]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/page_alloc.c
block,bfq: refactor device-idling logic
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69
70 #include <asm/sections.h>
71 #include <asm/tlbflush.h>
72 #include <asm/div64.h>
73 #include "internal.h"
74
75 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76 static DEFINE_MUTEX(pcp_batch_high_lock);
77 #define MIN_PERCPU_PAGELIST_FRACTION (8)
78
79 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80 DEFINE_PER_CPU(int, numa_node);
81 EXPORT_PER_CPU_SYMBOL(numa_node);
82 #endif
83
84 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
85 /*
86 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
87 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
88 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
89 * defined in <linux/topology.h>.
90 */
91 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
92 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
93 int _node_numa_mem_[MAX_NUMNODES];
94 #endif
95
96 /* work_structs for global per-cpu drains */
97 DEFINE_MUTEX(pcpu_drain_mutex);
98 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
99
100 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
101 volatile unsigned long latent_entropy __latent_entropy;
102 EXPORT_SYMBOL(latent_entropy);
103 #endif
104
105 /*
106 * Array of node states.
107 */
108 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
109 [N_POSSIBLE] = NODE_MASK_ALL,
110 [N_ONLINE] = { { [0] = 1UL } },
111 #ifndef CONFIG_NUMA
112 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
113 #ifdef CONFIG_HIGHMEM
114 [N_HIGH_MEMORY] = { { [0] = 1UL } },
115 #endif
116 [N_MEMORY] = { { [0] = 1UL } },
117 [N_CPU] = { { [0] = 1UL } },
118 #endif /* NUMA */
119 };
120 EXPORT_SYMBOL(node_states);
121
122 /* Protect totalram_pages and zone->managed_pages */
123 static DEFINE_SPINLOCK(managed_page_count_lock);
124
125 unsigned long totalram_pages __read_mostly;
126 unsigned long totalreserve_pages __read_mostly;
127 unsigned long totalcma_pages __read_mostly;
128
129 int percpu_pagelist_fraction;
130 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
131
132 /*
133 * A cached value of the page's pageblock's migratetype, used when the page is
134 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
135 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
136 * Also the migratetype set in the page does not necessarily match the pcplist
137 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
138 * other index - this ensures that it will be put on the correct CMA freelist.
139 */
140 static inline int get_pcppage_migratetype(struct page *page)
141 {
142 return page->index;
143 }
144
145 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
146 {
147 page->index = migratetype;
148 }
149
150 #ifdef CONFIG_PM_SLEEP
151 /*
152 * The following functions are used by the suspend/hibernate code to temporarily
153 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
154 * while devices are suspended. To avoid races with the suspend/hibernate code,
155 * they should always be called with pm_mutex held (gfp_allowed_mask also should
156 * only be modified with pm_mutex held, unless the suspend/hibernate code is
157 * guaranteed not to run in parallel with that modification).
158 */
159
160 static gfp_t saved_gfp_mask;
161
162 void pm_restore_gfp_mask(void)
163 {
164 WARN_ON(!mutex_is_locked(&pm_mutex));
165 if (saved_gfp_mask) {
166 gfp_allowed_mask = saved_gfp_mask;
167 saved_gfp_mask = 0;
168 }
169 }
170
171 void pm_restrict_gfp_mask(void)
172 {
173 WARN_ON(!mutex_is_locked(&pm_mutex));
174 WARN_ON(saved_gfp_mask);
175 saved_gfp_mask = gfp_allowed_mask;
176 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
177 }
178
179 bool pm_suspended_storage(void)
180 {
181 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
182 return false;
183 return true;
184 }
185 #endif /* CONFIG_PM_SLEEP */
186
187 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
188 unsigned int pageblock_order __read_mostly;
189 #endif
190
191 static void __free_pages_ok(struct page *page, unsigned int order);
192
193 /*
194 * results with 256, 32 in the lowmem_reserve sysctl:
195 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
196 * 1G machine -> (16M dma, 784M normal, 224M high)
197 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
198 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
199 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
200 *
201 * TBD: should special case ZONE_DMA32 machines here - in those we normally
202 * don't need any ZONE_NORMAL reservation
203 */
204 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
205 #ifdef CONFIG_ZONE_DMA
206 256,
207 #endif
208 #ifdef CONFIG_ZONE_DMA32
209 256,
210 #endif
211 #ifdef CONFIG_HIGHMEM
212 32,
213 #endif
214 32,
215 };
216
217 EXPORT_SYMBOL(totalram_pages);
218
219 static char * const zone_names[MAX_NR_ZONES] = {
220 #ifdef CONFIG_ZONE_DMA
221 "DMA",
222 #endif
223 #ifdef CONFIG_ZONE_DMA32
224 "DMA32",
225 #endif
226 "Normal",
227 #ifdef CONFIG_HIGHMEM
228 "HighMem",
229 #endif
230 "Movable",
231 #ifdef CONFIG_ZONE_DEVICE
232 "Device",
233 #endif
234 };
235
236 char * const migratetype_names[MIGRATE_TYPES] = {
237 "Unmovable",
238 "Movable",
239 "Reclaimable",
240 "HighAtomic",
241 #ifdef CONFIG_CMA
242 "CMA",
243 #endif
244 #ifdef CONFIG_MEMORY_ISOLATION
245 "Isolate",
246 #endif
247 };
248
249 compound_page_dtor * const compound_page_dtors[] = {
250 NULL,
251 free_compound_page,
252 #ifdef CONFIG_HUGETLB_PAGE
253 free_huge_page,
254 #endif
255 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
256 free_transhuge_page,
257 #endif
258 };
259
260 int min_free_kbytes = 1024;
261 int user_min_free_kbytes = -1;
262 int watermark_scale_factor = 10;
263
264 static unsigned long __meminitdata nr_kernel_pages;
265 static unsigned long __meminitdata nr_all_pages;
266 static unsigned long __meminitdata dma_reserve;
267
268 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
269 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
270 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
271 static unsigned long __initdata required_kernelcore;
272 static unsigned long __initdata required_movablecore;
273 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
274 static bool mirrored_kernelcore;
275
276 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
277 int movable_zone;
278 EXPORT_SYMBOL(movable_zone);
279 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
280
281 #if MAX_NUMNODES > 1
282 int nr_node_ids __read_mostly = MAX_NUMNODES;
283 int nr_online_nodes __read_mostly = 1;
284 EXPORT_SYMBOL(nr_node_ids);
285 EXPORT_SYMBOL(nr_online_nodes);
286 #endif
287
288 int page_group_by_mobility_disabled __read_mostly;
289
290 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
291 static inline void reset_deferred_meminit(pg_data_t *pgdat)
292 {
293 unsigned long max_initialise;
294 unsigned long reserved_lowmem;
295
296 /*
297 * Initialise at least 2G of a node but also take into account that
298 * two large system hashes that can take up 1GB for 0.25TB/node.
299 */
300 max_initialise = max(2UL << (30 - PAGE_SHIFT),
301 (pgdat->node_spanned_pages >> 8));
302
303 /*
304 * Compensate the all the memblock reservations (e.g. crash kernel)
305 * from the initial estimation to make sure we will initialize enough
306 * memory to boot.
307 */
308 reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn,
309 pgdat->node_start_pfn + max_initialise);
310 max_initialise += reserved_lowmem;
311
312 pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages);
313 pgdat->first_deferred_pfn = ULONG_MAX;
314 }
315
316 /* Returns true if the struct page for the pfn is uninitialised */
317 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
318 {
319 int nid = early_pfn_to_nid(pfn);
320
321 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
322 return true;
323
324 return false;
325 }
326
327 /*
328 * Returns false when the remaining initialisation should be deferred until
329 * later in the boot cycle when it can be parallelised.
330 */
331 static inline bool update_defer_init(pg_data_t *pgdat,
332 unsigned long pfn, unsigned long zone_end,
333 unsigned long *nr_initialised)
334 {
335 /* Always populate low zones for address-contrained allocations */
336 if (zone_end < pgdat_end_pfn(pgdat))
337 return true;
338 (*nr_initialised)++;
339 if ((*nr_initialised > pgdat->static_init_size) &&
340 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
341 pgdat->first_deferred_pfn = pfn;
342 return false;
343 }
344
345 return true;
346 }
347 #else
348 static inline void reset_deferred_meminit(pg_data_t *pgdat)
349 {
350 }
351
352 static inline bool early_page_uninitialised(unsigned long pfn)
353 {
354 return false;
355 }
356
357 static inline bool update_defer_init(pg_data_t *pgdat,
358 unsigned long pfn, unsigned long zone_end,
359 unsigned long *nr_initialised)
360 {
361 return true;
362 }
363 #endif
364
365 /* Return a pointer to the bitmap storing bits affecting a block of pages */
366 static inline unsigned long *get_pageblock_bitmap(struct page *page,
367 unsigned long pfn)
368 {
369 #ifdef CONFIG_SPARSEMEM
370 return __pfn_to_section(pfn)->pageblock_flags;
371 #else
372 return page_zone(page)->pageblock_flags;
373 #endif /* CONFIG_SPARSEMEM */
374 }
375
376 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
377 {
378 #ifdef CONFIG_SPARSEMEM
379 pfn &= (PAGES_PER_SECTION-1);
380 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
381 #else
382 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
383 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
384 #endif /* CONFIG_SPARSEMEM */
385 }
386
387 /**
388 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
389 * @page: The page within the block of interest
390 * @pfn: The target page frame number
391 * @end_bitidx: The last bit of interest to retrieve
392 * @mask: mask of bits that the caller is interested in
393 *
394 * Return: pageblock_bits flags
395 */
396 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
397 unsigned long pfn,
398 unsigned long end_bitidx,
399 unsigned long mask)
400 {
401 unsigned long *bitmap;
402 unsigned long bitidx, word_bitidx;
403 unsigned long word;
404
405 bitmap = get_pageblock_bitmap(page, pfn);
406 bitidx = pfn_to_bitidx(page, pfn);
407 word_bitidx = bitidx / BITS_PER_LONG;
408 bitidx &= (BITS_PER_LONG-1);
409
410 word = bitmap[word_bitidx];
411 bitidx += end_bitidx;
412 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
413 }
414
415 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
416 unsigned long end_bitidx,
417 unsigned long mask)
418 {
419 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
420 }
421
422 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
423 {
424 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
425 }
426
427 /**
428 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
429 * @page: The page within the block of interest
430 * @flags: The flags to set
431 * @pfn: The target page frame number
432 * @end_bitidx: The last bit of interest
433 * @mask: mask of bits that the caller is interested in
434 */
435 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
436 unsigned long pfn,
437 unsigned long end_bitidx,
438 unsigned long mask)
439 {
440 unsigned long *bitmap;
441 unsigned long bitidx, word_bitidx;
442 unsigned long old_word, word;
443
444 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
445
446 bitmap = get_pageblock_bitmap(page, pfn);
447 bitidx = pfn_to_bitidx(page, pfn);
448 word_bitidx = bitidx / BITS_PER_LONG;
449 bitidx &= (BITS_PER_LONG-1);
450
451 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
452
453 bitidx += end_bitidx;
454 mask <<= (BITS_PER_LONG - bitidx - 1);
455 flags <<= (BITS_PER_LONG - bitidx - 1);
456
457 word = READ_ONCE(bitmap[word_bitidx]);
458 for (;;) {
459 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
460 if (word == old_word)
461 break;
462 word = old_word;
463 }
464 }
465
466 void set_pageblock_migratetype(struct page *page, int migratetype)
467 {
468 if (unlikely(page_group_by_mobility_disabled &&
469 migratetype < MIGRATE_PCPTYPES))
470 migratetype = MIGRATE_UNMOVABLE;
471
472 set_pageblock_flags_group(page, (unsigned long)migratetype,
473 PB_migrate, PB_migrate_end);
474 }
475
476 #ifdef CONFIG_DEBUG_VM
477 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
478 {
479 int ret = 0;
480 unsigned seq;
481 unsigned long pfn = page_to_pfn(page);
482 unsigned long sp, start_pfn;
483
484 do {
485 seq = zone_span_seqbegin(zone);
486 start_pfn = zone->zone_start_pfn;
487 sp = zone->spanned_pages;
488 if (!zone_spans_pfn(zone, pfn))
489 ret = 1;
490 } while (zone_span_seqretry(zone, seq));
491
492 if (ret)
493 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
494 pfn, zone_to_nid(zone), zone->name,
495 start_pfn, start_pfn + sp);
496
497 return ret;
498 }
499
500 static int page_is_consistent(struct zone *zone, struct page *page)
501 {
502 if (!pfn_valid_within(page_to_pfn(page)))
503 return 0;
504 if (zone != page_zone(page))
505 return 0;
506
507 return 1;
508 }
509 /*
510 * Temporary debugging check for pages not lying within a given zone.
511 */
512 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
513 {
514 if (page_outside_zone_boundaries(zone, page))
515 return 1;
516 if (!page_is_consistent(zone, page))
517 return 1;
518
519 return 0;
520 }
521 #else
522 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
523 {
524 return 0;
525 }
526 #endif
527
528 static void bad_page(struct page *page, const char *reason,
529 unsigned long bad_flags)
530 {
531 static unsigned long resume;
532 static unsigned long nr_shown;
533 static unsigned long nr_unshown;
534
535 /*
536 * Allow a burst of 60 reports, then keep quiet for that minute;
537 * or allow a steady drip of one report per second.
538 */
539 if (nr_shown == 60) {
540 if (time_before(jiffies, resume)) {
541 nr_unshown++;
542 goto out;
543 }
544 if (nr_unshown) {
545 pr_alert(
546 "BUG: Bad page state: %lu messages suppressed\n",
547 nr_unshown);
548 nr_unshown = 0;
549 }
550 nr_shown = 0;
551 }
552 if (nr_shown++ == 0)
553 resume = jiffies + 60 * HZ;
554
555 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
556 current->comm, page_to_pfn(page));
557 __dump_page(page, reason);
558 bad_flags &= page->flags;
559 if (bad_flags)
560 pr_alert("bad because of flags: %#lx(%pGp)\n",
561 bad_flags, &bad_flags);
562 dump_page_owner(page);
563
564 print_modules();
565 dump_stack();
566 out:
567 /* Leave bad fields for debug, except PageBuddy could make trouble */
568 page_mapcount_reset(page); /* remove PageBuddy */
569 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
570 }
571
572 /*
573 * Higher-order pages are called "compound pages". They are structured thusly:
574 *
575 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
576 *
577 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
578 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
579 *
580 * The first tail page's ->compound_dtor holds the offset in array of compound
581 * page destructors. See compound_page_dtors.
582 *
583 * The first tail page's ->compound_order holds the order of allocation.
584 * This usage means that zero-order pages may not be compound.
585 */
586
587 void free_compound_page(struct page *page)
588 {
589 __free_pages_ok(page, compound_order(page));
590 }
591
592 void prep_compound_page(struct page *page, unsigned int order)
593 {
594 int i;
595 int nr_pages = 1 << order;
596
597 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
598 set_compound_order(page, order);
599 __SetPageHead(page);
600 for (i = 1; i < nr_pages; i++) {
601 struct page *p = page + i;
602 set_page_count(p, 0);
603 p->mapping = TAIL_MAPPING;
604 set_compound_head(p, page);
605 }
606 atomic_set(compound_mapcount_ptr(page), -1);
607 }
608
609 #ifdef CONFIG_DEBUG_PAGEALLOC
610 unsigned int _debug_guardpage_minorder;
611 bool _debug_pagealloc_enabled __read_mostly
612 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
613 EXPORT_SYMBOL(_debug_pagealloc_enabled);
614 bool _debug_guardpage_enabled __read_mostly;
615
616 static int __init early_debug_pagealloc(char *buf)
617 {
618 if (!buf)
619 return -EINVAL;
620 return kstrtobool(buf, &_debug_pagealloc_enabled);
621 }
622 early_param("debug_pagealloc", early_debug_pagealloc);
623
624 static bool need_debug_guardpage(void)
625 {
626 /* If we don't use debug_pagealloc, we don't need guard page */
627 if (!debug_pagealloc_enabled())
628 return false;
629
630 if (!debug_guardpage_minorder())
631 return false;
632
633 return true;
634 }
635
636 static void init_debug_guardpage(void)
637 {
638 if (!debug_pagealloc_enabled())
639 return;
640
641 if (!debug_guardpage_minorder())
642 return;
643
644 _debug_guardpage_enabled = true;
645 }
646
647 struct page_ext_operations debug_guardpage_ops = {
648 .need = need_debug_guardpage,
649 .init = init_debug_guardpage,
650 };
651
652 static int __init debug_guardpage_minorder_setup(char *buf)
653 {
654 unsigned long res;
655
656 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
657 pr_err("Bad debug_guardpage_minorder value\n");
658 return 0;
659 }
660 _debug_guardpage_minorder = res;
661 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
662 return 0;
663 }
664 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
665
666 static inline bool set_page_guard(struct zone *zone, struct page *page,
667 unsigned int order, int migratetype)
668 {
669 struct page_ext *page_ext;
670
671 if (!debug_guardpage_enabled())
672 return false;
673
674 if (order >= debug_guardpage_minorder())
675 return false;
676
677 page_ext = lookup_page_ext(page);
678 if (unlikely(!page_ext))
679 return false;
680
681 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
682
683 INIT_LIST_HEAD(&page->lru);
684 set_page_private(page, order);
685 /* Guard pages are not available for any usage */
686 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
687
688 return true;
689 }
690
691 static inline void clear_page_guard(struct zone *zone, struct page *page,
692 unsigned int order, int migratetype)
693 {
694 struct page_ext *page_ext;
695
696 if (!debug_guardpage_enabled())
697 return;
698
699 page_ext = lookup_page_ext(page);
700 if (unlikely(!page_ext))
701 return;
702
703 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
704
705 set_page_private(page, 0);
706 if (!is_migrate_isolate(migratetype))
707 __mod_zone_freepage_state(zone, (1 << order), migratetype);
708 }
709 #else
710 struct page_ext_operations debug_guardpage_ops;
711 static inline bool set_page_guard(struct zone *zone, struct page *page,
712 unsigned int order, int migratetype) { return false; }
713 static inline void clear_page_guard(struct zone *zone, struct page *page,
714 unsigned int order, int migratetype) {}
715 #endif
716
717 static inline void set_page_order(struct page *page, unsigned int order)
718 {
719 set_page_private(page, order);
720 __SetPageBuddy(page);
721 }
722
723 static inline void rmv_page_order(struct page *page)
724 {
725 __ClearPageBuddy(page);
726 set_page_private(page, 0);
727 }
728
729 /*
730 * This function checks whether a page is free && is the buddy
731 * we can do coalesce a page and its buddy if
732 * (a) the buddy is not in a hole (check before calling!) &&
733 * (b) the buddy is in the buddy system &&
734 * (c) a page and its buddy have the same order &&
735 * (d) a page and its buddy are in the same zone.
736 *
737 * For recording whether a page is in the buddy system, we set ->_mapcount
738 * PAGE_BUDDY_MAPCOUNT_VALUE.
739 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
740 * serialized by zone->lock.
741 *
742 * For recording page's order, we use page_private(page).
743 */
744 static inline int page_is_buddy(struct page *page, struct page *buddy,
745 unsigned int order)
746 {
747 if (page_is_guard(buddy) && page_order(buddy) == order) {
748 if (page_zone_id(page) != page_zone_id(buddy))
749 return 0;
750
751 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
752
753 return 1;
754 }
755
756 if (PageBuddy(buddy) && page_order(buddy) == order) {
757 /*
758 * zone check is done late to avoid uselessly
759 * calculating zone/node ids for pages that could
760 * never merge.
761 */
762 if (page_zone_id(page) != page_zone_id(buddy))
763 return 0;
764
765 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
766
767 return 1;
768 }
769 return 0;
770 }
771
772 /*
773 * Freeing function for a buddy system allocator.
774 *
775 * The concept of a buddy system is to maintain direct-mapped table
776 * (containing bit values) for memory blocks of various "orders".
777 * The bottom level table contains the map for the smallest allocatable
778 * units of memory (here, pages), and each level above it describes
779 * pairs of units from the levels below, hence, "buddies".
780 * At a high level, all that happens here is marking the table entry
781 * at the bottom level available, and propagating the changes upward
782 * as necessary, plus some accounting needed to play nicely with other
783 * parts of the VM system.
784 * At each level, we keep a list of pages, which are heads of continuous
785 * free pages of length of (1 << order) and marked with _mapcount
786 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
787 * field.
788 * So when we are allocating or freeing one, we can derive the state of the
789 * other. That is, if we allocate a small block, and both were
790 * free, the remainder of the region must be split into blocks.
791 * If a block is freed, and its buddy is also free, then this
792 * triggers coalescing into a block of larger size.
793 *
794 * -- nyc
795 */
796
797 static inline void __free_one_page(struct page *page,
798 unsigned long pfn,
799 struct zone *zone, unsigned int order,
800 int migratetype)
801 {
802 unsigned long combined_pfn;
803 unsigned long uninitialized_var(buddy_pfn);
804 struct page *buddy;
805 unsigned int max_order;
806
807 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
808
809 VM_BUG_ON(!zone_is_initialized(zone));
810 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
811
812 VM_BUG_ON(migratetype == -1);
813 if (likely(!is_migrate_isolate(migratetype)))
814 __mod_zone_freepage_state(zone, 1 << order, migratetype);
815
816 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
817 VM_BUG_ON_PAGE(bad_range(zone, page), page);
818
819 continue_merging:
820 while (order < max_order - 1) {
821 buddy_pfn = __find_buddy_pfn(pfn, order);
822 buddy = page + (buddy_pfn - pfn);
823
824 if (!pfn_valid_within(buddy_pfn))
825 goto done_merging;
826 if (!page_is_buddy(page, buddy, order))
827 goto done_merging;
828 /*
829 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
830 * merge with it and move up one order.
831 */
832 if (page_is_guard(buddy)) {
833 clear_page_guard(zone, buddy, order, migratetype);
834 } else {
835 list_del(&buddy->lru);
836 zone->free_area[order].nr_free--;
837 rmv_page_order(buddy);
838 }
839 combined_pfn = buddy_pfn & pfn;
840 page = page + (combined_pfn - pfn);
841 pfn = combined_pfn;
842 order++;
843 }
844 if (max_order < MAX_ORDER) {
845 /* If we are here, it means order is >= pageblock_order.
846 * We want to prevent merge between freepages on isolate
847 * pageblock and normal pageblock. Without this, pageblock
848 * isolation could cause incorrect freepage or CMA accounting.
849 *
850 * We don't want to hit this code for the more frequent
851 * low-order merging.
852 */
853 if (unlikely(has_isolate_pageblock(zone))) {
854 int buddy_mt;
855
856 buddy_pfn = __find_buddy_pfn(pfn, order);
857 buddy = page + (buddy_pfn - pfn);
858 buddy_mt = get_pageblock_migratetype(buddy);
859
860 if (migratetype != buddy_mt
861 && (is_migrate_isolate(migratetype) ||
862 is_migrate_isolate(buddy_mt)))
863 goto done_merging;
864 }
865 max_order++;
866 goto continue_merging;
867 }
868
869 done_merging:
870 set_page_order(page, order);
871
872 /*
873 * If this is not the largest possible page, check if the buddy
874 * of the next-highest order is free. If it is, it's possible
875 * that pages are being freed that will coalesce soon. In case,
876 * that is happening, add the free page to the tail of the list
877 * so it's less likely to be used soon and more likely to be merged
878 * as a higher order page
879 */
880 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
881 struct page *higher_page, *higher_buddy;
882 combined_pfn = buddy_pfn & pfn;
883 higher_page = page + (combined_pfn - pfn);
884 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
885 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
886 if (pfn_valid_within(buddy_pfn) &&
887 page_is_buddy(higher_page, higher_buddy, order + 1)) {
888 list_add_tail(&page->lru,
889 &zone->free_area[order].free_list[migratetype]);
890 goto out;
891 }
892 }
893
894 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
895 out:
896 zone->free_area[order].nr_free++;
897 }
898
899 /*
900 * A bad page could be due to a number of fields. Instead of multiple branches,
901 * try and check multiple fields with one check. The caller must do a detailed
902 * check if necessary.
903 */
904 static inline bool page_expected_state(struct page *page,
905 unsigned long check_flags)
906 {
907 if (unlikely(atomic_read(&page->_mapcount) != -1))
908 return false;
909
910 if (unlikely((unsigned long)page->mapping |
911 page_ref_count(page) |
912 #ifdef CONFIG_MEMCG
913 (unsigned long)page->mem_cgroup |
914 #endif
915 (page->flags & check_flags)))
916 return false;
917
918 return true;
919 }
920
921 static void free_pages_check_bad(struct page *page)
922 {
923 const char *bad_reason;
924 unsigned long bad_flags;
925
926 bad_reason = NULL;
927 bad_flags = 0;
928
929 if (unlikely(atomic_read(&page->_mapcount) != -1))
930 bad_reason = "nonzero mapcount";
931 if (unlikely(page->mapping != NULL))
932 bad_reason = "non-NULL mapping";
933 if (unlikely(page_ref_count(page) != 0))
934 bad_reason = "nonzero _refcount";
935 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
936 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
937 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
938 }
939 #ifdef CONFIG_MEMCG
940 if (unlikely(page->mem_cgroup))
941 bad_reason = "page still charged to cgroup";
942 #endif
943 bad_page(page, bad_reason, bad_flags);
944 }
945
946 static inline int free_pages_check(struct page *page)
947 {
948 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
949 return 0;
950
951 /* Something has gone sideways, find it */
952 free_pages_check_bad(page);
953 return 1;
954 }
955
956 static int free_tail_pages_check(struct page *head_page, struct page *page)
957 {
958 int ret = 1;
959
960 /*
961 * We rely page->lru.next never has bit 0 set, unless the page
962 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
963 */
964 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
965
966 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
967 ret = 0;
968 goto out;
969 }
970 switch (page - head_page) {
971 case 1:
972 /* the first tail page: ->mapping is compound_mapcount() */
973 if (unlikely(compound_mapcount(page))) {
974 bad_page(page, "nonzero compound_mapcount", 0);
975 goto out;
976 }
977 break;
978 case 2:
979 /*
980 * the second tail page: ->mapping is
981 * page_deferred_list().next -- ignore value.
982 */
983 break;
984 default:
985 if (page->mapping != TAIL_MAPPING) {
986 bad_page(page, "corrupted mapping in tail page", 0);
987 goto out;
988 }
989 break;
990 }
991 if (unlikely(!PageTail(page))) {
992 bad_page(page, "PageTail not set", 0);
993 goto out;
994 }
995 if (unlikely(compound_head(page) != head_page)) {
996 bad_page(page, "compound_head not consistent", 0);
997 goto out;
998 }
999 ret = 0;
1000 out:
1001 page->mapping = NULL;
1002 clear_compound_head(page);
1003 return ret;
1004 }
1005
1006 static __always_inline bool free_pages_prepare(struct page *page,
1007 unsigned int order, bool check_free)
1008 {
1009 int bad = 0;
1010
1011 VM_BUG_ON_PAGE(PageTail(page), page);
1012
1013 trace_mm_page_free(page, order);
1014 kmemcheck_free_shadow(page, order);
1015
1016 /*
1017 * Check tail pages before head page information is cleared to
1018 * avoid checking PageCompound for order-0 pages.
1019 */
1020 if (unlikely(order)) {
1021 bool compound = PageCompound(page);
1022 int i;
1023
1024 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1025
1026 if (compound)
1027 ClearPageDoubleMap(page);
1028 for (i = 1; i < (1 << order); i++) {
1029 if (compound)
1030 bad += free_tail_pages_check(page, page + i);
1031 if (unlikely(free_pages_check(page + i))) {
1032 bad++;
1033 continue;
1034 }
1035 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1036 }
1037 }
1038 if (PageMappingFlags(page))
1039 page->mapping = NULL;
1040 if (memcg_kmem_enabled() && PageKmemcg(page))
1041 memcg_kmem_uncharge(page, order);
1042 if (check_free)
1043 bad += free_pages_check(page);
1044 if (bad)
1045 return false;
1046
1047 page_cpupid_reset_last(page);
1048 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1049 reset_page_owner(page, order);
1050
1051 if (!PageHighMem(page)) {
1052 debug_check_no_locks_freed(page_address(page),
1053 PAGE_SIZE << order);
1054 debug_check_no_obj_freed(page_address(page),
1055 PAGE_SIZE << order);
1056 }
1057 arch_free_page(page, order);
1058 kernel_poison_pages(page, 1 << order, 0);
1059 kernel_map_pages(page, 1 << order, 0);
1060 kasan_free_pages(page, order);
1061
1062 return true;
1063 }
1064
1065 #ifdef CONFIG_DEBUG_VM
1066 static inline bool free_pcp_prepare(struct page *page)
1067 {
1068 return free_pages_prepare(page, 0, true);
1069 }
1070
1071 static inline bool bulkfree_pcp_prepare(struct page *page)
1072 {
1073 return false;
1074 }
1075 #else
1076 static bool free_pcp_prepare(struct page *page)
1077 {
1078 return free_pages_prepare(page, 0, false);
1079 }
1080
1081 static bool bulkfree_pcp_prepare(struct page *page)
1082 {
1083 return free_pages_check(page);
1084 }
1085 #endif /* CONFIG_DEBUG_VM */
1086
1087 /*
1088 * Frees a number of pages from the PCP lists
1089 * Assumes all pages on list are in same zone, and of same order.
1090 * count is the number of pages to free.
1091 *
1092 * If the zone was previously in an "all pages pinned" state then look to
1093 * see if this freeing clears that state.
1094 *
1095 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1096 * pinned" detection logic.
1097 */
1098 static void free_pcppages_bulk(struct zone *zone, int count,
1099 struct per_cpu_pages *pcp)
1100 {
1101 int migratetype = 0;
1102 int batch_free = 0;
1103 bool isolated_pageblocks;
1104
1105 spin_lock(&zone->lock);
1106 isolated_pageblocks = has_isolate_pageblock(zone);
1107
1108 while (count) {
1109 struct page *page;
1110 struct list_head *list;
1111
1112 /*
1113 * Remove pages from lists in a round-robin fashion. A
1114 * batch_free count is maintained that is incremented when an
1115 * empty list is encountered. This is so more pages are freed
1116 * off fuller lists instead of spinning excessively around empty
1117 * lists
1118 */
1119 do {
1120 batch_free++;
1121 if (++migratetype == MIGRATE_PCPTYPES)
1122 migratetype = 0;
1123 list = &pcp->lists[migratetype];
1124 } while (list_empty(list));
1125
1126 /* This is the only non-empty list. Free them all. */
1127 if (batch_free == MIGRATE_PCPTYPES)
1128 batch_free = count;
1129
1130 do {
1131 int mt; /* migratetype of the to-be-freed page */
1132
1133 page = list_last_entry(list, struct page, lru);
1134 /* must delete as __free_one_page list manipulates */
1135 list_del(&page->lru);
1136
1137 mt = get_pcppage_migratetype(page);
1138 /* MIGRATE_ISOLATE page should not go to pcplists */
1139 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1140 /* Pageblock could have been isolated meanwhile */
1141 if (unlikely(isolated_pageblocks))
1142 mt = get_pageblock_migratetype(page);
1143
1144 if (bulkfree_pcp_prepare(page))
1145 continue;
1146
1147 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1148 trace_mm_page_pcpu_drain(page, 0, mt);
1149 } while (--count && --batch_free && !list_empty(list));
1150 }
1151 spin_unlock(&zone->lock);
1152 }
1153
1154 static void free_one_page(struct zone *zone,
1155 struct page *page, unsigned long pfn,
1156 unsigned int order,
1157 int migratetype)
1158 {
1159 spin_lock(&zone->lock);
1160 if (unlikely(has_isolate_pageblock(zone) ||
1161 is_migrate_isolate(migratetype))) {
1162 migratetype = get_pfnblock_migratetype(page, pfn);
1163 }
1164 __free_one_page(page, pfn, zone, order, migratetype);
1165 spin_unlock(&zone->lock);
1166 }
1167
1168 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1169 unsigned long zone, int nid)
1170 {
1171 set_page_links(page, zone, nid, pfn);
1172 init_page_count(page);
1173 page_mapcount_reset(page);
1174 page_cpupid_reset_last(page);
1175
1176 INIT_LIST_HEAD(&page->lru);
1177 #ifdef WANT_PAGE_VIRTUAL
1178 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1179 if (!is_highmem_idx(zone))
1180 set_page_address(page, __va(pfn << PAGE_SHIFT));
1181 #endif
1182 }
1183
1184 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1185 int nid)
1186 {
1187 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1188 }
1189
1190 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1191 static void init_reserved_page(unsigned long pfn)
1192 {
1193 pg_data_t *pgdat;
1194 int nid, zid;
1195
1196 if (!early_page_uninitialised(pfn))
1197 return;
1198
1199 nid = early_pfn_to_nid(pfn);
1200 pgdat = NODE_DATA(nid);
1201
1202 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1203 struct zone *zone = &pgdat->node_zones[zid];
1204
1205 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1206 break;
1207 }
1208 __init_single_pfn(pfn, zid, nid);
1209 }
1210 #else
1211 static inline void init_reserved_page(unsigned long pfn)
1212 {
1213 }
1214 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1215
1216 /*
1217 * Initialised pages do not have PageReserved set. This function is
1218 * called for each range allocated by the bootmem allocator and
1219 * marks the pages PageReserved. The remaining valid pages are later
1220 * sent to the buddy page allocator.
1221 */
1222 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1223 {
1224 unsigned long start_pfn = PFN_DOWN(start);
1225 unsigned long end_pfn = PFN_UP(end);
1226
1227 for (; start_pfn < end_pfn; start_pfn++) {
1228 if (pfn_valid(start_pfn)) {
1229 struct page *page = pfn_to_page(start_pfn);
1230
1231 init_reserved_page(start_pfn);
1232
1233 /* Avoid false-positive PageTail() */
1234 INIT_LIST_HEAD(&page->lru);
1235
1236 SetPageReserved(page);
1237 }
1238 }
1239 }
1240
1241 static void __free_pages_ok(struct page *page, unsigned int order)
1242 {
1243 unsigned long flags;
1244 int migratetype;
1245 unsigned long pfn = page_to_pfn(page);
1246
1247 if (!free_pages_prepare(page, order, true))
1248 return;
1249
1250 migratetype = get_pfnblock_migratetype(page, pfn);
1251 local_irq_save(flags);
1252 __count_vm_events(PGFREE, 1 << order);
1253 free_one_page(page_zone(page), page, pfn, order, migratetype);
1254 local_irq_restore(flags);
1255 }
1256
1257 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1258 {
1259 unsigned int nr_pages = 1 << order;
1260 struct page *p = page;
1261 unsigned int loop;
1262
1263 prefetchw(p);
1264 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1265 prefetchw(p + 1);
1266 __ClearPageReserved(p);
1267 set_page_count(p, 0);
1268 }
1269 __ClearPageReserved(p);
1270 set_page_count(p, 0);
1271
1272 page_zone(page)->managed_pages += nr_pages;
1273 set_page_refcounted(page);
1274 __free_pages(page, order);
1275 }
1276
1277 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1278 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1279
1280 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1281
1282 int __meminit early_pfn_to_nid(unsigned long pfn)
1283 {
1284 static DEFINE_SPINLOCK(early_pfn_lock);
1285 int nid;
1286
1287 spin_lock(&early_pfn_lock);
1288 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1289 if (nid < 0)
1290 nid = first_online_node;
1291 spin_unlock(&early_pfn_lock);
1292
1293 return nid;
1294 }
1295 #endif
1296
1297 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1298 static inline bool __meminit __maybe_unused
1299 meminit_pfn_in_nid(unsigned long pfn, int node,
1300 struct mminit_pfnnid_cache *state)
1301 {
1302 int nid;
1303
1304 nid = __early_pfn_to_nid(pfn, state);
1305 if (nid >= 0 && nid != node)
1306 return false;
1307 return true;
1308 }
1309
1310 /* Only safe to use early in boot when initialisation is single-threaded */
1311 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1312 {
1313 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1314 }
1315
1316 #else
1317
1318 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1319 {
1320 return true;
1321 }
1322 static inline bool __meminit __maybe_unused
1323 meminit_pfn_in_nid(unsigned long pfn, int node,
1324 struct mminit_pfnnid_cache *state)
1325 {
1326 return true;
1327 }
1328 #endif
1329
1330
1331 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1332 unsigned int order)
1333 {
1334 if (early_page_uninitialised(pfn))
1335 return;
1336 return __free_pages_boot_core(page, order);
1337 }
1338
1339 /*
1340 * Check that the whole (or subset of) a pageblock given by the interval of
1341 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1342 * with the migration of free compaction scanner. The scanners then need to
1343 * use only pfn_valid_within() check for arches that allow holes within
1344 * pageblocks.
1345 *
1346 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1347 *
1348 * It's possible on some configurations to have a setup like node0 node1 node0
1349 * i.e. it's possible that all pages within a zones range of pages do not
1350 * belong to a single zone. We assume that a border between node0 and node1
1351 * can occur within a single pageblock, but not a node0 node1 node0
1352 * interleaving within a single pageblock. It is therefore sufficient to check
1353 * the first and last page of a pageblock and avoid checking each individual
1354 * page in a pageblock.
1355 */
1356 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1357 unsigned long end_pfn, struct zone *zone)
1358 {
1359 struct page *start_page;
1360 struct page *end_page;
1361
1362 /* end_pfn is one past the range we are checking */
1363 end_pfn--;
1364
1365 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1366 return NULL;
1367
1368 start_page = pfn_to_online_page(start_pfn);
1369 if (!start_page)
1370 return NULL;
1371
1372 if (page_zone(start_page) != zone)
1373 return NULL;
1374
1375 end_page = pfn_to_page(end_pfn);
1376
1377 /* This gives a shorter code than deriving page_zone(end_page) */
1378 if (page_zone_id(start_page) != page_zone_id(end_page))
1379 return NULL;
1380
1381 return start_page;
1382 }
1383
1384 void set_zone_contiguous(struct zone *zone)
1385 {
1386 unsigned long block_start_pfn = zone->zone_start_pfn;
1387 unsigned long block_end_pfn;
1388
1389 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1390 for (; block_start_pfn < zone_end_pfn(zone);
1391 block_start_pfn = block_end_pfn,
1392 block_end_pfn += pageblock_nr_pages) {
1393
1394 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1395
1396 if (!__pageblock_pfn_to_page(block_start_pfn,
1397 block_end_pfn, zone))
1398 return;
1399 }
1400
1401 /* We confirm that there is no hole */
1402 zone->contiguous = true;
1403 }
1404
1405 void clear_zone_contiguous(struct zone *zone)
1406 {
1407 zone->contiguous = false;
1408 }
1409
1410 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1411 static void __init deferred_free_range(struct page *page,
1412 unsigned long pfn, int nr_pages)
1413 {
1414 int i;
1415
1416 if (!page)
1417 return;
1418
1419 /* Free a large naturally-aligned chunk if possible */
1420 if (nr_pages == pageblock_nr_pages &&
1421 (pfn & (pageblock_nr_pages - 1)) == 0) {
1422 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1423 __free_pages_boot_core(page, pageblock_order);
1424 return;
1425 }
1426
1427 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1428 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1429 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1430 __free_pages_boot_core(page, 0);
1431 }
1432 }
1433
1434 /* Completion tracking for deferred_init_memmap() threads */
1435 static atomic_t pgdat_init_n_undone __initdata;
1436 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1437
1438 static inline void __init pgdat_init_report_one_done(void)
1439 {
1440 if (atomic_dec_and_test(&pgdat_init_n_undone))
1441 complete(&pgdat_init_all_done_comp);
1442 }
1443
1444 /* Initialise remaining memory on a node */
1445 static int __init deferred_init_memmap(void *data)
1446 {
1447 pg_data_t *pgdat = data;
1448 int nid = pgdat->node_id;
1449 struct mminit_pfnnid_cache nid_init_state = { };
1450 unsigned long start = jiffies;
1451 unsigned long nr_pages = 0;
1452 unsigned long walk_start, walk_end;
1453 int i, zid;
1454 struct zone *zone;
1455 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1456 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1457
1458 if (first_init_pfn == ULONG_MAX) {
1459 pgdat_init_report_one_done();
1460 return 0;
1461 }
1462
1463 /* Bind memory initialisation thread to a local node if possible */
1464 if (!cpumask_empty(cpumask))
1465 set_cpus_allowed_ptr(current, cpumask);
1466
1467 /* Sanity check boundaries */
1468 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1469 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1470 pgdat->first_deferred_pfn = ULONG_MAX;
1471
1472 /* Only the highest zone is deferred so find it */
1473 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1474 zone = pgdat->node_zones + zid;
1475 if (first_init_pfn < zone_end_pfn(zone))
1476 break;
1477 }
1478
1479 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1480 unsigned long pfn, end_pfn;
1481 struct page *page = NULL;
1482 struct page *free_base_page = NULL;
1483 unsigned long free_base_pfn = 0;
1484 int nr_to_free = 0;
1485
1486 end_pfn = min(walk_end, zone_end_pfn(zone));
1487 pfn = first_init_pfn;
1488 if (pfn < walk_start)
1489 pfn = walk_start;
1490 if (pfn < zone->zone_start_pfn)
1491 pfn = zone->zone_start_pfn;
1492
1493 for (; pfn < end_pfn; pfn++) {
1494 if (!pfn_valid_within(pfn))
1495 goto free_range;
1496
1497 /*
1498 * Ensure pfn_valid is checked every
1499 * pageblock_nr_pages for memory holes
1500 */
1501 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1502 if (!pfn_valid(pfn)) {
1503 page = NULL;
1504 goto free_range;
1505 }
1506 }
1507
1508 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1509 page = NULL;
1510 goto free_range;
1511 }
1512
1513 /* Minimise pfn page lookups and scheduler checks */
1514 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1515 page++;
1516 } else {
1517 nr_pages += nr_to_free;
1518 deferred_free_range(free_base_page,
1519 free_base_pfn, nr_to_free);
1520 free_base_page = NULL;
1521 free_base_pfn = nr_to_free = 0;
1522
1523 page = pfn_to_page(pfn);
1524 cond_resched();
1525 }
1526
1527 if (page->flags) {
1528 VM_BUG_ON(page_zone(page) != zone);
1529 goto free_range;
1530 }
1531
1532 __init_single_page(page, pfn, zid, nid);
1533 if (!free_base_page) {
1534 free_base_page = page;
1535 free_base_pfn = pfn;
1536 nr_to_free = 0;
1537 }
1538 nr_to_free++;
1539
1540 /* Where possible, batch up pages for a single free */
1541 continue;
1542 free_range:
1543 /* Free the current block of pages to allocator */
1544 nr_pages += nr_to_free;
1545 deferred_free_range(free_base_page, free_base_pfn,
1546 nr_to_free);
1547 free_base_page = NULL;
1548 free_base_pfn = nr_to_free = 0;
1549 }
1550 /* Free the last block of pages to allocator */
1551 nr_pages += nr_to_free;
1552 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1553
1554 first_init_pfn = max(end_pfn, first_init_pfn);
1555 }
1556
1557 /* Sanity check that the next zone really is unpopulated */
1558 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1559
1560 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1561 jiffies_to_msecs(jiffies - start));
1562
1563 pgdat_init_report_one_done();
1564 return 0;
1565 }
1566 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1567
1568 void __init page_alloc_init_late(void)
1569 {
1570 struct zone *zone;
1571
1572 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1573 int nid;
1574
1575 /* There will be num_node_state(N_MEMORY) threads */
1576 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1577 for_each_node_state(nid, N_MEMORY) {
1578 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1579 }
1580
1581 /* Block until all are initialised */
1582 wait_for_completion(&pgdat_init_all_done_comp);
1583
1584 /* Reinit limits that are based on free pages after the kernel is up */
1585 files_maxfiles_init();
1586 #endif
1587
1588 for_each_populated_zone(zone)
1589 set_zone_contiguous(zone);
1590 }
1591
1592 #ifdef CONFIG_CMA
1593 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1594 void __init init_cma_reserved_pageblock(struct page *page)
1595 {
1596 unsigned i = pageblock_nr_pages;
1597 struct page *p = page;
1598
1599 do {
1600 __ClearPageReserved(p);
1601 set_page_count(p, 0);
1602 } while (++p, --i);
1603
1604 set_pageblock_migratetype(page, MIGRATE_CMA);
1605
1606 if (pageblock_order >= MAX_ORDER) {
1607 i = pageblock_nr_pages;
1608 p = page;
1609 do {
1610 set_page_refcounted(p);
1611 __free_pages(p, MAX_ORDER - 1);
1612 p += MAX_ORDER_NR_PAGES;
1613 } while (i -= MAX_ORDER_NR_PAGES);
1614 } else {
1615 set_page_refcounted(page);
1616 __free_pages(page, pageblock_order);
1617 }
1618
1619 adjust_managed_page_count(page, pageblock_nr_pages);
1620 }
1621 #endif
1622
1623 /*
1624 * The order of subdivision here is critical for the IO subsystem.
1625 * Please do not alter this order without good reasons and regression
1626 * testing. Specifically, as large blocks of memory are subdivided,
1627 * the order in which smaller blocks are delivered depends on the order
1628 * they're subdivided in this function. This is the primary factor
1629 * influencing the order in which pages are delivered to the IO
1630 * subsystem according to empirical testing, and this is also justified
1631 * by considering the behavior of a buddy system containing a single
1632 * large block of memory acted on by a series of small allocations.
1633 * This behavior is a critical factor in sglist merging's success.
1634 *
1635 * -- nyc
1636 */
1637 static inline void expand(struct zone *zone, struct page *page,
1638 int low, int high, struct free_area *area,
1639 int migratetype)
1640 {
1641 unsigned long size = 1 << high;
1642
1643 while (high > low) {
1644 area--;
1645 high--;
1646 size >>= 1;
1647 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1648
1649 /*
1650 * Mark as guard pages (or page), that will allow to
1651 * merge back to allocator when buddy will be freed.
1652 * Corresponding page table entries will not be touched,
1653 * pages will stay not present in virtual address space
1654 */
1655 if (set_page_guard(zone, &page[size], high, migratetype))
1656 continue;
1657
1658 list_add(&page[size].lru, &area->free_list[migratetype]);
1659 area->nr_free++;
1660 set_page_order(&page[size], high);
1661 }
1662 }
1663
1664 static void check_new_page_bad(struct page *page)
1665 {
1666 const char *bad_reason = NULL;
1667 unsigned long bad_flags = 0;
1668
1669 if (unlikely(atomic_read(&page->_mapcount) != -1))
1670 bad_reason = "nonzero mapcount";
1671 if (unlikely(page->mapping != NULL))
1672 bad_reason = "non-NULL mapping";
1673 if (unlikely(page_ref_count(page) != 0))
1674 bad_reason = "nonzero _count";
1675 if (unlikely(page->flags & __PG_HWPOISON)) {
1676 bad_reason = "HWPoisoned (hardware-corrupted)";
1677 bad_flags = __PG_HWPOISON;
1678 /* Don't complain about hwpoisoned pages */
1679 page_mapcount_reset(page); /* remove PageBuddy */
1680 return;
1681 }
1682 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1683 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1684 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1685 }
1686 #ifdef CONFIG_MEMCG
1687 if (unlikely(page->mem_cgroup))
1688 bad_reason = "page still charged to cgroup";
1689 #endif
1690 bad_page(page, bad_reason, bad_flags);
1691 }
1692
1693 /*
1694 * This page is about to be returned from the page allocator
1695 */
1696 static inline int check_new_page(struct page *page)
1697 {
1698 if (likely(page_expected_state(page,
1699 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1700 return 0;
1701
1702 check_new_page_bad(page);
1703 return 1;
1704 }
1705
1706 static inline bool free_pages_prezeroed(void)
1707 {
1708 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1709 page_poisoning_enabled();
1710 }
1711
1712 #ifdef CONFIG_DEBUG_VM
1713 static bool check_pcp_refill(struct page *page)
1714 {
1715 return false;
1716 }
1717
1718 static bool check_new_pcp(struct page *page)
1719 {
1720 return check_new_page(page);
1721 }
1722 #else
1723 static bool check_pcp_refill(struct page *page)
1724 {
1725 return check_new_page(page);
1726 }
1727 static bool check_new_pcp(struct page *page)
1728 {
1729 return false;
1730 }
1731 #endif /* CONFIG_DEBUG_VM */
1732
1733 static bool check_new_pages(struct page *page, unsigned int order)
1734 {
1735 int i;
1736 for (i = 0; i < (1 << order); i++) {
1737 struct page *p = page + i;
1738
1739 if (unlikely(check_new_page(p)))
1740 return true;
1741 }
1742
1743 return false;
1744 }
1745
1746 inline void post_alloc_hook(struct page *page, unsigned int order,
1747 gfp_t gfp_flags)
1748 {
1749 set_page_private(page, 0);
1750 set_page_refcounted(page);
1751
1752 arch_alloc_page(page, order);
1753 kernel_map_pages(page, 1 << order, 1);
1754 kernel_poison_pages(page, 1 << order, 1);
1755 kasan_alloc_pages(page, order);
1756 set_page_owner(page, order, gfp_flags);
1757 }
1758
1759 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1760 unsigned int alloc_flags)
1761 {
1762 int i;
1763
1764 post_alloc_hook(page, order, gfp_flags);
1765
1766 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1767 for (i = 0; i < (1 << order); i++)
1768 clear_highpage(page + i);
1769
1770 if (order && (gfp_flags & __GFP_COMP))
1771 prep_compound_page(page, order);
1772
1773 /*
1774 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1775 * allocate the page. The expectation is that the caller is taking
1776 * steps that will free more memory. The caller should avoid the page
1777 * being used for !PFMEMALLOC purposes.
1778 */
1779 if (alloc_flags & ALLOC_NO_WATERMARKS)
1780 set_page_pfmemalloc(page);
1781 else
1782 clear_page_pfmemalloc(page);
1783 }
1784
1785 /*
1786 * Go through the free lists for the given migratetype and remove
1787 * the smallest available page from the freelists
1788 */
1789 static inline
1790 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1791 int migratetype)
1792 {
1793 unsigned int current_order;
1794 struct free_area *area;
1795 struct page *page;
1796
1797 /* Find a page of the appropriate size in the preferred list */
1798 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1799 area = &(zone->free_area[current_order]);
1800 page = list_first_entry_or_null(&area->free_list[migratetype],
1801 struct page, lru);
1802 if (!page)
1803 continue;
1804 list_del(&page->lru);
1805 rmv_page_order(page);
1806 area->nr_free--;
1807 expand(zone, page, order, current_order, area, migratetype);
1808 set_pcppage_migratetype(page, migratetype);
1809 return page;
1810 }
1811
1812 return NULL;
1813 }
1814
1815
1816 /*
1817 * This array describes the order lists are fallen back to when
1818 * the free lists for the desirable migrate type are depleted
1819 */
1820 static int fallbacks[MIGRATE_TYPES][4] = {
1821 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1822 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1823 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1824 #ifdef CONFIG_CMA
1825 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1826 #endif
1827 #ifdef CONFIG_MEMORY_ISOLATION
1828 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1829 #endif
1830 };
1831
1832 #ifdef CONFIG_CMA
1833 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1834 unsigned int order)
1835 {
1836 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1837 }
1838 #else
1839 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1840 unsigned int order) { return NULL; }
1841 #endif
1842
1843 /*
1844 * Move the free pages in a range to the free lists of the requested type.
1845 * Note that start_page and end_pages are not aligned on a pageblock
1846 * boundary. If alignment is required, use move_freepages_block()
1847 */
1848 static int move_freepages(struct zone *zone,
1849 struct page *start_page, struct page *end_page,
1850 int migratetype, int *num_movable)
1851 {
1852 struct page *page;
1853 unsigned int order;
1854 int pages_moved = 0;
1855
1856 #ifndef CONFIG_HOLES_IN_ZONE
1857 /*
1858 * page_zone is not safe to call in this context when
1859 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1860 * anyway as we check zone boundaries in move_freepages_block().
1861 * Remove at a later date when no bug reports exist related to
1862 * grouping pages by mobility
1863 */
1864 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1865 #endif
1866
1867 if (num_movable)
1868 *num_movable = 0;
1869
1870 for (page = start_page; page <= end_page;) {
1871 if (!pfn_valid_within(page_to_pfn(page))) {
1872 page++;
1873 continue;
1874 }
1875
1876 /* Make sure we are not inadvertently changing nodes */
1877 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1878
1879 if (!PageBuddy(page)) {
1880 /*
1881 * We assume that pages that could be isolated for
1882 * migration are movable. But we don't actually try
1883 * isolating, as that would be expensive.
1884 */
1885 if (num_movable &&
1886 (PageLRU(page) || __PageMovable(page)))
1887 (*num_movable)++;
1888
1889 page++;
1890 continue;
1891 }
1892
1893 order = page_order(page);
1894 list_move(&page->lru,
1895 &zone->free_area[order].free_list[migratetype]);
1896 page += 1 << order;
1897 pages_moved += 1 << order;
1898 }
1899
1900 return pages_moved;
1901 }
1902
1903 int move_freepages_block(struct zone *zone, struct page *page,
1904 int migratetype, int *num_movable)
1905 {
1906 unsigned long start_pfn, end_pfn;
1907 struct page *start_page, *end_page;
1908
1909 start_pfn = page_to_pfn(page);
1910 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1911 start_page = pfn_to_page(start_pfn);
1912 end_page = start_page + pageblock_nr_pages - 1;
1913 end_pfn = start_pfn + pageblock_nr_pages - 1;
1914
1915 /* Do not cross zone boundaries */
1916 if (!zone_spans_pfn(zone, start_pfn))
1917 start_page = page;
1918 if (!zone_spans_pfn(zone, end_pfn))
1919 return 0;
1920
1921 return move_freepages(zone, start_page, end_page, migratetype,
1922 num_movable);
1923 }
1924
1925 static void change_pageblock_range(struct page *pageblock_page,
1926 int start_order, int migratetype)
1927 {
1928 int nr_pageblocks = 1 << (start_order - pageblock_order);
1929
1930 while (nr_pageblocks--) {
1931 set_pageblock_migratetype(pageblock_page, migratetype);
1932 pageblock_page += pageblock_nr_pages;
1933 }
1934 }
1935
1936 /*
1937 * When we are falling back to another migratetype during allocation, try to
1938 * steal extra free pages from the same pageblocks to satisfy further
1939 * allocations, instead of polluting multiple pageblocks.
1940 *
1941 * If we are stealing a relatively large buddy page, it is likely there will
1942 * be more free pages in the pageblock, so try to steal them all. For
1943 * reclaimable and unmovable allocations, we steal regardless of page size,
1944 * as fragmentation caused by those allocations polluting movable pageblocks
1945 * is worse than movable allocations stealing from unmovable and reclaimable
1946 * pageblocks.
1947 */
1948 static bool can_steal_fallback(unsigned int order, int start_mt)
1949 {
1950 /*
1951 * Leaving this order check is intended, although there is
1952 * relaxed order check in next check. The reason is that
1953 * we can actually steal whole pageblock if this condition met,
1954 * but, below check doesn't guarantee it and that is just heuristic
1955 * so could be changed anytime.
1956 */
1957 if (order >= pageblock_order)
1958 return true;
1959
1960 if (order >= pageblock_order / 2 ||
1961 start_mt == MIGRATE_RECLAIMABLE ||
1962 start_mt == MIGRATE_UNMOVABLE ||
1963 page_group_by_mobility_disabled)
1964 return true;
1965
1966 return false;
1967 }
1968
1969 /*
1970 * This function implements actual steal behaviour. If order is large enough,
1971 * we can steal whole pageblock. If not, we first move freepages in this
1972 * pageblock to our migratetype and determine how many already-allocated pages
1973 * are there in the pageblock with a compatible migratetype. If at least half
1974 * of pages are free or compatible, we can change migratetype of the pageblock
1975 * itself, so pages freed in the future will be put on the correct free list.
1976 */
1977 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1978 int start_type, bool whole_block)
1979 {
1980 unsigned int current_order = page_order(page);
1981 struct free_area *area;
1982 int free_pages, movable_pages, alike_pages;
1983 int old_block_type;
1984
1985 old_block_type = get_pageblock_migratetype(page);
1986
1987 /*
1988 * This can happen due to races and we want to prevent broken
1989 * highatomic accounting.
1990 */
1991 if (is_migrate_highatomic(old_block_type))
1992 goto single_page;
1993
1994 /* Take ownership for orders >= pageblock_order */
1995 if (current_order >= pageblock_order) {
1996 change_pageblock_range(page, current_order, start_type);
1997 goto single_page;
1998 }
1999
2000 /* We are not allowed to try stealing from the whole block */
2001 if (!whole_block)
2002 goto single_page;
2003
2004 free_pages = move_freepages_block(zone, page, start_type,
2005 &movable_pages);
2006 /*
2007 * Determine how many pages are compatible with our allocation.
2008 * For movable allocation, it's the number of movable pages which
2009 * we just obtained. For other types it's a bit more tricky.
2010 */
2011 if (start_type == MIGRATE_MOVABLE) {
2012 alike_pages = movable_pages;
2013 } else {
2014 /*
2015 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2016 * to MOVABLE pageblock, consider all non-movable pages as
2017 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2018 * vice versa, be conservative since we can't distinguish the
2019 * exact migratetype of non-movable pages.
2020 */
2021 if (old_block_type == MIGRATE_MOVABLE)
2022 alike_pages = pageblock_nr_pages
2023 - (free_pages + movable_pages);
2024 else
2025 alike_pages = 0;
2026 }
2027
2028 /* moving whole block can fail due to zone boundary conditions */
2029 if (!free_pages)
2030 goto single_page;
2031
2032 /*
2033 * If a sufficient number of pages in the block are either free or of
2034 * comparable migratability as our allocation, claim the whole block.
2035 */
2036 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2037 page_group_by_mobility_disabled)
2038 set_pageblock_migratetype(page, start_type);
2039
2040 return;
2041
2042 single_page:
2043 area = &zone->free_area[current_order];
2044 list_move(&page->lru, &area->free_list[start_type]);
2045 }
2046
2047 /*
2048 * Check whether there is a suitable fallback freepage with requested order.
2049 * If only_stealable is true, this function returns fallback_mt only if
2050 * we can steal other freepages all together. This would help to reduce
2051 * fragmentation due to mixed migratetype pages in one pageblock.
2052 */
2053 int find_suitable_fallback(struct free_area *area, unsigned int order,
2054 int migratetype, bool only_stealable, bool *can_steal)
2055 {
2056 int i;
2057 int fallback_mt;
2058
2059 if (area->nr_free == 0)
2060 return -1;
2061
2062 *can_steal = false;
2063 for (i = 0;; i++) {
2064 fallback_mt = fallbacks[migratetype][i];
2065 if (fallback_mt == MIGRATE_TYPES)
2066 break;
2067
2068 if (list_empty(&area->free_list[fallback_mt]))
2069 continue;
2070
2071 if (can_steal_fallback(order, migratetype))
2072 *can_steal = true;
2073
2074 if (!only_stealable)
2075 return fallback_mt;
2076
2077 if (*can_steal)
2078 return fallback_mt;
2079 }
2080
2081 return -1;
2082 }
2083
2084 /*
2085 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2086 * there are no empty page blocks that contain a page with a suitable order
2087 */
2088 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2089 unsigned int alloc_order)
2090 {
2091 int mt;
2092 unsigned long max_managed, flags;
2093
2094 /*
2095 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2096 * Check is race-prone but harmless.
2097 */
2098 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2099 if (zone->nr_reserved_highatomic >= max_managed)
2100 return;
2101
2102 spin_lock_irqsave(&zone->lock, flags);
2103
2104 /* Recheck the nr_reserved_highatomic limit under the lock */
2105 if (zone->nr_reserved_highatomic >= max_managed)
2106 goto out_unlock;
2107
2108 /* Yoink! */
2109 mt = get_pageblock_migratetype(page);
2110 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2111 && !is_migrate_cma(mt)) {
2112 zone->nr_reserved_highatomic += pageblock_nr_pages;
2113 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2114 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2115 }
2116
2117 out_unlock:
2118 spin_unlock_irqrestore(&zone->lock, flags);
2119 }
2120
2121 /*
2122 * Used when an allocation is about to fail under memory pressure. This
2123 * potentially hurts the reliability of high-order allocations when under
2124 * intense memory pressure but failed atomic allocations should be easier
2125 * to recover from than an OOM.
2126 *
2127 * If @force is true, try to unreserve a pageblock even though highatomic
2128 * pageblock is exhausted.
2129 */
2130 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2131 bool force)
2132 {
2133 struct zonelist *zonelist = ac->zonelist;
2134 unsigned long flags;
2135 struct zoneref *z;
2136 struct zone *zone;
2137 struct page *page;
2138 int order;
2139 bool ret;
2140
2141 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2142 ac->nodemask) {
2143 /*
2144 * Preserve at least one pageblock unless memory pressure
2145 * is really high.
2146 */
2147 if (!force && zone->nr_reserved_highatomic <=
2148 pageblock_nr_pages)
2149 continue;
2150
2151 spin_lock_irqsave(&zone->lock, flags);
2152 for (order = 0; order < MAX_ORDER; order++) {
2153 struct free_area *area = &(zone->free_area[order]);
2154
2155 page = list_first_entry_or_null(
2156 &area->free_list[MIGRATE_HIGHATOMIC],
2157 struct page, lru);
2158 if (!page)
2159 continue;
2160
2161 /*
2162 * In page freeing path, migratetype change is racy so
2163 * we can counter several free pages in a pageblock
2164 * in this loop althoug we changed the pageblock type
2165 * from highatomic to ac->migratetype. So we should
2166 * adjust the count once.
2167 */
2168 if (is_migrate_highatomic_page(page)) {
2169 /*
2170 * It should never happen but changes to
2171 * locking could inadvertently allow a per-cpu
2172 * drain to add pages to MIGRATE_HIGHATOMIC
2173 * while unreserving so be safe and watch for
2174 * underflows.
2175 */
2176 zone->nr_reserved_highatomic -= min(
2177 pageblock_nr_pages,
2178 zone->nr_reserved_highatomic);
2179 }
2180
2181 /*
2182 * Convert to ac->migratetype and avoid the normal
2183 * pageblock stealing heuristics. Minimally, the caller
2184 * is doing the work and needs the pages. More
2185 * importantly, if the block was always converted to
2186 * MIGRATE_UNMOVABLE or another type then the number
2187 * of pageblocks that cannot be completely freed
2188 * may increase.
2189 */
2190 set_pageblock_migratetype(page, ac->migratetype);
2191 ret = move_freepages_block(zone, page, ac->migratetype,
2192 NULL);
2193 if (ret) {
2194 spin_unlock_irqrestore(&zone->lock, flags);
2195 return ret;
2196 }
2197 }
2198 spin_unlock_irqrestore(&zone->lock, flags);
2199 }
2200
2201 return false;
2202 }
2203
2204 /*
2205 * Try finding a free buddy page on the fallback list and put it on the free
2206 * list of requested migratetype, possibly along with other pages from the same
2207 * block, depending on fragmentation avoidance heuristics. Returns true if
2208 * fallback was found so that __rmqueue_smallest() can grab it.
2209 *
2210 * The use of signed ints for order and current_order is a deliberate
2211 * deviation from the rest of this file, to make the for loop
2212 * condition simpler.
2213 */
2214 static inline bool
2215 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2216 {
2217 struct free_area *area;
2218 int current_order;
2219 struct page *page;
2220 int fallback_mt;
2221 bool can_steal;
2222
2223 /*
2224 * Find the largest available free page in the other list. This roughly
2225 * approximates finding the pageblock with the most free pages, which
2226 * would be too costly to do exactly.
2227 */
2228 for (current_order = MAX_ORDER - 1; current_order >= order;
2229 --current_order) {
2230 area = &(zone->free_area[current_order]);
2231 fallback_mt = find_suitable_fallback(area, current_order,
2232 start_migratetype, false, &can_steal);
2233 if (fallback_mt == -1)
2234 continue;
2235
2236 /*
2237 * We cannot steal all free pages from the pageblock and the
2238 * requested migratetype is movable. In that case it's better to
2239 * steal and split the smallest available page instead of the
2240 * largest available page, because even if the next movable
2241 * allocation falls back into a different pageblock than this
2242 * one, it won't cause permanent fragmentation.
2243 */
2244 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2245 && current_order > order)
2246 goto find_smallest;
2247
2248 goto do_steal;
2249 }
2250
2251 return false;
2252
2253 find_smallest:
2254 for (current_order = order; current_order < MAX_ORDER;
2255 current_order++) {
2256 area = &(zone->free_area[current_order]);
2257 fallback_mt = find_suitable_fallback(area, current_order,
2258 start_migratetype, false, &can_steal);
2259 if (fallback_mt != -1)
2260 break;
2261 }
2262
2263 /*
2264 * This should not happen - we already found a suitable fallback
2265 * when looking for the largest page.
2266 */
2267 VM_BUG_ON(current_order == MAX_ORDER);
2268
2269 do_steal:
2270 page = list_first_entry(&area->free_list[fallback_mt],
2271 struct page, lru);
2272
2273 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2274
2275 trace_mm_page_alloc_extfrag(page, order, current_order,
2276 start_migratetype, fallback_mt);
2277
2278 return true;
2279
2280 }
2281
2282 /*
2283 * Do the hard work of removing an element from the buddy allocator.
2284 * Call me with the zone->lock already held.
2285 */
2286 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2287 int migratetype)
2288 {
2289 struct page *page;
2290
2291 retry:
2292 page = __rmqueue_smallest(zone, order, migratetype);
2293 if (unlikely(!page)) {
2294 if (migratetype == MIGRATE_MOVABLE)
2295 page = __rmqueue_cma_fallback(zone, order);
2296
2297 if (!page && __rmqueue_fallback(zone, order, migratetype))
2298 goto retry;
2299 }
2300
2301 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2302 return page;
2303 }
2304
2305 /*
2306 * Obtain a specified number of elements from the buddy allocator, all under
2307 * a single hold of the lock, for efficiency. Add them to the supplied list.
2308 * Returns the number of new pages which were placed at *list.
2309 */
2310 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2311 unsigned long count, struct list_head *list,
2312 int migratetype, bool cold)
2313 {
2314 int i, alloced = 0;
2315
2316 spin_lock(&zone->lock);
2317 for (i = 0; i < count; ++i) {
2318 struct page *page = __rmqueue(zone, order, migratetype);
2319 if (unlikely(page == NULL))
2320 break;
2321
2322 if (unlikely(check_pcp_refill(page)))
2323 continue;
2324
2325 /*
2326 * Split buddy pages returned by expand() are received here
2327 * in physical page order. The page is added to the callers and
2328 * list and the list head then moves forward. From the callers
2329 * perspective, the linked list is ordered by page number in
2330 * some conditions. This is useful for IO devices that can
2331 * merge IO requests if the physical pages are ordered
2332 * properly.
2333 */
2334 if (likely(!cold))
2335 list_add(&page->lru, list);
2336 else
2337 list_add_tail(&page->lru, list);
2338 list = &page->lru;
2339 alloced++;
2340 if (is_migrate_cma(get_pcppage_migratetype(page)))
2341 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2342 -(1 << order));
2343 }
2344
2345 /*
2346 * i pages were removed from the buddy list even if some leak due
2347 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2348 * on i. Do not confuse with 'alloced' which is the number of
2349 * pages added to the pcp list.
2350 */
2351 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2352 spin_unlock(&zone->lock);
2353 return alloced;
2354 }
2355
2356 #ifdef CONFIG_NUMA
2357 /*
2358 * Called from the vmstat counter updater to drain pagesets of this
2359 * currently executing processor on remote nodes after they have
2360 * expired.
2361 *
2362 * Note that this function must be called with the thread pinned to
2363 * a single processor.
2364 */
2365 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2366 {
2367 unsigned long flags;
2368 int to_drain, batch;
2369
2370 local_irq_save(flags);
2371 batch = READ_ONCE(pcp->batch);
2372 to_drain = min(pcp->count, batch);
2373 if (to_drain > 0) {
2374 free_pcppages_bulk(zone, to_drain, pcp);
2375 pcp->count -= to_drain;
2376 }
2377 local_irq_restore(flags);
2378 }
2379 #endif
2380
2381 /*
2382 * Drain pcplists of the indicated processor and zone.
2383 *
2384 * The processor must either be the current processor and the
2385 * thread pinned to the current processor or a processor that
2386 * is not online.
2387 */
2388 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2389 {
2390 unsigned long flags;
2391 struct per_cpu_pageset *pset;
2392 struct per_cpu_pages *pcp;
2393
2394 local_irq_save(flags);
2395 pset = per_cpu_ptr(zone->pageset, cpu);
2396
2397 pcp = &pset->pcp;
2398 if (pcp->count) {
2399 free_pcppages_bulk(zone, pcp->count, pcp);
2400 pcp->count = 0;
2401 }
2402 local_irq_restore(flags);
2403 }
2404
2405 /*
2406 * Drain pcplists of all zones on the indicated processor.
2407 *
2408 * The processor must either be the current processor and the
2409 * thread pinned to the current processor or a processor that
2410 * is not online.
2411 */
2412 static void drain_pages(unsigned int cpu)
2413 {
2414 struct zone *zone;
2415
2416 for_each_populated_zone(zone) {
2417 drain_pages_zone(cpu, zone);
2418 }
2419 }
2420
2421 /*
2422 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2423 *
2424 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2425 * the single zone's pages.
2426 */
2427 void drain_local_pages(struct zone *zone)
2428 {
2429 int cpu = smp_processor_id();
2430
2431 if (zone)
2432 drain_pages_zone(cpu, zone);
2433 else
2434 drain_pages(cpu);
2435 }
2436
2437 static void drain_local_pages_wq(struct work_struct *work)
2438 {
2439 /*
2440 * drain_all_pages doesn't use proper cpu hotplug protection so
2441 * we can race with cpu offline when the WQ can move this from
2442 * a cpu pinned worker to an unbound one. We can operate on a different
2443 * cpu which is allright but we also have to make sure to not move to
2444 * a different one.
2445 */
2446 preempt_disable();
2447 drain_local_pages(NULL);
2448 preempt_enable();
2449 }
2450
2451 /*
2452 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2453 *
2454 * When zone parameter is non-NULL, spill just the single zone's pages.
2455 *
2456 * Note that this can be extremely slow as the draining happens in a workqueue.
2457 */
2458 void drain_all_pages(struct zone *zone)
2459 {
2460 int cpu;
2461
2462 /*
2463 * Allocate in the BSS so we wont require allocation in
2464 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2465 */
2466 static cpumask_t cpus_with_pcps;
2467
2468 /*
2469 * Make sure nobody triggers this path before mm_percpu_wq is fully
2470 * initialized.
2471 */
2472 if (WARN_ON_ONCE(!mm_percpu_wq))
2473 return;
2474
2475 /* Workqueues cannot recurse */
2476 if (current->flags & PF_WQ_WORKER)
2477 return;
2478
2479 /*
2480 * Do not drain if one is already in progress unless it's specific to
2481 * a zone. Such callers are primarily CMA and memory hotplug and need
2482 * the drain to be complete when the call returns.
2483 */
2484 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2485 if (!zone)
2486 return;
2487 mutex_lock(&pcpu_drain_mutex);
2488 }
2489
2490 /*
2491 * We don't care about racing with CPU hotplug event
2492 * as offline notification will cause the notified
2493 * cpu to drain that CPU pcps and on_each_cpu_mask
2494 * disables preemption as part of its processing
2495 */
2496 for_each_online_cpu(cpu) {
2497 struct per_cpu_pageset *pcp;
2498 struct zone *z;
2499 bool has_pcps = false;
2500
2501 if (zone) {
2502 pcp = per_cpu_ptr(zone->pageset, cpu);
2503 if (pcp->pcp.count)
2504 has_pcps = true;
2505 } else {
2506 for_each_populated_zone(z) {
2507 pcp = per_cpu_ptr(z->pageset, cpu);
2508 if (pcp->pcp.count) {
2509 has_pcps = true;
2510 break;
2511 }
2512 }
2513 }
2514
2515 if (has_pcps)
2516 cpumask_set_cpu(cpu, &cpus_with_pcps);
2517 else
2518 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2519 }
2520
2521 for_each_cpu(cpu, &cpus_with_pcps) {
2522 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2523 INIT_WORK(work, drain_local_pages_wq);
2524 queue_work_on(cpu, mm_percpu_wq, work);
2525 }
2526 for_each_cpu(cpu, &cpus_with_pcps)
2527 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2528
2529 mutex_unlock(&pcpu_drain_mutex);
2530 }
2531
2532 #ifdef CONFIG_HIBERNATION
2533
2534 void mark_free_pages(struct zone *zone)
2535 {
2536 unsigned long pfn, max_zone_pfn;
2537 unsigned long flags;
2538 unsigned int order, t;
2539 struct page *page;
2540
2541 if (zone_is_empty(zone))
2542 return;
2543
2544 spin_lock_irqsave(&zone->lock, flags);
2545
2546 max_zone_pfn = zone_end_pfn(zone);
2547 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2548 if (pfn_valid(pfn)) {
2549 page = pfn_to_page(pfn);
2550
2551 if (page_zone(page) != zone)
2552 continue;
2553
2554 if (!swsusp_page_is_forbidden(page))
2555 swsusp_unset_page_free(page);
2556 }
2557
2558 for_each_migratetype_order(order, t) {
2559 list_for_each_entry(page,
2560 &zone->free_area[order].free_list[t], lru) {
2561 unsigned long i;
2562
2563 pfn = page_to_pfn(page);
2564 for (i = 0; i < (1UL << order); i++)
2565 swsusp_set_page_free(pfn_to_page(pfn + i));
2566 }
2567 }
2568 spin_unlock_irqrestore(&zone->lock, flags);
2569 }
2570 #endif /* CONFIG_PM */
2571
2572 /*
2573 * Free a 0-order page
2574 * cold == true ? free a cold page : free a hot page
2575 */
2576 void free_hot_cold_page(struct page *page, bool cold)
2577 {
2578 struct zone *zone = page_zone(page);
2579 struct per_cpu_pages *pcp;
2580 unsigned long flags;
2581 unsigned long pfn = page_to_pfn(page);
2582 int migratetype;
2583
2584 if (!free_pcp_prepare(page))
2585 return;
2586
2587 migratetype = get_pfnblock_migratetype(page, pfn);
2588 set_pcppage_migratetype(page, migratetype);
2589 local_irq_save(flags);
2590 __count_vm_event(PGFREE);
2591
2592 /*
2593 * We only track unmovable, reclaimable and movable on pcp lists.
2594 * Free ISOLATE pages back to the allocator because they are being
2595 * offlined but treat HIGHATOMIC as movable pages so we can get those
2596 * areas back if necessary. Otherwise, we may have to free
2597 * excessively into the page allocator
2598 */
2599 if (migratetype >= MIGRATE_PCPTYPES) {
2600 if (unlikely(is_migrate_isolate(migratetype))) {
2601 free_one_page(zone, page, pfn, 0, migratetype);
2602 goto out;
2603 }
2604 migratetype = MIGRATE_MOVABLE;
2605 }
2606
2607 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2608 if (!cold)
2609 list_add(&page->lru, &pcp->lists[migratetype]);
2610 else
2611 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2612 pcp->count++;
2613 if (pcp->count >= pcp->high) {
2614 unsigned long batch = READ_ONCE(pcp->batch);
2615 free_pcppages_bulk(zone, batch, pcp);
2616 pcp->count -= batch;
2617 }
2618
2619 out:
2620 local_irq_restore(flags);
2621 }
2622
2623 /*
2624 * Free a list of 0-order pages
2625 */
2626 void free_hot_cold_page_list(struct list_head *list, bool cold)
2627 {
2628 struct page *page, *next;
2629
2630 list_for_each_entry_safe(page, next, list, lru) {
2631 trace_mm_page_free_batched(page, cold);
2632 free_hot_cold_page(page, cold);
2633 }
2634 }
2635
2636 /*
2637 * split_page takes a non-compound higher-order page, and splits it into
2638 * n (1<<order) sub-pages: page[0..n]
2639 * Each sub-page must be freed individually.
2640 *
2641 * Note: this is probably too low level an operation for use in drivers.
2642 * Please consult with lkml before using this in your driver.
2643 */
2644 void split_page(struct page *page, unsigned int order)
2645 {
2646 int i;
2647
2648 VM_BUG_ON_PAGE(PageCompound(page), page);
2649 VM_BUG_ON_PAGE(!page_count(page), page);
2650
2651 #ifdef CONFIG_KMEMCHECK
2652 /*
2653 * Split shadow pages too, because free(page[0]) would
2654 * otherwise free the whole shadow.
2655 */
2656 if (kmemcheck_page_is_tracked(page))
2657 split_page(virt_to_page(page[0].shadow), order);
2658 #endif
2659
2660 for (i = 1; i < (1 << order); i++)
2661 set_page_refcounted(page + i);
2662 split_page_owner(page, order);
2663 }
2664 EXPORT_SYMBOL_GPL(split_page);
2665
2666 int __isolate_free_page(struct page *page, unsigned int order)
2667 {
2668 unsigned long watermark;
2669 struct zone *zone;
2670 int mt;
2671
2672 BUG_ON(!PageBuddy(page));
2673
2674 zone = page_zone(page);
2675 mt = get_pageblock_migratetype(page);
2676
2677 if (!is_migrate_isolate(mt)) {
2678 /*
2679 * Obey watermarks as if the page was being allocated. We can
2680 * emulate a high-order watermark check with a raised order-0
2681 * watermark, because we already know our high-order page
2682 * exists.
2683 */
2684 watermark = min_wmark_pages(zone) + (1UL << order);
2685 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2686 return 0;
2687
2688 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2689 }
2690
2691 /* Remove page from free list */
2692 list_del(&page->lru);
2693 zone->free_area[order].nr_free--;
2694 rmv_page_order(page);
2695
2696 /*
2697 * Set the pageblock if the isolated page is at least half of a
2698 * pageblock
2699 */
2700 if (order >= pageblock_order - 1) {
2701 struct page *endpage = page + (1 << order) - 1;
2702 for (; page < endpage; page += pageblock_nr_pages) {
2703 int mt = get_pageblock_migratetype(page);
2704 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2705 && !is_migrate_highatomic(mt))
2706 set_pageblock_migratetype(page,
2707 MIGRATE_MOVABLE);
2708 }
2709 }
2710
2711
2712 return 1UL << order;
2713 }
2714
2715 /*
2716 * Update NUMA hit/miss statistics
2717 *
2718 * Must be called with interrupts disabled.
2719 */
2720 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2721 {
2722 #ifdef CONFIG_NUMA
2723 enum zone_stat_item local_stat = NUMA_LOCAL;
2724
2725 if (z->node != numa_node_id())
2726 local_stat = NUMA_OTHER;
2727
2728 if (z->node == preferred_zone->node)
2729 __inc_zone_state(z, NUMA_HIT);
2730 else {
2731 __inc_zone_state(z, NUMA_MISS);
2732 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2733 }
2734 __inc_zone_state(z, local_stat);
2735 #endif
2736 }
2737
2738 /* Remove page from the per-cpu list, caller must protect the list */
2739 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2740 bool cold, struct per_cpu_pages *pcp,
2741 struct list_head *list)
2742 {
2743 struct page *page;
2744
2745 do {
2746 if (list_empty(list)) {
2747 pcp->count += rmqueue_bulk(zone, 0,
2748 pcp->batch, list,
2749 migratetype, cold);
2750 if (unlikely(list_empty(list)))
2751 return NULL;
2752 }
2753
2754 if (cold)
2755 page = list_last_entry(list, struct page, lru);
2756 else
2757 page = list_first_entry(list, struct page, lru);
2758
2759 list_del(&page->lru);
2760 pcp->count--;
2761 } while (check_new_pcp(page));
2762
2763 return page;
2764 }
2765
2766 /* Lock and remove page from the per-cpu list */
2767 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2768 struct zone *zone, unsigned int order,
2769 gfp_t gfp_flags, int migratetype)
2770 {
2771 struct per_cpu_pages *pcp;
2772 struct list_head *list;
2773 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2774 struct page *page;
2775 unsigned long flags;
2776
2777 local_irq_save(flags);
2778 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2779 list = &pcp->lists[migratetype];
2780 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2781 if (page) {
2782 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2783 zone_statistics(preferred_zone, zone);
2784 }
2785 local_irq_restore(flags);
2786 return page;
2787 }
2788
2789 /*
2790 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2791 */
2792 static inline
2793 struct page *rmqueue(struct zone *preferred_zone,
2794 struct zone *zone, unsigned int order,
2795 gfp_t gfp_flags, unsigned int alloc_flags,
2796 int migratetype)
2797 {
2798 unsigned long flags;
2799 struct page *page;
2800
2801 if (likely(order == 0)) {
2802 page = rmqueue_pcplist(preferred_zone, zone, order,
2803 gfp_flags, migratetype);
2804 goto out;
2805 }
2806
2807 /*
2808 * We most definitely don't want callers attempting to
2809 * allocate greater than order-1 page units with __GFP_NOFAIL.
2810 */
2811 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2812 spin_lock_irqsave(&zone->lock, flags);
2813
2814 do {
2815 page = NULL;
2816 if (alloc_flags & ALLOC_HARDER) {
2817 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2818 if (page)
2819 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2820 }
2821 if (!page)
2822 page = __rmqueue(zone, order, migratetype);
2823 } while (page && check_new_pages(page, order));
2824 spin_unlock(&zone->lock);
2825 if (!page)
2826 goto failed;
2827 __mod_zone_freepage_state(zone, -(1 << order),
2828 get_pcppage_migratetype(page));
2829
2830 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2831 zone_statistics(preferred_zone, zone);
2832 local_irq_restore(flags);
2833
2834 out:
2835 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2836 return page;
2837
2838 failed:
2839 local_irq_restore(flags);
2840 return NULL;
2841 }
2842
2843 #ifdef CONFIG_FAIL_PAGE_ALLOC
2844
2845 static struct {
2846 struct fault_attr attr;
2847
2848 bool ignore_gfp_highmem;
2849 bool ignore_gfp_reclaim;
2850 u32 min_order;
2851 } fail_page_alloc = {
2852 .attr = FAULT_ATTR_INITIALIZER,
2853 .ignore_gfp_reclaim = true,
2854 .ignore_gfp_highmem = true,
2855 .min_order = 1,
2856 };
2857
2858 static int __init setup_fail_page_alloc(char *str)
2859 {
2860 return setup_fault_attr(&fail_page_alloc.attr, str);
2861 }
2862 __setup("fail_page_alloc=", setup_fail_page_alloc);
2863
2864 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2865 {
2866 if (order < fail_page_alloc.min_order)
2867 return false;
2868 if (gfp_mask & __GFP_NOFAIL)
2869 return false;
2870 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2871 return false;
2872 if (fail_page_alloc.ignore_gfp_reclaim &&
2873 (gfp_mask & __GFP_DIRECT_RECLAIM))
2874 return false;
2875
2876 return should_fail(&fail_page_alloc.attr, 1 << order);
2877 }
2878
2879 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2880
2881 static int __init fail_page_alloc_debugfs(void)
2882 {
2883 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2884 struct dentry *dir;
2885
2886 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2887 &fail_page_alloc.attr);
2888 if (IS_ERR(dir))
2889 return PTR_ERR(dir);
2890
2891 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2892 &fail_page_alloc.ignore_gfp_reclaim))
2893 goto fail;
2894 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2895 &fail_page_alloc.ignore_gfp_highmem))
2896 goto fail;
2897 if (!debugfs_create_u32("min-order", mode, dir,
2898 &fail_page_alloc.min_order))
2899 goto fail;
2900
2901 return 0;
2902 fail:
2903 debugfs_remove_recursive(dir);
2904
2905 return -ENOMEM;
2906 }
2907
2908 late_initcall(fail_page_alloc_debugfs);
2909
2910 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2911
2912 #else /* CONFIG_FAIL_PAGE_ALLOC */
2913
2914 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2915 {
2916 return false;
2917 }
2918
2919 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2920
2921 /*
2922 * Return true if free base pages are above 'mark'. For high-order checks it
2923 * will return true of the order-0 watermark is reached and there is at least
2924 * one free page of a suitable size. Checking now avoids taking the zone lock
2925 * to check in the allocation paths if no pages are free.
2926 */
2927 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2928 int classzone_idx, unsigned int alloc_flags,
2929 long free_pages)
2930 {
2931 long min = mark;
2932 int o;
2933 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2934
2935 /* free_pages may go negative - that's OK */
2936 free_pages -= (1 << order) - 1;
2937
2938 if (alloc_flags & ALLOC_HIGH)
2939 min -= min / 2;
2940
2941 /*
2942 * If the caller does not have rights to ALLOC_HARDER then subtract
2943 * the high-atomic reserves. This will over-estimate the size of the
2944 * atomic reserve but it avoids a search.
2945 */
2946 if (likely(!alloc_harder))
2947 free_pages -= z->nr_reserved_highatomic;
2948 else
2949 min -= min / 4;
2950
2951 #ifdef CONFIG_CMA
2952 /* If allocation can't use CMA areas don't use free CMA pages */
2953 if (!(alloc_flags & ALLOC_CMA))
2954 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2955 #endif
2956
2957 /*
2958 * Check watermarks for an order-0 allocation request. If these
2959 * are not met, then a high-order request also cannot go ahead
2960 * even if a suitable page happened to be free.
2961 */
2962 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2963 return false;
2964
2965 /* If this is an order-0 request then the watermark is fine */
2966 if (!order)
2967 return true;
2968
2969 /* For a high-order request, check at least one suitable page is free */
2970 for (o = order; o < MAX_ORDER; o++) {
2971 struct free_area *area = &z->free_area[o];
2972 int mt;
2973
2974 if (!area->nr_free)
2975 continue;
2976
2977 if (alloc_harder)
2978 return true;
2979
2980 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2981 if (!list_empty(&area->free_list[mt]))
2982 return true;
2983 }
2984
2985 #ifdef CONFIG_CMA
2986 if ((alloc_flags & ALLOC_CMA) &&
2987 !list_empty(&area->free_list[MIGRATE_CMA])) {
2988 return true;
2989 }
2990 #endif
2991 }
2992 return false;
2993 }
2994
2995 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2996 int classzone_idx, unsigned int alloc_flags)
2997 {
2998 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2999 zone_page_state(z, NR_FREE_PAGES));
3000 }
3001
3002 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3003 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3004 {
3005 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3006 long cma_pages = 0;
3007
3008 #ifdef CONFIG_CMA
3009 /* If allocation can't use CMA areas don't use free CMA pages */
3010 if (!(alloc_flags & ALLOC_CMA))
3011 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3012 #endif
3013
3014 /*
3015 * Fast check for order-0 only. If this fails then the reserves
3016 * need to be calculated. There is a corner case where the check
3017 * passes but only the high-order atomic reserve are free. If
3018 * the caller is !atomic then it'll uselessly search the free
3019 * list. That corner case is then slower but it is harmless.
3020 */
3021 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3022 return true;
3023
3024 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3025 free_pages);
3026 }
3027
3028 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3029 unsigned long mark, int classzone_idx)
3030 {
3031 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3032
3033 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3034 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3035
3036 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3037 free_pages);
3038 }
3039
3040 #ifdef CONFIG_NUMA
3041 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3042 {
3043 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3044 RECLAIM_DISTANCE;
3045 }
3046 #else /* CONFIG_NUMA */
3047 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3048 {
3049 return true;
3050 }
3051 #endif /* CONFIG_NUMA */
3052
3053 /*
3054 * get_page_from_freelist goes through the zonelist trying to allocate
3055 * a page.
3056 */
3057 static struct page *
3058 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3059 const struct alloc_context *ac)
3060 {
3061 struct zoneref *z = ac->preferred_zoneref;
3062 struct zone *zone;
3063 struct pglist_data *last_pgdat_dirty_limit = NULL;
3064
3065 /*
3066 * Scan zonelist, looking for a zone with enough free.
3067 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3068 */
3069 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3070 ac->nodemask) {
3071 struct page *page;
3072 unsigned long mark;
3073
3074 if (cpusets_enabled() &&
3075 (alloc_flags & ALLOC_CPUSET) &&
3076 !__cpuset_zone_allowed(zone, gfp_mask))
3077 continue;
3078 /*
3079 * When allocating a page cache page for writing, we
3080 * want to get it from a node that is within its dirty
3081 * limit, such that no single node holds more than its
3082 * proportional share of globally allowed dirty pages.
3083 * The dirty limits take into account the node's
3084 * lowmem reserves and high watermark so that kswapd
3085 * should be able to balance it without having to
3086 * write pages from its LRU list.
3087 *
3088 * XXX: For now, allow allocations to potentially
3089 * exceed the per-node dirty limit in the slowpath
3090 * (spread_dirty_pages unset) before going into reclaim,
3091 * which is important when on a NUMA setup the allowed
3092 * nodes are together not big enough to reach the
3093 * global limit. The proper fix for these situations
3094 * will require awareness of nodes in the
3095 * dirty-throttling and the flusher threads.
3096 */
3097 if (ac->spread_dirty_pages) {
3098 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3099 continue;
3100
3101 if (!node_dirty_ok(zone->zone_pgdat)) {
3102 last_pgdat_dirty_limit = zone->zone_pgdat;
3103 continue;
3104 }
3105 }
3106
3107 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3108 if (!zone_watermark_fast(zone, order, mark,
3109 ac_classzone_idx(ac), alloc_flags)) {
3110 int ret;
3111
3112 /* Checked here to keep the fast path fast */
3113 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3114 if (alloc_flags & ALLOC_NO_WATERMARKS)
3115 goto try_this_zone;
3116
3117 if (node_reclaim_mode == 0 ||
3118 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3119 continue;
3120
3121 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3122 switch (ret) {
3123 case NODE_RECLAIM_NOSCAN:
3124 /* did not scan */
3125 continue;
3126 case NODE_RECLAIM_FULL:
3127 /* scanned but unreclaimable */
3128 continue;
3129 default:
3130 /* did we reclaim enough */
3131 if (zone_watermark_ok(zone, order, mark,
3132 ac_classzone_idx(ac), alloc_flags))
3133 goto try_this_zone;
3134
3135 continue;
3136 }
3137 }
3138
3139 try_this_zone:
3140 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3141 gfp_mask, alloc_flags, ac->migratetype);
3142 if (page) {
3143 prep_new_page(page, order, gfp_mask, alloc_flags);
3144
3145 /*
3146 * If this is a high-order atomic allocation then check
3147 * if the pageblock should be reserved for the future
3148 */
3149 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3150 reserve_highatomic_pageblock(page, zone, order);
3151
3152 return page;
3153 }
3154 }
3155
3156 return NULL;
3157 }
3158
3159 /*
3160 * Large machines with many possible nodes should not always dump per-node
3161 * meminfo in irq context.
3162 */
3163 static inline bool should_suppress_show_mem(void)
3164 {
3165 bool ret = false;
3166
3167 #if NODES_SHIFT > 8
3168 ret = in_interrupt();
3169 #endif
3170 return ret;
3171 }
3172
3173 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3174 {
3175 unsigned int filter = SHOW_MEM_FILTER_NODES;
3176 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3177
3178 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3179 return;
3180
3181 /*
3182 * This documents exceptions given to allocations in certain
3183 * contexts that are allowed to allocate outside current's set
3184 * of allowed nodes.
3185 */
3186 if (!(gfp_mask & __GFP_NOMEMALLOC))
3187 if (test_thread_flag(TIF_MEMDIE) ||
3188 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3189 filter &= ~SHOW_MEM_FILTER_NODES;
3190 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3191 filter &= ~SHOW_MEM_FILTER_NODES;
3192
3193 show_mem(filter, nodemask);
3194 }
3195
3196 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3197 {
3198 struct va_format vaf;
3199 va_list args;
3200 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3201 DEFAULT_RATELIMIT_BURST);
3202
3203 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3204 return;
3205
3206 pr_warn("%s: ", current->comm);
3207
3208 va_start(args, fmt);
3209 vaf.fmt = fmt;
3210 vaf.va = &args;
3211 pr_cont("%pV", &vaf);
3212 va_end(args);
3213
3214 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3215 if (nodemask)
3216 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3217 else
3218 pr_cont("(null)\n");
3219
3220 cpuset_print_current_mems_allowed();
3221
3222 dump_stack();
3223 warn_alloc_show_mem(gfp_mask, nodemask);
3224 }
3225
3226 static inline struct page *
3227 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3228 unsigned int alloc_flags,
3229 const struct alloc_context *ac)
3230 {
3231 struct page *page;
3232
3233 page = get_page_from_freelist(gfp_mask, order,
3234 alloc_flags|ALLOC_CPUSET, ac);
3235 /*
3236 * fallback to ignore cpuset restriction if our nodes
3237 * are depleted
3238 */
3239 if (!page)
3240 page = get_page_from_freelist(gfp_mask, order,
3241 alloc_flags, ac);
3242
3243 return page;
3244 }
3245
3246 static inline struct page *
3247 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3248 const struct alloc_context *ac, unsigned long *did_some_progress)
3249 {
3250 struct oom_control oc = {
3251 .zonelist = ac->zonelist,
3252 .nodemask = ac->nodemask,
3253 .memcg = NULL,
3254 .gfp_mask = gfp_mask,
3255 .order = order,
3256 };
3257 struct page *page;
3258
3259 *did_some_progress = 0;
3260
3261 /*
3262 * Acquire the oom lock. If that fails, somebody else is
3263 * making progress for us.
3264 */
3265 if (!mutex_trylock(&oom_lock)) {
3266 *did_some_progress = 1;
3267 schedule_timeout_uninterruptible(1);
3268 return NULL;
3269 }
3270
3271 /*
3272 * Go through the zonelist yet one more time, keep very high watermark
3273 * here, this is only to catch a parallel oom killing, we must fail if
3274 * we're still under heavy pressure.
3275 */
3276 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3277 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3278 if (page)
3279 goto out;
3280
3281 /* Coredumps can quickly deplete all memory reserves */
3282 if (current->flags & PF_DUMPCORE)
3283 goto out;
3284 /* The OOM killer will not help higher order allocs */
3285 if (order > PAGE_ALLOC_COSTLY_ORDER)
3286 goto out;
3287 /*
3288 * We have already exhausted all our reclaim opportunities without any
3289 * success so it is time to admit defeat. We will skip the OOM killer
3290 * because it is very likely that the caller has a more reasonable
3291 * fallback than shooting a random task.
3292 */
3293 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3294 goto out;
3295 /* The OOM killer does not needlessly kill tasks for lowmem */
3296 if (ac->high_zoneidx < ZONE_NORMAL)
3297 goto out;
3298 if (pm_suspended_storage())
3299 goto out;
3300 /*
3301 * XXX: GFP_NOFS allocations should rather fail than rely on
3302 * other request to make a forward progress.
3303 * We are in an unfortunate situation where out_of_memory cannot
3304 * do much for this context but let's try it to at least get
3305 * access to memory reserved if the current task is killed (see
3306 * out_of_memory). Once filesystems are ready to handle allocation
3307 * failures more gracefully we should just bail out here.
3308 */
3309
3310 /* The OOM killer may not free memory on a specific node */
3311 if (gfp_mask & __GFP_THISNODE)
3312 goto out;
3313
3314 /* Exhausted what can be done so it's blamo time */
3315 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3316 *did_some_progress = 1;
3317
3318 /*
3319 * Help non-failing allocations by giving them access to memory
3320 * reserves
3321 */
3322 if (gfp_mask & __GFP_NOFAIL)
3323 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3324 ALLOC_NO_WATERMARKS, ac);
3325 }
3326 out:
3327 mutex_unlock(&oom_lock);
3328 return page;
3329 }
3330
3331 /*
3332 * Maximum number of compaction retries wit a progress before OOM
3333 * killer is consider as the only way to move forward.
3334 */
3335 #define MAX_COMPACT_RETRIES 16
3336
3337 #ifdef CONFIG_COMPACTION
3338 /* Try memory compaction for high-order allocations before reclaim */
3339 static struct page *
3340 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3341 unsigned int alloc_flags, const struct alloc_context *ac,
3342 enum compact_priority prio, enum compact_result *compact_result)
3343 {
3344 struct page *page;
3345 unsigned int noreclaim_flag;
3346
3347 if (!order)
3348 return NULL;
3349
3350 noreclaim_flag = memalloc_noreclaim_save();
3351 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3352 prio);
3353 memalloc_noreclaim_restore(noreclaim_flag);
3354
3355 if (*compact_result <= COMPACT_INACTIVE)
3356 return NULL;
3357
3358 /*
3359 * At least in one zone compaction wasn't deferred or skipped, so let's
3360 * count a compaction stall
3361 */
3362 count_vm_event(COMPACTSTALL);
3363
3364 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3365
3366 if (page) {
3367 struct zone *zone = page_zone(page);
3368
3369 zone->compact_blockskip_flush = false;
3370 compaction_defer_reset(zone, order, true);
3371 count_vm_event(COMPACTSUCCESS);
3372 return page;
3373 }
3374
3375 /*
3376 * It's bad if compaction run occurs and fails. The most likely reason
3377 * is that pages exist, but not enough to satisfy watermarks.
3378 */
3379 count_vm_event(COMPACTFAIL);
3380
3381 cond_resched();
3382
3383 return NULL;
3384 }
3385
3386 static inline bool
3387 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3388 enum compact_result compact_result,
3389 enum compact_priority *compact_priority,
3390 int *compaction_retries)
3391 {
3392 int max_retries = MAX_COMPACT_RETRIES;
3393 int min_priority;
3394 bool ret = false;
3395 int retries = *compaction_retries;
3396 enum compact_priority priority = *compact_priority;
3397
3398 if (!order)
3399 return false;
3400
3401 if (compaction_made_progress(compact_result))
3402 (*compaction_retries)++;
3403
3404 /*
3405 * compaction considers all the zone as desperately out of memory
3406 * so it doesn't really make much sense to retry except when the
3407 * failure could be caused by insufficient priority
3408 */
3409 if (compaction_failed(compact_result))
3410 goto check_priority;
3411
3412 /*
3413 * make sure the compaction wasn't deferred or didn't bail out early
3414 * due to locks contention before we declare that we should give up.
3415 * But do not retry if the given zonelist is not suitable for
3416 * compaction.
3417 */
3418 if (compaction_withdrawn(compact_result)) {
3419 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3420 goto out;
3421 }
3422
3423 /*
3424 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3425 * costly ones because they are de facto nofail and invoke OOM
3426 * killer to move on while costly can fail and users are ready
3427 * to cope with that. 1/4 retries is rather arbitrary but we
3428 * would need much more detailed feedback from compaction to
3429 * make a better decision.
3430 */
3431 if (order > PAGE_ALLOC_COSTLY_ORDER)
3432 max_retries /= 4;
3433 if (*compaction_retries <= max_retries) {
3434 ret = true;
3435 goto out;
3436 }
3437
3438 /*
3439 * Make sure there are attempts at the highest priority if we exhausted
3440 * all retries or failed at the lower priorities.
3441 */
3442 check_priority:
3443 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3444 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3445
3446 if (*compact_priority > min_priority) {
3447 (*compact_priority)--;
3448 *compaction_retries = 0;
3449 ret = true;
3450 }
3451 out:
3452 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3453 return ret;
3454 }
3455 #else
3456 static inline struct page *
3457 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3458 unsigned int alloc_flags, const struct alloc_context *ac,
3459 enum compact_priority prio, enum compact_result *compact_result)
3460 {
3461 *compact_result = COMPACT_SKIPPED;
3462 return NULL;
3463 }
3464
3465 static inline bool
3466 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3467 enum compact_result compact_result,
3468 enum compact_priority *compact_priority,
3469 int *compaction_retries)
3470 {
3471 struct zone *zone;
3472 struct zoneref *z;
3473
3474 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3475 return false;
3476
3477 /*
3478 * There are setups with compaction disabled which would prefer to loop
3479 * inside the allocator rather than hit the oom killer prematurely.
3480 * Let's give them a good hope and keep retrying while the order-0
3481 * watermarks are OK.
3482 */
3483 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3484 ac->nodemask) {
3485 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3486 ac_classzone_idx(ac), alloc_flags))
3487 return true;
3488 }
3489 return false;
3490 }
3491 #endif /* CONFIG_COMPACTION */
3492
3493 /* Perform direct synchronous page reclaim */
3494 static int
3495 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3496 const struct alloc_context *ac)
3497 {
3498 struct reclaim_state reclaim_state;
3499 int progress;
3500 unsigned int noreclaim_flag;
3501
3502 cond_resched();
3503
3504 /* We now go into synchronous reclaim */
3505 cpuset_memory_pressure_bump();
3506 noreclaim_flag = memalloc_noreclaim_save();
3507 lockdep_set_current_reclaim_state(gfp_mask);
3508 reclaim_state.reclaimed_slab = 0;
3509 current->reclaim_state = &reclaim_state;
3510
3511 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3512 ac->nodemask);
3513
3514 current->reclaim_state = NULL;
3515 lockdep_clear_current_reclaim_state();
3516 memalloc_noreclaim_restore(noreclaim_flag);
3517
3518 cond_resched();
3519
3520 return progress;
3521 }
3522
3523 /* The really slow allocator path where we enter direct reclaim */
3524 static inline struct page *
3525 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3526 unsigned int alloc_flags, const struct alloc_context *ac,
3527 unsigned long *did_some_progress)
3528 {
3529 struct page *page = NULL;
3530 bool drained = false;
3531
3532 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3533 if (unlikely(!(*did_some_progress)))
3534 return NULL;
3535
3536 retry:
3537 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3538
3539 /*
3540 * If an allocation failed after direct reclaim, it could be because
3541 * pages are pinned on the per-cpu lists or in high alloc reserves.
3542 * Shrink them them and try again
3543 */
3544 if (!page && !drained) {
3545 unreserve_highatomic_pageblock(ac, false);
3546 drain_all_pages(NULL);
3547 drained = true;
3548 goto retry;
3549 }
3550
3551 return page;
3552 }
3553
3554 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3555 {
3556 struct zoneref *z;
3557 struct zone *zone;
3558 pg_data_t *last_pgdat = NULL;
3559
3560 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3561 ac->high_zoneidx, ac->nodemask) {
3562 if (last_pgdat != zone->zone_pgdat)
3563 wakeup_kswapd(zone, order, ac->high_zoneidx);
3564 last_pgdat = zone->zone_pgdat;
3565 }
3566 }
3567
3568 static inline unsigned int
3569 gfp_to_alloc_flags(gfp_t gfp_mask)
3570 {
3571 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3572
3573 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3574 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3575
3576 /*
3577 * The caller may dip into page reserves a bit more if the caller
3578 * cannot run direct reclaim, or if the caller has realtime scheduling
3579 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3580 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3581 */
3582 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3583
3584 if (gfp_mask & __GFP_ATOMIC) {
3585 /*
3586 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3587 * if it can't schedule.
3588 */
3589 if (!(gfp_mask & __GFP_NOMEMALLOC))
3590 alloc_flags |= ALLOC_HARDER;
3591 /*
3592 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3593 * comment for __cpuset_node_allowed().
3594 */
3595 alloc_flags &= ~ALLOC_CPUSET;
3596 } else if (unlikely(rt_task(current)) && !in_interrupt())
3597 alloc_flags |= ALLOC_HARDER;
3598
3599 #ifdef CONFIG_CMA
3600 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3601 alloc_flags |= ALLOC_CMA;
3602 #endif
3603 return alloc_flags;
3604 }
3605
3606 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3607 {
3608 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3609 return false;
3610
3611 if (gfp_mask & __GFP_MEMALLOC)
3612 return true;
3613 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3614 return true;
3615 if (!in_interrupt() &&
3616 ((current->flags & PF_MEMALLOC) ||
3617 unlikely(test_thread_flag(TIF_MEMDIE))))
3618 return true;
3619
3620 return false;
3621 }
3622
3623 /*
3624 * Checks whether it makes sense to retry the reclaim to make a forward progress
3625 * for the given allocation request.
3626 *
3627 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3628 * without success, or when we couldn't even meet the watermark if we
3629 * reclaimed all remaining pages on the LRU lists.
3630 *
3631 * Returns true if a retry is viable or false to enter the oom path.
3632 */
3633 static inline bool
3634 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3635 struct alloc_context *ac, int alloc_flags,
3636 bool did_some_progress, int *no_progress_loops)
3637 {
3638 struct zone *zone;
3639 struct zoneref *z;
3640
3641 /*
3642 * Costly allocations might have made a progress but this doesn't mean
3643 * their order will become available due to high fragmentation so
3644 * always increment the no progress counter for them
3645 */
3646 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3647 *no_progress_loops = 0;
3648 else
3649 (*no_progress_loops)++;
3650
3651 /*
3652 * Make sure we converge to OOM if we cannot make any progress
3653 * several times in the row.
3654 */
3655 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3656 /* Before OOM, exhaust highatomic_reserve */
3657 return unreserve_highatomic_pageblock(ac, true);
3658 }
3659
3660 /*
3661 * Keep reclaiming pages while there is a chance this will lead
3662 * somewhere. If none of the target zones can satisfy our allocation
3663 * request even if all reclaimable pages are considered then we are
3664 * screwed and have to go OOM.
3665 */
3666 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3667 ac->nodemask) {
3668 unsigned long available;
3669 unsigned long reclaimable;
3670 unsigned long min_wmark = min_wmark_pages(zone);
3671 bool wmark;
3672
3673 available = reclaimable = zone_reclaimable_pages(zone);
3674 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3675
3676 /*
3677 * Would the allocation succeed if we reclaimed all
3678 * reclaimable pages?
3679 */
3680 wmark = __zone_watermark_ok(zone, order, min_wmark,
3681 ac_classzone_idx(ac), alloc_flags, available);
3682 trace_reclaim_retry_zone(z, order, reclaimable,
3683 available, min_wmark, *no_progress_loops, wmark);
3684 if (wmark) {
3685 /*
3686 * If we didn't make any progress and have a lot of
3687 * dirty + writeback pages then we should wait for
3688 * an IO to complete to slow down the reclaim and
3689 * prevent from pre mature OOM
3690 */
3691 if (!did_some_progress) {
3692 unsigned long write_pending;
3693
3694 write_pending = zone_page_state_snapshot(zone,
3695 NR_ZONE_WRITE_PENDING);
3696
3697 if (2 * write_pending > reclaimable) {
3698 congestion_wait(BLK_RW_ASYNC, HZ/10);
3699 return true;
3700 }
3701 }
3702
3703 /*
3704 * Memory allocation/reclaim might be called from a WQ
3705 * context and the current implementation of the WQ
3706 * concurrency control doesn't recognize that
3707 * a particular WQ is congested if the worker thread is
3708 * looping without ever sleeping. Therefore we have to
3709 * do a short sleep here rather than calling
3710 * cond_resched().
3711 */
3712 if (current->flags & PF_WQ_WORKER)
3713 schedule_timeout_uninterruptible(1);
3714 else
3715 cond_resched();
3716
3717 return true;
3718 }
3719 }
3720
3721 return false;
3722 }
3723
3724 static inline bool
3725 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3726 {
3727 /*
3728 * It's possible that cpuset's mems_allowed and the nodemask from
3729 * mempolicy don't intersect. This should be normally dealt with by
3730 * policy_nodemask(), but it's possible to race with cpuset update in
3731 * such a way the check therein was true, and then it became false
3732 * before we got our cpuset_mems_cookie here.
3733 * This assumes that for all allocations, ac->nodemask can come only
3734 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3735 * when it does not intersect with the cpuset restrictions) or the
3736 * caller can deal with a violated nodemask.
3737 */
3738 if (cpusets_enabled() && ac->nodemask &&
3739 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3740 ac->nodemask = NULL;
3741 return true;
3742 }
3743
3744 /*
3745 * When updating a task's mems_allowed or mempolicy nodemask, it is
3746 * possible to race with parallel threads in such a way that our
3747 * allocation can fail while the mask is being updated. If we are about
3748 * to fail, check if the cpuset changed during allocation and if so,
3749 * retry.
3750 */
3751 if (read_mems_allowed_retry(cpuset_mems_cookie))
3752 return true;
3753
3754 return false;
3755 }
3756
3757 static inline struct page *
3758 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3759 struct alloc_context *ac)
3760 {
3761 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3762 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3763 struct page *page = NULL;
3764 unsigned int alloc_flags;
3765 unsigned long did_some_progress;
3766 enum compact_priority compact_priority;
3767 enum compact_result compact_result;
3768 int compaction_retries;
3769 int no_progress_loops;
3770 unsigned long alloc_start = jiffies;
3771 unsigned int stall_timeout = 10 * HZ;
3772 unsigned int cpuset_mems_cookie;
3773
3774 /*
3775 * In the slowpath, we sanity check order to avoid ever trying to
3776 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3777 * be using allocators in order of preference for an area that is
3778 * too large.
3779 */
3780 if (order >= MAX_ORDER) {
3781 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3782 return NULL;
3783 }
3784
3785 /*
3786 * We also sanity check to catch abuse of atomic reserves being used by
3787 * callers that are not in atomic context.
3788 */
3789 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3790 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3791 gfp_mask &= ~__GFP_ATOMIC;
3792
3793 retry_cpuset:
3794 compaction_retries = 0;
3795 no_progress_loops = 0;
3796 compact_priority = DEF_COMPACT_PRIORITY;
3797 cpuset_mems_cookie = read_mems_allowed_begin();
3798
3799 /*
3800 * The fast path uses conservative alloc_flags to succeed only until
3801 * kswapd needs to be woken up, and to avoid the cost of setting up
3802 * alloc_flags precisely. So we do that now.
3803 */
3804 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3805
3806 /*
3807 * We need to recalculate the starting point for the zonelist iterator
3808 * because we might have used different nodemask in the fast path, or
3809 * there was a cpuset modification and we are retrying - otherwise we
3810 * could end up iterating over non-eligible zones endlessly.
3811 */
3812 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3813 ac->high_zoneidx, ac->nodemask);
3814 if (!ac->preferred_zoneref->zone)
3815 goto nopage;
3816
3817 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3818 wake_all_kswapds(order, ac);
3819
3820 /*
3821 * The adjusted alloc_flags might result in immediate success, so try
3822 * that first
3823 */
3824 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3825 if (page)
3826 goto got_pg;
3827
3828 /*
3829 * For costly allocations, try direct compaction first, as it's likely
3830 * that we have enough base pages and don't need to reclaim. For non-
3831 * movable high-order allocations, do that as well, as compaction will
3832 * try prevent permanent fragmentation by migrating from blocks of the
3833 * same migratetype.
3834 * Don't try this for allocations that are allowed to ignore
3835 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3836 */
3837 if (can_direct_reclaim &&
3838 (costly_order ||
3839 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3840 && !gfp_pfmemalloc_allowed(gfp_mask)) {
3841 page = __alloc_pages_direct_compact(gfp_mask, order,
3842 alloc_flags, ac,
3843 INIT_COMPACT_PRIORITY,
3844 &compact_result);
3845 if (page)
3846 goto got_pg;
3847
3848 /*
3849 * Checks for costly allocations with __GFP_NORETRY, which
3850 * includes THP page fault allocations
3851 */
3852 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3853 /*
3854 * If compaction is deferred for high-order allocations,
3855 * it is because sync compaction recently failed. If
3856 * this is the case and the caller requested a THP
3857 * allocation, we do not want to heavily disrupt the
3858 * system, so we fail the allocation instead of entering
3859 * direct reclaim.
3860 */
3861 if (compact_result == COMPACT_DEFERRED)
3862 goto nopage;
3863
3864 /*
3865 * Looks like reclaim/compaction is worth trying, but
3866 * sync compaction could be very expensive, so keep
3867 * using async compaction.
3868 */
3869 compact_priority = INIT_COMPACT_PRIORITY;
3870 }
3871 }
3872
3873 retry:
3874 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3875 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3876 wake_all_kswapds(order, ac);
3877
3878 if (gfp_pfmemalloc_allowed(gfp_mask))
3879 alloc_flags = ALLOC_NO_WATERMARKS;
3880
3881 /*
3882 * Reset the zonelist iterators if memory policies can be ignored.
3883 * These allocations are high priority and system rather than user
3884 * orientated.
3885 */
3886 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3887 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3888 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3889 ac->high_zoneidx, ac->nodemask);
3890 }
3891
3892 /* Attempt with potentially adjusted zonelist and alloc_flags */
3893 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3894 if (page)
3895 goto got_pg;
3896
3897 /* Caller is not willing to reclaim, we can't balance anything */
3898 if (!can_direct_reclaim)
3899 goto nopage;
3900
3901 /* Make sure we know about allocations which stall for too long */
3902 if (time_after(jiffies, alloc_start + stall_timeout)) {
3903 warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
3904 "page allocation stalls for %ums, order:%u",
3905 jiffies_to_msecs(jiffies-alloc_start), order);
3906 stall_timeout += 10 * HZ;
3907 }
3908
3909 /* Avoid recursion of direct reclaim */
3910 if (current->flags & PF_MEMALLOC)
3911 goto nopage;
3912
3913 /* Try direct reclaim and then allocating */
3914 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3915 &did_some_progress);
3916 if (page)
3917 goto got_pg;
3918
3919 /* Try direct compaction and then allocating */
3920 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3921 compact_priority, &compact_result);
3922 if (page)
3923 goto got_pg;
3924
3925 /* Do not loop if specifically requested */
3926 if (gfp_mask & __GFP_NORETRY)
3927 goto nopage;
3928
3929 /*
3930 * Do not retry costly high order allocations unless they are
3931 * __GFP_RETRY_MAYFAIL
3932 */
3933 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
3934 goto nopage;
3935
3936 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3937 did_some_progress > 0, &no_progress_loops))
3938 goto retry;
3939
3940 /*
3941 * It doesn't make any sense to retry for the compaction if the order-0
3942 * reclaim is not able to make any progress because the current
3943 * implementation of the compaction depends on the sufficient amount
3944 * of free memory (see __compaction_suitable)
3945 */
3946 if (did_some_progress > 0 &&
3947 should_compact_retry(ac, order, alloc_flags,
3948 compact_result, &compact_priority,
3949 &compaction_retries))
3950 goto retry;
3951
3952
3953 /* Deal with possible cpuset update races before we start OOM killing */
3954 if (check_retry_cpuset(cpuset_mems_cookie, ac))
3955 goto retry_cpuset;
3956
3957 /* Reclaim has failed us, start killing things */
3958 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3959 if (page)
3960 goto got_pg;
3961
3962 /* Avoid allocations with no watermarks from looping endlessly */
3963 if (test_thread_flag(TIF_MEMDIE) &&
3964 (alloc_flags == ALLOC_NO_WATERMARKS ||
3965 (gfp_mask & __GFP_NOMEMALLOC)))
3966 goto nopage;
3967
3968 /* Retry as long as the OOM killer is making progress */
3969 if (did_some_progress) {
3970 no_progress_loops = 0;
3971 goto retry;
3972 }
3973
3974 nopage:
3975 /* Deal with possible cpuset update races before we fail */
3976 if (check_retry_cpuset(cpuset_mems_cookie, ac))
3977 goto retry_cpuset;
3978
3979 /*
3980 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3981 * we always retry
3982 */
3983 if (gfp_mask & __GFP_NOFAIL) {
3984 /*
3985 * All existing users of the __GFP_NOFAIL are blockable, so warn
3986 * of any new users that actually require GFP_NOWAIT
3987 */
3988 if (WARN_ON_ONCE(!can_direct_reclaim))
3989 goto fail;
3990
3991 /*
3992 * PF_MEMALLOC request from this context is rather bizarre
3993 * because we cannot reclaim anything and only can loop waiting
3994 * for somebody to do a work for us
3995 */
3996 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3997
3998 /*
3999 * non failing costly orders are a hard requirement which we
4000 * are not prepared for much so let's warn about these users
4001 * so that we can identify them and convert them to something
4002 * else.
4003 */
4004 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4005
4006 /*
4007 * Help non-failing allocations by giving them access to memory
4008 * reserves but do not use ALLOC_NO_WATERMARKS because this
4009 * could deplete whole memory reserves which would just make
4010 * the situation worse
4011 */
4012 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4013 if (page)
4014 goto got_pg;
4015
4016 cond_resched();
4017 goto retry;
4018 }
4019 fail:
4020 warn_alloc(gfp_mask, ac->nodemask,
4021 "page allocation failure: order:%u", order);
4022 got_pg:
4023 return page;
4024 }
4025
4026 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4027 int preferred_nid, nodemask_t *nodemask,
4028 struct alloc_context *ac, gfp_t *alloc_mask,
4029 unsigned int *alloc_flags)
4030 {
4031 ac->high_zoneidx = gfp_zone(gfp_mask);
4032 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4033 ac->nodemask = nodemask;
4034 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4035
4036 if (cpusets_enabled()) {
4037 *alloc_mask |= __GFP_HARDWALL;
4038 if (!ac->nodemask)
4039 ac->nodemask = &cpuset_current_mems_allowed;
4040 else
4041 *alloc_flags |= ALLOC_CPUSET;
4042 }
4043
4044 lockdep_trace_alloc(gfp_mask);
4045
4046 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4047
4048 if (should_fail_alloc_page(gfp_mask, order))
4049 return false;
4050
4051 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4052 *alloc_flags |= ALLOC_CMA;
4053
4054 return true;
4055 }
4056
4057 /* Determine whether to spread dirty pages and what the first usable zone */
4058 static inline void finalise_ac(gfp_t gfp_mask,
4059 unsigned int order, struct alloc_context *ac)
4060 {
4061 /* Dirty zone balancing only done in the fast path */
4062 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4063
4064 /*
4065 * The preferred zone is used for statistics but crucially it is
4066 * also used as the starting point for the zonelist iterator. It
4067 * may get reset for allocations that ignore memory policies.
4068 */
4069 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4070 ac->high_zoneidx, ac->nodemask);
4071 }
4072
4073 /*
4074 * This is the 'heart' of the zoned buddy allocator.
4075 */
4076 struct page *
4077 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4078 nodemask_t *nodemask)
4079 {
4080 struct page *page;
4081 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4082 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
4083 struct alloc_context ac = { };
4084
4085 gfp_mask &= gfp_allowed_mask;
4086 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4087 return NULL;
4088
4089 finalise_ac(gfp_mask, order, &ac);
4090
4091 /* First allocation attempt */
4092 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4093 if (likely(page))
4094 goto out;
4095
4096 /*
4097 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4098 * resp. GFP_NOIO which has to be inherited for all allocation requests
4099 * from a particular context which has been marked by
4100 * memalloc_no{fs,io}_{save,restore}.
4101 */
4102 alloc_mask = current_gfp_context(gfp_mask);
4103 ac.spread_dirty_pages = false;
4104
4105 /*
4106 * Restore the original nodemask if it was potentially replaced with
4107 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4108 */
4109 if (unlikely(ac.nodemask != nodemask))
4110 ac.nodemask = nodemask;
4111
4112 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4113
4114 out:
4115 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4116 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4117 __free_pages(page, order);
4118 page = NULL;
4119 }
4120
4121 if (kmemcheck_enabled && page)
4122 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
4123
4124 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4125
4126 return page;
4127 }
4128 EXPORT_SYMBOL(__alloc_pages_nodemask);
4129
4130 /*
4131 * Common helper functions.
4132 */
4133 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4134 {
4135 struct page *page;
4136
4137 /*
4138 * __get_free_pages() returns a 32-bit address, which cannot represent
4139 * a highmem page
4140 */
4141 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4142
4143 page = alloc_pages(gfp_mask, order);
4144 if (!page)
4145 return 0;
4146 return (unsigned long) page_address(page);
4147 }
4148 EXPORT_SYMBOL(__get_free_pages);
4149
4150 unsigned long get_zeroed_page(gfp_t gfp_mask)
4151 {
4152 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4153 }
4154 EXPORT_SYMBOL(get_zeroed_page);
4155
4156 void __free_pages(struct page *page, unsigned int order)
4157 {
4158 if (put_page_testzero(page)) {
4159 if (order == 0)
4160 free_hot_cold_page(page, false);
4161 else
4162 __free_pages_ok(page, order);
4163 }
4164 }
4165
4166 EXPORT_SYMBOL(__free_pages);
4167
4168 void free_pages(unsigned long addr, unsigned int order)
4169 {
4170 if (addr != 0) {
4171 VM_BUG_ON(!virt_addr_valid((void *)addr));
4172 __free_pages(virt_to_page((void *)addr), order);
4173 }
4174 }
4175
4176 EXPORT_SYMBOL(free_pages);
4177
4178 /*
4179 * Page Fragment:
4180 * An arbitrary-length arbitrary-offset area of memory which resides
4181 * within a 0 or higher order page. Multiple fragments within that page
4182 * are individually refcounted, in the page's reference counter.
4183 *
4184 * The page_frag functions below provide a simple allocation framework for
4185 * page fragments. This is used by the network stack and network device
4186 * drivers to provide a backing region of memory for use as either an
4187 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4188 */
4189 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4190 gfp_t gfp_mask)
4191 {
4192 struct page *page = NULL;
4193 gfp_t gfp = gfp_mask;
4194
4195 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4196 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4197 __GFP_NOMEMALLOC;
4198 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4199 PAGE_FRAG_CACHE_MAX_ORDER);
4200 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4201 #endif
4202 if (unlikely(!page))
4203 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4204
4205 nc->va = page ? page_address(page) : NULL;
4206
4207 return page;
4208 }
4209
4210 void __page_frag_cache_drain(struct page *page, unsigned int count)
4211 {
4212 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4213
4214 if (page_ref_sub_and_test(page, count)) {
4215 unsigned int order = compound_order(page);
4216
4217 if (order == 0)
4218 free_hot_cold_page(page, false);
4219 else
4220 __free_pages_ok(page, order);
4221 }
4222 }
4223 EXPORT_SYMBOL(__page_frag_cache_drain);
4224
4225 void *page_frag_alloc(struct page_frag_cache *nc,
4226 unsigned int fragsz, gfp_t gfp_mask)
4227 {
4228 unsigned int size = PAGE_SIZE;
4229 struct page *page;
4230 int offset;
4231
4232 if (unlikely(!nc->va)) {
4233 refill:
4234 page = __page_frag_cache_refill(nc, gfp_mask);
4235 if (!page)
4236 return NULL;
4237
4238 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4239 /* if size can vary use size else just use PAGE_SIZE */
4240 size = nc->size;
4241 #endif
4242 /* Even if we own the page, we do not use atomic_set().
4243 * This would break get_page_unless_zero() users.
4244 */
4245 page_ref_add(page, size - 1);
4246
4247 /* reset page count bias and offset to start of new frag */
4248 nc->pfmemalloc = page_is_pfmemalloc(page);
4249 nc->pagecnt_bias = size;
4250 nc->offset = size;
4251 }
4252
4253 offset = nc->offset - fragsz;
4254 if (unlikely(offset < 0)) {
4255 page = virt_to_page(nc->va);
4256
4257 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4258 goto refill;
4259
4260 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4261 /* if size can vary use size else just use PAGE_SIZE */
4262 size = nc->size;
4263 #endif
4264 /* OK, page count is 0, we can safely set it */
4265 set_page_count(page, size);
4266
4267 /* reset page count bias and offset to start of new frag */
4268 nc->pagecnt_bias = size;
4269 offset = size - fragsz;
4270 }
4271
4272 nc->pagecnt_bias--;
4273 nc->offset = offset;
4274
4275 return nc->va + offset;
4276 }
4277 EXPORT_SYMBOL(page_frag_alloc);
4278
4279 /*
4280 * Frees a page fragment allocated out of either a compound or order 0 page.
4281 */
4282 void page_frag_free(void *addr)
4283 {
4284 struct page *page = virt_to_head_page(addr);
4285
4286 if (unlikely(put_page_testzero(page)))
4287 __free_pages_ok(page, compound_order(page));
4288 }
4289 EXPORT_SYMBOL(page_frag_free);
4290
4291 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4292 size_t size)
4293 {
4294 if (addr) {
4295 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4296 unsigned long used = addr + PAGE_ALIGN(size);
4297
4298 split_page(virt_to_page((void *)addr), order);
4299 while (used < alloc_end) {
4300 free_page(used);
4301 used += PAGE_SIZE;
4302 }
4303 }
4304 return (void *)addr;
4305 }
4306
4307 /**
4308 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4309 * @size: the number of bytes to allocate
4310 * @gfp_mask: GFP flags for the allocation
4311 *
4312 * This function is similar to alloc_pages(), except that it allocates the
4313 * minimum number of pages to satisfy the request. alloc_pages() can only
4314 * allocate memory in power-of-two pages.
4315 *
4316 * This function is also limited by MAX_ORDER.
4317 *
4318 * Memory allocated by this function must be released by free_pages_exact().
4319 */
4320 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4321 {
4322 unsigned int order = get_order(size);
4323 unsigned long addr;
4324
4325 addr = __get_free_pages(gfp_mask, order);
4326 return make_alloc_exact(addr, order, size);
4327 }
4328 EXPORT_SYMBOL(alloc_pages_exact);
4329
4330 /**
4331 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4332 * pages on a node.
4333 * @nid: the preferred node ID where memory should be allocated
4334 * @size: the number of bytes to allocate
4335 * @gfp_mask: GFP flags for the allocation
4336 *
4337 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4338 * back.
4339 */
4340 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4341 {
4342 unsigned int order = get_order(size);
4343 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4344 if (!p)
4345 return NULL;
4346 return make_alloc_exact((unsigned long)page_address(p), order, size);
4347 }
4348
4349 /**
4350 * free_pages_exact - release memory allocated via alloc_pages_exact()
4351 * @virt: the value returned by alloc_pages_exact.
4352 * @size: size of allocation, same value as passed to alloc_pages_exact().
4353 *
4354 * Release the memory allocated by a previous call to alloc_pages_exact.
4355 */
4356 void free_pages_exact(void *virt, size_t size)
4357 {
4358 unsigned long addr = (unsigned long)virt;
4359 unsigned long end = addr + PAGE_ALIGN(size);
4360
4361 while (addr < end) {
4362 free_page(addr);
4363 addr += PAGE_SIZE;
4364 }
4365 }
4366 EXPORT_SYMBOL(free_pages_exact);
4367
4368 /**
4369 * nr_free_zone_pages - count number of pages beyond high watermark
4370 * @offset: The zone index of the highest zone
4371 *
4372 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4373 * high watermark within all zones at or below a given zone index. For each
4374 * zone, the number of pages is calculated as:
4375 *
4376 * nr_free_zone_pages = managed_pages - high_pages
4377 */
4378 static unsigned long nr_free_zone_pages(int offset)
4379 {
4380 struct zoneref *z;
4381 struct zone *zone;
4382
4383 /* Just pick one node, since fallback list is circular */
4384 unsigned long sum = 0;
4385
4386 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4387
4388 for_each_zone_zonelist(zone, z, zonelist, offset) {
4389 unsigned long size = zone->managed_pages;
4390 unsigned long high = high_wmark_pages(zone);
4391 if (size > high)
4392 sum += size - high;
4393 }
4394
4395 return sum;
4396 }
4397
4398 /**
4399 * nr_free_buffer_pages - count number of pages beyond high watermark
4400 *
4401 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4402 * watermark within ZONE_DMA and ZONE_NORMAL.
4403 */
4404 unsigned long nr_free_buffer_pages(void)
4405 {
4406 return nr_free_zone_pages(gfp_zone(GFP_USER));
4407 }
4408 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4409
4410 /**
4411 * nr_free_pagecache_pages - count number of pages beyond high watermark
4412 *
4413 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4414 * high watermark within all zones.
4415 */
4416 unsigned long nr_free_pagecache_pages(void)
4417 {
4418 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4419 }
4420
4421 static inline void show_node(struct zone *zone)
4422 {
4423 if (IS_ENABLED(CONFIG_NUMA))
4424 printk("Node %d ", zone_to_nid(zone));
4425 }
4426
4427 long si_mem_available(void)
4428 {
4429 long available;
4430 unsigned long pagecache;
4431 unsigned long wmark_low = 0;
4432 unsigned long pages[NR_LRU_LISTS];
4433 struct zone *zone;
4434 int lru;
4435
4436 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4437 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4438
4439 for_each_zone(zone)
4440 wmark_low += zone->watermark[WMARK_LOW];
4441
4442 /*
4443 * Estimate the amount of memory available for userspace allocations,
4444 * without causing swapping.
4445 */
4446 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4447
4448 /*
4449 * Not all the page cache can be freed, otherwise the system will
4450 * start swapping. Assume at least half of the page cache, or the
4451 * low watermark worth of cache, needs to stay.
4452 */
4453 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4454 pagecache -= min(pagecache / 2, wmark_low);
4455 available += pagecache;
4456
4457 /*
4458 * Part of the reclaimable slab consists of items that are in use,
4459 * and cannot be freed. Cap this estimate at the low watermark.
4460 */
4461 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4462 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4463
4464 if (available < 0)
4465 available = 0;
4466 return available;
4467 }
4468 EXPORT_SYMBOL_GPL(si_mem_available);
4469
4470 void si_meminfo(struct sysinfo *val)
4471 {
4472 val->totalram = totalram_pages;
4473 val->sharedram = global_node_page_state(NR_SHMEM);
4474 val->freeram = global_page_state(NR_FREE_PAGES);
4475 val->bufferram = nr_blockdev_pages();
4476 val->totalhigh = totalhigh_pages;
4477 val->freehigh = nr_free_highpages();
4478 val->mem_unit = PAGE_SIZE;
4479 }
4480
4481 EXPORT_SYMBOL(si_meminfo);
4482
4483 #ifdef CONFIG_NUMA
4484 void si_meminfo_node(struct sysinfo *val, int nid)
4485 {
4486 int zone_type; /* needs to be signed */
4487 unsigned long managed_pages = 0;
4488 unsigned long managed_highpages = 0;
4489 unsigned long free_highpages = 0;
4490 pg_data_t *pgdat = NODE_DATA(nid);
4491
4492 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4493 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4494 val->totalram = managed_pages;
4495 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4496 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4497 #ifdef CONFIG_HIGHMEM
4498 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4499 struct zone *zone = &pgdat->node_zones[zone_type];
4500
4501 if (is_highmem(zone)) {
4502 managed_highpages += zone->managed_pages;
4503 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4504 }
4505 }
4506 val->totalhigh = managed_highpages;
4507 val->freehigh = free_highpages;
4508 #else
4509 val->totalhigh = managed_highpages;
4510 val->freehigh = free_highpages;
4511 #endif
4512 val->mem_unit = PAGE_SIZE;
4513 }
4514 #endif
4515
4516 /*
4517 * Determine whether the node should be displayed or not, depending on whether
4518 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4519 */
4520 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4521 {
4522 if (!(flags & SHOW_MEM_FILTER_NODES))
4523 return false;
4524
4525 /*
4526 * no node mask - aka implicit memory numa policy. Do not bother with
4527 * the synchronization - read_mems_allowed_begin - because we do not
4528 * have to be precise here.
4529 */
4530 if (!nodemask)
4531 nodemask = &cpuset_current_mems_allowed;
4532
4533 return !node_isset(nid, *nodemask);
4534 }
4535
4536 #define K(x) ((x) << (PAGE_SHIFT-10))
4537
4538 static void show_migration_types(unsigned char type)
4539 {
4540 static const char types[MIGRATE_TYPES] = {
4541 [MIGRATE_UNMOVABLE] = 'U',
4542 [MIGRATE_MOVABLE] = 'M',
4543 [MIGRATE_RECLAIMABLE] = 'E',
4544 [MIGRATE_HIGHATOMIC] = 'H',
4545 #ifdef CONFIG_CMA
4546 [MIGRATE_CMA] = 'C',
4547 #endif
4548 #ifdef CONFIG_MEMORY_ISOLATION
4549 [MIGRATE_ISOLATE] = 'I',
4550 #endif
4551 };
4552 char tmp[MIGRATE_TYPES + 1];
4553 char *p = tmp;
4554 int i;
4555
4556 for (i = 0; i < MIGRATE_TYPES; i++) {
4557 if (type & (1 << i))
4558 *p++ = types[i];
4559 }
4560
4561 *p = '\0';
4562 printk(KERN_CONT "(%s) ", tmp);
4563 }
4564
4565 /*
4566 * Show free area list (used inside shift_scroll-lock stuff)
4567 * We also calculate the percentage fragmentation. We do this by counting the
4568 * memory on each free list with the exception of the first item on the list.
4569 *
4570 * Bits in @filter:
4571 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4572 * cpuset.
4573 */
4574 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4575 {
4576 unsigned long free_pcp = 0;
4577 int cpu;
4578 struct zone *zone;
4579 pg_data_t *pgdat;
4580
4581 for_each_populated_zone(zone) {
4582 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4583 continue;
4584
4585 for_each_online_cpu(cpu)
4586 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4587 }
4588
4589 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4590 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4591 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4592 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4593 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4594 " free:%lu free_pcp:%lu free_cma:%lu\n",
4595 global_node_page_state(NR_ACTIVE_ANON),
4596 global_node_page_state(NR_INACTIVE_ANON),
4597 global_node_page_state(NR_ISOLATED_ANON),
4598 global_node_page_state(NR_ACTIVE_FILE),
4599 global_node_page_state(NR_INACTIVE_FILE),
4600 global_node_page_state(NR_ISOLATED_FILE),
4601 global_node_page_state(NR_UNEVICTABLE),
4602 global_node_page_state(NR_FILE_DIRTY),
4603 global_node_page_state(NR_WRITEBACK),
4604 global_node_page_state(NR_UNSTABLE_NFS),
4605 global_page_state(NR_SLAB_RECLAIMABLE),
4606 global_page_state(NR_SLAB_UNRECLAIMABLE),
4607 global_node_page_state(NR_FILE_MAPPED),
4608 global_node_page_state(NR_SHMEM),
4609 global_page_state(NR_PAGETABLE),
4610 global_page_state(NR_BOUNCE),
4611 global_page_state(NR_FREE_PAGES),
4612 free_pcp,
4613 global_page_state(NR_FREE_CMA_PAGES));
4614
4615 for_each_online_pgdat(pgdat) {
4616 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4617 continue;
4618
4619 printk("Node %d"
4620 " active_anon:%lukB"
4621 " inactive_anon:%lukB"
4622 " active_file:%lukB"
4623 " inactive_file:%lukB"
4624 " unevictable:%lukB"
4625 " isolated(anon):%lukB"
4626 " isolated(file):%lukB"
4627 " mapped:%lukB"
4628 " dirty:%lukB"
4629 " writeback:%lukB"
4630 " shmem:%lukB"
4631 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4632 " shmem_thp: %lukB"
4633 " shmem_pmdmapped: %lukB"
4634 " anon_thp: %lukB"
4635 #endif
4636 " writeback_tmp:%lukB"
4637 " unstable:%lukB"
4638 " all_unreclaimable? %s"
4639 "\n",
4640 pgdat->node_id,
4641 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4642 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4643 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4644 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4645 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4646 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4647 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4648 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4649 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4650 K(node_page_state(pgdat, NR_WRITEBACK)),
4651 K(node_page_state(pgdat, NR_SHMEM)),
4652 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4653 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4654 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4655 * HPAGE_PMD_NR),
4656 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4657 #endif
4658 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4659 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4660 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4661 "yes" : "no");
4662 }
4663
4664 for_each_populated_zone(zone) {
4665 int i;
4666
4667 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4668 continue;
4669
4670 free_pcp = 0;
4671 for_each_online_cpu(cpu)
4672 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4673
4674 show_node(zone);
4675 printk(KERN_CONT
4676 "%s"
4677 " free:%lukB"
4678 " min:%lukB"
4679 " low:%lukB"
4680 " high:%lukB"
4681 " active_anon:%lukB"
4682 " inactive_anon:%lukB"
4683 " active_file:%lukB"
4684 " inactive_file:%lukB"
4685 " unevictable:%lukB"
4686 " writepending:%lukB"
4687 " present:%lukB"
4688 " managed:%lukB"
4689 " mlocked:%lukB"
4690 " kernel_stack:%lukB"
4691 " pagetables:%lukB"
4692 " bounce:%lukB"
4693 " free_pcp:%lukB"
4694 " local_pcp:%ukB"
4695 " free_cma:%lukB"
4696 "\n",
4697 zone->name,
4698 K(zone_page_state(zone, NR_FREE_PAGES)),
4699 K(min_wmark_pages(zone)),
4700 K(low_wmark_pages(zone)),
4701 K(high_wmark_pages(zone)),
4702 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4703 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4704 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4705 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4706 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4707 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4708 K(zone->present_pages),
4709 K(zone->managed_pages),
4710 K(zone_page_state(zone, NR_MLOCK)),
4711 zone_page_state(zone, NR_KERNEL_STACK_KB),
4712 K(zone_page_state(zone, NR_PAGETABLE)),
4713 K(zone_page_state(zone, NR_BOUNCE)),
4714 K(free_pcp),
4715 K(this_cpu_read(zone->pageset->pcp.count)),
4716 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4717 printk("lowmem_reserve[]:");
4718 for (i = 0; i < MAX_NR_ZONES; i++)
4719 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4720 printk(KERN_CONT "\n");
4721 }
4722
4723 for_each_populated_zone(zone) {
4724 unsigned int order;
4725 unsigned long nr[MAX_ORDER], flags, total = 0;
4726 unsigned char types[MAX_ORDER];
4727
4728 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4729 continue;
4730 show_node(zone);
4731 printk(KERN_CONT "%s: ", zone->name);
4732
4733 spin_lock_irqsave(&zone->lock, flags);
4734 for (order = 0; order < MAX_ORDER; order++) {
4735 struct free_area *area = &zone->free_area[order];
4736 int type;
4737
4738 nr[order] = area->nr_free;
4739 total += nr[order] << order;
4740
4741 types[order] = 0;
4742 for (type = 0; type < MIGRATE_TYPES; type++) {
4743 if (!list_empty(&area->free_list[type]))
4744 types[order] |= 1 << type;
4745 }
4746 }
4747 spin_unlock_irqrestore(&zone->lock, flags);
4748 for (order = 0; order < MAX_ORDER; order++) {
4749 printk(KERN_CONT "%lu*%lukB ",
4750 nr[order], K(1UL) << order);
4751 if (nr[order])
4752 show_migration_types(types[order]);
4753 }
4754 printk(KERN_CONT "= %lukB\n", K(total));
4755 }
4756
4757 hugetlb_show_meminfo();
4758
4759 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4760
4761 show_swap_cache_info();
4762 }
4763
4764 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4765 {
4766 zoneref->zone = zone;
4767 zoneref->zone_idx = zone_idx(zone);
4768 }
4769
4770 /*
4771 * Builds allocation fallback zone lists.
4772 *
4773 * Add all populated zones of a node to the zonelist.
4774 */
4775 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4776 int nr_zones)
4777 {
4778 struct zone *zone;
4779 enum zone_type zone_type = MAX_NR_ZONES;
4780
4781 do {
4782 zone_type--;
4783 zone = pgdat->node_zones + zone_type;
4784 if (managed_zone(zone)) {
4785 zoneref_set_zone(zone,
4786 &zonelist->_zonerefs[nr_zones++]);
4787 check_highest_zone(zone_type);
4788 }
4789 } while (zone_type);
4790
4791 return nr_zones;
4792 }
4793
4794
4795 /*
4796 * zonelist_order:
4797 * 0 = automatic detection of better ordering.
4798 * 1 = order by ([node] distance, -zonetype)
4799 * 2 = order by (-zonetype, [node] distance)
4800 *
4801 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4802 * the same zonelist. So only NUMA can configure this param.
4803 */
4804 #define ZONELIST_ORDER_DEFAULT 0
4805 #define ZONELIST_ORDER_NODE 1
4806 #define ZONELIST_ORDER_ZONE 2
4807
4808 /* zonelist order in the kernel.
4809 * set_zonelist_order() will set this to NODE or ZONE.
4810 */
4811 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4812 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4813
4814
4815 #ifdef CONFIG_NUMA
4816 /* The value user specified ....changed by config */
4817 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4818 /* string for sysctl */
4819 #define NUMA_ZONELIST_ORDER_LEN 16
4820 char numa_zonelist_order[16] = "default";
4821
4822 /*
4823 * interface for configure zonelist ordering.
4824 * command line option "numa_zonelist_order"
4825 * = "[dD]efault - default, automatic configuration.
4826 * = "[nN]ode - order by node locality, then by zone within node
4827 * = "[zZ]one - order by zone, then by locality within zone
4828 */
4829
4830 static int __parse_numa_zonelist_order(char *s)
4831 {
4832 if (*s == 'd' || *s == 'D') {
4833 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4834 } else if (*s == 'n' || *s == 'N') {
4835 user_zonelist_order = ZONELIST_ORDER_NODE;
4836 } else if (*s == 'z' || *s == 'Z') {
4837 user_zonelist_order = ZONELIST_ORDER_ZONE;
4838 } else {
4839 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4840 return -EINVAL;
4841 }
4842 return 0;
4843 }
4844
4845 static __init int setup_numa_zonelist_order(char *s)
4846 {
4847 int ret;
4848
4849 if (!s)
4850 return 0;
4851
4852 ret = __parse_numa_zonelist_order(s);
4853 if (ret == 0)
4854 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4855
4856 return ret;
4857 }
4858 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4859
4860 /*
4861 * sysctl handler for numa_zonelist_order
4862 */
4863 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4864 void __user *buffer, size_t *length,
4865 loff_t *ppos)
4866 {
4867 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4868 int ret;
4869 static DEFINE_MUTEX(zl_order_mutex);
4870
4871 mutex_lock(&zl_order_mutex);
4872 if (write) {
4873 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4874 ret = -EINVAL;
4875 goto out;
4876 }
4877 strcpy(saved_string, (char *)table->data);
4878 }
4879 ret = proc_dostring(table, write, buffer, length, ppos);
4880 if (ret)
4881 goto out;
4882 if (write) {
4883 int oldval = user_zonelist_order;
4884
4885 ret = __parse_numa_zonelist_order((char *)table->data);
4886 if (ret) {
4887 /*
4888 * bogus value. restore saved string
4889 */
4890 strncpy((char *)table->data, saved_string,
4891 NUMA_ZONELIST_ORDER_LEN);
4892 user_zonelist_order = oldval;
4893 } else if (oldval != user_zonelist_order) {
4894 mutex_lock(&zonelists_mutex);
4895 build_all_zonelists(NULL, NULL);
4896 mutex_unlock(&zonelists_mutex);
4897 }
4898 }
4899 out:
4900 mutex_unlock(&zl_order_mutex);
4901 return ret;
4902 }
4903
4904
4905 #define MAX_NODE_LOAD (nr_online_nodes)
4906 static int node_load[MAX_NUMNODES];
4907
4908 /**
4909 * find_next_best_node - find the next node that should appear in a given node's fallback list
4910 * @node: node whose fallback list we're appending
4911 * @used_node_mask: nodemask_t of already used nodes
4912 *
4913 * We use a number of factors to determine which is the next node that should
4914 * appear on a given node's fallback list. The node should not have appeared
4915 * already in @node's fallback list, and it should be the next closest node
4916 * according to the distance array (which contains arbitrary distance values
4917 * from each node to each node in the system), and should also prefer nodes
4918 * with no CPUs, since presumably they'll have very little allocation pressure
4919 * on them otherwise.
4920 * It returns -1 if no node is found.
4921 */
4922 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4923 {
4924 int n, val;
4925 int min_val = INT_MAX;
4926 int best_node = NUMA_NO_NODE;
4927 const struct cpumask *tmp = cpumask_of_node(0);
4928
4929 /* Use the local node if we haven't already */
4930 if (!node_isset(node, *used_node_mask)) {
4931 node_set(node, *used_node_mask);
4932 return node;
4933 }
4934
4935 for_each_node_state(n, N_MEMORY) {
4936
4937 /* Don't want a node to appear more than once */
4938 if (node_isset(n, *used_node_mask))
4939 continue;
4940
4941 /* Use the distance array to find the distance */
4942 val = node_distance(node, n);
4943
4944 /* Penalize nodes under us ("prefer the next node") */
4945 val += (n < node);
4946
4947 /* Give preference to headless and unused nodes */
4948 tmp = cpumask_of_node(n);
4949 if (!cpumask_empty(tmp))
4950 val += PENALTY_FOR_NODE_WITH_CPUS;
4951
4952 /* Slight preference for less loaded node */
4953 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4954 val += node_load[n];
4955
4956 if (val < min_val) {
4957 min_val = val;
4958 best_node = n;
4959 }
4960 }
4961
4962 if (best_node >= 0)
4963 node_set(best_node, *used_node_mask);
4964
4965 return best_node;
4966 }
4967
4968
4969 /*
4970 * Build zonelists ordered by node and zones within node.
4971 * This results in maximum locality--normal zone overflows into local
4972 * DMA zone, if any--but risks exhausting DMA zone.
4973 */
4974 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4975 {
4976 int j;
4977 struct zonelist *zonelist;
4978
4979 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4980 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4981 ;
4982 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4983 zonelist->_zonerefs[j].zone = NULL;
4984 zonelist->_zonerefs[j].zone_idx = 0;
4985 }
4986
4987 /*
4988 * Build gfp_thisnode zonelists
4989 */
4990 static void build_thisnode_zonelists(pg_data_t *pgdat)
4991 {
4992 int j;
4993 struct zonelist *zonelist;
4994
4995 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4996 j = build_zonelists_node(pgdat, zonelist, 0);
4997 zonelist->_zonerefs[j].zone = NULL;
4998 zonelist->_zonerefs[j].zone_idx = 0;
4999 }
5000
5001 /*
5002 * Build zonelists ordered by zone and nodes within zones.
5003 * This results in conserving DMA zone[s] until all Normal memory is
5004 * exhausted, but results in overflowing to remote node while memory
5005 * may still exist in local DMA zone.
5006 */
5007 static int node_order[MAX_NUMNODES];
5008
5009 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
5010 {
5011 int pos, j, node;
5012 int zone_type; /* needs to be signed */
5013 struct zone *z;
5014 struct zonelist *zonelist;
5015
5016 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5017 pos = 0;
5018 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
5019 for (j = 0; j < nr_nodes; j++) {
5020 node = node_order[j];
5021 z = &NODE_DATA(node)->node_zones[zone_type];
5022 if (managed_zone(z)) {
5023 zoneref_set_zone(z,
5024 &zonelist->_zonerefs[pos++]);
5025 check_highest_zone(zone_type);
5026 }
5027 }
5028 }
5029 zonelist->_zonerefs[pos].zone = NULL;
5030 zonelist->_zonerefs[pos].zone_idx = 0;
5031 }
5032
5033 #if defined(CONFIG_64BIT)
5034 /*
5035 * Devices that require DMA32/DMA are relatively rare and do not justify a
5036 * penalty to every machine in case the specialised case applies. Default
5037 * to Node-ordering on 64-bit NUMA machines
5038 */
5039 static int default_zonelist_order(void)
5040 {
5041 return ZONELIST_ORDER_NODE;
5042 }
5043 #else
5044 /*
5045 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
5046 * by the kernel. If processes running on node 0 deplete the low memory zone
5047 * then reclaim will occur more frequency increasing stalls and potentially
5048 * be easier to OOM if a large percentage of the zone is under writeback or
5049 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
5050 * Hence, default to zone ordering on 32-bit.
5051 */
5052 static int default_zonelist_order(void)
5053 {
5054 return ZONELIST_ORDER_ZONE;
5055 }
5056 #endif /* CONFIG_64BIT */
5057
5058 static void set_zonelist_order(void)
5059 {
5060 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
5061 current_zonelist_order = default_zonelist_order();
5062 else
5063 current_zonelist_order = user_zonelist_order;
5064 }
5065
5066 static void build_zonelists(pg_data_t *pgdat)
5067 {
5068 int i, node, load;
5069 nodemask_t used_mask;
5070 int local_node, prev_node;
5071 struct zonelist *zonelist;
5072 unsigned int order = current_zonelist_order;
5073
5074 /* initialize zonelists */
5075 for (i = 0; i < MAX_ZONELISTS; i++) {
5076 zonelist = pgdat->node_zonelists + i;
5077 zonelist->_zonerefs[0].zone = NULL;
5078 zonelist->_zonerefs[0].zone_idx = 0;
5079 }
5080
5081 /* NUMA-aware ordering of nodes */
5082 local_node = pgdat->node_id;
5083 load = nr_online_nodes;
5084 prev_node = local_node;
5085 nodes_clear(used_mask);
5086
5087 memset(node_order, 0, sizeof(node_order));
5088 i = 0;
5089
5090 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5091 /*
5092 * We don't want to pressure a particular node.
5093 * So adding penalty to the first node in same
5094 * distance group to make it round-robin.
5095 */
5096 if (node_distance(local_node, node) !=
5097 node_distance(local_node, prev_node))
5098 node_load[node] = load;
5099
5100 prev_node = node;
5101 load--;
5102 if (order == ZONELIST_ORDER_NODE)
5103 build_zonelists_in_node_order(pgdat, node);
5104 else
5105 node_order[i++] = node; /* remember order */
5106 }
5107
5108 if (order == ZONELIST_ORDER_ZONE) {
5109 /* calculate node order -- i.e., DMA last! */
5110 build_zonelists_in_zone_order(pgdat, i);
5111 }
5112
5113 build_thisnode_zonelists(pgdat);
5114 }
5115
5116 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5117 /*
5118 * Return node id of node used for "local" allocations.
5119 * I.e., first node id of first zone in arg node's generic zonelist.
5120 * Used for initializing percpu 'numa_mem', which is used primarily
5121 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5122 */
5123 int local_memory_node(int node)
5124 {
5125 struct zoneref *z;
5126
5127 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5128 gfp_zone(GFP_KERNEL),
5129 NULL);
5130 return z->zone->node;
5131 }
5132 #endif
5133
5134 static void setup_min_unmapped_ratio(void);
5135 static void setup_min_slab_ratio(void);
5136 #else /* CONFIG_NUMA */
5137
5138 static void set_zonelist_order(void)
5139 {
5140 current_zonelist_order = ZONELIST_ORDER_ZONE;
5141 }
5142
5143 static void build_zonelists(pg_data_t *pgdat)
5144 {
5145 int node, local_node;
5146 enum zone_type j;
5147 struct zonelist *zonelist;
5148
5149 local_node = pgdat->node_id;
5150
5151 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5152 j = build_zonelists_node(pgdat, zonelist, 0);
5153
5154 /*
5155 * Now we build the zonelist so that it contains the zones
5156 * of all the other nodes.
5157 * We don't want to pressure a particular node, so when
5158 * building the zones for node N, we make sure that the
5159 * zones coming right after the local ones are those from
5160 * node N+1 (modulo N)
5161 */
5162 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5163 if (!node_online(node))
5164 continue;
5165 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5166 }
5167 for (node = 0; node < local_node; node++) {
5168 if (!node_online(node))
5169 continue;
5170 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5171 }
5172
5173 zonelist->_zonerefs[j].zone = NULL;
5174 zonelist->_zonerefs[j].zone_idx = 0;
5175 }
5176
5177 #endif /* CONFIG_NUMA */
5178
5179 /*
5180 * Boot pageset table. One per cpu which is going to be used for all
5181 * zones and all nodes. The parameters will be set in such a way
5182 * that an item put on a list will immediately be handed over to
5183 * the buddy list. This is safe since pageset manipulation is done
5184 * with interrupts disabled.
5185 *
5186 * The boot_pagesets must be kept even after bootup is complete for
5187 * unused processors and/or zones. They do play a role for bootstrapping
5188 * hotplugged processors.
5189 *
5190 * zoneinfo_show() and maybe other functions do
5191 * not check if the processor is online before following the pageset pointer.
5192 * Other parts of the kernel may not check if the zone is available.
5193 */
5194 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5195 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5196 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5197 static void setup_zone_pageset(struct zone *zone);
5198
5199 /*
5200 * Global mutex to protect against size modification of zonelists
5201 * as well as to serialize pageset setup for the new populated zone.
5202 */
5203 DEFINE_MUTEX(zonelists_mutex);
5204
5205 /* return values int ....just for stop_machine() */
5206 static int __build_all_zonelists(void *data)
5207 {
5208 int nid;
5209 int cpu;
5210 pg_data_t *self = data;
5211
5212 #ifdef CONFIG_NUMA
5213 memset(node_load, 0, sizeof(node_load));
5214 #endif
5215
5216 if (self && !node_online(self->node_id)) {
5217 build_zonelists(self);
5218 }
5219
5220 for_each_online_node(nid) {
5221 pg_data_t *pgdat = NODE_DATA(nid);
5222
5223 build_zonelists(pgdat);
5224 }
5225
5226 /*
5227 * Initialize the boot_pagesets that are going to be used
5228 * for bootstrapping processors. The real pagesets for
5229 * each zone will be allocated later when the per cpu
5230 * allocator is available.
5231 *
5232 * boot_pagesets are used also for bootstrapping offline
5233 * cpus if the system is already booted because the pagesets
5234 * are needed to initialize allocators on a specific cpu too.
5235 * F.e. the percpu allocator needs the page allocator which
5236 * needs the percpu allocator in order to allocate its pagesets
5237 * (a chicken-egg dilemma).
5238 */
5239 for_each_possible_cpu(cpu) {
5240 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5241
5242 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5243 /*
5244 * We now know the "local memory node" for each node--
5245 * i.e., the node of the first zone in the generic zonelist.
5246 * Set up numa_mem percpu variable for on-line cpus. During
5247 * boot, only the boot cpu should be on-line; we'll init the
5248 * secondary cpus' numa_mem as they come on-line. During
5249 * node/memory hotplug, we'll fixup all on-line cpus.
5250 */
5251 if (cpu_online(cpu))
5252 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5253 #endif
5254 }
5255
5256 return 0;
5257 }
5258
5259 static noinline void __init
5260 build_all_zonelists_init(void)
5261 {
5262 __build_all_zonelists(NULL);
5263 mminit_verify_zonelist();
5264 cpuset_init_current_mems_allowed();
5265 }
5266
5267 /*
5268 * Called with zonelists_mutex held always
5269 * unless system_state == SYSTEM_BOOTING.
5270 *
5271 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5272 * [we're only called with non-NULL zone through __meminit paths] and
5273 * (2) call of __init annotated helper build_all_zonelists_init
5274 * [protected by SYSTEM_BOOTING].
5275 */
5276 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5277 {
5278 set_zonelist_order();
5279
5280 if (system_state == SYSTEM_BOOTING) {
5281 build_all_zonelists_init();
5282 } else {
5283 #ifdef CONFIG_MEMORY_HOTPLUG
5284 if (zone)
5285 setup_zone_pageset(zone);
5286 #endif
5287 /* we have to stop all cpus to guarantee there is no user
5288 of zonelist */
5289 stop_machine_cpuslocked(__build_all_zonelists, pgdat, NULL);
5290 /* cpuset refresh routine should be here */
5291 }
5292 vm_total_pages = nr_free_pagecache_pages();
5293 /*
5294 * Disable grouping by mobility if the number of pages in the
5295 * system is too low to allow the mechanism to work. It would be
5296 * more accurate, but expensive to check per-zone. This check is
5297 * made on memory-hotadd so a system can start with mobility
5298 * disabled and enable it later
5299 */
5300 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5301 page_group_by_mobility_disabled = 1;
5302 else
5303 page_group_by_mobility_disabled = 0;
5304
5305 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5306 nr_online_nodes,
5307 zonelist_order_name[current_zonelist_order],
5308 page_group_by_mobility_disabled ? "off" : "on",
5309 vm_total_pages);
5310 #ifdef CONFIG_NUMA
5311 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5312 #endif
5313 }
5314
5315 /*
5316 * Initially all pages are reserved - free ones are freed
5317 * up by free_all_bootmem() once the early boot process is
5318 * done. Non-atomic initialization, single-pass.
5319 */
5320 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5321 unsigned long start_pfn, enum memmap_context context)
5322 {
5323 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5324 unsigned long end_pfn = start_pfn + size;
5325 pg_data_t *pgdat = NODE_DATA(nid);
5326 unsigned long pfn;
5327 unsigned long nr_initialised = 0;
5328 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5329 struct memblock_region *r = NULL, *tmp;
5330 #endif
5331
5332 if (highest_memmap_pfn < end_pfn - 1)
5333 highest_memmap_pfn = end_pfn - 1;
5334
5335 /*
5336 * Honor reservation requested by the driver for this ZONE_DEVICE
5337 * memory
5338 */
5339 if (altmap && start_pfn == altmap->base_pfn)
5340 start_pfn += altmap->reserve;
5341
5342 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5343 /*
5344 * There can be holes in boot-time mem_map[]s handed to this
5345 * function. They do not exist on hotplugged memory.
5346 */
5347 if (context != MEMMAP_EARLY)
5348 goto not_early;
5349
5350 if (!early_pfn_valid(pfn)) {
5351 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5352 /*
5353 * Skip to the pfn preceding the next valid one (or
5354 * end_pfn), such that we hit a valid pfn (or end_pfn)
5355 * on our next iteration of the loop.
5356 */
5357 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5358 #endif
5359 continue;
5360 }
5361 if (!early_pfn_in_nid(pfn, nid))
5362 continue;
5363 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5364 break;
5365
5366 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5367 /*
5368 * Check given memblock attribute by firmware which can affect
5369 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5370 * mirrored, it's an overlapped memmap init. skip it.
5371 */
5372 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5373 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5374 for_each_memblock(memory, tmp)
5375 if (pfn < memblock_region_memory_end_pfn(tmp))
5376 break;
5377 r = tmp;
5378 }
5379 if (pfn >= memblock_region_memory_base_pfn(r) &&
5380 memblock_is_mirror(r)) {
5381 /* already initialized as NORMAL */
5382 pfn = memblock_region_memory_end_pfn(r);
5383 continue;
5384 }
5385 }
5386 #endif
5387
5388 not_early:
5389 /*
5390 * Mark the block movable so that blocks are reserved for
5391 * movable at startup. This will force kernel allocations
5392 * to reserve their blocks rather than leaking throughout
5393 * the address space during boot when many long-lived
5394 * kernel allocations are made.
5395 *
5396 * bitmap is created for zone's valid pfn range. but memmap
5397 * can be created for invalid pages (for alignment)
5398 * check here not to call set_pageblock_migratetype() against
5399 * pfn out of zone.
5400 */
5401 if (!(pfn & (pageblock_nr_pages - 1))) {
5402 struct page *page = pfn_to_page(pfn);
5403
5404 __init_single_page(page, pfn, zone, nid);
5405 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5406 } else {
5407 __init_single_pfn(pfn, zone, nid);
5408 }
5409 }
5410 }
5411
5412 static void __meminit zone_init_free_lists(struct zone *zone)
5413 {
5414 unsigned int order, t;
5415 for_each_migratetype_order(order, t) {
5416 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5417 zone->free_area[order].nr_free = 0;
5418 }
5419 }
5420
5421 #ifndef __HAVE_ARCH_MEMMAP_INIT
5422 #define memmap_init(size, nid, zone, start_pfn) \
5423 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5424 #endif
5425
5426 static int zone_batchsize(struct zone *zone)
5427 {
5428 #ifdef CONFIG_MMU
5429 int batch;
5430
5431 /*
5432 * The per-cpu-pages pools are set to around 1000th of the
5433 * size of the zone. But no more than 1/2 of a meg.
5434 *
5435 * OK, so we don't know how big the cache is. So guess.
5436 */
5437 batch = zone->managed_pages / 1024;
5438 if (batch * PAGE_SIZE > 512 * 1024)
5439 batch = (512 * 1024) / PAGE_SIZE;
5440 batch /= 4; /* We effectively *= 4 below */
5441 if (batch < 1)
5442 batch = 1;
5443
5444 /*
5445 * Clamp the batch to a 2^n - 1 value. Having a power
5446 * of 2 value was found to be more likely to have
5447 * suboptimal cache aliasing properties in some cases.
5448 *
5449 * For example if 2 tasks are alternately allocating
5450 * batches of pages, one task can end up with a lot
5451 * of pages of one half of the possible page colors
5452 * and the other with pages of the other colors.
5453 */
5454 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5455
5456 return batch;
5457
5458 #else
5459 /* The deferral and batching of frees should be suppressed under NOMMU
5460 * conditions.
5461 *
5462 * The problem is that NOMMU needs to be able to allocate large chunks
5463 * of contiguous memory as there's no hardware page translation to
5464 * assemble apparent contiguous memory from discontiguous pages.
5465 *
5466 * Queueing large contiguous runs of pages for batching, however,
5467 * causes the pages to actually be freed in smaller chunks. As there
5468 * can be a significant delay between the individual batches being
5469 * recycled, this leads to the once large chunks of space being
5470 * fragmented and becoming unavailable for high-order allocations.
5471 */
5472 return 0;
5473 #endif
5474 }
5475
5476 /*
5477 * pcp->high and pcp->batch values are related and dependent on one another:
5478 * ->batch must never be higher then ->high.
5479 * The following function updates them in a safe manner without read side
5480 * locking.
5481 *
5482 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5483 * those fields changing asynchronously (acording the the above rule).
5484 *
5485 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5486 * outside of boot time (or some other assurance that no concurrent updaters
5487 * exist).
5488 */
5489 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5490 unsigned long batch)
5491 {
5492 /* start with a fail safe value for batch */
5493 pcp->batch = 1;
5494 smp_wmb();
5495
5496 /* Update high, then batch, in order */
5497 pcp->high = high;
5498 smp_wmb();
5499
5500 pcp->batch = batch;
5501 }
5502
5503 /* a companion to pageset_set_high() */
5504 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5505 {
5506 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5507 }
5508
5509 static void pageset_init(struct per_cpu_pageset *p)
5510 {
5511 struct per_cpu_pages *pcp;
5512 int migratetype;
5513
5514 memset(p, 0, sizeof(*p));
5515
5516 pcp = &p->pcp;
5517 pcp->count = 0;
5518 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5519 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5520 }
5521
5522 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5523 {
5524 pageset_init(p);
5525 pageset_set_batch(p, batch);
5526 }
5527
5528 /*
5529 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5530 * to the value high for the pageset p.
5531 */
5532 static void pageset_set_high(struct per_cpu_pageset *p,
5533 unsigned long high)
5534 {
5535 unsigned long batch = max(1UL, high / 4);
5536 if ((high / 4) > (PAGE_SHIFT * 8))
5537 batch = PAGE_SHIFT * 8;
5538
5539 pageset_update(&p->pcp, high, batch);
5540 }
5541
5542 static void pageset_set_high_and_batch(struct zone *zone,
5543 struct per_cpu_pageset *pcp)
5544 {
5545 if (percpu_pagelist_fraction)
5546 pageset_set_high(pcp,
5547 (zone->managed_pages /
5548 percpu_pagelist_fraction));
5549 else
5550 pageset_set_batch(pcp, zone_batchsize(zone));
5551 }
5552
5553 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5554 {
5555 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5556
5557 pageset_init(pcp);
5558 pageset_set_high_and_batch(zone, pcp);
5559 }
5560
5561 static void __meminit setup_zone_pageset(struct zone *zone)
5562 {
5563 int cpu;
5564 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5565 for_each_possible_cpu(cpu)
5566 zone_pageset_init(zone, cpu);
5567 }
5568
5569 /*
5570 * Allocate per cpu pagesets and initialize them.
5571 * Before this call only boot pagesets were available.
5572 */
5573 void __init setup_per_cpu_pageset(void)
5574 {
5575 struct pglist_data *pgdat;
5576 struct zone *zone;
5577
5578 for_each_populated_zone(zone)
5579 setup_zone_pageset(zone);
5580
5581 for_each_online_pgdat(pgdat)
5582 pgdat->per_cpu_nodestats =
5583 alloc_percpu(struct per_cpu_nodestat);
5584 }
5585
5586 static __meminit void zone_pcp_init(struct zone *zone)
5587 {
5588 /*
5589 * per cpu subsystem is not up at this point. The following code
5590 * relies on the ability of the linker to provide the
5591 * offset of a (static) per cpu variable into the per cpu area.
5592 */
5593 zone->pageset = &boot_pageset;
5594
5595 if (populated_zone(zone))
5596 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5597 zone->name, zone->present_pages,
5598 zone_batchsize(zone));
5599 }
5600
5601 void __meminit init_currently_empty_zone(struct zone *zone,
5602 unsigned long zone_start_pfn,
5603 unsigned long size)
5604 {
5605 struct pglist_data *pgdat = zone->zone_pgdat;
5606
5607 pgdat->nr_zones = zone_idx(zone) + 1;
5608
5609 zone->zone_start_pfn = zone_start_pfn;
5610
5611 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5612 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5613 pgdat->node_id,
5614 (unsigned long)zone_idx(zone),
5615 zone_start_pfn, (zone_start_pfn + size));
5616
5617 zone_init_free_lists(zone);
5618 zone->initialized = 1;
5619 }
5620
5621 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5622 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5623
5624 /*
5625 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5626 */
5627 int __meminit __early_pfn_to_nid(unsigned long pfn,
5628 struct mminit_pfnnid_cache *state)
5629 {
5630 unsigned long start_pfn, end_pfn;
5631 int nid;
5632
5633 if (state->last_start <= pfn && pfn < state->last_end)
5634 return state->last_nid;
5635
5636 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5637 if (nid != -1) {
5638 state->last_start = start_pfn;
5639 state->last_end = end_pfn;
5640 state->last_nid = nid;
5641 }
5642
5643 return nid;
5644 }
5645 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5646
5647 /**
5648 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5649 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5650 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5651 *
5652 * If an architecture guarantees that all ranges registered contain no holes
5653 * and may be freed, this this function may be used instead of calling
5654 * memblock_free_early_nid() manually.
5655 */
5656 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5657 {
5658 unsigned long start_pfn, end_pfn;
5659 int i, this_nid;
5660
5661 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5662 start_pfn = min(start_pfn, max_low_pfn);
5663 end_pfn = min(end_pfn, max_low_pfn);
5664
5665 if (start_pfn < end_pfn)
5666 memblock_free_early_nid(PFN_PHYS(start_pfn),
5667 (end_pfn - start_pfn) << PAGE_SHIFT,
5668 this_nid);
5669 }
5670 }
5671
5672 /**
5673 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5674 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5675 *
5676 * If an architecture guarantees that all ranges registered contain no holes and may
5677 * be freed, this function may be used instead of calling memory_present() manually.
5678 */
5679 void __init sparse_memory_present_with_active_regions(int nid)
5680 {
5681 unsigned long start_pfn, end_pfn;
5682 int i, this_nid;
5683
5684 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5685 memory_present(this_nid, start_pfn, end_pfn);
5686 }
5687
5688 /**
5689 * get_pfn_range_for_nid - Return the start and end page frames for a node
5690 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5691 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5692 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5693 *
5694 * It returns the start and end page frame of a node based on information
5695 * provided by memblock_set_node(). If called for a node
5696 * with no available memory, a warning is printed and the start and end
5697 * PFNs will be 0.
5698 */
5699 void __meminit get_pfn_range_for_nid(unsigned int nid,
5700 unsigned long *start_pfn, unsigned long *end_pfn)
5701 {
5702 unsigned long this_start_pfn, this_end_pfn;
5703 int i;
5704
5705 *start_pfn = -1UL;
5706 *end_pfn = 0;
5707
5708 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5709 *start_pfn = min(*start_pfn, this_start_pfn);
5710 *end_pfn = max(*end_pfn, this_end_pfn);
5711 }
5712
5713 if (*start_pfn == -1UL)
5714 *start_pfn = 0;
5715 }
5716
5717 /*
5718 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5719 * assumption is made that zones within a node are ordered in monotonic
5720 * increasing memory addresses so that the "highest" populated zone is used
5721 */
5722 static void __init find_usable_zone_for_movable(void)
5723 {
5724 int zone_index;
5725 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5726 if (zone_index == ZONE_MOVABLE)
5727 continue;
5728
5729 if (arch_zone_highest_possible_pfn[zone_index] >
5730 arch_zone_lowest_possible_pfn[zone_index])
5731 break;
5732 }
5733
5734 VM_BUG_ON(zone_index == -1);
5735 movable_zone = zone_index;
5736 }
5737
5738 /*
5739 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5740 * because it is sized independent of architecture. Unlike the other zones,
5741 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5742 * in each node depending on the size of each node and how evenly kernelcore
5743 * is distributed. This helper function adjusts the zone ranges
5744 * provided by the architecture for a given node by using the end of the
5745 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5746 * zones within a node are in order of monotonic increases memory addresses
5747 */
5748 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5749 unsigned long zone_type,
5750 unsigned long node_start_pfn,
5751 unsigned long node_end_pfn,
5752 unsigned long *zone_start_pfn,
5753 unsigned long *zone_end_pfn)
5754 {
5755 /* Only adjust if ZONE_MOVABLE is on this node */
5756 if (zone_movable_pfn[nid]) {
5757 /* Size ZONE_MOVABLE */
5758 if (zone_type == ZONE_MOVABLE) {
5759 *zone_start_pfn = zone_movable_pfn[nid];
5760 *zone_end_pfn = min(node_end_pfn,
5761 arch_zone_highest_possible_pfn[movable_zone]);
5762
5763 /* Adjust for ZONE_MOVABLE starting within this range */
5764 } else if (!mirrored_kernelcore &&
5765 *zone_start_pfn < zone_movable_pfn[nid] &&
5766 *zone_end_pfn > zone_movable_pfn[nid]) {
5767 *zone_end_pfn = zone_movable_pfn[nid];
5768
5769 /* Check if this whole range is within ZONE_MOVABLE */
5770 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5771 *zone_start_pfn = *zone_end_pfn;
5772 }
5773 }
5774
5775 /*
5776 * Return the number of pages a zone spans in a node, including holes
5777 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5778 */
5779 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5780 unsigned long zone_type,
5781 unsigned long node_start_pfn,
5782 unsigned long node_end_pfn,
5783 unsigned long *zone_start_pfn,
5784 unsigned long *zone_end_pfn,
5785 unsigned long *ignored)
5786 {
5787 /* When hotadd a new node from cpu_up(), the node should be empty */
5788 if (!node_start_pfn && !node_end_pfn)
5789 return 0;
5790
5791 /* Get the start and end of the zone */
5792 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5793 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5794 adjust_zone_range_for_zone_movable(nid, zone_type,
5795 node_start_pfn, node_end_pfn,
5796 zone_start_pfn, zone_end_pfn);
5797
5798 /* Check that this node has pages within the zone's required range */
5799 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5800 return 0;
5801
5802 /* Move the zone boundaries inside the node if necessary */
5803 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5804 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5805
5806 /* Return the spanned pages */
5807 return *zone_end_pfn - *zone_start_pfn;
5808 }
5809
5810 /*
5811 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5812 * then all holes in the requested range will be accounted for.
5813 */
5814 unsigned long __meminit __absent_pages_in_range(int nid,
5815 unsigned long range_start_pfn,
5816 unsigned long range_end_pfn)
5817 {
5818 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5819 unsigned long start_pfn, end_pfn;
5820 int i;
5821
5822 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5823 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5824 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5825 nr_absent -= end_pfn - start_pfn;
5826 }
5827 return nr_absent;
5828 }
5829
5830 /**
5831 * absent_pages_in_range - Return number of page frames in holes within a range
5832 * @start_pfn: The start PFN to start searching for holes
5833 * @end_pfn: The end PFN to stop searching for holes
5834 *
5835 * It returns the number of pages frames in memory holes within a range.
5836 */
5837 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5838 unsigned long end_pfn)
5839 {
5840 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5841 }
5842
5843 /* Return the number of page frames in holes in a zone on a node */
5844 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5845 unsigned long zone_type,
5846 unsigned long node_start_pfn,
5847 unsigned long node_end_pfn,
5848 unsigned long *ignored)
5849 {
5850 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5851 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5852 unsigned long zone_start_pfn, zone_end_pfn;
5853 unsigned long nr_absent;
5854
5855 /* When hotadd a new node from cpu_up(), the node should be empty */
5856 if (!node_start_pfn && !node_end_pfn)
5857 return 0;
5858
5859 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5860 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5861
5862 adjust_zone_range_for_zone_movable(nid, zone_type,
5863 node_start_pfn, node_end_pfn,
5864 &zone_start_pfn, &zone_end_pfn);
5865 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5866
5867 /*
5868 * ZONE_MOVABLE handling.
5869 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5870 * and vice versa.
5871 */
5872 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5873 unsigned long start_pfn, end_pfn;
5874 struct memblock_region *r;
5875
5876 for_each_memblock(memory, r) {
5877 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5878 zone_start_pfn, zone_end_pfn);
5879 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5880 zone_start_pfn, zone_end_pfn);
5881
5882 if (zone_type == ZONE_MOVABLE &&
5883 memblock_is_mirror(r))
5884 nr_absent += end_pfn - start_pfn;
5885
5886 if (zone_type == ZONE_NORMAL &&
5887 !memblock_is_mirror(r))
5888 nr_absent += end_pfn - start_pfn;
5889 }
5890 }
5891
5892 return nr_absent;
5893 }
5894
5895 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5896 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5897 unsigned long zone_type,
5898 unsigned long node_start_pfn,
5899 unsigned long node_end_pfn,
5900 unsigned long *zone_start_pfn,
5901 unsigned long *zone_end_pfn,
5902 unsigned long *zones_size)
5903 {
5904 unsigned int zone;
5905
5906 *zone_start_pfn = node_start_pfn;
5907 for (zone = 0; zone < zone_type; zone++)
5908 *zone_start_pfn += zones_size[zone];
5909
5910 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5911
5912 return zones_size[zone_type];
5913 }
5914
5915 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5916 unsigned long zone_type,
5917 unsigned long node_start_pfn,
5918 unsigned long node_end_pfn,
5919 unsigned long *zholes_size)
5920 {
5921 if (!zholes_size)
5922 return 0;
5923
5924 return zholes_size[zone_type];
5925 }
5926
5927 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5928
5929 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5930 unsigned long node_start_pfn,
5931 unsigned long node_end_pfn,
5932 unsigned long *zones_size,
5933 unsigned long *zholes_size)
5934 {
5935 unsigned long realtotalpages = 0, totalpages = 0;
5936 enum zone_type i;
5937
5938 for (i = 0; i < MAX_NR_ZONES; i++) {
5939 struct zone *zone = pgdat->node_zones + i;
5940 unsigned long zone_start_pfn, zone_end_pfn;
5941 unsigned long size, real_size;
5942
5943 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5944 node_start_pfn,
5945 node_end_pfn,
5946 &zone_start_pfn,
5947 &zone_end_pfn,
5948 zones_size);
5949 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5950 node_start_pfn, node_end_pfn,
5951 zholes_size);
5952 if (size)
5953 zone->zone_start_pfn = zone_start_pfn;
5954 else
5955 zone->zone_start_pfn = 0;
5956 zone->spanned_pages = size;
5957 zone->present_pages = real_size;
5958
5959 totalpages += size;
5960 realtotalpages += real_size;
5961 }
5962
5963 pgdat->node_spanned_pages = totalpages;
5964 pgdat->node_present_pages = realtotalpages;
5965 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5966 realtotalpages);
5967 }
5968
5969 #ifndef CONFIG_SPARSEMEM
5970 /*
5971 * Calculate the size of the zone->blockflags rounded to an unsigned long
5972 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5973 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5974 * round what is now in bits to nearest long in bits, then return it in
5975 * bytes.
5976 */
5977 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5978 {
5979 unsigned long usemapsize;
5980
5981 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5982 usemapsize = roundup(zonesize, pageblock_nr_pages);
5983 usemapsize = usemapsize >> pageblock_order;
5984 usemapsize *= NR_PAGEBLOCK_BITS;
5985 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5986
5987 return usemapsize / 8;
5988 }
5989
5990 static void __init setup_usemap(struct pglist_data *pgdat,
5991 struct zone *zone,
5992 unsigned long zone_start_pfn,
5993 unsigned long zonesize)
5994 {
5995 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5996 zone->pageblock_flags = NULL;
5997 if (usemapsize)
5998 zone->pageblock_flags =
5999 memblock_virt_alloc_node_nopanic(usemapsize,
6000 pgdat->node_id);
6001 }
6002 #else
6003 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6004 unsigned long zone_start_pfn, unsigned long zonesize) {}
6005 #endif /* CONFIG_SPARSEMEM */
6006
6007 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6008
6009 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6010 void __paginginit set_pageblock_order(void)
6011 {
6012 unsigned int order;
6013
6014 /* Check that pageblock_nr_pages has not already been setup */
6015 if (pageblock_order)
6016 return;
6017
6018 if (HPAGE_SHIFT > PAGE_SHIFT)
6019 order = HUGETLB_PAGE_ORDER;
6020 else
6021 order = MAX_ORDER - 1;
6022
6023 /*
6024 * Assume the largest contiguous order of interest is a huge page.
6025 * This value may be variable depending on boot parameters on IA64 and
6026 * powerpc.
6027 */
6028 pageblock_order = order;
6029 }
6030 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6031
6032 /*
6033 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6034 * is unused as pageblock_order is set at compile-time. See
6035 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6036 * the kernel config
6037 */
6038 void __paginginit set_pageblock_order(void)
6039 {
6040 }
6041
6042 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6043
6044 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6045 unsigned long present_pages)
6046 {
6047 unsigned long pages = spanned_pages;
6048
6049 /*
6050 * Provide a more accurate estimation if there are holes within
6051 * the zone and SPARSEMEM is in use. If there are holes within the
6052 * zone, each populated memory region may cost us one or two extra
6053 * memmap pages due to alignment because memmap pages for each
6054 * populated regions may not be naturally aligned on page boundary.
6055 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6056 */
6057 if (spanned_pages > present_pages + (present_pages >> 4) &&
6058 IS_ENABLED(CONFIG_SPARSEMEM))
6059 pages = present_pages;
6060
6061 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6062 }
6063
6064 /*
6065 * Set up the zone data structures:
6066 * - mark all pages reserved
6067 * - mark all memory queues empty
6068 * - clear the memory bitmaps
6069 *
6070 * NOTE: pgdat should get zeroed by caller.
6071 */
6072 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6073 {
6074 enum zone_type j;
6075 int nid = pgdat->node_id;
6076
6077 pgdat_resize_init(pgdat);
6078 #ifdef CONFIG_NUMA_BALANCING
6079 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6080 pgdat->numabalancing_migrate_nr_pages = 0;
6081 pgdat->numabalancing_migrate_next_window = jiffies;
6082 #endif
6083 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6084 spin_lock_init(&pgdat->split_queue_lock);
6085 INIT_LIST_HEAD(&pgdat->split_queue);
6086 pgdat->split_queue_len = 0;
6087 #endif
6088 init_waitqueue_head(&pgdat->kswapd_wait);
6089 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6090 #ifdef CONFIG_COMPACTION
6091 init_waitqueue_head(&pgdat->kcompactd_wait);
6092 #endif
6093 pgdat_page_ext_init(pgdat);
6094 spin_lock_init(&pgdat->lru_lock);
6095 lruvec_init(node_lruvec(pgdat));
6096
6097 pgdat->per_cpu_nodestats = &boot_nodestats;
6098
6099 for (j = 0; j < MAX_NR_ZONES; j++) {
6100 struct zone *zone = pgdat->node_zones + j;
6101 unsigned long size, realsize, freesize, memmap_pages;
6102 unsigned long zone_start_pfn = zone->zone_start_pfn;
6103
6104 size = zone->spanned_pages;
6105 realsize = freesize = zone->present_pages;
6106
6107 /*
6108 * Adjust freesize so that it accounts for how much memory
6109 * is used by this zone for memmap. This affects the watermark
6110 * and per-cpu initialisations
6111 */
6112 memmap_pages = calc_memmap_size(size, realsize);
6113 if (!is_highmem_idx(j)) {
6114 if (freesize >= memmap_pages) {
6115 freesize -= memmap_pages;
6116 if (memmap_pages)
6117 printk(KERN_DEBUG
6118 " %s zone: %lu pages used for memmap\n",
6119 zone_names[j], memmap_pages);
6120 } else
6121 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6122 zone_names[j], memmap_pages, freesize);
6123 }
6124
6125 /* Account for reserved pages */
6126 if (j == 0 && freesize > dma_reserve) {
6127 freesize -= dma_reserve;
6128 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6129 zone_names[0], dma_reserve);
6130 }
6131
6132 if (!is_highmem_idx(j))
6133 nr_kernel_pages += freesize;
6134 /* Charge for highmem memmap if there are enough kernel pages */
6135 else if (nr_kernel_pages > memmap_pages * 2)
6136 nr_kernel_pages -= memmap_pages;
6137 nr_all_pages += freesize;
6138
6139 /*
6140 * Set an approximate value for lowmem here, it will be adjusted
6141 * when the bootmem allocator frees pages into the buddy system.
6142 * And all highmem pages will be managed by the buddy system.
6143 */
6144 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6145 #ifdef CONFIG_NUMA
6146 zone->node = nid;
6147 #endif
6148 zone->name = zone_names[j];
6149 zone->zone_pgdat = pgdat;
6150 spin_lock_init(&zone->lock);
6151 zone_seqlock_init(zone);
6152 zone_pcp_init(zone);
6153
6154 if (!size)
6155 continue;
6156
6157 set_pageblock_order();
6158 setup_usemap(pgdat, zone, zone_start_pfn, size);
6159 init_currently_empty_zone(zone, zone_start_pfn, size);
6160 memmap_init(size, nid, j, zone_start_pfn);
6161 }
6162 }
6163
6164 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6165 {
6166 unsigned long __maybe_unused start = 0;
6167 unsigned long __maybe_unused offset = 0;
6168
6169 /* Skip empty nodes */
6170 if (!pgdat->node_spanned_pages)
6171 return;
6172
6173 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6174 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6175 offset = pgdat->node_start_pfn - start;
6176 /* ia64 gets its own node_mem_map, before this, without bootmem */
6177 if (!pgdat->node_mem_map) {
6178 unsigned long size, end;
6179 struct page *map;
6180
6181 /*
6182 * The zone's endpoints aren't required to be MAX_ORDER
6183 * aligned but the node_mem_map endpoints must be in order
6184 * for the buddy allocator to function correctly.
6185 */
6186 end = pgdat_end_pfn(pgdat);
6187 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6188 size = (end - start) * sizeof(struct page);
6189 map = alloc_remap(pgdat->node_id, size);
6190 if (!map)
6191 map = memblock_virt_alloc_node_nopanic(size,
6192 pgdat->node_id);
6193 pgdat->node_mem_map = map + offset;
6194 }
6195 #ifndef CONFIG_NEED_MULTIPLE_NODES
6196 /*
6197 * With no DISCONTIG, the global mem_map is just set as node 0's
6198 */
6199 if (pgdat == NODE_DATA(0)) {
6200 mem_map = NODE_DATA(0)->node_mem_map;
6201 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6202 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6203 mem_map -= offset;
6204 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6205 }
6206 #endif
6207 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6208 }
6209
6210 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6211 unsigned long node_start_pfn, unsigned long *zholes_size)
6212 {
6213 pg_data_t *pgdat = NODE_DATA(nid);
6214 unsigned long start_pfn = 0;
6215 unsigned long end_pfn = 0;
6216
6217 /* pg_data_t should be reset to zero when it's allocated */
6218 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6219
6220 pgdat->node_id = nid;
6221 pgdat->node_start_pfn = node_start_pfn;
6222 pgdat->per_cpu_nodestats = NULL;
6223 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6224 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6225 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6226 (u64)start_pfn << PAGE_SHIFT,
6227 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6228 #else
6229 start_pfn = node_start_pfn;
6230 #endif
6231 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6232 zones_size, zholes_size);
6233
6234 alloc_node_mem_map(pgdat);
6235 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6236 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6237 nid, (unsigned long)pgdat,
6238 (unsigned long)pgdat->node_mem_map);
6239 #endif
6240
6241 reset_deferred_meminit(pgdat);
6242 free_area_init_core(pgdat);
6243 }
6244
6245 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6246
6247 #if MAX_NUMNODES > 1
6248 /*
6249 * Figure out the number of possible node ids.
6250 */
6251 void __init setup_nr_node_ids(void)
6252 {
6253 unsigned int highest;
6254
6255 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6256 nr_node_ids = highest + 1;
6257 }
6258 #endif
6259
6260 /**
6261 * node_map_pfn_alignment - determine the maximum internode alignment
6262 *
6263 * This function should be called after node map is populated and sorted.
6264 * It calculates the maximum power of two alignment which can distinguish
6265 * all the nodes.
6266 *
6267 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6268 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6269 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6270 * shifted, 1GiB is enough and this function will indicate so.
6271 *
6272 * This is used to test whether pfn -> nid mapping of the chosen memory
6273 * model has fine enough granularity to avoid incorrect mapping for the
6274 * populated node map.
6275 *
6276 * Returns the determined alignment in pfn's. 0 if there is no alignment
6277 * requirement (single node).
6278 */
6279 unsigned long __init node_map_pfn_alignment(void)
6280 {
6281 unsigned long accl_mask = 0, last_end = 0;
6282 unsigned long start, end, mask;
6283 int last_nid = -1;
6284 int i, nid;
6285
6286 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6287 if (!start || last_nid < 0 || last_nid == nid) {
6288 last_nid = nid;
6289 last_end = end;
6290 continue;
6291 }
6292
6293 /*
6294 * Start with a mask granular enough to pin-point to the
6295 * start pfn and tick off bits one-by-one until it becomes
6296 * too coarse to separate the current node from the last.
6297 */
6298 mask = ~((1 << __ffs(start)) - 1);
6299 while (mask && last_end <= (start & (mask << 1)))
6300 mask <<= 1;
6301
6302 /* accumulate all internode masks */
6303 accl_mask |= mask;
6304 }
6305
6306 /* convert mask to number of pages */
6307 return ~accl_mask + 1;
6308 }
6309
6310 /* Find the lowest pfn for a node */
6311 static unsigned long __init find_min_pfn_for_node(int nid)
6312 {
6313 unsigned long min_pfn = ULONG_MAX;
6314 unsigned long start_pfn;
6315 int i;
6316
6317 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6318 min_pfn = min(min_pfn, start_pfn);
6319
6320 if (min_pfn == ULONG_MAX) {
6321 pr_warn("Could not find start_pfn for node %d\n", nid);
6322 return 0;
6323 }
6324
6325 return min_pfn;
6326 }
6327
6328 /**
6329 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6330 *
6331 * It returns the minimum PFN based on information provided via
6332 * memblock_set_node().
6333 */
6334 unsigned long __init find_min_pfn_with_active_regions(void)
6335 {
6336 return find_min_pfn_for_node(MAX_NUMNODES);
6337 }
6338
6339 /*
6340 * early_calculate_totalpages()
6341 * Sum pages in active regions for movable zone.
6342 * Populate N_MEMORY for calculating usable_nodes.
6343 */
6344 static unsigned long __init early_calculate_totalpages(void)
6345 {
6346 unsigned long totalpages = 0;
6347 unsigned long start_pfn, end_pfn;
6348 int i, nid;
6349
6350 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6351 unsigned long pages = end_pfn - start_pfn;
6352
6353 totalpages += pages;
6354 if (pages)
6355 node_set_state(nid, N_MEMORY);
6356 }
6357 return totalpages;
6358 }
6359
6360 /*
6361 * Find the PFN the Movable zone begins in each node. Kernel memory
6362 * is spread evenly between nodes as long as the nodes have enough
6363 * memory. When they don't, some nodes will have more kernelcore than
6364 * others
6365 */
6366 static void __init find_zone_movable_pfns_for_nodes(void)
6367 {
6368 int i, nid;
6369 unsigned long usable_startpfn;
6370 unsigned long kernelcore_node, kernelcore_remaining;
6371 /* save the state before borrow the nodemask */
6372 nodemask_t saved_node_state = node_states[N_MEMORY];
6373 unsigned long totalpages = early_calculate_totalpages();
6374 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6375 struct memblock_region *r;
6376
6377 /* Need to find movable_zone earlier when movable_node is specified. */
6378 find_usable_zone_for_movable();
6379
6380 /*
6381 * If movable_node is specified, ignore kernelcore and movablecore
6382 * options.
6383 */
6384 if (movable_node_is_enabled()) {
6385 for_each_memblock(memory, r) {
6386 if (!memblock_is_hotpluggable(r))
6387 continue;
6388
6389 nid = r->nid;
6390
6391 usable_startpfn = PFN_DOWN(r->base);
6392 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6393 min(usable_startpfn, zone_movable_pfn[nid]) :
6394 usable_startpfn;
6395 }
6396
6397 goto out2;
6398 }
6399
6400 /*
6401 * If kernelcore=mirror is specified, ignore movablecore option
6402 */
6403 if (mirrored_kernelcore) {
6404 bool mem_below_4gb_not_mirrored = false;
6405
6406 for_each_memblock(memory, r) {
6407 if (memblock_is_mirror(r))
6408 continue;
6409
6410 nid = r->nid;
6411
6412 usable_startpfn = memblock_region_memory_base_pfn(r);
6413
6414 if (usable_startpfn < 0x100000) {
6415 mem_below_4gb_not_mirrored = true;
6416 continue;
6417 }
6418
6419 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6420 min(usable_startpfn, zone_movable_pfn[nid]) :
6421 usable_startpfn;
6422 }
6423
6424 if (mem_below_4gb_not_mirrored)
6425 pr_warn("This configuration results in unmirrored kernel memory.");
6426
6427 goto out2;
6428 }
6429
6430 /*
6431 * If movablecore=nn[KMG] was specified, calculate what size of
6432 * kernelcore that corresponds so that memory usable for
6433 * any allocation type is evenly spread. If both kernelcore
6434 * and movablecore are specified, then the value of kernelcore
6435 * will be used for required_kernelcore if it's greater than
6436 * what movablecore would have allowed.
6437 */
6438 if (required_movablecore) {
6439 unsigned long corepages;
6440
6441 /*
6442 * Round-up so that ZONE_MOVABLE is at least as large as what
6443 * was requested by the user
6444 */
6445 required_movablecore =
6446 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6447 required_movablecore = min(totalpages, required_movablecore);
6448 corepages = totalpages - required_movablecore;
6449
6450 required_kernelcore = max(required_kernelcore, corepages);
6451 }
6452
6453 /*
6454 * If kernelcore was not specified or kernelcore size is larger
6455 * than totalpages, there is no ZONE_MOVABLE.
6456 */
6457 if (!required_kernelcore || required_kernelcore >= totalpages)
6458 goto out;
6459
6460 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6461 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6462
6463 restart:
6464 /* Spread kernelcore memory as evenly as possible throughout nodes */
6465 kernelcore_node = required_kernelcore / usable_nodes;
6466 for_each_node_state(nid, N_MEMORY) {
6467 unsigned long start_pfn, end_pfn;
6468
6469 /*
6470 * Recalculate kernelcore_node if the division per node
6471 * now exceeds what is necessary to satisfy the requested
6472 * amount of memory for the kernel
6473 */
6474 if (required_kernelcore < kernelcore_node)
6475 kernelcore_node = required_kernelcore / usable_nodes;
6476
6477 /*
6478 * As the map is walked, we track how much memory is usable
6479 * by the kernel using kernelcore_remaining. When it is
6480 * 0, the rest of the node is usable by ZONE_MOVABLE
6481 */
6482 kernelcore_remaining = kernelcore_node;
6483
6484 /* Go through each range of PFNs within this node */
6485 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6486 unsigned long size_pages;
6487
6488 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6489 if (start_pfn >= end_pfn)
6490 continue;
6491
6492 /* Account for what is only usable for kernelcore */
6493 if (start_pfn < usable_startpfn) {
6494 unsigned long kernel_pages;
6495 kernel_pages = min(end_pfn, usable_startpfn)
6496 - start_pfn;
6497
6498 kernelcore_remaining -= min(kernel_pages,
6499 kernelcore_remaining);
6500 required_kernelcore -= min(kernel_pages,
6501 required_kernelcore);
6502
6503 /* Continue if range is now fully accounted */
6504 if (end_pfn <= usable_startpfn) {
6505
6506 /*
6507 * Push zone_movable_pfn to the end so
6508 * that if we have to rebalance
6509 * kernelcore across nodes, we will
6510 * not double account here
6511 */
6512 zone_movable_pfn[nid] = end_pfn;
6513 continue;
6514 }
6515 start_pfn = usable_startpfn;
6516 }
6517
6518 /*
6519 * The usable PFN range for ZONE_MOVABLE is from
6520 * start_pfn->end_pfn. Calculate size_pages as the
6521 * number of pages used as kernelcore
6522 */
6523 size_pages = end_pfn - start_pfn;
6524 if (size_pages > kernelcore_remaining)
6525 size_pages = kernelcore_remaining;
6526 zone_movable_pfn[nid] = start_pfn + size_pages;
6527
6528 /*
6529 * Some kernelcore has been met, update counts and
6530 * break if the kernelcore for this node has been
6531 * satisfied
6532 */
6533 required_kernelcore -= min(required_kernelcore,
6534 size_pages);
6535 kernelcore_remaining -= size_pages;
6536 if (!kernelcore_remaining)
6537 break;
6538 }
6539 }
6540
6541 /*
6542 * If there is still required_kernelcore, we do another pass with one
6543 * less node in the count. This will push zone_movable_pfn[nid] further
6544 * along on the nodes that still have memory until kernelcore is
6545 * satisfied
6546 */
6547 usable_nodes--;
6548 if (usable_nodes && required_kernelcore > usable_nodes)
6549 goto restart;
6550
6551 out2:
6552 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6553 for (nid = 0; nid < MAX_NUMNODES; nid++)
6554 zone_movable_pfn[nid] =
6555 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6556
6557 out:
6558 /* restore the node_state */
6559 node_states[N_MEMORY] = saved_node_state;
6560 }
6561
6562 /* Any regular or high memory on that node ? */
6563 static void check_for_memory(pg_data_t *pgdat, int nid)
6564 {
6565 enum zone_type zone_type;
6566
6567 if (N_MEMORY == N_NORMAL_MEMORY)
6568 return;
6569
6570 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6571 struct zone *zone = &pgdat->node_zones[zone_type];
6572 if (populated_zone(zone)) {
6573 node_set_state(nid, N_HIGH_MEMORY);
6574 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6575 zone_type <= ZONE_NORMAL)
6576 node_set_state(nid, N_NORMAL_MEMORY);
6577 break;
6578 }
6579 }
6580 }
6581
6582 /**
6583 * free_area_init_nodes - Initialise all pg_data_t and zone data
6584 * @max_zone_pfn: an array of max PFNs for each zone
6585 *
6586 * This will call free_area_init_node() for each active node in the system.
6587 * Using the page ranges provided by memblock_set_node(), the size of each
6588 * zone in each node and their holes is calculated. If the maximum PFN
6589 * between two adjacent zones match, it is assumed that the zone is empty.
6590 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6591 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6592 * starts where the previous one ended. For example, ZONE_DMA32 starts
6593 * at arch_max_dma_pfn.
6594 */
6595 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6596 {
6597 unsigned long start_pfn, end_pfn;
6598 int i, nid;
6599
6600 /* Record where the zone boundaries are */
6601 memset(arch_zone_lowest_possible_pfn, 0,
6602 sizeof(arch_zone_lowest_possible_pfn));
6603 memset(arch_zone_highest_possible_pfn, 0,
6604 sizeof(arch_zone_highest_possible_pfn));
6605
6606 start_pfn = find_min_pfn_with_active_regions();
6607
6608 for (i = 0; i < MAX_NR_ZONES; i++) {
6609 if (i == ZONE_MOVABLE)
6610 continue;
6611
6612 end_pfn = max(max_zone_pfn[i], start_pfn);
6613 arch_zone_lowest_possible_pfn[i] = start_pfn;
6614 arch_zone_highest_possible_pfn[i] = end_pfn;
6615
6616 start_pfn = end_pfn;
6617 }
6618
6619 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6620 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6621 find_zone_movable_pfns_for_nodes();
6622
6623 /* Print out the zone ranges */
6624 pr_info("Zone ranges:\n");
6625 for (i = 0; i < MAX_NR_ZONES; i++) {
6626 if (i == ZONE_MOVABLE)
6627 continue;
6628 pr_info(" %-8s ", zone_names[i]);
6629 if (arch_zone_lowest_possible_pfn[i] ==
6630 arch_zone_highest_possible_pfn[i])
6631 pr_cont("empty\n");
6632 else
6633 pr_cont("[mem %#018Lx-%#018Lx]\n",
6634 (u64)arch_zone_lowest_possible_pfn[i]
6635 << PAGE_SHIFT,
6636 ((u64)arch_zone_highest_possible_pfn[i]
6637 << PAGE_SHIFT) - 1);
6638 }
6639
6640 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6641 pr_info("Movable zone start for each node\n");
6642 for (i = 0; i < MAX_NUMNODES; i++) {
6643 if (zone_movable_pfn[i])
6644 pr_info(" Node %d: %#018Lx\n", i,
6645 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6646 }
6647
6648 /* Print out the early node map */
6649 pr_info("Early memory node ranges\n");
6650 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6651 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6652 (u64)start_pfn << PAGE_SHIFT,
6653 ((u64)end_pfn << PAGE_SHIFT) - 1);
6654
6655 /* Initialise every node */
6656 mminit_verify_pageflags_layout();
6657 setup_nr_node_ids();
6658 for_each_online_node(nid) {
6659 pg_data_t *pgdat = NODE_DATA(nid);
6660 free_area_init_node(nid, NULL,
6661 find_min_pfn_for_node(nid), NULL);
6662
6663 /* Any memory on that node */
6664 if (pgdat->node_present_pages)
6665 node_set_state(nid, N_MEMORY);
6666 check_for_memory(pgdat, nid);
6667 }
6668 }
6669
6670 static int __init cmdline_parse_core(char *p, unsigned long *core)
6671 {
6672 unsigned long long coremem;
6673 if (!p)
6674 return -EINVAL;
6675
6676 coremem = memparse(p, &p);
6677 *core = coremem >> PAGE_SHIFT;
6678
6679 /* Paranoid check that UL is enough for the coremem value */
6680 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6681
6682 return 0;
6683 }
6684
6685 /*
6686 * kernelcore=size sets the amount of memory for use for allocations that
6687 * cannot be reclaimed or migrated.
6688 */
6689 static int __init cmdline_parse_kernelcore(char *p)
6690 {
6691 /* parse kernelcore=mirror */
6692 if (parse_option_str(p, "mirror")) {
6693 mirrored_kernelcore = true;
6694 return 0;
6695 }
6696
6697 return cmdline_parse_core(p, &required_kernelcore);
6698 }
6699
6700 /*
6701 * movablecore=size sets the amount of memory for use for allocations that
6702 * can be reclaimed or migrated.
6703 */
6704 static int __init cmdline_parse_movablecore(char *p)
6705 {
6706 return cmdline_parse_core(p, &required_movablecore);
6707 }
6708
6709 early_param("kernelcore", cmdline_parse_kernelcore);
6710 early_param("movablecore", cmdline_parse_movablecore);
6711
6712 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6713
6714 void adjust_managed_page_count(struct page *page, long count)
6715 {
6716 spin_lock(&managed_page_count_lock);
6717 page_zone(page)->managed_pages += count;
6718 totalram_pages += count;
6719 #ifdef CONFIG_HIGHMEM
6720 if (PageHighMem(page))
6721 totalhigh_pages += count;
6722 #endif
6723 spin_unlock(&managed_page_count_lock);
6724 }
6725 EXPORT_SYMBOL(adjust_managed_page_count);
6726
6727 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6728 {
6729 void *pos;
6730 unsigned long pages = 0;
6731
6732 start = (void *)PAGE_ALIGN((unsigned long)start);
6733 end = (void *)((unsigned long)end & PAGE_MASK);
6734 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6735 if ((unsigned int)poison <= 0xFF)
6736 memset(pos, poison, PAGE_SIZE);
6737 free_reserved_page(virt_to_page(pos));
6738 }
6739
6740 if (pages && s)
6741 pr_info("Freeing %s memory: %ldK\n",
6742 s, pages << (PAGE_SHIFT - 10));
6743
6744 return pages;
6745 }
6746 EXPORT_SYMBOL(free_reserved_area);
6747
6748 #ifdef CONFIG_HIGHMEM
6749 void free_highmem_page(struct page *page)
6750 {
6751 __free_reserved_page(page);
6752 totalram_pages++;
6753 page_zone(page)->managed_pages++;
6754 totalhigh_pages++;
6755 }
6756 #endif
6757
6758
6759 void __init mem_init_print_info(const char *str)
6760 {
6761 unsigned long physpages, codesize, datasize, rosize, bss_size;
6762 unsigned long init_code_size, init_data_size;
6763
6764 physpages = get_num_physpages();
6765 codesize = _etext - _stext;
6766 datasize = _edata - _sdata;
6767 rosize = __end_rodata - __start_rodata;
6768 bss_size = __bss_stop - __bss_start;
6769 init_data_size = __init_end - __init_begin;
6770 init_code_size = _einittext - _sinittext;
6771
6772 /*
6773 * Detect special cases and adjust section sizes accordingly:
6774 * 1) .init.* may be embedded into .data sections
6775 * 2) .init.text.* may be out of [__init_begin, __init_end],
6776 * please refer to arch/tile/kernel/vmlinux.lds.S.
6777 * 3) .rodata.* may be embedded into .text or .data sections.
6778 */
6779 #define adj_init_size(start, end, size, pos, adj) \
6780 do { \
6781 if (start <= pos && pos < end && size > adj) \
6782 size -= adj; \
6783 } while (0)
6784
6785 adj_init_size(__init_begin, __init_end, init_data_size,
6786 _sinittext, init_code_size);
6787 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6788 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6789 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6790 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6791
6792 #undef adj_init_size
6793
6794 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6795 #ifdef CONFIG_HIGHMEM
6796 ", %luK highmem"
6797 #endif
6798 "%s%s)\n",
6799 nr_free_pages() << (PAGE_SHIFT - 10),
6800 physpages << (PAGE_SHIFT - 10),
6801 codesize >> 10, datasize >> 10, rosize >> 10,
6802 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6803 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6804 totalcma_pages << (PAGE_SHIFT - 10),
6805 #ifdef CONFIG_HIGHMEM
6806 totalhigh_pages << (PAGE_SHIFT - 10),
6807 #endif
6808 str ? ", " : "", str ? str : "");
6809 }
6810
6811 /**
6812 * set_dma_reserve - set the specified number of pages reserved in the first zone
6813 * @new_dma_reserve: The number of pages to mark reserved
6814 *
6815 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6816 * In the DMA zone, a significant percentage may be consumed by kernel image
6817 * and other unfreeable allocations which can skew the watermarks badly. This
6818 * function may optionally be used to account for unfreeable pages in the
6819 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6820 * smaller per-cpu batchsize.
6821 */
6822 void __init set_dma_reserve(unsigned long new_dma_reserve)
6823 {
6824 dma_reserve = new_dma_reserve;
6825 }
6826
6827 void __init free_area_init(unsigned long *zones_size)
6828 {
6829 free_area_init_node(0, zones_size,
6830 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6831 }
6832
6833 static int page_alloc_cpu_dead(unsigned int cpu)
6834 {
6835
6836 lru_add_drain_cpu(cpu);
6837 drain_pages(cpu);
6838
6839 /*
6840 * Spill the event counters of the dead processor
6841 * into the current processors event counters.
6842 * This artificially elevates the count of the current
6843 * processor.
6844 */
6845 vm_events_fold_cpu(cpu);
6846
6847 /*
6848 * Zero the differential counters of the dead processor
6849 * so that the vm statistics are consistent.
6850 *
6851 * This is only okay since the processor is dead and cannot
6852 * race with what we are doing.
6853 */
6854 cpu_vm_stats_fold(cpu);
6855 return 0;
6856 }
6857
6858 void __init page_alloc_init(void)
6859 {
6860 int ret;
6861
6862 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6863 "mm/page_alloc:dead", NULL,
6864 page_alloc_cpu_dead);
6865 WARN_ON(ret < 0);
6866 }
6867
6868 /*
6869 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6870 * or min_free_kbytes changes.
6871 */
6872 static void calculate_totalreserve_pages(void)
6873 {
6874 struct pglist_data *pgdat;
6875 unsigned long reserve_pages = 0;
6876 enum zone_type i, j;
6877
6878 for_each_online_pgdat(pgdat) {
6879
6880 pgdat->totalreserve_pages = 0;
6881
6882 for (i = 0; i < MAX_NR_ZONES; i++) {
6883 struct zone *zone = pgdat->node_zones + i;
6884 long max = 0;
6885
6886 /* Find valid and maximum lowmem_reserve in the zone */
6887 for (j = i; j < MAX_NR_ZONES; j++) {
6888 if (zone->lowmem_reserve[j] > max)
6889 max = zone->lowmem_reserve[j];
6890 }
6891
6892 /* we treat the high watermark as reserved pages. */
6893 max += high_wmark_pages(zone);
6894
6895 if (max > zone->managed_pages)
6896 max = zone->managed_pages;
6897
6898 pgdat->totalreserve_pages += max;
6899
6900 reserve_pages += max;
6901 }
6902 }
6903 totalreserve_pages = reserve_pages;
6904 }
6905
6906 /*
6907 * setup_per_zone_lowmem_reserve - called whenever
6908 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6909 * has a correct pages reserved value, so an adequate number of
6910 * pages are left in the zone after a successful __alloc_pages().
6911 */
6912 static void setup_per_zone_lowmem_reserve(void)
6913 {
6914 struct pglist_data *pgdat;
6915 enum zone_type j, idx;
6916
6917 for_each_online_pgdat(pgdat) {
6918 for (j = 0; j < MAX_NR_ZONES; j++) {
6919 struct zone *zone = pgdat->node_zones + j;
6920 unsigned long managed_pages = zone->managed_pages;
6921
6922 zone->lowmem_reserve[j] = 0;
6923
6924 idx = j;
6925 while (idx) {
6926 struct zone *lower_zone;
6927
6928 idx--;
6929
6930 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6931 sysctl_lowmem_reserve_ratio[idx] = 1;
6932
6933 lower_zone = pgdat->node_zones + idx;
6934 lower_zone->lowmem_reserve[j] = managed_pages /
6935 sysctl_lowmem_reserve_ratio[idx];
6936 managed_pages += lower_zone->managed_pages;
6937 }
6938 }
6939 }
6940
6941 /* update totalreserve_pages */
6942 calculate_totalreserve_pages();
6943 }
6944
6945 static void __setup_per_zone_wmarks(void)
6946 {
6947 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6948 unsigned long lowmem_pages = 0;
6949 struct zone *zone;
6950 unsigned long flags;
6951
6952 /* Calculate total number of !ZONE_HIGHMEM pages */
6953 for_each_zone(zone) {
6954 if (!is_highmem(zone))
6955 lowmem_pages += zone->managed_pages;
6956 }
6957
6958 for_each_zone(zone) {
6959 u64 tmp;
6960
6961 spin_lock_irqsave(&zone->lock, flags);
6962 tmp = (u64)pages_min * zone->managed_pages;
6963 do_div(tmp, lowmem_pages);
6964 if (is_highmem(zone)) {
6965 /*
6966 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6967 * need highmem pages, so cap pages_min to a small
6968 * value here.
6969 *
6970 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6971 * deltas control asynch page reclaim, and so should
6972 * not be capped for highmem.
6973 */
6974 unsigned long min_pages;
6975
6976 min_pages = zone->managed_pages / 1024;
6977 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6978 zone->watermark[WMARK_MIN] = min_pages;
6979 } else {
6980 /*
6981 * If it's a lowmem zone, reserve a number of pages
6982 * proportionate to the zone's size.
6983 */
6984 zone->watermark[WMARK_MIN] = tmp;
6985 }
6986
6987 /*
6988 * Set the kswapd watermarks distance according to the
6989 * scale factor in proportion to available memory, but
6990 * ensure a minimum size on small systems.
6991 */
6992 tmp = max_t(u64, tmp >> 2,
6993 mult_frac(zone->managed_pages,
6994 watermark_scale_factor, 10000));
6995
6996 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6997 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6998
6999 spin_unlock_irqrestore(&zone->lock, flags);
7000 }
7001
7002 /* update totalreserve_pages */
7003 calculate_totalreserve_pages();
7004 }
7005
7006 /**
7007 * setup_per_zone_wmarks - called when min_free_kbytes changes
7008 * or when memory is hot-{added|removed}
7009 *
7010 * Ensures that the watermark[min,low,high] values for each zone are set
7011 * correctly with respect to min_free_kbytes.
7012 */
7013 void setup_per_zone_wmarks(void)
7014 {
7015 mutex_lock(&zonelists_mutex);
7016 __setup_per_zone_wmarks();
7017 mutex_unlock(&zonelists_mutex);
7018 }
7019
7020 /*
7021 * Initialise min_free_kbytes.
7022 *
7023 * For small machines we want it small (128k min). For large machines
7024 * we want it large (64MB max). But it is not linear, because network
7025 * bandwidth does not increase linearly with machine size. We use
7026 *
7027 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7028 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7029 *
7030 * which yields
7031 *
7032 * 16MB: 512k
7033 * 32MB: 724k
7034 * 64MB: 1024k
7035 * 128MB: 1448k
7036 * 256MB: 2048k
7037 * 512MB: 2896k
7038 * 1024MB: 4096k
7039 * 2048MB: 5792k
7040 * 4096MB: 8192k
7041 * 8192MB: 11584k
7042 * 16384MB: 16384k
7043 */
7044 int __meminit init_per_zone_wmark_min(void)
7045 {
7046 unsigned long lowmem_kbytes;
7047 int new_min_free_kbytes;
7048
7049 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7050 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7051
7052 if (new_min_free_kbytes > user_min_free_kbytes) {
7053 min_free_kbytes = new_min_free_kbytes;
7054 if (min_free_kbytes < 128)
7055 min_free_kbytes = 128;
7056 if (min_free_kbytes > 65536)
7057 min_free_kbytes = 65536;
7058 } else {
7059 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7060 new_min_free_kbytes, user_min_free_kbytes);
7061 }
7062 setup_per_zone_wmarks();
7063 refresh_zone_stat_thresholds();
7064 setup_per_zone_lowmem_reserve();
7065
7066 #ifdef CONFIG_NUMA
7067 setup_min_unmapped_ratio();
7068 setup_min_slab_ratio();
7069 #endif
7070
7071 return 0;
7072 }
7073 core_initcall(init_per_zone_wmark_min)
7074
7075 /*
7076 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7077 * that we can call two helper functions whenever min_free_kbytes
7078 * changes.
7079 */
7080 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7081 void __user *buffer, size_t *length, loff_t *ppos)
7082 {
7083 int rc;
7084
7085 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7086 if (rc)
7087 return rc;
7088
7089 if (write) {
7090 user_min_free_kbytes = min_free_kbytes;
7091 setup_per_zone_wmarks();
7092 }
7093 return 0;
7094 }
7095
7096 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7097 void __user *buffer, size_t *length, loff_t *ppos)
7098 {
7099 int rc;
7100
7101 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7102 if (rc)
7103 return rc;
7104
7105 if (write)
7106 setup_per_zone_wmarks();
7107
7108 return 0;
7109 }
7110
7111 #ifdef CONFIG_NUMA
7112 static void setup_min_unmapped_ratio(void)
7113 {
7114 pg_data_t *pgdat;
7115 struct zone *zone;
7116
7117 for_each_online_pgdat(pgdat)
7118 pgdat->min_unmapped_pages = 0;
7119
7120 for_each_zone(zone)
7121 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7122 sysctl_min_unmapped_ratio) / 100;
7123 }
7124
7125
7126 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7127 void __user *buffer, size_t *length, loff_t *ppos)
7128 {
7129 int rc;
7130
7131 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7132 if (rc)
7133 return rc;
7134
7135 setup_min_unmapped_ratio();
7136
7137 return 0;
7138 }
7139
7140 static void setup_min_slab_ratio(void)
7141 {
7142 pg_data_t *pgdat;
7143 struct zone *zone;
7144
7145 for_each_online_pgdat(pgdat)
7146 pgdat->min_slab_pages = 0;
7147
7148 for_each_zone(zone)
7149 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7150 sysctl_min_slab_ratio) / 100;
7151 }
7152
7153 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7154 void __user *buffer, size_t *length, loff_t *ppos)
7155 {
7156 int rc;
7157
7158 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7159 if (rc)
7160 return rc;
7161
7162 setup_min_slab_ratio();
7163
7164 return 0;
7165 }
7166 #endif
7167
7168 /*
7169 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7170 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7171 * whenever sysctl_lowmem_reserve_ratio changes.
7172 *
7173 * The reserve ratio obviously has absolutely no relation with the
7174 * minimum watermarks. The lowmem reserve ratio can only make sense
7175 * if in function of the boot time zone sizes.
7176 */
7177 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7178 void __user *buffer, size_t *length, loff_t *ppos)
7179 {
7180 proc_dointvec_minmax(table, write, buffer, length, ppos);
7181 setup_per_zone_lowmem_reserve();
7182 return 0;
7183 }
7184
7185 /*
7186 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7187 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7188 * pagelist can have before it gets flushed back to buddy allocator.
7189 */
7190 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7191 void __user *buffer, size_t *length, loff_t *ppos)
7192 {
7193 struct zone *zone;
7194 int old_percpu_pagelist_fraction;
7195 int ret;
7196
7197 mutex_lock(&pcp_batch_high_lock);
7198 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7199
7200 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7201 if (!write || ret < 0)
7202 goto out;
7203
7204 /* Sanity checking to avoid pcp imbalance */
7205 if (percpu_pagelist_fraction &&
7206 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7207 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7208 ret = -EINVAL;
7209 goto out;
7210 }
7211
7212 /* No change? */
7213 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7214 goto out;
7215
7216 for_each_populated_zone(zone) {
7217 unsigned int cpu;
7218
7219 for_each_possible_cpu(cpu)
7220 pageset_set_high_and_batch(zone,
7221 per_cpu_ptr(zone->pageset, cpu));
7222 }
7223 out:
7224 mutex_unlock(&pcp_batch_high_lock);
7225 return ret;
7226 }
7227
7228 #ifdef CONFIG_NUMA
7229 int hashdist = HASHDIST_DEFAULT;
7230
7231 static int __init set_hashdist(char *str)
7232 {
7233 if (!str)
7234 return 0;
7235 hashdist = simple_strtoul(str, &str, 0);
7236 return 1;
7237 }
7238 __setup("hashdist=", set_hashdist);
7239 #endif
7240
7241 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7242 /*
7243 * Returns the number of pages that arch has reserved but
7244 * is not known to alloc_large_system_hash().
7245 */
7246 static unsigned long __init arch_reserved_kernel_pages(void)
7247 {
7248 return 0;
7249 }
7250 #endif
7251
7252 /*
7253 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7254 * machines. As memory size is increased the scale is also increased but at
7255 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7256 * quadruples the scale is increased by one, which means the size of hash table
7257 * only doubles, instead of quadrupling as well.
7258 * Because 32-bit systems cannot have large physical memory, where this scaling
7259 * makes sense, it is disabled on such platforms.
7260 */
7261 #if __BITS_PER_LONG > 32
7262 #define ADAPT_SCALE_BASE (64ul << 30)
7263 #define ADAPT_SCALE_SHIFT 2
7264 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7265 #endif
7266
7267 /*
7268 * allocate a large system hash table from bootmem
7269 * - it is assumed that the hash table must contain an exact power-of-2
7270 * quantity of entries
7271 * - limit is the number of hash buckets, not the total allocation size
7272 */
7273 void *__init alloc_large_system_hash(const char *tablename,
7274 unsigned long bucketsize,
7275 unsigned long numentries,
7276 int scale,
7277 int flags,
7278 unsigned int *_hash_shift,
7279 unsigned int *_hash_mask,
7280 unsigned long low_limit,
7281 unsigned long high_limit)
7282 {
7283 unsigned long long max = high_limit;
7284 unsigned long log2qty, size;
7285 void *table = NULL;
7286 gfp_t gfp_flags;
7287
7288 /* allow the kernel cmdline to have a say */
7289 if (!numentries) {
7290 /* round applicable memory size up to nearest megabyte */
7291 numentries = nr_kernel_pages;
7292 numentries -= arch_reserved_kernel_pages();
7293
7294 /* It isn't necessary when PAGE_SIZE >= 1MB */
7295 if (PAGE_SHIFT < 20)
7296 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7297
7298 #if __BITS_PER_LONG > 32
7299 if (!high_limit) {
7300 unsigned long adapt;
7301
7302 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7303 adapt <<= ADAPT_SCALE_SHIFT)
7304 scale++;
7305 }
7306 #endif
7307
7308 /* limit to 1 bucket per 2^scale bytes of low memory */
7309 if (scale > PAGE_SHIFT)
7310 numentries >>= (scale - PAGE_SHIFT);
7311 else
7312 numentries <<= (PAGE_SHIFT - scale);
7313
7314 /* Make sure we've got at least a 0-order allocation.. */
7315 if (unlikely(flags & HASH_SMALL)) {
7316 /* Makes no sense without HASH_EARLY */
7317 WARN_ON(!(flags & HASH_EARLY));
7318 if (!(numentries >> *_hash_shift)) {
7319 numentries = 1UL << *_hash_shift;
7320 BUG_ON(!numentries);
7321 }
7322 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7323 numentries = PAGE_SIZE / bucketsize;
7324 }
7325 numentries = roundup_pow_of_two(numentries);
7326
7327 /* limit allocation size to 1/16 total memory by default */
7328 if (max == 0) {
7329 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7330 do_div(max, bucketsize);
7331 }
7332 max = min(max, 0x80000000ULL);
7333
7334 if (numentries < low_limit)
7335 numentries = low_limit;
7336 if (numentries > max)
7337 numentries = max;
7338
7339 log2qty = ilog2(numentries);
7340
7341 /*
7342 * memblock allocator returns zeroed memory already, so HASH_ZERO is
7343 * currently not used when HASH_EARLY is specified.
7344 */
7345 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7346 do {
7347 size = bucketsize << log2qty;
7348 if (flags & HASH_EARLY)
7349 table = memblock_virt_alloc_nopanic(size, 0);
7350 else if (hashdist)
7351 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7352 else {
7353 /*
7354 * If bucketsize is not a power-of-two, we may free
7355 * some pages at the end of hash table which
7356 * alloc_pages_exact() automatically does
7357 */
7358 if (get_order(size) < MAX_ORDER) {
7359 table = alloc_pages_exact(size, gfp_flags);
7360 kmemleak_alloc(table, size, 1, gfp_flags);
7361 }
7362 }
7363 } while (!table && size > PAGE_SIZE && --log2qty);
7364
7365 if (!table)
7366 panic("Failed to allocate %s hash table\n", tablename);
7367
7368 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7369 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7370
7371 if (_hash_shift)
7372 *_hash_shift = log2qty;
7373 if (_hash_mask)
7374 *_hash_mask = (1 << log2qty) - 1;
7375
7376 return table;
7377 }
7378
7379 /*
7380 * This function checks whether pageblock includes unmovable pages or not.
7381 * If @count is not zero, it is okay to include less @count unmovable pages
7382 *
7383 * PageLRU check without isolation or lru_lock could race so that
7384 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7385 * check without lock_page also may miss some movable non-lru pages at
7386 * race condition. So you can't expect this function should be exact.
7387 */
7388 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7389 bool skip_hwpoisoned_pages)
7390 {
7391 unsigned long pfn, iter, found;
7392 int mt;
7393
7394 /*
7395 * For avoiding noise data, lru_add_drain_all() should be called
7396 * If ZONE_MOVABLE, the zone never contains unmovable pages
7397 */
7398 if (zone_idx(zone) == ZONE_MOVABLE)
7399 return false;
7400 mt = get_pageblock_migratetype(page);
7401 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7402 return false;
7403
7404 pfn = page_to_pfn(page);
7405 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7406 unsigned long check = pfn + iter;
7407
7408 if (!pfn_valid_within(check))
7409 continue;
7410
7411 page = pfn_to_page(check);
7412
7413 /*
7414 * Hugepages are not in LRU lists, but they're movable.
7415 * We need not scan over tail pages bacause we don't
7416 * handle each tail page individually in migration.
7417 */
7418 if (PageHuge(page)) {
7419 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7420 continue;
7421 }
7422
7423 /*
7424 * We can't use page_count without pin a page
7425 * because another CPU can free compound page.
7426 * This check already skips compound tails of THP
7427 * because their page->_refcount is zero at all time.
7428 */
7429 if (!page_ref_count(page)) {
7430 if (PageBuddy(page))
7431 iter += (1 << page_order(page)) - 1;
7432 continue;
7433 }
7434
7435 /*
7436 * The HWPoisoned page may be not in buddy system, and
7437 * page_count() is not 0.
7438 */
7439 if (skip_hwpoisoned_pages && PageHWPoison(page))
7440 continue;
7441
7442 if (__PageMovable(page))
7443 continue;
7444
7445 if (!PageLRU(page))
7446 found++;
7447 /*
7448 * If there are RECLAIMABLE pages, we need to check
7449 * it. But now, memory offline itself doesn't call
7450 * shrink_node_slabs() and it still to be fixed.
7451 */
7452 /*
7453 * If the page is not RAM, page_count()should be 0.
7454 * we don't need more check. This is an _used_ not-movable page.
7455 *
7456 * The problematic thing here is PG_reserved pages. PG_reserved
7457 * is set to both of a memory hole page and a _used_ kernel
7458 * page at boot.
7459 */
7460 if (found > count)
7461 return true;
7462 }
7463 return false;
7464 }
7465
7466 bool is_pageblock_removable_nolock(struct page *page)
7467 {
7468 struct zone *zone;
7469 unsigned long pfn;
7470
7471 /*
7472 * We have to be careful here because we are iterating over memory
7473 * sections which are not zone aware so we might end up outside of
7474 * the zone but still within the section.
7475 * We have to take care about the node as well. If the node is offline
7476 * its NODE_DATA will be NULL - see page_zone.
7477 */
7478 if (!node_online(page_to_nid(page)))
7479 return false;
7480
7481 zone = page_zone(page);
7482 pfn = page_to_pfn(page);
7483 if (!zone_spans_pfn(zone, pfn))
7484 return false;
7485
7486 return !has_unmovable_pages(zone, page, 0, true);
7487 }
7488
7489 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7490
7491 static unsigned long pfn_max_align_down(unsigned long pfn)
7492 {
7493 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7494 pageblock_nr_pages) - 1);
7495 }
7496
7497 static unsigned long pfn_max_align_up(unsigned long pfn)
7498 {
7499 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7500 pageblock_nr_pages));
7501 }
7502
7503 /* [start, end) must belong to a single zone. */
7504 static int __alloc_contig_migrate_range(struct compact_control *cc,
7505 unsigned long start, unsigned long end)
7506 {
7507 /* This function is based on compact_zone() from compaction.c. */
7508 unsigned long nr_reclaimed;
7509 unsigned long pfn = start;
7510 unsigned int tries = 0;
7511 int ret = 0;
7512
7513 migrate_prep();
7514
7515 while (pfn < end || !list_empty(&cc->migratepages)) {
7516 if (fatal_signal_pending(current)) {
7517 ret = -EINTR;
7518 break;
7519 }
7520
7521 if (list_empty(&cc->migratepages)) {
7522 cc->nr_migratepages = 0;
7523 pfn = isolate_migratepages_range(cc, pfn, end);
7524 if (!pfn) {
7525 ret = -EINTR;
7526 break;
7527 }
7528 tries = 0;
7529 } else if (++tries == 5) {
7530 ret = ret < 0 ? ret : -EBUSY;
7531 break;
7532 }
7533
7534 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7535 &cc->migratepages);
7536 cc->nr_migratepages -= nr_reclaimed;
7537
7538 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7539 NULL, 0, cc->mode, MR_CMA);
7540 }
7541 if (ret < 0) {
7542 putback_movable_pages(&cc->migratepages);
7543 return ret;
7544 }
7545 return 0;
7546 }
7547
7548 /**
7549 * alloc_contig_range() -- tries to allocate given range of pages
7550 * @start: start PFN to allocate
7551 * @end: one-past-the-last PFN to allocate
7552 * @migratetype: migratetype of the underlaying pageblocks (either
7553 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7554 * in range must have the same migratetype and it must
7555 * be either of the two.
7556 * @gfp_mask: GFP mask to use during compaction
7557 *
7558 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7559 * aligned, however it's the caller's responsibility to guarantee that
7560 * we are the only thread that changes migrate type of pageblocks the
7561 * pages fall in.
7562 *
7563 * The PFN range must belong to a single zone.
7564 *
7565 * Returns zero on success or negative error code. On success all
7566 * pages which PFN is in [start, end) are allocated for the caller and
7567 * need to be freed with free_contig_range().
7568 */
7569 int alloc_contig_range(unsigned long start, unsigned long end,
7570 unsigned migratetype, gfp_t gfp_mask)
7571 {
7572 unsigned long outer_start, outer_end;
7573 unsigned int order;
7574 int ret = 0;
7575
7576 struct compact_control cc = {
7577 .nr_migratepages = 0,
7578 .order = -1,
7579 .zone = page_zone(pfn_to_page(start)),
7580 .mode = MIGRATE_SYNC,
7581 .ignore_skip_hint = true,
7582 .gfp_mask = current_gfp_context(gfp_mask),
7583 };
7584 INIT_LIST_HEAD(&cc.migratepages);
7585
7586 /*
7587 * What we do here is we mark all pageblocks in range as
7588 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7589 * have different sizes, and due to the way page allocator
7590 * work, we align the range to biggest of the two pages so
7591 * that page allocator won't try to merge buddies from
7592 * different pageblocks and change MIGRATE_ISOLATE to some
7593 * other migration type.
7594 *
7595 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7596 * migrate the pages from an unaligned range (ie. pages that
7597 * we are interested in). This will put all the pages in
7598 * range back to page allocator as MIGRATE_ISOLATE.
7599 *
7600 * When this is done, we take the pages in range from page
7601 * allocator removing them from the buddy system. This way
7602 * page allocator will never consider using them.
7603 *
7604 * This lets us mark the pageblocks back as
7605 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7606 * aligned range but not in the unaligned, original range are
7607 * put back to page allocator so that buddy can use them.
7608 */
7609
7610 ret = start_isolate_page_range(pfn_max_align_down(start),
7611 pfn_max_align_up(end), migratetype,
7612 false);
7613 if (ret)
7614 return ret;
7615
7616 /*
7617 * In case of -EBUSY, we'd like to know which page causes problem.
7618 * So, just fall through. We will check it in test_pages_isolated().
7619 */
7620 ret = __alloc_contig_migrate_range(&cc, start, end);
7621 if (ret && ret != -EBUSY)
7622 goto done;
7623
7624 /*
7625 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7626 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7627 * more, all pages in [start, end) are free in page allocator.
7628 * What we are going to do is to allocate all pages from
7629 * [start, end) (that is remove them from page allocator).
7630 *
7631 * The only problem is that pages at the beginning and at the
7632 * end of interesting range may be not aligned with pages that
7633 * page allocator holds, ie. they can be part of higher order
7634 * pages. Because of this, we reserve the bigger range and
7635 * once this is done free the pages we are not interested in.
7636 *
7637 * We don't have to hold zone->lock here because the pages are
7638 * isolated thus they won't get removed from buddy.
7639 */
7640
7641 lru_add_drain_all();
7642 drain_all_pages(cc.zone);
7643
7644 order = 0;
7645 outer_start = start;
7646 while (!PageBuddy(pfn_to_page(outer_start))) {
7647 if (++order >= MAX_ORDER) {
7648 outer_start = start;
7649 break;
7650 }
7651 outer_start &= ~0UL << order;
7652 }
7653
7654 if (outer_start != start) {
7655 order = page_order(pfn_to_page(outer_start));
7656
7657 /*
7658 * outer_start page could be small order buddy page and
7659 * it doesn't include start page. Adjust outer_start
7660 * in this case to report failed page properly
7661 * on tracepoint in test_pages_isolated()
7662 */
7663 if (outer_start + (1UL << order) <= start)
7664 outer_start = start;
7665 }
7666
7667 /* Make sure the range is really isolated. */
7668 if (test_pages_isolated(outer_start, end, false)) {
7669 pr_info("%s: [%lx, %lx) PFNs busy\n",
7670 __func__, outer_start, end);
7671 ret = -EBUSY;
7672 goto done;
7673 }
7674
7675 /* Grab isolated pages from freelists. */
7676 outer_end = isolate_freepages_range(&cc, outer_start, end);
7677 if (!outer_end) {
7678 ret = -EBUSY;
7679 goto done;
7680 }
7681
7682 /* Free head and tail (if any) */
7683 if (start != outer_start)
7684 free_contig_range(outer_start, start - outer_start);
7685 if (end != outer_end)
7686 free_contig_range(end, outer_end - end);
7687
7688 done:
7689 undo_isolate_page_range(pfn_max_align_down(start),
7690 pfn_max_align_up(end), migratetype);
7691 return ret;
7692 }
7693
7694 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7695 {
7696 unsigned int count = 0;
7697
7698 for (; nr_pages--; pfn++) {
7699 struct page *page = pfn_to_page(pfn);
7700
7701 count += page_count(page) != 1;
7702 __free_page(page);
7703 }
7704 WARN(count != 0, "%d pages are still in use!\n", count);
7705 }
7706 #endif
7707
7708 #ifdef CONFIG_MEMORY_HOTPLUG
7709 /*
7710 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7711 * page high values need to be recalulated.
7712 */
7713 void __meminit zone_pcp_update(struct zone *zone)
7714 {
7715 unsigned cpu;
7716 mutex_lock(&pcp_batch_high_lock);
7717 for_each_possible_cpu(cpu)
7718 pageset_set_high_and_batch(zone,
7719 per_cpu_ptr(zone->pageset, cpu));
7720 mutex_unlock(&pcp_batch_high_lock);
7721 }
7722 #endif
7723
7724 void zone_pcp_reset(struct zone *zone)
7725 {
7726 unsigned long flags;
7727 int cpu;
7728 struct per_cpu_pageset *pset;
7729
7730 /* avoid races with drain_pages() */
7731 local_irq_save(flags);
7732 if (zone->pageset != &boot_pageset) {
7733 for_each_online_cpu(cpu) {
7734 pset = per_cpu_ptr(zone->pageset, cpu);
7735 drain_zonestat(zone, pset);
7736 }
7737 free_percpu(zone->pageset);
7738 zone->pageset = &boot_pageset;
7739 }
7740 local_irq_restore(flags);
7741 }
7742
7743 #ifdef CONFIG_MEMORY_HOTREMOVE
7744 /*
7745 * All pages in the range must be in a single zone and isolated
7746 * before calling this.
7747 */
7748 void
7749 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7750 {
7751 struct page *page;
7752 struct zone *zone;
7753 unsigned int order, i;
7754 unsigned long pfn;
7755 unsigned long flags;
7756 /* find the first valid pfn */
7757 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7758 if (pfn_valid(pfn))
7759 break;
7760 if (pfn == end_pfn)
7761 return;
7762 offline_mem_sections(pfn, end_pfn);
7763 zone = page_zone(pfn_to_page(pfn));
7764 spin_lock_irqsave(&zone->lock, flags);
7765 pfn = start_pfn;
7766 while (pfn < end_pfn) {
7767 if (!pfn_valid(pfn)) {
7768 pfn++;
7769 continue;
7770 }
7771 page = pfn_to_page(pfn);
7772 /*
7773 * The HWPoisoned page may be not in buddy system, and
7774 * page_count() is not 0.
7775 */
7776 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7777 pfn++;
7778 SetPageReserved(page);
7779 continue;
7780 }
7781
7782 BUG_ON(page_count(page));
7783 BUG_ON(!PageBuddy(page));
7784 order = page_order(page);
7785 #ifdef CONFIG_DEBUG_VM
7786 pr_info("remove from free list %lx %d %lx\n",
7787 pfn, 1 << order, end_pfn);
7788 #endif
7789 list_del(&page->lru);
7790 rmv_page_order(page);
7791 zone->free_area[order].nr_free--;
7792 for (i = 0; i < (1 << order); i++)
7793 SetPageReserved((page+i));
7794 pfn += (1 << order);
7795 }
7796 spin_unlock_irqrestore(&zone->lock, flags);
7797 }
7798 #endif
7799
7800 bool is_free_buddy_page(struct page *page)
7801 {
7802 struct zone *zone = page_zone(page);
7803 unsigned long pfn = page_to_pfn(page);
7804 unsigned long flags;
7805 unsigned int order;
7806
7807 spin_lock_irqsave(&zone->lock, flags);
7808 for (order = 0; order < MAX_ORDER; order++) {
7809 struct page *page_head = page - (pfn & ((1 << order) - 1));
7810
7811 if (PageBuddy(page_head) && page_order(page_head) >= order)
7812 break;
7813 }
7814 spin_unlock_irqrestore(&zone->lock, flags);
7815
7816 return order < MAX_ORDER;
7817 }