]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/page_alloc.c
Revert "rmap: do not call mmu_notifier_invalidate_page() under ptl"
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/nmi.h>
70
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
74 #include "internal.h"
75
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock);
78 #define MIN_PERCPU_PAGELIST_FRACTION (8)
79
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node);
82 EXPORT_PER_CPU_SYMBOL(numa_node);
83 #endif
84
85 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
86 /*
87 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
88 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
89 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
90 * defined in <linux/topology.h>.
91 */
92 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
93 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
94 int _node_numa_mem_[MAX_NUMNODES];
95 #endif
96
97 /* work_structs for global per-cpu drains */
98 DEFINE_MUTEX(pcpu_drain_mutex);
99 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
100
101 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
102 volatile unsigned long latent_entropy __latent_entropy;
103 EXPORT_SYMBOL(latent_entropy);
104 #endif
105
106 /*
107 * Array of node states.
108 */
109 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
110 [N_POSSIBLE] = NODE_MASK_ALL,
111 [N_ONLINE] = { { [0] = 1UL } },
112 #ifndef CONFIG_NUMA
113 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
114 #ifdef CONFIG_HIGHMEM
115 [N_HIGH_MEMORY] = { { [0] = 1UL } },
116 #endif
117 [N_MEMORY] = { { [0] = 1UL } },
118 [N_CPU] = { { [0] = 1UL } },
119 #endif /* NUMA */
120 };
121 EXPORT_SYMBOL(node_states);
122
123 /* Protect totalram_pages and zone->managed_pages */
124 static DEFINE_SPINLOCK(managed_page_count_lock);
125
126 unsigned long totalram_pages __read_mostly;
127 unsigned long totalreserve_pages __read_mostly;
128 unsigned long totalcma_pages __read_mostly;
129
130 int percpu_pagelist_fraction;
131 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
132
133 /*
134 * A cached value of the page's pageblock's migratetype, used when the page is
135 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
136 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
137 * Also the migratetype set in the page does not necessarily match the pcplist
138 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
139 * other index - this ensures that it will be put on the correct CMA freelist.
140 */
141 static inline int get_pcppage_migratetype(struct page *page)
142 {
143 return page->index;
144 }
145
146 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
147 {
148 page->index = migratetype;
149 }
150
151 #ifdef CONFIG_PM_SLEEP
152 /*
153 * The following functions are used by the suspend/hibernate code to temporarily
154 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
155 * while devices are suspended. To avoid races with the suspend/hibernate code,
156 * they should always be called with pm_mutex held (gfp_allowed_mask also should
157 * only be modified with pm_mutex held, unless the suspend/hibernate code is
158 * guaranteed not to run in parallel with that modification).
159 */
160
161 static gfp_t saved_gfp_mask;
162
163 void pm_restore_gfp_mask(void)
164 {
165 WARN_ON(!mutex_is_locked(&pm_mutex));
166 if (saved_gfp_mask) {
167 gfp_allowed_mask = saved_gfp_mask;
168 saved_gfp_mask = 0;
169 }
170 }
171
172 void pm_restrict_gfp_mask(void)
173 {
174 WARN_ON(!mutex_is_locked(&pm_mutex));
175 WARN_ON(saved_gfp_mask);
176 saved_gfp_mask = gfp_allowed_mask;
177 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
178 }
179
180 bool pm_suspended_storage(void)
181 {
182 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
183 return false;
184 return true;
185 }
186 #endif /* CONFIG_PM_SLEEP */
187
188 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
189 unsigned int pageblock_order __read_mostly;
190 #endif
191
192 static void __free_pages_ok(struct page *page, unsigned int order);
193
194 /*
195 * results with 256, 32 in the lowmem_reserve sysctl:
196 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
197 * 1G machine -> (16M dma, 784M normal, 224M high)
198 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
199 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
200 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
201 *
202 * TBD: should special case ZONE_DMA32 machines here - in those we normally
203 * don't need any ZONE_NORMAL reservation
204 */
205 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
206 #ifdef CONFIG_ZONE_DMA
207 256,
208 #endif
209 #ifdef CONFIG_ZONE_DMA32
210 256,
211 #endif
212 #ifdef CONFIG_HIGHMEM
213 32,
214 #endif
215 32,
216 };
217
218 EXPORT_SYMBOL(totalram_pages);
219
220 static char * const zone_names[MAX_NR_ZONES] = {
221 #ifdef CONFIG_ZONE_DMA
222 "DMA",
223 #endif
224 #ifdef CONFIG_ZONE_DMA32
225 "DMA32",
226 #endif
227 "Normal",
228 #ifdef CONFIG_HIGHMEM
229 "HighMem",
230 #endif
231 "Movable",
232 #ifdef CONFIG_ZONE_DEVICE
233 "Device",
234 #endif
235 };
236
237 char * const migratetype_names[MIGRATE_TYPES] = {
238 "Unmovable",
239 "Movable",
240 "Reclaimable",
241 "HighAtomic",
242 #ifdef CONFIG_CMA
243 "CMA",
244 #endif
245 #ifdef CONFIG_MEMORY_ISOLATION
246 "Isolate",
247 #endif
248 };
249
250 compound_page_dtor * const compound_page_dtors[] = {
251 NULL,
252 free_compound_page,
253 #ifdef CONFIG_HUGETLB_PAGE
254 free_huge_page,
255 #endif
256 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
257 free_transhuge_page,
258 #endif
259 };
260
261 int min_free_kbytes = 1024;
262 int user_min_free_kbytes = -1;
263 int watermark_scale_factor = 10;
264
265 static unsigned long __meminitdata nr_kernel_pages;
266 static unsigned long __meminitdata nr_all_pages;
267 static unsigned long __meminitdata dma_reserve;
268
269 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
270 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
271 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
272 static unsigned long __initdata required_kernelcore;
273 static unsigned long __initdata required_movablecore;
274 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
275 static bool mirrored_kernelcore;
276
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
281
282 #if MAX_NUMNODES > 1
283 int nr_node_ids __read_mostly = MAX_NUMNODES;
284 int nr_online_nodes __read_mostly = 1;
285 EXPORT_SYMBOL(nr_node_ids);
286 EXPORT_SYMBOL(nr_online_nodes);
287 #endif
288
289 int page_group_by_mobility_disabled __read_mostly;
290
291 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
292 static inline void reset_deferred_meminit(pg_data_t *pgdat)
293 {
294 unsigned long max_initialise;
295 unsigned long reserved_lowmem;
296
297 /*
298 * Initialise at least 2G of a node but also take into account that
299 * two large system hashes that can take up 1GB for 0.25TB/node.
300 */
301 max_initialise = max(2UL << (30 - PAGE_SHIFT),
302 (pgdat->node_spanned_pages >> 8));
303
304 /*
305 * Compensate the all the memblock reservations (e.g. crash kernel)
306 * from the initial estimation to make sure we will initialize enough
307 * memory to boot.
308 */
309 reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn,
310 pgdat->node_start_pfn + max_initialise);
311 max_initialise += reserved_lowmem;
312
313 pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages);
314 pgdat->first_deferred_pfn = ULONG_MAX;
315 }
316
317 /* Returns true if the struct page for the pfn is uninitialised */
318 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
319 {
320 int nid = early_pfn_to_nid(pfn);
321
322 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
323 return true;
324
325 return false;
326 }
327
328 /*
329 * Returns false when the remaining initialisation should be deferred until
330 * later in the boot cycle when it can be parallelised.
331 */
332 static inline bool update_defer_init(pg_data_t *pgdat,
333 unsigned long pfn, unsigned long zone_end,
334 unsigned long *nr_initialised)
335 {
336 /* Always populate low zones for address-contrained allocations */
337 if (zone_end < pgdat_end_pfn(pgdat))
338 return true;
339 (*nr_initialised)++;
340 if ((*nr_initialised > pgdat->static_init_size) &&
341 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
342 pgdat->first_deferred_pfn = pfn;
343 return false;
344 }
345
346 return true;
347 }
348 #else
349 static inline void reset_deferred_meminit(pg_data_t *pgdat)
350 {
351 }
352
353 static inline bool early_page_uninitialised(unsigned long pfn)
354 {
355 return false;
356 }
357
358 static inline bool update_defer_init(pg_data_t *pgdat,
359 unsigned long pfn, unsigned long zone_end,
360 unsigned long *nr_initialised)
361 {
362 return true;
363 }
364 #endif
365
366 /* Return a pointer to the bitmap storing bits affecting a block of pages */
367 static inline unsigned long *get_pageblock_bitmap(struct page *page,
368 unsigned long pfn)
369 {
370 #ifdef CONFIG_SPARSEMEM
371 return __pfn_to_section(pfn)->pageblock_flags;
372 #else
373 return page_zone(page)->pageblock_flags;
374 #endif /* CONFIG_SPARSEMEM */
375 }
376
377 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
378 {
379 #ifdef CONFIG_SPARSEMEM
380 pfn &= (PAGES_PER_SECTION-1);
381 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
382 #else
383 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
384 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
385 #endif /* CONFIG_SPARSEMEM */
386 }
387
388 /**
389 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
390 * @page: The page within the block of interest
391 * @pfn: The target page frame number
392 * @end_bitidx: The last bit of interest to retrieve
393 * @mask: mask of bits that the caller is interested in
394 *
395 * Return: pageblock_bits flags
396 */
397 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
398 unsigned long pfn,
399 unsigned long end_bitidx,
400 unsigned long mask)
401 {
402 unsigned long *bitmap;
403 unsigned long bitidx, word_bitidx;
404 unsigned long word;
405
406 bitmap = get_pageblock_bitmap(page, pfn);
407 bitidx = pfn_to_bitidx(page, pfn);
408 word_bitidx = bitidx / BITS_PER_LONG;
409 bitidx &= (BITS_PER_LONG-1);
410
411 word = bitmap[word_bitidx];
412 bitidx += end_bitidx;
413 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
414 }
415
416 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
417 unsigned long end_bitidx,
418 unsigned long mask)
419 {
420 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
421 }
422
423 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
424 {
425 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
426 }
427
428 /**
429 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
430 * @page: The page within the block of interest
431 * @flags: The flags to set
432 * @pfn: The target page frame number
433 * @end_bitidx: The last bit of interest
434 * @mask: mask of bits that the caller is interested in
435 */
436 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
437 unsigned long pfn,
438 unsigned long end_bitidx,
439 unsigned long mask)
440 {
441 unsigned long *bitmap;
442 unsigned long bitidx, word_bitidx;
443 unsigned long old_word, word;
444
445 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
446
447 bitmap = get_pageblock_bitmap(page, pfn);
448 bitidx = pfn_to_bitidx(page, pfn);
449 word_bitidx = bitidx / BITS_PER_LONG;
450 bitidx &= (BITS_PER_LONG-1);
451
452 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
453
454 bitidx += end_bitidx;
455 mask <<= (BITS_PER_LONG - bitidx - 1);
456 flags <<= (BITS_PER_LONG - bitidx - 1);
457
458 word = READ_ONCE(bitmap[word_bitidx]);
459 for (;;) {
460 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
461 if (word == old_word)
462 break;
463 word = old_word;
464 }
465 }
466
467 void set_pageblock_migratetype(struct page *page, int migratetype)
468 {
469 if (unlikely(page_group_by_mobility_disabled &&
470 migratetype < MIGRATE_PCPTYPES))
471 migratetype = MIGRATE_UNMOVABLE;
472
473 set_pageblock_flags_group(page, (unsigned long)migratetype,
474 PB_migrate, PB_migrate_end);
475 }
476
477 #ifdef CONFIG_DEBUG_VM
478 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
479 {
480 int ret = 0;
481 unsigned seq;
482 unsigned long pfn = page_to_pfn(page);
483 unsigned long sp, start_pfn;
484
485 do {
486 seq = zone_span_seqbegin(zone);
487 start_pfn = zone->zone_start_pfn;
488 sp = zone->spanned_pages;
489 if (!zone_spans_pfn(zone, pfn))
490 ret = 1;
491 } while (zone_span_seqretry(zone, seq));
492
493 if (ret)
494 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
495 pfn, zone_to_nid(zone), zone->name,
496 start_pfn, start_pfn + sp);
497
498 return ret;
499 }
500
501 static int page_is_consistent(struct zone *zone, struct page *page)
502 {
503 if (!pfn_valid_within(page_to_pfn(page)))
504 return 0;
505 if (zone != page_zone(page))
506 return 0;
507
508 return 1;
509 }
510 /*
511 * Temporary debugging check for pages not lying within a given zone.
512 */
513 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
514 {
515 if (page_outside_zone_boundaries(zone, page))
516 return 1;
517 if (!page_is_consistent(zone, page))
518 return 1;
519
520 return 0;
521 }
522 #else
523 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
524 {
525 return 0;
526 }
527 #endif
528
529 static void bad_page(struct page *page, const char *reason,
530 unsigned long bad_flags)
531 {
532 static unsigned long resume;
533 static unsigned long nr_shown;
534 static unsigned long nr_unshown;
535
536 /*
537 * Allow a burst of 60 reports, then keep quiet for that minute;
538 * or allow a steady drip of one report per second.
539 */
540 if (nr_shown == 60) {
541 if (time_before(jiffies, resume)) {
542 nr_unshown++;
543 goto out;
544 }
545 if (nr_unshown) {
546 pr_alert(
547 "BUG: Bad page state: %lu messages suppressed\n",
548 nr_unshown);
549 nr_unshown = 0;
550 }
551 nr_shown = 0;
552 }
553 if (nr_shown++ == 0)
554 resume = jiffies + 60 * HZ;
555
556 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
557 current->comm, page_to_pfn(page));
558 __dump_page(page, reason);
559 bad_flags &= page->flags;
560 if (bad_flags)
561 pr_alert("bad because of flags: %#lx(%pGp)\n",
562 bad_flags, &bad_flags);
563 dump_page_owner(page);
564
565 print_modules();
566 dump_stack();
567 out:
568 /* Leave bad fields for debug, except PageBuddy could make trouble */
569 page_mapcount_reset(page); /* remove PageBuddy */
570 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
571 }
572
573 /*
574 * Higher-order pages are called "compound pages". They are structured thusly:
575 *
576 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
577 *
578 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
579 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
580 *
581 * The first tail page's ->compound_dtor holds the offset in array of compound
582 * page destructors. See compound_page_dtors.
583 *
584 * The first tail page's ->compound_order holds the order of allocation.
585 * This usage means that zero-order pages may not be compound.
586 */
587
588 void free_compound_page(struct page *page)
589 {
590 __free_pages_ok(page, compound_order(page));
591 }
592
593 void prep_compound_page(struct page *page, unsigned int order)
594 {
595 int i;
596 int nr_pages = 1 << order;
597
598 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
599 set_compound_order(page, order);
600 __SetPageHead(page);
601 for (i = 1; i < nr_pages; i++) {
602 struct page *p = page + i;
603 set_page_count(p, 0);
604 p->mapping = TAIL_MAPPING;
605 set_compound_head(p, page);
606 }
607 atomic_set(compound_mapcount_ptr(page), -1);
608 }
609
610 #ifdef CONFIG_DEBUG_PAGEALLOC
611 unsigned int _debug_guardpage_minorder;
612 bool _debug_pagealloc_enabled __read_mostly
613 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
614 EXPORT_SYMBOL(_debug_pagealloc_enabled);
615 bool _debug_guardpage_enabled __read_mostly;
616
617 static int __init early_debug_pagealloc(char *buf)
618 {
619 if (!buf)
620 return -EINVAL;
621 return kstrtobool(buf, &_debug_pagealloc_enabled);
622 }
623 early_param("debug_pagealloc", early_debug_pagealloc);
624
625 static bool need_debug_guardpage(void)
626 {
627 /* If we don't use debug_pagealloc, we don't need guard page */
628 if (!debug_pagealloc_enabled())
629 return false;
630
631 if (!debug_guardpage_minorder())
632 return false;
633
634 return true;
635 }
636
637 static void init_debug_guardpage(void)
638 {
639 if (!debug_pagealloc_enabled())
640 return;
641
642 if (!debug_guardpage_minorder())
643 return;
644
645 _debug_guardpage_enabled = true;
646 }
647
648 struct page_ext_operations debug_guardpage_ops = {
649 .need = need_debug_guardpage,
650 .init = init_debug_guardpage,
651 };
652
653 static int __init debug_guardpage_minorder_setup(char *buf)
654 {
655 unsigned long res;
656
657 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
658 pr_err("Bad debug_guardpage_minorder value\n");
659 return 0;
660 }
661 _debug_guardpage_minorder = res;
662 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
663 return 0;
664 }
665 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
666
667 static inline bool set_page_guard(struct zone *zone, struct page *page,
668 unsigned int order, int migratetype)
669 {
670 struct page_ext *page_ext;
671
672 if (!debug_guardpage_enabled())
673 return false;
674
675 if (order >= debug_guardpage_minorder())
676 return false;
677
678 page_ext = lookup_page_ext(page);
679 if (unlikely(!page_ext))
680 return false;
681
682 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
683
684 INIT_LIST_HEAD(&page->lru);
685 set_page_private(page, order);
686 /* Guard pages are not available for any usage */
687 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
688
689 return true;
690 }
691
692 static inline void clear_page_guard(struct zone *zone, struct page *page,
693 unsigned int order, int migratetype)
694 {
695 struct page_ext *page_ext;
696
697 if (!debug_guardpage_enabled())
698 return;
699
700 page_ext = lookup_page_ext(page);
701 if (unlikely(!page_ext))
702 return;
703
704 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
705
706 set_page_private(page, 0);
707 if (!is_migrate_isolate(migratetype))
708 __mod_zone_freepage_state(zone, (1 << order), migratetype);
709 }
710 #else
711 struct page_ext_operations debug_guardpage_ops;
712 static inline bool set_page_guard(struct zone *zone, struct page *page,
713 unsigned int order, int migratetype) { return false; }
714 static inline void clear_page_guard(struct zone *zone, struct page *page,
715 unsigned int order, int migratetype) {}
716 #endif
717
718 static inline void set_page_order(struct page *page, unsigned int order)
719 {
720 set_page_private(page, order);
721 __SetPageBuddy(page);
722 }
723
724 static inline void rmv_page_order(struct page *page)
725 {
726 __ClearPageBuddy(page);
727 set_page_private(page, 0);
728 }
729
730 /*
731 * This function checks whether a page is free && is the buddy
732 * we can do coalesce a page and its buddy if
733 * (a) the buddy is not in a hole (check before calling!) &&
734 * (b) the buddy is in the buddy system &&
735 * (c) a page and its buddy have the same order &&
736 * (d) a page and its buddy are in the same zone.
737 *
738 * For recording whether a page is in the buddy system, we set ->_mapcount
739 * PAGE_BUDDY_MAPCOUNT_VALUE.
740 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
741 * serialized by zone->lock.
742 *
743 * For recording page's order, we use page_private(page).
744 */
745 static inline int page_is_buddy(struct page *page, struct page *buddy,
746 unsigned int order)
747 {
748 if (page_is_guard(buddy) && page_order(buddy) == order) {
749 if (page_zone_id(page) != page_zone_id(buddy))
750 return 0;
751
752 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
753
754 return 1;
755 }
756
757 if (PageBuddy(buddy) && page_order(buddy) == order) {
758 /*
759 * zone check is done late to avoid uselessly
760 * calculating zone/node ids for pages that could
761 * never merge.
762 */
763 if (page_zone_id(page) != page_zone_id(buddy))
764 return 0;
765
766 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
767
768 return 1;
769 }
770 return 0;
771 }
772
773 /*
774 * Freeing function for a buddy system allocator.
775 *
776 * The concept of a buddy system is to maintain direct-mapped table
777 * (containing bit values) for memory blocks of various "orders".
778 * The bottom level table contains the map for the smallest allocatable
779 * units of memory (here, pages), and each level above it describes
780 * pairs of units from the levels below, hence, "buddies".
781 * At a high level, all that happens here is marking the table entry
782 * at the bottom level available, and propagating the changes upward
783 * as necessary, plus some accounting needed to play nicely with other
784 * parts of the VM system.
785 * At each level, we keep a list of pages, which are heads of continuous
786 * free pages of length of (1 << order) and marked with _mapcount
787 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
788 * field.
789 * So when we are allocating or freeing one, we can derive the state of the
790 * other. That is, if we allocate a small block, and both were
791 * free, the remainder of the region must be split into blocks.
792 * If a block is freed, and its buddy is also free, then this
793 * triggers coalescing into a block of larger size.
794 *
795 * -- nyc
796 */
797
798 static inline void __free_one_page(struct page *page,
799 unsigned long pfn,
800 struct zone *zone, unsigned int order,
801 int migratetype)
802 {
803 unsigned long combined_pfn;
804 unsigned long uninitialized_var(buddy_pfn);
805 struct page *buddy;
806 unsigned int max_order;
807
808 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
809
810 VM_BUG_ON(!zone_is_initialized(zone));
811 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
812
813 VM_BUG_ON(migratetype == -1);
814 if (likely(!is_migrate_isolate(migratetype)))
815 __mod_zone_freepage_state(zone, 1 << order, migratetype);
816
817 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
818 VM_BUG_ON_PAGE(bad_range(zone, page), page);
819
820 continue_merging:
821 while (order < max_order - 1) {
822 buddy_pfn = __find_buddy_pfn(pfn, order);
823 buddy = page + (buddy_pfn - pfn);
824
825 if (!pfn_valid_within(buddy_pfn))
826 goto done_merging;
827 if (!page_is_buddy(page, buddy, order))
828 goto done_merging;
829 /*
830 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
831 * merge with it and move up one order.
832 */
833 if (page_is_guard(buddy)) {
834 clear_page_guard(zone, buddy, order, migratetype);
835 } else {
836 list_del(&buddy->lru);
837 zone->free_area[order].nr_free--;
838 rmv_page_order(buddy);
839 }
840 combined_pfn = buddy_pfn & pfn;
841 page = page + (combined_pfn - pfn);
842 pfn = combined_pfn;
843 order++;
844 }
845 if (max_order < MAX_ORDER) {
846 /* If we are here, it means order is >= pageblock_order.
847 * We want to prevent merge between freepages on isolate
848 * pageblock and normal pageblock. Without this, pageblock
849 * isolation could cause incorrect freepage or CMA accounting.
850 *
851 * We don't want to hit this code for the more frequent
852 * low-order merging.
853 */
854 if (unlikely(has_isolate_pageblock(zone))) {
855 int buddy_mt;
856
857 buddy_pfn = __find_buddy_pfn(pfn, order);
858 buddy = page + (buddy_pfn - pfn);
859 buddy_mt = get_pageblock_migratetype(buddy);
860
861 if (migratetype != buddy_mt
862 && (is_migrate_isolate(migratetype) ||
863 is_migrate_isolate(buddy_mt)))
864 goto done_merging;
865 }
866 max_order++;
867 goto continue_merging;
868 }
869
870 done_merging:
871 set_page_order(page, order);
872
873 /*
874 * If this is not the largest possible page, check if the buddy
875 * of the next-highest order is free. If it is, it's possible
876 * that pages are being freed that will coalesce soon. In case,
877 * that is happening, add the free page to the tail of the list
878 * so it's less likely to be used soon and more likely to be merged
879 * as a higher order page
880 */
881 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
882 struct page *higher_page, *higher_buddy;
883 combined_pfn = buddy_pfn & pfn;
884 higher_page = page + (combined_pfn - pfn);
885 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
886 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
887 if (pfn_valid_within(buddy_pfn) &&
888 page_is_buddy(higher_page, higher_buddy, order + 1)) {
889 list_add_tail(&page->lru,
890 &zone->free_area[order].free_list[migratetype]);
891 goto out;
892 }
893 }
894
895 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
896 out:
897 zone->free_area[order].nr_free++;
898 }
899
900 /*
901 * A bad page could be due to a number of fields. Instead of multiple branches,
902 * try and check multiple fields with one check. The caller must do a detailed
903 * check if necessary.
904 */
905 static inline bool page_expected_state(struct page *page,
906 unsigned long check_flags)
907 {
908 if (unlikely(atomic_read(&page->_mapcount) != -1))
909 return false;
910
911 if (unlikely((unsigned long)page->mapping |
912 page_ref_count(page) |
913 #ifdef CONFIG_MEMCG
914 (unsigned long)page->mem_cgroup |
915 #endif
916 (page->flags & check_flags)))
917 return false;
918
919 return true;
920 }
921
922 static void free_pages_check_bad(struct page *page)
923 {
924 const char *bad_reason;
925 unsigned long bad_flags;
926
927 bad_reason = NULL;
928 bad_flags = 0;
929
930 if (unlikely(atomic_read(&page->_mapcount) != -1))
931 bad_reason = "nonzero mapcount";
932 if (unlikely(page->mapping != NULL))
933 bad_reason = "non-NULL mapping";
934 if (unlikely(page_ref_count(page) != 0))
935 bad_reason = "nonzero _refcount";
936 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
937 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
938 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
939 }
940 #ifdef CONFIG_MEMCG
941 if (unlikely(page->mem_cgroup))
942 bad_reason = "page still charged to cgroup";
943 #endif
944 bad_page(page, bad_reason, bad_flags);
945 }
946
947 static inline int free_pages_check(struct page *page)
948 {
949 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
950 return 0;
951
952 /* Something has gone sideways, find it */
953 free_pages_check_bad(page);
954 return 1;
955 }
956
957 static int free_tail_pages_check(struct page *head_page, struct page *page)
958 {
959 int ret = 1;
960
961 /*
962 * We rely page->lru.next never has bit 0 set, unless the page
963 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
964 */
965 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
966
967 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
968 ret = 0;
969 goto out;
970 }
971 switch (page - head_page) {
972 case 1:
973 /* the first tail page: ->mapping is compound_mapcount() */
974 if (unlikely(compound_mapcount(page))) {
975 bad_page(page, "nonzero compound_mapcount", 0);
976 goto out;
977 }
978 break;
979 case 2:
980 /*
981 * the second tail page: ->mapping is
982 * page_deferred_list().next -- ignore value.
983 */
984 break;
985 default:
986 if (page->mapping != TAIL_MAPPING) {
987 bad_page(page, "corrupted mapping in tail page", 0);
988 goto out;
989 }
990 break;
991 }
992 if (unlikely(!PageTail(page))) {
993 bad_page(page, "PageTail not set", 0);
994 goto out;
995 }
996 if (unlikely(compound_head(page) != head_page)) {
997 bad_page(page, "compound_head not consistent", 0);
998 goto out;
999 }
1000 ret = 0;
1001 out:
1002 page->mapping = NULL;
1003 clear_compound_head(page);
1004 return ret;
1005 }
1006
1007 static __always_inline bool free_pages_prepare(struct page *page,
1008 unsigned int order, bool check_free)
1009 {
1010 int bad = 0;
1011
1012 VM_BUG_ON_PAGE(PageTail(page), page);
1013
1014 trace_mm_page_free(page, order);
1015 kmemcheck_free_shadow(page, order);
1016
1017 /*
1018 * Check tail pages before head page information is cleared to
1019 * avoid checking PageCompound for order-0 pages.
1020 */
1021 if (unlikely(order)) {
1022 bool compound = PageCompound(page);
1023 int i;
1024
1025 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1026
1027 if (compound)
1028 ClearPageDoubleMap(page);
1029 for (i = 1; i < (1 << order); i++) {
1030 if (compound)
1031 bad += free_tail_pages_check(page, page + i);
1032 if (unlikely(free_pages_check(page + i))) {
1033 bad++;
1034 continue;
1035 }
1036 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1037 }
1038 }
1039 if (PageMappingFlags(page))
1040 page->mapping = NULL;
1041 if (memcg_kmem_enabled() && PageKmemcg(page))
1042 memcg_kmem_uncharge(page, order);
1043 if (check_free)
1044 bad += free_pages_check(page);
1045 if (bad)
1046 return false;
1047
1048 page_cpupid_reset_last(page);
1049 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1050 reset_page_owner(page, order);
1051
1052 if (!PageHighMem(page)) {
1053 debug_check_no_locks_freed(page_address(page),
1054 PAGE_SIZE << order);
1055 debug_check_no_obj_freed(page_address(page),
1056 PAGE_SIZE << order);
1057 }
1058 arch_free_page(page, order);
1059 kernel_poison_pages(page, 1 << order, 0);
1060 kernel_map_pages(page, 1 << order, 0);
1061 kasan_free_pages(page, order);
1062
1063 return true;
1064 }
1065
1066 #ifdef CONFIG_DEBUG_VM
1067 static inline bool free_pcp_prepare(struct page *page)
1068 {
1069 return free_pages_prepare(page, 0, true);
1070 }
1071
1072 static inline bool bulkfree_pcp_prepare(struct page *page)
1073 {
1074 return false;
1075 }
1076 #else
1077 static bool free_pcp_prepare(struct page *page)
1078 {
1079 return free_pages_prepare(page, 0, false);
1080 }
1081
1082 static bool bulkfree_pcp_prepare(struct page *page)
1083 {
1084 return free_pages_check(page);
1085 }
1086 #endif /* CONFIG_DEBUG_VM */
1087
1088 /*
1089 * Frees a number of pages from the PCP lists
1090 * Assumes all pages on list are in same zone, and of same order.
1091 * count is the number of pages to free.
1092 *
1093 * If the zone was previously in an "all pages pinned" state then look to
1094 * see if this freeing clears that state.
1095 *
1096 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1097 * pinned" detection logic.
1098 */
1099 static void free_pcppages_bulk(struct zone *zone, int count,
1100 struct per_cpu_pages *pcp)
1101 {
1102 int migratetype = 0;
1103 int batch_free = 0;
1104 bool isolated_pageblocks;
1105
1106 spin_lock(&zone->lock);
1107 isolated_pageblocks = has_isolate_pageblock(zone);
1108
1109 while (count) {
1110 struct page *page;
1111 struct list_head *list;
1112
1113 /*
1114 * Remove pages from lists in a round-robin fashion. A
1115 * batch_free count is maintained that is incremented when an
1116 * empty list is encountered. This is so more pages are freed
1117 * off fuller lists instead of spinning excessively around empty
1118 * lists
1119 */
1120 do {
1121 batch_free++;
1122 if (++migratetype == MIGRATE_PCPTYPES)
1123 migratetype = 0;
1124 list = &pcp->lists[migratetype];
1125 } while (list_empty(list));
1126
1127 /* This is the only non-empty list. Free them all. */
1128 if (batch_free == MIGRATE_PCPTYPES)
1129 batch_free = count;
1130
1131 do {
1132 int mt; /* migratetype of the to-be-freed page */
1133
1134 page = list_last_entry(list, struct page, lru);
1135 /* must delete as __free_one_page list manipulates */
1136 list_del(&page->lru);
1137
1138 mt = get_pcppage_migratetype(page);
1139 /* MIGRATE_ISOLATE page should not go to pcplists */
1140 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1141 /* Pageblock could have been isolated meanwhile */
1142 if (unlikely(isolated_pageblocks))
1143 mt = get_pageblock_migratetype(page);
1144
1145 if (bulkfree_pcp_prepare(page))
1146 continue;
1147
1148 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1149 trace_mm_page_pcpu_drain(page, 0, mt);
1150 } while (--count && --batch_free && !list_empty(list));
1151 }
1152 spin_unlock(&zone->lock);
1153 }
1154
1155 static void free_one_page(struct zone *zone,
1156 struct page *page, unsigned long pfn,
1157 unsigned int order,
1158 int migratetype)
1159 {
1160 spin_lock(&zone->lock);
1161 if (unlikely(has_isolate_pageblock(zone) ||
1162 is_migrate_isolate(migratetype))) {
1163 migratetype = get_pfnblock_migratetype(page, pfn);
1164 }
1165 __free_one_page(page, pfn, zone, order, migratetype);
1166 spin_unlock(&zone->lock);
1167 }
1168
1169 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1170 unsigned long zone, int nid)
1171 {
1172 set_page_links(page, zone, nid, pfn);
1173 init_page_count(page);
1174 page_mapcount_reset(page);
1175 page_cpupid_reset_last(page);
1176
1177 INIT_LIST_HEAD(&page->lru);
1178 #ifdef WANT_PAGE_VIRTUAL
1179 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1180 if (!is_highmem_idx(zone))
1181 set_page_address(page, __va(pfn << PAGE_SHIFT));
1182 #endif
1183 }
1184
1185 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1186 int nid)
1187 {
1188 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1189 }
1190
1191 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1192 static void init_reserved_page(unsigned long pfn)
1193 {
1194 pg_data_t *pgdat;
1195 int nid, zid;
1196
1197 if (!early_page_uninitialised(pfn))
1198 return;
1199
1200 nid = early_pfn_to_nid(pfn);
1201 pgdat = NODE_DATA(nid);
1202
1203 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1204 struct zone *zone = &pgdat->node_zones[zid];
1205
1206 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1207 break;
1208 }
1209 __init_single_pfn(pfn, zid, nid);
1210 }
1211 #else
1212 static inline void init_reserved_page(unsigned long pfn)
1213 {
1214 }
1215 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1216
1217 /*
1218 * Initialised pages do not have PageReserved set. This function is
1219 * called for each range allocated by the bootmem allocator and
1220 * marks the pages PageReserved. The remaining valid pages are later
1221 * sent to the buddy page allocator.
1222 */
1223 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1224 {
1225 unsigned long start_pfn = PFN_DOWN(start);
1226 unsigned long end_pfn = PFN_UP(end);
1227
1228 for (; start_pfn < end_pfn; start_pfn++) {
1229 if (pfn_valid(start_pfn)) {
1230 struct page *page = pfn_to_page(start_pfn);
1231
1232 init_reserved_page(start_pfn);
1233
1234 /* Avoid false-positive PageTail() */
1235 INIT_LIST_HEAD(&page->lru);
1236
1237 SetPageReserved(page);
1238 }
1239 }
1240 }
1241
1242 static void __free_pages_ok(struct page *page, unsigned int order)
1243 {
1244 unsigned long flags;
1245 int migratetype;
1246 unsigned long pfn = page_to_pfn(page);
1247
1248 if (!free_pages_prepare(page, order, true))
1249 return;
1250
1251 migratetype = get_pfnblock_migratetype(page, pfn);
1252 local_irq_save(flags);
1253 __count_vm_events(PGFREE, 1 << order);
1254 free_one_page(page_zone(page), page, pfn, order, migratetype);
1255 local_irq_restore(flags);
1256 }
1257
1258 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1259 {
1260 unsigned int nr_pages = 1 << order;
1261 struct page *p = page;
1262 unsigned int loop;
1263
1264 prefetchw(p);
1265 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1266 prefetchw(p + 1);
1267 __ClearPageReserved(p);
1268 set_page_count(p, 0);
1269 }
1270 __ClearPageReserved(p);
1271 set_page_count(p, 0);
1272
1273 page_zone(page)->managed_pages += nr_pages;
1274 set_page_refcounted(page);
1275 __free_pages(page, order);
1276 }
1277
1278 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1279 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1280
1281 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1282
1283 int __meminit early_pfn_to_nid(unsigned long pfn)
1284 {
1285 static DEFINE_SPINLOCK(early_pfn_lock);
1286 int nid;
1287
1288 spin_lock(&early_pfn_lock);
1289 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1290 if (nid < 0)
1291 nid = first_online_node;
1292 spin_unlock(&early_pfn_lock);
1293
1294 return nid;
1295 }
1296 #endif
1297
1298 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1299 static inline bool __meminit __maybe_unused
1300 meminit_pfn_in_nid(unsigned long pfn, int node,
1301 struct mminit_pfnnid_cache *state)
1302 {
1303 int nid;
1304
1305 nid = __early_pfn_to_nid(pfn, state);
1306 if (nid >= 0 && nid != node)
1307 return false;
1308 return true;
1309 }
1310
1311 /* Only safe to use early in boot when initialisation is single-threaded */
1312 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1313 {
1314 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1315 }
1316
1317 #else
1318
1319 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1320 {
1321 return true;
1322 }
1323 static inline bool __meminit __maybe_unused
1324 meminit_pfn_in_nid(unsigned long pfn, int node,
1325 struct mminit_pfnnid_cache *state)
1326 {
1327 return true;
1328 }
1329 #endif
1330
1331
1332 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1333 unsigned int order)
1334 {
1335 if (early_page_uninitialised(pfn))
1336 return;
1337 return __free_pages_boot_core(page, order);
1338 }
1339
1340 /*
1341 * Check that the whole (or subset of) a pageblock given by the interval of
1342 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1343 * with the migration of free compaction scanner. The scanners then need to
1344 * use only pfn_valid_within() check for arches that allow holes within
1345 * pageblocks.
1346 *
1347 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1348 *
1349 * It's possible on some configurations to have a setup like node0 node1 node0
1350 * i.e. it's possible that all pages within a zones range of pages do not
1351 * belong to a single zone. We assume that a border between node0 and node1
1352 * can occur within a single pageblock, but not a node0 node1 node0
1353 * interleaving within a single pageblock. It is therefore sufficient to check
1354 * the first and last page of a pageblock and avoid checking each individual
1355 * page in a pageblock.
1356 */
1357 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1358 unsigned long end_pfn, struct zone *zone)
1359 {
1360 struct page *start_page;
1361 struct page *end_page;
1362
1363 /* end_pfn is one past the range we are checking */
1364 end_pfn--;
1365
1366 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1367 return NULL;
1368
1369 start_page = pfn_to_online_page(start_pfn);
1370 if (!start_page)
1371 return NULL;
1372
1373 if (page_zone(start_page) != zone)
1374 return NULL;
1375
1376 end_page = pfn_to_page(end_pfn);
1377
1378 /* This gives a shorter code than deriving page_zone(end_page) */
1379 if (page_zone_id(start_page) != page_zone_id(end_page))
1380 return NULL;
1381
1382 return start_page;
1383 }
1384
1385 void set_zone_contiguous(struct zone *zone)
1386 {
1387 unsigned long block_start_pfn = zone->zone_start_pfn;
1388 unsigned long block_end_pfn;
1389
1390 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1391 for (; block_start_pfn < zone_end_pfn(zone);
1392 block_start_pfn = block_end_pfn,
1393 block_end_pfn += pageblock_nr_pages) {
1394
1395 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1396
1397 if (!__pageblock_pfn_to_page(block_start_pfn,
1398 block_end_pfn, zone))
1399 return;
1400 }
1401
1402 /* We confirm that there is no hole */
1403 zone->contiguous = true;
1404 }
1405
1406 void clear_zone_contiguous(struct zone *zone)
1407 {
1408 zone->contiguous = false;
1409 }
1410
1411 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1412 static void __init deferred_free_range(struct page *page,
1413 unsigned long pfn, int nr_pages)
1414 {
1415 int i;
1416
1417 if (!page)
1418 return;
1419
1420 /* Free a large naturally-aligned chunk if possible */
1421 if (nr_pages == pageblock_nr_pages &&
1422 (pfn & (pageblock_nr_pages - 1)) == 0) {
1423 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1424 __free_pages_boot_core(page, pageblock_order);
1425 return;
1426 }
1427
1428 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1429 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1430 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1431 __free_pages_boot_core(page, 0);
1432 }
1433 }
1434
1435 /* Completion tracking for deferred_init_memmap() threads */
1436 static atomic_t pgdat_init_n_undone __initdata;
1437 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1438
1439 static inline void __init pgdat_init_report_one_done(void)
1440 {
1441 if (atomic_dec_and_test(&pgdat_init_n_undone))
1442 complete(&pgdat_init_all_done_comp);
1443 }
1444
1445 /* Initialise remaining memory on a node */
1446 static int __init deferred_init_memmap(void *data)
1447 {
1448 pg_data_t *pgdat = data;
1449 int nid = pgdat->node_id;
1450 struct mminit_pfnnid_cache nid_init_state = { };
1451 unsigned long start = jiffies;
1452 unsigned long nr_pages = 0;
1453 unsigned long walk_start, walk_end;
1454 int i, zid;
1455 struct zone *zone;
1456 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1457 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1458
1459 if (first_init_pfn == ULONG_MAX) {
1460 pgdat_init_report_one_done();
1461 return 0;
1462 }
1463
1464 /* Bind memory initialisation thread to a local node if possible */
1465 if (!cpumask_empty(cpumask))
1466 set_cpus_allowed_ptr(current, cpumask);
1467
1468 /* Sanity check boundaries */
1469 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1470 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1471 pgdat->first_deferred_pfn = ULONG_MAX;
1472
1473 /* Only the highest zone is deferred so find it */
1474 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1475 zone = pgdat->node_zones + zid;
1476 if (first_init_pfn < zone_end_pfn(zone))
1477 break;
1478 }
1479
1480 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1481 unsigned long pfn, end_pfn;
1482 struct page *page = NULL;
1483 struct page *free_base_page = NULL;
1484 unsigned long free_base_pfn = 0;
1485 int nr_to_free = 0;
1486
1487 end_pfn = min(walk_end, zone_end_pfn(zone));
1488 pfn = first_init_pfn;
1489 if (pfn < walk_start)
1490 pfn = walk_start;
1491 if (pfn < zone->zone_start_pfn)
1492 pfn = zone->zone_start_pfn;
1493
1494 for (; pfn < end_pfn; pfn++) {
1495 if (!pfn_valid_within(pfn))
1496 goto free_range;
1497
1498 /*
1499 * Ensure pfn_valid is checked every
1500 * pageblock_nr_pages for memory holes
1501 */
1502 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1503 if (!pfn_valid(pfn)) {
1504 page = NULL;
1505 goto free_range;
1506 }
1507 }
1508
1509 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1510 page = NULL;
1511 goto free_range;
1512 }
1513
1514 /* Minimise pfn page lookups and scheduler checks */
1515 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1516 page++;
1517 } else {
1518 nr_pages += nr_to_free;
1519 deferred_free_range(free_base_page,
1520 free_base_pfn, nr_to_free);
1521 free_base_page = NULL;
1522 free_base_pfn = nr_to_free = 0;
1523
1524 page = pfn_to_page(pfn);
1525 cond_resched();
1526 }
1527
1528 if (page->flags) {
1529 VM_BUG_ON(page_zone(page) != zone);
1530 goto free_range;
1531 }
1532
1533 __init_single_page(page, pfn, zid, nid);
1534 if (!free_base_page) {
1535 free_base_page = page;
1536 free_base_pfn = pfn;
1537 nr_to_free = 0;
1538 }
1539 nr_to_free++;
1540
1541 /* Where possible, batch up pages for a single free */
1542 continue;
1543 free_range:
1544 /* Free the current block of pages to allocator */
1545 nr_pages += nr_to_free;
1546 deferred_free_range(free_base_page, free_base_pfn,
1547 nr_to_free);
1548 free_base_page = NULL;
1549 free_base_pfn = nr_to_free = 0;
1550 }
1551 /* Free the last block of pages to allocator */
1552 nr_pages += nr_to_free;
1553 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1554
1555 first_init_pfn = max(end_pfn, first_init_pfn);
1556 }
1557
1558 /* Sanity check that the next zone really is unpopulated */
1559 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1560
1561 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1562 jiffies_to_msecs(jiffies - start));
1563
1564 pgdat_init_report_one_done();
1565 return 0;
1566 }
1567 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1568
1569 void __init page_alloc_init_late(void)
1570 {
1571 struct zone *zone;
1572
1573 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1574 int nid;
1575
1576 /* There will be num_node_state(N_MEMORY) threads */
1577 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1578 for_each_node_state(nid, N_MEMORY) {
1579 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1580 }
1581
1582 /* Block until all are initialised */
1583 wait_for_completion(&pgdat_init_all_done_comp);
1584
1585 /* Reinit limits that are based on free pages after the kernel is up */
1586 files_maxfiles_init();
1587 #endif
1588 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1589 /* Discard memblock private memory */
1590 memblock_discard();
1591 #endif
1592
1593 for_each_populated_zone(zone)
1594 set_zone_contiguous(zone);
1595 }
1596
1597 #ifdef CONFIG_CMA
1598 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1599 void __init init_cma_reserved_pageblock(struct page *page)
1600 {
1601 unsigned i = pageblock_nr_pages;
1602 struct page *p = page;
1603
1604 do {
1605 __ClearPageReserved(p);
1606 set_page_count(p, 0);
1607 } while (++p, --i);
1608
1609 set_pageblock_migratetype(page, MIGRATE_CMA);
1610
1611 if (pageblock_order >= MAX_ORDER) {
1612 i = pageblock_nr_pages;
1613 p = page;
1614 do {
1615 set_page_refcounted(p);
1616 __free_pages(p, MAX_ORDER - 1);
1617 p += MAX_ORDER_NR_PAGES;
1618 } while (i -= MAX_ORDER_NR_PAGES);
1619 } else {
1620 set_page_refcounted(page);
1621 __free_pages(page, pageblock_order);
1622 }
1623
1624 adjust_managed_page_count(page, pageblock_nr_pages);
1625 }
1626 #endif
1627
1628 /*
1629 * The order of subdivision here is critical for the IO subsystem.
1630 * Please do not alter this order without good reasons and regression
1631 * testing. Specifically, as large blocks of memory are subdivided,
1632 * the order in which smaller blocks are delivered depends on the order
1633 * they're subdivided in this function. This is the primary factor
1634 * influencing the order in which pages are delivered to the IO
1635 * subsystem according to empirical testing, and this is also justified
1636 * by considering the behavior of a buddy system containing a single
1637 * large block of memory acted on by a series of small allocations.
1638 * This behavior is a critical factor in sglist merging's success.
1639 *
1640 * -- nyc
1641 */
1642 static inline void expand(struct zone *zone, struct page *page,
1643 int low, int high, struct free_area *area,
1644 int migratetype)
1645 {
1646 unsigned long size = 1 << high;
1647
1648 while (high > low) {
1649 area--;
1650 high--;
1651 size >>= 1;
1652 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1653
1654 /*
1655 * Mark as guard pages (or page), that will allow to
1656 * merge back to allocator when buddy will be freed.
1657 * Corresponding page table entries will not be touched,
1658 * pages will stay not present in virtual address space
1659 */
1660 if (set_page_guard(zone, &page[size], high, migratetype))
1661 continue;
1662
1663 list_add(&page[size].lru, &area->free_list[migratetype]);
1664 area->nr_free++;
1665 set_page_order(&page[size], high);
1666 }
1667 }
1668
1669 static void check_new_page_bad(struct page *page)
1670 {
1671 const char *bad_reason = NULL;
1672 unsigned long bad_flags = 0;
1673
1674 if (unlikely(atomic_read(&page->_mapcount) != -1))
1675 bad_reason = "nonzero mapcount";
1676 if (unlikely(page->mapping != NULL))
1677 bad_reason = "non-NULL mapping";
1678 if (unlikely(page_ref_count(page) != 0))
1679 bad_reason = "nonzero _count";
1680 if (unlikely(page->flags & __PG_HWPOISON)) {
1681 bad_reason = "HWPoisoned (hardware-corrupted)";
1682 bad_flags = __PG_HWPOISON;
1683 /* Don't complain about hwpoisoned pages */
1684 page_mapcount_reset(page); /* remove PageBuddy */
1685 return;
1686 }
1687 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1688 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1689 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1690 }
1691 #ifdef CONFIG_MEMCG
1692 if (unlikely(page->mem_cgroup))
1693 bad_reason = "page still charged to cgroup";
1694 #endif
1695 bad_page(page, bad_reason, bad_flags);
1696 }
1697
1698 /*
1699 * This page is about to be returned from the page allocator
1700 */
1701 static inline int check_new_page(struct page *page)
1702 {
1703 if (likely(page_expected_state(page,
1704 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1705 return 0;
1706
1707 check_new_page_bad(page);
1708 return 1;
1709 }
1710
1711 static inline bool free_pages_prezeroed(void)
1712 {
1713 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1714 page_poisoning_enabled();
1715 }
1716
1717 #ifdef CONFIG_DEBUG_VM
1718 static bool check_pcp_refill(struct page *page)
1719 {
1720 return false;
1721 }
1722
1723 static bool check_new_pcp(struct page *page)
1724 {
1725 return check_new_page(page);
1726 }
1727 #else
1728 static bool check_pcp_refill(struct page *page)
1729 {
1730 return check_new_page(page);
1731 }
1732 static bool check_new_pcp(struct page *page)
1733 {
1734 return false;
1735 }
1736 #endif /* CONFIG_DEBUG_VM */
1737
1738 static bool check_new_pages(struct page *page, unsigned int order)
1739 {
1740 int i;
1741 for (i = 0; i < (1 << order); i++) {
1742 struct page *p = page + i;
1743
1744 if (unlikely(check_new_page(p)))
1745 return true;
1746 }
1747
1748 return false;
1749 }
1750
1751 inline void post_alloc_hook(struct page *page, unsigned int order,
1752 gfp_t gfp_flags)
1753 {
1754 set_page_private(page, 0);
1755 set_page_refcounted(page);
1756
1757 arch_alloc_page(page, order);
1758 kernel_map_pages(page, 1 << order, 1);
1759 kernel_poison_pages(page, 1 << order, 1);
1760 kasan_alloc_pages(page, order);
1761 set_page_owner(page, order, gfp_flags);
1762 }
1763
1764 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1765 unsigned int alloc_flags)
1766 {
1767 int i;
1768
1769 post_alloc_hook(page, order, gfp_flags);
1770
1771 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1772 for (i = 0; i < (1 << order); i++)
1773 clear_highpage(page + i);
1774
1775 if (order && (gfp_flags & __GFP_COMP))
1776 prep_compound_page(page, order);
1777
1778 /*
1779 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1780 * allocate the page. The expectation is that the caller is taking
1781 * steps that will free more memory. The caller should avoid the page
1782 * being used for !PFMEMALLOC purposes.
1783 */
1784 if (alloc_flags & ALLOC_NO_WATERMARKS)
1785 set_page_pfmemalloc(page);
1786 else
1787 clear_page_pfmemalloc(page);
1788 }
1789
1790 /*
1791 * Go through the free lists for the given migratetype and remove
1792 * the smallest available page from the freelists
1793 */
1794 static inline
1795 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1796 int migratetype)
1797 {
1798 unsigned int current_order;
1799 struct free_area *area;
1800 struct page *page;
1801
1802 /* Find a page of the appropriate size in the preferred list */
1803 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1804 area = &(zone->free_area[current_order]);
1805 page = list_first_entry_or_null(&area->free_list[migratetype],
1806 struct page, lru);
1807 if (!page)
1808 continue;
1809 list_del(&page->lru);
1810 rmv_page_order(page);
1811 area->nr_free--;
1812 expand(zone, page, order, current_order, area, migratetype);
1813 set_pcppage_migratetype(page, migratetype);
1814 return page;
1815 }
1816
1817 return NULL;
1818 }
1819
1820
1821 /*
1822 * This array describes the order lists are fallen back to when
1823 * the free lists for the desirable migrate type are depleted
1824 */
1825 static int fallbacks[MIGRATE_TYPES][4] = {
1826 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1827 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1828 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1829 #ifdef CONFIG_CMA
1830 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1831 #endif
1832 #ifdef CONFIG_MEMORY_ISOLATION
1833 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1834 #endif
1835 };
1836
1837 #ifdef CONFIG_CMA
1838 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1839 unsigned int order)
1840 {
1841 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1842 }
1843 #else
1844 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1845 unsigned int order) { return NULL; }
1846 #endif
1847
1848 /*
1849 * Move the free pages in a range to the free lists of the requested type.
1850 * Note that start_page and end_pages are not aligned on a pageblock
1851 * boundary. If alignment is required, use move_freepages_block()
1852 */
1853 static int move_freepages(struct zone *zone,
1854 struct page *start_page, struct page *end_page,
1855 int migratetype, int *num_movable)
1856 {
1857 struct page *page;
1858 unsigned int order;
1859 int pages_moved = 0;
1860
1861 #ifndef CONFIG_HOLES_IN_ZONE
1862 /*
1863 * page_zone is not safe to call in this context when
1864 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1865 * anyway as we check zone boundaries in move_freepages_block().
1866 * Remove at a later date when no bug reports exist related to
1867 * grouping pages by mobility
1868 */
1869 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1870 #endif
1871
1872 if (num_movable)
1873 *num_movable = 0;
1874
1875 for (page = start_page; page <= end_page;) {
1876 if (!pfn_valid_within(page_to_pfn(page))) {
1877 page++;
1878 continue;
1879 }
1880
1881 /* Make sure we are not inadvertently changing nodes */
1882 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1883
1884 if (!PageBuddy(page)) {
1885 /*
1886 * We assume that pages that could be isolated for
1887 * migration are movable. But we don't actually try
1888 * isolating, as that would be expensive.
1889 */
1890 if (num_movable &&
1891 (PageLRU(page) || __PageMovable(page)))
1892 (*num_movable)++;
1893
1894 page++;
1895 continue;
1896 }
1897
1898 order = page_order(page);
1899 list_move(&page->lru,
1900 &zone->free_area[order].free_list[migratetype]);
1901 page += 1 << order;
1902 pages_moved += 1 << order;
1903 }
1904
1905 return pages_moved;
1906 }
1907
1908 int move_freepages_block(struct zone *zone, struct page *page,
1909 int migratetype, int *num_movable)
1910 {
1911 unsigned long start_pfn, end_pfn;
1912 struct page *start_page, *end_page;
1913
1914 start_pfn = page_to_pfn(page);
1915 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1916 start_page = pfn_to_page(start_pfn);
1917 end_page = start_page + pageblock_nr_pages - 1;
1918 end_pfn = start_pfn + pageblock_nr_pages - 1;
1919
1920 /* Do not cross zone boundaries */
1921 if (!zone_spans_pfn(zone, start_pfn))
1922 start_page = page;
1923 if (!zone_spans_pfn(zone, end_pfn))
1924 return 0;
1925
1926 return move_freepages(zone, start_page, end_page, migratetype,
1927 num_movable);
1928 }
1929
1930 static void change_pageblock_range(struct page *pageblock_page,
1931 int start_order, int migratetype)
1932 {
1933 int nr_pageblocks = 1 << (start_order - pageblock_order);
1934
1935 while (nr_pageblocks--) {
1936 set_pageblock_migratetype(pageblock_page, migratetype);
1937 pageblock_page += pageblock_nr_pages;
1938 }
1939 }
1940
1941 /*
1942 * When we are falling back to another migratetype during allocation, try to
1943 * steal extra free pages from the same pageblocks to satisfy further
1944 * allocations, instead of polluting multiple pageblocks.
1945 *
1946 * If we are stealing a relatively large buddy page, it is likely there will
1947 * be more free pages in the pageblock, so try to steal them all. For
1948 * reclaimable and unmovable allocations, we steal regardless of page size,
1949 * as fragmentation caused by those allocations polluting movable pageblocks
1950 * is worse than movable allocations stealing from unmovable and reclaimable
1951 * pageblocks.
1952 */
1953 static bool can_steal_fallback(unsigned int order, int start_mt)
1954 {
1955 /*
1956 * Leaving this order check is intended, although there is
1957 * relaxed order check in next check. The reason is that
1958 * we can actually steal whole pageblock if this condition met,
1959 * but, below check doesn't guarantee it and that is just heuristic
1960 * so could be changed anytime.
1961 */
1962 if (order >= pageblock_order)
1963 return true;
1964
1965 if (order >= pageblock_order / 2 ||
1966 start_mt == MIGRATE_RECLAIMABLE ||
1967 start_mt == MIGRATE_UNMOVABLE ||
1968 page_group_by_mobility_disabled)
1969 return true;
1970
1971 return false;
1972 }
1973
1974 /*
1975 * This function implements actual steal behaviour. If order is large enough,
1976 * we can steal whole pageblock. If not, we first move freepages in this
1977 * pageblock to our migratetype and determine how many already-allocated pages
1978 * are there in the pageblock with a compatible migratetype. If at least half
1979 * of pages are free or compatible, we can change migratetype of the pageblock
1980 * itself, so pages freed in the future will be put on the correct free list.
1981 */
1982 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1983 int start_type, bool whole_block)
1984 {
1985 unsigned int current_order = page_order(page);
1986 struct free_area *area;
1987 int free_pages, movable_pages, alike_pages;
1988 int old_block_type;
1989
1990 old_block_type = get_pageblock_migratetype(page);
1991
1992 /*
1993 * This can happen due to races and we want to prevent broken
1994 * highatomic accounting.
1995 */
1996 if (is_migrate_highatomic(old_block_type))
1997 goto single_page;
1998
1999 /* Take ownership for orders >= pageblock_order */
2000 if (current_order >= pageblock_order) {
2001 change_pageblock_range(page, current_order, start_type);
2002 goto single_page;
2003 }
2004
2005 /* We are not allowed to try stealing from the whole block */
2006 if (!whole_block)
2007 goto single_page;
2008
2009 free_pages = move_freepages_block(zone, page, start_type,
2010 &movable_pages);
2011 /*
2012 * Determine how many pages are compatible with our allocation.
2013 * For movable allocation, it's the number of movable pages which
2014 * we just obtained. For other types it's a bit more tricky.
2015 */
2016 if (start_type == MIGRATE_MOVABLE) {
2017 alike_pages = movable_pages;
2018 } else {
2019 /*
2020 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2021 * to MOVABLE pageblock, consider all non-movable pages as
2022 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2023 * vice versa, be conservative since we can't distinguish the
2024 * exact migratetype of non-movable pages.
2025 */
2026 if (old_block_type == MIGRATE_MOVABLE)
2027 alike_pages = pageblock_nr_pages
2028 - (free_pages + movable_pages);
2029 else
2030 alike_pages = 0;
2031 }
2032
2033 /* moving whole block can fail due to zone boundary conditions */
2034 if (!free_pages)
2035 goto single_page;
2036
2037 /*
2038 * If a sufficient number of pages in the block are either free or of
2039 * comparable migratability as our allocation, claim the whole block.
2040 */
2041 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2042 page_group_by_mobility_disabled)
2043 set_pageblock_migratetype(page, start_type);
2044
2045 return;
2046
2047 single_page:
2048 area = &zone->free_area[current_order];
2049 list_move(&page->lru, &area->free_list[start_type]);
2050 }
2051
2052 /*
2053 * Check whether there is a suitable fallback freepage with requested order.
2054 * If only_stealable is true, this function returns fallback_mt only if
2055 * we can steal other freepages all together. This would help to reduce
2056 * fragmentation due to mixed migratetype pages in one pageblock.
2057 */
2058 int find_suitable_fallback(struct free_area *area, unsigned int order,
2059 int migratetype, bool only_stealable, bool *can_steal)
2060 {
2061 int i;
2062 int fallback_mt;
2063
2064 if (area->nr_free == 0)
2065 return -1;
2066
2067 *can_steal = false;
2068 for (i = 0;; i++) {
2069 fallback_mt = fallbacks[migratetype][i];
2070 if (fallback_mt == MIGRATE_TYPES)
2071 break;
2072
2073 if (list_empty(&area->free_list[fallback_mt]))
2074 continue;
2075
2076 if (can_steal_fallback(order, migratetype))
2077 *can_steal = true;
2078
2079 if (!only_stealable)
2080 return fallback_mt;
2081
2082 if (*can_steal)
2083 return fallback_mt;
2084 }
2085
2086 return -1;
2087 }
2088
2089 /*
2090 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2091 * there are no empty page blocks that contain a page with a suitable order
2092 */
2093 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2094 unsigned int alloc_order)
2095 {
2096 int mt;
2097 unsigned long max_managed, flags;
2098
2099 /*
2100 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2101 * Check is race-prone but harmless.
2102 */
2103 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2104 if (zone->nr_reserved_highatomic >= max_managed)
2105 return;
2106
2107 spin_lock_irqsave(&zone->lock, flags);
2108
2109 /* Recheck the nr_reserved_highatomic limit under the lock */
2110 if (zone->nr_reserved_highatomic >= max_managed)
2111 goto out_unlock;
2112
2113 /* Yoink! */
2114 mt = get_pageblock_migratetype(page);
2115 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2116 && !is_migrate_cma(mt)) {
2117 zone->nr_reserved_highatomic += pageblock_nr_pages;
2118 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2119 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2120 }
2121
2122 out_unlock:
2123 spin_unlock_irqrestore(&zone->lock, flags);
2124 }
2125
2126 /*
2127 * Used when an allocation is about to fail under memory pressure. This
2128 * potentially hurts the reliability of high-order allocations when under
2129 * intense memory pressure but failed atomic allocations should be easier
2130 * to recover from than an OOM.
2131 *
2132 * If @force is true, try to unreserve a pageblock even though highatomic
2133 * pageblock is exhausted.
2134 */
2135 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2136 bool force)
2137 {
2138 struct zonelist *zonelist = ac->zonelist;
2139 unsigned long flags;
2140 struct zoneref *z;
2141 struct zone *zone;
2142 struct page *page;
2143 int order;
2144 bool ret;
2145
2146 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2147 ac->nodemask) {
2148 /*
2149 * Preserve at least one pageblock unless memory pressure
2150 * is really high.
2151 */
2152 if (!force && zone->nr_reserved_highatomic <=
2153 pageblock_nr_pages)
2154 continue;
2155
2156 spin_lock_irqsave(&zone->lock, flags);
2157 for (order = 0; order < MAX_ORDER; order++) {
2158 struct free_area *area = &(zone->free_area[order]);
2159
2160 page = list_first_entry_or_null(
2161 &area->free_list[MIGRATE_HIGHATOMIC],
2162 struct page, lru);
2163 if (!page)
2164 continue;
2165
2166 /*
2167 * In page freeing path, migratetype change is racy so
2168 * we can counter several free pages in a pageblock
2169 * in this loop althoug we changed the pageblock type
2170 * from highatomic to ac->migratetype. So we should
2171 * adjust the count once.
2172 */
2173 if (is_migrate_highatomic_page(page)) {
2174 /*
2175 * It should never happen but changes to
2176 * locking could inadvertently allow a per-cpu
2177 * drain to add pages to MIGRATE_HIGHATOMIC
2178 * while unreserving so be safe and watch for
2179 * underflows.
2180 */
2181 zone->nr_reserved_highatomic -= min(
2182 pageblock_nr_pages,
2183 zone->nr_reserved_highatomic);
2184 }
2185
2186 /*
2187 * Convert to ac->migratetype and avoid the normal
2188 * pageblock stealing heuristics. Minimally, the caller
2189 * is doing the work and needs the pages. More
2190 * importantly, if the block was always converted to
2191 * MIGRATE_UNMOVABLE or another type then the number
2192 * of pageblocks that cannot be completely freed
2193 * may increase.
2194 */
2195 set_pageblock_migratetype(page, ac->migratetype);
2196 ret = move_freepages_block(zone, page, ac->migratetype,
2197 NULL);
2198 if (ret) {
2199 spin_unlock_irqrestore(&zone->lock, flags);
2200 return ret;
2201 }
2202 }
2203 spin_unlock_irqrestore(&zone->lock, flags);
2204 }
2205
2206 return false;
2207 }
2208
2209 /*
2210 * Try finding a free buddy page on the fallback list and put it on the free
2211 * list of requested migratetype, possibly along with other pages from the same
2212 * block, depending on fragmentation avoidance heuristics. Returns true if
2213 * fallback was found so that __rmqueue_smallest() can grab it.
2214 *
2215 * The use of signed ints for order and current_order is a deliberate
2216 * deviation from the rest of this file, to make the for loop
2217 * condition simpler.
2218 */
2219 static inline bool
2220 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2221 {
2222 struct free_area *area;
2223 int current_order;
2224 struct page *page;
2225 int fallback_mt;
2226 bool can_steal;
2227
2228 /*
2229 * Find the largest available free page in the other list. This roughly
2230 * approximates finding the pageblock with the most free pages, which
2231 * would be too costly to do exactly.
2232 */
2233 for (current_order = MAX_ORDER - 1; current_order >= order;
2234 --current_order) {
2235 area = &(zone->free_area[current_order]);
2236 fallback_mt = find_suitable_fallback(area, current_order,
2237 start_migratetype, false, &can_steal);
2238 if (fallback_mt == -1)
2239 continue;
2240
2241 /*
2242 * We cannot steal all free pages from the pageblock and the
2243 * requested migratetype is movable. In that case it's better to
2244 * steal and split the smallest available page instead of the
2245 * largest available page, because even if the next movable
2246 * allocation falls back into a different pageblock than this
2247 * one, it won't cause permanent fragmentation.
2248 */
2249 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2250 && current_order > order)
2251 goto find_smallest;
2252
2253 goto do_steal;
2254 }
2255
2256 return false;
2257
2258 find_smallest:
2259 for (current_order = order; current_order < MAX_ORDER;
2260 current_order++) {
2261 area = &(zone->free_area[current_order]);
2262 fallback_mt = find_suitable_fallback(area, current_order,
2263 start_migratetype, false, &can_steal);
2264 if (fallback_mt != -1)
2265 break;
2266 }
2267
2268 /*
2269 * This should not happen - we already found a suitable fallback
2270 * when looking for the largest page.
2271 */
2272 VM_BUG_ON(current_order == MAX_ORDER);
2273
2274 do_steal:
2275 page = list_first_entry(&area->free_list[fallback_mt],
2276 struct page, lru);
2277
2278 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2279
2280 trace_mm_page_alloc_extfrag(page, order, current_order,
2281 start_migratetype, fallback_mt);
2282
2283 return true;
2284
2285 }
2286
2287 /*
2288 * Do the hard work of removing an element from the buddy allocator.
2289 * Call me with the zone->lock already held.
2290 */
2291 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2292 int migratetype)
2293 {
2294 struct page *page;
2295
2296 retry:
2297 page = __rmqueue_smallest(zone, order, migratetype);
2298 if (unlikely(!page)) {
2299 if (migratetype == MIGRATE_MOVABLE)
2300 page = __rmqueue_cma_fallback(zone, order);
2301
2302 if (!page && __rmqueue_fallback(zone, order, migratetype))
2303 goto retry;
2304 }
2305
2306 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2307 return page;
2308 }
2309
2310 /*
2311 * Obtain a specified number of elements from the buddy allocator, all under
2312 * a single hold of the lock, for efficiency. Add them to the supplied list.
2313 * Returns the number of new pages which were placed at *list.
2314 */
2315 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2316 unsigned long count, struct list_head *list,
2317 int migratetype, bool cold)
2318 {
2319 int i, alloced = 0;
2320
2321 spin_lock(&zone->lock);
2322 for (i = 0; i < count; ++i) {
2323 struct page *page = __rmqueue(zone, order, migratetype);
2324 if (unlikely(page == NULL))
2325 break;
2326
2327 if (unlikely(check_pcp_refill(page)))
2328 continue;
2329
2330 /*
2331 * Split buddy pages returned by expand() are received here
2332 * in physical page order. The page is added to the callers and
2333 * list and the list head then moves forward. From the callers
2334 * perspective, the linked list is ordered by page number in
2335 * some conditions. This is useful for IO devices that can
2336 * merge IO requests if the physical pages are ordered
2337 * properly.
2338 */
2339 if (likely(!cold))
2340 list_add(&page->lru, list);
2341 else
2342 list_add_tail(&page->lru, list);
2343 list = &page->lru;
2344 alloced++;
2345 if (is_migrate_cma(get_pcppage_migratetype(page)))
2346 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2347 -(1 << order));
2348 }
2349
2350 /*
2351 * i pages were removed from the buddy list even if some leak due
2352 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2353 * on i. Do not confuse with 'alloced' which is the number of
2354 * pages added to the pcp list.
2355 */
2356 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2357 spin_unlock(&zone->lock);
2358 return alloced;
2359 }
2360
2361 #ifdef CONFIG_NUMA
2362 /*
2363 * Called from the vmstat counter updater to drain pagesets of this
2364 * currently executing processor on remote nodes after they have
2365 * expired.
2366 *
2367 * Note that this function must be called with the thread pinned to
2368 * a single processor.
2369 */
2370 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2371 {
2372 unsigned long flags;
2373 int to_drain, batch;
2374
2375 local_irq_save(flags);
2376 batch = READ_ONCE(pcp->batch);
2377 to_drain = min(pcp->count, batch);
2378 if (to_drain > 0) {
2379 free_pcppages_bulk(zone, to_drain, pcp);
2380 pcp->count -= to_drain;
2381 }
2382 local_irq_restore(flags);
2383 }
2384 #endif
2385
2386 /*
2387 * Drain pcplists of the indicated processor and zone.
2388 *
2389 * The processor must either be the current processor and the
2390 * thread pinned to the current processor or a processor that
2391 * is not online.
2392 */
2393 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2394 {
2395 unsigned long flags;
2396 struct per_cpu_pageset *pset;
2397 struct per_cpu_pages *pcp;
2398
2399 local_irq_save(flags);
2400 pset = per_cpu_ptr(zone->pageset, cpu);
2401
2402 pcp = &pset->pcp;
2403 if (pcp->count) {
2404 free_pcppages_bulk(zone, pcp->count, pcp);
2405 pcp->count = 0;
2406 }
2407 local_irq_restore(flags);
2408 }
2409
2410 /*
2411 * Drain pcplists of all zones on the indicated processor.
2412 *
2413 * The processor must either be the current processor and the
2414 * thread pinned to the current processor or a processor that
2415 * is not online.
2416 */
2417 static void drain_pages(unsigned int cpu)
2418 {
2419 struct zone *zone;
2420
2421 for_each_populated_zone(zone) {
2422 drain_pages_zone(cpu, zone);
2423 }
2424 }
2425
2426 /*
2427 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2428 *
2429 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2430 * the single zone's pages.
2431 */
2432 void drain_local_pages(struct zone *zone)
2433 {
2434 int cpu = smp_processor_id();
2435
2436 if (zone)
2437 drain_pages_zone(cpu, zone);
2438 else
2439 drain_pages(cpu);
2440 }
2441
2442 static void drain_local_pages_wq(struct work_struct *work)
2443 {
2444 /*
2445 * drain_all_pages doesn't use proper cpu hotplug protection so
2446 * we can race with cpu offline when the WQ can move this from
2447 * a cpu pinned worker to an unbound one. We can operate on a different
2448 * cpu which is allright but we also have to make sure to not move to
2449 * a different one.
2450 */
2451 preempt_disable();
2452 drain_local_pages(NULL);
2453 preempt_enable();
2454 }
2455
2456 /*
2457 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2458 *
2459 * When zone parameter is non-NULL, spill just the single zone's pages.
2460 *
2461 * Note that this can be extremely slow as the draining happens in a workqueue.
2462 */
2463 void drain_all_pages(struct zone *zone)
2464 {
2465 int cpu;
2466
2467 /*
2468 * Allocate in the BSS so we wont require allocation in
2469 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2470 */
2471 static cpumask_t cpus_with_pcps;
2472
2473 /*
2474 * Make sure nobody triggers this path before mm_percpu_wq is fully
2475 * initialized.
2476 */
2477 if (WARN_ON_ONCE(!mm_percpu_wq))
2478 return;
2479
2480 /* Workqueues cannot recurse */
2481 if (current->flags & PF_WQ_WORKER)
2482 return;
2483
2484 /*
2485 * Do not drain if one is already in progress unless it's specific to
2486 * a zone. Such callers are primarily CMA and memory hotplug and need
2487 * the drain to be complete when the call returns.
2488 */
2489 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2490 if (!zone)
2491 return;
2492 mutex_lock(&pcpu_drain_mutex);
2493 }
2494
2495 /*
2496 * We don't care about racing with CPU hotplug event
2497 * as offline notification will cause the notified
2498 * cpu to drain that CPU pcps and on_each_cpu_mask
2499 * disables preemption as part of its processing
2500 */
2501 for_each_online_cpu(cpu) {
2502 struct per_cpu_pageset *pcp;
2503 struct zone *z;
2504 bool has_pcps = false;
2505
2506 if (zone) {
2507 pcp = per_cpu_ptr(zone->pageset, cpu);
2508 if (pcp->pcp.count)
2509 has_pcps = true;
2510 } else {
2511 for_each_populated_zone(z) {
2512 pcp = per_cpu_ptr(z->pageset, cpu);
2513 if (pcp->pcp.count) {
2514 has_pcps = true;
2515 break;
2516 }
2517 }
2518 }
2519
2520 if (has_pcps)
2521 cpumask_set_cpu(cpu, &cpus_with_pcps);
2522 else
2523 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2524 }
2525
2526 for_each_cpu(cpu, &cpus_with_pcps) {
2527 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2528 INIT_WORK(work, drain_local_pages_wq);
2529 queue_work_on(cpu, mm_percpu_wq, work);
2530 }
2531 for_each_cpu(cpu, &cpus_with_pcps)
2532 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2533
2534 mutex_unlock(&pcpu_drain_mutex);
2535 }
2536
2537 #ifdef CONFIG_HIBERNATION
2538
2539 /*
2540 * Touch the watchdog for every WD_PAGE_COUNT pages.
2541 */
2542 #define WD_PAGE_COUNT (128*1024)
2543
2544 void mark_free_pages(struct zone *zone)
2545 {
2546 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2547 unsigned long flags;
2548 unsigned int order, t;
2549 struct page *page;
2550
2551 if (zone_is_empty(zone))
2552 return;
2553
2554 spin_lock_irqsave(&zone->lock, flags);
2555
2556 max_zone_pfn = zone_end_pfn(zone);
2557 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2558 if (pfn_valid(pfn)) {
2559 page = pfn_to_page(pfn);
2560
2561 if (!--page_count) {
2562 touch_nmi_watchdog();
2563 page_count = WD_PAGE_COUNT;
2564 }
2565
2566 if (page_zone(page) != zone)
2567 continue;
2568
2569 if (!swsusp_page_is_forbidden(page))
2570 swsusp_unset_page_free(page);
2571 }
2572
2573 for_each_migratetype_order(order, t) {
2574 list_for_each_entry(page,
2575 &zone->free_area[order].free_list[t], lru) {
2576 unsigned long i;
2577
2578 pfn = page_to_pfn(page);
2579 for (i = 0; i < (1UL << order); i++) {
2580 if (!--page_count) {
2581 touch_nmi_watchdog();
2582 page_count = WD_PAGE_COUNT;
2583 }
2584 swsusp_set_page_free(pfn_to_page(pfn + i));
2585 }
2586 }
2587 }
2588 spin_unlock_irqrestore(&zone->lock, flags);
2589 }
2590 #endif /* CONFIG_PM */
2591
2592 /*
2593 * Free a 0-order page
2594 * cold == true ? free a cold page : free a hot page
2595 */
2596 void free_hot_cold_page(struct page *page, bool cold)
2597 {
2598 struct zone *zone = page_zone(page);
2599 struct per_cpu_pages *pcp;
2600 unsigned long flags;
2601 unsigned long pfn = page_to_pfn(page);
2602 int migratetype;
2603
2604 if (!free_pcp_prepare(page))
2605 return;
2606
2607 migratetype = get_pfnblock_migratetype(page, pfn);
2608 set_pcppage_migratetype(page, migratetype);
2609 local_irq_save(flags);
2610 __count_vm_event(PGFREE);
2611
2612 /*
2613 * We only track unmovable, reclaimable and movable on pcp lists.
2614 * Free ISOLATE pages back to the allocator because they are being
2615 * offlined but treat HIGHATOMIC as movable pages so we can get those
2616 * areas back if necessary. Otherwise, we may have to free
2617 * excessively into the page allocator
2618 */
2619 if (migratetype >= MIGRATE_PCPTYPES) {
2620 if (unlikely(is_migrate_isolate(migratetype))) {
2621 free_one_page(zone, page, pfn, 0, migratetype);
2622 goto out;
2623 }
2624 migratetype = MIGRATE_MOVABLE;
2625 }
2626
2627 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2628 if (!cold)
2629 list_add(&page->lru, &pcp->lists[migratetype]);
2630 else
2631 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2632 pcp->count++;
2633 if (pcp->count >= pcp->high) {
2634 unsigned long batch = READ_ONCE(pcp->batch);
2635 free_pcppages_bulk(zone, batch, pcp);
2636 pcp->count -= batch;
2637 }
2638
2639 out:
2640 local_irq_restore(flags);
2641 }
2642
2643 /*
2644 * Free a list of 0-order pages
2645 */
2646 void free_hot_cold_page_list(struct list_head *list, bool cold)
2647 {
2648 struct page *page, *next;
2649
2650 list_for_each_entry_safe(page, next, list, lru) {
2651 trace_mm_page_free_batched(page, cold);
2652 free_hot_cold_page(page, cold);
2653 }
2654 }
2655
2656 /*
2657 * split_page takes a non-compound higher-order page, and splits it into
2658 * n (1<<order) sub-pages: page[0..n]
2659 * Each sub-page must be freed individually.
2660 *
2661 * Note: this is probably too low level an operation for use in drivers.
2662 * Please consult with lkml before using this in your driver.
2663 */
2664 void split_page(struct page *page, unsigned int order)
2665 {
2666 int i;
2667
2668 VM_BUG_ON_PAGE(PageCompound(page), page);
2669 VM_BUG_ON_PAGE(!page_count(page), page);
2670
2671 #ifdef CONFIG_KMEMCHECK
2672 /*
2673 * Split shadow pages too, because free(page[0]) would
2674 * otherwise free the whole shadow.
2675 */
2676 if (kmemcheck_page_is_tracked(page))
2677 split_page(virt_to_page(page[0].shadow), order);
2678 #endif
2679
2680 for (i = 1; i < (1 << order); i++)
2681 set_page_refcounted(page + i);
2682 split_page_owner(page, order);
2683 }
2684 EXPORT_SYMBOL_GPL(split_page);
2685
2686 int __isolate_free_page(struct page *page, unsigned int order)
2687 {
2688 unsigned long watermark;
2689 struct zone *zone;
2690 int mt;
2691
2692 BUG_ON(!PageBuddy(page));
2693
2694 zone = page_zone(page);
2695 mt = get_pageblock_migratetype(page);
2696
2697 if (!is_migrate_isolate(mt)) {
2698 /*
2699 * Obey watermarks as if the page was being allocated. We can
2700 * emulate a high-order watermark check with a raised order-0
2701 * watermark, because we already know our high-order page
2702 * exists.
2703 */
2704 watermark = min_wmark_pages(zone) + (1UL << order);
2705 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2706 return 0;
2707
2708 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2709 }
2710
2711 /* Remove page from free list */
2712 list_del(&page->lru);
2713 zone->free_area[order].nr_free--;
2714 rmv_page_order(page);
2715
2716 /*
2717 * Set the pageblock if the isolated page is at least half of a
2718 * pageblock
2719 */
2720 if (order >= pageblock_order - 1) {
2721 struct page *endpage = page + (1 << order) - 1;
2722 for (; page < endpage; page += pageblock_nr_pages) {
2723 int mt = get_pageblock_migratetype(page);
2724 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2725 && !is_migrate_highatomic(mt))
2726 set_pageblock_migratetype(page,
2727 MIGRATE_MOVABLE);
2728 }
2729 }
2730
2731
2732 return 1UL << order;
2733 }
2734
2735 /*
2736 * Update NUMA hit/miss statistics
2737 *
2738 * Must be called with interrupts disabled.
2739 */
2740 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2741 {
2742 #ifdef CONFIG_NUMA
2743 enum zone_stat_item local_stat = NUMA_LOCAL;
2744
2745 if (z->node != numa_node_id())
2746 local_stat = NUMA_OTHER;
2747
2748 if (z->node == preferred_zone->node)
2749 __inc_zone_state(z, NUMA_HIT);
2750 else {
2751 __inc_zone_state(z, NUMA_MISS);
2752 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2753 }
2754 __inc_zone_state(z, local_stat);
2755 #endif
2756 }
2757
2758 /* Remove page from the per-cpu list, caller must protect the list */
2759 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2760 bool cold, struct per_cpu_pages *pcp,
2761 struct list_head *list)
2762 {
2763 struct page *page;
2764
2765 do {
2766 if (list_empty(list)) {
2767 pcp->count += rmqueue_bulk(zone, 0,
2768 pcp->batch, list,
2769 migratetype, cold);
2770 if (unlikely(list_empty(list)))
2771 return NULL;
2772 }
2773
2774 if (cold)
2775 page = list_last_entry(list, struct page, lru);
2776 else
2777 page = list_first_entry(list, struct page, lru);
2778
2779 list_del(&page->lru);
2780 pcp->count--;
2781 } while (check_new_pcp(page));
2782
2783 return page;
2784 }
2785
2786 /* Lock and remove page from the per-cpu list */
2787 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2788 struct zone *zone, unsigned int order,
2789 gfp_t gfp_flags, int migratetype)
2790 {
2791 struct per_cpu_pages *pcp;
2792 struct list_head *list;
2793 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2794 struct page *page;
2795 unsigned long flags;
2796
2797 local_irq_save(flags);
2798 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2799 list = &pcp->lists[migratetype];
2800 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2801 if (page) {
2802 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2803 zone_statistics(preferred_zone, zone);
2804 }
2805 local_irq_restore(flags);
2806 return page;
2807 }
2808
2809 /*
2810 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2811 */
2812 static inline
2813 struct page *rmqueue(struct zone *preferred_zone,
2814 struct zone *zone, unsigned int order,
2815 gfp_t gfp_flags, unsigned int alloc_flags,
2816 int migratetype)
2817 {
2818 unsigned long flags;
2819 struct page *page;
2820
2821 if (likely(order == 0)) {
2822 page = rmqueue_pcplist(preferred_zone, zone, order,
2823 gfp_flags, migratetype);
2824 goto out;
2825 }
2826
2827 /*
2828 * We most definitely don't want callers attempting to
2829 * allocate greater than order-1 page units with __GFP_NOFAIL.
2830 */
2831 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2832 spin_lock_irqsave(&zone->lock, flags);
2833
2834 do {
2835 page = NULL;
2836 if (alloc_flags & ALLOC_HARDER) {
2837 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2838 if (page)
2839 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2840 }
2841 if (!page)
2842 page = __rmqueue(zone, order, migratetype);
2843 } while (page && check_new_pages(page, order));
2844 spin_unlock(&zone->lock);
2845 if (!page)
2846 goto failed;
2847 __mod_zone_freepage_state(zone, -(1 << order),
2848 get_pcppage_migratetype(page));
2849
2850 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2851 zone_statistics(preferred_zone, zone);
2852 local_irq_restore(flags);
2853
2854 out:
2855 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2856 return page;
2857
2858 failed:
2859 local_irq_restore(flags);
2860 return NULL;
2861 }
2862
2863 #ifdef CONFIG_FAIL_PAGE_ALLOC
2864
2865 static struct {
2866 struct fault_attr attr;
2867
2868 bool ignore_gfp_highmem;
2869 bool ignore_gfp_reclaim;
2870 u32 min_order;
2871 } fail_page_alloc = {
2872 .attr = FAULT_ATTR_INITIALIZER,
2873 .ignore_gfp_reclaim = true,
2874 .ignore_gfp_highmem = true,
2875 .min_order = 1,
2876 };
2877
2878 static int __init setup_fail_page_alloc(char *str)
2879 {
2880 return setup_fault_attr(&fail_page_alloc.attr, str);
2881 }
2882 __setup("fail_page_alloc=", setup_fail_page_alloc);
2883
2884 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2885 {
2886 if (order < fail_page_alloc.min_order)
2887 return false;
2888 if (gfp_mask & __GFP_NOFAIL)
2889 return false;
2890 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2891 return false;
2892 if (fail_page_alloc.ignore_gfp_reclaim &&
2893 (gfp_mask & __GFP_DIRECT_RECLAIM))
2894 return false;
2895
2896 return should_fail(&fail_page_alloc.attr, 1 << order);
2897 }
2898
2899 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2900
2901 static int __init fail_page_alloc_debugfs(void)
2902 {
2903 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2904 struct dentry *dir;
2905
2906 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2907 &fail_page_alloc.attr);
2908 if (IS_ERR(dir))
2909 return PTR_ERR(dir);
2910
2911 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2912 &fail_page_alloc.ignore_gfp_reclaim))
2913 goto fail;
2914 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2915 &fail_page_alloc.ignore_gfp_highmem))
2916 goto fail;
2917 if (!debugfs_create_u32("min-order", mode, dir,
2918 &fail_page_alloc.min_order))
2919 goto fail;
2920
2921 return 0;
2922 fail:
2923 debugfs_remove_recursive(dir);
2924
2925 return -ENOMEM;
2926 }
2927
2928 late_initcall(fail_page_alloc_debugfs);
2929
2930 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2931
2932 #else /* CONFIG_FAIL_PAGE_ALLOC */
2933
2934 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2935 {
2936 return false;
2937 }
2938
2939 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2940
2941 /*
2942 * Return true if free base pages are above 'mark'. For high-order checks it
2943 * will return true of the order-0 watermark is reached and there is at least
2944 * one free page of a suitable size. Checking now avoids taking the zone lock
2945 * to check in the allocation paths if no pages are free.
2946 */
2947 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2948 int classzone_idx, unsigned int alloc_flags,
2949 long free_pages)
2950 {
2951 long min = mark;
2952 int o;
2953 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2954
2955 /* free_pages may go negative - that's OK */
2956 free_pages -= (1 << order) - 1;
2957
2958 if (alloc_flags & ALLOC_HIGH)
2959 min -= min / 2;
2960
2961 /*
2962 * If the caller does not have rights to ALLOC_HARDER then subtract
2963 * the high-atomic reserves. This will over-estimate the size of the
2964 * atomic reserve but it avoids a search.
2965 */
2966 if (likely(!alloc_harder))
2967 free_pages -= z->nr_reserved_highatomic;
2968 else
2969 min -= min / 4;
2970
2971 #ifdef CONFIG_CMA
2972 /* If allocation can't use CMA areas don't use free CMA pages */
2973 if (!(alloc_flags & ALLOC_CMA))
2974 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2975 #endif
2976
2977 /*
2978 * Check watermarks for an order-0 allocation request. If these
2979 * are not met, then a high-order request also cannot go ahead
2980 * even if a suitable page happened to be free.
2981 */
2982 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2983 return false;
2984
2985 /* If this is an order-0 request then the watermark is fine */
2986 if (!order)
2987 return true;
2988
2989 /* For a high-order request, check at least one suitable page is free */
2990 for (o = order; o < MAX_ORDER; o++) {
2991 struct free_area *area = &z->free_area[o];
2992 int mt;
2993
2994 if (!area->nr_free)
2995 continue;
2996
2997 if (alloc_harder)
2998 return true;
2999
3000 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3001 if (!list_empty(&area->free_list[mt]))
3002 return true;
3003 }
3004
3005 #ifdef CONFIG_CMA
3006 if ((alloc_flags & ALLOC_CMA) &&
3007 !list_empty(&area->free_list[MIGRATE_CMA])) {
3008 return true;
3009 }
3010 #endif
3011 }
3012 return false;
3013 }
3014
3015 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3016 int classzone_idx, unsigned int alloc_flags)
3017 {
3018 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3019 zone_page_state(z, NR_FREE_PAGES));
3020 }
3021
3022 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3023 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3024 {
3025 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3026 long cma_pages = 0;
3027
3028 #ifdef CONFIG_CMA
3029 /* If allocation can't use CMA areas don't use free CMA pages */
3030 if (!(alloc_flags & ALLOC_CMA))
3031 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3032 #endif
3033
3034 /*
3035 * Fast check for order-0 only. If this fails then the reserves
3036 * need to be calculated. There is a corner case where the check
3037 * passes but only the high-order atomic reserve are free. If
3038 * the caller is !atomic then it'll uselessly search the free
3039 * list. That corner case is then slower but it is harmless.
3040 */
3041 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3042 return true;
3043
3044 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3045 free_pages);
3046 }
3047
3048 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3049 unsigned long mark, int classzone_idx)
3050 {
3051 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3052
3053 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3054 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3055
3056 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3057 free_pages);
3058 }
3059
3060 #ifdef CONFIG_NUMA
3061 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3062 {
3063 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3064 RECLAIM_DISTANCE;
3065 }
3066 #else /* CONFIG_NUMA */
3067 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3068 {
3069 return true;
3070 }
3071 #endif /* CONFIG_NUMA */
3072
3073 /*
3074 * get_page_from_freelist goes through the zonelist trying to allocate
3075 * a page.
3076 */
3077 static struct page *
3078 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3079 const struct alloc_context *ac)
3080 {
3081 struct zoneref *z = ac->preferred_zoneref;
3082 struct zone *zone;
3083 struct pglist_data *last_pgdat_dirty_limit = NULL;
3084
3085 /*
3086 * Scan zonelist, looking for a zone with enough free.
3087 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3088 */
3089 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3090 ac->nodemask) {
3091 struct page *page;
3092 unsigned long mark;
3093
3094 if (cpusets_enabled() &&
3095 (alloc_flags & ALLOC_CPUSET) &&
3096 !__cpuset_zone_allowed(zone, gfp_mask))
3097 continue;
3098 /*
3099 * When allocating a page cache page for writing, we
3100 * want to get it from a node that is within its dirty
3101 * limit, such that no single node holds more than its
3102 * proportional share of globally allowed dirty pages.
3103 * The dirty limits take into account the node's
3104 * lowmem reserves and high watermark so that kswapd
3105 * should be able to balance it without having to
3106 * write pages from its LRU list.
3107 *
3108 * XXX: For now, allow allocations to potentially
3109 * exceed the per-node dirty limit in the slowpath
3110 * (spread_dirty_pages unset) before going into reclaim,
3111 * which is important when on a NUMA setup the allowed
3112 * nodes are together not big enough to reach the
3113 * global limit. The proper fix for these situations
3114 * will require awareness of nodes in the
3115 * dirty-throttling and the flusher threads.
3116 */
3117 if (ac->spread_dirty_pages) {
3118 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3119 continue;
3120
3121 if (!node_dirty_ok(zone->zone_pgdat)) {
3122 last_pgdat_dirty_limit = zone->zone_pgdat;
3123 continue;
3124 }
3125 }
3126
3127 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3128 if (!zone_watermark_fast(zone, order, mark,
3129 ac_classzone_idx(ac), alloc_flags)) {
3130 int ret;
3131
3132 /* Checked here to keep the fast path fast */
3133 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3134 if (alloc_flags & ALLOC_NO_WATERMARKS)
3135 goto try_this_zone;
3136
3137 if (node_reclaim_mode == 0 ||
3138 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3139 continue;
3140
3141 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3142 switch (ret) {
3143 case NODE_RECLAIM_NOSCAN:
3144 /* did not scan */
3145 continue;
3146 case NODE_RECLAIM_FULL:
3147 /* scanned but unreclaimable */
3148 continue;
3149 default:
3150 /* did we reclaim enough */
3151 if (zone_watermark_ok(zone, order, mark,
3152 ac_classzone_idx(ac), alloc_flags))
3153 goto try_this_zone;
3154
3155 continue;
3156 }
3157 }
3158
3159 try_this_zone:
3160 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3161 gfp_mask, alloc_flags, ac->migratetype);
3162 if (page) {
3163 prep_new_page(page, order, gfp_mask, alloc_flags);
3164
3165 /*
3166 * If this is a high-order atomic allocation then check
3167 * if the pageblock should be reserved for the future
3168 */
3169 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3170 reserve_highatomic_pageblock(page, zone, order);
3171
3172 return page;
3173 }
3174 }
3175
3176 return NULL;
3177 }
3178
3179 /*
3180 * Large machines with many possible nodes should not always dump per-node
3181 * meminfo in irq context.
3182 */
3183 static inline bool should_suppress_show_mem(void)
3184 {
3185 bool ret = false;
3186
3187 #if NODES_SHIFT > 8
3188 ret = in_interrupt();
3189 #endif
3190 return ret;
3191 }
3192
3193 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3194 {
3195 unsigned int filter = SHOW_MEM_FILTER_NODES;
3196 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3197
3198 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3199 return;
3200
3201 /*
3202 * This documents exceptions given to allocations in certain
3203 * contexts that are allowed to allocate outside current's set
3204 * of allowed nodes.
3205 */
3206 if (!(gfp_mask & __GFP_NOMEMALLOC))
3207 if (test_thread_flag(TIF_MEMDIE) ||
3208 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3209 filter &= ~SHOW_MEM_FILTER_NODES;
3210 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3211 filter &= ~SHOW_MEM_FILTER_NODES;
3212
3213 show_mem(filter, nodemask);
3214 }
3215
3216 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3217 {
3218 struct va_format vaf;
3219 va_list args;
3220 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3221 DEFAULT_RATELIMIT_BURST);
3222
3223 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3224 return;
3225
3226 pr_warn("%s: ", current->comm);
3227
3228 va_start(args, fmt);
3229 vaf.fmt = fmt;
3230 vaf.va = &args;
3231 pr_cont("%pV", &vaf);
3232 va_end(args);
3233
3234 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3235 if (nodemask)
3236 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3237 else
3238 pr_cont("(null)\n");
3239
3240 cpuset_print_current_mems_allowed();
3241
3242 dump_stack();
3243 warn_alloc_show_mem(gfp_mask, nodemask);
3244 }
3245
3246 static inline struct page *
3247 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3248 unsigned int alloc_flags,
3249 const struct alloc_context *ac)
3250 {
3251 struct page *page;
3252
3253 page = get_page_from_freelist(gfp_mask, order,
3254 alloc_flags|ALLOC_CPUSET, ac);
3255 /*
3256 * fallback to ignore cpuset restriction if our nodes
3257 * are depleted
3258 */
3259 if (!page)
3260 page = get_page_from_freelist(gfp_mask, order,
3261 alloc_flags, ac);
3262
3263 return page;
3264 }
3265
3266 static inline struct page *
3267 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3268 const struct alloc_context *ac, unsigned long *did_some_progress)
3269 {
3270 struct oom_control oc = {
3271 .zonelist = ac->zonelist,
3272 .nodemask = ac->nodemask,
3273 .memcg = NULL,
3274 .gfp_mask = gfp_mask,
3275 .order = order,
3276 };
3277 struct page *page;
3278
3279 *did_some_progress = 0;
3280
3281 /*
3282 * Acquire the oom lock. If that fails, somebody else is
3283 * making progress for us.
3284 */
3285 if (!mutex_trylock(&oom_lock)) {
3286 *did_some_progress = 1;
3287 schedule_timeout_uninterruptible(1);
3288 return NULL;
3289 }
3290
3291 /*
3292 * Go through the zonelist yet one more time, keep very high watermark
3293 * here, this is only to catch a parallel oom killing, we must fail if
3294 * we're still under heavy pressure.
3295 */
3296 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3297 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3298 if (page)
3299 goto out;
3300
3301 /* Coredumps can quickly deplete all memory reserves */
3302 if (current->flags & PF_DUMPCORE)
3303 goto out;
3304 /* The OOM killer will not help higher order allocs */
3305 if (order > PAGE_ALLOC_COSTLY_ORDER)
3306 goto out;
3307 /*
3308 * We have already exhausted all our reclaim opportunities without any
3309 * success so it is time to admit defeat. We will skip the OOM killer
3310 * because it is very likely that the caller has a more reasonable
3311 * fallback than shooting a random task.
3312 */
3313 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3314 goto out;
3315 /* The OOM killer does not needlessly kill tasks for lowmem */
3316 if (ac->high_zoneidx < ZONE_NORMAL)
3317 goto out;
3318 if (pm_suspended_storage())
3319 goto out;
3320 /*
3321 * XXX: GFP_NOFS allocations should rather fail than rely on
3322 * other request to make a forward progress.
3323 * We are in an unfortunate situation where out_of_memory cannot
3324 * do much for this context but let's try it to at least get
3325 * access to memory reserved if the current task is killed (see
3326 * out_of_memory). Once filesystems are ready to handle allocation
3327 * failures more gracefully we should just bail out here.
3328 */
3329
3330 /* The OOM killer may not free memory on a specific node */
3331 if (gfp_mask & __GFP_THISNODE)
3332 goto out;
3333
3334 /* Exhausted what can be done so it's blamo time */
3335 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3336 *did_some_progress = 1;
3337
3338 /*
3339 * Help non-failing allocations by giving them access to memory
3340 * reserves
3341 */
3342 if (gfp_mask & __GFP_NOFAIL)
3343 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3344 ALLOC_NO_WATERMARKS, ac);
3345 }
3346 out:
3347 mutex_unlock(&oom_lock);
3348 return page;
3349 }
3350
3351 /*
3352 * Maximum number of compaction retries wit a progress before OOM
3353 * killer is consider as the only way to move forward.
3354 */
3355 #define MAX_COMPACT_RETRIES 16
3356
3357 #ifdef CONFIG_COMPACTION
3358 /* Try memory compaction for high-order allocations before reclaim */
3359 static struct page *
3360 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3361 unsigned int alloc_flags, const struct alloc_context *ac,
3362 enum compact_priority prio, enum compact_result *compact_result)
3363 {
3364 struct page *page;
3365 unsigned int noreclaim_flag;
3366
3367 if (!order)
3368 return NULL;
3369
3370 noreclaim_flag = memalloc_noreclaim_save();
3371 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3372 prio);
3373 memalloc_noreclaim_restore(noreclaim_flag);
3374
3375 if (*compact_result <= COMPACT_INACTIVE)
3376 return NULL;
3377
3378 /*
3379 * At least in one zone compaction wasn't deferred or skipped, so let's
3380 * count a compaction stall
3381 */
3382 count_vm_event(COMPACTSTALL);
3383
3384 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3385
3386 if (page) {
3387 struct zone *zone = page_zone(page);
3388
3389 zone->compact_blockskip_flush = false;
3390 compaction_defer_reset(zone, order, true);
3391 count_vm_event(COMPACTSUCCESS);
3392 return page;
3393 }
3394
3395 /*
3396 * It's bad if compaction run occurs and fails. The most likely reason
3397 * is that pages exist, but not enough to satisfy watermarks.
3398 */
3399 count_vm_event(COMPACTFAIL);
3400
3401 cond_resched();
3402
3403 return NULL;
3404 }
3405
3406 static inline bool
3407 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3408 enum compact_result compact_result,
3409 enum compact_priority *compact_priority,
3410 int *compaction_retries)
3411 {
3412 int max_retries = MAX_COMPACT_RETRIES;
3413 int min_priority;
3414 bool ret = false;
3415 int retries = *compaction_retries;
3416 enum compact_priority priority = *compact_priority;
3417
3418 if (!order)
3419 return false;
3420
3421 if (compaction_made_progress(compact_result))
3422 (*compaction_retries)++;
3423
3424 /*
3425 * compaction considers all the zone as desperately out of memory
3426 * so it doesn't really make much sense to retry except when the
3427 * failure could be caused by insufficient priority
3428 */
3429 if (compaction_failed(compact_result))
3430 goto check_priority;
3431
3432 /*
3433 * make sure the compaction wasn't deferred or didn't bail out early
3434 * due to locks contention before we declare that we should give up.
3435 * But do not retry if the given zonelist is not suitable for
3436 * compaction.
3437 */
3438 if (compaction_withdrawn(compact_result)) {
3439 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3440 goto out;
3441 }
3442
3443 /*
3444 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3445 * costly ones because they are de facto nofail and invoke OOM
3446 * killer to move on while costly can fail and users are ready
3447 * to cope with that. 1/4 retries is rather arbitrary but we
3448 * would need much more detailed feedback from compaction to
3449 * make a better decision.
3450 */
3451 if (order > PAGE_ALLOC_COSTLY_ORDER)
3452 max_retries /= 4;
3453 if (*compaction_retries <= max_retries) {
3454 ret = true;
3455 goto out;
3456 }
3457
3458 /*
3459 * Make sure there are attempts at the highest priority if we exhausted
3460 * all retries or failed at the lower priorities.
3461 */
3462 check_priority:
3463 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3464 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3465
3466 if (*compact_priority > min_priority) {
3467 (*compact_priority)--;
3468 *compaction_retries = 0;
3469 ret = true;
3470 }
3471 out:
3472 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3473 return ret;
3474 }
3475 #else
3476 static inline struct page *
3477 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3478 unsigned int alloc_flags, const struct alloc_context *ac,
3479 enum compact_priority prio, enum compact_result *compact_result)
3480 {
3481 *compact_result = COMPACT_SKIPPED;
3482 return NULL;
3483 }
3484
3485 static inline bool
3486 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3487 enum compact_result compact_result,
3488 enum compact_priority *compact_priority,
3489 int *compaction_retries)
3490 {
3491 struct zone *zone;
3492 struct zoneref *z;
3493
3494 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3495 return false;
3496
3497 /*
3498 * There are setups with compaction disabled which would prefer to loop
3499 * inside the allocator rather than hit the oom killer prematurely.
3500 * Let's give them a good hope and keep retrying while the order-0
3501 * watermarks are OK.
3502 */
3503 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3504 ac->nodemask) {
3505 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3506 ac_classzone_idx(ac), alloc_flags))
3507 return true;
3508 }
3509 return false;
3510 }
3511 #endif /* CONFIG_COMPACTION */
3512
3513 /* Perform direct synchronous page reclaim */
3514 static int
3515 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3516 const struct alloc_context *ac)
3517 {
3518 struct reclaim_state reclaim_state;
3519 int progress;
3520 unsigned int noreclaim_flag;
3521
3522 cond_resched();
3523
3524 /* We now go into synchronous reclaim */
3525 cpuset_memory_pressure_bump();
3526 noreclaim_flag = memalloc_noreclaim_save();
3527 lockdep_set_current_reclaim_state(gfp_mask);
3528 reclaim_state.reclaimed_slab = 0;
3529 current->reclaim_state = &reclaim_state;
3530
3531 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3532 ac->nodemask);
3533
3534 current->reclaim_state = NULL;
3535 lockdep_clear_current_reclaim_state();
3536 memalloc_noreclaim_restore(noreclaim_flag);
3537
3538 cond_resched();
3539
3540 return progress;
3541 }
3542
3543 /* The really slow allocator path where we enter direct reclaim */
3544 static inline struct page *
3545 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3546 unsigned int alloc_flags, const struct alloc_context *ac,
3547 unsigned long *did_some_progress)
3548 {
3549 struct page *page = NULL;
3550 bool drained = false;
3551
3552 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3553 if (unlikely(!(*did_some_progress)))
3554 return NULL;
3555
3556 retry:
3557 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3558
3559 /*
3560 * If an allocation failed after direct reclaim, it could be because
3561 * pages are pinned on the per-cpu lists or in high alloc reserves.
3562 * Shrink them them and try again
3563 */
3564 if (!page && !drained) {
3565 unreserve_highatomic_pageblock(ac, false);
3566 drain_all_pages(NULL);
3567 drained = true;
3568 goto retry;
3569 }
3570
3571 return page;
3572 }
3573
3574 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3575 {
3576 struct zoneref *z;
3577 struct zone *zone;
3578 pg_data_t *last_pgdat = NULL;
3579
3580 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3581 ac->high_zoneidx, ac->nodemask) {
3582 if (last_pgdat != zone->zone_pgdat)
3583 wakeup_kswapd(zone, order, ac->high_zoneidx);
3584 last_pgdat = zone->zone_pgdat;
3585 }
3586 }
3587
3588 static inline unsigned int
3589 gfp_to_alloc_flags(gfp_t gfp_mask)
3590 {
3591 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3592
3593 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3594 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3595
3596 /*
3597 * The caller may dip into page reserves a bit more if the caller
3598 * cannot run direct reclaim, or if the caller has realtime scheduling
3599 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3600 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3601 */
3602 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3603
3604 if (gfp_mask & __GFP_ATOMIC) {
3605 /*
3606 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3607 * if it can't schedule.
3608 */
3609 if (!(gfp_mask & __GFP_NOMEMALLOC))
3610 alloc_flags |= ALLOC_HARDER;
3611 /*
3612 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3613 * comment for __cpuset_node_allowed().
3614 */
3615 alloc_flags &= ~ALLOC_CPUSET;
3616 } else if (unlikely(rt_task(current)) && !in_interrupt())
3617 alloc_flags |= ALLOC_HARDER;
3618
3619 #ifdef CONFIG_CMA
3620 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3621 alloc_flags |= ALLOC_CMA;
3622 #endif
3623 return alloc_flags;
3624 }
3625
3626 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3627 {
3628 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3629 return false;
3630
3631 if (gfp_mask & __GFP_MEMALLOC)
3632 return true;
3633 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3634 return true;
3635 if (!in_interrupt() &&
3636 ((current->flags & PF_MEMALLOC) ||
3637 unlikely(test_thread_flag(TIF_MEMDIE))))
3638 return true;
3639
3640 return false;
3641 }
3642
3643 /*
3644 * Checks whether it makes sense to retry the reclaim to make a forward progress
3645 * for the given allocation request.
3646 *
3647 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3648 * without success, or when we couldn't even meet the watermark if we
3649 * reclaimed all remaining pages on the LRU lists.
3650 *
3651 * Returns true if a retry is viable or false to enter the oom path.
3652 */
3653 static inline bool
3654 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3655 struct alloc_context *ac, int alloc_flags,
3656 bool did_some_progress, int *no_progress_loops)
3657 {
3658 struct zone *zone;
3659 struct zoneref *z;
3660
3661 /*
3662 * Costly allocations might have made a progress but this doesn't mean
3663 * their order will become available due to high fragmentation so
3664 * always increment the no progress counter for them
3665 */
3666 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3667 *no_progress_loops = 0;
3668 else
3669 (*no_progress_loops)++;
3670
3671 /*
3672 * Make sure we converge to OOM if we cannot make any progress
3673 * several times in the row.
3674 */
3675 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3676 /* Before OOM, exhaust highatomic_reserve */
3677 return unreserve_highatomic_pageblock(ac, true);
3678 }
3679
3680 /*
3681 * Keep reclaiming pages while there is a chance this will lead
3682 * somewhere. If none of the target zones can satisfy our allocation
3683 * request even if all reclaimable pages are considered then we are
3684 * screwed and have to go OOM.
3685 */
3686 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3687 ac->nodemask) {
3688 unsigned long available;
3689 unsigned long reclaimable;
3690 unsigned long min_wmark = min_wmark_pages(zone);
3691 bool wmark;
3692
3693 available = reclaimable = zone_reclaimable_pages(zone);
3694 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3695
3696 /*
3697 * Would the allocation succeed if we reclaimed all
3698 * reclaimable pages?
3699 */
3700 wmark = __zone_watermark_ok(zone, order, min_wmark,
3701 ac_classzone_idx(ac), alloc_flags, available);
3702 trace_reclaim_retry_zone(z, order, reclaimable,
3703 available, min_wmark, *no_progress_loops, wmark);
3704 if (wmark) {
3705 /*
3706 * If we didn't make any progress and have a lot of
3707 * dirty + writeback pages then we should wait for
3708 * an IO to complete to slow down the reclaim and
3709 * prevent from pre mature OOM
3710 */
3711 if (!did_some_progress) {
3712 unsigned long write_pending;
3713
3714 write_pending = zone_page_state_snapshot(zone,
3715 NR_ZONE_WRITE_PENDING);
3716
3717 if (2 * write_pending > reclaimable) {
3718 congestion_wait(BLK_RW_ASYNC, HZ/10);
3719 return true;
3720 }
3721 }
3722
3723 /*
3724 * Memory allocation/reclaim might be called from a WQ
3725 * context and the current implementation of the WQ
3726 * concurrency control doesn't recognize that
3727 * a particular WQ is congested if the worker thread is
3728 * looping without ever sleeping. Therefore we have to
3729 * do a short sleep here rather than calling
3730 * cond_resched().
3731 */
3732 if (current->flags & PF_WQ_WORKER)
3733 schedule_timeout_uninterruptible(1);
3734 else
3735 cond_resched();
3736
3737 return true;
3738 }
3739 }
3740
3741 return false;
3742 }
3743
3744 static inline bool
3745 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3746 {
3747 /*
3748 * It's possible that cpuset's mems_allowed and the nodemask from
3749 * mempolicy don't intersect. This should be normally dealt with by
3750 * policy_nodemask(), but it's possible to race with cpuset update in
3751 * such a way the check therein was true, and then it became false
3752 * before we got our cpuset_mems_cookie here.
3753 * This assumes that for all allocations, ac->nodemask can come only
3754 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3755 * when it does not intersect with the cpuset restrictions) or the
3756 * caller can deal with a violated nodemask.
3757 */
3758 if (cpusets_enabled() && ac->nodemask &&
3759 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3760 ac->nodemask = NULL;
3761 return true;
3762 }
3763
3764 /*
3765 * When updating a task's mems_allowed or mempolicy nodemask, it is
3766 * possible to race with parallel threads in such a way that our
3767 * allocation can fail while the mask is being updated. If we are about
3768 * to fail, check if the cpuset changed during allocation and if so,
3769 * retry.
3770 */
3771 if (read_mems_allowed_retry(cpuset_mems_cookie))
3772 return true;
3773
3774 return false;
3775 }
3776
3777 static inline struct page *
3778 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3779 struct alloc_context *ac)
3780 {
3781 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3782 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3783 struct page *page = NULL;
3784 unsigned int alloc_flags;
3785 unsigned long did_some_progress;
3786 enum compact_priority compact_priority;
3787 enum compact_result compact_result;
3788 int compaction_retries;
3789 int no_progress_loops;
3790 unsigned long alloc_start = jiffies;
3791 unsigned int stall_timeout = 10 * HZ;
3792 unsigned int cpuset_mems_cookie;
3793
3794 /*
3795 * In the slowpath, we sanity check order to avoid ever trying to
3796 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3797 * be using allocators in order of preference for an area that is
3798 * too large.
3799 */
3800 if (order >= MAX_ORDER) {
3801 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3802 return NULL;
3803 }
3804
3805 /*
3806 * We also sanity check to catch abuse of atomic reserves being used by
3807 * callers that are not in atomic context.
3808 */
3809 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3810 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3811 gfp_mask &= ~__GFP_ATOMIC;
3812
3813 retry_cpuset:
3814 compaction_retries = 0;
3815 no_progress_loops = 0;
3816 compact_priority = DEF_COMPACT_PRIORITY;
3817 cpuset_mems_cookie = read_mems_allowed_begin();
3818
3819 /*
3820 * The fast path uses conservative alloc_flags to succeed only until
3821 * kswapd needs to be woken up, and to avoid the cost of setting up
3822 * alloc_flags precisely. So we do that now.
3823 */
3824 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3825
3826 /*
3827 * We need to recalculate the starting point for the zonelist iterator
3828 * because we might have used different nodemask in the fast path, or
3829 * there was a cpuset modification and we are retrying - otherwise we
3830 * could end up iterating over non-eligible zones endlessly.
3831 */
3832 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3833 ac->high_zoneidx, ac->nodemask);
3834 if (!ac->preferred_zoneref->zone)
3835 goto nopage;
3836
3837 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3838 wake_all_kswapds(order, ac);
3839
3840 /*
3841 * The adjusted alloc_flags might result in immediate success, so try
3842 * that first
3843 */
3844 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3845 if (page)
3846 goto got_pg;
3847
3848 /*
3849 * For costly allocations, try direct compaction first, as it's likely
3850 * that we have enough base pages and don't need to reclaim. For non-
3851 * movable high-order allocations, do that as well, as compaction will
3852 * try prevent permanent fragmentation by migrating from blocks of the
3853 * same migratetype.
3854 * Don't try this for allocations that are allowed to ignore
3855 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3856 */
3857 if (can_direct_reclaim &&
3858 (costly_order ||
3859 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3860 && !gfp_pfmemalloc_allowed(gfp_mask)) {
3861 page = __alloc_pages_direct_compact(gfp_mask, order,
3862 alloc_flags, ac,
3863 INIT_COMPACT_PRIORITY,
3864 &compact_result);
3865 if (page)
3866 goto got_pg;
3867
3868 /*
3869 * Checks for costly allocations with __GFP_NORETRY, which
3870 * includes THP page fault allocations
3871 */
3872 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3873 /*
3874 * If compaction is deferred for high-order allocations,
3875 * it is because sync compaction recently failed. If
3876 * this is the case and the caller requested a THP
3877 * allocation, we do not want to heavily disrupt the
3878 * system, so we fail the allocation instead of entering
3879 * direct reclaim.
3880 */
3881 if (compact_result == COMPACT_DEFERRED)
3882 goto nopage;
3883
3884 /*
3885 * Looks like reclaim/compaction is worth trying, but
3886 * sync compaction could be very expensive, so keep
3887 * using async compaction.
3888 */
3889 compact_priority = INIT_COMPACT_PRIORITY;
3890 }
3891 }
3892
3893 retry:
3894 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3895 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3896 wake_all_kswapds(order, ac);
3897
3898 if (gfp_pfmemalloc_allowed(gfp_mask))
3899 alloc_flags = ALLOC_NO_WATERMARKS;
3900
3901 /*
3902 * Reset the zonelist iterators if memory policies can be ignored.
3903 * These allocations are high priority and system rather than user
3904 * orientated.
3905 */
3906 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3907 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3908 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3909 ac->high_zoneidx, ac->nodemask);
3910 }
3911
3912 /* Attempt with potentially adjusted zonelist and alloc_flags */
3913 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3914 if (page)
3915 goto got_pg;
3916
3917 /* Caller is not willing to reclaim, we can't balance anything */
3918 if (!can_direct_reclaim)
3919 goto nopage;
3920
3921 /* Make sure we know about allocations which stall for too long */
3922 if (time_after(jiffies, alloc_start + stall_timeout)) {
3923 warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
3924 "page allocation stalls for %ums, order:%u",
3925 jiffies_to_msecs(jiffies-alloc_start), order);
3926 stall_timeout += 10 * HZ;
3927 }
3928
3929 /* Avoid recursion of direct reclaim */
3930 if (current->flags & PF_MEMALLOC)
3931 goto nopage;
3932
3933 /* Try direct reclaim and then allocating */
3934 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3935 &did_some_progress);
3936 if (page)
3937 goto got_pg;
3938
3939 /* Try direct compaction and then allocating */
3940 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3941 compact_priority, &compact_result);
3942 if (page)
3943 goto got_pg;
3944
3945 /* Do not loop if specifically requested */
3946 if (gfp_mask & __GFP_NORETRY)
3947 goto nopage;
3948
3949 /*
3950 * Do not retry costly high order allocations unless they are
3951 * __GFP_RETRY_MAYFAIL
3952 */
3953 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
3954 goto nopage;
3955
3956 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3957 did_some_progress > 0, &no_progress_loops))
3958 goto retry;
3959
3960 /*
3961 * It doesn't make any sense to retry for the compaction if the order-0
3962 * reclaim is not able to make any progress because the current
3963 * implementation of the compaction depends on the sufficient amount
3964 * of free memory (see __compaction_suitable)
3965 */
3966 if (did_some_progress > 0 &&
3967 should_compact_retry(ac, order, alloc_flags,
3968 compact_result, &compact_priority,
3969 &compaction_retries))
3970 goto retry;
3971
3972
3973 /* Deal with possible cpuset update races before we start OOM killing */
3974 if (check_retry_cpuset(cpuset_mems_cookie, ac))
3975 goto retry_cpuset;
3976
3977 /* Reclaim has failed us, start killing things */
3978 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3979 if (page)
3980 goto got_pg;
3981
3982 /* Avoid allocations with no watermarks from looping endlessly */
3983 if (test_thread_flag(TIF_MEMDIE) &&
3984 (alloc_flags == ALLOC_NO_WATERMARKS ||
3985 (gfp_mask & __GFP_NOMEMALLOC)))
3986 goto nopage;
3987
3988 /* Retry as long as the OOM killer is making progress */
3989 if (did_some_progress) {
3990 no_progress_loops = 0;
3991 goto retry;
3992 }
3993
3994 nopage:
3995 /* Deal with possible cpuset update races before we fail */
3996 if (check_retry_cpuset(cpuset_mems_cookie, ac))
3997 goto retry_cpuset;
3998
3999 /*
4000 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4001 * we always retry
4002 */
4003 if (gfp_mask & __GFP_NOFAIL) {
4004 /*
4005 * All existing users of the __GFP_NOFAIL are blockable, so warn
4006 * of any new users that actually require GFP_NOWAIT
4007 */
4008 if (WARN_ON_ONCE(!can_direct_reclaim))
4009 goto fail;
4010
4011 /*
4012 * PF_MEMALLOC request from this context is rather bizarre
4013 * because we cannot reclaim anything and only can loop waiting
4014 * for somebody to do a work for us
4015 */
4016 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4017
4018 /*
4019 * non failing costly orders are a hard requirement which we
4020 * are not prepared for much so let's warn about these users
4021 * so that we can identify them and convert them to something
4022 * else.
4023 */
4024 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4025
4026 /*
4027 * Help non-failing allocations by giving them access to memory
4028 * reserves but do not use ALLOC_NO_WATERMARKS because this
4029 * could deplete whole memory reserves which would just make
4030 * the situation worse
4031 */
4032 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4033 if (page)
4034 goto got_pg;
4035
4036 cond_resched();
4037 goto retry;
4038 }
4039 fail:
4040 warn_alloc(gfp_mask, ac->nodemask,
4041 "page allocation failure: order:%u", order);
4042 got_pg:
4043 return page;
4044 }
4045
4046 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4047 int preferred_nid, nodemask_t *nodemask,
4048 struct alloc_context *ac, gfp_t *alloc_mask,
4049 unsigned int *alloc_flags)
4050 {
4051 ac->high_zoneidx = gfp_zone(gfp_mask);
4052 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4053 ac->nodemask = nodemask;
4054 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4055
4056 if (cpusets_enabled()) {
4057 *alloc_mask |= __GFP_HARDWALL;
4058 if (!ac->nodemask)
4059 ac->nodemask = &cpuset_current_mems_allowed;
4060 else
4061 *alloc_flags |= ALLOC_CPUSET;
4062 }
4063
4064 lockdep_trace_alloc(gfp_mask);
4065
4066 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4067
4068 if (should_fail_alloc_page(gfp_mask, order))
4069 return false;
4070
4071 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4072 *alloc_flags |= ALLOC_CMA;
4073
4074 return true;
4075 }
4076
4077 /* Determine whether to spread dirty pages and what the first usable zone */
4078 static inline void finalise_ac(gfp_t gfp_mask,
4079 unsigned int order, struct alloc_context *ac)
4080 {
4081 /* Dirty zone balancing only done in the fast path */
4082 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4083
4084 /*
4085 * The preferred zone is used for statistics but crucially it is
4086 * also used as the starting point for the zonelist iterator. It
4087 * may get reset for allocations that ignore memory policies.
4088 */
4089 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4090 ac->high_zoneidx, ac->nodemask);
4091 }
4092
4093 /*
4094 * This is the 'heart' of the zoned buddy allocator.
4095 */
4096 struct page *
4097 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4098 nodemask_t *nodemask)
4099 {
4100 struct page *page;
4101 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4102 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
4103 struct alloc_context ac = { };
4104
4105 gfp_mask &= gfp_allowed_mask;
4106 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4107 return NULL;
4108
4109 finalise_ac(gfp_mask, order, &ac);
4110
4111 /* First allocation attempt */
4112 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4113 if (likely(page))
4114 goto out;
4115
4116 /*
4117 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4118 * resp. GFP_NOIO which has to be inherited for all allocation requests
4119 * from a particular context which has been marked by
4120 * memalloc_no{fs,io}_{save,restore}.
4121 */
4122 alloc_mask = current_gfp_context(gfp_mask);
4123 ac.spread_dirty_pages = false;
4124
4125 /*
4126 * Restore the original nodemask if it was potentially replaced with
4127 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4128 */
4129 if (unlikely(ac.nodemask != nodemask))
4130 ac.nodemask = nodemask;
4131
4132 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4133
4134 out:
4135 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4136 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4137 __free_pages(page, order);
4138 page = NULL;
4139 }
4140
4141 if (kmemcheck_enabled && page)
4142 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
4143
4144 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4145
4146 return page;
4147 }
4148 EXPORT_SYMBOL(__alloc_pages_nodemask);
4149
4150 /*
4151 * Common helper functions.
4152 */
4153 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4154 {
4155 struct page *page;
4156
4157 /*
4158 * __get_free_pages() returns a 32-bit address, which cannot represent
4159 * a highmem page
4160 */
4161 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4162
4163 page = alloc_pages(gfp_mask, order);
4164 if (!page)
4165 return 0;
4166 return (unsigned long) page_address(page);
4167 }
4168 EXPORT_SYMBOL(__get_free_pages);
4169
4170 unsigned long get_zeroed_page(gfp_t gfp_mask)
4171 {
4172 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4173 }
4174 EXPORT_SYMBOL(get_zeroed_page);
4175
4176 void __free_pages(struct page *page, unsigned int order)
4177 {
4178 if (put_page_testzero(page)) {
4179 if (order == 0)
4180 free_hot_cold_page(page, false);
4181 else
4182 __free_pages_ok(page, order);
4183 }
4184 }
4185
4186 EXPORT_SYMBOL(__free_pages);
4187
4188 void free_pages(unsigned long addr, unsigned int order)
4189 {
4190 if (addr != 0) {
4191 VM_BUG_ON(!virt_addr_valid((void *)addr));
4192 __free_pages(virt_to_page((void *)addr), order);
4193 }
4194 }
4195
4196 EXPORT_SYMBOL(free_pages);
4197
4198 /*
4199 * Page Fragment:
4200 * An arbitrary-length arbitrary-offset area of memory which resides
4201 * within a 0 or higher order page. Multiple fragments within that page
4202 * are individually refcounted, in the page's reference counter.
4203 *
4204 * The page_frag functions below provide a simple allocation framework for
4205 * page fragments. This is used by the network stack and network device
4206 * drivers to provide a backing region of memory for use as either an
4207 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4208 */
4209 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4210 gfp_t gfp_mask)
4211 {
4212 struct page *page = NULL;
4213 gfp_t gfp = gfp_mask;
4214
4215 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4216 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4217 __GFP_NOMEMALLOC;
4218 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4219 PAGE_FRAG_CACHE_MAX_ORDER);
4220 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4221 #endif
4222 if (unlikely(!page))
4223 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4224
4225 nc->va = page ? page_address(page) : NULL;
4226
4227 return page;
4228 }
4229
4230 void __page_frag_cache_drain(struct page *page, unsigned int count)
4231 {
4232 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4233
4234 if (page_ref_sub_and_test(page, count)) {
4235 unsigned int order = compound_order(page);
4236
4237 if (order == 0)
4238 free_hot_cold_page(page, false);
4239 else
4240 __free_pages_ok(page, order);
4241 }
4242 }
4243 EXPORT_SYMBOL(__page_frag_cache_drain);
4244
4245 void *page_frag_alloc(struct page_frag_cache *nc,
4246 unsigned int fragsz, gfp_t gfp_mask)
4247 {
4248 unsigned int size = PAGE_SIZE;
4249 struct page *page;
4250 int offset;
4251
4252 if (unlikely(!nc->va)) {
4253 refill:
4254 page = __page_frag_cache_refill(nc, gfp_mask);
4255 if (!page)
4256 return NULL;
4257
4258 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4259 /* if size can vary use size else just use PAGE_SIZE */
4260 size = nc->size;
4261 #endif
4262 /* Even if we own the page, we do not use atomic_set().
4263 * This would break get_page_unless_zero() users.
4264 */
4265 page_ref_add(page, size - 1);
4266
4267 /* reset page count bias and offset to start of new frag */
4268 nc->pfmemalloc = page_is_pfmemalloc(page);
4269 nc->pagecnt_bias = size;
4270 nc->offset = size;
4271 }
4272
4273 offset = nc->offset - fragsz;
4274 if (unlikely(offset < 0)) {
4275 page = virt_to_page(nc->va);
4276
4277 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4278 goto refill;
4279
4280 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4281 /* if size can vary use size else just use PAGE_SIZE */
4282 size = nc->size;
4283 #endif
4284 /* OK, page count is 0, we can safely set it */
4285 set_page_count(page, size);
4286
4287 /* reset page count bias and offset to start of new frag */
4288 nc->pagecnt_bias = size;
4289 offset = size - fragsz;
4290 }
4291
4292 nc->pagecnt_bias--;
4293 nc->offset = offset;
4294
4295 return nc->va + offset;
4296 }
4297 EXPORT_SYMBOL(page_frag_alloc);
4298
4299 /*
4300 * Frees a page fragment allocated out of either a compound or order 0 page.
4301 */
4302 void page_frag_free(void *addr)
4303 {
4304 struct page *page = virt_to_head_page(addr);
4305
4306 if (unlikely(put_page_testzero(page)))
4307 __free_pages_ok(page, compound_order(page));
4308 }
4309 EXPORT_SYMBOL(page_frag_free);
4310
4311 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4312 size_t size)
4313 {
4314 if (addr) {
4315 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4316 unsigned long used = addr + PAGE_ALIGN(size);
4317
4318 split_page(virt_to_page((void *)addr), order);
4319 while (used < alloc_end) {
4320 free_page(used);
4321 used += PAGE_SIZE;
4322 }
4323 }
4324 return (void *)addr;
4325 }
4326
4327 /**
4328 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4329 * @size: the number of bytes to allocate
4330 * @gfp_mask: GFP flags for the allocation
4331 *
4332 * This function is similar to alloc_pages(), except that it allocates the
4333 * minimum number of pages to satisfy the request. alloc_pages() can only
4334 * allocate memory in power-of-two pages.
4335 *
4336 * This function is also limited by MAX_ORDER.
4337 *
4338 * Memory allocated by this function must be released by free_pages_exact().
4339 */
4340 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4341 {
4342 unsigned int order = get_order(size);
4343 unsigned long addr;
4344
4345 addr = __get_free_pages(gfp_mask, order);
4346 return make_alloc_exact(addr, order, size);
4347 }
4348 EXPORT_SYMBOL(alloc_pages_exact);
4349
4350 /**
4351 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4352 * pages on a node.
4353 * @nid: the preferred node ID where memory should be allocated
4354 * @size: the number of bytes to allocate
4355 * @gfp_mask: GFP flags for the allocation
4356 *
4357 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4358 * back.
4359 */
4360 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4361 {
4362 unsigned int order = get_order(size);
4363 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4364 if (!p)
4365 return NULL;
4366 return make_alloc_exact((unsigned long)page_address(p), order, size);
4367 }
4368
4369 /**
4370 * free_pages_exact - release memory allocated via alloc_pages_exact()
4371 * @virt: the value returned by alloc_pages_exact.
4372 * @size: size of allocation, same value as passed to alloc_pages_exact().
4373 *
4374 * Release the memory allocated by a previous call to alloc_pages_exact.
4375 */
4376 void free_pages_exact(void *virt, size_t size)
4377 {
4378 unsigned long addr = (unsigned long)virt;
4379 unsigned long end = addr + PAGE_ALIGN(size);
4380
4381 while (addr < end) {
4382 free_page(addr);
4383 addr += PAGE_SIZE;
4384 }
4385 }
4386 EXPORT_SYMBOL(free_pages_exact);
4387
4388 /**
4389 * nr_free_zone_pages - count number of pages beyond high watermark
4390 * @offset: The zone index of the highest zone
4391 *
4392 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4393 * high watermark within all zones at or below a given zone index. For each
4394 * zone, the number of pages is calculated as:
4395 *
4396 * nr_free_zone_pages = managed_pages - high_pages
4397 */
4398 static unsigned long nr_free_zone_pages(int offset)
4399 {
4400 struct zoneref *z;
4401 struct zone *zone;
4402
4403 /* Just pick one node, since fallback list is circular */
4404 unsigned long sum = 0;
4405
4406 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4407
4408 for_each_zone_zonelist(zone, z, zonelist, offset) {
4409 unsigned long size = zone->managed_pages;
4410 unsigned long high = high_wmark_pages(zone);
4411 if (size > high)
4412 sum += size - high;
4413 }
4414
4415 return sum;
4416 }
4417
4418 /**
4419 * nr_free_buffer_pages - count number of pages beyond high watermark
4420 *
4421 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4422 * watermark within ZONE_DMA and ZONE_NORMAL.
4423 */
4424 unsigned long nr_free_buffer_pages(void)
4425 {
4426 return nr_free_zone_pages(gfp_zone(GFP_USER));
4427 }
4428 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4429
4430 /**
4431 * nr_free_pagecache_pages - count number of pages beyond high watermark
4432 *
4433 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4434 * high watermark within all zones.
4435 */
4436 unsigned long nr_free_pagecache_pages(void)
4437 {
4438 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4439 }
4440
4441 static inline void show_node(struct zone *zone)
4442 {
4443 if (IS_ENABLED(CONFIG_NUMA))
4444 printk("Node %d ", zone_to_nid(zone));
4445 }
4446
4447 long si_mem_available(void)
4448 {
4449 long available;
4450 unsigned long pagecache;
4451 unsigned long wmark_low = 0;
4452 unsigned long pages[NR_LRU_LISTS];
4453 struct zone *zone;
4454 int lru;
4455
4456 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4457 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4458
4459 for_each_zone(zone)
4460 wmark_low += zone->watermark[WMARK_LOW];
4461
4462 /*
4463 * Estimate the amount of memory available for userspace allocations,
4464 * without causing swapping.
4465 */
4466 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4467
4468 /*
4469 * Not all the page cache can be freed, otherwise the system will
4470 * start swapping. Assume at least half of the page cache, or the
4471 * low watermark worth of cache, needs to stay.
4472 */
4473 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4474 pagecache -= min(pagecache / 2, wmark_low);
4475 available += pagecache;
4476
4477 /*
4478 * Part of the reclaimable slab consists of items that are in use,
4479 * and cannot be freed. Cap this estimate at the low watermark.
4480 */
4481 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4482 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4483 wmark_low);
4484
4485 if (available < 0)
4486 available = 0;
4487 return available;
4488 }
4489 EXPORT_SYMBOL_GPL(si_mem_available);
4490
4491 void si_meminfo(struct sysinfo *val)
4492 {
4493 val->totalram = totalram_pages;
4494 val->sharedram = global_node_page_state(NR_SHMEM);
4495 val->freeram = global_page_state(NR_FREE_PAGES);
4496 val->bufferram = nr_blockdev_pages();
4497 val->totalhigh = totalhigh_pages;
4498 val->freehigh = nr_free_highpages();
4499 val->mem_unit = PAGE_SIZE;
4500 }
4501
4502 EXPORT_SYMBOL(si_meminfo);
4503
4504 #ifdef CONFIG_NUMA
4505 void si_meminfo_node(struct sysinfo *val, int nid)
4506 {
4507 int zone_type; /* needs to be signed */
4508 unsigned long managed_pages = 0;
4509 unsigned long managed_highpages = 0;
4510 unsigned long free_highpages = 0;
4511 pg_data_t *pgdat = NODE_DATA(nid);
4512
4513 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4514 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4515 val->totalram = managed_pages;
4516 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4517 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4518 #ifdef CONFIG_HIGHMEM
4519 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4520 struct zone *zone = &pgdat->node_zones[zone_type];
4521
4522 if (is_highmem(zone)) {
4523 managed_highpages += zone->managed_pages;
4524 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4525 }
4526 }
4527 val->totalhigh = managed_highpages;
4528 val->freehigh = free_highpages;
4529 #else
4530 val->totalhigh = managed_highpages;
4531 val->freehigh = free_highpages;
4532 #endif
4533 val->mem_unit = PAGE_SIZE;
4534 }
4535 #endif
4536
4537 /*
4538 * Determine whether the node should be displayed or not, depending on whether
4539 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4540 */
4541 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4542 {
4543 if (!(flags & SHOW_MEM_FILTER_NODES))
4544 return false;
4545
4546 /*
4547 * no node mask - aka implicit memory numa policy. Do not bother with
4548 * the synchronization - read_mems_allowed_begin - because we do not
4549 * have to be precise here.
4550 */
4551 if (!nodemask)
4552 nodemask = &cpuset_current_mems_allowed;
4553
4554 return !node_isset(nid, *nodemask);
4555 }
4556
4557 #define K(x) ((x) << (PAGE_SHIFT-10))
4558
4559 static void show_migration_types(unsigned char type)
4560 {
4561 static const char types[MIGRATE_TYPES] = {
4562 [MIGRATE_UNMOVABLE] = 'U',
4563 [MIGRATE_MOVABLE] = 'M',
4564 [MIGRATE_RECLAIMABLE] = 'E',
4565 [MIGRATE_HIGHATOMIC] = 'H',
4566 #ifdef CONFIG_CMA
4567 [MIGRATE_CMA] = 'C',
4568 #endif
4569 #ifdef CONFIG_MEMORY_ISOLATION
4570 [MIGRATE_ISOLATE] = 'I',
4571 #endif
4572 };
4573 char tmp[MIGRATE_TYPES + 1];
4574 char *p = tmp;
4575 int i;
4576
4577 for (i = 0; i < MIGRATE_TYPES; i++) {
4578 if (type & (1 << i))
4579 *p++ = types[i];
4580 }
4581
4582 *p = '\0';
4583 printk(KERN_CONT "(%s) ", tmp);
4584 }
4585
4586 /*
4587 * Show free area list (used inside shift_scroll-lock stuff)
4588 * We also calculate the percentage fragmentation. We do this by counting the
4589 * memory on each free list with the exception of the first item on the list.
4590 *
4591 * Bits in @filter:
4592 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4593 * cpuset.
4594 */
4595 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4596 {
4597 unsigned long free_pcp = 0;
4598 int cpu;
4599 struct zone *zone;
4600 pg_data_t *pgdat;
4601
4602 for_each_populated_zone(zone) {
4603 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4604 continue;
4605
4606 for_each_online_cpu(cpu)
4607 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4608 }
4609
4610 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4611 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4612 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4613 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4614 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4615 " free:%lu free_pcp:%lu free_cma:%lu\n",
4616 global_node_page_state(NR_ACTIVE_ANON),
4617 global_node_page_state(NR_INACTIVE_ANON),
4618 global_node_page_state(NR_ISOLATED_ANON),
4619 global_node_page_state(NR_ACTIVE_FILE),
4620 global_node_page_state(NR_INACTIVE_FILE),
4621 global_node_page_state(NR_ISOLATED_FILE),
4622 global_node_page_state(NR_UNEVICTABLE),
4623 global_node_page_state(NR_FILE_DIRTY),
4624 global_node_page_state(NR_WRITEBACK),
4625 global_node_page_state(NR_UNSTABLE_NFS),
4626 global_node_page_state(NR_SLAB_RECLAIMABLE),
4627 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4628 global_node_page_state(NR_FILE_MAPPED),
4629 global_node_page_state(NR_SHMEM),
4630 global_page_state(NR_PAGETABLE),
4631 global_page_state(NR_BOUNCE),
4632 global_page_state(NR_FREE_PAGES),
4633 free_pcp,
4634 global_page_state(NR_FREE_CMA_PAGES));
4635
4636 for_each_online_pgdat(pgdat) {
4637 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4638 continue;
4639
4640 printk("Node %d"
4641 " active_anon:%lukB"
4642 " inactive_anon:%lukB"
4643 " active_file:%lukB"
4644 " inactive_file:%lukB"
4645 " unevictable:%lukB"
4646 " isolated(anon):%lukB"
4647 " isolated(file):%lukB"
4648 " mapped:%lukB"
4649 " dirty:%lukB"
4650 " writeback:%lukB"
4651 " shmem:%lukB"
4652 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4653 " shmem_thp: %lukB"
4654 " shmem_pmdmapped: %lukB"
4655 " anon_thp: %lukB"
4656 #endif
4657 " writeback_tmp:%lukB"
4658 " unstable:%lukB"
4659 " all_unreclaimable? %s"
4660 "\n",
4661 pgdat->node_id,
4662 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4663 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4664 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4665 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4666 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4667 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4668 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4669 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4670 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4671 K(node_page_state(pgdat, NR_WRITEBACK)),
4672 K(node_page_state(pgdat, NR_SHMEM)),
4673 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4674 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4675 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4676 * HPAGE_PMD_NR),
4677 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4678 #endif
4679 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4680 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4681 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4682 "yes" : "no");
4683 }
4684
4685 for_each_populated_zone(zone) {
4686 int i;
4687
4688 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4689 continue;
4690
4691 free_pcp = 0;
4692 for_each_online_cpu(cpu)
4693 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4694
4695 show_node(zone);
4696 printk(KERN_CONT
4697 "%s"
4698 " free:%lukB"
4699 " min:%lukB"
4700 " low:%lukB"
4701 " high:%lukB"
4702 " active_anon:%lukB"
4703 " inactive_anon:%lukB"
4704 " active_file:%lukB"
4705 " inactive_file:%lukB"
4706 " unevictable:%lukB"
4707 " writepending:%lukB"
4708 " present:%lukB"
4709 " managed:%lukB"
4710 " mlocked:%lukB"
4711 " kernel_stack:%lukB"
4712 " pagetables:%lukB"
4713 " bounce:%lukB"
4714 " free_pcp:%lukB"
4715 " local_pcp:%ukB"
4716 " free_cma:%lukB"
4717 "\n",
4718 zone->name,
4719 K(zone_page_state(zone, NR_FREE_PAGES)),
4720 K(min_wmark_pages(zone)),
4721 K(low_wmark_pages(zone)),
4722 K(high_wmark_pages(zone)),
4723 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4724 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4725 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4726 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4727 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4728 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4729 K(zone->present_pages),
4730 K(zone->managed_pages),
4731 K(zone_page_state(zone, NR_MLOCK)),
4732 zone_page_state(zone, NR_KERNEL_STACK_KB),
4733 K(zone_page_state(zone, NR_PAGETABLE)),
4734 K(zone_page_state(zone, NR_BOUNCE)),
4735 K(free_pcp),
4736 K(this_cpu_read(zone->pageset->pcp.count)),
4737 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4738 printk("lowmem_reserve[]:");
4739 for (i = 0; i < MAX_NR_ZONES; i++)
4740 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4741 printk(KERN_CONT "\n");
4742 }
4743
4744 for_each_populated_zone(zone) {
4745 unsigned int order;
4746 unsigned long nr[MAX_ORDER], flags, total = 0;
4747 unsigned char types[MAX_ORDER];
4748
4749 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4750 continue;
4751 show_node(zone);
4752 printk(KERN_CONT "%s: ", zone->name);
4753
4754 spin_lock_irqsave(&zone->lock, flags);
4755 for (order = 0; order < MAX_ORDER; order++) {
4756 struct free_area *area = &zone->free_area[order];
4757 int type;
4758
4759 nr[order] = area->nr_free;
4760 total += nr[order] << order;
4761
4762 types[order] = 0;
4763 for (type = 0; type < MIGRATE_TYPES; type++) {
4764 if (!list_empty(&area->free_list[type]))
4765 types[order] |= 1 << type;
4766 }
4767 }
4768 spin_unlock_irqrestore(&zone->lock, flags);
4769 for (order = 0; order < MAX_ORDER; order++) {
4770 printk(KERN_CONT "%lu*%lukB ",
4771 nr[order], K(1UL) << order);
4772 if (nr[order])
4773 show_migration_types(types[order]);
4774 }
4775 printk(KERN_CONT "= %lukB\n", K(total));
4776 }
4777
4778 hugetlb_show_meminfo();
4779
4780 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4781
4782 show_swap_cache_info();
4783 }
4784
4785 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4786 {
4787 zoneref->zone = zone;
4788 zoneref->zone_idx = zone_idx(zone);
4789 }
4790
4791 /*
4792 * Builds allocation fallback zone lists.
4793 *
4794 * Add all populated zones of a node to the zonelist.
4795 */
4796 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4797 int nr_zones)
4798 {
4799 struct zone *zone;
4800 enum zone_type zone_type = MAX_NR_ZONES;
4801
4802 do {
4803 zone_type--;
4804 zone = pgdat->node_zones + zone_type;
4805 if (managed_zone(zone)) {
4806 zoneref_set_zone(zone,
4807 &zonelist->_zonerefs[nr_zones++]);
4808 check_highest_zone(zone_type);
4809 }
4810 } while (zone_type);
4811
4812 return nr_zones;
4813 }
4814
4815
4816 /*
4817 * zonelist_order:
4818 * 0 = automatic detection of better ordering.
4819 * 1 = order by ([node] distance, -zonetype)
4820 * 2 = order by (-zonetype, [node] distance)
4821 *
4822 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4823 * the same zonelist. So only NUMA can configure this param.
4824 */
4825 #define ZONELIST_ORDER_DEFAULT 0
4826 #define ZONELIST_ORDER_NODE 1
4827 #define ZONELIST_ORDER_ZONE 2
4828
4829 /* zonelist order in the kernel.
4830 * set_zonelist_order() will set this to NODE or ZONE.
4831 */
4832 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4833 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4834
4835
4836 #ifdef CONFIG_NUMA
4837 /* The value user specified ....changed by config */
4838 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4839 /* string for sysctl */
4840 #define NUMA_ZONELIST_ORDER_LEN 16
4841 char numa_zonelist_order[16] = "default";
4842
4843 /*
4844 * interface for configure zonelist ordering.
4845 * command line option "numa_zonelist_order"
4846 * = "[dD]efault - default, automatic configuration.
4847 * = "[nN]ode - order by node locality, then by zone within node
4848 * = "[zZ]one - order by zone, then by locality within zone
4849 */
4850
4851 static int __parse_numa_zonelist_order(char *s)
4852 {
4853 if (*s == 'd' || *s == 'D') {
4854 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4855 } else if (*s == 'n' || *s == 'N') {
4856 user_zonelist_order = ZONELIST_ORDER_NODE;
4857 } else if (*s == 'z' || *s == 'Z') {
4858 user_zonelist_order = ZONELIST_ORDER_ZONE;
4859 } else {
4860 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4861 return -EINVAL;
4862 }
4863 return 0;
4864 }
4865
4866 static __init int setup_numa_zonelist_order(char *s)
4867 {
4868 int ret;
4869
4870 if (!s)
4871 return 0;
4872
4873 ret = __parse_numa_zonelist_order(s);
4874 if (ret == 0)
4875 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4876
4877 return ret;
4878 }
4879 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4880
4881 /*
4882 * sysctl handler for numa_zonelist_order
4883 */
4884 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4885 void __user *buffer, size_t *length,
4886 loff_t *ppos)
4887 {
4888 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4889 int ret;
4890 static DEFINE_MUTEX(zl_order_mutex);
4891
4892 mutex_lock(&zl_order_mutex);
4893 if (write) {
4894 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4895 ret = -EINVAL;
4896 goto out;
4897 }
4898 strcpy(saved_string, (char *)table->data);
4899 }
4900 ret = proc_dostring(table, write, buffer, length, ppos);
4901 if (ret)
4902 goto out;
4903 if (write) {
4904 int oldval = user_zonelist_order;
4905
4906 ret = __parse_numa_zonelist_order((char *)table->data);
4907 if (ret) {
4908 /*
4909 * bogus value. restore saved string
4910 */
4911 strncpy((char *)table->data, saved_string,
4912 NUMA_ZONELIST_ORDER_LEN);
4913 user_zonelist_order = oldval;
4914 } else if (oldval != user_zonelist_order) {
4915 mem_hotplug_begin();
4916 mutex_lock(&zonelists_mutex);
4917 build_all_zonelists(NULL, NULL);
4918 mutex_unlock(&zonelists_mutex);
4919 mem_hotplug_done();
4920 }
4921 }
4922 out:
4923 mutex_unlock(&zl_order_mutex);
4924 return ret;
4925 }
4926
4927
4928 #define MAX_NODE_LOAD (nr_online_nodes)
4929 static int node_load[MAX_NUMNODES];
4930
4931 /**
4932 * find_next_best_node - find the next node that should appear in a given node's fallback list
4933 * @node: node whose fallback list we're appending
4934 * @used_node_mask: nodemask_t of already used nodes
4935 *
4936 * We use a number of factors to determine which is the next node that should
4937 * appear on a given node's fallback list. The node should not have appeared
4938 * already in @node's fallback list, and it should be the next closest node
4939 * according to the distance array (which contains arbitrary distance values
4940 * from each node to each node in the system), and should also prefer nodes
4941 * with no CPUs, since presumably they'll have very little allocation pressure
4942 * on them otherwise.
4943 * It returns -1 if no node is found.
4944 */
4945 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4946 {
4947 int n, val;
4948 int min_val = INT_MAX;
4949 int best_node = NUMA_NO_NODE;
4950 const struct cpumask *tmp = cpumask_of_node(0);
4951
4952 /* Use the local node if we haven't already */
4953 if (!node_isset(node, *used_node_mask)) {
4954 node_set(node, *used_node_mask);
4955 return node;
4956 }
4957
4958 for_each_node_state(n, N_MEMORY) {
4959
4960 /* Don't want a node to appear more than once */
4961 if (node_isset(n, *used_node_mask))
4962 continue;
4963
4964 /* Use the distance array to find the distance */
4965 val = node_distance(node, n);
4966
4967 /* Penalize nodes under us ("prefer the next node") */
4968 val += (n < node);
4969
4970 /* Give preference to headless and unused nodes */
4971 tmp = cpumask_of_node(n);
4972 if (!cpumask_empty(tmp))
4973 val += PENALTY_FOR_NODE_WITH_CPUS;
4974
4975 /* Slight preference for less loaded node */
4976 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4977 val += node_load[n];
4978
4979 if (val < min_val) {
4980 min_val = val;
4981 best_node = n;
4982 }
4983 }
4984
4985 if (best_node >= 0)
4986 node_set(best_node, *used_node_mask);
4987
4988 return best_node;
4989 }
4990
4991
4992 /*
4993 * Build zonelists ordered by node and zones within node.
4994 * This results in maximum locality--normal zone overflows into local
4995 * DMA zone, if any--but risks exhausting DMA zone.
4996 */
4997 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4998 {
4999 int j;
5000 struct zonelist *zonelist;
5001
5002 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5003 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
5004 ;
5005 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5006 zonelist->_zonerefs[j].zone = NULL;
5007 zonelist->_zonerefs[j].zone_idx = 0;
5008 }
5009
5010 /*
5011 * Build gfp_thisnode zonelists
5012 */
5013 static void build_thisnode_zonelists(pg_data_t *pgdat)
5014 {
5015 int j;
5016 struct zonelist *zonelist;
5017
5018 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
5019 j = build_zonelists_node(pgdat, zonelist, 0);
5020 zonelist->_zonerefs[j].zone = NULL;
5021 zonelist->_zonerefs[j].zone_idx = 0;
5022 }
5023
5024 /*
5025 * Build zonelists ordered by zone and nodes within zones.
5026 * This results in conserving DMA zone[s] until all Normal memory is
5027 * exhausted, but results in overflowing to remote node while memory
5028 * may still exist in local DMA zone.
5029 */
5030 static int node_order[MAX_NUMNODES];
5031
5032 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
5033 {
5034 int pos, j, node;
5035 int zone_type; /* needs to be signed */
5036 struct zone *z;
5037 struct zonelist *zonelist;
5038
5039 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5040 pos = 0;
5041 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
5042 for (j = 0; j < nr_nodes; j++) {
5043 node = node_order[j];
5044 z = &NODE_DATA(node)->node_zones[zone_type];
5045 if (managed_zone(z)) {
5046 zoneref_set_zone(z,
5047 &zonelist->_zonerefs[pos++]);
5048 check_highest_zone(zone_type);
5049 }
5050 }
5051 }
5052 zonelist->_zonerefs[pos].zone = NULL;
5053 zonelist->_zonerefs[pos].zone_idx = 0;
5054 }
5055
5056 #if defined(CONFIG_64BIT)
5057 /*
5058 * Devices that require DMA32/DMA are relatively rare and do not justify a
5059 * penalty to every machine in case the specialised case applies. Default
5060 * to Node-ordering on 64-bit NUMA machines
5061 */
5062 static int default_zonelist_order(void)
5063 {
5064 return ZONELIST_ORDER_NODE;
5065 }
5066 #else
5067 /*
5068 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
5069 * by the kernel. If processes running on node 0 deplete the low memory zone
5070 * then reclaim will occur more frequency increasing stalls and potentially
5071 * be easier to OOM if a large percentage of the zone is under writeback or
5072 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
5073 * Hence, default to zone ordering on 32-bit.
5074 */
5075 static int default_zonelist_order(void)
5076 {
5077 return ZONELIST_ORDER_ZONE;
5078 }
5079 #endif /* CONFIG_64BIT */
5080
5081 static void set_zonelist_order(void)
5082 {
5083 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
5084 current_zonelist_order = default_zonelist_order();
5085 else
5086 current_zonelist_order = user_zonelist_order;
5087 }
5088
5089 static void build_zonelists(pg_data_t *pgdat)
5090 {
5091 int i, node, load;
5092 nodemask_t used_mask;
5093 int local_node, prev_node;
5094 struct zonelist *zonelist;
5095 unsigned int order = current_zonelist_order;
5096
5097 /* initialize zonelists */
5098 for (i = 0; i < MAX_ZONELISTS; i++) {
5099 zonelist = pgdat->node_zonelists + i;
5100 zonelist->_zonerefs[0].zone = NULL;
5101 zonelist->_zonerefs[0].zone_idx = 0;
5102 }
5103
5104 /* NUMA-aware ordering of nodes */
5105 local_node = pgdat->node_id;
5106 load = nr_online_nodes;
5107 prev_node = local_node;
5108 nodes_clear(used_mask);
5109
5110 memset(node_order, 0, sizeof(node_order));
5111 i = 0;
5112
5113 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5114 /*
5115 * We don't want to pressure a particular node.
5116 * So adding penalty to the first node in same
5117 * distance group to make it round-robin.
5118 */
5119 if (node_distance(local_node, node) !=
5120 node_distance(local_node, prev_node))
5121 node_load[node] = load;
5122
5123 prev_node = node;
5124 load--;
5125 if (order == ZONELIST_ORDER_NODE)
5126 build_zonelists_in_node_order(pgdat, node);
5127 else
5128 node_order[i++] = node; /* remember order */
5129 }
5130
5131 if (order == ZONELIST_ORDER_ZONE) {
5132 /* calculate node order -- i.e., DMA last! */
5133 build_zonelists_in_zone_order(pgdat, i);
5134 }
5135
5136 build_thisnode_zonelists(pgdat);
5137 }
5138
5139 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5140 /*
5141 * Return node id of node used for "local" allocations.
5142 * I.e., first node id of first zone in arg node's generic zonelist.
5143 * Used for initializing percpu 'numa_mem', which is used primarily
5144 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5145 */
5146 int local_memory_node(int node)
5147 {
5148 struct zoneref *z;
5149
5150 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5151 gfp_zone(GFP_KERNEL),
5152 NULL);
5153 return z->zone->node;
5154 }
5155 #endif
5156
5157 static void setup_min_unmapped_ratio(void);
5158 static void setup_min_slab_ratio(void);
5159 #else /* CONFIG_NUMA */
5160
5161 static void set_zonelist_order(void)
5162 {
5163 current_zonelist_order = ZONELIST_ORDER_ZONE;
5164 }
5165
5166 static void build_zonelists(pg_data_t *pgdat)
5167 {
5168 int node, local_node;
5169 enum zone_type j;
5170 struct zonelist *zonelist;
5171
5172 local_node = pgdat->node_id;
5173
5174 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5175 j = build_zonelists_node(pgdat, zonelist, 0);
5176
5177 /*
5178 * Now we build the zonelist so that it contains the zones
5179 * of all the other nodes.
5180 * We don't want to pressure a particular node, so when
5181 * building the zones for node N, we make sure that the
5182 * zones coming right after the local ones are those from
5183 * node N+1 (modulo N)
5184 */
5185 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5186 if (!node_online(node))
5187 continue;
5188 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5189 }
5190 for (node = 0; node < local_node; node++) {
5191 if (!node_online(node))
5192 continue;
5193 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5194 }
5195
5196 zonelist->_zonerefs[j].zone = NULL;
5197 zonelist->_zonerefs[j].zone_idx = 0;
5198 }
5199
5200 #endif /* CONFIG_NUMA */
5201
5202 /*
5203 * Boot pageset table. One per cpu which is going to be used for all
5204 * zones and all nodes. The parameters will be set in such a way
5205 * that an item put on a list will immediately be handed over to
5206 * the buddy list. This is safe since pageset manipulation is done
5207 * with interrupts disabled.
5208 *
5209 * The boot_pagesets must be kept even after bootup is complete for
5210 * unused processors and/or zones. They do play a role for bootstrapping
5211 * hotplugged processors.
5212 *
5213 * zoneinfo_show() and maybe other functions do
5214 * not check if the processor is online before following the pageset pointer.
5215 * Other parts of the kernel may not check if the zone is available.
5216 */
5217 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5218 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5219 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5220 static void setup_zone_pageset(struct zone *zone);
5221
5222 /*
5223 * Global mutex to protect against size modification of zonelists
5224 * as well as to serialize pageset setup for the new populated zone.
5225 */
5226 DEFINE_MUTEX(zonelists_mutex);
5227
5228 /* return values int ....just for stop_machine() */
5229 static int __build_all_zonelists(void *data)
5230 {
5231 int nid;
5232 int cpu;
5233 pg_data_t *self = data;
5234
5235 #ifdef CONFIG_NUMA
5236 memset(node_load, 0, sizeof(node_load));
5237 #endif
5238
5239 if (self && !node_online(self->node_id)) {
5240 build_zonelists(self);
5241 }
5242
5243 for_each_online_node(nid) {
5244 pg_data_t *pgdat = NODE_DATA(nid);
5245
5246 build_zonelists(pgdat);
5247 }
5248
5249 /*
5250 * Initialize the boot_pagesets that are going to be used
5251 * for bootstrapping processors. The real pagesets for
5252 * each zone will be allocated later when the per cpu
5253 * allocator is available.
5254 *
5255 * boot_pagesets are used also for bootstrapping offline
5256 * cpus if the system is already booted because the pagesets
5257 * are needed to initialize allocators on a specific cpu too.
5258 * F.e. the percpu allocator needs the page allocator which
5259 * needs the percpu allocator in order to allocate its pagesets
5260 * (a chicken-egg dilemma).
5261 */
5262 for_each_possible_cpu(cpu) {
5263 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5264
5265 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5266 /*
5267 * We now know the "local memory node" for each node--
5268 * i.e., the node of the first zone in the generic zonelist.
5269 * Set up numa_mem percpu variable for on-line cpus. During
5270 * boot, only the boot cpu should be on-line; we'll init the
5271 * secondary cpus' numa_mem as they come on-line. During
5272 * node/memory hotplug, we'll fixup all on-line cpus.
5273 */
5274 if (cpu_online(cpu))
5275 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5276 #endif
5277 }
5278
5279 return 0;
5280 }
5281
5282 static noinline void __init
5283 build_all_zonelists_init(void)
5284 {
5285 __build_all_zonelists(NULL);
5286 mminit_verify_zonelist();
5287 cpuset_init_current_mems_allowed();
5288 }
5289
5290 /*
5291 * Called with zonelists_mutex held always
5292 * unless system_state == SYSTEM_BOOTING.
5293 *
5294 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5295 * [we're only called with non-NULL zone through __meminit paths] and
5296 * (2) call of __init annotated helper build_all_zonelists_init
5297 * [protected by SYSTEM_BOOTING].
5298 */
5299 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5300 {
5301 set_zonelist_order();
5302
5303 if (system_state == SYSTEM_BOOTING) {
5304 build_all_zonelists_init();
5305 } else {
5306 #ifdef CONFIG_MEMORY_HOTPLUG
5307 if (zone)
5308 setup_zone_pageset(zone);
5309 #endif
5310 /* we have to stop all cpus to guarantee there is no user
5311 of zonelist */
5312 stop_machine_cpuslocked(__build_all_zonelists, pgdat, NULL);
5313 /* cpuset refresh routine should be here */
5314 }
5315 vm_total_pages = nr_free_pagecache_pages();
5316 /*
5317 * Disable grouping by mobility if the number of pages in the
5318 * system is too low to allow the mechanism to work. It would be
5319 * more accurate, but expensive to check per-zone. This check is
5320 * made on memory-hotadd so a system can start with mobility
5321 * disabled and enable it later
5322 */
5323 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5324 page_group_by_mobility_disabled = 1;
5325 else
5326 page_group_by_mobility_disabled = 0;
5327
5328 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5329 nr_online_nodes,
5330 zonelist_order_name[current_zonelist_order],
5331 page_group_by_mobility_disabled ? "off" : "on",
5332 vm_total_pages);
5333 #ifdef CONFIG_NUMA
5334 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5335 #endif
5336 }
5337
5338 /*
5339 * Initially all pages are reserved - free ones are freed
5340 * up by free_all_bootmem() once the early boot process is
5341 * done. Non-atomic initialization, single-pass.
5342 */
5343 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5344 unsigned long start_pfn, enum memmap_context context)
5345 {
5346 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5347 unsigned long end_pfn = start_pfn + size;
5348 pg_data_t *pgdat = NODE_DATA(nid);
5349 unsigned long pfn;
5350 unsigned long nr_initialised = 0;
5351 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5352 struct memblock_region *r = NULL, *tmp;
5353 #endif
5354
5355 if (highest_memmap_pfn < end_pfn - 1)
5356 highest_memmap_pfn = end_pfn - 1;
5357
5358 /*
5359 * Honor reservation requested by the driver for this ZONE_DEVICE
5360 * memory
5361 */
5362 if (altmap && start_pfn == altmap->base_pfn)
5363 start_pfn += altmap->reserve;
5364
5365 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5366 /*
5367 * There can be holes in boot-time mem_map[]s handed to this
5368 * function. They do not exist on hotplugged memory.
5369 */
5370 if (context != MEMMAP_EARLY)
5371 goto not_early;
5372
5373 if (!early_pfn_valid(pfn)) {
5374 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5375 /*
5376 * Skip to the pfn preceding the next valid one (or
5377 * end_pfn), such that we hit a valid pfn (or end_pfn)
5378 * on our next iteration of the loop.
5379 */
5380 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5381 #endif
5382 continue;
5383 }
5384 if (!early_pfn_in_nid(pfn, nid))
5385 continue;
5386 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5387 break;
5388
5389 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5390 /*
5391 * Check given memblock attribute by firmware which can affect
5392 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5393 * mirrored, it's an overlapped memmap init. skip it.
5394 */
5395 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5396 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5397 for_each_memblock(memory, tmp)
5398 if (pfn < memblock_region_memory_end_pfn(tmp))
5399 break;
5400 r = tmp;
5401 }
5402 if (pfn >= memblock_region_memory_base_pfn(r) &&
5403 memblock_is_mirror(r)) {
5404 /* already initialized as NORMAL */
5405 pfn = memblock_region_memory_end_pfn(r);
5406 continue;
5407 }
5408 }
5409 #endif
5410
5411 not_early:
5412 /*
5413 * Mark the block movable so that blocks are reserved for
5414 * movable at startup. This will force kernel allocations
5415 * to reserve their blocks rather than leaking throughout
5416 * the address space during boot when many long-lived
5417 * kernel allocations are made.
5418 *
5419 * bitmap is created for zone's valid pfn range. but memmap
5420 * can be created for invalid pages (for alignment)
5421 * check here not to call set_pageblock_migratetype() against
5422 * pfn out of zone.
5423 */
5424 if (!(pfn & (pageblock_nr_pages - 1))) {
5425 struct page *page = pfn_to_page(pfn);
5426
5427 __init_single_page(page, pfn, zone, nid);
5428 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5429 } else {
5430 __init_single_pfn(pfn, zone, nid);
5431 }
5432 }
5433 }
5434
5435 static void __meminit zone_init_free_lists(struct zone *zone)
5436 {
5437 unsigned int order, t;
5438 for_each_migratetype_order(order, t) {
5439 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5440 zone->free_area[order].nr_free = 0;
5441 }
5442 }
5443
5444 #ifndef __HAVE_ARCH_MEMMAP_INIT
5445 #define memmap_init(size, nid, zone, start_pfn) \
5446 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5447 #endif
5448
5449 static int zone_batchsize(struct zone *zone)
5450 {
5451 #ifdef CONFIG_MMU
5452 int batch;
5453
5454 /*
5455 * The per-cpu-pages pools are set to around 1000th of the
5456 * size of the zone. But no more than 1/2 of a meg.
5457 *
5458 * OK, so we don't know how big the cache is. So guess.
5459 */
5460 batch = zone->managed_pages / 1024;
5461 if (batch * PAGE_SIZE > 512 * 1024)
5462 batch = (512 * 1024) / PAGE_SIZE;
5463 batch /= 4; /* We effectively *= 4 below */
5464 if (batch < 1)
5465 batch = 1;
5466
5467 /*
5468 * Clamp the batch to a 2^n - 1 value. Having a power
5469 * of 2 value was found to be more likely to have
5470 * suboptimal cache aliasing properties in some cases.
5471 *
5472 * For example if 2 tasks are alternately allocating
5473 * batches of pages, one task can end up with a lot
5474 * of pages of one half of the possible page colors
5475 * and the other with pages of the other colors.
5476 */
5477 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5478
5479 return batch;
5480
5481 #else
5482 /* The deferral and batching of frees should be suppressed under NOMMU
5483 * conditions.
5484 *
5485 * The problem is that NOMMU needs to be able to allocate large chunks
5486 * of contiguous memory as there's no hardware page translation to
5487 * assemble apparent contiguous memory from discontiguous pages.
5488 *
5489 * Queueing large contiguous runs of pages for batching, however,
5490 * causes the pages to actually be freed in smaller chunks. As there
5491 * can be a significant delay between the individual batches being
5492 * recycled, this leads to the once large chunks of space being
5493 * fragmented and becoming unavailable for high-order allocations.
5494 */
5495 return 0;
5496 #endif
5497 }
5498
5499 /*
5500 * pcp->high and pcp->batch values are related and dependent on one another:
5501 * ->batch must never be higher then ->high.
5502 * The following function updates them in a safe manner without read side
5503 * locking.
5504 *
5505 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5506 * those fields changing asynchronously (acording the the above rule).
5507 *
5508 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5509 * outside of boot time (or some other assurance that no concurrent updaters
5510 * exist).
5511 */
5512 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5513 unsigned long batch)
5514 {
5515 /* start with a fail safe value for batch */
5516 pcp->batch = 1;
5517 smp_wmb();
5518
5519 /* Update high, then batch, in order */
5520 pcp->high = high;
5521 smp_wmb();
5522
5523 pcp->batch = batch;
5524 }
5525
5526 /* a companion to pageset_set_high() */
5527 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5528 {
5529 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5530 }
5531
5532 static void pageset_init(struct per_cpu_pageset *p)
5533 {
5534 struct per_cpu_pages *pcp;
5535 int migratetype;
5536
5537 memset(p, 0, sizeof(*p));
5538
5539 pcp = &p->pcp;
5540 pcp->count = 0;
5541 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5542 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5543 }
5544
5545 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5546 {
5547 pageset_init(p);
5548 pageset_set_batch(p, batch);
5549 }
5550
5551 /*
5552 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5553 * to the value high for the pageset p.
5554 */
5555 static void pageset_set_high(struct per_cpu_pageset *p,
5556 unsigned long high)
5557 {
5558 unsigned long batch = max(1UL, high / 4);
5559 if ((high / 4) > (PAGE_SHIFT * 8))
5560 batch = PAGE_SHIFT * 8;
5561
5562 pageset_update(&p->pcp, high, batch);
5563 }
5564
5565 static void pageset_set_high_and_batch(struct zone *zone,
5566 struct per_cpu_pageset *pcp)
5567 {
5568 if (percpu_pagelist_fraction)
5569 pageset_set_high(pcp,
5570 (zone->managed_pages /
5571 percpu_pagelist_fraction));
5572 else
5573 pageset_set_batch(pcp, zone_batchsize(zone));
5574 }
5575
5576 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5577 {
5578 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5579
5580 pageset_init(pcp);
5581 pageset_set_high_and_batch(zone, pcp);
5582 }
5583
5584 static void __meminit setup_zone_pageset(struct zone *zone)
5585 {
5586 int cpu;
5587 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5588 for_each_possible_cpu(cpu)
5589 zone_pageset_init(zone, cpu);
5590 }
5591
5592 /*
5593 * Allocate per cpu pagesets and initialize them.
5594 * Before this call only boot pagesets were available.
5595 */
5596 void __init setup_per_cpu_pageset(void)
5597 {
5598 struct pglist_data *pgdat;
5599 struct zone *zone;
5600
5601 for_each_populated_zone(zone)
5602 setup_zone_pageset(zone);
5603
5604 for_each_online_pgdat(pgdat)
5605 pgdat->per_cpu_nodestats =
5606 alloc_percpu(struct per_cpu_nodestat);
5607 }
5608
5609 static __meminit void zone_pcp_init(struct zone *zone)
5610 {
5611 /*
5612 * per cpu subsystem is not up at this point. The following code
5613 * relies on the ability of the linker to provide the
5614 * offset of a (static) per cpu variable into the per cpu area.
5615 */
5616 zone->pageset = &boot_pageset;
5617
5618 if (populated_zone(zone))
5619 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5620 zone->name, zone->present_pages,
5621 zone_batchsize(zone));
5622 }
5623
5624 void __meminit init_currently_empty_zone(struct zone *zone,
5625 unsigned long zone_start_pfn,
5626 unsigned long size)
5627 {
5628 struct pglist_data *pgdat = zone->zone_pgdat;
5629
5630 pgdat->nr_zones = zone_idx(zone) + 1;
5631
5632 zone->zone_start_pfn = zone_start_pfn;
5633
5634 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5635 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5636 pgdat->node_id,
5637 (unsigned long)zone_idx(zone),
5638 zone_start_pfn, (zone_start_pfn + size));
5639
5640 zone_init_free_lists(zone);
5641 zone->initialized = 1;
5642 }
5643
5644 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5645 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5646
5647 /*
5648 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5649 */
5650 int __meminit __early_pfn_to_nid(unsigned long pfn,
5651 struct mminit_pfnnid_cache *state)
5652 {
5653 unsigned long start_pfn, end_pfn;
5654 int nid;
5655
5656 if (state->last_start <= pfn && pfn < state->last_end)
5657 return state->last_nid;
5658
5659 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5660 if (nid != -1) {
5661 state->last_start = start_pfn;
5662 state->last_end = end_pfn;
5663 state->last_nid = nid;
5664 }
5665
5666 return nid;
5667 }
5668 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5669
5670 /**
5671 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5672 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5673 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5674 *
5675 * If an architecture guarantees that all ranges registered contain no holes
5676 * and may be freed, this this function may be used instead of calling
5677 * memblock_free_early_nid() manually.
5678 */
5679 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5680 {
5681 unsigned long start_pfn, end_pfn;
5682 int i, this_nid;
5683
5684 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5685 start_pfn = min(start_pfn, max_low_pfn);
5686 end_pfn = min(end_pfn, max_low_pfn);
5687
5688 if (start_pfn < end_pfn)
5689 memblock_free_early_nid(PFN_PHYS(start_pfn),
5690 (end_pfn - start_pfn) << PAGE_SHIFT,
5691 this_nid);
5692 }
5693 }
5694
5695 /**
5696 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5697 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5698 *
5699 * If an architecture guarantees that all ranges registered contain no holes and may
5700 * be freed, this function may be used instead of calling memory_present() manually.
5701 */
5702 void __init sparse_memory_present_with_active_regions(int nid)
5703 {
5704 unsigned long start_pfn, end_pfn;
5705 int i, this_nid;
5706
5707 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5708 memory_present(this_nid, start_pfn, end_pfn);
5709 }
5710
5711 /**
5712 * get_pfn_range_for_nid - Return the start and end page frames for a node
5713 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5714 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5715 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5716 *
5717 * It returns the start and end page frame of a node based on information
5718 * provided by memblock_set_node(). If called for a node
5719 * with no available memory, a warning is printed and the start and end
5720 * PFNs will be 0.
5721 */
5722 void __meminit get_pfn_range_for_nid(unsigned int nid,
5723 unsigned long *start_pfn, unsigned long *end_pfn)
5724 {
5725 unsigned long this_start_pfn, this_end_pfn;
5726 int i;
5727
5728 *start_pfn = -1UL;
5729 *end_pfn = 0;
5730
5731 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5732 *start_pfn = min(*start_pfn, this_start_pfn);
5733 *end_pfn = max(*end_pfn, this_end_pfn);
5734 }
5735
5736 if (*start_pfn == -1UL)
5737 *start_pfn = 0;
5738 }
5739
5740 /*
5741 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5742 * assumption is made that zones within a node are ordered in monotonic
5743 * increasing memory addresses so that the "highest" populated zone is used
5744 */
5745 static void __init find_usable_zone_for_movable(void)
5746 {
5747 int zone_index;
5748 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5749 if (zone_index == ZONE_MOVABLE)
5750 continue;
5751
5752 if (arch_zone_highest_possible_pfn[zone_index] >
5753 arch_zone_lowest_possible_pfn[zone_index])
5754 break;
5755 }
5756
5757 VM_BUG_ON(zone_index == -1);
5758 movable_zone = zone_index;
5759 }
5760
5761 /*
5762 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5763 * because it is sized independent of architecture. Unlike the other zones,
5764 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5765 * in each node depending on the size of each node and how evenly kernelcore
5766 * is distributed. This helper function adjusts the zone ranges
5767 * provided by the architecture for a given node by using the end of the
5768 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5769 * zones within a node are in order of monotonic increases memory addresses
5770 */
5771 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5772 unsigned long zone_type,
5773 unsigned long node_start_pfn,
5774 unsigned long node_end_pfn,
5775 unsigned long *zone_start_pfn,
5776 unsigned long *zone_end_pfn)
5777 {
5778 /* Only adjust if ZONE_MOVABLE is on this node */
5779 if (zone_movable_pfn[nid]) {
5780 /* Size ZONE_MOVABLE */
5781 if (zone_type == ZONE_MOVABLE) {
5782 *zone_start_pfn = zone_movable_pfn[nid];
5783 *zone_end_pfn = min(node_end_pfn,
5784 arch_zone_highest_possible_pfn[movable_zone]);
5785
5786 /* Adjust for ZONE_MOVABLE starting within this range */
5787 } else if (!mirrored_kernelcore &&
5788 *zone_start_pfn < zone_movable_pfn[nid] &&
5789 *zone_end_pfn > zone_movable_pfn[nid]) {
5790 *zone_end_pfn = zone_movable_pfn[nid];
5791
5792 /* Check if this whole range is within ZONE_MOVABLE */
5793 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5794 *zone_start_pfn = *zone_end_pfn;
5795 }
5796 }
5797
5798 /*
5799 * Return the number of pages a zone spans in a node, including holes
5800 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5801 */
5802 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5803 unsigned long zone_type,
5804 unsigned long node_start_pfn,
5805 unsigned long node_end_pfn,
5806 unsigned long *zone_start_pfn,
5807 unsigned long *zone_end_pfn,
5808 unsigned long *ignored)
5809 {
5810 /* When hotadd a new node from cpu_up(), the node should be empty */
5811 if (!node_start_pfn && !node_end_pfn)
5812 return 0;
5813
5814 /* Get the start and end of the zone */
5815 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5816 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5817 adjust_zone_range_for_zone_movable(nid, zone_type,
5818 node_start_pfn, node_end_pfn,
5819 zone_start_pfn, zone_end_pfn);
5820
5821 /* Check that this node has pages within the zone's required range */
5822 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5823 return 0;
5824
5825 /* Move the zone boundaries inside the node if necessary */
5826 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5827 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5828
5829 /* Return the spanned pages */
5830 return *zone_end_pfn - *zone_start_pfn;
5831 }
5832
5833 /*
5834 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5835 * then all holes in the requested range will be accounted for.
5836 */
5837 unsigned long __meminit __absent_pages_in_range(int nid,
5838 unsigned long range_start_pfn,
5839 unsigned long range_end_pfn)
5840 {
5841 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5842 unsigned long start_pfn, end_pfn;
5843 int i;
5844
5845 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5846 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5847 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5848 nr_absent -= end_pfn - start_pfn;
5849 }
5850 return nr_absent;
5851 }
5852
5853 /**
5854 * absent_pages_in_range - Return number of page frames in holes within a range
5855 * @start_pfn: The start PFN to start searching for holes
5856 * @end_pfn: The end PFN to stop searching for holes
5857 *
5858 * It returns the number of pages frames in memory holes within a range.
5859 */
5860 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5861 unsigned long end_pfn)
5862 {
5863 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5864 }
5865
5866 /* Return the number of page frames in holes in a zone on a node */
5867 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5868 unsigned long zone_type,
5869 unsigned long node_start_pfn,
5870 unsigned long node_end_pfn,
5871 unsigned long *ignored)
5872 {
5873 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5874 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5875 unsigned long zone_start_pfn, zone_end_pfn;
5876 unsigned long nr_absent;
5877
5878 /* When hotadd a new node from cpu_up(), the node should be empty */
5879 if (!node_start_pfn && !node_end_pfn)
5880 return 0;
5881
5882 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5883 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5884
5885 adjust_zone_range_for_zone_movable(nid, zone_type,
5886 node_start_pfn, node_end_pfn,
5887 &zone_start_pfn, &zone_end_pfn);
5888 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5889
5890 /*
5891 * ZONE_MOVABLE handling.
5892 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5893 * and vice versa.
5894 */
5895 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5896 unsigned long start_pfn, end_pfn;
5897 struct memblock_region *r;
5898
5899 for_each_memblock(memory, r) {
5900 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5901 zone_start_pfn, zone_end_pfn);
5902 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5903 zone_start_pfn, zone_end_pfn);
5904
5905 if (zone_type == ZONE_MOVABLE &&
5906 memblock_is_mirror(r))
5907 nr_absent += end_pfn - start_pfn;
5908
5909 if (zone_type == ZONE_NORMAL &&
5910 !memblock_is_mirror(r))
5911 nr_absent += end_pfn - start_pfn;
5912 }
5913 }
5914
5915 return nr_absent;
5916 }
5917
5918 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5919 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5920 unsigned long zone_type,
5921 unsigned long node_start_pfn,
5922 unsigned long node_end_pfn,
5923 unsigned long *zone_start_pfn,
5924 unsigned long *zone_end_pfn,
5925 unsigned long *zones_size)
5926 {
5927 unsigned int zone;
5928
5929 *zone_start_pfn = node_start_pfn;
5930 for (zone = 0; zone < zone_type; zone++)
5931 *zone_start_pfn += zones_size[zone];
5932
5933 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5934
5935 return zones_size[zone_type];
5936 }
5937
5938 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5939 unsigned long zone_type,
5940 unsigned long node_start_pfn,
5941 unsigned long node_end_pfn,
5942 unsigned long *zholes_size)
5943 {
5944 if (!zholes_size)
5945 return 0;
5946
5947 return zholes_size[zone_type];
5948 }
5949
5950 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5951
5952 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5953 unsigned long node_start_pfn,
5954 unsigned long node_end_pfn,
5955 unsigned long *zones_size,
5956 unsigned long *zholes_size)
5957 {
5958 unsigned long realtotalpages = 0, totalpages = 0;
5959 enum zone_type i;
5960
5961 for (i = 0; i < MAX_NR_ZONES; i++) {
5962 struct zone *zone = pgdat->node_zones + i;
5963 unsigned long zone_start_pfn, zone_end_pfn;
5964 unsigned long size, real_size;
5965
5966 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5967 node_start_pfn,
5968 node_end_pfn,
5969 &zone_start_pfn,
5970 &zone_end_pfn,
5971 zones_size);
5972 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5973 node_start_pfn, node_end_pfn,
5974 zholes_size);
5975 if (size)
5976 zone->zone_start_pfn = zone_start_pfn;
5977 else
5978 zone->zone_start_pfn = 0;
5979 zone->spanned_pages = size;
5980 zone->present_pages = real_size;
5981
5982 totalpages += size;
5983 realtotalpages += real_size;
5984 }
5985
5986 pgdat->node_spanned_pages = totalpages;
5987 pgdat->node_present_pages = realtotalpages;
5988 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5989 realtotalpages);
5990 }
5991
5992 #ifndef CONFIG_SPARSEMEM
5993 /*
5994 * Calculate the size of the zone->blockflags rounded to an unsigned long
5995 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5996 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5997 * round what is now in bits to nearest long in bits, then return it in
5998 * bytes.
5999 */
6000 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6001 {
6002 unsigned long usemapsize;
6003
6004 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6005 usemapsize = roundup(zonesize, pageblock_nr_pages);
6006 usemapsize = usemapsize >> pageblock_order;
6007 usemapsize *= NR_PAGEBLOCK_BITS;
6008 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6009
6010 return usemapsize / 8;
6011 }
6012
6013 static void __init setup_usemap(struct pglist_data *pgdat,
6014 struct zone *zone,
6015 unsigned long zone_start_pfn,
6016 unsigned long zonesize)
6017 {
6018 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6019 zone->pageblock_flags = NULL;
6020 if (usemapsize)
6021 zone->pageblock_flags =
6022 memblock_virt_alloc_node_nopanic(usemapsize,
6023 pgdat->node_id);
6024 }
6025 #else
6026 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6027 unsigned long zone_start_pfn, unsigned long zonesize) {}
6028 #endif /* CONFIG_SPARSEMEM */
6029
6030 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6031
6032 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6033 void __paginginit set_pageblock_order(void)
6034 {
6035 unsigned int order;
6036
6037 /* Check that pageblock_nr_pages has not already been setup */
6038 if (pageblock_order)
6039 return;
6040
6041 if (HPAGE_SHIFT > PAGE_SHIFT)
6042 order = HUGETLB_PAGE_ORDER;
6043 else
6044 order = MAX_ORDER - 1;
6045
6046 /*
6047 * Assume the largest contiguous order of interest is a huge page.
6048 * This value may be variable depending on boot parameters on IA64 and
6049 * powerpc.
6050 */
6051 pageblock_order = order;
6052 }
6053 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6054
6055 /*
6056 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6057 * is unused as pageblock_order is set at compile-time. See
6058 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6059 * the kernel config
6060 */
6061 void __paginginit set_pageblock_order(void)
6062 {
6063 }
6064
6065 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6066
6067 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6068 unsigned long present_pages)
6069 {
6070 unsigned long pages = spanned_pages;
6071
6072 /*
6073 * Provide a more accurate estimation if there are holes within
6074 * the zone and SPARSEMEM is in use. If there are holes within the
6075 * zone, each populated memory region may cost us one or two extra
6076 * memmap pages due to alignment because memmap pages for each
6077 * populated regions may not be naturally aligned on page boundary.
6078 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6079 */
6080 if (spanned_pages > present_pages + (present_pages >> 4) &&
6081 IS_ENABLED(CONFIG_SPARSEMEM))
6082 pages = present_pages;
6083
6084 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6085 }
6086
6087 /*
6088 * Set up the zone data structures:
6089 * - mark all pages reserved
6090 * - mark all memory queues empty
6091 * - clear the memory bitmaps
6092 *
6093 * NOTE: pgdat should get zeroed by caller.
6094 */
6095 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6096 {
6097 enum zone_type j;
6098 int nid = pgdat->node_id;
6099
6100 pgdat_resize_init(pgdat);
6101 #ifdef CONFIG_NUMA_BALANCING
6102 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6103 pgdat->numabalancing_migrate_nr_pages = 0;
6104 pgdat->numabalancing_migrate_next_window = jiffies;
6105 #endif
6106 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6107 spin_lock_init(&pgdat->split_queue_lock);
6108 INIT_LIST_HEAD(&pgdat->split_queue);
6109 pgdat->split_queue_len = 0;
6110 #endif
6111 init_waitqueue_head(&pgdat->kswapd_wait);
6112 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6113 #ifdef CONFIG_COMPACTION
6114 init_waitqueue_head(&pgdat->kcompactd_wait);
6115 #endif
6116 pgdat_page_ext_init(pgdat);
6117 spin_lock_init(&pgdat->lru_lock);
6118 lruvec_init(node_lruvec(pgdat));
6119
6120 pgdat->per_cpu_nodestats = &boot_nodestats;
6121
6122 for (j = 0; j < MAX_NR_ZONES; j++) {
6123 struct zone *zone = pgdat->node_zones + j;
6124 unsigned long size, realsize, freesize, memmap_pages;
6125 unsigned long zone_start_pfn = zone->zone_start_pfn;
6126
6127 size = zone->spanned_pages;
6128 realsize = freesize = zone->present_pages;
6129
6130 /*
6131 * Adjust freesize so that it accounts for how much memory
6132 * is used by this zone for memmap. This affects the watermark
6133 * and per-cpu initialisations
6134 */
6135 memmap_pages = calc_memmap_size(size, realsize);
6136 if (!is_highmem_idx(j)) {
6137 if (freesize >= memmap_pages) {
6138 freesize -= memmap_pages;
6139 if (memmap_pages)
6140 printk(KERN_DEBUG
6141 " %s zone: %lu pages used for memmap\n",
6142 zone_names[j], memmap_pages);
6143 } else
6144 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6145 zone_names[j], memmap_pages, freesize);
6146 }
6147
6148 /* Account for reserved pages */
6149 if (j == 0 && freesize > dma_reserve) {
6150 freesize -= dma_reserve;
6151 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6152 zone_names[0], dma_reserve);
6153 }
6154
6155 if (!is_highmem_idx(j))
6156 nr_kernel_pages += freesize;
6157 /* Charge for highmem memmap if there are enough kernel pages */
6158 else if (nr_kernel_pages > memmap_pages * 2)
6159 nr_kernel_pages -= memmap_pages;
6160 nr_all_pages += freesize;
6161
6162 /*
6163 * Set an approximate value for lowmem here, it will be adjusted
6164 * when the bootmem allocator frees pages into the buddy system.
6165 * And all highmem pages will be managed by the buddy system.
6166 */
6167 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6168 #ifdef CONFIG_NUMA
6169 zone->node = nid;
6170 #endif
6171 zone->name = zone_names[j];
6172 zone->zone_pgdat = pgdat;
6173 spin_lock_init(&zone->lock);
6174 zone_seqlock_init(zone);
6175 zone_pcp_init(zone);
6176
6177 if (!size)
6178 continue;
6179
6180 set_pageblock_order();
6181 setup_usemap(pgdat, zone, zone_start_pfn, size);
6182 init_currently_empty_zone(zone, zone_start_pfn, size);
6183 memmap_init(size, nid, j, zone_start_pfn);
6184 }
6185 }
6186
6187 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6188 {
6189 unsigned long __maybe_unused start = 0;
6190 unsigned long __maybe_unused offset = 0;
6191
6192 /* Skip empty nodes */
6193 if (!pgdat->node_spanned_pages)
6194 return;
6195
6196 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6197 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6198 offset = pgdat->node_start_pfn - start;
6199 /* ia64 gets its own node_mem_map, before this, without bootmem */
6200 if (!pgdat->node_mem_map) {
6201 unsigned long size, end;
6202 struct page *map;
6203
6204 /*
6205 * The zone's endpoints aren't required to be MAX_ORDER
6206 * aligned but the node_mem_map endpoints must be in order
6207 * for the buddy allocator to function correctly.
6208 */
6209 end = pgdat_end_pfn(pgdat);
6210 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6211 size = (end - start) * sizeof(struct page);
6212 map = alloc_remap(pgdat->node_id, size);
6213 if (!map)
6214 map = memblock_virt_alloc_node_nopanic(size,
6215 pgdat->node_id);
6216 pgdat->node_mem_map = map + offset;
6217 }
6218 #ifndef CONFIG_NEED_MULTIPLE_NODES
6219 /*
6220 * With no DISCONTIG, the global mem_map is just set as node 0's
6221 */
6222 if (pgdat == NODE_DATA(0)) {
6223 mem_map = NODE_DATA(0)->node_mem_map;
6224 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6225 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6226 mem_map -= offset;
6227 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6228 }
6229 #endif
6230 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6231 }
6232
6233 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6234 unsigned long node_start_pfn, unsigned long *zholes_size)
6235 {
6236 pg_data_t *pgdat = NODE_DATA(nid);
6237 unsigned long start_pfn = 0;
6238 unsigned long end_pfn = 0;
6239
6240 /* pg_data_t should be reset to zero when it's allocated */
6241 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6242
6243 pgdat->node_id = nid;
6244 pgdat->node_start_pfn = node_start_pfn;
6245 pgdat->per_cpu_nodestats = NULL;
6246 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6247 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6248 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6249 (u64)start_pfn << PAGE_SHIFT,
6250 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6251 #else
6252 start_pfn = node_start_pfn;
6253 #endif
6254 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6255 zones_size, zholes_size);
6256
6257 alloc_node_mem_map(pgdat);
6258 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6259 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6260 nid, (unsigned long)pgdat,
6261 (unsigned long)pgdat->node_mem_map);
6262 #endif
6263
6264 reset_deferred_meminit(pgdat);
6265 free_area_init_core(pgdat);
6266 }
6267
6268 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6269
6270 #if MAX_NUMNODES > 1
6271 /*
6272 * Figure out the number of possible node ids.
6273 */
6274 void __init setup_nr_node_ids(void)
6275 {
6276 unsigned int highest;
6277
6278 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6279 nr_node_ids = highest + 1;
6280 }
6281 #endif
6282
6283 /**
6284 * node_map_pfn_alignment - determine the maximum internode alignment
6285 *
6286 * This function should be called after node map is populated and sorted.
6287 * It calculates the maximum power of two alignment which can distinguish
6288 * all the nodes.
6289 *
6290 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6291 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6292 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6293 * shifted, 1GiB is enough and this function will indicate so.
6294 *
6295 * This is used to test whether pfn -> nid mapping of the chosen memory
6296 * model has fine enough granularity to avoid incorrect mapping for the
6297 * populated node map.
6298 *
6299 * Returns the determined alignment in pfn's. 0 if there is no alignment
6300 * requirement (single node).
6301 */
6302 unsigned long __init node_map_pfn_alignment(void)
6303 {
6304 unsigned long accl_mask = 0, last_end = 0;
6305 unsigned long start, end, mask;
6306 int last_nid = -1;
6307 int i, nid;
6308
6309 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6310 if (!start || last_nid < 0 || last_nid == nid) {
6311 last_nid = nid;
6312 last_end = end;
6313 continue;
6314 }
6315
6316 /*
6317 * Start with a mask granular enough to pin-point to the
6318 * start pfn and tick off bits one-by-one until it becomes
6319 * too coarse to separate the current node from the last.
6320 */
6321 mask = ~((1 << __ffs(start)) - 1);
6322 while (mask && last_end <= (start & (mask << 1)))
6323 mask <<= 1;
6324
6325 /* accumulate all internode masks */
6326 accl_mask |= mask;
6327 }
6328
6329 /* convert mask to number of pages */
6330 return ~accl_mask + 1;
6331 }
6332
6333 /* Find the lowest pfn for a node */
6334 static unsigned long __init find_min_pfn_for_node(int nid)
6335 {
6336 unsigned long min_pfn = ULONG_MAX;
6337 unsigned long start_pfn;
6338 int i;
6339
6340 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6341 min_pfn = min(min_pfn, start_pfn);
6342
6343 if (min_pfn == ULONG_MAX) {
6344 pr_warn("Could not find start_pfn for node %d\n", nid);
6345 return 0;
6346 }
6347
6348 return min_pfn;
6349 }
6350
6351 /**
6352 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6353 *
6354 * It returns the minimum PFN based on information provided via
6355 * memblock_set_node().
6356 */
6357 unsigned long __init find_min_pfn_with_active_regions(void)
6358 {
6359 return find_min_pfn_for_node(MAX_NUMNODES);
6360 }
6361
6362 /*
6363 * early_calculate_totalpages()
6364 * Sum pages in active regions for movable zone.
6365 * Populate N_MEMORY for calculating usable_nodes.
6366 */
6367 static unsigned long __init early_calculate_totalpages(void)
6368 {
6369 unsigned long totalpages = 0;
6370 unsigned long start_pfn, end_pfn;
6371 int i, nid;
6372
6373 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6374 unsigned long pages = end_pfn - start_pfn;
6375
6376 totalpages += pages;
6377 if (pages)
6378 node_set_state(nid, N_MEMORY);
6379 }
6380 return totalpages;
6381 }
6382
6383 /*
6384 * Find the PFN the Movable zone begins in each node. Kernel memory
6385 * is spread evenly between nodes as long as the nodes have enough
6386 * memory. When they don't, some nodes will have more kernelcore than
6387 * others
6388 */
6389 static void __init find_zone_movable_pfns_for_nodes(void)
6390 {
6391 int i, nid;
6392 unsigned long usable_startpfn;
6393 unsigned long kernelcore_node, kernelcore_remaining;
6394 /* save the state before borrow the nodemask */
6395 nodemask_t saved_node_state = node_states[N_MEMORY];
6396 unsigned long totalpages = early_calculate_totalpages();
6397 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6398 struct memblock_region *r;
6399
6400 /* Need to find movable_zone earlier when movable_node is specified. */
6401 find_usable_zone_for_movable();
6402
6403 /*
6404 * If movable_node is specified, ignore kernelcore and movablecore
6405 * options.
6406 */
6407 if (movable_node_is_enabled()) {
6408 for_each_memblock(memory, r) {
6409 if (!memblock_is_hotpluggable(r))
6410 continue;
6411
6412 nid = r->nid;
6413
6414 usable_startpfn = PFN_DOWN(r->base);
6415 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6416 min(usable_startpfn, zone_movable_pfn[nid]) :
6417 usable_startpfn;
6418 }
6419
6420 goto out2;
6421 }
6422
6423 /*
6424 * If kernelcore=mirror is specified, ignore movablecore option
6425 */
6426 if (mirrored_kernelcore) {
6427 bool mem_below_4gb_not_mirrored = false;
6428
6429 for_each_memblock(memory, r) {
6430 if (memblock_is_mirror(r))
6431 continue;
6432
6433 nid = r->nid;
6434
6435 usable_startpfn = memblock_region_memory_base_pfn(r);
6436
6437 if (usable_startpfn < 0x100000) {
6438 mem_below_4gb_not_mirrored = true;
6439 continue;
6440 }
6441
6442 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6443 min(usable_startpfn, zone_movable_pfn[nid]) :
6444 usable_startpfn;
6445 }
6446
6447 if (mem_below_4gb_not_mirrored)
6448 pr_warn("This configuration results in unmirrored kernel memory.");
6449
6450 goto out2;
6451 }
6452
6453 /*
6454 * If movablecore=nn[KMG] was specified, calculate what size of
6455 * kernelcore that corresponds so that memory usable for
6456 * any allocation type is evenly spread. If both kernelcore
6457 * and movablecore are specified, then the value of kernelcore
6458 * will be used for required_kernelcore if it's greater than
6459 * what movablecore would have allowed.
6460 */
6461 if (required_movablecore) {
6462 unsigned long corepages;
6463
6464 /*
6465 * Round-up so that ZONE_MOVABLE is at least as large as what
6466 * was requested by the user
6467 */
6468 required_movablecore =
6469 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6470 required_movablecore = min(totalpages, required_movablecore);
6471 corepages = totalpages - required_movablecore;
6472
6473 required_kernelcore = max(required_kernelcore, corepages);
6474 }
6475
6476 /*
6477 * If kernelcore was not specified or kernelcore size is larger
6478 * than totalpages, there is no ZONE_MOVABLE.
6479 */
6480 if (!required_kernelcore || required_kernelcore >= totalpages)
6481 goto out;
6482
6483 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6484 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6485
6486 restart:
6487 /* Spread kernelcore memory as evenly as possible throughout nodes */
6488 kernelcore_node = required_kernelcore / usable_nodes;
6489 for_each_node_state(nid, N_MEMORY) {
6490 unsigned long start_pfn, end_pfn;
6491
6492 /*
6493 * Recalculate kernelcore_node if the division per node
6494 * now exceeds what is necessary to satisfy the requested
6495 * amount of memory for the kernel
6496 */
6497 if (required_kernelcore < kernelcore_node)
6498 kernelcore_node = required_kernelcore / usable_nodes;
6499
6500 /*
6501 * As the map is walked, we track how much memory is usable
6502 * by the kernel using kernelcore_remaining. When it is
6503 * 0, the rest of the node is usable by ZONE_MOVABLE
6504 */
6505 kernelcore_remaining = kernelcore_node;
6506
6507 /* Go through each range of PFNs within this node */
6508 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6509 unsigned long size_pages;
6510
6511 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6512 if (start_pfn >= end_pfn)
6513 continue;
6514
6515 /* Account for what is only usable for kernelcore */
6516 if (start_pfn < usable_startpfn) {
6517 unsigned long kernel_pages;
6518 kernel_pages = min(end_pfn, usable_startpfn)
6519 - start_pfn;
6520
6521 kernelcore_remaining -= min(kernel_pages,
6522 kernelcore_remaining);
6523 required_kernelcore -= min(kernel_pages,
6524 required_kernelcore);
6525
6526 /* Continue if range is now fully accounted */
6527 if (end_pfn <= usable_startpfn) {
6528
6529 /*
6530 * Push zone_movable_pfn to the end so
6531 * that if we have to rebalance
6532 * kernelcore across nodes, we will
6533 * not double account here
6534 */
6535 zone_movable_pfn[nid] = end_pfn;
6536 continue;
6537 }
6538 start_pfn = usable_startpfn;
6539 }
6540
6541 /*
6542 * The usable PFN range for ZONE_MOVABLE is from
6543 * start_pfn->end_pfn. Calculate size_pages as the
6544 * number of pages used as kernelcore
6545 */
6546 size_pages = end_pfn - start_pfn;
6547 if (size_pages > kernelcore_remaining)
6548 size_pages = kernelcore_remaining;
6549 zone_movable_pfn[nid] = start_pfn + size_pages;
6550
6551 /*
6552 * Some kernelcore has been met, update counts and
6553 * break if the kernelcore for this node has been
6554 * satisfied
6555 */
6556 required_kernelcore -= min(required_kernelcore,
6557 size_pages);
6558 kernelcore_remaining -= size_pages;
6559 if (!kernelcore_remaining)
6560 break;
6561 }
6562 }
6563
6564 /*
6565 * If there is still required_kernelcore, we do another pass with one
6566 * less node in the count. This will push zone_movable_pfn[nid] further
6567 * along on the nodes that still have memory until kernelcore is
6568 * satisfied
6569 */
6570 usable_nodes--;
6571 if (usable_nodes && required_kernelcore > usable_nodes)
6572 goto restart;
6573
6574 out2:
6575 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6576 for (nid = 0; nid < MAX_NUMNODES; nid++)
6577 zone_movable_pfn[nid] =
6578 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6579
6580 out:
6581 /* restore the node_state */
6582 node_states[N_MEMORY] = saved_node_state;
6583 }
6584
6585 /* Any regular or high memory on that node ? */
6586 static void check_for_memory(pg_data_t *pgdat, int nid)
6587 {
6588 enum zone_type zone_type;
6589
6590 if (N_MEMORY == N_NORMAL_MEMORY)
6591 return;
6592
6593 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6594 struct zone *zone = &pgdat->node_zones[zone_type];
6595 if (populated_zone(zone)) {
6596 node_set_state(nid, N_HIGH_MEMORY);
6597 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6598 zone_type <= ZONE_NORMAL)
6599 node_set_state(nid, N_NORMAL_MEMORY);
6600 break;
6601 }
6602 }
6603 }
6604
6605 /**
6606 * free_area_init_nodes - Initialise all pg_data_t and zone data
6607 * @max_zone_pfn: an array of max PFNs for each zone
6608 *
6609 * This will call free_area_init_node() for each active node in the system.
6610 * Using the page ranges provided by memblock_set_node(), the size of each
6611 * zone in each node and their holes is calculated. If the maximum PFN
6612 * between two adjacent zones match, it is assumed that the zone is empty.
6613 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6614 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6615 * starts where the previous one ended. For example, ZONE_DMA32 starts
6616 * at arch_max_dma_pfn.
6617 */
6618 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6619 {
6620 unsigned long start_pfn, end_pfn;
6621 int i, nid;
6622
6623 /* Record where the zone boundaries are */
6624 memset(arch_zone_lowest_possible_pfn, 0,
6625 sizeof(arch_zone_lowest_possible_pfn));
6626 memset(arch_zone_highest_possible_pfn, 0,
6627 sizeof(arch_zone_highest_possible_pfn));
6628
6629 start_pfn = find_min_pfn_with_active_regions();
6630
6631 for (i = 0; i < MAX_NR_ZONES; i++) {
6632 if (i == ZONE_MOVABLE)
6633 continue;
6634
6635 end_pfn = max(max_zone_pfn[i], start_pfn);
6636 arch_zone_lowest_possible_pfn[i] = start_pfn;
6637 arch_zone_highest_possible_pfn[i] = end_pfn;
6638
6639 start_pfn = end_pfn;
6640 }
6641
6642 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6643 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6644 find_zone_movable_pfns_for_nodes();
6645
6646 /* Print out the zone ranges */
6647 pr_info("Zone ranges:\n");
6648 for (i = 0; i < MAX_NR_ZONES; i++) {
6649 if (i == ZONE_MOVABLE)
6650 continue;
6651 pr_info(" %-8s ", zone_names[i]);
6652 if (arch_zone_lowest_possible_pfn[i] ==
6653 arch_zone_highest_possible_pfn[i])
6654 pr_cont("empty\n");
6655 else
6656 pr_cont("[mem %#018Lx-%#018Lx]\n",
6657 (u64)arch_zone_lowest_possible_pfn[i]
6658 << PAGE_SHIFT,
6659 ((u64)arch_zone_highest_possible_pfn[i]
6660 << PAGE_SHIFT) - 1);
6661 }
6662
6663 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6664 pr_info("Movable zone start for each node\n");
6665 for (i = 0; i < MAX_NUMNODES; i++) {
6666 if (zone_movable_pfn[i])
6667 pr_info(" Node %d: %#018Lx\n", i,
6668 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6669 }
6670
6671 /* Print out the early node map */
6672 pr_info("Early memory node ranges\n");
6673 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6674 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6675 (u64)start_pfn << PAGE_SHIFT,
6676 ((u64)end_pfn << PAGE_SHIFT) - 1);
6677
6678 /* Initialise every node */
6679 mminit_verify_pageflags_layout();
6680 setup_nr_node_ids();
6681 for_each_online_node(nid) {
6682 pg_data_t *pgdat = NODE_DATA(nid);
6683 free_area_init_node(nid, NULL,
6684 find_min_pfn_for_node(nid), NULL);
6685
6686 /* Any memory on that node */
6687 if (pgdat->node_present_pages)
6688 node_set_state(nid, N_MEMORY);
6689 check_for_memory(pgdat, nid);
6690 }
6691 }
6692
6693 static int __init cmdline_parse_core(char *p, unsigned long *core)
6694 {
6695 unsigned long long coremem;
6696 if (!p)
6697 return -EINVAL;
6698
6699 coremem = memparse(p, &p);
6700 *core = coremem >> PAGE_SHIFT;
6701
6702 /* Paranoid check that UL is enough for the coremem value */
6703 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6704
6705 return 0;
6706 }
6707
6708 /*
6709 * kernelcore=size sets the amount of memory for use for allocations that
6710 * cannot be reclaimed or migrated.
6711 */
6712 static int __init cmdline_parse_kernelcore(char *p)
6713 {
6714 /* parse kernelcore=mirror */
6715 if (parse_option_str(p, "mirror")) {
6716 mirrored_kernelcore = true;
6717 return 0;
6718 }
6719
6720 return cmdline_parse_core(p, &required_kernelcore);
6721 }
6722
6723 /*
6724 * movablecore=size sets the amount of memory for use for allocations that
6725 * can be reclaimed or migrated.
6726 */
6727 static int __init cmdline_parse_movablecore(char *p)
6728 {
6729 return cmdline_parse_core(p, &required_movablecore);
6730 }
6731
6732 early_param("kernelcore", cmdline_parse_kernelcore);
6733 early_param("movablecore", cmdline_parse_movablecore);
6734
6735 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6736
6737 void adjust_managed_page_count(struct page *page, long count)
6738 {
6739 spin_lock(&managed_page_count_lock);
6740 page_zone(page)->managed_pages += count;
6741 totalram_pages += count;
6742 #ifdef CONFIG_HIGHMEM
6743 if (PageHighMem(page))
6744 totalhigh_pages += count;
6745 #endif
6746 spin_unlock(&managed_page_count_lock);
6747 }
6748 EXPORT_SYMBOL(adjust_managed_page_count);
6749
6750 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6751 {
6752 void *pos;
6753 unsigned long pages = 0;
6754
6755 start = (void *)PAGE_ALIGN((unsigned long)start);
6756 end = (void *)((unsigned long)end & PAGE_MASK);
6757 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6758 if ((unsigned int)poison <= 0xFF)
6759 memset(pos, poison, PAGE_SIZE);
6760 free_reserved_page(virt_to_page(pos));
6761 }
6762
6763 if (pages && s)
6764 pr_info("Freeing %s memory: %ldK\n",
6765 s, pages << (PAGE_SHIFT - 10));
6766
6767 return pages;
6768 }
6769 EXPORT_SYMBOL(free_reserved_area);
6770
6771 #ifdef CONFIG_HIGHMEM
6772 void free_highmem_page(struct page *page)
6773 {
6774 __free_reserved_page(page);
6775 totalram_pages++;
6776 page_zone(page)->managed_pages++;
6777 totalhigh_pages++;
6778 }
6779 #endif
6780
6781
6782 void __init mem_init_print_info(const char *str)
6783 {
6784 unsigned long physpages, codesize, datasize, rosize, bss_size;
6785 unsigned long init_code_size, init_data_size;
6786
6787 physpages = get_num_physpages();
6788 codesize = _etext - _stext;
6789 datasize = _edata - _sdata;
6790 rosize = __end_rodata - __start_rodata;
6791 bss_size = __bss_stop - __bss_start;
6792 init_data_size = __init_end - __init_begin;
6793 init_code_size = _einittext - _sinittext;
6794
6795 /*
6796 * Detect special cases and adjust section sizes accordingly:
6797 * 1) .init.* may be embedded into .data sections
6798 * 2) .init.text.* may be out of [__init_begin, __init_end],
6799 * please refer to arch/tile/kernel/vmlinux.lds.S.
6800 * 3) .rodata.* may be embedded into .text or .data sections.
6801 */
6802 #define adj_init_size(start, end, size, pos, adj) \
6803 do { \
6804 if (start <= pos && pos < end && size > adj) \
6805 size -= adj; \
6806 } while (0)
6807
6808 adj_init_size(__init_begin, __init_end, init_data_size,
6809 _sinittext, init_code_size);
6810 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6811 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6812 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6813 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6814
6815 #undef adj_init_size
6816
6817 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6818 #ifdef CONFIG_HIGHMEM
6819 ", %luK highmem"
6820 #endif
6821 "%s%s)\n",
6822 nr_free_pages() << (PAGE_SHIFT - 10),
6823 physpages << (PAGE_SHIFT - 10),
6824 codesize >> 10, datasize >> 10, rosize >> 10,
6825 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6826 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6827 totalcma_pages << (PAGE_SHIFT - 10),
6828 #ifdef CONFIG_HIGHMEM
6829 totalhigh_pages << (PAGE_SHIFT - 10),
6830 #endif
6831 str ? ", " : "", str ? str : "");
6832 }
6833
6834 /**
6835 * set_dma_reserve - set the specified number of pages reserved in the first zone
6836 * @new_dma_reserve: The number of pages to mark reserved
6837 *
6838 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6839 * In the DMA zone, a significant percentage may be consumed by kernel image
6840 * and other unfreeable allocations which can skew the watermarks badly. This
6841 * function may optionally be used to account for unfreeable pages in the
6842 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6843 * smaller per-cpu batchsize.
6844 */
6845 void __init set_dma_reserve(unsigned long new_dma_reserve)
6846 {
6847 dma_reserve = new_dma_reserve;
6848 }
6849
6850 void __init free_area_init(unsigned long *zones_size)
6851 {
6852 free_area_init_node(0, zones_size,
6853 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6854 }
6855
6856 static int page_alloc_cpu_dead(unsigned int cpu)
6857 {
6858
6859 lru_add_drain_cpu(cpu);
6860 drain_pages(cpu);
6861
6862 /*
6863 * Spill the event counters of the dead processor
6864 * into the current processors event counters.
6865 * This artificially elevates the count of the current
6866 * processor.
6867 */
6868 vm_events_fold_cpu(cpu);
6869
6870 /*
6871 * Zero the differential counters of the dead processor
6872 * so that the vm statistics are consistent.
6873 *
6874 * This is only okay since the processor is dead and cannot
6875 * race with what we are doing.
6876 */
6877 cpu_vm_stats_fold(cpu);
6878 return 0;
6879 }
6880
6881 void __init page_alloc_init(void)
6882 {
6883 int ret;
6884
6885 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6886 "mm/page_alloc:dead", NULL,
6887 page_alloc_cpu_dead);
6888 WARN_ON(ret < 0);
6889 }
6890
6891 /*
6892 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6893 * or min_free_kbytes changes.
6894 */
6895 static void calculate_totalreserve_pages(void)
6896 {
6897 struct pglist_data *pgdat;
6898 unsigned long reserve_pages = 0;
6899 enum zone_type i, j;
6900
6901 for_each_online_pgdat(pgdat) {
6902
6903 pgdat->totalreserve_pages = 0;
6904
6905 for (i = 0; i < MAX_NR_ZONES; i++) {
6906 struct zone *zone = pgdat->node_zones + i;
6907 long max = 0;
6908
6909 /* Find valid and maximum lowmem_reserve in the zone */
6910 for (j = i; j < MAX_NR_ZONES; j++) {
6911 if (zone->lowmem_reserve[j] > max)
6912 max = zone->lowmem_reserve[j];
6913 }
6914
6915 /* we treat the high watermark as reserved pages. */
6916 max += high_wmark_pages(zone);
6917
6918 if (max > zone->managed_pages)
6919 max = zone->managed_pages;
6920
6921 pgdat->totalreserve_pages += max;
6922
6923 reserve_pages += max;
6924 }
6925 }
6926 totalreserve_pages = reserve_pages;
6927 }
6928
6929 /*
6930 * setup_per_zone_lowmem_reserve - called whenever
6931 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6932 * has a correct pages reserved value, so an adequate number of
6933 * pages are left in the zone after a successful __alloc_pages().
6934 */
6935 static void setup_per_zone_lowmem_reserve(void)
6936 {
6937 struct pglist_data *pgdat;
6938 enum zone_type j, idx;
6939
6940 for_each_online_pgdat(pgdat) {
6941 for (j = 0; j < MAX_NR_ZONES; j++) {
6942 struct zone *zone = pgdat->node_zones + j;
6943 unsigned long managed_pages = zone->managed_pages;
6944
6945 zone->lowmem_reserve[j] = 0;
6946
6947 idx = j;
6948 while (idx) {
6949 struct zone *lower_zone;
6950
6951 idx--;
6952
6953 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6954 sysctl_lowmem_reserve_ratio[idx] = 1;
6955
6956 lower_zone = pgdat->node_zones + idx;
6957 lower_zone->lowmem_reserve[j] = managed_pages /
6958 sysctl_lowmem_reserve_ratio[idx];
6959 managed_pages += lower_zone->managed_pages;
6960 }
6961 }
6962 }
6963
6964 /* update totalreserve_pages */
6965 calculate_totalreserve_pages();
6966 }
6967
6968 static void __setup_per_zone_wmarks(void)
6969 {
6970 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6971 unsigned long lowmem_pages = 0;
6972 struct zone *zone;
6973 unsigned long flags;
6974
6975 /* Calculate total number of !ZONE_HIGHMEM pages */
6976 for_each_zone(zone) {
6977 if (!is_highmem(zone))
6978 lowmem_pages += zone->managed_pages;
6979 }
6980
6981 for_each_zone(zone) {
6982 u64 tmp;
6983
6984 spin_lock_irqsave(&zone->lock, flags);
6985 tmp = (u64)pages_min * zone->managed_pages;
6986 do_div(tmp, lowmem_pages);
6987 if (is_highmem(zone)) {
6988 /*
6989 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6990 * need highmem pages, so cap pages_min to a small
6991 * value here.
6992 *
6993 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6994 * deltas control asynch page reclaim, and so should
6995 * not be capped for highmem.
6996 */
6997 unsigned long min_pages;
6998
6999 min_pages = zone->managed_pages / 1024;
7000 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7001 zone->watermark[WMARK_MIN] = min_pages;
7002 } else {
7003 /*
7004 * If it's a lowmem zone, reserve a number of pages
7005 * proportionate to the zone's size.
7006 */
7007 zone->watermark[WMARK_MIN] = tmp;
7008 }
7009
7010 /*
7011 * Set the kswapd watermarks distance according to the
7012 * scale factor in proportion to available memory, but
7013 * ensure a minimum size on small systems.
7014 */
7015 tmp = max_t(u64, tmp >> 2,
7016 mult_frac(zone->managed_pages,
7017 watermark_scale_factor, 10000));
7018
7019 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7020 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7021
7022 spin_unlock_irqrestore(&zone->lock, flags);
7023 }
7024
7025 /* update totalreserve_pages */
7026 calculate_totalreserve_pages();
7027 }
7028
7029 /**
7030 * setup_per_zone_wmarks - called when min_free_kbytes changes
7031 * or when memory is hot-{added|removed}
7032 *
7033 * Ensures that the watermark[min,low,high] values for each zone are set
7034 * correctly with respect to min_free_kbytes.
7035 */
7036 void setup_per_zone_wmarks(void)
7037 {
7038 mutex_lock(&zonelists_mutex);
7039 __setup_per_zone_wmarks();
7040 mutex_unlock(&zonelists_mutex);
7041 }
7042
7043 /*
7044 * Initialise min_free_kbytes.
7045 *
7046 * For small machines we want it small (128k min). For large machines
7047 * we want it large (64MB max). But it is not linear, because network
7048 * bandwidth does not increase linearly with machine size. We use
7049 *
7050 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7051 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7052 *
7053 * which yields
7054 *
7055 * 16MB: 512k
7056 * 32MB: 724k
7057 * 64MB: 1024k
7058 * 128MB: 1448k
7059 * 256MB: 2048k
7060 * 512MB: 2896k
7061 * 1024MB: 4096k
7062 * 2048MB: 5792k
7063 * 4096MB: 8192k
7064 * 8192MB: 11584k
7065 * 16384MB: 16384k
7066 */
7067 int __meminit init_per_zone_wmark_min(void)
7068 {
7069 unsigned long lowmem_kbytes;
7070 int new_min_free_kbytes;
7071
7072 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7073 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7074
7075 if (new_min_free_kbytes > user_min_free_kbytes) {
7076 min_free_kbytes = new_min_free_kbytes;
7077 if (min_free_kbytes < 128)
7078 min_free_kbytes = 128;
7079 if (min_free_kbytes > 65536)
7080 min_free_kbytes = 65536;
7081 } else {
7082 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7083 new_min_free_kbytes, user_min_free_kbytes);
7084 }
7085 setup_per_zone_wmarks();
7086 refresh_zone_stat_thresholds();
7087 setup_per_zone_lowmem_reserve();
7088
7089 #ifdef CONFIG_NUMA
7090 setup_min_unmapped_ratio();
7091 setup_min_slab_ratio();
7092 #endif
7093
7094 return 0;
7095 }
7096 core_initcall(init_per_zone_wmark_min)
7097
7098 /*
7099 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7100 * that we can call two helper functions whenever min_free_kbytes
7101 * changes.
7102 */
7103 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7104 void __user *buffer, size_t *length, loff_t *ppos)
7105 {
7106 int rc;
7107
7108 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7109 if (rc)
7110 return rc;
7111
7112 if (write) {
7113 user_min_free_kbytes = min_free_kbytes;
7114 setup_per_zone_wmarks();
7115 }
7116 return 0;
7117 }
7118
7119 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7120 void __user *buffer, size_t *length, loff_t *ppos)
7121 {
7122 int rc;
7123
7124 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7125 if (rc)
7126 return rc;
7127
7128 if (write)
7129 setup_per_zone_wmarks();
7130
7131 return 0;
7132 }
7133
7134 #ifdef CONFIG_NUMA
7135 static void setup_min_unmapped_ratio(void)
7136 {
7137 pg_data_t *pgdat;
7138 struct zone *zone;
7139
7140 for_each_online_pgdat(pgdat)
7141 pgdat->min_unmapped_pages = 0;
7142
7143 for_each_zone(zone)
7144 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7145 sysctl_min_unmapped_ratio) / 100;
7146 }
7147
7148
7149 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7150 void __user *buffer, size_t *length, loff_t *ppos)
7151 {
7152 int rc;
7153
7154 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7155 if (rc)
7156 return rc;
7157
7158 setup_min_unmapped_ratio();
7159
7160 return 0;
7161 }
7162
7163 static void setup_min_slab_ratio(void)
7164 {
7165 pg_data_t *pgdat;
7166 struct zone *zone;
7167
7168 for_each_online_pgdat(pgdat)
7169 pgdat->min_slab_pages = 0;
7170
7171 for_each_zone(zone)
7172 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7173 sysctl_min_slab_ratio) / 100;
7174 }
7175
7176 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7177 void __user *buffer, size_t *length, loff_t *ppos)
7178 {
7179 int rc;
7180
7181 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7182 if (rc)
7183 return rc;
7184
7185 setup_min_slab_ratio();
7186
7187 return 0;
7188 }
7189 #endif
7190
7191 /*
7192 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7193 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7194 * whenever sysctl_lowmem_reserve_ratio changes.
7195 *
7196 * The reserve ratio obviously has absolutely no relation with the
7197 * minimum watermarks. The lowmem reserve ratio can only make sense
7198 * if in function of the boot time zone sizes.
7199 */
7200 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7201 void __user *buffer, size_t *length, loff_t *ppos)
7202 {
7203 proc_dointvec_minmax(table, write, buffer, length, ppos);
7204 setup_per_zone_lowmem_reserve();
7205 return 0;
7206 }
7207
7208 /*
7209 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7210 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7211 * pagelist can have before it gets flushed back to buddy allocator.
7212 */
7213 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7214 void __user *buffer, size_t *length, loff_t *ppos)
7215 {
7216 struct zone *zone;
7217 int old_percpu_pagelist_fraction;
7218 int ret;
7219
7220 mutex_lock(&pcp_batch_high_lock);
7221 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7222
7223 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7224 if (!write || ret < 0)
7225 goto out;
7226
7227 /* Sanity checking to avoid pcp imbalance */
7228 if (percpu_pagelist_fraction &&
7229 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7230 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7231 ret = -EINVAL;
7232 goto out;
7233 }
7234
7235 /* No change? */
7236 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7237 goto out;
7238
7239 for_each_populated_zone(zone) {
7240 unsigned int cpu;
7241
7242 for_each_possible_cpu(cpu)
7243 pageset_set_high_and_batch(zone,
7244 per_cpu_ptr(zone->pageset, cpu));
7245 }
7246 out:
7247 mutex_unlock(&pcp_batch_high_lock);
7248 return ret;
7249 }
7250
7251 #ifdef CONFIG_NUMA
7252 int hashdist = HASHDIST_DEFAULT;
7253
7254 static int __init set_hashdist(char *str)
7255 {
7256 if (!str)
7257 return 0;
7258 hashdist = simple_strtoul(str, &str, 0);
7259 return 1;
7260 }
7261 __setup("hashdist=", set_hashdist);
7262 #endif
7263
7264 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7265 /*
7266 * Returns the number of pages that arch has reserved but
7267 * is not known to alloc_large_system_hash().
7268 */
7269 static unsigned long __init arch_reserved_kernel_pages(void)
7270 {
7271 return 0;
7272 }
7273 #endif
7274
7275 /*
7276 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7277 * machines. As memory size is increased the scale is also increased but at
7278 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7279 * quadruples the scale is increased by one, which means the size of hash table
7280 * only doubles, instead of quadrupling as well.
7281 * Because 32-bit systems cannot have large physical memory, where this scaling
7282 * makes sense, it is disabled on such platforms.
7283 */
7284 #if __BITS_PER_LONG > 32
7285 #define ADAPT_SCALE_BASE (64ul << 30)
7286 #define ADAPT_SCALE_SHIFT 2
7287 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7288 #endif
7289
7290 /*
7291 * allocate a large system hash table from bootmem
7292 * - it is assumed that the hash table must contain an exact power-of-2
7293 * quantity of entries
7294 * - limit is the number of hash buckets, not the total allocation size
7295 */
7296 void *__init alloc_large_system_hash(const char *tablename,
7297 unsigned long bucketsize,
7298 unsigned long numentries,
7299 int scale,
7300 int flags,
7301 unsigned int *_hash_shift,
7302 unsigned int *_hash_mask,
7303 unsigned long low_limit,
7304 unsigned long high_limit)
7305 {
7306 unsigned long long max = high_limit;
7307 unsigned long log2qty, size;
7308 void *table = NULL;
7309 gfp_t gfp_flags;
7310
7311 /* allow the kernel cmdline to have a say */
7312 if (!numentries) {
7313 /* round applicable memory size up to nearest megabyte */
7314 numentries = nr_kernel_pages;
7315 numentries -= arch_reserved_kernel_pages();
7316
7317 /* It isn't necessary when PAGE_SIZE >= 1MB */
7318 if (PAGE_SHIFT < 20)
7319 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7320
7321 #if __BITS_PER_LONG > 32
7322 if (!high_limit) {
7323 unsigned long adapt;
7324
7325 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7326 adapt <<= ADAPT_SCALE_SHIFT)
7327 scale++;
7328 }
7329 #endif
7330
7331 /* limit to 1 bucket per 2^scale bytes of low memory */
7332 if (scale > PAGE_SHIFT)
7333 numentries >>= (scale - PAGE_SHIFT);
7334 else
7335 numentries <<= (PAGE_SHIFT - scale);
7336
7337 /* Make sure we've got at least a 0-order allocation.. */
7338 if (unlikely(flags & HASH_SMALL)) {
7339 /* Makes no sense without HASH_EARLY */
7340 WARN_ON(!(flags & HASH_EARLY));
7341 if (!(numentries >> *_hash_shift)) {
7342 numentries = 1UL << *_hash_shift;
7343 BUG_ON(!numentries);
7344 }
7345 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7346 numentries = PAGE_SIZE / bucketsize;
7347 }
7348 numentries = roundup_pow_of_two(numentries);
7349
7350 /* limit allocation size to 1/16 total memory by default */
7351 if (max == 0) {
7352 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7353 do_div(max, bucketsize);
7354 }
7355 max = min(max, 0x80000000ULL);
7356
7357 if (numentries < low_limit)
7358 numentries = low_limit;
7359 if (numentries > max)
7360 numentries = max;
7361
7362 log2qty = ilog2(numentries);
7363
7364 /*
7365 * memblock allocator returns zeroed memory already, so HASH_ZERO is
7366 * currently not used when HASH_EARLY is specified.
7367 */
7368 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7369 do {
7370 size = bucketsize << log2qty;
7371 if (flags & HASH_EARLY)
7372 table = memblock_virt_alloc_nopanic(size, 0);
7373 else if (hashdist)
7374 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7375 else {
7376 /*
7377 * If bucketsize is not a power-of-two, we may free
7378 * some pages at the end of hash table which
7379 * alloc_pages_exact() automatically does
7380 */
7381 if (get_order(size) < MAX_ORDER) {
7382 table = alloc_pages_exact(size, gfp_flags);
7383 kmemleak_alloc(table, size, 1, gfp_flags);
7384 }
7385 }
7386 } while (!table && size > PAGE_SIZE && --log2qty);
7387
7388 if (!table)
7389 panic("Failed to allocate %s hash table\n", tablename);
7390
7391 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7392 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7393
7394 if (_hash_shift)
7395 *_hash_shift = log2qty;
7396 if (_hash_mask)
7397 *_hash_mask = (1 << log2qty) - 1;
7398
7399 return table;
7400 }
7401
7402 /*
7403 * This function checks whether pageblock includes unmovable pages or not.
7404 * If @count is not zero, it is okay to include less @count unmovable pages
7405 *
7406 * PageLRU check without isolation or lru_lock could race so that
7407 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7408 * check without lock_page also may miss some movable non-lru pages at
7409 * race condition. So you can't expect this function should be exact.
7410 */
7411 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7412 bool skip_hwpoisoned_pages)
7413 {
7414 unsigned long pfn, iter, found;
7415 int mt;
7416
7417 /*
7418 * For avoiding noise data, lru_add_drain_all() should be called
7419 * If ZONE_MOVABLE, the zone never contains unmovable pages
7420 */
7421 if (zone_idx(zone) == ZONE_MOVABLE)
7422 return false;
7423 mt = get_pageblock_migratetype(page);
7424 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7425 return false;
7426
7427 pfn = page_to_pfn(page);
7428 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7429 unsigned long check = pfn + iter;
7430
7431 if (!pfn_valid_within(check))
7432 continue;
7433
7434 page = pfn_to_page(check);
7435
7436 /*
7437 * Hugepages are not in LRU lists, but they're movable.
7438 * We need not scan over tail pages bacause we don't
7439 * handle each tail page individually in migration.
7440 */
7441 if (PageHuge(page)) {
7442 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7443 continue;
7444 }
7445
7446 /*
7447 * We can't use page_count without pin a page
7448 * because another CPU can free compound page.
7449 * This check already skips compound tails of THP
7450 * because their page->_refcount is zero at all time.
7451 */
7452 if (!page_ref_count(page)) {
7453 if (PageBuddy(page))
7454 iter += (1 << page_order(page)) - 1;
7455 continue;
7456 }
7457
7458 /*
7459 * The HWPoisoned page may be not in buddy system, and
7460 * page_count() is not 0.
7461 */
7462 if (skip_hwpoisoned_pages && PageHWPoison(page))
7463 continue;
7464
7465 if (__PageMovable(page))
7466 continue;
7467
7468 if (!PageLRU(page))
7469 found++;
7470 /*
7471 * If there are RECLAIMABLE pages, we need to check
7472 * it. But now, memory offline itself doesn't call
7473 * shrink_node_slabs() and it still to be fixed.
7474 */
7475 /*
7476 * If the page is not RAM, page_count()should be 0.
7477 * we don't need more check. This is an _used_ not-movable page.
7478 *
7479 * The problematic thing here is PG_reserved pages. PG_reserved
7480 * is set to both of a memory hole page and a _used_ kernel
7481 * page at boot.
7482 */
7483 if (found > count)
7484 return true;
7485 }
7486 return false;
7487 }
7488
7489 bool is_pageblock_removable_nolock(struct page *page)
7490 {
7491 struct zone *zone;
7492 unsigned long pfn;
7493
7494 /*
7495 * We have to be careful here because we are iterating over memory
7496 * sections which are not zone aware so we might end up outside of
7497 * the zone but still within the section.
7498 * We have to take care about the node as well. If the node is offline
7499 * its NODE_DATA will be NULL - see page_zone.
7500 */
7501 if (!node_online(page_to_nid(page)))
7502 return false;
7503
7504 zone = page_zone(page);
7505 pfn = page_to_pfn(page);
7506 if (!zone_spans_pfn(zone, pfn))
7507 return false;
7508
7509 return !has_unmovable_pages(zone, page, 0, true);
7510 }
7511
7512 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7513
7514 static unsigned long pfn_max_align_down(unsigned long pfn)
7515 {
7516 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7517 pageblock_nr_pages) - 1);
7518 }
7519
7520 static unsigned long pfn_max_align_up(unsigned long pfn)
7521 {
7522 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7523 pageblock_nr_pages));
7524 }
7525
7526 /* [start, end) must belong to a single zone. */
7527 static int __alloc_contig_migrate_range(struct compact_control *cc,
7528 unsigned long start, unsigned long end)
7529 {
7530 /* This function is based on compact_zone() from compaction.c. */
7531 unsigned long nr_reclaimed;
7532 unsigned long pfn = start;
7533 unsigned int tries = 0;
7534 int ret = 0;
7535
7536 migrate_prep();
7537
7538 while (pfn < end || !list_empty(&cc->migratepages)) {
7539 if (fatal_signal_pending(current)) {
7540 ret = -EINTR;
7541 break;
7542 }
7543
7544 if (list_empty(&cc->migratepages)) {
7545 cc->nr_migratepages = 0;
7546 pfn = isolate_migratepages_range(cc, pfn, end);
7547 if (!pfn) {
7548 ret = -EINTR;
7549 break;
7550 }
7551 tries = 0;
7552 } else if (++tries == 5) {
7553 ret = ret < 0 ? ret : -EBUSY;
7554 break;
7555 }
7556
7557 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7558 &cc->migratepages);
7559 cc->nr_migratepages -= nr_reclaimed;
7560
7561 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7562 NULL, 0, cc->mode, MR_CMA);
7563 }
7564 if (ret < 0) {
7565 putback_movable_pages(&cc->migratepages);
7566 return ret;
7567 }
7568 return 0;
7569 }
7570
7571 /**
7572 * alloc_contig_range() -- tries to allocate given range of pages
7573 * @start: start PFN to allocate
7574 * @end: one-past-the-last PFN to allocate
7575 * @migratetype: migratetype of the underlaying pageblocks (either
7576 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7577 * in range must have the same migratetype and it must
7578 * be either of the two.
7579 * @gfp_mask: GFP mask to use during compaction
7580 *
7581 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7582 * aligned, however it's the caller's responsibility to guarantee that
7583 * we are the only thread that changes migrate type of pageblocks the
7584 * pages fall in.
7585 *
7586 * The PFN range must belong to a single zone.
7587 *
7588 * Returns zero on success or negative error code. On success all
7589 * pages which PFN is in [start, end) are allocated for the caller and
7590 * need to be freed with free_contig_range().
7591 */
7592 int alloc_contig_range(unsigned long start, unsigned long end,
7593 unsigned migratetype, gfp_t gfp_mask)
7594 {
7595 unsigned long outer_start, outer_end;
7596 unsigned int order;
7597 int ret = 0;
7598
7599 struct compact_control cc = {
7600 .nr_migratepages = 0,
7601 .order = -1,
7602 .zone = page_zone(pfn_to_page(start)),
7603 .mode = MIGRATE_SYNC,
7604 .ignore_skip_hint = true,
7605 .gfp_mask = current_gfp_context(gfp_mask),
7606 };
7607 INIT_LIST_HEAD(&cc.migratepages);
7608
7609 /*
7610 * What we do here is we mark all pageblocks in range as
7611 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7612 * have different sizes, and due to the way page allocator
7613 * work, we align the range to biggest of the two pages so
7614 * that page allocator won't try to merge buddies from
7615 * different pageblocks and change MIGRATE_ISOLATE to some
7616 * other migration type.
7617 *
7618 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7619 * migrate the pages from an unaligned range (ie. pages that
7620 * we are interested in). This will put all the pages in
7621 * range back to page allocator as MIGRATE_ISOLATE.
7622 *
7623 * When this is done, we take the pages in range from page
7624 * allocator removing them from the buddy system. This way
7625 * page allocator will never consider using them.
7626 *
7627 * This lets us mark the pageblocks back as
7628 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7629 * aligned range but not in the unaligned, original range are
7630 * put back to page allocator so that buddy can use them.
7631 */
7632
7633 ret = start_isolate_page_range(pfn_max_align_down(start),
7634 pfn_max_align_up(end), migratetype,
7635 false);
7636 if (ret)
7637 return ret;
7638
7639 /*
7640 * In case of -EBUSY, we'd like to know which page causes problem.
7641 * So, just fall through. We will check it in test_pages_isolated().
7642 */
7643 ret = __alloc_contig_migrate_range(&cc, start, end);
7644 if (ret && ret != -EBUSY)
7645 goto done;
7646
7647 /*
7648 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7649 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7650 * more, all pages in [start, end) are free in page allocator.
7651 * What we are going to do is to allocate all pages from
7652 * [start, end) (that is remove them from page allocator).
7653 *
7654 * The only problem is that pages at the beginning and at the
7655 * end of interesting range may be not aligned with pages that
7656 * page allocator holds, ie. they can be part of higher order
7657 * pages. Because of this, we reserve the bigger range and
7658 * once this is done free the pages we are not interested in.
7659 *
7660 * We don't have to hold zone->lock here because the pages are
7661 * isolated thus they won't get removed from buddy.
7662 */
7663
7664 lru_add_drain_all();
7665 drain_all_pages(cc.zone);
7666
7667 order = 0;
7668 outer_start = start;
7669 while (!PageBuddy(pfn_to_page(outer_start))) {
7670 if (++order >= MAX_ORDER) {
7671 outer_start = start;
7672 break;
7673 }
7674 outer_start &= ~0UL << order;
7675 }
7676
7677 if (outer_start != start) {
7678 order = page_order(pfn_to_page(outer_start));
7679
7680 /*
7681 * outer_start page could be small order buddy page and
7682 * it doesn't include start page. Adjust outer_start
7683 * in this case to report failed page properly
7684 * on tracepoint in test_pages_isolated()
7685 */
7686 if (outer_start + (1UL << order) <= start)
7687 outer_start = start;
7688 }
7689
7690 /* Make sure the range is really isolated. */
7691 if (test_pages_isolated(outer_start, end, false)) {
7692 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7693 __func__, outer_start, end);
7694 ret = -EBUSY;
7695 goto done;
7696 }
7697
7698 /* Grab isolated pages from freelists. */
7699 outer_end = isolate_freepages_range(&cc, outer_start, end);
7700 if (!outer_end) {
7701 ret = -EBUSY;
7702 goto done;
7703 }
7704
7705 /* Free head and tail (if any) */
7706 if (start != outer_start)
7707 free_contig_range(outer_start, start - outer_start);
7708 if (end != outer_end)
7709 free_contig_range(end, outer_end - end);
7710
7711 done:
7712 undo_isolate_page_range(pfn_max_align_down(start),
7713 pfn_max_align_up(end), migratetype);
7714 return ret;
7715 }
7716
7717 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7718 {
7719 unsigned int count = 0;
7720
7721 for (; nr_pages--; pfn++) {
7722 struct page *page = pfn_to_page(pfn);
7723
7724 count += page_count(page) != 1;
7725 __free_page(page);
7726 }
7727 WARN(count != 0, "%d pages are still in use!\n", count);
7728 }
7729 #endif
7730
7731 #ifdef CONFIG_MEMORY_HOTPLUG
7732 /*
7733 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7734 * page high values need to be recalulated.
7735 */
7736 void __meminit zone_pcp_update(struct zone *zone)
7737 {
7738 unsigned cpu;
7739 mutex_lock(&pcp_batch_high_lock);
7740 for_each_possible_cpu(cpu)
7741 pageset_set_high_and_batch(zone,
7742 per_cpu_ptr(zone->pageset, cpu));
7743 mutex_unlock(&pcp_batch_high_lock);
7744 }
7745 #endif
7746
7747 void zone_pcp_reset(struct zone *zone)
7748 {
7749 unsigned long flags;
7750 int cpu;
7751 struct per_cpu_pageset *pset;
7752
7753 /* avoid races with drain_pages() */
7754 local_irq_save(flags);
7755 if (zone->pageset != &boot_pageset) {
7756 for_each_online_cpu(cpu) {
7757 pset = per_cpu_ptr(zone->pageset, cpu);
7758 drain_zonestat(zone, pset);
7759 }
7760 free_percpu(zone->pageset);
7761 zone->pageset = &boot_pageset;
7762 }
7763 local_irq_restore(flags);
7764 }
7765
7766 #ifdef CONFIG_MEMORY_HOTREMOVE
7767 /*
7768 * All pages in the range must be in a single zone and isolated
7769 * before calling this.
7770 */
7771 void
7772 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7773 {
7774 struct page *page;
7775 struct zone *zone;
7776 unsigned int order, i;
7777 unsigned long pfn;
7778 unsigned long flags;
7779 /* find the first valid pfn */
7780 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7781 if (pfn_valid(pfn))
7782 break;
7783 if (pfn == end_pfn)
7784 return;
7785 offline_mem_sections(pfn, end_pfn);
7786 zone = page_zone(pfn_to_page(pfn));
7787 spin_lock_irqsave(&zone->lock, flags);
7788 pfn = start_pfn;
7789 while (pfn < end_pfn) {
7790 if (!pfn_valid(pfn)) {
7791 pfn++;
7792 continue;
7793 }
7794 page = pfn_to_page(pfn);
7795 /*
7796 * The HWPoisoned page may be not in buddy system, and
7797 * page_count() is not 0.
7798 */
7799 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7800 pfn++;
7801 SetPageReserved(page);
7802 continue;
7803 }
7804
7805 BUG_ON(page_count(page));
7806 BUG_ON(!PageBuddy(page));
7807 order = page_order(page);
7808 #ifdef CONFIG_DEBUG_VM
7809 pr_info("remove from free list %lx %d %lx\n",
7810 pfn, 1 << order, end_pfn);
7811 #endif
7812 list_del(&page->lru);
7813 rmv_page_order(page);
7814 zone->free_area[order].nr_free--;
7815 for (i = 0; i < (1 << order); i++)
7816 SetPageReserved((page+i));
7817 pfn += (1 << order);
7818 }
7819 spin_unlock_irqrestore(&zone->lock, flags);
7820 }
7821 #endif
7822
7823 bool is_free_buddy_page(struct page *page)
7824 {
7825 struct zone *zone = page_zone(page);
7826 unsigned long pfn = page_to_pfn(page);
7827 unsigned long flags;
7828 unsigned int order;
7829
7830 spin_lock_irqsave(&zone->lock, flags);
7831 for (order = 0; order < MAX_ORDER; order++) {
7832 struct page *page_head = page - (pfn & ((1 << order) - 1));
7833
7834 if (PageBuddy(page_head) && page_order(page_head) >= order)
7835 break;
7836 }
7837 spin_unlock_irqrestore(&zone->lock, flags);
7838
7839 return order < MAX_ORDER;
7840 }