a chance this will lead
3566 * somewhere. If none of the target zones can satisfy our allocation
3567 * request even if all reclaimable pages are considered then we are
3568 * screwed and have to go OOM.
3569 */
3570 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3571 ac->nodemask) {
3572 unsigned long available;
3573 unsigned long reclaimable;
3574 unsigned long min_wmark = min_wmark_pages(zone);
3575 bool wmark;
3576
3577 available = reclaimable = zone_reclaimable_pages(zone);
3578 available -= DIV_ROUND_UP((*no_progress_loops) * available,
3579 MAX_RECLAIM_RETRIES);
3580 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3581
3582 /*
3583 * Would the allocation succeed if we reclaimed the whole
3584 * available?
3585 */
3586 wmark = __zone_watermark_ok(zone, order, min_wmark,
3587 ac_classzone_idx(ac), alloc_flags, available);
3588 trace_reclaim_retry_zone(z, order, reclaimable,
3589 available, min_wmark, *no_progress_loops, wmark);
3590 if (wmark) {
3591 /*
3592 * If we didn't make any progress and have a lot of
3593 * dirty + writeback pages then we should wait for
3594 * an IO to complete to slow down the reclaim and
3595 * prevent from pre mature OOM
3596 */
3597 if (!did_some_progress) {
3598 unsigned long write_pending;
3599
3600 write_pending = zone_page_state_snapshot(zone,
3601 NR_ZONE_WRITE_PENDING);
3602
3603 if (2 * write_pending > reclaimable) {
3604 congestion_wait(BLK_RW_ASYNC, HZ/10);
3605 return true;
3606 }
3607 }
3608
3609 /*
3610 * Memory allocation/reclaim might be called from a WQ
3611 * context and the current implementation of the WQ
3612 * concurrency control doesn't recognize that
3613 * a particular WQ is congested if the worker thread is
3614 * looping without ever sleeping. Therefore we have to
3615 * do a short sleep here rather than calling
3616 * cond_resched().
3617 */
3618 if (current->flags & PF_WQ_WORKER)
3619 schedule_timeout_uninterruptible(1);
3620 else
3621 cond_resched();
3622
3623 return true;
3624 }
3625 }
3626
3627 return false;
3628 }
3629
3630 static inline struct page *
3631 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3632 struct alloc_context *ac)
3633 {
3634 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3635 struct page *page = NULL;
3636 unsigned int alloc_flags;
3637 unsigned long did_some_progress;
3638 enum compact_priority compact_priority;
3639 enum compact_result compact_result;
3640 int compaction_retries;
3641 int no_progress_loops;
3642 unsigned long alloc_start = jiffies;
3643 unsigned int stall_timeout = 10 * HZ;
3644 unsigned int cpuset_mems_cookie;
3645
3646 /*
3647 * In the slowpath, we sanity check order to avoid ever trying to
3648 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3649 * be using allocators in order of preference for an area that is
3650 * too large.
3651 */
3652 if (order >= MAX_ORDER) {
3653 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3654 return NULL;
3655 }
3656
3657 /*
3658 * We also sanity check to catch abuse of atomic reserves being used by
3659 * callers that are not in atomic context.
3660 */
3661 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3662 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3663 gfp_mask &= ~__GFP_ATOMIC;
3664
3665 retry_cpuset:
3666 compaction_retries = 0;
3667 no_progress_loops = 0;
3668 compact_priority = DEF_COMPACT_PRIORITY;
3669 cpuset_mems_cookie = read_mems_allowed_begin();
3670
3671 /*
3672 * The fast path uses conservative alloc_flags to succeed only until
3673 * kswapd needs to be woken up, and to avoid the cost of setting up
3674 * alloc_flags precisely. So we do that now.
3675 */
3676 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3677
3678 /*
3679 * We need to recalculate the starting point for the zonelist iterator
3680 * because we might have used different nodemask in the fast path, or
3681 * there was a cpuset modification and we are retrying - otherwise we
3682 * could end up iterating over non-eligible zones endlessly.
3683 */
3684 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3685 ac->high_zoneidx, ac->nodemask);
3686 if (!ac->preferred_zoneref->zone)
3687 goto nopage;
3688
3689 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3690 wake_all_kswapds(order, ac);
3691
3692 /*
3693 * The adjusted alloc_flags might result in immediate success, so try
3694 * that first
3695 */
3696 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3697 if (page)
3698 goto got_pg;
3699
3700 /*
3701 * For costly allocations, try direct compaction first, as it's likely
3702 * that we have enough base pages and don't need to reclaim. Don't try
3703 * that for allocations that are allowed to ignore watermarks, as the
3704 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3705 */
3706 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3707 !gfp_pfmemalloc_allowed(gfp_mask)) {
3708 page = __alloc_pages_direct_compact(gfp_mask, order,
3709 alloc_flags, ac,
3710 INIT_COMPACT_PRIORITY,
3711 &compact_result);
3712 if (page)
3713 goto got_pg;
3714
3715 /*
3716 * Checks for costly allocations with __GFP_NORETRY, which
3717 * includes THP page fault allocations
3718 */
3719 if (gfp_mask & __GFP_NORETRY) {
3720 /*
3721 * If compaction is deferred for high-order allocations,
3722 * it is because sync compaction recently failed. If
3723 * this is the case and the caller requested a THP
3724 * allocation, we do not want to heavily disrupt the
3725 * system, so we fail the allocation instead of entering
3726 * direct reclaim.
3727 */
3728 if (compact_result == COMPACT_DEFERRED)
3729 goto nopage;
3730
3731 /*
3732 * Looks like reclaim/compaction is worth trying, but
3733 * sync compaction could be very expensive, so keep
3734 * using async compaction.
3735 */
3736 compact_priority = INIT_COMPACT_PRIORITY;
3737 }
3738 }
3739
3740 retry:
3741 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3742 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3743 wake_all_kswapds(order, ac);
3744
3745 if (gfp_pfmemalloc_allowed(gfp_mask))
3746 alloc_flags = ALLOC_NO_WATERMARKS;
3747
3748 /*
3749 * Reset the zonelist iterators if memory policies can be ignored.
3750 * These allocations are high priority and system rather than user
3751 * orientated.
3752 */
3753 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3754 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3755 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3756 ac->high_zoneidx, ac->nodemask);
3757 }
3758
3759 /* Attempt with potentially adjusted zonelist and alloc_flags */
3760 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3761 if (page)
3762 goto got_pg;
3763
3764 /* Caller is not willing to reclaim, we can't balance anything */
3765 if (!can_direct_reclaim)
3766 goto nopage;
3767
3768 /* Make sure we know about allocations which stall for too long */
3769 if (time_after(jiffies, alloc_start + stall_timeout)) {
3770 warn_alloc(gfp_mask, ac->nodemask,
3771 "page allocation stalls for %ums, order:%u",
3772 jiffies_to_msecs(jiffies-alloc_start), order);
3773 stall_timeout += 10 * HZ;
3774 }
3775
3776 /* Avoid recursion of direct reclaim */
3777 if (current->flags & PF_MEMALLOC)
3778 goto nopage;
3779
3780 /* Try direct reclaim and then allocating */
3781 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3782 &did_some_progress);
3783 if (page)
3784 goto got_pg;
3785
3786 /* Try direct compaction and then allocating */
3787 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3788 compact_priority, &compact_result);
3789 if (page)
3790 goto got_pg;
3791
3792 /* Do not loop if specifically requested */
3793 if (gfp_mask & __GFP_NORETRY)
3794 goto nopage;
3795
3796 /*
3797 * Do not retry costly high order allocations unless they are
3798 * __GFP_REPEAT
3799 */
3800 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3801 goto nopage;
3802
3803 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3804 did_some_progress > 0, &no_progress_loops))
3805 goto retry;
3806
3807 /*
3808 * It doesn't make any sense to retry for the compaction if the order-0
3809 * reclaim is not able to make any progress because the current
3810 * implementation of the compaction depends on the sufficient amount
3811 * of free memory (see __compaction_suitable)
3812 */
3813 if (did_some_progress > 0 &&
3814 should_compact_retry(ac, order, alloc_flags,
3815 compact_result, &compact_priority,
3816 &compaction_retries))
3817 goto retry;
3818
3819 /*
3820 * It's possible we raced with cpuset update so the OOM would be
3821 * premature (see below the nopage: label for full explanation).
3822 */
3823 if (read_mems_allowed_retry(cpuset_mems_cookie))
3824 goto retry_cpuset;
3825
3826 /* Reclaim has failed us, start killing things */
3827 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3828 if (page)
3829 goto got_pg;
3830
3831 /* Avoid allocations with no watermarks from looping endlessly */
3832 if (test_thread_flag(TIF_MEMDIE))
3833 goto nopage;
3834
3835 /* Retry as long as the OOM killer is making progress */
3836 if (did_some_progress) {
3837 no_progress_loops = 0;
3838 goto retry;
3839 }
3840
3841 nopage:
3842 /*
3843 * When updating a task's mems_allowed or mempolicy nodemask, it is
3844 * possible to race with parallel threads in such a way that our
3845 * allocation can fail while the mask is being updated. If we are about
3846 * to fail, check if the cpuset changed during allocation and if so,
3847 * retry.
3848 */
3849 if (read_mems_allowed_retry(cpuset_mems_cookie))
3850 goto retry_cpuset;
3851
3852 /*
3853 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3854 * we always retry
3855 */
3856 if (gfp_mask & __GFP_NOFAIL) {
3857 /*
3858 * All existing users of the __GFP_NOFAIL are blockable, so warn
3859 * of any new users that actually require GFP_NOWAIT
3860 */
3861 if (WARN_ON_ONCE(!can_direct_reclaim))
3862 goto fail;
3863
3864 /*
3865 * PF_MEMALLOC request from this context is rather bizarre
3866 * because we cannot reclaim anything and only can loop waiting
3867 * for somebody to do a work for us
3868 */
3869 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3870
3871 /*
3872 * non failing costly orders are a hard requirement which we
3873 * are not prepared for much so let's warn about these users
3874 * so that we can identify them and convert them to something
3875 * else.
3876 */
3877 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
3878
3879 /*
3880 * Help non-failing allocations by giving them access to memory
3881 * reserves but do not use ALLOC_NO_WATERMARKS because this
3882 * could deplete whole memory reserves which would just make
3883 * the situation worse
3884 */
3885 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
3886 if (page)
3887 goto got_pg;
3888
3889 cond_resched();
3890 goto retry;
3891 }
3892 fail:
3893 warn_alloc(gfp_mask, ac->nodemask,
3894 "page allocation failure: order:%u", order);
3895 got_pg:
3896 return page;
3897 }
3898
3899 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
3900 struct zonelist *zonelist, nodemask_t *nodemask,
3901 struct alloc_context *ac, gfp_t *alloc_mask,
3902 unsigned int *alloc_flags)
3903 {
3904 ac->high_zoneidx = gfp_zone(gfp_mask);
3905 ac->zonelist = zonelist;
3906 ac->nodemask = nodemask;
3907 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
3908
3909 if (cpusets_enabled()) {
3910 *alloc_mask |= __GFP_HARDWALL;
3911 if (!ac->nodemask)
3912 ac->nodemask = &cpuset_current_mems_allowed;
3913 else
3914 *alloc_flags |= ALLOC_CPUSET;
3915 }
3916
3917 lockdep_trace_alloc(gfp_mask);
3918
3919 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3920
3921 if (should_fail_alloc_page(gfp_mask, order))
3922 return false;
3923
3924 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
3925 *alloc_flags |= ALLOC_CMA;
3926
3927 return true;
3928 }
3929
3930 /* Determine whether to spread dirty pages and what the first usable zone */
3931 static inline void finalise_ac(gfp_t gfp_mask,
3932 unsigned int order, struct alloc_context *ac)
3933 {
3934 /* Dirty zone balancing only done in the fast path */
3935 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3936
3937 /*
3938 * The preferred zone is used for statistics but crucially it is
3939 * also used as the starting point for the zonelist iterator. It
3940 * may get reset for allocations that ignore memory policies.
3941 */
3942 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3943 ac->high_zoneidx, ac->nodemask);
3944 }
3945
3946 /*
3947 * This is the 'heart' of the zoned buddy allocator.
3948 */
3949 struct page *
3950 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3951 struct zonelist *zonelist, nodemask_t *nodemask)
3952 {
3953 struct page *page;
3954 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3955 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3956 struct alloc_context ac = { };
3957
3958 gfp_mask &= gfp_allowed_mask;
3959 if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
3960 return NULL;
3961
3962 finalise_ac(gfp_mask, order, &ac);
3963
3964 /* First allocation attempt */
3965 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3966 if (likely(page))
3967 goto out;
3968
3969 /*
3970 * Runtime PM, block IO and its error handling path can deadlock
3971 * because I/O on the device might not complete.
3972 */
3973 alloc_mask = memalloc_noio_flags(gfp_mask);
3974 ac.spread_dirty_pages = false;
3975
3976 /*
3977 * Restore the original nodemask if it was potentially replaced with
3978 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3979 */
3980 if (unlikely(ac.nodemask != nodemask))
3981 ac.nodemask = nodemask;
3982
3983 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3984
3985 out:
3986 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3987 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3988 __free_pages(page, order);
3989 page = NULL;
3990 }
3991
3992 if (kmemcheck_enabled && page)
3993 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3994
3995 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3996
3997 return page;
3998 }
3999 EXPORT_SYMBOL(__alloc_pages_nodemask);
4000
4001 /*
4002 * Common helper functions.
4003 */
4004 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4005 {
4006 struct page *page;
4007
4008 /*
4009 * __get_free_pages() returns a 32-bit address, which cannot represent
4010 * a highmem page
4011 */
4012 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4013
4014 page = alloc_pages(gfp_mask, order);
4015 if (!page)
4016 return 0;
4017 return (unsigned long) page_address(page);
4018 }
4019 EXPORT_SYMBOL(__get_free_pages);
4020
4021 unsigned long get_zeroed_page(gfp_t gfp_mask)
4022 {
4023 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4024 }
4025 EXPORT_SYMBOL(get_zeroed_page);
4026
4027 void __free_pages(struct page *page, unsigned int order)
4028 {
4029 if (put_page_testzero(page)) {
4030 if (order == 0)
4031 free_hot_cold_page(page, false);
4032 else
4033 __free_pages_ok(page, order);
4034 }
4035 }
4036
4037 EXPORT_SYMBOL(__free_pages);
4038
4039 void free_pages(unsigned long addr, unsigned int order)
4040 {
4041 if (addr != 0) {
4042 VM_BUG_ON(!virt_addr_valid((void *)addr));
4043 __free_pages(virt_to_page((void *)addr), order);
4044 }
4045 }
4046
4047 EXPORT_SYMBOL(free_pages);
4048
4049 /*
4050 * Page Fragment:
4051 * An arbitrary-length arbitrary-offset area of memory which resides
4052 * within a 0 or higher order page. Multiple fragments within that page
4053 * are individually refcounted, in the page's reference counter.
4054 *
4055 * The page_frag functions below provide a simple allocation framework for
4056 * page fragments. This is used by the network stack and network device
4057 * drivers to provide a backing region of memory for use as either an
4058 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4059 */
4060 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4061 gfp_t gfp_mask)
4062 {
4063 struct page *page = NULL;
4064 gfp_t gfp = gfp_mask;
4065
4066 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4067 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4068 __GFP_NOMEMALLOC;
4069 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4070 PAGE_FRAG_CACHE_MAX_ORDER);
4071 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4072 #endif
4073 if (unlikely(!page))
4074 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4075
4076 nc->va = page ? page_address(page) : NULL;
4077
4078 return page;
4079 }
4080
4081 void __page_frag_cache_drain(struct page *page, unsigned int count)
4082 {
4083 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4084
4085 if (page_ref_sub_and_test(page, count)) {
4086 unsigned int order = compound_order(page);
4087
4088 if (order == 0)
4089 free_hot_cold_page(page, false);
4090 else
4091 __free_pages_ok(page, order);
4092 }
4093 }
4094 EXPORT_SYMBOL(__page_frag_cache_drain);
4095
4096 void *page_frag_alloc(struct page_frag_cache *nc,
4097 unsigned int fragsz, gfp_t gfp_mask)
4098 {
4099 unsigned int size = PAGE_SIZE;
4100 struct page *page;
4101 int offset;
4102
4103 if (unlikely(!nc->va)) {
4104 refill:
4105 page = __page_frag_cache_refill(nc, gfp_mask);
4106 if (!page)
4107 return NULL;
4108
4109 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4110 /* if size can vary use size else just use PAGE_SIZE */
4111 size = nc->size;
4112 #endif
4113 /* Even if we own the page, we do not use atomic_set().
4114 * This would break get_page_unless_zero() users.
4115 */
4116 page_ref_add(page, size - 1);
4117
4118 /* reset page count bias and offset to start of new frag */
4119 nc->pfmemalloc = page_is_pfmemalloc(page);
4120 nc->pagecnt_bias = size;
4121 nc->offset = size;
4122 }
4123
4124 offset = nc->offset - fragsz;
4125 if (unlikely(offset < 0)) {
4126 page = virt_to_page(nc->va);
4127
4128 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4129 goto refill;
4130
4131 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4132 /* if size can vary use size else just use PAGE_SIZE */
4133 size = nc->size;
4134 #endif
4135 /* OK, page count is 0, we can safely set it */
4136 set_page_count(page, size);
4137
4138 /* reset page count bias and offset to start of new frag */
4139 nc->pagecnt_bias = size;
4140 offset = size - fragsz;
4141 }
4142
4143 nc->pagecnt_bias--;
4144 nc->offset = offset;
4145
4146 return nc->va + offset;
4147 }
4148 EXPORT_SYMBOL(page_frag_alloc);
4149
4150 /*
4151 * Frees a page fragment allocated out of either a compound or order 0 page.
4152 */
4153 void page_frag_free(void *addr)
4154 {
4155 struct page *page = virt_to_head_page(addr);
4156
4157 if (unlikely(put_page_testzero(page)))
4158 __free_pages_ok(page, compound_order(page));
4159 }
4160 EXPORT_SYMBOL(page_frag_free);
4161
4162 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4163 size_t size)
4164 {
4165 if (addr) {
4166 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4167 unsigned long used = addr + PAGE_ALIGN(size);
4168
4169 split_page(virt_to_page((void *)addr), order);
4170 while (used < alloc_end) {
4171 free_page(used);
4172 used += PAGE_SIZE;
4173 }
4174 }
4175 return (void *)addr;
4176 }
4177
4178 /**
4179 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4180 * @size: the number of bytes to allocate
4181 * @gfp_mask: GFP flags for the allocation
4182 *
4183 * This function is similar to alloc_pages(), except that it allocates the
4184 * minimum number of pages to satisfy the request. alloc_pages() can only
4185 * allocate memory in power-of-two pages.
4186 *
4187 * This function is also limited by MAX_ORDER.
4188 *
4189 * Memory allocated by this function must be released by free_pages_exact().
4190 */
4191 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4192 {
4193 unsigned int order = get_order(size);
4194 unsigned long addr;
4195
4196 addr = __get_free_pages(gfp_mask, order);
4197 return make_alloc_exact(addr, order, size);
4198 }
4199 EXPORT_SYMBOL(alloc_pages_exact);
4200
4201 /**
4202 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4203 * pages on a node.
4204 * @nid: the preferred node ID where memory should be allocated
4205 * @size: the number of bytes to allocate
4206 * @gfp_mask: GFP flags for the allocation
4207 *
4208 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4209 * back.
4210 */
4211 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4212 {
4213 unsigned int order = get_order(size);
4214 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4215 if (!p)
4216 return NULL;
4217 return make_alloc_exact((unsigned long)page_address(p), order, size);
4218 }
4219
4220 /**
4221 * free_pages_exact - release memory allocated via alloc_pages_exact()
4222 * @virt: the value returned by alloc_pages_exact.
4223 * @size: size of allocation, same value as passed to alloc_pages_exact().
4224 *
4225 * Release the memory allocated by a previous call to alloc_pages_exact.
4226 */
4227 void free_pages_exact(void *virt, size_t size)
4228 {
4229 unsigned long addr = (unsigned long)virt;
4230 unsigned long end = addr + PAGE_ALIGN(size);
4231
4232 while (addr < end) {
4233 free_page(addr);
4234 addr += PAGE_SIZE;
4235 }
4236 }
4237 EXPORT_SYMBOL(free_pages_exact);
4238
4239 /**
4240 * nr_free_zone_pages - count number of pages beyond high watermark
4241 * @offset: The zone index of the highest zone
4242 *
4243 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4244 * high watermark within all zones at or below a given zone index. For each
4245 * zone, the number of pages is calculated as:
4246 * managed_pages - high_pages
4247 */
4248 static unsigned long nr_free_zone_pages(int offset)
4249 {
4250 struct zoneref *z;
4251 struct zone *zone;
4252
4253 /* Just pick one node, since fallback list is circular */
4254 unsigned long sum = 0;
4255
4256 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4257
4258 for_each_zone_zonelist(zone, z, zonelist, offset) {
4259 unsigned long size = zone->managed_pages;
4260 unsigned long high = high_wmark_pages(zone);
4261 if (size > high)
4262 sum += size - high;
4263 }
4264
4265 return sum;
4266 }
4267
4268 /**
4269 * nr_free_buffer_pages - count number of pages beyond high watermark
4270 *
4271 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4272 * watermark within ZONE_DMA and ZONE_NORMAL.
4273 */
4274 unsigned long nr_free_buffer_pages(void)
4275 {
4276 return nr_free_zone_pages(gfp_zone(GFP_USER));
4277 }
4278 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4279
4280 /**
4281 * nr_free_pagecache_pages - count number of pages beyond high watermark
4282 *
4283 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4284 * high watermark within all zones.
4285 */
4286 unsigned long nr_free_pagecache_pages(void)
4287 {
4288 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4289 }
4290
4291 static inline void show_node(struct zone *zone)
4292 {
4293 if (IS_ENABLED(CONFIG_NUMA))
4294 printk("Node %d ", zone_to_nid(zone));
4295 }
4296
4297 long si_mem_available(void)
4298 {
4299 long available;
4300 unsigned long pagecache;
4301 unsigned long wmark_low = 0;
4302 unsigned long pages[NR_LRU_LISTS];
4303 struct zone *zone;
4304 int lru;
4305
4306 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4307 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4308
4309 for_each_zone(zone)
4310 wmark_low += zone->watermark[WMARK_LOW];
4311
4312 /*
4313 * Estimate the amount of memory available for userspace allocations,
4314 * without causing swapping.
4315 */
4316 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4317
4318 /*
4319 * Not all the page cache can be freed, otherwise the system will
4320 * start swapping. Assume at least half of the page cache, or the
4321 * low watermark worth of cache, needs to stay.
4322 */
4323 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4324 pagecache -= min(pagecache / 2, wmark_low);
4325 available += pagecache;
4326
4327 /*
4328 * Part of the reclaimable slab consists of items that are in use,
4329 * and cannot be freed. Cap this estimate at the low watermark.
4330 */
4331 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4332 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4333
4334 if (available < 0)
4335 available = 0;
4336 return available;
4337 }
4338 EXPORT_SYMBOL_GPL(si_mem_available);
4339
4340 void si_meminfo(struct sysinfo *val)
4341 {
4342 val->totalram = totalram_pages;
4343 val->sharedram = global_node_page_state(NR_SHMEM);
4344 val->freeram = global_page_state(NR_FREE_PAGES);
4345 val->bufferram = nr_blockdev_pages();
4346 val->totalhigh = totalhigh_pages;
4347 val->freehigh = nr_free_highpages();
4348 val->mem_unit = PAGE_SIZE;
4349 }
4350
4351 EXPORT_SYMBOL(si_meminfo);
4352
4353 #ifdef CONFIG_NUMA
4354 void si_meminfo_node(struct sysinfo *val, int nid)
4355 {
4356 int zone_type; /* needs to be signed */
4357 unsigned long managed_pages = 0;
4358 unsigned long managed_highpages = 0;
4359 unsigned long free_highpages = 0;
4360 pg_data_t *pgdat = NODE_DATA(nid);
4361
4362 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4363 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4364 val->totalram = managed_pages;
4365 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4366 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4367 #ifdef CONFIG_HIGHMEM
4368 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4369 struct zone *zone = &pgdat->node_zones[zone_type];
4370
4371 if (is_highmem(zone)) {
4372 managed_highpages += zone->managed_pages;
4373 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4374 }
4375 }
4376 val->totalhigh = managed_highpages;
4377 val->freehigh = free_highpages;
4378 #else
4379 val->totalhigh = managed_highpages;
4380 val->freehigh = free_highpages;
4381 #endif
4382 val->mem_unit = PAGE_SIZE;
4383 }
4384 #endif
4385
4386 /*
4387 * Determine whether the node should be displayed or not, depending on whether
4388 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4389 */
4390 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4391 {
4392 if (!(flags & SHOW_MEM_FILTER_NODES))
4393 return false;
4394
4395 /*
4396 * no node mask - aka implicit memory numa policy. Do not bother with
4397 * the synchronization - read_mems_allowed_begin - because we do not
4398 * have to be precise here.
4399 */
4400 if (!nodemask)
4401 nodemask = &cpuset_current_mems_allowed;
4402
4403 return !node_isset(nid, *nodemask);
4404 }
4405
4406 #define K(x) ((x) << (PAGE_SHIFT-10))
4407
4408 static void show_migration_types(unsigned char type)
4409 {
4410 static const char types[MIGRATE_TYPES] = {
4411 [MIGRATE_UNMOVABLE] = 'U',
4412 [MIGRATE_MOVABLE] = 'M',
4413 [MIGRATE_RECLAIMABLE] = 'E',
4414 [MIGRATE_HIGHATOMIC] = 'H',
4415 #ifdef CONFIG_CMA
4416 [MIGRATE_CMA] = 'C',
4417 #endif
4418 #ifdef CONFIG_MEMORY_ISOLATION
4419 [MIGRATE_ISOLATE] = 'I',
4420 #endif
4421 };
4422 char tmp[MIGRATE_TYPES + 1];
4423 char *p = tmp;
4424 int i;
4425
4426 for (i = 0; i < MIGRATE_TYPES; i++) {
4427 if (type & (1 << i))
4428 *p++ = types[i];
4429 }
4430
4431 *p = '\0';
4432 printk(KERN_CONT "(%s) ", tmp);
4433 }
4434
4435 /*
4436 * Show free area list (used inside shift_scroll-lock stuff)
4437 * We also calculate the percentage fragmentation. We do this by counting the
4438 * memory on each free list with the exception of the first item on the list.
4439 *
4440 * Bits in @filter:
4441 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4442 * cpuset.
4443 */
4444 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4445 {
4446 unsigned long free_pcp = 0;
4447 int cpu;
4448 struct zone *zone;
4449 pg_data_t *pgdat;
4450
4451 for_each_populated_zone(zone) {
4452 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4453 continue;
4454
4455 for_each_online_cpu(cpu)
4456 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4457 }
4458
4459 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4460 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4461 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4462 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4463 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4464 " free:%lu free_pcp:%lu free_cma:%lu\n",
4465 global_node_page_state(NR_ACTIVE_ANON),
4466 global_node_page_state(NR_INACTIVE_ANON),
4467 global_node_page_state(NR_ISOLATED_ANON),
4468 global_node_page_state(NR_ACTIVE_FILE),
4469 global_node_page_state(NR_INACTIVE_FILE),
4470 global_node_page_state(NR_ISOLATED_FILE),
4471 global_node_page_state(NR_UNEVICTABLE),
4472 global_node_page_state(NR_FILE_DIRTY),
4473 global_node_page_state(NR_WRITEBACK),
4474 global_node_page_state(NR_UNSTABLE_NFS),
4475 global_page_state(NR_SLAB_RECLAIMABLE),
4476 global_page_state(NR_SLAB_UNRECLAIMABLE),
4477 global_node_page_state(NR_FILE_MAPPED),
4478 global_node_page_state(NR_SHMEM),
4479 global_page_state(NR_PAGETABLE),
4480 global_page_state(NR_BOUNCE),
4481 global_page_state(NR_FREE_PAGES),
4482 free_pcp,
4483 global_page_state(NR_FREE_CMA_PAGES));
4484
4485 for_each_online_pgdat(pgdat) {
4486 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4487 continue;
4488
4489 printk("Node %d"
4490 " active_anon:%lukB"
4491 " inactive_anon:%lukB"
4492 " active_file:%lukB"
4493 " inactive_file:%lukB"
4494 " unevictable:%lukB"
4495 " isolated(anon):%lukB"
4496 " isolated(file):%lukB"
4497 " mapped:%lukB"
4498 " dirty:%lukB"
4499 " writeback:%lukB"
4500 " shmem:%lukB"
4501 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4502 " shmem_thp: %lukB"
4503 " shmem_pmdmapped: %lukB"
4504 " anon_thp: %lukB"
4505 #endif
4506 " writeback_tmp:%lukB"
4507 " unstable:%lukB"
4508 " pages_scanned:%lu"
4509 " all_unreclaimable? %s"
4510 "\n",
4511 pgdat->node_id,
4512 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4513 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4514 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4515 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4516 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4517 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4518 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4519 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4520 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4521 K(node_page_state(pgdat, NR_WRITEBACK)),
4522 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4523 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4524 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4525 * HPAGE_PMD_NR),
4526 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4527 #endif
4528 K(node_page_state(pgdat, NR_SHMEM)),
4529 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4530 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4531 node_page_state(pgdat, NR_PAGES_SCANNED),
4532 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4533 }
4534
4535 for_each_populated_zone(zone) {
4536 int i;
4537
4538 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4539 continue;
4540
4541 free_pcp = 0;
4542 for_each_online_cpu(cpu)
4543 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4544
4545 show_node(zone);
4546 printk(KERN_CONT
4547 "%s"
4548 " free:%lukB"
4549 " min:%lukB"
4550 " low:%lukB"
4551 " high:%lukB"
4552 " active_anon:%lukB"
4553 " inactive_anon:%lukB"
4554 " active_file:%lukB"
4555 " inactive_file:%lukB"
4556 " unevictable:%lukB"
4557 " writepending:%lukB"
4558 " present:%lukB"
4559 " managed:%lukB"
4560 " mlocked:%lukB"
4561 " slab_reclaimable:%lukB"
4562 " slab_unreclaimable:%lukB"
4563 " kernel_stack:%lukB"
4564 " pagetables:%lukB"
4565 " bounce:%lukB"
4566 " free_pcp:%lukB"
4567 " local_pcp:%ukB"
4568 " free_cma:%lukB"
4569 "\n",
4570 zone->name,
4571 K(zone_page_state(zone, NR_FREE_PAGES)),
4572 K(min_wmark_pages(zone)),
4573 K(low_wmark_pages(zone)),
4574 K(high_wmark_pages(zone)),
4575 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4576 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4577 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4578 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4579 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4580 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4581 K(zone->present_pages),
4582 K(zone->managed_pages),
4583 K(zone_page_state(zone, NR_MLOCK)),
4584 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4585 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4586 zone_page_state(zone, NR_KERNEL_STACK_KB),
4587 K(zone_page_state(zone, NR_PAGETABLE)),
4588 K(zone_page_state(zone, NR_BOUNCE)),
4589 K(free_pcp),
4590 K(this_cpu_read(zone->pageset->pcp.count)),
4591 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4592 printk("lowmem_reserve[]:");
4593 for (i = 0; i < MAX_NR_ZONES; i++)
4594 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4595 printk(KERN_CONT "\n");
4596 }
4597
4598 for_each_populated_zone(zone) {
4599 unsigned int order;
4600 unsigned long nr[MAX_ORDER], flags, total = 0;
4601 unsigned char types[MAX_ORDER];
4602
4603 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4604 continue;
4605 show_node(zone);
4606 printk(KERN_CONT "%s: ", zone->name);
4607
4608 spin_lock_irqsave(&zone->lock, flags);
4609 for (order = 0; order < MAX_ORDER; order++) {
4610 struct free_area *area = &zone->free_area[order];
4611 int type;
4612
4613 nr[order] = area->nr_free;
4614 total += nr[order] << order;
4615
4616 types[order] = 0;
4617 for (type = 0; type < MIGRATE_TYPES; type++) {
4618 if (!list_empty(&area->free_list[type]))
4619 types[order] |= 1 << type;
4620 }
4621 }
4622 spin_unlock_irqrestore(&zone->lock, flags);
4623 for (order = 0; order < MAX_ORDER; order++) {
4624 printk(KERN_CONT "%lu*%lukB ",
4625 nr[order], K(1UL) << order);
4626 if (nr[order])
4627 show_migration_types(types[order]);
4628 }
4629 printk(KERN_CONT "= %lukB\n", K(total));
4630 }
4631
4632 hugetlb_show_meminfo();
4633
4634 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4635
4636 show_swap_cache_info();
4637 }
4638
4639 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4640 {
4641 zoneref->zone = zone;
4642 zoneref->zone_idx = zone_idx(zone);
4643 }
4644
4645 /*
4646 * Builds allocation fallback zone lists.
4647 *
4648 * Add all populated zones of a node to the zonelist.
4649 */
4650 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4651 int nr_zones)
4652 {
4653 struct zone *zone;
4654 enum zone_type zone_type = MAX_NR_ZONES;
4655
4656 do {
4657 zone_type--;
4658 zone = pgdat->node_zones + zone_type;
4659 if (managed_zone(zone)) {
4660 zoneref_set_zone(zone,
4661 &zonelist->_zonerefs[nr_zones++]);
4662 check_highest_zone(zone_type);
4663 }
4664 } while (zone_type);
4665
4666 return nr_zones;
4667 }
4668
4669
4670 /*
4671 * zonelist_order:
4672 * 0 = automatic detection of better ordering.
4673 * 1 = order by ([node] distance, -zonetype)
4674 * 2 = order by (-zonetype, [node] distance)
4675 *
4676 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4677 * the same zonelist. So only NUMA can configure this param.
4678 */
4679 #define ZONELIST_ORDER_DEFAULT 0
4680 #define ZONELIST_ORDER_NODE 1
4681 #define ZONELIST_ORDER_ZONE 2
4682
4683 /* zonelist order in the kernel.
4684 * set_zonelist_order() will set this to NODE or ZONE.
4685 */
4686 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4687 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4688
4689
4690 #ifdef CONFIG_NUMA
4691 /* The value user specified ....changed by config */
4692 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4693 /* string for sysctl */
4694 #define NUMA_ZONELIST_ORDER_LEN 16
4695 char numa_zonelist_order[16] = "default";
4696
4697 /*
4698 * interface for configure zonelist ordering.
4699 * command line option "numa_zonelist_order"
4700 * = "[dD]efault - default, automatic configuration.
4701 * = "[nN]ode - order by node locality, then by zone within node
4702 * = "[zZ]one - order by zone, then by locality within zone
4703 */
4704
4705 static int __parse_numa_zonelist_order(char *s)
4706 {
4707 if (*s == 'd' || *s == 'D') {
4708 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4709 } else if (*s == 'n' || *s == 'N') {
4710 user_zonelist_order = ZONELIST_ORDER_NODE;
4711 } else if (*s == 'z' || *s == 'Z') {
4712 user_zonelist_order = ZONELIST_ORDER_ZONE;
4713 } else {
4714 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4715 return -EINVAL;
4716 }
4717 return 0;
4718 }
4719
4720 static __init int setup_numa_zonelist_order(char *s)
4721 {
4722 int ret;
4723
4724 if (!s)
4725 return 0;
4726
4727 ret = __parse_numa_zonelist_order(s);
4728 if (ret == 0)
4729 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4730
4731 return ret;
4732 }
4733 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4734
4735 /*
4736 * sysctl handler for numa_zonelist_order
4737 */
4738 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4739 void __user *buffer, size_t *length,
4740 loff_t *ppos)
4741 {
4742 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4743 int ret;
4744 static DEFINE_MUTEX(zl_order_mutex);
4745
4746 mutex_lock(&zl_order_mutex);
4747 if (write) {
4748 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4749 ret = -EINVAL;
4750 goto out;
4751 }
4752 strcpy(saved_string, (char *)table->data);
4753 }
4754 ret = proc_dostring(table, write, buffer, length, ppos);
4755 if (ret)
4756 goto out;
4757 if (write) {
4758 int oldval = user_zonelist_order;
4759
4760 ret = __parse_numa_zonelist_order((char *)table->data);
4761 if (ret) {
4762 /*
4763 * bogus value. restore saved string
4764 */
4765 strncpy((char *)table->data, saved_string,
4766 NUMA_ZONELIST_ORDER_LEN);
4767 user_zonelist_order = oldval;
4768 } else if (oldval != user_zonelist_order) {
4769 mutex_lock(&zonelists_mutex);
4770 build_all_zonelists(NULL, NULL);
4771 mutex_unlock(&zonelists_mutex);
4772 }
4773 }
4774 out:
4775 mutex_unlock(&zl_order_mutex);
4776 return ret;
4777 }
4778
4779
4780 #define MAX_NODE_LOAD (nr_online_nodes)
4781 static int node_load[MAX_NUMNODES];
4782
4783 /**
4784 * find_next_best_node - find the next node that should appear in a given node's fallback list
4785 * @node: node whose fallback list we're appending
4786 * @used_node_mask: nodemask_t of already used nodes
4787 *
4788 * We use a number of factors to determine which is the next node that should
4789 * appear on a given node's fallback list. The node should not have appeared
4790 * already in @node's fallback list, and it should be the next closest node
4791 * according to the distance array (which contains arbitrary distance values
4792 * from each node to each node in the system), and should also prefer nodes
4793 * with no CPUs, since presumably they'll have very little allocation pressure
4794 * on them otherwise.
4795 * It returns -1 if no node is found.
4796 */
4797 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4798 {
4799 int n, val;
4800 int min_val = INT_MAX;
4801 int best_node = NUMA_NO_NODE;
4802 const struct cpumask *tmp = cpumask_of_node(0);
4803
4804 /* Use the local node if we haven't already */
4805 if (!node_isset(node, *used_node_mask)) {
4806 node_set(node, *used_node_mask);
4807 return node;
4808 }
4809
4810 for_each_node_state(n, N_MEMORY) {
4811
4812 /* Don't want a node to appear more than once */
4813 if (node_isset(n, *used_node_mask))
4814 continue;
4815
4816 /* Use the distance array to find the distance */
4817 val = node_distance(node, n);
4818
4819 /* Penalize nodes under us ("prefer the next node") */
4820 val += (n < node);
4821
4822 /* Give preference to headless and unused nodes */
4823 tmp = cpumask_of_node(n);
4824 if (!cpumask_empty(tmp))
4825 val += PENALTY_FOR_NODE_WITH_CPUS;
4826
4827 /* Slight preference for less loaded node */
4828 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4829 val += node_load[n];
4830
4831 if (val < min_val) {
4832 min_val = val;
4833 best_node = n;
4834 }
4835 }
4836
4837 if (best_node >= 0)
4838 node_set(best_node, *used_node_mask);
4839
4840 return best_node;
4841 }
4842
4843
4844 /*
4845 * Build zonelists ordered by node and zones within node.
4846 * This results in maximum locality--normal zone overflows into local
4847 * DMA zone, if any--but risks exhausting DMA zone.
4848 */
4849 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4850 {
4851 int j;
4852 struct zonelist *zonelist;
4853
4854 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4855 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4856 ;
4857 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4858 zonelist->_zonerefs[j].zone = NULL;
4859 zonelist->_zonerefs[j].zone_idx = 0;
4860 }
4861
4862 /*
4863 * Build gfp_thisnode zonelists
4864 */
4865 static void build_thisnode_zonelists(pg_data_t *pgdat)
4866 {
4867 int j;
4868 struct zonelist *zonelist;
4869
4870 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4871 j = build_zonelists_node(pgdat, zonelist, 0);
4872 zonelist->_zonerefs[j].zone = NULL;
4873 zonelist->_zonerefs[j].zone_idx = 0;
4874 }
4875
4876 /*
4877 * Build zonelists ordered by zone and nodes within zones.
4878 * This results in conserving DMA zone[s] until all Normal memory is
4879 * exhausted, but results in overflowing to remote node while memory
4880 * may still exist in local DMA zone.
4881 */
4882 static int node_order[MAX_NUMNODES];
4883
4884 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4885 {
4886 int pos, j, node;
4887 int zone_type; /* needs to be signed */
4888 struct zone *z;
4889 struct zonelist *zonelist;
4890
4891 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4892 pos = 0;
4893 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4894 for (j = 0; j < nr_nodes; j++) {
4895 node = node_order[j];
4896 z = &NODE_DATA(node)->node_zones[zone_type];
4897 if (managed_zone(z)) {
4898 zoneref_set_zone(z,
4899 &zonelist->_zonerefs[pos++]);
4900 check_highest_zone(zone_type);
4901 }
4902 }
4903 }
4904 zonelist->_zonerefs[pos].zone = NULL;
4905 zonelist->_zonerefs[pos].zone_idx = 0;
4906 }
4907
4908 #if defined(CONFIG_64BIT)
4909 /*
4910 * Devices that require DMA32/DMA are relatively rare and do not justify a
4911 * penalty to every machine in case the specialised case applies. Default
4912 * to Node-ordering on 64-bit NUMA machines
4913 */
4914 static int default_zonelist_order(void)
4915 {
4916 return ZONELIST_ORDER_NODE;
4917 }
4918 #else
4919 /*
4920 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4921 * by the kernel. If processes running on node 0 deplete the low memory zone
4922 * then reclaim will occur more frequency increasing stalls and potentially
4923 * be easier to OOM if a large percentage of the zone is under writeback or
4924 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4925 * Hence, default to zone ordering on 32-bit.
4926 */
4927 static int default_zonelist_order(void)
4928 {
4929 return ZONELIST_ORDER_ZONE;
4930 }
4931 #endif /* CONFIG_64BIT */
4932
4933 static void set_zonelist_order(void)
4934 {
4935 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4936 current_zonelist_order = default_zonelist_order();
4937 else
4938 current_zonelist_order = user_zonelist_order;
4939 }
4940
4941 static void build_zonelists(pg_data_t *pgdat)
4942 {
4943 int i, node, load;
4944 nodemask_t used_mask;
4945 int local_node, prev_node;
4946 struct zonelist *zonelist;
4947 unsigned int order = current_zonelist_order;
4948
4949 /* initialize zonelists */
4950 for (i = 0; i < MAX_ZONELISTS; i++) {
4951 zonelist = pgdat->node_zonelists + i;
4952 zonelist->_zonerefs[0].zone = NULL;
4953 zonelist->_zonerefs[0].zone_idx = 0;
4954 }
4955
4956 /* NUMA-aware ordering of nodes */
4957 local_node = pgdat->node_id;
4958 load = nr_online_nodes;
4959 prev_node = local_node;
4960 nodes_clear(used_mask);
4961
4962 memset(node_order, 0, sizeof(node_order));
4963 i = 0;
4964
4965 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4966 /*
4967 * We don't want to pressure a particular node.
4968 * So adding penalty to the first node in same
4969 * distance group to make it round-robin.
4970 */
4971 if (node_distance(local_node, node) !=
4972 node_distance(local_node, prev_node))
4973 node_load[node] = load;
4974
4975 prev_node = node;
4976 load--;
4977 if (order == ZONELIST_ORDER_NODE)
4978 build_zonelists_in_node_order(pgdat, node);
4979 else
4980 node_order[i++] = node; /* remember order */
4981 }
4982
4983 if (order == ZONELIST_ORDER_ZONE) {
4984 /* calculate node order -- i.e., DMA last! */
4985 build_zonelists_in_zone_order(pgdat, i);
4986 }
4987
4988 build_thisnode_zonelists(pgdat);
4989 }
4990
4991 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4992 /*
4993 * Return node id of node used for "local" allocations.
4994 * I.e., first node id of first zone in arg node's generic zonelist.
4995 * Used for initializing percpu 'numa_mem', which is used primarily
4996 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4997 */
4998 int local_memory_node(int node)
4999 {
5000 struct zoneref *z;
5001
5002 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5003 gfp_zone(GFP_KERNEL),
5004 NULL);
5005 return z->zone->node;
5006 }
5007 #endif
5008
5009 static void setup_min_unmapped_ratio(void);
5010 static void setup_min_slab_ratio(void);
5011 #else /* CONFIG_NUMA */
5012
5013 static void set_zonelist_order(void)
5014 {
5015 current_zonelist_order = ZONELIST_ORDER_ZONE;
5016 }
5017
5018 static void build_zonelists(pg_data_t *pgdat)
5019 {
5020 int node, local_node;
5021 enum zone_type j;
5022 struct zonelist *zonelist;
5023
5024 local_node = pgdat->node_id;
5025
5026 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5027 j = build_zonelists_node(pgdat, zonelist, 0);
5028
5029 /*
5030 * Now we build the zonelist so that it contains the zones
5031 * of all the other nodes.
5032 * We don't want to pressure a particular node, so when
5033 * building the zones for node N, we make sure that the
5034 * zones coming right after the local ones are those from
5035 * node N+1 (modulo N)
5036 */
5037 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5038 if (!node_online(node))
5039 continue;
5040 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5041 }
5042 for (node = 0; node < local_node; node++) {
5043 if (!node_online(node))
5044 continue;
5045 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5046 }
5047
5048 zonelist->_zonerefs[j].zone = NULL;
5049 zonelist->_zonerefs[j].zone_idx = 0;
5050 }
5051
5052 #endif /* CONFIG_NUMA */
5053
5054 /*
5055 * Boot pageset table. One per cpu which is going to be used for all
5056 * zones and all nodes. The parameters will be set in such a way
5057 * that an item put on a list will immediately be handed over to
5058 * the buddy list. This is safe since pageset manipulation is done
5059 * with interrupts disabled.
5060 *
5061 * The boot_pagesets must be kept even after bootup is complete for
5062 * unused processors and/or zones. They do play a role for bootstrapping
5063 * hotplugged processors.
5064 *
5065 * zoneinfo_show() and maybe other functions do
5066 * not check if the processor is online before following the pageset pointer.
5067 * Other parts of the kernel may not check if the zone is available.
5068 */
5069 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5070 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5071 static void setup_zone_pageset(struct zone *zone);
5072
5073 /*
5074 * Global mutex to protect against size modification of zonelists
5075 * as well as to serialize pageset setup for the new populated zone.
5076 */
5077 DEFINE_MUTEX(zonelists_mutex);
5078
5079 /* return values int ....just for stop_machine() */
5080 static int __build_all_zonelists(void *data)
5081 {
5082 int nid;
5083 int cpu;
5084 pg_data_t *self = data;
5085
5086 #ifdef CONFIG_NUMA
5087 memset(node_load, 0, sizeof(node_load));
5088 #endif
5089
5090 if (self && !node_online(self->node_id)) {
5091 build_zonelists(self);
5092 }
5093
5094 for_each_online_node(nid) {
5095 pg_data_t *pgdat = NODE_DATA(nid);
5096
5097 build_zonelists(pgdat);
5098 }
5099
5100 /*
5101 * Initialize the boot_pagesets that are going to be used
5102 * for bootstrapping processors. The real pagesets for
5103 * each zone will be allocated later when the per cpu
5104 * allocator is available.
5105 *
5106 * boot_pagesets are used also for bootstrapping offline
5107 * cpus if the system is already booted because the pagesets
5108 * are needed to initialize allocators on a specific cpu too.
5109 * F.e. the percpu allocator needs the page allocator which
5110 * needs the percpu allocator in order to allocate its pagesets
5111 * (a chicken-egg dilemma).
5112 */
5113 for_each_possible_cpu(cpu) {
5114 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5115
5116 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5117 /*
5118 * We now know the "local memory node" for each node--
5119 * i.e., the node of the first zone in the generic zonelist.
5120 * Set up numa_mem percpu variable for on-line cpus. During
5121 * boot, only the boot cpu should be on-line; we'll init the
5122 * secondary cpus' numa_mem as they come on-line. During
5123 * node/memory hotplug, we'll fixup all on-line cpus.
5124 */
5125 if (cpu_online(cpu))
5126 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5127 #endif
5128 }
5129
5130 return 0;
5131 }
5132
5133 static noinline void __init
5134 build_all_zonelists_init(void)
5135 {
5136 __build_all_zonelists(NULL);
5137 mminit_verify_zonelist();
5138 cpuset_init_current_mems_allowed();
5139 }
5140
5141 /*
5142 * Called with zonelists_mutex held always
5143 * unless system_state == SYSTEM_BOOTING.
5144 *
5145 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5146 * [we're only called with non-NULL zone through __meminit paths] and
5147 * (2) call of __init annotated helper build_all_zonelists_init
5148 * [protected by SYSTEM_BOOTING].
5149 */
5150 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5151 {
5152 set_zonelist_order();
5153
5154 if (system_state == SYSTEM_BOOTING) {
5155 build_all_zonelists_init();
5156 } else {
5157 #ifdef CONFIG_MEMORY_HOTPLUG
5158 if (zone)
5159 setup_zone_pageset(zone);
5160 #endif
5161 /* we have to stop all cpus to guarantee there is no user
5162 of zonelist */
5163 stop_machine(__build_all_zonelists, pgdat, NULL);
5164 /* cpuset refresh routine should be here */
5165 }
5166 vm_total_pages = nr_free_pagecache_pages();
5167 /*
5168 * Disable grouping by mobility if the number of pages in the
5169 * system is too low to allow the mechanism to work. It would be
5170 * more accurate, but expensive to check per-zone. This check is
5171 * made on memory-hotadd so a system can start with mobility
5172 * disabled and enable it later
5173 */
5174 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5175 page_group_by_mobility_disabled = 1;
5176 else
5177 page_group_by_mobility_disabled = 0;
5178
5179 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5180 nr_online_nodes,
5181 zonelist_order_name[current_zonelist_order],
5182 page_group_by_mobility_disabled ? "off" : "on",
5183 vm_total_pages);
5184 #ifdef CONFIG_NUMA
5185 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5186 #endif
5187 }
5188
5189 /*
5190 * Initially all pages are reserved - free ones are freed
5191 * up by free_all_bootmem() once the early boot process is
5192 * done. Non-atomic initialization, single-pass.
5193 */
5194 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5195 unsigned long start_pfn, enum memmap_context context)
5196 {
5197 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5198 unsigned long end_pfn = start_pfn + size;
5199 pg_data_t *pgdat = NODE_DATA(nid);
5200 unsigned long pfn;
5201 unsigned long nr_initialised = 0;
5202 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5203 struct memblock_region *r = NULL, *tmp;
5204 #endif
5205
5206 if (highest_memmap_pfn < end_pfn - 1)
5207 highest_memmap_pfn = end_pfn - 1;
5208
5209 /*
5210 * Honor reservation requested by the driver for this ZONE_DEVICE
5211 * memory
5212 */
5213 if (altmap && start_pfn == altmap->base_pfn)
5214 start_pfn += altmap->reserve;
5215
5216 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5217 /*
5218 * There can be holes in boot-time mem_map[]s handed to this
5219 * function. They do not exist on hotplugged memory.
5220 */
5221 if (context != MEMMAP_EARLY)
5222 goto not_early;
5223
5224 if (!early_pfn_valid(pfn)) {
5225 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5226 /*
5227 * Skip to the pfn preceding the next valid one (or
5228 * end_pfn), such that we hit a valid pfn (or end_pfn)
5229 * on our next iteration of the loop.
5230 */
5231 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5232 #endif
5233 continue;
5234 }
5235 if (!early_pfn_in_nid(pfn, nid))
5236 continue;
5237 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5238 break;
5239
5240 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5241 /*
5242 * Check given memblock attribute by firmware which can affect
5243 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5244 * mirrored, it's an overlapped memmap init. skip it.
5245 */
5246 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5247 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5248 for_each_memblock(memory, tmp)
5249 if (pfn < memblock_region_memory_end_pfn(tmp))
5250 break;
5251 r = tmp;
5252 }
5253 if (pfn >= memblock_region_memory_base_pfn(r) &&
5254 memblock_is_mirror(r)) {
5255 /* already initialized as NORMAL */
5256 pfn = memblock_region_memory_end_pfn(r);
5257 continue;
5258 }
5259 }
5260 #endif
5261
5262 not_early:
5263 /*
5264 * Mark the block movable so that blocks are reserved for
5265 * movable at startup. This will force kernel allocations
5266 * to reserve their blocks rather than leaking throughout
5267 * the address space during boot when many long-lived
5268 * kernel allocations are made.
5269 *
5270 * bitmap is created for zone's valid pfn range. but memmap
5271 * can be created for invalid pages (for alignment)
5272 * check here not to call set_pageblock_migratetype() against
5273 * pfn out of zone.
5274 */
5275 if (!(pfn & (pageblock_nr_pages - 1))) {
5276 struct page *page = pfn_to_page(pfn);
5277
5278 __init_single_page(page, pfn, zone, nid);
5279 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5280 } else {
5281 __init_single_pfn(pfn, zone, nid);
5282 }
5283 }
5284 }
5285
5286 static void __meminit zone_init_free_lists(struct zone *zone)
5287 {
5288 unsigned int order, t;
5289 for_each_migratetype_order(order, t) {
5290 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5291 zone->free_area[order].nr_free = 0;
5292 }
5293 }
5294
5295 #ifndef __HAVE_ARCH_MEMMAP_INIT
5296 #define memmap_init(size, nid, zone, start_pfn) \
5297 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5298 #endif
5299
5300 static int zone_batchsize(struct zone *zone)
5301 {
5302 #ifdef CONFIG_MMU
5303 int batch;
5304
5305 /*
5306 * The per-cpu-pages pools are set to around 1000th of the
5307 * size of the zone. But no more than 1/2 of a meg.
5308 *
5309 * OK, so we don't know how big the cache is. So guess.
5310 */
5311 batch = zone->managed_pages / 1024;
5312 if (batch * PAGE_SIZE > 512 * 1024)
5313 batch = (512 * 1024) / PAGE_SIZE;
5314 batch /= 4; /* We effectively *= 4 below */
5315 if (batch < 1)
5316 batch = 1;
5317
5318 /*
5319 * Clamp the batch to a 2^n - 1 value. Having a power
5320 * of 2 value was found to be more likely to have
5321 * suboptimal cache aliasing properties in some cases.
5322 *
5323 * For example if 2 tasks are alternately allocating
5324 * batches of pages, one task can end up with a lot
5325 * of pages of one half of the possible page colors
5326 * and the other with pages of the other colors.
5327 */
5328 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5329
5330 return batch;
5331
5332 #else
5333 /* The deferral and batching of frees should be suppressed under NOMMU
5334 * conditions.
5335 *
5336 * The problem is that NOMMU needs to be able to allocate large chunks
5337 * of contiguous memory as there's no hardware page translation to
5338 * assemble apparent contiguous memory from discontiguous pages.
5339 *
5340 * Queueing large contiguous runs of pages for batching, however,
5341 * causes the pages to actually be freed in smaller chunks. As there
5342 * can be a significant delay between the individual batches being
5343 * recycled, this leads to the once large chunks of space being
5344 * fragmented and becoming unavailable for high-order allocations.
5345 */
5346 return 0;
5347 #endif
5348 }
5349
5350 /*
5351 * pcp->high and pcp->batch values are related and dependent on one another:
5352 * ->batch must never be higher then ->high.
5353 * The following function updates them in a safe manner without read side
5354 * locking.
5355 *
5356 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5357 * those fields changing asynchronously (acording the the above rule).
5358 *
5359 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5360 * outside of boot time (or some other assurance that no concurrent updaters
5361 * exist).
5362 */
5363 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5364 unsigned long batch)
5365 {
5366 /* start with a fail safe value for batch */
5367 pcp->batch = 1;
5368 smp_wmb();
5369
5370 /* Update high, then batch, in order */
5371 pcp->high = high;
5372 smp_wmb();
5373
5374 pcp->batch = batch;
5375 }
5376
5377 /* a companion to pageset_set_high() */
5378 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5379 {
5380 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5381 }
5382
5383 static void pageset_init(struct per_cpu_pageset *p)
5384 {
5385 struct per_cpu_pages *pcp;
5386 int migratetype;
5387
5388 memset(p, 0, sizeof(*p));
5389
5390 pcp = &p->pcp;
5391 pcp->count = 0;
5392 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5393 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5394 }
5395
5396 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5397 {
5398 pageset_init(p);
5399 pageset_set_batch(p, batch);
5400 }
5401
5402 /*
5403 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5404 * to the value high for the pageset p.
5405 */
5406 static void pageset_set_high(struct per_cpu_pageset *p,
5407 unsigned long high)
5408 {
5409 unsigned long batch = max(1UL, high / 4);
5410 if ((high / 4) > (PAGE_SHIFT * 8))
5411 batch = PAGE_SHIFT * 8;
5412
5413 pageset_update(&p->pcp, high, batch);
5414 }
5415
5416 static void pageset_set_high_and_batch(struct zone *zone,
5417 struct per_cpu_pageset *pcp)
5418 {
5419 if (percpu_pagelist_fraction)
5420 pageset_set_high(pcp,
5421 (zone->managed_pages /
5422 percpu_pagelist_fraction));
5423 else
5424 pageset_set_batch(pcp, zone_batchsize(zone));
5425 }
5426
5427 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5428 {
5429 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5430
5431 pageset_init(pcp);
5432 pageset_set_high_and_batch(zone, pcp);
5433 }
5434
5435 static void __meminit setup_zone_pageset(struct zone *zone)
5436 {
5437 int cpu;
5438 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5439 for_each_possible_cpu(cpu)
5440 zone_pageset_init(zone, cpu);
5441 }
5442
5443 /*
5444 * Allocate per cpu pagesets and initialize them.
5445 * Before this call only boot pagesets were available.
5446 */
5447 void __init setup_per_cpu_pageset(void)
5448 {
5449 struct pglist_data *pgdat;
5450 struct zone *zone;
5451
5452 for_each_populated_zone(zone)
5453 setup_zone_pageset(zone);
5454
5455 for_each_online_pgdat(pgdat)
5456 pgdat->per_cpu_nodestats =
5457 alloc_percpu(struct per_cpu_nodestat);
5458 }
5459
5460 static __meminit void zone_pcp_init(struct zone *zone)
5461 {
5462 /*
5463 * per cpu subsystem is not up at this point. The following code
5464 * relies on the ability of the linker to provide the
5465 * offset of a (static) per cpu variable into the per cpu area.
5466 */
5467 zone->pageset = &boot_pageset;
5468
5469 if (populated_zone(zone))
5470 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5471 zone->name, zone->present_pages,
5472 zone_batchsize(zone));
5473 }
5474
5475 int __meminit init_currently_empty_zone(struct zone *zone,
5476 unsigned long zone_start_pfn,
5477 unsigned long size)
5478 {
5479 struct pglist_data *pgdat = zone->zone_pgdat;
5480
5481 pgdat->nr_zones = zone_idx(zone) + 1;
5482
5483 zone->zone_start_pfn = zone_start_pfn;
5484
5485 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5486 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5487 pgdat->node_id,
5488 (unsigned long)zone_idx(zone),
5489 zone_start_pfn, (zone_start_pfn + size));
5490
5491 zone_init_free_lists(zone);
5492 zone->initialized = 1;
5493
5494 return 0;
5495 }
5496
5497 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5498 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5499
5500 /*
5501 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5502 */
5503 int __meminit __early_pfn_to_nid(unsigned long pfn,
5504 struct mminit_pfnnid_cache *state)
5505 {
5506 unsigned long start_pfn, end_pfn;
5507 int nid;
5508
5509 if (state->last_start <= pfn && pfn < state->last_end)
5510 return state->last_nid;
5511
5512 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5513 if (nid != -1) {
5514 state->last_start = start_pfn;
5515 state->last_end = end_pfn;
5516 state->last_nid = nid;
5517 }
5518
5519 return nid;
5520 }
5521 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5522
5523 /**
5524 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5525 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5526 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5527 *
5528 * If an architecture guarantees that all ranges registered contain no holes
5529 * and may be freed, this this function may be used instead of calling
5530 * memblock_free_early_nid() manually.
5531 */
5532 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5533 {
5534 unsigned long start_pfn, end_pfn;
5535 int i, this_nid;
5536
5537 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5538 start_pfn = min(start_pfn, max_low_pfn);
5539 end_pfn = min(end_pfn, max_low_pfn);
5540
5541 if (start_pfn < end_pfn)
5542 memblock_free_early_nid(PFN_PHYS(start_pfn),
5543 (end_pfn - start_pfn) << PAGE_SHIFT,
5544 this_nid);
5545 }
5546 }
5547
5548 /**
5549 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5550 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5551 *
5552 * If an architecture guarantees that all ranges registered contain no holes and may
5553 * be freed, this function may be used instead of calling memory_present() manually.
5554 */
5555 void __init sparse_memory_present_with_active_regions(int nid)
5556 {
5557 unsigned long start_pfn, end_pfn;
5558 int i, this_nid;
5559
5560 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5561 memory_present(this_nid, start_pfn, end_pfn);
5562 }
5563
5564 /**
5565 * get_pfn_range_for_nid - Return the start and end page frames for a node
5566 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5567 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5568 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5569 *
5570 * It returns the start and end page frame of a node based on information
5571 * provided by memblock_set_node(). If called for a node
5572 * with no available memory, a warning is printed and the start and end
5573 * PFNs will be 0.
5574 */
5575 void __meminit get_pfn_range_for_nid(unsigned int nid,
5576 unsigned long *start_pfn, unsigned long *end_pfn)
5577 {
5578 unsigned long this_start_pfn, this_end_pfn;
5579 int i;
5580
5581 *start_pfn = -1UL;
5582 *end_pfn = 0;
5583
5584 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5585 *start_pfn = min(*start_pfn, this_start_pfn);
5586 *end_pfn = max(*end_pfn, this_end_pfn);
5587 }
5588
5589 if (*start_pfn == -1UL)
5590 *start_pfn = 0;
5591 }
5592
5593 /*
5594 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5595 * assumption is made that zones within a node are ordered in monotonic
5596 * increasing memory addresses so that the "highest" populated zone is used
5597 */
5598 static void __init find_usable_zone_for_movable(void)
5599 {
5600 int zone_index;
5601 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5602 if (zone_index == ZONE_MOVABLE)
5603 continue;
5604
5605 if (arch_zone_highest_possible_pfn[zone_index] >
5606 arch_zone_lowest_possible_pfn[zone_index])
5607 break;
5608 }
5609
5610 VM_BUG_ON(zone_index == -1);
5611 movable_zone = zone_index;
5612 }
5613
5614 /*
5615 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5616 * because it is sized independent of architecture. Unlike the other zones,
5617 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5618 * in each node depending on the size of each node and how evenly kernelcore
5619 * is distributed. This helper function adjusts the zone ranges
5620 * provided by the architecture for a given node by using the end of the
5621 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5622 * zones within a node are in order of monotonic increases memory addresses
5623 */
5624 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5625 unsigned long zone_type,
5626 unsigned long node_start_pfn,
5627 unsigned long node_end_pfn,
5628 unsigned long *zone_start_pfn,
5629 unsigned long *zone_end_pfn)
5630 {
5631 /* Only adjust if ZONE_MOVABLE is on this node */
5632 if (zone_movable_pfn[nid]) {
5633 /* Size ZONE_MOVABLE */
5634 if (zone_type == ZONE_MOVABLE) {
5635 *zone_start_pfn = zone_movable_pfn[nid];
5636 *zone_end_pfn = min(node_end_pfn,
5637 arch_zone_highest_possible_pfn[movable_zone]);
5638
5639 /* Adjust for ZONE_MOVABLE starting within this range */
5640 } else if (!mirrored_kernelcore &&
5641 *zone_start_pfn < zone_movable_pfn[nid] &&
5642 *zone_end_pfn > zone_movable_pfn[nid]) {
5643 *zone_end_pfn = zone_movable_pfn[nid];
5644
5645 /* Check if this whole range is within ZONE_MOVABLE */
5646 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5647 *zone_start_pfn = *zone_end_pfn;
5648 }
5649 }
5650
5651 /*
5652 * Return the number of pages a zone spans in a node, including holes
5653 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5654 */
5655 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5656 unsigned long zone_type,
5657 unsigned long node_start_pfn,
5658 unsigned long node_end_pfn,
5659 unsigned long *zone_start_pfn,
5660 unsigned long *zone_end_pfn,
5661 unsigned long *ignored)
5662 {
5663 /* When hotadd a new node from cpu_up(), the node should be empty */
5664 if (!node_start_pfn && !node_end_pfn)
5665 return 0;
5666
5667 /* Get the start and end of the zone */
5668 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5669 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5670 adjust_zone_range_for_zone_movable(nid, zone_type,
5671 node_start_pfn, node_end_pfn,
5672 zone_start_pfn, zone_end_pfn);
5673
5674 /* Check that this node has pages within the zone's required range */
5675 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5676 return 0;
5677
5678 /* Move the zone boundaries inside the node if necessary */
5679 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5680 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5681
5682 /* Return the spanned pages */
5683 return *zone_end_pfn - *zone_start_pfn;
5684 }
5685
5686 /*
5687 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5688 * then all holes in the requested range will be accounted for.
5689 */
5690 unsigned long __meminit __absent_pages_in_range(int nid,
5691 unsigned long range_start_pfn,
5692 unsigned long range_end_pfn)
5693 {
5694 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5695 unsigned long start_pfn, end_pfn;
5696 int i;
5697
5698 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5699 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5700 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5701 nr_absent -= end_pfn - start_pfn;
5702 }
5703 return nr_absent;
5704 }
5705
5706 /**
5707 * absent_pages_in_range - Return number of page frames in holes within a range
5708 * @start_pfn: The start PFN to start searching for holes
5709 * @end_pfn: The end PFN to stop searching for holes
5710 *
5711 * It returns the number of pages frames in memory holes within a range.
5712 */
5713 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5714 unsigned long end_pfn)
5715 {
5716 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5717 }
5718
5719 /* Return the number of page frames in holes in a zone on a node */
5720 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5721 unsigned long zone_type,
5722 unsigned long node_start_pfn,
5723 unsigned long node_end_pfn,
5724 unsigned long *ignored)
5725 {
5726 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5727 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5728 unsigned long zone_start_pfn, zone_end_pfn;
5729 unsigned long nr_absent;
5730
5731 /* When hotadd a new node from cpu_up(), the node should be empty */
5732 if (!node_start_pfn && !node_end_pfn)
5733 return 0;
5734
5735 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5736 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5737
5738 adjust_zone_range_for_zone_movable(nid, zone_type,
5739 node_start_pfn, node_end_pfn,
5740 &zone_start_pfn, &zone_end_pfn);
5741 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5742
5743 /*
5744 * ZONE_MOVABLE handling.
5745 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5746 * and vice versa.
5747 */
5748 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5749 unsigned long start_pfn, end_pfn;
5750 struct memblock_region *r;
5751
5752 for_each_memblock(memory, r) {
5753 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5754 zone_start_pfn, zone_end_pfn);
5755 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5756 zone_start_pfn, zone_end_pfn);
5757
5758 if (zone_type == ZONE_MOVABLE &&
5759 memblock_is_mirror(r))
5760 nr_absent += end_pfn - start_pfn;
5761
5762 if (zone_type == ZONE_NORMAL &&
5763 !memblock_is_mirror(r))
5764 nr_absent += end_pfn - start_pfn;
5765 }
5766 }
5767
5768 return nr_absent;
5769 }
5770
5771 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5772 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5773 unsigned long zone_type,
5774 unsigned long node_start_pfn,
5775 unsigned long node_end_pfn,
5776 unsigned long *zone_start_pfn,
5777 unsigned long *zone_end_pfn,
5778 unsigned long *zones_size)
5779 {
5780 unsigned int zone;
5781
5782 *zone_start_pfn = node_start_pfn;
5783 for (zone = 0; zone < zone_type; zone++)
5784 *zone_start_pfn += zones_size[zone];
5785
5786 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5787
5788 return zones_size[zone_type];
5789 }
5790
5791 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5792 unsigned long zone_type,
5793 unsigned long node_start_pfn,
5794 unsigned long node_end_pfn,
5795 unsigned long *zholes_size)
5796 {
5797 if (!zholes_size)
5798 return 0;
5799
5800 return zholes_size[zone_type];
5801 }
5802
5803 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5804
5805 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5806 unsigned long node_start_pfn,
5807 unsigned long node_end_pfn,
5808 unsigned long *zones_size,
5809 unsigned long *zholes_size)
5810 {
5811 unsigned long realtotalpages = 0, totalpages = 0;
5812 enum zone_type i;
5813
5814 for (i = 0; i < MAX_NR_ZONES; i++) {
5815 struct zone *zone = pgdat->node_zones + i;
5816 unsigned long zone_start_pfn, zone_end_pfn;
5817 unsigned long size, real_size;
5818
5819 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5820 node_start_pfn,
5821 node_end_pfn,
5822 &zone_start_pfn,
5823 &zone_end_pfn,
5824 zones_size);
5825 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5826 node_start_pfn, node_end_pfn,
5827 zholes_size);
5828 if (size)
5829 zone->zone_start_pfn = zone_start_pfn;
5830 else
5831 zone->zone_start_pfn = 0;
5832 zone->spanned_pages = size;
5833 zone->present_pages = real_size;
5834
5835 totalpages += size;
5836 realtotalpages += real_size;
5837 }
5838
5839 pgdat->node_spanned_pages = totalpages;
5840 pgdat->node_present_pages = realtotalpages;
5841 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5842 realtotalpages);
5843 }
5844
5845 #ifndef CONFIG_SPARSEMEM
5846 /*
5847 * Calculate the size of the zone->blockflags rounded to an unsigned long
5848 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5849 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5850 * round what is now in bits to nearest long in bits, then return it in
5851 * bytes.
5852 */
5853 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5854 {
5855 unsigned long usemapsize;
5856
5857 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5858 usemapsize = roundup(zonesize, pageblock_nr_pages);
5859 usemapsize = usemapsize >> pageblock_order;
5860 usemapsize *= NR_PAGEBLOCK_BITS;
5861 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5862
5863 return usemapsize / 8;
5864 }
5865
5866 static void __init setup_usemap(struct pglist_data *pgdat,
5867 struct zone *zone,
5868 unsigned long zone_start_pfn,
5869 unsigned long zonesize)
5870 {
5871 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5872 zone->pageblock_flags = NULL;
5873 if (usemapsize)
5874 zone->pageblock_flags =
5875 memblock_virt_alloc_node_nopanic(usemapsize,
5876 pgdat->node_id);
5877 }
5878 #else
5879 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5880 unsigned long zone_start_pfn, unsigned long zonesize) {}
5881 #endif /* CONFIG_SPARSEMEM */
5882
5883 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5884
5885 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5886 void __paginginit set_pageblock_order(void)
5887 {
5888 unsigned int order;
5889
5890 /* Check that pageblock_nr_pages has not already been setup */
5891 if (pageblock_order)
5892 return;
5893
5894 if (HPAGE_SHIFT > PAGE_SHIFT)
5895 order = HUGETLB_PAGE_ORDER;
5896 else
5897 order = MAX_ORDER - 1;
5898
5899 /*
5900 * Assume the largest contiguous order of interest is a huge page.
5901 * This value may be variable depending on boot parameters on IA64 and
5902 * powerpc.
5903 */
5904 pageblock_order = order;
5905 }
5906 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5907
5908 /*
5909 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5910 * is unused as pageblock_order is set at compile-time. See
5911 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5912 * the kernel config
5913 */
5914 void __paginginit set_pageblock_order(void)
5915 {
5916 }
5917
5918 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5919
5920 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5921 unsigned long present_pages)
5922 {
5923 unsigned long pages = spanned_pages;
5924
5925 /*
5926 * Provide a more accurate estimation if there are holes within
5927 * the zone and SPARSEMEM is in use. If there are holes within the
5928 * zone, each populated memory region may cost us one or two extra
5929 * memmap pages due to alignment because memmap pages for each
5930 * populated regions may not be naturally aligned on page boundary.
5931 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5932 */
5933 if (spanned_pages > present_pages + (present_pages >> 4) &&
5934 IS_ENABLED(CONFIG_SPARSEMEM))
5935 pages = present_pages;
5936
5937 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5938 }
5939
5940 /*
5941 * Set up the zone data structures:
5942 * - mark all pages reserved
5943 * - mark all memory queues empty
5944 * - clear the memory bitmaps
5945 *
5946 * NOTE: pgdat should get zeroed by caller.
5947 */
5948 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5949 {
5950 enum zone_type j;
5951 int nid = pgdat->node_id;
5952 int ret;
5953
5954 pgdat_resize_init(pgdat);
5955 #ifdef CONFIG_NUMA_BALANCING
5956 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5957 pgdat->numabalancing_migrate_nr_pages = 0;
5958 pgdat->numabalancing_migrate_next_window = jiffies;
5959 #endif
5960 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5961 spin_lock_init(&pgdat->split_queue_lock);
5962 INIT_LIST_HEAD(&pgdat->split_queue);
5963 pgdat->split_queue_len = 0;
5964 #endif
5965 init_waitqueue_head(&pgdat->kswapd_wait);
5966 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5967 #ifdef CONFIG_COMPACTION
5968 init_waitqueue_head(&pgdat->kcompactd_wait);
5969 #endif
5970 pgdat_page_ext_init(pgdat);
5971 spin_lock_init(&pgdat->lru_lock);
5972 lruvec_init(node_lruvec(pgdat));
5973
5974 for (j = 0; j < MAX_NR_ZONES; j++) {
5975 struct zone *zone = pgdat->node_zones + j;
5976 unsigned long size, realsize, freesize, memmap_pages;
5977 unsigned long zone_start_pfn = zone->zone_start_pfn;
5978
5979 size = zone->spanned_pages;
5980 realsize = freesize = zone->present_pages;
5981
5982 /*
5983 * Adjust freesize so that it accounts for how much memory
5984 * is used by this zone for memmap. This affects the watermark
5985 * and per-cpu initialisations
5986 */
5987 memmap_pages = calc_memmap_size(size, realsize);
5988 if (!is_highmem_idx(j)) {
5989 if (freesize >= memmap_pages) {
5990 freesize -= memmap_pages;
5991 if (memmap_pages)
5992 printk(KERN_DEBUG
5993 " %s zone: %lu pages used for memmap\n",
5994 zone_names[j], memmap_pages);
5995 } else
5996 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5997 zone_names[j], memmap_pages, freesize);
5998 }
5999
6000 /* Account for reserved pages */
6001 if (j == 0 && freesize > dma_reserve) {
6002 freesize -= dma_reserve;
6003 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6004 zone_names[0], dma_reserve);
6005 }
6006
6007 if (!is_highmem_idx(j))
6008 nr_kernel_pages += freesize;
6009 /* Charge for highmem memmap if there are enough kernel pages */
6010 else if (nr_kernel_pages > memmap_pages * 2)
6011 nr_kernel_pages -= memmap_pages;
6012 nr_all_pages += freesize;
6013
6014 /*
6015 * Set an approximate value for lowmem here, it will be adjusted
6016 * when the bootmem allocator frees pages into the buddy system.
6017 * And all highmem pages will be managed by the buddy system.
6018 */
6019 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6020 #ifdef CONFIG_NUMA
6021 zone->node = nid;
6022 #endif
6023 zone->name = zone_names[j];
6024 zone->zone_pgdat = pgdat;
6025 spin_lock_init(&zone->lock);
6026 zone_seqlock_init(zone);
6027 zone_pcp_init(zone);
6028
6029 if (!size)
6030 continue;
6031
6032 set_pageblock_order();
6033 setup_usemap(pgdat, zone, zone_start_pfn, size);
6034 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
6035 BUG_ON(ret);
6036 memmap_init(size, nid, j, zone_start_pfn);
6037 }
6038 }
6039
6040 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6041 {
6042 unsigned long __maybe_unused start = 0;
6043 unsigned long __maybe_unused offset = 0;
6044
6045 /* Skip empty nodes */
6046 if (!pgdat->node_spanned_pages)
6047 return;
6048
6049 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6050 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6051 offset = pgdat->node_start_pfn - start;
6052 /* ia64 gets its own node_mem_map, before this, without bootmem */
6053 if (!pgdat->node_mem_map) {
6054 unsigned long size, end;
6055 struct page *map;
6056
6057 /*
6058 * The zone's endpoints aren't required to be MAX_ORDER
6059 * aligned but the node_mem_map endpoints must be in order
6060 * for the buddy allocator to function correctly.
6061 */
6062 end = pgdat_end_pfn(pgdat);
6063 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6064 size = (end - start) * sizeof(struct page);
6065 map = alloc_remap(pgdat->node_id, size);
6066 if (!map)
6067 map = memblock_virt_alloc_node_nopanic(size,
6068 pgdat->node_id);
6069 pgdat->node_mem_map = map + offset;
6070 }
6071 #ifndef CONFIG_NEED_MULTIPLE_NODES
6072 /*
6073 * With no DISCONTIG, the global mem_map is just set as node 0's
6074 */
6075 if (pgdat == NODE_DATA(0)) {
6076 mem_map = NODE_DATA(0)->node_mem_map;
6077 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6078 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6079 mem_map -= offset;
6080 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6081 }
6082 #endif
6083 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6084 }
6085
6086 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6087 unsigned long node_start_pfn, unsigned long *zholes_size)
6088 {
6089 pg_data_t *pgdat = NODE_DATA(nid);
6090 unsigned long start_pfn = 0;
6091 unsigned long end_pfn = 0;
6092
6093 /* pg_data_t should be reset to zero when it's allocated */
6094 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6095
6096 reset_deferred_meminit(pgdat);
6097 pgdat->node_id = nid;
6098 pgdat->node_start_pfn = node_start_pfn;
6099 pgdat->per_cpu_nodestats = NULL;
6100 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6101 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6102 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6103 (u64)start_pfn << PAGE_SHIFT,
6104 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6105 #else
6106 start_pfn = node_start_pfn;
6107 #endif
6108 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6109 zones_size, zholes_size);
6110
6111 alloc_node_mem_map(pgdat);
6112 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6113 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6114 nid, (unsigned long)pgdat,
6115 (unsigned long)pgdat->node_mem_map);
6116 #endif
6117
6118 free_area_init_core(pgdat);
6119 }
6120
6121 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6122
6123 #if MAX_NUMNODES > 1
6124 /*
6125 * Figure out the number of possible node ids.
6126 */
6127 void __init setup_nr_node_ids(void)
6128 {
6129 unsigned int highest;
6130
6131 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6132 nr_node_ids = highest + 1;
6133 }
6134 #endif
6135
6136 /**
6137 * node_map_pfn_alignment - determine the maximum internode alignment
6138 *
6139 * This function should be called after node map is populated and sorted.
6140 * It calculates the maximum power of two alignment which can distinguish
6141 * all the nodes.
6142 *
6143 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6144 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6145 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6146 * shifted, 1GiB is enough and this function will indicate so.
6147 *
6148 * This is used to test whether pfn -> nid mapping of the chosen memory
6149 * model has fine enough granularity to avoid incorrect mapping for the
6150 * populated node map.
6151 *
6152 * Returns the determined alignment in pfn's. 0 if there is no alignment
6153 * requirement (single node).
6154 */
6155 unsigned long __init node_map_pfn_alignment(void)
6156 {
6157 unsigned long accl_mask = 0, last_end = 0;
6158 unsigned long start, end, mask;
6159 int last_nid = -1;
6160 int i, nid;
6161
6162 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6163 if (!start || last_nid < 0 || last_nid == nid) {
6164 last_nid = nid;
6165 last_end = end;
6166 continue;
6167 }
6168
6169 /*
6170 * Start with a mask granular enough to pin-point to the
6171 * start pfn and tick off bits one-by-one until it becomes
6172 * too coarse to separate the current node from the last.
6173 */
6174 mask = ~((1 << __ffs(start)) - 1);
6175 while (mask && last_end <= (start & (mask << 1)))
6176 mask <<= 1;
6177
6178 /* accumulate all internode masks */
6179 accl_mask |= mask;
6180 }
6181
6182 /* convert mask to number of pages */
6183 return ~accl_mask + 1;
6184 }
6185
6186 /* Find the lowest pfn for a node */
6187 static unsigned long __init find_min_pfn_for_node(int nid)
6188 {
6189 unsigned long min_pfn = ULONG_MAX;
6190 unsigned long start_pfn;
6191 int i;
6192
6193 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6194 min_pfn = min(min_pfn, start_pfn);
6195
6196 if (min_pfn == ULONG_MAX) {
6197 pr_warn("Could not find start_pfn for node %d\n", nid);
6198 return 0;
6199 }
6200
6201 return min_pfn;
6202 }
6203
6204 /**
6205 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6206 *
6207 * It returns the minimum PFN based on information provided via
6208 * memblock_set_node().
6209 */
6210 unsigned long __init find_min_pfn_with_active_regions(void)
6211 {
6212 return find_min_pfn_for_node(MAX_NUMNODES);
6213 }
6214
6215 /*
6216 * early_calculate_totalpages()
6217 * Sum pages in active regions for movable zone.
6218 * Populate N_MEMORY for calculating usable_nodes.
6219 */
6220 static unsigned long __init early_calculate_totalpages(void)
6221 {
6222 unsigned long totalpages = 0;
6223 unsigned long start_pfn, end_pfn;
6224 int i, nid;
6225
6226 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6227 unsigned long pages = end_pfn - start_pfn;
6228
6229 totalpages += pages;
6230 if (pages)
6231 node_set_state(nid, N_MEMORY);
6232 }
6233 return totalpages;
6234 }
6235
6236 /*
6237 * Find the PFN the Movable zone begins in each node. Kernel memory
6238 * is spread evenly between nodes as long as the nodes have enough
6239 * memory. When they don't, some nodes will have more kernelcore than
6240 * others
6241 */
6242 static void __init find_zone_movable_pfns_for_nodes(void)
6243 {
6244 int i, nid;
6245 unsigned long usable_startpfn;
6246 unsigned long kernelcore_node, kernelcore_remaining;
6247 /* save the state before borrow the nodemask */
6248 nodemask_t saved_node_state = node_states[N_MEMORY];
6249 unsigned long totalpages = early_calculate_totalpages();
6250 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6251 struct memblock_region *r;
6252
6253 /* Need to find movable_zone earlier when movable_node is specified. */
6254 find_usable_zone_for_movable();
6255
6256 /*
6257 * If movable_node is specified, ignore kernelcore and movablecore
6258 * options.
6259 */
6260 if (movable_node_is_enabled()) {
6261 for_each_memblock(memory, r) {
6262 if (!memblock_is_hotpluggable(r))
6263 continue;
6264
6265 nid = r->nid;
6266
6267 usable_startpfn = PFN_DOWN(r->base);
6268 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6269 min(usable_startpfn, zone_movable_pfn[nid]) :
6270 usable_startpfn;
6271 }
6272
6273 goto out2;
6274 }
6275
6276 /*
6277 * If kernelcore=mirror is specified, ignore movablecore option
6278 */
6279 if (mirrored_kernelcore) {
6280 bool mem_below_4gb_not_mirrored = false;
6281
6282 for_each_memblock(memory, r) {
6283 if (memblock_is_mirror(r))
6284 continue;
6285
6286 nid = r->nid;
6287
6288 usable_startpfn = memblock_region_memory_base_pfn(r);
6289
6290 if (usable_startpfn < 0x100000) {
6291 mem_below_4gb_not_mirrored = true;
6292 continue;
6293 }
6294
6295 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6296 min(usable_startpfn, zone_movable_pfn[nid]) :
6297 usable_startpfn;
6298 }
6299
6300 if (mem_below_4gb_not_mirrored)
6301 pr_warn("This configuration results in unmirrored kernel memory.");
6302
6303 goto out2;
6304 }
6305
6306 /*
6307 * If movablecore=nn[KMG] was specified, calculate what size of
6308 * kernelcore that corresponds so that memory usable for
6309 * any allocation type is evenly spread. If both kernelcore
6310 * and movablecore are specified, then the value of kernelcore
6311 * will be used for required_kernelcore if it's greater than
6312 * what movablecore would have allowed.
6313 */
6314 if (required_movablecore) {
6315 unsigned long corepages;
6316
6317 /*
6318 * Round-up so that ZONE_MOVABLE is at least as large as what
6319 * was requested by the user
6320 */
6321 required_movablecore =
6322 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6323 required_movablecore = min(totalpages, required_movablecore);
6324 corepages = totalpages - required_movablecore;
6325
6326 required_kernelcore = max(required_kernelcore, corepages);
6327 }
6328
6329 /*
6330 * If kernelcore was not specified or kernelcore size is larger
6331 * than totalpages, there is no ZONE_MOVABLE.
6332 */
6333 if (!required_kernelcore || required_kernelcore >= totalpages)
6334 goto out;
6335
6336 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6337 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6338
6339 restart:
6340 /* Spread kernelcore memory as evenly as possible throughout nodes */
6341 kernelcore_node = required_kernelcore / usable_nodes;
6342 for_each_node_state(nid, N_MEMORY) {
6343 unsigned long start_pfn, end_pfn;
6344
6345 /*
6346 * Recalculate kernelcore_node if the division per node
6347 * now exceeds what is necessary to satisfy the requested
6348 * amount of memory for the kernel
6349 */
6350 if (required_kernelcore < kernelcore_node)
6351 kernelcore_node = required_kernelcore / usable_nodes;
6352
6353 /*
6354 * As the map is walked, we track how much memory is usable
6355 * by the kernel using kernelcore_remaining. When it is
6356 * 0, the rest of the node is usable by ZONE_MOVABLE
6357 */
6358 kernelcore_remaining = kernelcore_node;
6359
6360 /* Go through each range of PFNs within this node */
6361 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6362 unsigned long size_pages;
6363
6364 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6365 if (start_pfn >= end_pfn)
6366 continue;
6367
6368 /* Account for what is only usable for kernelcore */
6369 if (start_pfn < usable_startpfn) {
6370 unsigned long kernel_pages;
6371 kernel_pages = min(end_pfn, usable_startpfn)
6372 - start_pfn;
6373
6374 kernelcore_remaining -= min(kernel_pages,
6375 kernelcore_remaining);
6376 required_kernelcore -= min(kernel_pages,
6377 required_kernelcore);
6378
6379 /* Continue if range is now fully accounted */
6380 if (end_pfn <= usable_startpfn) {
6381
6382 /*
6383 * Push zone_movable_pfn to the end so
6384 * that if we have to rebalance
6385 * kernelcore across nodes, we will
6386 * not double account here
6387 */
6388 zone_movable_pfn[nid] = end_pfn;
6389 continue;
6390 }
6391 start_pfn = usable_startpfn;
6392 }
6393
6394 /*
6395 * The usable PFN range for ZONE_MOVABLE is from
6396 * start_pfn->end_pfn. Calculate size_pages as the
6397 * number of pages used as kernelcore
6398 */
6399 size_pages = end_pfn - start_pfn;
6400 if (size_pages > kernelcore_remaining)
6401 size_pages = kernelcore_remaining;
6402 zone_movable_pfn[nid] = start_pfn + size_pages;
6403
6404 /*
6405 * Some kernelcore has been met, update counts and
6406 * break if the kernelcore for this node has been
6407 * satisfied
6408 */
6409 required_kernelcore -= min(required_kernelcore,
6410 size_pages);
6411 kernelcore_remaining -= size_pages;
6412 if (!kernelcore_remaining)
6413 break;
6414 }
6415 }
6416
6417 /*
6418 * If there is still required_kernelcore, we do another pass with one
6419 * less node in the count. This will push zone_movable_pfn[nid] further
6420 * along on the nodes that still have memory until kernelcore is
6421 * satisfied
6422 */
6423 usable_nodes--;
6424 if (usable_nodes && required_kernelcore > usable_nodes)
6425 goto restart;
6426
6427 out2:
6428 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6429 for (nid = 0; nid < MAX_NUMNODES; nid++)
6430 zone_movable_pfn[nid] =
6431 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6432
6433 out:
6434 /* restore the node_state */
6435 node_states[N_MEMORY] = saved_node_state;
6436 }
6437
6438 /* Any regular or high memory on that node ? */
6439 static void check_for_memory(pg_data_t *pgdat, int nid)
6440 {
6441 enum zone_type zone_type;
6442
6443 if (N_MEMORY == N_NORMAL_MEMORY)
6444 return;
6445
6446 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6447 struct zone *zone = &pgdat->node_zones[zone_type];
6448 if (populated_zone(zone)) {
6449 node_set_state(nid, N_HIGH_MEMORY);
6450 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6451 zone_type <= ZONE_NORMAL)
6452 node_set_state(nid, N_NORMAL_MEMORY);
6453 break;
6454 }
6455 }
6456 }
6457
6458 /**
6459 * free_area_init_nodes - Initialise all pg_data_t and zone data
6460 * @max_zone_pfn: an array of max PFNs for each zone
6461 *
6462 * This will call free_area_init_node() for each active node in the system.
6463 * Using the page ranges provided by memblock_set_node(), the size of each
6464 * zone in each node and their holes is calculated. If the maximum PFN
6465 * between two adjacent zones match, it is assumed that the zone is empty.
6466 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6467 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6468 * starts where the previous one ended. For example, ZONE_DMA32 starts
6469 * at arch_max_dma_pfn.
6470 */
6471 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6472 {
6473 unsigned long start_pfn, end_pfn;
6474 int i, nid;
6475
6476 /* Record where the zone boundaries are */
6477 memset(arch_zone_lowest_possible_pfn, 0,
6478 sizeof(arch_zone_lowest_possible_pfn));
6479 memset(arch_zone_highest_possible_pfn, 0,
6480 sizeof(arch_zone_highest_possible_pfn));
6481
6482 start_pfn = find_min_pfn_with_active_regions();
6483
6484 for (i = 0; i < MAX_NR_ZONES; i++) {
6485 if (i == ZONE_MOVABLE)
6486 continue;
6487
6488 end_pfn = max(max_zone_pfn[i], start_pfn);
6489 arch_zone_lowest_possible_pfn[i] = start_pfn;
6490 arch_zone_highest_possible_pfn[i] = end_pfn;
6491
6492 start_pfn = end_pfn;
6493 }
6494
6495 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6496 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6497 find_zone_movable_pfns_for_nodes();
6498
6499 /* Print out the zone ranges */
6500 pr_info("Zone ranges:\n");
6501 for (i = 0; i < MAX_NR_ZONES; i++) {
6502 if (i == ZONE_MOVABLE)
6503 continue;
6504 pr_info(" %-8s ", zone_names[i]);
6505 if (arch_zone_lowest_possible_pfn[i] ==
6506 arch_zone_highest_possible_pfn[i])
6507 pr_cont("empty\n");
6508 else
6509 pr_cont("[mem %#018Lx-%#018Lx]\n",
6510 (u64)arch_zone_lowest_possible_pfn[i]
6511 << PAGE_SHIFT,
6512 ((u64)arch_zone_highest_possible_pfn[i]
6513 << PAGE_SHIFT) - 1);
6514 }
6515
6516 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6517 pr_info("Movable zone start for each node\n");
6518 for (i = 0; i < MAX_NUMNODES; i++) {
6519 if (zone_movable_pfn[i])
6520 pr_info(" Node %d: %#018Lx\n", i,
6521 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6522 }
6523
6524 /* Print out the early node map */
6525 pr_info("Early memory node ranges\n");
6526 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6527 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6528 (u64)start_pfn << PAGE_SHIFT,
6529 ((u64)end_pfn << PAGE_SHIFT) - 1);
6530
6531 /* Initialise every node */
6532 mminit_verify_pageflags_layout();
6533 setup_nr_node_ids();
6534 for_each_online_node(nid) {
6535 pg_data_t *pgdat = NODE_DATA(nid);
6536 free_area_init_node(nid, NULL,
6537 find_min_pfn_for_node(nid), NULL);
6538
6539 /* Any memory on that node */
6540 if (pgdat->node_present_pages)
6541 node_set_state(nid, N_MEMORY);
6542 check_for_memory(pgdat, nid);
6543 }
6544 }
6545
6546 static int __init cmdline_parse_core(char *p, unsigned long *core)
6547 {
6548 unsigned long long coremem;
6549 if (!p)
6550 return -EINVAL;
6551
6552 coremem = memparse(p, &p);
6553 *core = coremem >> PAGE_SHIFT;
6554
6555 /* Paranoid check that UL is enough for the coremem value */
6556 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6557
6558 return 0;
6559 }
6560
6561 /*
6562 * kernelcore=size sets the amount of memory for use for allocations that
6563 * cannot be reclaimed or migrated.
6564 */
6565 static int __init cmdline_parse_kernelcore(char *p)
6566 {
6567 /* parse kernelcore=mirror */
6568 if (parse_option_str(p, "mirror")) {
6569 mirrored_kernelcore = true;
6570 return 0;
6571 }
6572
6573 return cmdline_parse_core(p, &required_kernelcore);
6574 }
6575
6576 /*
6577 * movablecore=size sets the amount of memory for use for allocations that
6578 * can be reclaimed or migrated.
6579 */
6580 static int __init cmdline_parse_movablecore(char *p)
6581 {
6582 return cmdline_parse_core(p, &required_movablecore);
6583 }
6584
6585 early_param("kernelcore", cmdline_parse_kernelcore);
6586 early_param("movablecore", cmdline_parse_movablecore);
6587
6588 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6589
6590 void adjust_managed_page_count(struct page *page, long count)
6591 {
6592 spin_lock(&managed_page_count_lock);
6593 page_zone(page)->managed_pages += count;
6594 totalram_pages += count;
6595 #ifdef CONFIG_HIGHMEM
6596 if (PageHighMem(page))
6597 totalhigh_pages += count;
6598 #endif
6599 spin_unlock(&managed_page_count_lock);
6600 }
6601 EXPORT_SYMBOL(adjust_managed_page_count);
6602
6603 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6604 {
6605 void *pos;
6606 unsigned long pages = 0;
6607
6608 start = (void *)PAGE_ALIGN((unsigned long)start);
6609 end = (void *)((unsigned long)end & PAGE_MASK);
6610 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6611 if ((unsigned int)poison <= 0xFF)
6612 memset(pos, poison, PAGE_SIZE);
6613 free_reserved_page(virt_to_page(pos));
6614 }
6615
6616 if (pages && s)
6617 pr_info("Freeing %s memory: %ldK\n",
6618 s, pages << (PAGE_SHIFT - 10));
6619
6620 return pages;
6621 }
6622 EXPORT_SYMBOL(free_reserved_area);
6623
6624 #ifdef CONFIG_HIGHMEM
6625 void free_highmem_page(struct page *page)
6626 {
6627 __free_reserved_page(page);
6628 totalram_pages++;
6629 page_zone(page)->managed_pages++;
6630 totalhigh_pages++;
6631 }
6632 #endif
6633
6634
6635 void __init mem_init_print_info(const char *str)
6636 {
6637 unsigned long physpages, codesize, datasize, rosize, bss_size;
6638 unsigned long init_code_size, init_data_size;
6639
6640 physpages = get_num_physpages();
6641 codesize = _etext - _stext;
6642 datasize = _edata - _sdata;
6643 rosize = __end_rodata - __start_rodata;
6644 bss_size = __bss_stop - __bss_start;
6645 init_data_size = __init_end - __init_begin;
6646 init_code_size = _einittext - _sinittext;
6647
6648 /*
6649 * Detect special cases and adjust section sizes accordingly:
6650 * 1) .init.* may be embedded into .data sections
6651 * 2) .init.text.* may be out of [__init_begin, __init_end],
6652 * please refer to arch/tile/kernel/vmlinux.lds.S.
6653 * 3) .rodata.* may be embedded into .text or .data sections.
6654 */
6655 #define adj_init_size(start, end, size, pos, adj) \
6656 do { \
6657 if (start <= pos && pos < end && size > adj) \
6658 size -= adj; \
6659 } while (0)
6660
6661 adj_init_size(__init_begin, __init_end, init_data_size,
6662 _sinittext, init_code_size);
6663 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6664 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6665 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6666 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6667
6668 #undef adj_init_size
6669
6670 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6671 #ifdef CONFIG_HIGHMEM
6672 ", %luK highmem"
6673 #endif
6674 "%s%s)\n",
6675 nr_free_pages() << (PAGE_SHIFT - 10),
6676 physpages << (PAGE_SHIFT - 10),
6677 codesize >> 10, datasize >> 10, rosize >> 10,
6678 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6679 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6680 totalcma_pages << (PAGE_SHIFT - 10),
6681 #ifdef CONFIG_HIGHMEM
6682 totalhigh_pages << (PAGE_SHIFT - 10),
6683 #endif
6684 str ? ", " : "", str ? str : "");
6685 }
6686
6687 /**
6688 * set_dma_reserve - set the specified number of pages reserved in the first zone
6689 * @new_dma_reserve: The number of pages to mark reserved
6690 *
6691 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6692 * In the DMA zone, a significant percentage may be consumed by kernel image
6693 * and other unfreeable allocations which can skew the watermarks badly. This
6694 * function may optionally be used to account for unfreeable pages in the
6695 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6696 * smaller per-cpu batchsize.
6697 */
6698 void __init set_dma_reserve(unsigned long new_dma_reserve)
6699 {
6700 dma_reserve = new_dma_reserve;
6701 }
6702
6703 void __init free_area_init(unsigned long *zones_size)
6704 {
6705 free_area_init_node(0, zones_size,
6706 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6707 }
6708
6709 static int page_alloc_cpu_dead(unsigned int cpu)
6710 {
6711
6712 lru_add_drain_cpu(cpu);
6713 drain_pages(cpu);
6714
6715 /*
6716 * Spill the event counters of the dead processor
6717 * into the current processors event counters.
6718 * This artificially elevates the count of the current
6719 * processor.
6720 */
6721 vm_events_fold_cpu(cpu);
6722
6723 /*
6724 * Zero the differential counters of the dead processor
6725 * so that the vm statistics are consistent.
6726 *
6727 * This is only okay since the processor is dead and cannot
6728 * race with what we are doing.
6729 */
6730 cpu_vm_stats_fold(cpu);
6731 return 0;
6732 }
6733
6734 void __init page_alloc_init(void)
6735 {
6736 int ret;
6737
6738 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6739 "mm/page_alloc:dead", NULL,
6740 page_alloc_cpu_dead);
6741 WARN_ON(ret < 0);
6742 }
6743
6744 /*
6745 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6746 * or min_free_kbytes changes.
6747 */
6748 static void calculate_totalreserve_pages(void)
6749 {
6750 struct pglist_data *pgdat;
6751 unsigned long reserve_pages = 0;
6752 enum zone_type i, j;
6753
6754 for_each_online_pgdat(pgdat) {
6755
6756 pgdat->totalreserve_pages = 0;
6757
6758 for (i = 0; i < MAX_NR_ZONES; i++) {
6759 struct zone *zone = pgdat->node_zones + i;
6760 long max = 0;
6761
6762 /* Find valid and maximum lowmem_reserve in the zone */
6763 for (j = i; j < MAX_NR_ZONES; j++) {
6764 if (zone->lowmem_reserve[j] > max)
6765 max = zone->lowmem_reserve[j];
6766 }
6767
6768 /* we treat the high watermark as reserved pages. */
6769 max += high_wmark_pages(zone);
6770
6771 if (max > zone->managed_pages)
6772 max = zone->managed_pages;
6773
6774 pgdat->totalreserve_pages += max;
6775
6776 reserve_pages += max;
6777 }
6778 }
6779 totalreserve_pages = reserve_pages;
6780 }
6781
6782 /*
6783 * setup_per_zone_lowmem_reserve - called whenever
6784 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6785 * has a correct pages reserved value, so an adequate number of
6786 * pages are left in the zone after a successful __alloc_pages().
6787 */
6788 static void setup_per_zone_lowmem_reserve(void)
6789 {
6790 struct pglist_data *pgdat;
6791 enum zone_type j, idx;
6792
6793 for_each_online_pgdat(pgdat) {
6794 for (j = 0; j < MAX_NR_ZONES; j++) {
6795 struct zone *zone = pgdat->node_zones + j;
6796 unsigned long managed_pages = zone->managed_pages;
6797
6798 zone->lowmem_reserve[j] = 0;
6799
6800 idx = j;
6801 while (idx) {
6802 struct zone *lower_zone;
6803
6804 idx--;
6805
6806 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6807 sysctl_lowmem_reserve_ratio[idx] = 1;
6808
6809 lower_zone = pgdat->node_zones + idx;
6810 lower_zone->lowmem_reserve[j] = managed_pages /
6811 sysctl_lowmem_reserve_ratio[idx];
6812 managed_pages += lower_zone->managed_pages;
6813 }
6814 }
6815 }
6816
6817 /* update totalreserve_pages */
6818 calculate_totalreserve_pages();
6819 }
6820
6821 static void __setup_per_zone_wmarks(void)
6822 {
6823 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6824 unsigned long lowmem_pages = 0;
6825 struct zone *zone;
6826 unsigned long flags;
6827
6828 /* Calculate total number of !ZONE_HIGHMEM pages */
6829 for_each_zone(zone) {
6830 if (!is_highmem(zone))
6831 lowmem_pages += zone->managed_pages;
6832 }
6833
6834 for_each_zone(zone) {
6835 u64 tmp;
6836
6837 spin_lock_irqsave(&zone->lock, flags);
6838 tmp = (u64)pages_min * zone->managed_pages;
6839 do_div(tmp, lowmem_pages);
6840 if (is_highmem(zone)) {
6841 /*
6842 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6843 * need highmem pages, so cap pages_min to a small
6844 * value here.
6845 *
6846 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6847 * deltas control asynch page reclaim, and so should
6848 * not be capped for highmem.
6849 */
6850 unsigned long min_pages;
6851
6852 min_pages = zone->managed_pages / 1024;
6853 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6854 zone->watermark[WMARK_MIN] = min_pages;
6855 } else {
6856 /*
6857 * If it's a lowmem zone, reserve a number of pages
6858 * proportionate to the zone's size.
6859 */
6860 zone->watermark[WMARK_MIN] = tmp;
6861 }
6862
6863 /*
6864 * Set the kswapd watermarks distance according to the
6865 * scale factor in proportion to available memory, but
6866 * ensure a minimum size on small systems.
6867 */
6868 tmp = max_t(u64, tmp >> 2,
6869 mult_frac(zone->managed_pages,
6870 watermark_scale_factor, 10000));
6871
6872 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6873 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6874
6875 spin_unlock_irqrestore(&zone->lock, flags);
6876 }
6877
6878 /* update totalreserve_pages */
6879 calculate_totalreserve_pages();
6880 }
6881
6882 /**
6883 * setup_per_zone_wmarks - called when min_free_kbytes changes
6884 * or when memory is hot-{added|removed}
6885 *
6886 * Ensures that the watermark[min,low,high] values for each zone are set
6887 * correctly with respect to min_free_kbytes.
6888 */
6889 void setup_per_zone_wmarks(void)
6890 {
6891 mutex_lock(&zonelists_mutex);
6892 __setup_per_zone_wmarks();
6893 mutex_unlock(&zonelists_mutex);
6894 }
6895
6896 /*
6897 * Initialise min_free_kbytes.
6898 *
6899 * For small machines we want it small (128k min). For large machines
6900 * we want it large (64MB max). But it is not linear, because network
6901 * bandwidth does not increase linearly with machine size. We use
6902 *
6903 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6904 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6905 *
6906 * which yields
6907 *
6908 * 16MB: 512k
6909 * 32MB: 724k
6910 * 64MB: 1024k
6911 * 128MB: 1448k
6912 * 256MB: 2048k
6913 * 512MB: 2896k
6914 * 1024MB: 4096k
6915 * 2048MB: 5792k
6916 * 4096MB: 8192k
6917 * 8192MB: 11584k
6918 * 16384MB: 16384k
6919 */
6920 int __meminit init_per_zone_wmark_min(void)
6921 {
6922 unsigned long lowmem_kbytes;
6923 int new_min_free_kbytes;
6924
6925 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6926 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6927
6928 if (new_min_free_kbytes > user_min_free_kbytes) {
6929 min_free_kbytes = new_min_free_kbytes;
6930 if (min_free_kbytes < 128)
6931 min_free_kbytes = 128;
6932 if (min_free_kbytes > 65536)
6933 min_free_kbytes = 65536;
6934 } else {
6935 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6936 new_min_free_kbytes, user_min_free_kbytes);
6937 }
6938 setup_per_zone_wmarks();
6939 refresh_zone_stat_thresholds();
6940 setup_per_zone_lowmem_reserve();
6941
6942 #ifdef CONFIG_NUMA
6943 setup_min_unmapped_ratio();
6944 setup_min_slab_ratio();
6945 #endif
6946
6947 return 0;
6948 }
6949 core_initcall(init_per_zone_wmark_min)
6950
6951 /*
6952 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6953 * that we can call two helper functions whenever min_free_kbytes
6954 * changes.
6955 */
6956 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6957 void __user *buffer, size_t *length, loff_t *ppos)
6958 {
6959 int rc;
6960
6961 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6962 if (rc)
6963 return rc;
6964
6965 if (write) {
6966 user_min_free_kbytes = min_free_kbytes;
6967 setup_per_zone_wmarks();
6968 }
6969 return 0;
6970 }
6971
6972 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6973 void __user *buffer, size_t *length, loff_t *ppos)
6974 {
6975 int rc;
6976
6977 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6978 if (rc)
6979 return rc;
6980
6981 if (write)
6982 setup_per_zone_wmarks();
6983
6984 return 0;
6985 }
6986
6987 #ifdef CONFIG_NUMA
6988 static void setup_min_unmapped_ratio(void)
6989 {
6990 pg_data_t *pgdat;
6991 struct zone *zone;
6992
6993 for_each_online_pgdat(pgdat)
6994 pgdat->min_unmapped_pages = 0;
6995
6996 for_each_zone(zone)
6997 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6998 sysctl_min_unmapped_ratio) / 100;
6999 }
7000
7001
7002 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7003 void __user *buffer, size_t *length, loff_t *ppos)
7004 {
7005 int rc;
7006
7007 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7008 if (rc)
7009 return rc;
7010
7011 setup_min_unmapped_ratio();
7012
7013 return 0;
7014 }
7015
7016 static void setup_min_slab_ratio(void)
7017 {
7018 pg_data_t *pgdat;
7019 struct zone *zone;
7020
7021 for_each_online_pgdat(pgdat)
7022 pgdat->min_slab_pages = 0;
7023
7024 for_each_zone(zone)
7025 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7026 sysctl_min_slab_ratio) / 100;
7027 }
7028
7029 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7030 void __user *buffer, size_t *length, loff_t *ppos)
7031 {
7032 int rc;
7033
7034 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7035 if (rc)
7036 return rc;
7037
7038 setup_min_slab_ratio();
7039
7040 return 0;
7041 }
7042 #endif
7043
7044 /*
7045 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7046 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7047 * whenever sysctl_lowmem_reserve_ratio changes.
7048 *
7049 * The reserve ratio obviously has absolutely no relation with the
7050 * minimum watermarks. The lowmem reserve ratio can only make sense
7051 * if in function of the boot time zone sizes.
7052 */
7053 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7054 void __user *buffer, size_t *length, loff_t *ppos)
7055 {
7056 proc_dointvec_minmax(table, write, buffer, length, ppos);
7057 setup_per_zone_lowmem_reserve();
7058 return 0;
7059 }
7060
7061 /*
7062 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7063 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7064 * pagelist can have before it gets flushed back to buddy allocator.
7065 */
7066 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7067 void __user *buffer, size_t *length, loff_t *ppos)
7068 {
7069 struct zone *zone;
7070 int old_percpu_pagelist_fraction;
7071 int ret;
7072
7073 mutex_lock(&pcp_batch_high_lock);
7074 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7075
7076 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7077 if (!write || ret < 0)
7078 goto out;
7079
7080 /* Sanity checking to avoid pcp imbalance */
7081 if (percpu_pagelist_fraction &&
7082 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7083 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7084 ret = -EINVAL;
7085 goto out;
7086 }
7087
7088 /* No change? */
7089 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7090 goto out;
7091
7092 for_each_populated_zone(zone) {
7093 unsigned int cpu;
7094
7095 for_each_possible_cpu(cpu)
7096 pageset_set_high_and_batch(zone,
7097 per_cpu_ptr(zone->pageset, cpu));
7098 }
7099 out:
7100 mutex_unlock(&pcp_batch_high_lock);
7101 return ret;
7102 }
7103
7104 #ifdef CONFIG_NUMA
7105 int hashdist = HASHDIST_DEFAULT;
7106
7107 static int __init set_hashdist(char *str)
7108 {
7109 if (!str)
7110 return 0;
7111 hashdist = simple_strtoul(str, &str, 0);
7112 return 1;
7113 }
7114 __setup("hashdist=", set_hashdist);
7115 #endif
7116
7117 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7118 /*
7119 * Returns the number of pages that arch has reserved but
7120 * is not known to alloc_large_system_hash().
7121 */
7122 static unsigned long __init arch_reserved_kernel_pages(void)
7123 {
7124 return 0;
7125 }
7126 #endif
7127
7128 /*
7129 * allocate a large system hash table from bootmem
7130 * - it is assumed that the hash table must contain an exact power-of-2
7131 * quantity of entries
7132 * - limit is the number of hash buckets, not the total allocation size
7133 */
7134 void *__init alloc_large_system_hash(const char *tablename,
7135 unsigned long bucketsize,
7136 unsigned long numentries,
7137 int scale,
7138 int flags,
7139 unsigned int *_hash_shift,
7140 unsigned int *_hash_mask,
7141 unsigned long low_limit,
7142 unsigned long high_limit)
7143 {
7144 unsigned long long max = high_limit;
7145 unsigned long log2qty, size;
7146 void *table = NULL;
7147
7148 /* allow the kernel cmdline to have a say */
7149 if (!numentries) {
7150 /* round applicable memory size up to nearest megabyte */
7151 numentries = nr_kernel_pages;
7152 numentries -= arch_reserved_kernel_pages();
7153
7154 /* It isn't necessary when PAGE_SIZE >= 1MB */
7155 if (PAGE_SHIFT < 20)
7156 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7157
7158 /* limit to 1 bucket per 2^scale bytes of low memory */
7159 if (scale > PAGE_SHIFT)
7160 numentries >>= (scale - PAGE_SHIFT);
7161 else
7162 numentries <<= (PAGE_SHIFT - scale);
7163
7164 /* Make sure we've got at least a 0-order allocation.. */
7165 if (unlikely(flags & HASH_SMALL)) {
7166 /* Makes no sense without HASH_EARLY */
7167 WARN_ON(!(flags & HASH_EARLY));
7168 if (!(numentries >> *_hash_shift)) {
7169 numentries = 1UL << *_hash_shift;
7170 BUG_ON(!numentries);
7171 }
7172 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7173 numentries = PAGE_SIZE / bucketsize;
7174 }
7175 numentries = roundup_pow_of_two(numentries);
7176
7177 /* limit allocation size to 1/16 total memory by default */
7178 if (max == 0) {
7179 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7180 do_div(max, bucketsize);
7181 }
7182 max = min(max, 0x80000000ULL);
7183
7184 if (numentries < low_limit)
7185 numentries = low_limit;
7186 if (numentries > max)
7187 numentries = max;
7188
7189 log2qty = ilog2(numentries);
7190
7191 do {
7192 size = bucketsize << log2qty;
7193 if (flags & HASH_EARLY)
7194 table = memblock_virt_alloc_nopanic(size, 0);
7195 else if (hashdist)
7196 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7197 else {
7198 /*
7199 * If bucketsize is not a power-of-two, we may free
7200 * some pages at the end of hash table which
7201 * alloc_pages_exact() automatically does
7202 */
7203 if (get_order(size) < MAX_ORDER) {
7204 table = alloc_pages_exact(size, GFP_ATOMIC);
7205 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7206 }
7207 }
7208 } while (!table && size > PAGE_SIZE && --log2qty);
7209
7210 if (!table)
7211 panic("Failed to allocate %s hash table\n", tablename);
7212
7213 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7214 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7215
7216 if (_hash_shift)
7217 *_hash_shift = log2qty;
7218 if (_hash_mask)
7219 *_hash_mask = (1 << log2qty) - 1;
7220
7221 return table;
7222 }
7223
7224 /*
7225 * This function checks whether pageblock includes unmovable pages or not.
7226 * If @count is not zero, it is okay to include less @count unmovable pages
7227 *
7228 * PageLRU check without isolation or lru_lock could race so that
7229 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7230 * check without lock_page also may miss some movable non-lru pages at
7231 * race condition. So you can't expect this function should be exact.
7232 */
7233 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7234 bool skip_hwpoisoned_pages)
7235 {
7236 unsigned long pfn, iter, found;
7237 int mt;
7238
7239 /*
7240 * For avoiding noise data, lru_add_drain_all() should be called
7241 * If ZONE_MOVABLE, the zone never contains unmovable pages
7242 */
7243 if (zone_idx(zone) == ZONE_MOVABLE)
7244 return false;
7245 mt = get_pageblock_migratetype(page);
7246 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7247 return false;
7248
7249 pfn = page_to_pfn(page);
7250 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7251 unsigned long check = pfn + iter;
7252
7253 if (!pfn_valid_within(check))
7254 continue;
7255
7256 page = pfn_to_page(check);
7257
7258 /*
7259 * Hugepages are not in LRU lists, but they're movable.
7260 * We need not scan over tail pages bacause we don't
7261 * handle each tail page individually in migration.
7262 */
7263 if (PageHuge(page)) {
7264 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7265 continue;
7266 }
7267
7268 /*
7269 * We can't use page_count without pin a page
7270 * because another CPU can free compound page.
7271 * This check already skips compound tails of THP
7272 * because their page->_refcount is zero at all time.
7273 */
7274 if (!page_ref_count(page)) {
7275 if (PageBuddy(page))
7276 iter += (1 << page_order(page)) - 1;
7277 continue;
7278 }
7279
7280 /*
7281 * The HWPoisoned page may be not in buddy system, and
7282 * page_count() is not 0.
7283 */
7284 if (skip_hwpoisoned_pages && PageHWPoison(page))
7285 continue;
7286
7287 if (__PageMovable(page))
7288 continue;
7289
7290 if (!PageLRU(page))
7291 found++;
7292 /*
7293 * If there are RECLAIMABLE pages, we need to check
7294 * it. But now, memory offline itself doesn't call
7295 * shrink_node_slabs() and it still to be fixed.
7296 */
7297 /*
7298 * If the page is not RAM, page_count()should be 0.
7299 * we don't need more check. This is an _used_ not-movable page.
7300 *
7301 * The problematic thing here is PG_reserved pages. PG_reserved
7302 * is set to both of a memory hole page and a _used_ kernel
7303 * page at boot.
7304 */
7305 if (found > count)
7306 return true;
7307 }
7308 return false;
7309 }
7310
7311 bool is_pageblock_removable_nolock(struct page *page)
7312 {
7313 struct zone *zone;
7314 unsigned long pfn;
7315
7316 /*
7317 * We have to be careful here because we are iterating over memory
7318 * sections which are not zone aware so we might end up outside of
7319 * the zone but still within the section.
7320 * We have to take care about the node as well. If the node is offline
7321 * its NODE_DATA will be NULL - see page_zone.
7322 */
7323 if (!node_online(page_to_nid(page)))
7324 return false;
7325
7326 zone = page_zone(page);
7327 pfn = page_to_pfn(page);
7328 if (!zone_spans_pfn(zone, pfn))
7329 return false;
7330
7331 return !has_unmovable_pages(zone, page, 0, true);
7332 }
7333
7334 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7335
7336 static unsigned long pfn_max_align_down(unsigned long pfn)
7337 {
7338 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7339 pageblock_nr_pages) - 1);
7340 }
7341
7342 static unsigned long pfn_max_align_up(unsigned long pfn)
7343 {
7344 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7345 pageblock_nr_pages));
7346 }
7347
7348 /* [start, end) must belong to a single zone. */
7349 static int __alloc_contig_migrate_range(struct compact_control *cc,
7350 unsigned long start, unsigned long end)
7351 {
7352 /* This function is based on compact_zone() from compaction.c. */
7353 unsigned long nr_reclaimed;
7354 unsigned long pfn = start;
7355 unsigned int tries = 0;
7356 int ret = 0;
7357
7358 migrate_prep();
7359
7360 while (pfn < end || !list_empty(&cc->migratepages)) {
7361 if (fatal_signal_pending(current)) {
7362 ret = -EINTR;
7363 break;
7364 }
7365
7366 if (list_empty(&cc->migratepages)) {
7367 cc->nr_migratepages = 0;
7368 pfn = isolate_migratepages_range(cc, pfn, end);
7369 if (!pfn) {
7370 ret = -EINTR;
7371 break;
7372 }
7373 tries = 0;
7374 } else if (++tries == 5) {
7375 ret = ret < 0 ? ret : -EBUSY;
7376 break;
7377 }
7378
7379 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7380 &cc->migratepages);
7381 cc->nr_migratepages -= nr_reclaimed;
7382
7383 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7384 NULL, 0, cc->mode, MR_CMA);
7385 }
7386 if (ret < 0) {
7387 putback_movable_pages(&cc->migratepages);
7388 return ret;
7389 }
7390 return 0;
7391 }
7392
7393 /**
7394 * alloc_contig_range() -- tries to allocate given range of pages
7395 * @start: start PFN to allocate
7396 * @end: one-past-the-last PFN to allocate
7397 * @migratetype: migratetype of the underlaying pageblocks (either
7398 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7399 * in range must have the same migratetype and it must
7400 * be either of the two.
7401 * @gfp_mask: GFP mask to use during compaction
7402 *
7403 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7404 * aligned, however it's the caller's responsibility to guarantee that
7405 * we are the only thread that changes migrate type of pageblocks the
7406 * pages fall in.
7407 *
7408 * The PFN range must belong to a single zone.
7409 *
7410 * Returns zero on success or negative error code. On success all
7411 * pages which PFN is in [start, end) are allocated for the caller and
7412 * need to be freed with free_contig_range().
7413 */
7414 int alloc_contig_range(unsigned long start, unsigned long end,
7415 unsigned migratetype, gfp_t gfp_mask)
7416 {
7417 unsigned long outer_start, outer_end;
7418 unsigned int order;
7419 int ret = 0;
7420
7421 struct compact_control cc = {
7422 .nr_migratepages = 0,
7423 .order = -1,
7424 .zone = page_zone(pfn_to_page(start)),
7425 .mode = MIGRATE_SYNC,
7426 .ignore_skip_hint = true,
7427 .gfp_mask = memalloc_noio_flags(gfp_mask),
7428 };
7429 INIT_LIST_HEAD(&cc.migratepages);
7430
7431 /*
7432 * What we do here is we mark all pageblocks in range as
7433 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7434 * have different sizes, and due to the way page allocator
7435 * work, we align the range to biggest of the two pages so
7436 * that page allocator won't try to merge buddies from
7437 * different pageblocks and change MIGRATE_ISOLATE to some
7438 * other migration type.
7439 *
7440 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7441 * migrate the pages from an unaligned range (ie. pages that
7442 * we are interested in). This will put all the pages in
7443 * range back to page allocator as MIGRATE_ISOLATE.
7444 *
7445 * When this is done, we take the pages in range from page
7446 * allocator removing them from the buddy system. This way
7447 * page allocator will never consider using them.
7448 *
7449 * This lets us mark the pageblocks back as
7450 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7451 * aligned range but not in the unaligned, original range are
7452 * put back to page allocator so that buddy can use them.
7453 */
7454
7455 ret = start_isolate_page_range(pfn_max_align_down(start),
7456 pfn_max_align_up(end), migratetype,
7457 false);
7458 if (ret)
7459 return ret;
7460
7461 /*
7462 * In case of -EBUSY, we'd like to know which page causes problem.
7463 * So, just fall through. We will check it in test_pages_isolated().
7464 */
7465 ret = __alloc_contig_migrate_range(&cc, start, end);
7466 if (ret && ret != -EBUSY)
7467 goto done;
7468
7469 /*
7470 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7471 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7472 * more, all pages in [start, end) are free in page allocator.
7473 * What we are going to do is to allocate all pages from
7474 * [start, end) (that is remove them from page allocator).
7475 *
7476 * The only problem is that pages at the beginning and at the
7477 * end of interesting range may be not aligned with pages that
7478 * page allocator holds, ie. they can be part of higher order
7479 * pages. Because of this, we reserve the bigger range and
7480 * once this is done free the pages we are not interested in.
7481 *
7482 * We don't have to hold zone->lock here because the pages are
7483 * isolated thus they won't get removed from buddy.
7484 */
7485
7486 lru_add_drain_all();
7487 drain_all_pages(cc.zone);
7488
7489 order = 0;
7490 outer_start = start;
7491 while (!PageBuddy(pfn_to_page(outer_start))) {
7492 if (++order >= MAX_ORDER) {
7493 outer_start = start;
7494 break;
7495 }
7496 outer_start &= ~0UL << order;
7497 }
7498
7499 if (outer_start != start) {
7500 order = page_order(pfn_to_page(outer_start));
7501
7502 /*
7503 * outer_start page could be small order buddy page and
7504 * it doesn't include start page. Adjust outer_start
7505 * in this case to report failed page properly
7506 * on tracepoint in test_pages_isolated()
7507 */
7508 if (outer_start + (1UL << order) <= start)
7509 outer_start = start;
7510 }
7511
7512 /* Make sure the range is really isolated. */
7513 if (test_pages_isolated(outer_start, end, false)) {
7514 pr_info("%s: [%lx, %lx) PFNs busy\n",
7515 __func__, outer_start, end);
7516 ret = -EBUSY;
7517 goto done;
7518 }
7519
7520 /* Grab isolated pages from freelists. */
7521 outer_end = isolate_freepages_range(&cc, outer_start, end);
7522 if (!outer_end) {
7523 ret = -EBUSY;
7524 goto done;
7525 }
7526
7527 /* Free head and tail (if any) */
7528 if (start != outer_start)
7529 free_contig_range(outer_start, start - outer_start);
7530 if (end != outer_end)
7531 free_contig_range(end, outer_end - end);
7532
7533 done:
7534 undo_isolate_page_range(pfn_max_align_down(start),
7535 pfn_max_align_up(end), migratetype);
7536 return ret;
7537 }
7538
7539 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7540 {
7541 unsigned int count = 0;
7542
7543 for (; nr_pages--; pfn++) {
7544 struct page *page = pfn_to_page(pfn);
7545
7546 count += page_count(page) != 1;
7547 __free_page(page);
7548 }
7549 WARN(count != 0, "%d pages are still in use!\n", count);
7550 }
7551 #endif
7552
7553 #ifdef CONFIG_MEMORY_HOTPLUG
7554 /*
7555 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7556 * page high values need to be recalulated.
7557 */
7558 void __meminit zone_pcp_update(struct zone *zone)
7559 {
7560 unsigned cpu;
7561 mutex_lock(&pcp_batch_high_lock);
7562 for_each_possible_cpu(cpu)
7563 pageset_set_high_and_batch(zone,
7564 per_cpu_ptr(zone->pageset, cpu));
7565 mutex_unlock(&pcp_batch_high_lock);
7566 }
7567 #endif
7568
7569 void zone_pcp_reset(struct zone *zone)
7570 {
7571 unsigned long flags;
7572 int cpu;
7573 struct per_cpu_pageset *pset;
7574
7575 /* avoid races with drain_pages() */
7576 local_irq_save(flags);
7577 if (zone->pageset != &boot_pageset) {
7578 for_each_online_cpu(cpu) {
7579 pset = per_cpu_ptr(zone->pageset, cpu);
7580 drain_zonestat(zone, pset);
7581 }
7582 free_percpu(zone->pageset);
7583 zone->pageset = &boot_pageset;
7584 }
7585 local_irq_restore(flags);
7586 }
7587
7588 #ifdef CONFIG_MEMORY_HOTREMOVE
7589 /*
7590 * All pages in the range must be in a single zone and isolated
7591 * before calling this.
7592 */
7593 void
7594 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7595 {
7596 struct page *page;
7597 struct zone *zone;
7598 unsigned int order, i;
7599 unsigned long pfn;
7600 unsigned long flags;
7601 /* find the first valid pfn */
7602 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7603 if (pfn_valid(pfn))
7604 break;
7605 if (pfn == end_pfn)
7606 return;
7607 zone = page_zone(pfn_to_page(pfn));
7608 spin_lock_irqsave(&zone->lock, flags);
7609 pfn = start_pfn;
7610 while (pfn < end_pfn) {
7611 if (!pfn_valid(pfn)) {
7612 pfn++;
7613 continue;
7614 }
7615 page = pfn_to_page(pfn);
7616 /*
7617 * The HWPoisoned page may be not in buddy system, and
7618 * page_count() is not 0.
7619 */
7620 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7621 pfn++;
7622 SetPageReserved(page);
7623 continue;
7624 }
7625
7626 BUG_ON(page_count(page));
7627 BUG_ON(!PageBuddy(page));
7628 order = page_order(page);
7629 #ifdef CONFIG_DEBUG_VM
7630 pr_info("remove from free list %lx %d %lx\n",
7631 pfn, 1 << order, end_pfn);
7632 #endif
7633 list_del(&page->lru);
7634 rmv_page_order(page);
7635 zone->free_area[order].nr_free--;
7636 for (i = 0; i < (1 << order); i++)
7637 SetPageReserved((page+i));
7638 pfn += (1 << order);
7639 }
7640 spin_unlock_irqrestore(&zone->lock, flags);
7641 }
7642 #endif
7643
7644 bool is_free_buddy_page(struct page *page)
7645 {
7646 struct zone *zone = page_zone(page);
7647 unsigned long pfn = page_to_pfn(page);
7648 unsigned long flags;
7649 unsigned int order;
7650
7651 spin_lock_irqsave(&zone->lock, flags);
7652 for (order = 0; order < MAX_ORDER; order++) {
7653 struct page *page_head = page - (pfn & ((1 << order) - 1));
7654
7655 if (PageBuddy(page_head) && page_order(page_head) >= order)
7656 break;
7657 }
7658 spin_unlock_irqrestore(&zone->lock, flags);
7659
7660 return order < MAX_ORDER;
7661 }