]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/page_alloc.c
Merge branch 'akpm' (patches from Andrew)
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72 #define MIN_PERCPU_PAGELIST_FRACTION (8)
73
74 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75 DEFINE_PER_CPU(int, numa_node);
76 EXPORT_PER_CPU_SYMBOL(numa_node);
77 #endif
78
79 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
80 /*
81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84 * defined in <linux/topology.h>.
85 */
86 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
87 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
88 int _node_numa_mem_[MAX_NUMNODES];
89 #endif
90
91 /*
92 * Array of node states.
93 */
94 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
95 [N_POSSIBLE] = NODE_MASK_ALL,
96 [N_ONLINE] = { { [0] = 1UL } },
97 #ifndef CONFIG_NUMA
98 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
99 #ifdef CONFIG_HIGHMEM
100 [N_HIGH_MEMORY] = { { [0] = 1UL } },
101 #endif
102 #ifdef CONFIG_MOVABLE_NODE
103 [N_MEMORY] = { { [0] = 1UL } },
104 #endif
105 [N_CPU] = { { [0] = 1UL } },
106 #endif /* NUMA */
107 };
108 EXPORT_SYMBOL(node_states);
109
110 /* Protect totalram_pages and zone->managed_pages */
111 static DEFINE_SPINLOCK(managed_page_count_lock);
112
113 unsigned long totalram_pages __read_mostly;
114 unsigned long totalreserve_pages __read_mostly;
115 unsigned long totalcma_pages __read_mostly;
116 /*
117 * When calculating the number of globally allowed dirty pages, there
118 * is a certain number of per-zone reserves that should not be
119 * considered dirtyable memory. This is the sum of those reserves
120 * over all existing zones that contribute dirtyable memory.
121 */
122 unsigned long dirty_balance_reserve __read_mostly;
123
124 int percpu_pagelist_fraction;
125 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
126
127 #ifdef CONFIG_PM_SLEEP
128 /*
129 * The following functions are used by the suspend/hibernate code to temporarily
130 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
131 * while devices are suspended. To avoid races with the suspend/hibernate code,
132 * they should always be called with pm_mutex held (gfp_allowed_mask also should
133 * only be modified with pm_mutex held, unless the suspend/hibernate code is
134 * guaranteed not to run in parallel with that modification).
135 */
136
137 static gfp_t saved_gfp_mask;
138
139 void pm_restore_gfp_mask(void)
140 {
141 WARN_ON(!mutex_is_locked(&pm_mutex));
142 if (saved_gfp_mask) {
143 gfp_allowed_mask = saved_gfp_mask;
144 saved_gfp_mask = 0;
145 }
146 }
147
148 void pm_restrict_gfp_mask(void)
149 {
150 WARN_ON(!mutex_is_locked(&pm_mutex));
151 WARN_ON(saved_gfp_mask);
152 saved_gfp_mask = gfp_allowed_mask;
153 gfp_allowed_mask &= ~GFP_IOFS;
154 }
155
156 bool pm_suspended_storage(void)
157 {
158 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
159 return false;
160 return true;
161 }
162 #endif /* CONFIG_PM_SLEEP */
163
164 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
165 int pageblock_order __read_mostly;
166 #endif
167
168 static void __free_pages_ok(struct page *page, unsigned int order);
169
170 /*
171 * results with 256, 32 in the lowmem_reserve sysctl:
172 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
173 * 1G machine -> (16M dma, 784M normal, 224M high)
174 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
175 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
176 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
177 *
178 * TBD: should special case ZONE_DMA32 machines here - in those we normally
179 * don't need any ZONE_NORMAL reservation
180 */
181 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
182 #ifdef CONFIG_ZONE_DMA
183 256,
184 #endif
185 #ifdef CONFIG_ZONE_DMA32
186 256,
187 #endif
188 #ifdef CONFIG_HIGHMEM
189 32,
190 #endif
191 32,
192 };
193
194 EXPORT_SYMBOL(totalram_pages);
195
196 static char * const zone_names[MAX_NR_ZONES] = {
197 #ifdef CONFIG_ZONE_DMA
198 "DMA",
199 #endif
200 #ifdef CONFIG_ZONE_DMA32
201 "DMA32",
202 #endif
203 "Normal",
204 #ifdef CONFIG_HIGHMEM
205 "HighMem",
206 #endif
207 "Movable",
208 };
209
210 int min_free_kbytes = 1024;
211 int user_min_free_kbytes = -1;
212
213 static unsigned long __meminitdata nr_kernel_pages;
214 static unsigned long __meminitdata nr_all_pages;
215 static unsigned long __meminitdata dma_reserve;
216
217 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
218 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
219 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
220 static unsigned long __initdata required_kernelcore;
221 static unsigned long __initdata required_movablecore;
222 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
223
224 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
225 int movable_zone;
226 EXPORT_SYMBOL(movable_zone);
227 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
228
229 #if MAX_NUMNODES > 1
230 int nr_node_ids __read_mostly = MAX_NUMNODES;
231 int nr_online_nodes __read_mostly = 1;
232 EXPORT_SYMBOL(nr_node_ids);
233 EXPORT_SYMBOL(nr_online_nodes);
234 #endif
235
236 int page_group_by_mobility_disabled __read_mostly;
237
238 void set_pageblock_migratetype(struct page *page, int migratetype)
239 {
240 if (unlikely(page_group_by_mobility_disabled &&
241 migratetype < MIGRATE_PCPTYPES))
242 migratetype = MIGRATE_UNMOVABLE;
243
244 set_pageblock_flags_group(page, (unsigned long)migratetype,
245 PB_migrate, PB_migrate_end);
246 }
247
248 #ifdef CONFIG_DEBUG_VM
249 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
250 {
251 int ret = 0;
252 unsigned seq;
253 unsigned long pfn = page_to_pfn(page);
254 unsigned long sp, start_pfn;
255
256 do {
257 seq = zone_span_seqbegin(zone);
258 start_pfn = zone->zone_start_pfn;
259 sp = zone->spanned_pages;
260 if (!zone_spans_pfn(zone, pfn))
261 ret = 1;
262 } while (zone_span_seqretry(zone, seq));
263
264 if (ret)
265 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
266 pfn, zone_to_nid(zone), zone->name,
267 start_pfn, start_pfn + sp);
268
269 return ret;
270 }
271
272 static int page_is_consistent(struct zone *zone, struct page *page)
273 {
274 if (!pfn_valid_within(page_to_pfn(page)))
275 return 0;
276 if (zone != page_zone(page))
277 return 0;
278
279 return 1;
280 }
281 /*
282 * Temporary debugging check for pages not lying within a given zone.
283 */
284 static int bad_range(struct zone *zone, struct page *page)
285 {
286 if (page_outside_zone_boundaries(zone, page))
287 return 1;
288 if (!page_is_consistent(zone, page))
289 return 1;
290
291 return 0;
292 }
293 #else
294 static inline int bad_range(struct zone *zone, struct page *page)
295 {
296 return 0;
297 }
298 #endif
299
300 static void bad_page(struct page *page, const char *reason,
301 unsigned long bad_flags)
302 {
303 static unsigned long resume;
304 static unsigned long nr_shown;
305 static unsigned long nr_unshown;
306
307 /* Don't complain about poisoned pages */
308 if (PageHWPoison(page)) {
309 page_mapcount_reset(page); /* remove PageBuddy */
310 return;
311 }
312
313 /*
314 * Allow a burst of 60 reports, then keep quiet for that minute;
315 * or allow a steady drip of one report per second.
316 */
317 if (nr_shown == 60) {
318 if (time_before(jiffies, resume)) {
319 nr_unshown++;
320 goto out;
321 }
322 if (nr_unshown) {
323 printk(KERN_ALERT
324 "BUG: Bad page state: %lu messages suppressed\n",
325 nr_unshown);
326 nr_unshown = 0;
327 }
328 nr_shown = 0;
329 }
330 if (nr_shown++ == 0)
331 resume = jiffies + 60 * HZ;
332
333 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
334 current->comm, page_to_pfn(page));
335 dump_page_badflags(page, reason, bad_flags);
336
337 print_modules();
338 dump_stack();
339 out:
340 /* Leave bad fields for debug, except PageBuddy could make trouble */
341 page_mapcount_reset(page); /* remove PageBuddy */
342 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
343 }
344
345 /*
346 * Higher-order pages are called "compound pages". They are structured thusly:
347 *
348 * The first PAGE_SIZE page is called the "head page".
349 *
350 * The remaining PAGE_SIZE pages are called "tail pages".
351 *
352 * All pages have PG_compound set. All tail pages have their ->first_page
353 * pointing at the head page.
354 *
355 * The first tail page's ->lru.next holds the address of the compound page's
356 * put_page() function. Its ->lru.prev holds the order of allocation.
357 * This usage means that zero-order pages may not be compound.
358 */
359
360 static void free_compound_page(struct page *page)
361 {
362 __free_pages_ok(page, compound_order(page));
363 }
364
365 void prep_compound_page(struct page *page, unsigned long order)
366 {
367 int i;
368 int nr_pages = 1 << order;
369
370 set_compound_page_dtor(page, free_compound_page);
371 set_compound_order(page, order);
372 __SetPageHead(page);
373 for (i = 1; i < nr_pages; i++) {
374 struct page *p = page + i;
375 set_page_count(p, 0);
376 p->first_page = page;
377 /* Make sure p->first_page is always valid for PageTail() */
378 smp_wmb();
379 __SetPageTail(p);
380 }
381 }
382
383 static inline void prep_zero_page(struct page *page, unsigned int order,
384 gfp_t gfp_flags)
385 {
386 int i;
387
388 /*
389 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
390 * and __GFP_HIGHMEM from hard or soft interrupt context.
391 */
392 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
393 for (i = 0; i < (1 << order); i++)
394 clear_highpage(page + i);
395 }
396
397 #ifdef CONFIG_DEBUG_PAGEALLOC
398 unsigned int _debug_guardpage_minorder;
399 bool _debug_pagealloc_enabled __read_mostly;
400 bool _debug_guardpage_enabled __read_mostly;
401
402 static int __init early_debug_pagealloc(char *buf)
403 {
404 if (!buf)
405 return -EINVAL;
406
407 if (strcmp(buf, "on") == 0)
408 _debug_pagealloc_enabled = true;
409
410 return 0;
411 }
412 early_param("debug_pagealloc", early_debug_pagealloc);
413
414 static bool need_debug_guardpage(void)
415 {
416 /* If we don't use debug_pagealloc, we don't need guard page */
417 if (!debug_pagealloc_enabled())
418 return false;
419
420 return true;
421 }
422
423 static void init_debug_guardpage(void)
424 {
425 if (!debug_pagealloc_enabled())
426 return;
427
428 _debug_guardpage_enabled = true;
429 }
430
431 struct page_ext_operations debug_guardpage_ops = {
432 .need = need_debug_guardpage,
433 .init = init_debug_guardpage,
434 };
435
436 static int __init debug_guardpage_minorder_setup(char *buf)
437 {
438 unsigned long res;
439
440 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
441 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
442 return 0;
443 }
444 _debug_guardpage_minorder = res;
445 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
446 return 0;
447 }
448 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
449
450 static inline void set_page_guard(struct zone *zone, struct page *page,
451 unsigned int order, int migratetype)
452 {
453 struct page_ext *page_ext;
454
455 if (!debug_guardpage_enabled())
456 return;
457
458 page_ext = lookup_page_ext(page);
459 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
460
461 INIT_LIST_HEAD(&page->lru);
462 set_page_private(page, order);
463 /* Guard pages are not available for any usage */
464 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
465 }
466
467 static inline void clear_page_guard(struct zone *zone, struct page *page,
468 unsigned int order, int migratetype)
469 {
470 struct page_ext *page_ext;
471
472 if (!debug_guardpage_enabled())
473 return;
474
475 page_ext = lookup_page_ext(page);
476 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
477
478 set_page_private(page, 0);
479 if (!is_migrate_isolate(migratetype))
480 __mod_zone_freepage_state(zone, (1 << order), migratetype);
481 }
482 #else
483 struct page_ext_operations debug_guardpage_ops = { NULL, };
484 static inline void set_page_guard(struct zone *zone, struct page *page,
485 unsigned int order, int migratetype) {}
486 static inline void clear_page_guard(struct zone *zone, struct page *page,
487 unsigned int order, int migratetype) {}
488 #endif
489
490 static inline void set_page_order(struct page *page, unsigned int order)
491 {
492 set_page_private(page, order);
493 __SetPageBuddy(page);
494 }
495
496 static inline void rmv_page_order(struct page *page)
497 {
498 __ClearPageBuddy(page);
499 set_page_private(page, 0);
500 }
501
502 /*
503 * This function checks whether a page is free && is the buddy
504 * we can do coalesce a page and its buddy if
505 * (a) the buddy is not in a hole &&
506 * (b) the buddy is in the buddy system &&
507 * (c) a page and its buddy have the same order &&
508 * (d) a page and its buddy are in the same zone.
509 *
510 * For recording whether a page is in the buddy system, we set ->_mapcount
511 * PAGE_BUDDY_MAPCOUNT_VALUE.
512 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
513 * serialized by zone->lock.
514 *
515 * For recording page's order, we use page_private(page).
516 */
517 static inline int page_is_buddy(struct page *page, struct page *buddy,
518 unsigned int order)
519 {
520 if (!pfn_valid_within(page_to_pfn(buddy)))
521 return 0;
522
523 if (page_is_guard(buddy) && page_order(buddy) == order) {
524 if (page_zone_id(page) != page_zone_id(buddy))
525 return 0;
526
527 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
528
529 return 1;
530 }
531
532 if (PageBuddy(buddy) && page_order(buddy) == order) {
533 /*
534 * zone check is done late to avoid uselessly
535 * calculating zone/node ids for pages that could
536 * never merge.
537 */
538 if (page_zone_id(page) != page_zone_id(buddy))
539 return 0;
540
541 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
542
543 return 1;
544 }
545 return 0;
546 }
547
548 /*
549 * Freeing function for a buddy system allocator.
550 *
551 * The concept of a buddy system is to maintain direct-mapped table
552 * (containing bit values) for memory blocks of various "orders".
553 * The bottom level table contains the map for the smallest allocatable
554 * units of memory (here, pages), and each level above it describes
555 * pairs of units from the levels below, hence, "buddies".
556 * At a high level, all that happens here is marking the table entry
557 * at the bottom level available, and propagating the changes upward
558 * as necessary, plus some accounting needed to play nicely with other
559 * parts of the VM system.
560 * At each level, we keep a list of pages, which are heads of continuous
561 * free pages of length of (1 << order) and marked with _mapcount
562 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
563 * field.
564 * So when we are allocating or freeing one, we can derive the state of the
565 * other. That is, if we allocate a small block, and both were
566 * free, the remainder of the region must be split into blocks.
567 * If a block is freed, and its buddy is also free, then this
568 * triggers coalescing into a block of larger size.
569 *
570 * -- nyc
571 */
572
573 static inline void __free_one_page(struct page *page,
574 unsigned long pfn,
575 struct zone *zone, unsigned int order,
576 int migratetype)
577 {
578 unsigned long page_idx;
579 unsigned long combined_idx;
580 unsigned long uninitialized_var(buddy_idx);
581 struct page *buddy;
582 int max_order = MAX_ORDER;
583
584 VM_BUG_ON(!zone_is_initialized(zone));
585 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
586
587 VM_BUG_ON(migratetype == -1);
588 if (is_migrate_isolate(migratetype)) {
589 /*
590 * We restrict max order of merging to prevent merge
591 * between freepages on isolate pageblock and normal
592 * pageblock. Without this, pageblock isolation
593 * could cause incorrect freepage accounting.
594 */
595 max_order = min(MAX_ORDER, pageblock_order + 1);
596 } else {
597 __mod_zone_freepage_state(zone, 1 << order, migratetype);
598 }
599
600 page_idx = pfn & ((1 << max_order) - 1);
601
602 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
603 VM_BUG_ON_PAGE(bad_range(zone, page), page);
604
605 while (order < max_order - 1) {
606 buddy_idx = __find_buddy_index(page_idx, order);
607 buddy = page + (buddy_idx - page_idx);
608 if (!page_is_buddy(page, buddy, order))
609 break;
610 /*
611 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
612 * merge with it and move up one order.
613 */
614 if (page_is_guard(buddy)) {
615 clear_page_guard(zone, buddy, order, migratetype);
616 } else {
617 list_del(&buddy->lru);
618 zone->free_area[order].nr_free--;
619 rmv_page_order(buddy);
620 }
621 combined_idx = buddy_idx & page_idx;
622 page = page + (combined_idx - page_idx);
623 page_idx = combined_idx;
624 order++;
625 }
626 set_page_order(page, order);
627
628 /*
629 * If this is not the largest possible page, check if the buddy
630 * of the next-highest order is free. If it is, it's possible
631 * that pages are being freed that will coalesce soon. In case,
632 * that is happening, add the free page to the tail of the list
633 * so it's less likely to be used soon and more likely to be merged
634 * as a higher order page
635 */
636 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
637 struct page *higher_page, *higher_buddy;
638 combined_idx = buddy_idx & page_idx;
639 higher_page = page + (combined_idx - page_idx);
640 buddy_idx = __find_buddy_index(combined_idx, order + 1);
641 higher_buddy = higher_page + (buddy_idx - combined_idx);
642 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
643 list_add_tail(&page->lru,
644 &zone->free_area[order].free_list[migratetype]);
645 goto out;
646 }
647 }
648
649 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
650 out:
651 zone->free_area[order].nr_free++;
652 }
653
654 static inline int free_pages_check(struct page *page)
655 {
656 const char *bad_reason = NULL;
657 unsigned long bad_flags = 0;
658
659 if (unlikely(page_mapcount(page)))
660 bad_reason = "nonzero mapcount";
661 if (unlikely(page->mapping != NULL))
662 bad_reason = "non-NULL mapping";
663 if (unlikely(atomic_read(&page->_count) != 0))
664 bad_reason = "nonzero _count";
665 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
666 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
667 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
668 }
669 #ifdef CONFIG_MEMCG
670 if (unlikely(page->mem_cgroup))
671 bad_reason = "page still charged to cgroup";
672 #endif
673 if (unlikely(bad_reason)) {
674 bad_page(page, bad_reason, bad_flags);
675 return 1;
676 }
677 page_cpupid_reset_last(page);
678 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
679 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
680 return 0;
681 }
682
683 /*
684 * Frees a number of pages from the PCP lists
685 * Assumes all pages on list are in same zone, and of same order.
686 * count is the number of pages to free.
687 *
688 * If the zone was previously in an "all pages pinned" state then look to
689 * see if this freeing clears that state.
690 *
691 * And clear the zone's pages_scanned counter, to hold off the "all pages are
692 * pinned" detection logic.
693 */
694 static void free_pcppages_bulk(struct zone *zone, int count,
695 struct per_cpu_pages *pcp)
696 {
697 int migratetype = 0;
698 int batch_free = 0;
699 int to_free = count;
700 unsigned long nr_scanned;
701
702 spin_lock(&zone->lock);
703 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
704 if (nr_scanned)
705 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
706
707 while (to_free) {
708 struct page *page;
709 struct list_head *list;
710
711 /*
712 * Remove pages from lists in a round-robin fashion. A
713 * batch_free count is maintained that is incremented when an
714 * empty list is encountered. This is so more pages are freed
715 * off fuller lists instead of spinning excessively around empty
716 * lists
717 */
718 do {
719 batch_free++;
720 if (++migratetype == MIGRATE_PCPTYPES)
721 migratetype = 0;
722 list = &pcp->lists[migratetype];
723 } while (list_empty(list));
724
725 /* This is the only non-empty list. Free them all. */
726 if (batch_free == MIGRATE_PCPTYPES)
727 batch_free = to_free;
728
729 do {
730 int mt; /* migratetype of the to-be-freed page */
731
732 page = list_entry(list->prev, struct page, lru);
733 /* must delete as __free_one_page list manipulates */
734 list_del(&page->lru);
735 mt = get_freepage_migratetype(page);
736 if (unlikely(has_isolate_pageblock(zone)))
737 mt = get_pageblock_migratetype(page);
738
739 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
740 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
741 trace_mm_page_pcpu_drain(page, 0, mt);
742 } while (--to_free && --batch_free && !list_empty(list));
743 }
744 spin_unlock(&zone->lock);
745 }
746
747 static void free_one_page(struct zone *zone,
748 struct page *page, unsigned long pfn,
749 unsigned int order,
750 int migratetype)
751 {
752 unsigned long nr_scanned;
753 spin_lock(&zone->lock);
754 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
755 if (nr_scanned)
756 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
757
758 if (unlikely(has_isolate_pageblock(zone) ||
759 is_migrate_isolate(migratetype))) {
760 migratetype = get_pfnblock_migratetype(page, pfn);
761 }
762 __free_one_page(page, pfn, zone, order, migratetype);
763 spin_unlock(&zone->lock);
764 }
765
766 static int free_tail_pages_check(struct page *head_page, struct page *page)
767 {
768 if (!IS_ENABLED(CONFIG_DEBUG_VM))
769 return 0;
770 if (unlikely(!PageTail(page))) {
771 bad_page(page, "PageTail not set", 0);
772 return 1;
773 }
774 if (unlikely(page->first_page != head_page)) {
775 bad_page(page, "first_page not consistent", 0);
776 return 1;
777 }
778 return 0;
779 }
780
781 static bool free_pages_prepare(struct page *page, unsigned int order)
782 {
783 bool compound = PageCompound(page);
784 int i, bad = 0;
785
786 VM_BUG_ON_PAGE(PageTail(page), page);
787 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
788
789 trace_mm_page_free(page, order);
790 kmemcheck_free_shadow(page, order);
791 kasan_free_pages(page, order);
792
793 if (PageAnon(page))
794 page->mapping = NULL;
795 bad += free_pages_check(page);
796 for (i = 1; i < (1 << order); i++) {
797 if (compound)
798 bad += free_tail_pages_check(page, page + i);
799 bad += free_pages_check(page + i);
800 }
801 if (bad)
802 return false;
803
804 reset_page_owner(page, order);
805
806 if (!PageHighMem(page)) {
807 debug_check_no_locks_freed(page_address(page),
808 PAGE_SIZE << order);
809 debug_check_no_obj_freed(page_address(page),
810 PAGE_SIZE << order);
811 }
812 arch_free_page(page, order);
813 kernel_map_pages(page, 1 << order, 0);
814
815 return true;
816 }
817
818 static void __free_pages_ok(struct page *page, unsigned int order)
819 {
820 unsigned long flags;
821 int migratetype;
822 unsigned long pfn = page_to_pfn(page);
823
824 if (!free_pages_prepare(page, order))
825 return;
826
827 migratetype = get_pfnblock_migratetype(page, pfn);
828 local_irq_save(flags);
829 __count_vm_events(PGFREE, 1 << order);
830 set_freepage_migratetype(page, migratetype);
831 free_one_page(page_zone(page), page, pfn, order, migratetype);
832 local_irq_restore(flags);
833 }
834
835 void __init __free_pages_bootmem(struct page *page, unsigned int order)
836 {
837 unsigned int nr_pages = 1 << order;
838 struct page *p = page;
839 unsigned int loop;
840
841 prefetchw(p);
842 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
843 prefetchw(p + 1);
844 __ClearPageReserved(p);
845 set_page_count(p, 0);
846 }
847 __ClearPageReserved(p);
848 set_page_count(p, 0);
849
850 page_zone(page)->managed_pages += nr_pages;
851 set_page_refcounted(page);
852 __free_pages(page, order);
853 }
854
855 #ifdef CONFIG_CMA
856 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
857 void __init init_cma_reserved_pageblock(struct page *page)
858 {
859 unsigned i = pageblock_nr_pages;
860 struct page *p = page;
861
862 do {
863 __ClearPageReserved(p);
864 set_page_count(p, 0);
865 } while (++p, --i);
866
867 set_pageblock_migratetype(page, MIGRATE_CMA);
868
869 if (pageblock_order >= MAX_ORDER) {
870 i = pageblock_nr_pages;
871 p = page;
872 do {
873 set_page_refcounted(p);
874 __free_pages(p, MAX_ORDER - 1);
875 p += MAX_ORDER_NR_PAGES;
876 } while (i -= MAX_ORDER_NR_PAGES);
877 } else {
878 set_page_refcounted(page);
879 __free_pages(page, pageblock_order);
880 }
881
882 adjust_managed_page_count(page, pageblock_nr_pages);
883 }
884 #endif
885
886 /*
887 * The order of subdivision here is critical for the IO subsystem.
888 * Please do not alter this order without good reasons and regression
889 * testing. Specifically, as large blocks of memory are subdivided,
890 * the order in which smaller blocks are delivered depends on the order
891 * they're subdivided in this function. This is the primary factor
892 * influencing the order in which pages are delivered to the IO
893 * subsystem according to empirical testing, and this is also justified
894 * by considering the behavior of a buddy system containing a single
895 * large block of memory acted on by a series of small allocations.
896 * This behavior is a critical factor in sglist merging's success.
897 *
898 * -- nyc
899 */
900 static inline void expand(struct zone *zone, struct page *page,
901 int low, int high, struct free_area *area,
902 int migratetype)
903 {
904 unsigned long size = 1 << high;
905
906 while (high > low) {
907 area--;
908 high--;
909 size >>= 1;
910 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
911
912 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
913 debug_guardpage_enabled() &&
914 high < debug_guardpage_minorder()) {
915 /*
916 * Mark as guard pages (or page), that will allow to
917 * merge back to allocator when buddy will be freed.
918 * Corresponding page table entries will not be touched,
919 * pages will stay not present in virtual address space
920 */
921 set_page_guard(zone, &page[size], high, migratetype);
922 continue;
923 }
924 list_add(&page[size].lru, &area->free_list[migratetype]);
925 area->nr_free++;
926 set_page_order(&page[size], high);
927 }
928 }
929
930 /*
931 * This page is about to be returned from the page allocator
932 */
933 static inline int check_new_page(struct page *page)
934 {
935 const char *bad_reason = NULL;
936 unsigned long bad_flags = 0;
937
938 if (unlikely(page_mapcount(page)))
939 bad_reason = "nonzero mapcount";
940 if (unlikely(page->mapping != NULL))
941 bad_reason = "non-NULL mapping";
942 if (unlikely(atomic_read(&page->_count) != 0))
943 bad_reason = "nonzero _count";
944 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
945 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
946 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
947 }
948 #ifdef CONFIG_MEMCG
949 if (unlikely(page->mem_cgroup))
950 bad_reason = "page still charged to cgroup";
951 #endif
952 if (unlikely(bad_reason)) {
953 bad_page(page, bad_reason, bad_flags);
954 return 1;
955 }
956 return 0;
957 }
958
959 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
960 int alloc_flags)
961 {
962 int i;
963
964 for (i = 0; i < (1 << order); i++) {
965 struct page *p = page + i;
966 if (unlikely(check_new_page(p)))
967 return 1;
968 }
969
970 set_page_private(page, 0);
971 set_page_refcounted(page);
972
973 arch_alloc_page(page, order);
974 kernel_map_pages(page, 1 << order, 1);
975 kasan_alloc_pages(page, order);
976
977 if (gfp_flags & __GFP_ZERO)
978 prep_zero_page(page, order, gfp_flags);
979
980 if (order && (gfp_flags & __GFP_COMP))
981 prep_compound_page(page, order);
982
983 set_page_owner(page, order, gfp_flags);
984
985 /*
986 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
987 * allocate the page. The expectation is that the caller is taking
988 * steps that will free more memory. The caller should avoid the page
989 * being used for !PFMEMALLOC purposes.
990 */
991 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
992
993 return 0;
994 }
995
996 /*
997 * Go through the free lists for the given migratetype and remove
998 * the smallest available page from the freelists
999 */
1000 static inline
1001 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1002 int migratetype)
1003 {
1004 unsigned int current_order;
1005 struct free_area *area;
1006 struct page *page;
1007
1008 /* Find a page of the appropriate size in the preferred list */
1009 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1010 area = &(zone->free_area[current_order]);
1011 if (list_empty(&area->free_list[migratetype]))
1012 continue;
1013
1014 page = list_entry(area->free_list[migratetype].next,
1015 struct page, lru);
1016 list_del(&page->lru);
1017 rmv_page_order(page);
1018 area->nr_free--;
1019 expand(zone, page, order, current_order, area, migratetype);
1020 set_freepage_migratetype(page, migratetype);
1021 return page;
1022 }
1023
1024 return NULL;
1025 }
1026
1027
1028 /*
1029 * This array describes the order lists are fallen back to when
1030 * the free lists for the desirable migrate type are depleted
1031 */
1032 static int fallbacks[MIGRATE_TYPES][4] = {
1033 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1034 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1035 #ifdef CONFIG_CMA
1036 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1037 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
1038 #else
1039 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1040 #endif
1041 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
1042 #ifdef CONFIG_MEMORY_ISOLATION
1043 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
1044 #endif
1045 };
1046
1047 /*
1048 * Move the free pages in a range to the free lists of the requested type.
1049 * Note that start_page and end_pages are not aligned on a pageblock
1050 * boundary. If alignment is required, use move_freepages_block()
1051 */
1052 int move_freepages(struct zone *zone,
1053 struct page *start_page, struct page *end_page,
1054 int migratetype)
1055 {
1056 struct page *page;
1057 unsigned long order;
1058 int pages_moved = 0;
1059
1060 #ifndef CONFIG_HOLES_IN_ZONE
1061 /*
1062 * page_zone is not safe to call in this context when
1063 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1064 * anyway as we check zone boundaries in move_freepages_block().
1065 * Remove at a later date when no bug reports exist related to
1066 * grouping pages by mobility
1067 */
1068 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1069 #endif
1070
1071 for (page = start_page; page <= end_page;) {
1072 /* Make sure we are not inadvertently changing nodes */
1073 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1074
1075 if (!pfn_valid_within(page_to_pfn(page))) {
1076 page++;
1077 continue;
1078 }
1079
1080 if (!PageBuddy(page)) {
1081 page++;
1082 continue;
1083 }
1084
1085 order = page_order(page);
1086 list_move(&page->lru,
1087 &zone->free_area[order].free_list[migratetype]);
1088 set_freepage_migratetype(page, migratetype);
1089 page += 1 << order;
1090 pages_moved += 1 << order;
1091 }
1092
1093 return pages_moved;
1094 }
1095
1096 int move_freepages_block(struct zone *zone, struct page *page,
1097 int migratetype)
1098 {
1099 unsigned long start_pfn, end_pfn;
1100 struct page *start_page, *end_page;
1101
1102 start_pfn = page_to_pfn(page);
1103 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1104 start_page = pfn_to_page(start_pfn);
1105 end_page = start_page + pageblock_nr_pages - 1;
1106 end_pfn = start_pfn + pageblock_nr_pages - 1;
1107
1108 /* Do not cross zone boundaries */
1109 if (!zone_spans_pfn(zone, start_pfn))
1110 start_page = page;
1111 if (!zone_spans_pfn(zone, end_pfn))
1112 return 0;
1113
1114 return move_freepages(zone, start_page, end_page, migratetype);
1115 }
1116
1117 static void change_pageblock_range(struct page *pageblock_page,
1118 int start_order, int migratetype)
1119 {
1120 int nr_pageblocks = 1 << (start_order - pageblock_order);
1121
1122 while (nr_pageblocks--) {
1123 set_pageblock_migratetype(pageblock_page, migratetype);
1124 pageblock_page += pageblock_nr_pages;
1125 }
1126 }
1127
1128 /*
1129 * When we are falling back to another migratetype during allocation, try to
1130 * steal extra free pages from the same pageblocks to satisfy further
1131 * allocations, instead of polluting multiple pageblocks.
1132 *
1133 * If we are stealing a relatively large buddy page, it is likely there will
1134 * be more free pages in the pageblock, so try to steal them all. For
1135 * reclaimable and unmovable allocations, we steal regardless of page size,
1136 * as fragmentation caused by those allocations polluting movable pageblocks
1137 * is worse than movable allocations stealing from unmovable and reclaimable
1138 * pageblocks.
1139 *
1140 * If we claim more than half of the pageblock, change pageblock's migratetype
1141 * as well.
1142 */
1143 static void try_to_steal_freepages(struct zone *zone, struct page *page,
1144 int start_type, int fallback_type)
1145 {
1146 int current_order = page_order(page);
1147
1148 /* Take ownership for orders >= pageblock_order */
1149 if (current_order >= pageblock_order) {
1150 change_pageblock_range(page, current_order, start_type);
1151 return;
1152 }
1153
1154 if (current_order >= pageblock_order / 2 ||
1155 start_type == MIGRATE_RECLAIMABLE ||
1156 start_type == MIGRATE_UNMOVABLE ||
1157 page_group_by_mobility_disabled) {
1158 int pages;
1159
1160 pages = move_freepages_block(zone, page, start_type);
1161
1162 /* Claim the whole block if over half of it is free */
1163 if (pages >= (1 << (pageblock_order-1)) ||
1164 page_group_by_mobility_disabled)
1165 set_pageblock_migratetype(page, start_type);
1166 }
1167 }
1168
1169 /* Remove an element from the buddy allocator from the fallback list */
1170 static inline struct page *
1171 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1172 {
1173 struct free_area *area;
1174 unsigned int current_order;
1175 struct page *page;
1176
1177 /* Find the largest possible block of pages in the other list */
1178 for (current_order = MAX_ORDER-1;
1179 current_order >= order && current_order <= MAX_ORDER-1;
1180 --current_order) {
1181 int i;
1182 for (i = 0;; i++) {
1183 int migratetype = fallbacks[start_migratetype][i];
1184 int buddy_type = start_migratetype;
1185
1186 /* MIGRATE_RESERVE handled later if necessary */
1187 if (migratetype == MIGRATE_RESERVE)
1188 break;
1189
1190 area = &(zone->free_area[current_order]);
1191 if (list_empty(&area->free_list[migratetype]))
1192 continue;
1193
1194 page = list_entry(area->free_list[migratetype].next,
1195 struct page, lru);
1196 area->nr_free--;
1197
1198 if (!is_migrate_cma(migratetype)) {
1199 try_to_steal_freepages(zone, page,
1200 start_migratetype,
1201 migratetype);
1202 } else {
1203 /*
1204 * When borrowing from MIGRATE_CMA, we need to
1205 * release the excess buddy pages to CMA
1206 * itself, and we do not try to steal extra
1207 * free pages.
1208 */
1209 buddy_type = migratetype;
1210 }
1211
1212 /* Remove the page from the freelists */
1213 list_del(&page->lru);
1214 rmv_page_order(page);
1215
1216 expand(zone, page, order, current_order, area,
1217 buddy_type);
1218
1219 /*
1220 * The freepage_migratetype may differ from pageblock's
1221 * migratetype depending on the decisions in
1222 * try_to_steal_freepages(). This is OK as long as it
1223 * does not differ for MIGRATE_CMA pageblocks. For CMA
1224 * we need to make sure unallocated pages flushed from
1225 * pcp lists are returned to the correct freelist.
1226 */
1227 set_freepage_migratetype(page, buddy_type);
1228
1229 trace_mm_page_alloc_extfrag(page, order, current_order,
1230 start_migratetype, migratetype);
1231
1232 return page;
1233 }
1234 }
1235
1236 return NULL;
1237 }
1238
1239 /*
1240 * Do the hard work of removing an element from the buddy allocator.
1241 * Call me with the zone->lock already held.
1242 */
1243 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1244 int migratetype)
1245 {
1246 struct page *page;
1247
1248 retry_reserve:
1249 page = __rmqueue_smallest(zone, order, migratetype);
1250
1251 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1252 page = __rmqueue_fallback(zone, order, migratetype);
1253
1254 /*
1255 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1256 * is used because __rmqueue_smallest is an inline function
1257 * and we want just one call site
1258 */
1259 if (!page) {
1260 migratetype = MIGRATE_RESERVE;
1261 goto retry_reserve;
1262 }
1263 }
1264
1265 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1266 return page;
1267 }
1268
1269 /*
1270 * Obtain a specified number of elements from the buddy allocator, all under
1271 * a single hold of the lock, for efficiency. Add them to the supplied list.
1272 * Returns the number of new pages which were placed at *list.
1273 */
1274 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1275 unsigned long count, struct list_head *list,
1276 int migratetype, bool cold)
1277 {
1278 int i;
1279
1280 spin_lock(&zone->lock);
1281 for (i = 0; i < count; ++i) {
1282 struct page *page = __rmqueue(zone, order, migratetype);
1283 if (unlikely(page == NULL))
1284 break;
1285
1286 /*
1287 * Split buddy pages returned by expand() are received here
1288 * in physical page order. The page is added to the callers and
1289 * list and the list head then moves forward. From the callers
1290 * perspective, the linked list is ordered by page number in
1291 * some conditions. This is useful for IO devices that can
1292 * merge IO requests if the physical pages are ordered
1293 * properly.
1294 */
1295 if (likely(!cold))
1296 list_add(&page->lru, list);
1297 else
1298 list_add_tail(&page->lru, list);
1299 list = &page->lru;
1300 if (is_migrate_cma(get_freepage_migratetype(page)))
1301 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1302 -(1 << order));
1303 }
1304 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1305 spin_unlock(&zone->lock);
1306 return i;
1307 }
1308
1309 #ifdef CONFIG_NUMA
1310 /*
1311 * Called from the vmstat counter updater to drain pagesets of this
1312 * currently executing processor on remote nodes after they have
1313 * expired.
1314 *
1315 * Note that this function must be called with the thread pinned to
1316 * a single processor.
1317 */
1318 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1319 {
1320 unsigned long flags;
1321 int to_drain, batch;
1322
1323 local_irq_save(flags);
1324 batch = ACCESS_ONCE(pcp->batch);
1325 to_drain = min(pcp->count, batch);
1326 if (to_drain > 0) {
1327 free_pcppages_bulk(zone, to_drain, pcp);
1328 pcp->count -= to_drain;
1329 }
1330 local_irq_restore(flags);
1331 }
1332 #endif
1333
1334 /*
1335 * Drain pcplists of the indicated processor and zone.
1336 *
1337 * The processor must either be the current processor and the
1338 * thread pinned to the current processor or a processor that
1339 * is not online.
1340 */
1341 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1342 {
1343 unsigned long flags;
1344 struct per_cpu_pageset *pset;
1345 struct per_cpu_pages *pcp;
1346
1347 local_irq_save(flags);
1348 pset = per_cpu_ptr(zone->pageset, cpu);
1349
1350 pcp = &pset->pcp;
1351 if (pcp->count) {
1352 free_pcppages_bulk(zone, pcp->count, pcp);
1353 pcp->count = 0;
1354 }
1355 local_irq_restore(flags);
1356 }
1357
1358 /*
1359 * Drain pcplists of all zones on the indicated processor.
1360 *
1361 * The processor must either be the current processor and the
1362 * thread pinned to the current processor or a processor that
1363 * is not online.
1364 */
1365 static void drain_pages(unsigned int cpu)
1366 {
1367 struct zone *zone;
1368
1369 for_each_populated_zone(zone) {
1370 drain_pages_zone(cpu, zone);
1371 }
1372 }
1373
1374 /*
1375 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1376 *
1377 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1378 * the single zone's pages.
1379 */
1380 void drain_local_pages(struct zone *zone)
1381 {
1382 int cpu = smp_processor_id();
1383
1384 if (zone)
1385 drain_pages_zone(cpu, zone);
1386 else
1387 drain_pages(cpu);
1388 }
1389
1390 /*
1391 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1392 *
1393 * When zone parameter is non-NULL, spill just the single zone's pages.
1394 *
1395 * Note that this code is protected against sending an IPI to an offline
1396 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1397 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1398 * nothing keeps CPUs from showing up after we populated the cpumask and
1399 * before the call to on_each_cpu_mask().
1400 */
1401 void drain_all_pages(struct zone *zone)
1402 {
1403 int cpu;
1404
1405 /*
1406 * Allocate in the BSS so we wont require allocation in
1407 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1408 */
1409 static cpumask_t cpus_with_pcps;
1410
1411 /*
1412 * We don't care about racing with CPU hotplug event
1413 * as offline notification will cause the notified
1414 * cpu to drain that CPU pcps and on_each_cpu_mask
1415 * disables preemption as part of its processing
1416 */
1417 for_each_online_cpu(cpu) {
1418 struct per_cpu_pageset *pcp;
1419 struct zone *z;
1420 bool has_pcps = false;
1421
1422 if (zone) {
1423 pcp = per_cpu_ptr(zone->pageset, cpu);
1424 if (pcp->pcp.count)
1425 has_pcps = true;
1426 } else {
1427 for_each_populated_zone(z) {
1428 pcp = per_cpu_ptr(z->pageset, cpu);
1429 if (pcp->pcp.count) {
1430 has_pcps = true;
1431 break;
1432 }
1433 }
1434 }
1435
1436 if (has_pcps)
1437 cpumask_set_cpu(cpu, &cpus_with_pcps);
1438 else
1439 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1440 }
1441 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1442 zone, 1);
1443 }
1444
1445 #ifdef CONFIG_HIBERNATION
1446
1447 void mark_free_pages(struct zone *zone)
1448 {
1449 unsigned long pfn, max_zone_pfn;
1450 unsigned long flags;
1451 unsigned int order, t;
1452 struct list_head *curr;
1453
1454 if (zone_is_empty(zone))
1455 return;
1456
1457 spin_lock_irqsave(&zone->lock, flags);
1458
1459 max_zone_pfn = zone_end_pfn(zone);
1460 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1461 if (pfn_valid(pfn)) {
1462 struct page *page = pfn_to_page(pfn);
1463
1464 if (!swsusp_page_is_forbidden(page))
1465 swsusp_unset_page_free(page);
1466 }
1467
1468 for_each_migratetype_order(order, t) {
1469 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1470 unsigned long i;
1471
1472 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1473 for (i = 0; i < (1UL << order); i++)
1474 swsusp_set_page_free(pfn_to_page(pfn + i));
1475 }
1476 }
1477 spin_unlock_irqrestore(&zone->lock, flags);
1478 }
1479 #endif /* CONFIG_PM */
1480
1481 /*
1482 * Free a 0-order page
1483 * cold == true ? free a cold page : free a hot page
1484 */
1485 void free_hot_cold_page(struct page *page, bool cold)
1486 {
1487 struct zone *zone = page_zone(page);
1488 struct per_cpu_pages *pcp;
1489 unsigned long flags;
1490 unsigned long pfn = page_to_pfn(page);
1491 int migratetype;
1492
1493 if (!free_pages_prepare(page, 0))
1494 return;
1495
1496 migratetype = get_pfnblock_migratetype(page, pfn);
1497 set_freepage_migratetype(page, migratetype);
1498 local_irq_save(flags);
1499 __count_vm_event(PGFREE);
1500
1501 /*
1502 * We only track unmovable, reclaimable and movable on pcp lists.
1503 * Free ISOLATE pages back to the allocator because they are being
1504 * offlined but treat RESERVE as movable pages so we can get those
1505 * areas back if necessary. Otherwise, we may have to free
1506 * excessively into the page allocator
1507 */
1508 if (migratetype >= MIGRATE_PCPTYPES) {
1509 if (unlikely(is_migrate_isolate(migratetype))) {
1510 free_one_page(zone, page, pfn, 0, migratetype);
1511 goto out;
1512 }
1513 migratetype = MIGRATE_MOVABLE;
1514 }
1515
1516 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1517 if (!cold)
1518 list_add(&page->lru, &pcp->lists[migratetype]);
1519 else
1520 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1521 pcp->count++;
1522 if (pcp->count >= pcp->high) {
1523 unsigned long batch = ACCESS_ONCE(pcp->batch);
1524 free_pcppages_bulk(zone, batch, pcp);
1525 pcp->count -= batch;
1526 }
1527
1528 out:
1529 local_irq_restore(flags);
1530 }
1531
1532 /*
1533 * Free a list of 0-order pages
1534 */
1535 void free_hot_cold_page_list(struct list_head *list, bool cold)
1536 {
1537 struct page *page, *next;
1538
1539 list_for_each_entry_safe(page, next, list, lru) {
1540 trace_mm_page_free_batched(page, cold);
1541 free_hot_cold_page(page, cold);
1542 }
1543 }
1544
1545 /*
1546 * split_page takes a non-compound higher-order page, and splits it into
1547 * n (1<<order) sub-pages: page[0..n]
1548 * Each sub-page must be freed individually.
1549 *
1550 * Note: this is probably too low level an operation for use in drivers.
1551 * Please consult with lkml before using this in your driver.
1552 */
1553 void split_page(struct page *page, unsigned int order)
1554 {
1555 int i;
1556
1557 VM_BUG_ON_PAGE(PageCompound(page), page);
1558 VM_BUG_ON_PAGE(!page_count(page), page);
1559
1560 #ifdef CONFIG_KMEMCHECK
1561 /*
1562 * Split shadow pages too, because free(page[0]) would
1563 * otherwise free the whole shadow.
1564 */
1565 if (kmemcheck_page_is_tracked(page))
1566 split_page(virt_to_page(page[0].shadow), order);
1567 #endif
1568
1569 set_page_owner(page, 0, 0);
1570 for (i = 1; i < (1 << order); i++) {
1571 set_page_refcounted(page + i);
1572 set_page_owner(page + i, 0, 0);
1573 }
1574 }
1575 EXPORT_SYMBOL_GPL(split_page);
1576
1577 int __isolate_free_page(struct page *page, unsigned int order)
1578 {
1579 unsigned long watermark;
1580 struct zone *zone;
1581 int mt;
1582
1583 BUG_ON(!PageBuddy(page));
1584
1585 zone = page_zone(page);
1586 mt = get_pageblock_migratetype(page);
1587
1588 if (!is_migrate_isolate(mt)) {
1589 /* Obey watermarks as if the page was being allocated */
1590 watermark = low_wmark_pages(zone) + (1 << order);
1591 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1592 return 0;
1593
1594 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1595 }
1596
1597 /* Remove page from free list */
1598 list_del(&page->lru);
1599 zone->free_area[order].nr_free--;
1600 rmv_page_order(page);
1601
1602 /* Set the pageblock if the isolated page is at least a pageblock */
1603 if (order >= pageblock_order - 1) {
1604 struct page *endpage = page + (1 << order) - 1;
1605 for (; page < endpage; page += pageblock_nr_pages) {
1606 int mt = get_pageblock_migratetype(page);
1607 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1608 set_pageblock_migratetype(page,
1609 MIGRATE_MOVABLE);
1610 }
1611 }
1612
1613 set_page_owner(page, order, 0);
1614 return 1UL << order;
1615 }
1616
1617 /*
1618 * Similar to split_page except the page is already free. As this is only
1619 * being used for migration, the migratetype of the block also changes.
1620 * As this is called with interrupts disabled, the caller is responsible
1621 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1622 * are enabled.
1623 *
1624 * Note: this is probably too low level an operation for use in drivers.
1625 * Please consult with lkml before using this in your driver.
1626 */
1627 int split_free_page(struct page *page)
1628 {
1629 unsigned int order;
1630 int nr_pages;
1631
1632 order = page_order(page);
1633
1634 nr_pages = __isolate_free_page(page, order);
1635 if (!nr_pages)
1636 return 0;
1637
1638 /* Split into individual pages */
1639 set_page_refcounted(page);
1640 split_page(page, order);
1641 return nr_pages;
1642 }
1643
1644 /*
1645 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1646 */
1647 static inline
1648 struct page *buffered_rmqueue(struct zone *preferred_zone,
1649 struct zone *zone, unsigned int order,
1650 gfp_t gfp_flags, int migratetype)
1651 {
1652 unsigned long flags;
1653 struct page *page;
1654 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1655
1656 if (likely(order == 0)) {
1657 struct per_cpu_pages *pcp;
1658 struct list_head *list;
1659
1660 local_irq_save(flags);
1661 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1662 list = &pcp->lists[migratetype];
1663 if (list_empty(list)) {
1664 pcp->count += rmqueue_bulk(zone, 0,
1665 pcp->batch, list,
1666 migratetype, cold);
1667 if (unlikely(list_empty(list)))
1668 goto failed;
1669 }
1670
1671 if (cold)
1672 page = list_entry(list->prev, struct page, lru);
1673 else
1674 page = list_entry(list->next, struct page, lru);
1675
1676 list_del(&page->lru);
1677 pcp->count--;
1678 } else {
1679 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1680 /*
1681 * __GFP_NOFAIL is not to be used in new code.
1682 *
1683 * All __GFP_NOFAIL callers should be fixed so that they
1684 * properly detect and handle allocation failures.
1685 *
1686 * We most definitely don't want callers attempting to
1687 * allocate greater than order-1 page units with
1688 * __GFP_NOFAIL.
1689 */
1690 WARN_ON_ONCE(order > 1);
1691 }
1692 spin_lock_irqsave(&zone->lock, flags);
1693 page = __rmqueue(zone, order, migratetype);
1694 spin_unlock(&zone->lock);
1695 if (!page)
1696 goto failed;
1697 __mod_zone_freepage_state(zone, -(1 << order),
1698 get_freepage_migratetype(page));
1699 }
1700
1701 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1702 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1703 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1704 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1705
1706 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1707 zone_statistics(preferred_zone, zone, gfp_flags);
1708 local_irq_restore(flags);
1709
1710 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1711 return page;
1712
1713 failed:
1714 local_irq_restore(flags);
1715 return NULL;
1716 }
1717
1718 #ifdef CONFIG_FAIL_PAGE_ALLOC
1719
1720 static struct {
1721 struct fault_attr attr;
1722
1723 u32 ignore_gfp_highmem;
1724 u32 ignore_gfp_wait;
1725 u32 min_order;
1726 } fail_page_alloc = {
1727 .attr = FAULT_ATTR_INITIALIZER,
1728 .ignore_gfp_wait = 1,
1729 .ignore_gfp_highmem = 1,
1730 .min_order = 1,
1731 };
1732
1733 static int __init setup_fail_page_alloc(char *str)
1734 {
1735 return setup_fault_attr(&fail_page_alloc.attr, str);
1736 }
1737 __setup("fail_page_alloc=", setup_fail_page_alloc);
1738
1739 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1740 {
1741 if (order < fail_page_alloc.min_order)
1742 return false;
1743 if (gfp_mask & __GFP_NOFAIL)
1744 return false;
1745 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1746 return false;
1747 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1748 return false;
1749
1750 return should_fail(&fail_page_alloc.attr, 1 << order);
1751 }
1752
1753 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1754
1755 static int __init fail_page_alloc_debugfs(void)
1756 {
1757 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1758 struct dentry *dir;
1759
1760 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1761 &fail_page_alloc.attr);
1762 if (IS_ERR(dir))
1763 return PTR_ERR(dir);
1764
1765 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1766 &fail_page_alloc.ignore_gfp_wait))
1767 goto fail;
1768 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1769 &fail_page_alloc.ignore_gfp_highmem))
1770 goto fail;
1771 if (!debugfs_create_u32("min-order", mode, dir,
1772 &fail_page_alloc.min_order))
1773 goto fail;
1774
1775 return 0;
1776 fail:
1777 debugfs_remove_recursive(dir);
1778
1779 return -ENOMEM;
1780 }
1781
1782 late_initcall(fail_page_alloc_debugfs);
1783
1784 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1785
1786 #else /* CONFIG_FAIL_PAGE_ALLOC */
1787
1788 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1789 {
1790 return false;
1791 }
1792
1793 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1794
1795 /*
1796 * Return true if free pages are above 'mark'. This takes into account the order
1797 * of the allocation.
1798 */
1799 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1800 unsigned long mark, int classzone_idx, int alloc_flags,
1801 long free_pages)
1802 {
1803 /* free_pages may go negative - that's OK */
1804 long min = mark;
1805 int o;
1806 long free_cma = 0;
1807
1808 free_pages -= (1 << order) - 1;
1809 if (alloc_flags & ALLOC_HIGH)
1810 min -= min / 2;
1811 if (alloc_flags & ALLOC_HARDER)
1812 min -= min / 4;
1813 #ifdef CONFIG_CMA
1814 /* If allocation can't use CMA areas don't use free CMA pages */
1815 if (!(alloc_flags & ALLOC_CMA))
1816 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1817 #endif
1818
1819 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1820 return false;
1821 for (o = 0; o < order; o++) {
1822 /* At the next order, this order's pages become unavailable */
1823 free_pages -= z->free_area[o].nr_free << o;
1824
1825 /* Require fewer higher order pages to be free */
1826 min >>= 1;
1827
1828 if (free_pages <= min)
1829 return false;
1830 }
1831 return true;
1832 }
1833
1834 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1835 int classzone_idx, int alloc_flags)
1836 {
1837 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1838 zone_page_state(z, NR_FREE_PAGES));
1839 }
1840
1841 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1842 unsigned long mark, int classzone_idx, int alloc_flags)
1843 {
1844 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1845
1846 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1847 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1848
1849 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1850 free_pages);
1851 }
1852
1853 #ifdef CONFIG_NUMA
1854 /*
1855 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1856 * skip over zones that are not allowed by the cpuset, or that have
1857 * been recently (in last second) found to be nearly full. See further
1858 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1859 * that have to skip over a lot of full or unallowed zones.
1860 *
1861 * If the zonelist cache is present in the passed zonelist, then
1862 * returns a pointer to the allowed node mask (either the current
1863 * tasks mems_allowed, or node_states[N_MEMORY].)
1864 *
1865 * If the zonelist cache is not available for this zonelist, does
1866 * nothing and returns NULL.
1867 *
1868 * If the fullzones BITMAP in the zonelist cache is stale (more than
1869 * a second since last zap'd) then we zap it out (clear its bits.)
1870 *
1871 * We hold off even calling zlc_setup, until after we've checked the
1872 * first zone in the zonelist, on the theory that most allocations will
1873 * be satisfied from that first zone, so best to examine that zone as
1874 * quickly as we can.
1875 */
1876 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1877 {
1878 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1879 nodemask_t *allowednodes; /* zonelist_cache approximation */
1880
1881 zlc = zonelist->zlcache_ptr;
1882 if (!zlc)
1883 return NULL;
1884
1885 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1886 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1887 zlc->last_full_zap = jiffies;
1888 }
1889
1890 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1891 &cpuset_current_mems_allowed :
1892 &node_states[N_MEMORY];
1893 return allowednodes;
1894 }
1895
1896 /*
1897 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1898 * if it is worth looking at further for free memory:
1899 * 1) Check that the zone isn't thought to be full (doesn't have its
1900 * bit set in the zonelist_cache fullzones BITMAP).
1901 * 2) Check that the zones node (obtained from the zonelist_cache
1902 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1903 * Return true (non-zero) if zone is worth looking at further, or
1904 * else return false (zero) if it is not.
1905 *
1906 * This check -ignores- the distinction between various watermarks,
1907 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1908 * found to be full for any variation of these watermarks, it will
1909 * be considered full for up to one second by all requests, unless
1910 * we are so low on memory on all allowed nodes that we are forced
1911 * into the second scan of the zonelist.
1912 *
1913 * In the second scan we ignore this zonelist cache and exactly
1914 * apply the watermarks to all zones, even it is slower to do so.
1915 * We are low on memory in the second scan, and should leave no stone
1916 * unturned looking for a free page.
1917 */
1918 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1919 nodemask_t *allowednodes)
1920 {
1921 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1922 int i; /* index of *z in zonelist zones */
1923 int n; /* node that zone *z is on */
1924
1925 zlc = zonelist->zlcache_ptr;
1926 if (!zlc)
1927 return 1;
1928
1929 i = z - zonelist->_zonerefs;
1930 n = zlc->z_to_n[i];
1931
1932 /* This zone is worth trying if it is allowed but not full */
1933 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1934 }
1935
1936 /*
1937 * Given 'z' scanning a zonelist, set the corresponding bit in
1938 * zlc->fullzones, so that subsequent attempts to allocate a page
1939 * from that zone don't waste time re-examining it.
1940 */
1941 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1942 {
1943 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1944 int i; /* index of *z in zonelist zones */
1945
1946 zlc = zonelist->zlcache_ptr;
1947 if (!zlc)
1948 return;
1949
1950 i = z - zonelist->_zonerefs;
1951
1952 set_bit(i, zlc->fullzones);
1953 }
1954
1955 /*
1956 * clear all zones full, called after direct reclaim makes progress so that
1957 * a zone that was recently full is not skipped over for up to a second
1958 */
1959 static void zlc_clear_zones_full(struct zonelist *zonelist)
1960 {
1961 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1962
1963 zlc = zonelist->zlcache_ptr;
1964 if (!zlc)
1965 return;
1966
1967 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1968 }
1969
1970 static bool zone_local(struct zone *local_zone, struct zone *zone)
1971 {
1972 return local_zone->node == zone->node;
1973 }
1974
1975 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1976 {
1977 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1978 RECLAIM_DISTANCE;
1979 }
1980
1981 #else /* CONFIG_NUMA */
1982
1983 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1984 {
1985 return NULL;
1986 }
1987
1988 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1989 nodemask_t *allowednodes)
1990 {
1991 return 1;
1992 }
1993
1994 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1995 {
1996 }
1997
1998 static void zlc_clear_zones_full(struct zonelist *zonelist)
1999 {
2000 }
2001
2002 static bool zone_local(struct zone *local_zone, struct zone *zone)
2003 {
2004 return true;
2005 }
2006
2007 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2008 {
2009 return true;
2010 }
2011
2012 #endif /* CONFIG_NUMA */
2013
2014 static void reset_alloc_batches(struct zone *preferred_zone)
2015 {
2016 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2017
2018 do {
2019 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2020 high_wmark_pages(zone) - low_wmark_pages(zone) -
2021 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2022 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2023 } while (zone++ != preferred_zone);
2024 }
2025
2026 /*
2027 * get_page_from_freelist goes through the zonelist trying to allocate
2028 * a page.
2029 */
2030 static struct page *
2031 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2032 const struct alloc_context *ac)
2033 {
2034 struct zonelist *zonelist = ac->zonelist;
2035 struct zoneref *z;
2036 struct page *page = NULL;
2037 struct zone *zone;
2038 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2039 int zlc_active = 0; /* set if using zonelist_cache */
2040 int did_zlc_setup = 0; /* just call zlc_setup() one time */
2041 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2042 (gfp_mask & __GFP_WRITE);
2043 int nr_fair_skipped = 0;
2044 bool zonelist_rescan;
2045
2046 zonelist_scan:
2047 zonelist_rescan = false;
2048
2049 /*
2050 * Scan zonelist, looking for a zone with enough free.
2051 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2052 */
2053 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2054 ac->nodemask) {
2055 unsigned long mark;
2056
2057 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2058 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2059 continue;
2060 if (cpusets_enabled() &&
2061 (alloc_flags & ALLOC_CPUSET) &&
2062 !cpuset_zone_allowed(zone, gfp_mask))
2063 continue;
2064 /*
2065 * Distribute pages in proportion to the individual
2066 * zone size to ensure fair page aging. The zone a
2067 * page was allocated in should have no effect on the
2068 * time the page has in memory before being reclaimed.
2069 */
2070 if (alloc_flags & ALLOC_FAIR) {
2071 if (!zone_local(ac->preferred_zone, zone))
2072 break;
2073 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2074 nr_fair_skipped++;
2075 continue;
2076 }
2077 }
2078 /*
2079 * When allocating a page cache page for writing, we
2080 * want to get it from a zone that is within its dirty
2081 * limit, such that no single zone holds more than its
2082 * proportional share of globally allowed dirty pages.
2083 * The dirty limits take into account the zone's
2084 * lowmem reserves and high watermark so that kswapd
2085 * should be able to balance it without having to
2086 * write pages from its LRU list.
2087 *
2088 * This may look like it could increase pressure on
2089 * lower zones by failing allocations in higher zones
2090 * before they are full. But the pages that do spill
2091 * over are limited as the lower zones are protected
2092 * by this very same mechanism. It should not become
2093 * a practical burden to them.
2094 *
2095 * XXX: For now, allow allocations to potentially
2096 * exceed the per-zone dirty limit in the slowpath
2097 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2098 * which is important when on a NUMA setup the allowed
2099 * zones are together not big enough to reach the
2100 * global limit. The proper fix for these situations
2101 * will require awareness of zones in the
2102 * dirty-throttling and the flusher threads.
2103 */
2104 if (consider_zone_dirty && !zone_dirty_ok(zone))
2105 continue;
2106
2107 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2108 if (!zone_watermark_ok(zone, order, mark,
2109 ac->classzone_idx, alloc_flags)) {
2110 int ret;
2111
2112 /* Checked here to keep the fast path fast */
2113 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2114 if (alloc_flags & ALLOC_NO_WATERMARKS)
2115 goto try_this_zone;
2116
2117 if (IS_ENABLED(CONFIG_NUMA) &&
2118 !did_zlc_setup && nr_online_nodes > 1) {
2119 /*
2120 * we do zlc_setup if there are multiple nodes
2121 * and before considering the first zone allowed
2122 * by the cpuset.
2123 */
2124 allowednodes = zlc_setup(zonelist, alloc_flags);
2125 zlc_active = 1;
2126 did_zlc_setup = 1;
2127 }
2128
2129 if (zone_reclaim_mode == 0 ||
2130 !zone_allows_reclaim(ac->preferred_zone, zone))
2131 goto this_zone_full;
2132
2133 /*
2134 * As we may have just activated ZLC, check if the first
2135 * eligible zone has failed zone_reclaim recently.
2136 */
2137 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2138 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2139 continue;
2140
2141 ret = zone_reclaim(zone, gfp_mask, order);
2142 switch (ret) {
2143 case ZONE_RECLAIM_NOSCAN:
2144 /* did not scan */
2145 continue;
2146 case ZONE_RECLAIM_FULL:
2147 /* scanned but unreclaimable */
2148 continue;
2149 default:
2150 /* did we reclaim enough */
2151 if (zone_watermark_ok(zone, order, mark,
2152 ac->classzone_idx, alloc_flags))
2153 goto try_this_zone;
2154
2155 /*
2156 * Failed to reclaim enough to meet watermark.
2157 * Only mark the zone full if checking the min
2158 * watermark or if we failed to reclaim just
2159 * 1<<order pages or else the page allocator
2160 * fastpath will prematurely mark zones full
2161 * when the watermark is between the low and
2162 * min watermarks.
2163 */
2164 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2165 ret == ZONE_RECLAIM_SOME)
2166 goto this_zone_full;
2167
2168 continue;
2169 }
2170 }
2171
2172 try_this_zone:
2173 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2174 gfp_mask, ac->migratetype);
2175 if (page) {
2176 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2177 goto try_this_zone;
2178 return page;
2179 }
2180 this_zone_full:
2181 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2182 zlc_mark_zone_full(zonelist, z);
2183 }
2184
2185 /*
2186 * The first pass makes sure allocations are spread fairly within the
2187 * local node. However, the local node might have free pages left
2188 * after the fairness batches are exhausted, and remote zones haven't
2189 * even been considered yet. Try once more without fairness, and
2190 * include remote zones now, before entering the slowpath and waking
2191 * kswapd: prefer spilling to a remote zone over swapping locally.
2192 */
2193 if (alloc_flags & ALLOC_FAIR) {
2194 alloc_flags &= ~ALLOC_FAIR;
2195 if (nr_fair_skipped) {
2196 zonelist_rescan = true;
2197 reset_alloc_batches(ac->preferred_zone);
2198 }
2199 if (nr_online_nodes > 1)
2200 zonelist_rescan = true;
2201 }
2202
2203 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2204 /* Disable zlc cache for second zonelist scan */
2205 zlc_active = 0;
2206 zonelist_rescan = true;
2207 }
2208
2209 if (zonelist_rescan)
2210 goto zonelist_scan;
2211
2212 return NULL;
2213 }
2214
2215 /*
2216 * Large machines with many possible nodes should not always dump per-node
2217 * meminfo in irq context.
2218 */
2219 static inline bool should_suppress_show_mem(void)
2220 {
2221 bool ret = false;
2222
2223 #if NODES_SHIFT > 8
2224 ret = in_interrupt();
2225 #endif
2226 return ret;
2227 }
2228
2229 static DEFINE_RATELIMIT_STATE(nopage_rs,
2230 DEFAULT_RATELIMIT_INTERVAL,
2231 DEFAULT_RATELIMIT_BURST);
2232
2233 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2234 {
2235 unsigned int filter = SHOW_MEM_FILTER_NODES;
2236
2237 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2238 debug_guardpage_minorder() > 0)
2239 return;
2240
2241 /*
2242 * This documents exceptions given to allocations in certain
2243 * contexts that are allowed to allocate outside current's set
2244 * of allowed nodes.
2245 */
2246 if (!(gfp_mask & __GFP_NOMEMALLOC))
2247 if (test_thread_flag(TIF_MEMDIE) ||
2248 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2249 filter &= ~SHOW_MEM_FILTER_NODES;
2250 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2251 filter &= ~SHOW_MEM_FILTER_NODES;
2252
2253 if (fmt) {
2254 struct va_format vaf;
2255 va_list args;
2256
2257 va_start(args, fmt);
2258
2259 vaf.fmt = fmt;
2260 vaf.va = &args;
2261
2262 pr_warn("%pV", &vaf);
2263
2264 va_end(args);
2265 }
2266
2267 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2268 current->comm, order, gfp_mask);
2269
2270 dump_stack();
2271 if (!should_suppress_show_mem())
2272 show_mem(filter);
2273 }
2274
2275 static inline int
2276 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2277 unsigned long did_some_progress,
2278 unsigned long pages_reclaimed)
2279 {
2280 /* Do not loop if specifically requested */
2281 if (gfp_mask & __GFP_NORETRY)
2282 return 0;
2283
2284 /* Always retry if specifically requested */
2285 if (gfp_mask & __GFP_NOFAIL)
2286 return 1;
2287
2288 /*
2289 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2290 * making forward progress without invoking OOM. Suspend also disables
2291 * storage devices so kswapd will not help. Bail if we are suspending.
2292 */
2293 if (!did_some_progress && pm_suspended_storage())
2294 return 0;
2295
2296 /*
2297 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2298 * means __GFP_NOFAIL, but that may not be true in other
2299 * implementations.
2300 */
2301 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2302 return 1;
2303
2304 /*
2305 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2306 * specified, then we retry until we no longer reclaim any pages
2307 * (above), or we've reclaimed an order of pages at least as
2308 * large as the allocation's order. In both cases, if the
2309 * allocation still fails, we stop retrying.
2310 */
2311 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2312 return 1;
2313
2314 return 0;
2315 }
2316
2317 static inline struct page *
2318 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2319 const struct alloc_context *ac, unsigned long *did_some_progress)
2320 {
2321 struct page *page;
2322
2323 *did_some_progress = 0;
2324
2325 /*
2326 * Acquire the per-zone oom lock for each zone. If that
2327 * fails, somebody else is making progress for us.
2328 */
2329 if (!oom_zonelist_trylock(ac->zonelist, gfp_mask)) {
2330 *did_some_progress = 1;
2331 schedule_timeout_uninterruptible(1);
2332 return NULL;
2333 }
2334
2335 /*
2336 * Go through the zonelist yet one more time, keep very high watermark
2337 * here, this is only to catch a parallel oom killing, we must fail if
2338 * we're still under heavy pressure.
2339 */
2340 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2341 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2342 if (page)
2343 goto out;
2344
2345 if (!(gfp_mask & __GFP_NOFAIL)) {
2346 /* Coredumps can quickly deplete all memory reserves */
2347 if (current->flags & PF_DUMPCORE)
2348 goto out;
2349 /* The OOM killer will not help higher order allocs */
2350 if (order > PAGE_ALLOC_COSTLY_ORDER)
2351 goto out;
2352 /* The OOM killer does not needlessly kill tasks for lowmem */
2353 if (ac->high_zoneidx < ZONE_NORMAL)
2354 goto out;
2355 /* The OOM killer does not compensate for light reclaim */
2356 if (!(gfp_mask & __GFP_FS)) {
2357 /*
2358 * XXX: Page reclaim didn't yield anything,
2359 * and the OOM killer can't be invoked, but
2360 * keep looping as per should_alloc_retry().
2361 */
2362 *did_some_progress = 1;
2363 goto out;
2364 }
2365 /*
2366 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2367 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2368 * The caller should handle page allocation failure by itself if
2369 * it specifies __GFP_THISNODE.
2370 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2371 */
2372 if (gfp_mask & __GFP_THISNODE)
2373 goto out;
2374 }
2375 /* Exhausted what can be done so it's blamo time */
2376 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false))
2377 *did_some_progress = 1;
2378 out:
2379 oom_zonelist_unlock(ac->zonelist, gfp_mask);
2380 return page;
2381 }
2382
2383 #ifdef CONFIG_COMPACTION
2384 /* Try memory compaction for high-order allocations before reclaim */
2385 static struct page *
2386 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2387 int alloc_flags, const struct alloc_context *ac,
2388 enum migrate_mode mode, int *contended_compaction,
2389 bool *deferred_compaction)
2390 {
2391 unsigned long compact_result;
2392 struct page *page;
2393
2394 if (!order)
2395 return NULL;
2396
2397 current->flags |= PF_MEMALLOC;
2398 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2399 mode, contended_compaction);
2400 current->flags &= ~PF_MEMALLOC;
2401
2402 switch (compact_result) {
2403 case COMPACT_DEFERRED:
2404 *deferred_compaction = true;
2405 /* fall-through */
2406 case COMPACT_SKIPPED:
2407 return NULL;
2408 default:
2409 break;
2410 }
2411
2412 /*
2413 * At least in one zone compaction wasn't deferred or skipped, so let's
2414 * count a compaction stall
2415 */
2416 count_vm_event(COMPACTSTALL);
2417
2418 page = get_page_from_freelist(gfp_mask, order,
2419 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2420
2421 if (page) {
2422 struct zone *zone = page_zone(page);
2423
2424 zone->compact_blockskip_flush = false;
2425 compaction_defer_reset(zone, order, true);
2426 count_vm_event(COMPACTSUCCESS);
2427 return page;
2428 }
2429
2430 /*
2431 * It's bad if compaction run occurs and fails. The most likely reason
2432 * is that pages exist, but not enough to satisfy watermarks.
2433 */
2434 count_vm_event(COMPACTFAIL);
2435
2436 cond_resched();
2437
2438 return NULL;
2439 }
2440 #else
2441 static inline struct page *
2442 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2443 int alloc_flags, const struct alloc_context *ac,
2444 enum migrate_mode mode, int *contended_compaction,
2445 bool *deferred_compaction)
2446 {
2447 return NULL;
2448 }
2449 #endif /* CONFIG_COMPACTION */
2450
2451 /* Perform direct synchronous page reclaim */
2452 static int
2453 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2454 const struct alloc_context *ac)
2455 {
2456 struct reclaim_state reclaim_state;
2457 int progress;
2458
2459 cond_resched();
2460
2461 /* We now go into synchronous reclaim */
2462 cpuset_memory_pressure_bump();
2463 current->flags |= PF_MEMALLOC;
2464 lockdep_set_current_reclaim_state(gfp_mask);
2465 reclaim_state.reclaimed_slab = 0;
2466 current->reclaim_state = &reclaim_state;
2467
2468 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2469 ac->nodemask);
2470
2471 current->reclaim_state = NULL;
2472 lockdep_clear_current_reclaim_state();
2473 current->flags &= ~PF_MEMALLOC;
2474
2475 cond_resched();
2476
2477 return progress;
2478 }
2479
2480 /* The really slow allocator path where we enter direct reclaim */
2481 static inline struct page *
2482 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2483 int alloc_flags, const struct alloc_context *ac,
2484 unsigned long *did_some_progress)
2485 {
2486 struct page *page = NULL;
2487 bool drained = false;
2488
2489 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2490 if (unlikely(!(*did_some_progress)))
2491 return NULL;
2492
2493 /* After successful reclaim, reconsider all zones for allocation */
2494 if (IS_ENABLED(CONFIG_NUMA))
2495 zlc_clear_zones_full(ac->zonelist);
2496
2497 retry:
2498 page = get_page_from_freelist(gfp_mask, order,
2499 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2500
2501 /*
2502 * If an allocation failed after direct reclaim, it could be because
2503 * pages are pinned on the per-cpu lists. Drain them and try again
2504 */
2505 if (!page && !drained) {
2506 drain_all_pages(NULL);
2507 drained = true;
2508 goto retry;
2509 }
2510
2511 return page;
2512 }
2513
2514 /*
2515 * This is called in the allocator slow-path if the allocation request is of
2516 * sufficient urgency to ignore watermarks and take other desperate measures
2517 */
2518 static inline struct page *
2519 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2520 const struct alloc_context *ac)
2521 {
2522 struct page *page;
2523
2524 do {
2525 page = get_page_from_freelist(gfp_mask, order,
2526 ALLOC_NO_WATERMARKS, ac);
2527
2528 if (!page && gfp_mask & __GFP_NOFAIL)
2529 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2530 HZ/50);
2531 } while (!page && (gfp_mask & __GFP_NOFAIL));
2532
2533 return page;
2534 }
2535
2536 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2537 {
2538 struct zoneref *z;
2539 struct zone *zone;
2540
2541 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2542 ac->high_zoneidx, ac->nodemask)
2543 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2544 }
2545
2546 static inline int
2547 gfp_to_alloc_flags(gfp_t gfp_mask)
2548 {
2549 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2550 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2551
2552 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2553 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2554
2555 /*
2556 * The caller may dip into page reserves a bit more if the caller
2557 * cannot run direct reclaim, or if the caller has realtime scheduling
2558 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2559 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2560 */
2561 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2562
2563 if (atomic) {
2564 /*
2565 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2566 * if it can't schedule.
2567 */
2568 if (!(gfp_mask & __GFP_NOMEMALLOC))
2569 alloc_flags |= ALLOC_HARDER;
2570 /*
2571 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2572 * comment for __cpuset_node_allowed().
2573 */
2574 alloc_flags &= ~ALLOC_CPUSET;
2575 } else if (unlikely(rt_task(current)) && !in_interrupt())
2576 alloc_flags |= ALLOC_HARDER;
2577
2578 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2579 if (gfp_mask & __GFP_MEMALLOC)
2580 alloc_flags |= ALLOC_NO_WATERMARKS;
2581 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2582 alloc_flags |= ALLOC_NO_WATERMARKS;
2583 else if (!in_interrupt() &&
2584 ((current->flags & PF_MEMALLOC) ||
2585 unlikely(test_thread_flag(TIF_MEMDIE))))
2586 alloc_flags |= ALLOC_NO_WATERMARKS;
2587 }
2588 #ifdef CONFIG_CMA
2589 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2590 alloc_flags |= ALLOC_CMA;
2591 #endif
2592 return alloc_flags;
2593 }
2594
2595 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2596 {
2597 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2598 }
2599
2600 static inline struct page *
2601 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2602 struct alloc_context *ac)
2603 {
2604 const gfp_t wait = gfp_mask & __GFP_WAIT;
2605 struct page *page = NULL;
2606 int alloc_flags;
2607 unsigned long pages_reclaimed = 0;
2608 unsigned long did_some_progress;
2609 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2610 bool deferred_compaction = false;
2611 int contended_compaction = COMPACT_CONTENDED_NONE;
2612
2613 /*
2614 * In the slowpath, we sanity check order to avoid ever trying to
2615 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2616 * be using allocators in order of preference for an area that is
2617 * too large.
2618 */
2619 if (order >= MAX_ORDER) {
2620 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2621 return NULL;
2622 }
2623
2624 /*
2625 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2626 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2627 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2628 * using a larger set of nodes after it has established that the
2629 * allowed per node queues are empty and that nodes are
2630 * over allocated.
2631 */
2632 if (IS_ENABLED(CONFIG_NUMA) &&
2633 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2634 goto nopage;
2635
2636 retry:
2637 if (!(gfp_mask & __GFP_NO_KSWAPD))
2638 wake_all_kswapds(order, ac);
2639
2640 /*
2641 * OK, we're below the kswapd watermark and have kicked background
2642 * reclaim. Now things get more complex, so set up alloc_flags according
2643 * to how we want to proceed.
2644 */
2645 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2646
2647 /*
2648 * Find the true preferred zone if the allocation is unconstrained by
2649 * cpusets.
2650 */
2651 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
2652 struct zoneref *preferred_zoneref;
2653 preferred_zoneref = first_zones_zonelist(ac->zonelist,
2654 ac->high_zoneidx, NULL, &ac->preferred_zone);
2655 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
2656 }
2657
2658 /* This is the last chance, in general, before the goto nopage. */
2659 page = get_page_from_freelist(gfp_mask, order,
2660 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2661 if (page)
2662 goto got_pg;
2663
2664 /* Allocate without watermarks if the context allows */
2665 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2666 /*
2667 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2668 * the allocation is high priority and these type of
2669 * allocations are system rather than user orientated
2670 */
2671 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
2672
2673 page = __alloc_pages_high_priority(gfp_mask, order, ac);
2674
2675 if (page) {
2676 goto got_pg;
2677 }
2678 }
2679
2680 /* Atomic allocations - we can't balance anything */
2681 if (!wait) {
2682 /*
2683 * All existing users of the deprecated __GFP_NOFAIL are
2684 * blockable, so warn of any new users that actually allow this
2685 * type of allocation to fail.
2686 */
2687 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2688 goto nopage;
2689 }
2690
2691 /* Avoid recursion of direct reclaim */
2692 if (current->flags & PF_MEMALLOC)
2693 goto nopage;
2694
2695 /* Avoid allocations with no watermarks from looping endlessly */
2696 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2697 goto nopage;
2698
2699 /*
2700 * Try direct compaction. The first pass is asynchronous. Subsequent
2701 * attempts after direct reclaim are synchronous
2702 */
2703 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
2704 migration_mode,
2705 &contended_compaction,
2706 &deferred_compaction);
2707 if (page)
2708 goto got_pg;
2709
2710 /* Checks for THP-specific high-order allocations */
2711 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2712 /*
2713 * If compaction is deferred for high-order allocations, it is
2714 * because sync compaction recently failed. If this is the case
2715 * and the caller requested a THP allocation, we do not want
2716 * to heavily disrupt the system, so we fail the allocation
2717 * instead of entering direct reclaim.
2718 */
2719 if (deferred_compaction)
2720 goto nopage;
2721
2722 /*
2723 * In all zones where compaction was attempted (and not
2724 * deferred or skipped), lock contention has been detected.
2725 * For THP allocation we do not want to disrupt the others
2726 * so we fallback to base pages instead.
2727 */
2728 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2729 goto nopage;
2730
2731 /*
2732 * If compaction was aborted due to need_resched(), we do not
2733 * want to further increase allocation latency, unless it is
2734 * khugepaged trying to collapse.
2735 */
2736 if (contended_compaction == COMPACT_CONTENDED_SCHED
2737 && !(current->flags & PF_KTHREAD))
2738 goto nopage;
2739 }
2740
2741 /*
2742 * It can become very expensive to allocate transparent hugepages at
2743 * fault, so use asynchronous memory compaction for THP unless it is
2744 * khugepaged trying to collapse.
2745 */
2746 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2747 (current->flags & PF_KTHREAD))
2748 migration_mode = MIGRATE_SYNC_LIGHT;
2749
2750 /* Try direct reclaim and then allocating */
2751 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
2752 &did_some_progress);
2753 if (page)
2754 goto got_pg;
2755
2756 /* Check if we should retry the allocation */
2757 pages_reclaimed += did_some_progress;
2758 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2759 pages_reclaimed)) {
2760 /*
2761 * If we fail to make progress by freeing individual
2762 * pages, but the allocation wants us to keep going,
2763 * start OOM killing tasks.
2764 */
2765 if (!did_some_progress) {
2766 page = __alloc_pages_may_oom(gfp_mask, order, ac,
2767 &did_some_progress);
2768 if (page)
2769 goto got_pg;
2770 if (!did_some_progress)
2771 goto nopage;
2772 }
2773 /* Wait for some write requests to complete then retry */
2774 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
2775 goto retry;
2776 } else {
2777 /*
2778 * High-order allocations do not necessarily loop after
2779 * direct reclaim and reclaim/compaction depends on compaction
2780 * being called after reclaim so call directly if necessary
2781 */
2782 page = __alloc_pages_direct_compact(gfp_mask, order,
2783 alloc_flags, ac, migration_mode,
2784 &contended_compaction,
2785 &deferred_compaction);
2786 if (page)
2787 goto got_pg;
2788 }
2789
2790 nopage:
2791 warn_alloc_failed(gfp_mask, order, NULL);
2792 got_pg:
2793 return page;
2794 }
2795
2796 /*
2797 * This is the 'heart' of the zoned buddy allocator.
2798 */
2799 struct page *
2800 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2801 struct zonelist *zonelist, nodemask_t *nodemask)
2802 {
2803 struct zoneref *preferred_zoneref;
2804 struct page *page = NULL;
2805 unsigned int cpuset_mems_cookie;
2806 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2807 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
2808 struct alloc_context ac = {
2809 .high_zoneidx = gfp_zone(gfp_mask),
2810 .nodemask = nodemask,
2811 .migratetype = gfpflags_to_migratetype(gfp_mask),
2812 };
2813
2814 gfp_mask &= gfp_allowed_mask;
2815
2816 lockdep_trace_alloc(gfp_mask);
2817
2818 might_sleep_if(gfp_mask & __GFP_WAIT);
2819
2820 if (should_fail_alloc_page(gfp_mask, order))
2821 return NULL;
2822
2823 /*
2824 * Check the zones suitable for the gfp_mask contain at least one
2825 * valid zone. It's possible to have an empty zonelist as a result
2826 * of GFP_THISNODE and a memoryless node
2827 */
2828 if (unlikely(!zonelist->_zonerefs->zone))
2829 return NULL;
2830
2831 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
2832 alloc_flags |= ALLOC_CMA;
2833
2834 retry_cpuset:
2835 cpuset_mems_cookie = read_mems_allowed_begin();
2836
2837 /* We set it here, as __alloc_pages_slowpath might have changed it */
2838 ac.zonelist = zonelist;
2839 /* The preferred zone is used for statistics later */
2840 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
2841 ac.nodemask ? : &cpuset_current_mems_allowed,
2842 &ac.preferred_zone);
2843 if (!ac.preferred_zone)
2844 goto out;
2845 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
2846
2847 /* First allocation attempt */
2848 alloc_mask = gfp_mask|__GFP_HARDWALL;
2849 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
2850 if (unlikely(!page)) {
2851 /*
2852 * Runtime PM, block IO and its error handling path
2853 * can deadlock because I/O on the device might not
2854 * complete.
2855 */
2856 alloc_mask = memalloc_noio_flags(gfp_mask);
2857
2858 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
2859 }
2860
2861 if (kmemcheck_enabled && page)
2862 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2863
2864 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
2865
2866 out:
2867 /*
2868 * When updating a task's mems_allowed, it is possible to race with
2869 * parallel threads in such a way that an allocation can fail while
2870 * the mask is being updated. If a page allocation is about to fail,
2871 * check if the cpuset changed during allocation and if so, retry.
2872 */
2873 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2874 goto retry_cpuset;
2875
2876 return page;
2877 }
2878 EXPORT_SYMBOL(__alloc_pages_nodemask);
2879
2880 /*
2881 * Common helper functions.
2882 */
2883 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2884 {
2885 struct page *page;
2886
2887 /*
2888 * __get_free_pages() returns a 32-bit address, which cannot represent
2889 * a highmem page
2890 */
2891 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2892
2893 page = alloc_pages(gfp_mask, order);
2894 if (!page)
2895 return 0;
2896 return (unsigned long) page_address(page);
2897 }
2898 EXPORT_SYMBOL(__get_free_pages);
2899
2900 unsigned long get_zeroed_page(gfp_t gfp_mask)
2901 {
2902 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2903 }
2904 EXPORT_SYMBOL(get_zeroed_page);
2905
2906 void __free_pages(struct page *page, unsigned int order)
2907 {
2908 if (put_page_testzero(page)) {
2909 if (order == 0)
2910 free_hot_cold_page(page, false);
2911 else
2912 __free_pages_ok(page, order);
2913 }
2914 }
2915
2916 EXPORT_SYMBOL(__free_pages);
2917
2918 void free_pages(unsigned long addr, unsigned int order)
2919 {
2920 if (addr != 0) {
2921 VM_BUG_ON(!virt_addr_valid((void *)addr));
2922 __free_pages(virt_to_page((void *)addr), order);
2923 }
2924 }
2925
2926 EXPORT_SYMBOL(free_pages);
2927
2928 /*
2929 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2930 * of the current memory cgroup.
2931 *
2932 * It should be used when the caller would like to use kmalloc, but since the
2933 * allocation is large, it has to fall back to the page allocator.
2934 */
2935 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2936 {
2937 struct page *page;
2938 struct mem_cgroup *memcg = NULL;
2939
2940 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2941 return NULL;
2942 page = alloc_pages(gfp_mask, order);
2943 memcg_kmem_commit_charge(page, memcg, order);
2944 return page;
2945 }
2946
2947 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2948 {
2949 struct page *page;
2950 struct mem_cgroup *memcg = NULL;
2951
2952 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2953 return NULL;
2954 page = alloc_pages_node(nid, gfp_mask, order);
2955 memcg_kmem_commit_charge(page, memcg, order);
2956 return page;
2957 }
2958
2959 /*
2960 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2961 * alloc_kmem_pages.
2962 */
2963 void __free_kmem_pages(struct page *page, unsigned int order)
2964 {
2965 memcg_kmem_uncharge_pages(page, order);
2966 __free_pages(page, order);
2967 }
2968
2969 void free_kmem_pages(unsigned long addr, unsigned int order)
2970 {
2971 if (addr != 0) {
2972 VM_BUG_ON(!virt_addr_valid((void *)addr));
2973 __free_kmem_pages(virt_to_page((void *)addr), order);
2974 }
2975 }
2976
2977 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2978 {
2979 if (addr) {
2980 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2981 unsigned long used = addr + PAGE_ALIGN(size);
2982
2983 split_page(virt_to_page((void *)addr), order);
2984 while (used < alloc_end) {
2985 free_page(used);
2986 used += PAGE_SIZE;
2987 }
2988 }
2989 return (void *)addr;
2990 }
2991
2992 /**
2993 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2994 * @size: the number of bytes to allocate
2995 * @gfp_mask: GFP flags for the allocation
2996 *
2997 * This function is similar to alloc_pages(), except that it allocates the
2998 * minimum number of pages to satisfy the request. alloc_pages() can only
2999 * allocate memory in power-of-two pages.
3000 *
3001 * This function is also limited by MAX_ORDER.
3002 *
3003 * Memory allocated by this function must be released by free_pages_exact().
3004 */
3005 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3006 {
3007 unsigned int order = get_order(size);
3008 unsigned long addr;
3009
3010 addr = __get_free_pages(gfp_mask, order);
3011 return make_alloc_exact(addr, order, size);
3012 }
3013 EXPORT_SYMBOL(alloc_pages_exact);
3014
3015 /**
3016 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3017 * pages on a node.
3018 * @nid: the preferred node ID where memory should be allocated
3019 * @size: the number of bytes to allocate
3020 * @gfp_mask: GFP flags for the allocation
3021 *
3022 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3023 * back.
3024 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3025 * but is not exact.
3026 */
3027 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3028 {
3029 unsigned order = get_order(size);
3030 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3031 if (!p)
3032 return NULL;
3033 return make_alloc_exact((unsigned long)page_address(p), order, size);
3034 }
3035
3036 /**
3037 * free_pages_exact - release memory allocated via alloc_pages_exact()
3038 * @virt: the value returned by alloc_pages_exact.
3039 * @size: size of allocation, same value as passed to alloc_pages_exact().
3040 *
3041 * Release the memory allocated by a previous call to alloc_pages_exact.
3042 */
3043 void free_pages_exact(void *virt, size_t size)
3044 {
3045 unsigned long addr = (unsigned long)virt;
3046 unsigned long end = addr + PAGE_ALIGN(size);
3047
3048 while (addr < end) {
3049 free_page(addr);
3050 addr += PAGE_SIZE;
3051 }
3052 }
3053 EXPORT_SYMBOL(free_pages_exact);
3054
3055 /**
3056 * nr_free_zone_pages - count number of pages beyond high watermark
3057 * @offset: The zone index of the highest zone
3058 *
3059 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3060 * high watermark within all zones at or below a given zone index. For each
3061 * zone, the number of pages is calculated as:
3062 * managed_pages - high_pages
3063 */
3064 static unsigned long nr_free_zone_pages(int offset)
3065 {
3066 struct zoneref *z;
3067 struct zone *zone;
3068
3069 /* Just pick one node, since fallback list is circular */
3070 unsigned long sum = 0;
3071
3072 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3073
3074 for_each_zone_zonelist(zone, z, zonelist, offset) {
3075 unsigned long size = zone->managed_pages;
3076 unsigned long high = high_wmark_pages(zone);
3077 if (size > high)
3078 sum += size - high;
3079 }
3080
3081 return sum;
3082 }
3083
3084 /**
3085 * nr_free_buffer_pages - count number of pages beyond high watermark
3086 *
3087 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3088 * watermark within ZONE_DMA and ZONE_NORMAL.
3089 */
3090 unsigned long nr_free_buffer_pages(void)
3091 {
3092 return nr_free_zone_pages(gfp_zone(GFP_USER));
3093 }
3094 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3095
3096 /**
3097 * nr_free_pagecache_pages - count number of pages beyond high watermark
3098 *
3099 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3100 * high watermark within all zones.
3101 */
3102 unsigned long nr_free_pagecache_pages(void)
3103 {
3104 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3105 }
3106
3107 static inline void show_node(struct zone *zone)
3108 {
3109 if (IS_ENABLED(CONFIG_NUMA))
3110 printk("Node %d ", zone_to_nid(zone));
3111 }
3112
3113 void si_meminfo(struct sysinfo *val)
3114 {
3115 val->totalram = totalram_pages;
3116 val->sharedram = global_page_state(NR_SHMEM);
3117 val->freeram = global_page_state(NR_FREE_PAGES);
3118 val->bufferram = nr_blockdev_pages();
3119 val->totalhigh = totalhigh_pages;
3120 val->freehigh = nr_free_highpages();
3121 val->mem_unit = PAGE_SIZE;
3122 }
3123
3124 EXPORT_SYMBOL(si_meminfo);
3125
3126 #ifdef CONFIG_NUMA
3127 void si_meminfo_node(struct sysinfo *val, int nid)
3128 {
3129 int zone_type; /* needs to be signed */
3130 unsigned long managed_pages = 0;
3131 pg_data_t *pgdat = NODE_DATA(nid);
3132
3133 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3134 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3135 val->totalram = managed_pages;
3136 val->sharedram = node_page_state(nid, NR_SHMEM);
3137 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3138 #ifdef CONFIG_HIGHMEM
3139 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3140 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3141 NR_FREE_PAGES);
3142 #else
3143 val->totalhigh = 0;
3144 val->freehigh = 0;
3145 #endif
3146 val->mem_unit = PAGE_SIZE;
3147 }
3148 #endif
3149
3150 /*
3151 * Determine whether the node should be displayed or not, depending on whether
3152 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3153 */
3154 bool skip_free_areas_node(unsigned int flags, int nid)
3155 {
3156 bool ret = false;
3157 unsigned int cpuset_mems_cookie;
3158
3159 if (!(flags & SHOW_MEM_FILTER_NODES))
3160 goto out;
3161
3162 do {
3163 cpuset_mems_cookie = read_mems_allowed_begin();
3164 ret = !node_isset(nid, cpuset_current_mems_allowed);
3165 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3166 out:
3167 return ret;
3168 }
3169
3170 #define K(x) ((x) << (PAGE_SHIFT-10))
3171
3172 static void show_migration_types(unsigned char type)
3173 {
3174 static const char types[MIGRATE_TYPES] = {
3175 [MIGRATE_UNMOVABLE] = 'U',
3176 [MIGRATE_RECLAIMABLE] = 'E',
3177 [MIGRATE_MOVABLE] = 'M',
3178 [MIGRATE_RESERVE] = 'R',
3179 #ifdef CONFIG_CMA
3180 [MIGRATE_CMA] = 'C',
3181 #endif
3182 #ifdef CONFIG_MEMORY_ISOLATION
3183 [MIGRATE_ISOLATE] = 'I',
3184 #endif
3185 };
3186 char tmp[MIGRATE_TYPES + 1];
3187 char *p = tmp;
3188 int i;
3189
3190 for (i = 0; i < MIGRATE_TYPES; i++) {
3191 if (type & (1 << i))
3192 *p++ = types[i];
3193 }
3194
3195 *p = '\0';
3196 printk("(%s) ", tmp);
3197 }
3198
3199 /*
3200 * Show free area list (used inside shift_scroll-lock stuff)
3201 * We also calculate the percentage fragmentation. We do this by counting the
3202 * memory on each free list with the exception of the first item on the list.
3203 * Suppresses nodes that are not allowed by current's cpuset if
3204 * SHOW_MEM_FILTER_NODES is passed.
3205 */
3206 void show_free_areas(unsigned int filter)
3207 {
3208 int cpu;
3209 struct zone *zone;
3210
3211 for_each_populated_zone(zone) {
3212 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3213 continue;
3214 show_node(zone);
3215 printk("%s per-cpu:\n", zone->name);
3216
3217 for_each_online_cpu(cpu) {
3218 struct per_cpu_pageset *pageset;
3219
3220 pageset = per_cpu_ptr(zone->pageset, cpu);
3221
3222 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3223 cpu, pageset->pcp.high,
3224 pageset->pcp.batch, pageset->pcp.count);
3225 }
3226 }
3227
3228 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3229 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3230 " unevictable:%lu"
3231 " dirty:%lu writeback:%lu unstable:%lu\n"
3232 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3233 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3234 " free_cma:%lu\n",
3235 global_page_state(NR_ACTIVE_ANON),
3236 global_page_state(NR_INACTIVE_ANON),
3237 global_page_state(NR_ISOLATED_ANON),
3238 global_page_state(NR_ACTIVE_FILE),
3239 global_page_state(NR_INACTIVE_FILE),
3240 global_page_state(NR_ISOLATED_FILE),
3241 global_page_state(NR_UNEVICTABLE),
3242 global_page_state(NR_FILE_DIRTY),
3243 global_page_state(NR_WRITEBACK),
3244 global_page_state(NR_UNSTABLE_NFS),
3245 global_page_state(NR_FREE_PAGES),
3246 global_page_state(NR_SLAB_RECLAIMABLE),
3247 global_page_state(NR_SLAB_UNRECLAIMABLE),
3248 global_page_state(NR_FILE_MAPPED),
3249 global_page_state(NR_SHMEM),
3250 global_page_state(NR_PAGETABLE),
3251 global_page_state(NR_BOUNCE),
3252 global_page_state(NR_FREE_CMA_PAGES));
3253
3254 for_each_populated_zone(zone) {
3255 int i;
3256
3257 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3258 continue;
3259 show_node(zone);
3260 printk("%s"
3261 " free:%lukB"
3262 " min:%lukB"
3263 " low:%lukB"
3264 " high:%lukB"
3265 " active_anon:%lukB"
3266 " inactive_anon:%lukB"
3267 " active_file:%lukB"
3268 " inactive_file:%lukB"
3269 " unevictable:%lukB"
3270 " isolated(anon):%lukB"
3271 " isolated(file):%lukB"
3272 " present:%lukB"
3273 " managed:%lukB"
3274 " mlocked:%lukB"
3275 " dirty:%lukB"
3276 " writeback:%lukB"
3277 " mapped:%lukB"
3278 " shmem:%lukB"
3279 " slab_reclaimable:%lukB"
3280 " slab_unreclaimable:%lukB"
3281 " kernel_stack:%lukB"
3282 " pagetables:%lukB"
3283 " unstable:%lukB"
3284 " bounce:%lukB"
3285 " free_cma:%lukB"
3286 " writeback_tmp:%lukB"
3287 " pages_scanned:%lu"
3288 " all_unreclaimable? %s"
3289 "\n",
3290 zone->name,
3291 K(zone_page_state(zone, NR_FREE_PAGES)),
3292 K(min_wmark_pages(zone)),
3293 K(low_wmark_pages(zone)),
3294 K(high_wmark_pages(zone)),
3295 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3296 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3297 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3298 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3299 K(zone_page_state(zone, NR_UNEVICTABLE)),
3300 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3301 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3302 K(zone->present_pages),
3303 K(zone->managed_pages),
3304 K(zone_page_state(zone, NR_MLOCK)),
3305 K(zone_page_state(zone, NR_FILE_DIRTY)),
3306 K(zone_page_state(zone, NR_WRITEBACK)),
3307 K(zone_page_state(zone, NR_FILE_MAPPED)),
3308 K(zone_page_state(zone, NR_SHMEM)),
3309 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3310 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3311 zone_page_state(zone, NR_KERNEL_STACK) *
3312 THREAD_SIZE / 1024,
3313 K(zone_page_state(zone, NR_PAGETABLE)),
3314 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3315 K(zone_page_state(zone, NR_BOUNCE)),
3316 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3317 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3318 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3319 (!zone_reclaimable(zone) ? "yes" : "no")
3320 );
3321 printk("lowmem_reserve[]:");
3322 for (i = 0; i < MAX_NR_ZONES; i++)
3323 printk(" %ld", zone->lowmem_reserve[i]);
3324 printk("\n");
3325 }
3326
3327 for_each_populated_zone(zone) {
3328 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3329 unsigned char types[MAX_ORDER];
3330
3331 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3332 continue;
3333 show_node(zone);
3334 printk("%s: ", zone->name);
3335
3336 spin_lock_irqsave(&zone->lock, flags);
3337 for (order = 0; order < MAX_ORDER; order++) {
3338 struct free_area *area = &zone->free_area[order];
3339 int type;
3340
3341 nr[order] = area->nr_free;
3342 total += nr[order] << order;
3343
3344 types[order] = 0;
3345 for (type = 0; type < MIGRATE_TYPES; type++) {
3346 if (!list_empty(&area->free_list[type]))
3347 types[order] |= 1 << type;
3348 }
3349 }
3350 spin_unlock_irqrestore(&zone->lock, flags);
3351 for (order = 0; order < MAX_ORDER; order++) {
3352 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3353 if (nr[order])
3354 show_migration_types(types[order]);
3355 }
3356 printk("= %lukB\n", K(total));
3357 }
3358
3359 hugetlb_show_meminfo();
3360
3361 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3362
3363 show_swap_cache_info();
3364 }
3365
3366 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3367 {
3368 zoneref->zone = zone;
3369 zoneref->zone_idx = zone_idx(zone);
3370 }
3371
3372 /*
3373 * Builds allocation fallback zone lists.
3374 *
3375 * Add all populated zones of a node to the zonelist.
3376 */
3377 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3378 int nr_zones)
3379 {
3380 struct zone *zone;
3381 enum zone_type zone_type = MAX_NR_ZONES;
3382
3383 do {
3384 zone_type--;
3385 zone = pgdat->node_zones + zone_type;
3386 if (populated_zone(zone)) {
3387 zoneref_set_zone(zone,
3388 &zonelist->_zonerefs[nr_zones++]);
3389 check_highest_zone(zone_type);
3390 }
3391 } while (zone_type);
3392
3393 return nr_zones;
3394 }
3395
3396
3397 /*
3398 * zonelist_order:
3399 * 0 = automatic detection of better ordering.
3400 * 1 = order by ([node] distance, -zonetype)
3401 * 2 = order by (-zonetype, [node] distance)
3402 *
3403 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3404 * the same zonelist. So only NUMA can configure this param.
3405 */
3406 #define ZONELIST_ORDER_DEFAULT 0
3407 #define ZONELIST_ORDER_NODE 1
3408 #define ZONELIST_ORDER_ZONE 2
3409
3410 /* zonelist order in the kernel.
3411 * set_zonelist_order() will set this to NODE or ZONE.
3412 */
3413 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3414 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3415
3416
3417 #ifdef CONFIG_NUMA
3418 /* The value user specified ....changed by config */
3419 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3420 /* string for sysctl */
3421 #define NUMA_ZONELIST_ORDER_LEN 16
3422 char numa_zonelist_order[16] = "default";
3423
3424 /*
3425 * interface for configure zonelist ordering.
3426 * command line option "numa_zonelist_order"
3427 * = "[dD]efault - default, automatic configuration.
3428 * = "[nN]ode - order by node locality, then by zone within node
3429 * = "[zZ]one - order by zone, then by locality within zone
3430 */
3431
3432 static int __parse_numa_zonelist_order(char *s)
3433 {
3434 if (*s == 'd' || *s == 'D') {
3435 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3436 } else if (*s == 'n' || *s == 'N') {
3437 user_zonelist_order = ZONELIST_ORDER_NODE;
3438 } else if (*s == 'z' || *s == 'Z') {
3439 user_zonelist_order = ZONELIST_ORDER_ZONE;
3440 } else {
3441 printk(KERN_WARNING
3442 "Ignoring invalid numa_zonelist_order value: "
3443 "%s\n", s);
3444 return -EINVAL;
3445 }
3446 return 0;
3447 }
3448
3449 static __init int setup_numa_zonelist_order(char *s)
3450 {
3451 int ret;
3452
3453 if (!s)
3454 return 0;
3455
3456 ret = __parse_numa_zonelist_order(s);
3457 if (ret == 0)
3458 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3459
3460 return ret;
3461 }
3462 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3463
3464 /*
3465 * sysctl handler for numa_zonelist_order
3466 */
3467 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3468 void __user *buffer, size_t *length,
3469 loff_t *ppos)
3470 {
3471 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3472 int ret;
3473 static DEFINE_MUTEX(zl_order_mutex);
3474
3475 mutex_lock(&zl_order_mutex);
3476 if (write) {
3477 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3478 ret = -EINVAL;
3479 goto out;
3480 }
3481 strcpy(saved_string, (char *)table->data);
3482 }
3483 ret = proc_dostring(table, write, buffer, length, ppos);
3484 if (ret)
3485 goto out;
3486 if (write) {
3487 int oldval = user_zonelist_order;
3488
3489 ret = __parse_numa_zonelist_order((char *)table->data);
3490 if (ret) {
3491 /*
3492 * bogus value. restore saved string
3493 */
3494 strncpy((char *)table->data, saved_string,
3495 NUMA_ZONELIST_ORDER_LEN);
3496 user_zonelist_order = oldval;
3497 } else if (oldval != user_zonelist_order) {
3498 mutex_lock(&zonelists_mutex);
3499 build_all_zonelists(NULL, NULL);
3500 mutex_unlock(&zonelists_mutex);
3501 }
3502 }
3503 out:
3504 mutex_unlock(&zl_order_mutex);
3505 return ret;
3506 }
3507
3508
3509 #define MAX_NODE_LOAD (nr_online_nodes)
3510 static int node_load[MAX_NUMNODES];
3511
3512 /**
3513 * find_next_best_node - find the next node that should appear in a given node's fallback list
3514 * @node: node whose fallback list we're appending
3515 * @used_node_mask: nodemask_t of already used nodes
3516 *
3517 * We use a number of factors to determine which is the next node that should
3518 * appear on a given node's fallback list. The node should not have appeared
3519 * already in @node's fallback list, and it should be the next closest node
3520 * according to the distance array (which contains arbitrary distance values
3521 * from each node to each node in the system), and should also prefer nodes
3522 * with no CPUs, since presumably they'll have very little allocation pressure
3523 * on them otherwise.
3524 * It returns -1 if no node is found.
3525 */
3526 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3527 {
3528 int n, val;
3529 int min_val = INT_MAX;
3530 int best_node = NUMA_NO_NODE;
3531 const struct cpumask *tmp = cpumask_of_node(0);
3532
3533 /* Use the local node if we haven't already */
3534 if (!node_isset(node, *used_node_mask)) {
3535 node_set(node, *used_node_mask);
3536 return node;
3537 }
3538
3539 for_each_node_state(n, N_MEMORY) {
3540
3541 /* Don't want a node to appear more than once */
3542 if (node_isset(n, *used_node_mask))
3543 continue;
3544
3545 /* Use the distance array to find the distance */
3546 val = node_distance(node, n);
3547
3548 /* Penalize nodes under us ("prefer the next node") */
3549 val += (n < node);
3550
3551 /* Give preference to headless and unused nodes */
3552 tmp = cpumask_of_node(n);
3553 if (!cpumask_empty(tmp))
3554 val += PENALTY_FOR_NODE_WITH_CPUS;
3555
3556 /* Slight preference for less loaded node */
3557 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3558 val += node_load[n];
3559
3560 if (val < min_val) {
3561 min_val = val;
3562 best_node = n;
3563 }
3564 }
3565
3566 if (best_node >= 0)
3567 node_set(best_node, *used_node_mask);
3568
3569 return best_node;
3570 }
3571
3572
3573 /*
3574 * Build zonelists ordered by node and zones within node.
3575 * This results in maximum locality--normal zone overflows into local
3576 * DMA zone, if any--but risks exhausting DMA zone.
3577 */
3578 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3579 {
3580 int j;
3581 struct zonelist *zonelist;
3582
3583 zonelist = &pgdat->node_zonelists[0];
3584 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3585 ;
3586 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3587 zonelist->_zonerefs[j].zone = NULL;
3588 zonelist->_zonerefs[j].zone_idx = 0;
3589 }
3590
3591 /*
3592 * Build gfp_thisnode zonelists
3593 */
3594 static void build_thisnode_zonelists(pg_data_t *pgdat)
3595 {
3596 int j;
3597 struct zonelist *zonelist;
3598
3599 zonelist = &pgdat->node_zonelists[1];
3600 j = build_zonelists_node(pgdat, zonelist, 0);
3601 zonelist->_zonerefs[j].zone = NULL;
3602 zonelist->_zonerefs[j].zone_idx = 0;
3603 }
3604
3605 /*
3606 * Build zonelists ordered by zone and nodes within zones.
3607 * This results in conserving DMA zone[s] until all Normal memory is
3608 * exhausted, but results in overflowing to remote node while memory
3609 * may still exist in local DMA zone.
3610 */
3611 static int node_order[MAX_NUMNODES];
3612
3613 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3614 {
3615 int pos, j, node;
3616 int zone_type; /* needs to be signed */
3617 struct zone *z;
3618 struct zonelist *zonelist;
3619
3620 zonelist = &pgdat->node_zonelists[0];
3621 pos = 0;
3622 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3623 for (j = 0; j < nr_nodes; j++) {
3624 node = node_order[j];
3625 z = &NODE_DATA(node)->node_zones[zone_type];
3626 if (populated_zone(z)) {
3627 zoneref_set_zone(z,
3628 &zonelist->_zonerefs[pos++]);
3629 check_highest_zone(zone_type);
3630 }
3631 }
3632 }
3633 zonelist->_zonerefs[pos].zone = NULL;
3634 zonelist->_zonerefs[pos].zone_idx = 0;
3635 }
3636
3637 #if defined(CONFIG_64BIT)
3638 /*
3639 * Devices that require DMA32/DMA are relatively rare and do not justify a
3640 * penalty to every machine in case the specialised case applies. Default
3641 * to Node-ordering on 64-bit NUMA machines
3642 */
3643 static int default_zonelist_order(void)
3644 {
3645 return ZONELIST_ORDER_NODE;
3646 }
3647 #else
3648 /*
3649 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3650 * by the kernel. If processes running on node 0 deplete the low memory zone
3651 * then reclaim will occur more frequency increasing stalls and potentially
3652 * be easier to OOM if a large percentage of the zone is under writeback or
3653 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3654 * Hence, default to zone ordering on 32-bit.
3655 */
3656 static int default_zonelist_order(void)
3657 {
3658 return ZONELIST_ORDER_ZONE;
3659 }
3660 #endif /* CONFIG_64BIT */
3661
3662 static void set_zonelist_order(void)
3663 {
3664 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3665 current_zonelist_order = default_zonelist_order();
3666 else
3667 current_zonelist_order = user_zonelist_order;
3668 }
3669
3670 static void build_zonelists(pg_data_t *pgdat)
3671 {
3672 int j, node, load;
3673 enum zone_type i;
3674 nodemask_t used_mask;
3675 int local_node, prev_node;
3676 struct zonelist *zonelist;
3677 int order = current_zonelist_order;
3678
3679 /* initialize zonelists */
3680 for (i = 0; i < MAX_ZONELISTS; i++) {
3681 zonelist = pgdat->node_zonelists + i;
3682 zonelist->_zonerefs[0].zone = NULL;
3683 zonelist->_zonerefs[0].zone_idx = 0;
3684 }
3685
3686 /* NUMA-aware ordering of nodes */
3687 local_node = pgdat->node_id;
3688 load = nr_online_nodes;
3689 prev_node = local_node;
3690 nodes_clear(used_mask);
3691
3692 memset(node_order, 0, sizeof(node_order));
3693 j = 0;
3694
3695 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3696 /*
3697 * We don't want to pressure a particular node.
3698 * So adding penalty to the first node in same
3699 * distance group to make it round-robin.
3700 */
3701 if (node_distance(local_node, node) !=
3702 node_distance(local_node, prev_node))
3703 node_load[node] = load;
3704
3705 prev_node = node;
3706 load--;
3707 if (order == ZONELIST_ORDER_NODE)
3708 build_zonelists_in_node_order(pgdat, node);
3709 else
3710 node_order[j++] = node; /* remember order */
3711 }
3712
3713 if (order == ZONELIST_ORDER_ZONE) {
3714 /* calculate node order -- i.e., DMA last! */
3715 build_zonelists_in_zone_order(pgdat, j);
3716 }
3717
3718 build_thisnode_zonelists(pgdat);
3719 }
3720
3721 /* Construct the zonelist performance cache - see further mmzone.h */
3722 static void build_zonelist_cache(pg_data_t *pgdat)
3723 {
3724 struct zonelist *zonelist;
3725 struct zonelist_cache *zlc;
3726 struct zoneref *z;
3727
3728 zonelist = &pgdat->node_zonelists[0];
3729 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3730 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3731 for (z = zonelist->_zonerefs; z->zone; z++)
3732 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3733 }
3734
3735 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3736 /*
3737 * Return node id of node used for "local" allocations.
3738 * I.e., first node id of first zone in arg node's generic zonelist.
3739 * Used for initializing percpu 'numa_mem', which is used primarily
3740 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3741 */
3742 int local_memory_node(int node)
3743 {
3744 struct zone *zone;
3745
3746 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3747 gfp_zone(GFP_KERNEL),
3748 NULL,
3749 &zone);
3750 return zone->node;
3751 }
3752 #endif
3753
3754 #else /* CONFIG_NUMA */
3755
3756 static void set_zonelist_order(void)
3757 {
3758 current_zonelist_order = ZONELIST_ORDER_ZONE;
3759 }
3760
3761 static void build_zonelists(pg_data_t *pgdat)
3762 {
3763 int node, local_node;
3764 enum zone_type j;
3765 struct zonelist *zonelist;
3766
3767 local_node = pgdat->node_id;
3768
3769 zonelist = &pgdat->node_zonelists[0];
3770 j = build_zonelists_node(pgdat, zonelist, 0);
3771
3772 /*
3773 * Now we build the zonelist so that it contains the zones
3774 * of all the other nodes.
3775 * We don't want to pressure a particular node, so when
3776 * building the zones for node N, we make sure that the
3777 * zones coming right after the local ones are those from
3778 * node N+1 (modulo N)
3779 */
3780 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3781 if (!node_online(node))
3782 continue;
3783 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3784 }
3785 for (node = 0; node < local_node; node++) {
3786 if (!node_online(node))
3787 continue;
3788 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3789 }
3790
3791 zonelist->_zonerefs[j].zone = NULL;
3792 zonelist->_zonerefs[j].zone_idx = 0;
3793 }
3794
3795 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3796 static void build_zonelist_cache(pg_data_t *pgdat)
3797 {
3798 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3799 }
3800
3801 #endif /* CONFIG_NUMA */
3802
3803 /*
3804 * Boot pageset table. One per cpu which is going to be used for all
3805 * zones and all nodes. The parameters will be set in such a way
3806 * that an item put on a list will immediately be handed over to
3807 * the buddy list. This is safe since pageset manipulation is done
3808 * with interrupts disabled.
3809 *
3810 * The boot_pagesets must be kept even after bootup is complete for
3811 * unused processors and/or zones. They do play a role for bootstrapping
3812 * hotplugged processors.
3813 *
3814 * zoneinfo_show() and maybe other functions do
3815 * not check if the processor is online before following the pageset pointer.
3816 * Other parts of the kernel may not check if the zone is available.
3817 */
3818 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3819 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3820 static void setup_zone_pageset(struct zone *zone);
3821
3822 /*
3823 * Global mutex to protect against size modification of zonelists
3824 * as well as to serialize pageset setup for the new populated zone.
3825 */
3826 DEFINE_MUTEX(zonelists_mutex);
3827
3828 /* return values int ....just for stop_machine() */
3829 static int __build_all_zonelists(void *data)
3830 {
3831 int nid;
3832 int cpu;
3833 pg_data_t *self = data;
3834
3835 #ifdef CONFIG_NUMA
3836 memset(node_load, 0, sizeof(node_load));
3837 #endif
3838
3839 if (self && !node_online(self->node_id)) {
3840 build_zonelists(self);
3841 build_zonelist_cache(self);
3842 }
3843
3844 for_each_online_node(nid) {
3845 pg_data_t *pgdat = NODE_DATA(nid);
3846
3847 build_zonelists(pgdat);
3848 build_zonelist_cache(pgdat);
3849 }
3850
3851 /*
3852 * Initialize the boot_pagesets that are going to be used
3853 * for bootstrapping processors. The real pagesets for
3854 * each zone will be allocated later when the per cpu
3855 * allocator is available.
3856 *
3857 * boot_pagesets are used also for bootstrapping offline
3858 * cpus if the system is already booted because the pagesets
3859 * are needed to initialize allocators on a specific cpu too.
3860 * F.e. the percpu allocator needs the page allocator which
3861 * needs the percpu allocator in order to allocate its pagesets
3862 * (a chicken-egg dilemma).
3863 */
3864 for_each_possible_cpu(cpu) {
3865 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3866
3867 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3868 /*
3869 * We now know the "local memory node" for each node--
3870 * i.e., the node of the first zone in the generic zonelist.
3871 * Set up numa_mem percpu variable for on-line cpus. During
3872 * boot, only the boot cpu should be on-line; we'll init the
3873 * secondary cpus' numa_mem as they come on-line. During
3874 * node/memory hotplug, we'll fixup all on-line cpus.
3875 */
3876 if (cpu_online(cpu))
3877 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3878 #endif
3879 }
3880
3881 return 0;
3882 }
3883
3884 static noinline void __init
3885 build_all_zonelists_init(void)
3886 {
3887 __build_all_zonelists(NULL);
3888 mminit_verify_zonelist();
3889 cpuset_init_current_mems_allowed();
3890 }
3891
3892 /*
3893 * Called with zonelists_mutex held always
3894 * unless system_state == SYSTEM_BOOTING.
3895 *
3896 * __ref due to (1) call of __meminit annotated setup_zone_pageset
3897 * [we're only called with non-NULL zone through __meminit paths] and
3898 * (2) call of __init annotated helper build_all_zonelists_init
3899 * [protected by SYSTEM_BOOTING].
3900 */
3901 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3902 {
3903 set_zonelist_order();
3904
3905 if (system_state == SYSTEM_BOOTING) {
3906 build_all_zonelists_init();
3907 } else {
3908 #ifdef CONFIG_MEMORY_HOTPLUG
3909 if (zone)
3910 setup_zone_pageset(zone);
3911 #endif
3912 /* we have to stop all cpus to guarantee there is no user
3913 of zonelist */
3914 stop_machine(__build_all_zonelists, pgdat, NULL);
3915 /* cpuset refresh routine should be here */
3916 }
3917 vm_total_pages = nr_free_pagecache_pages();
3918 /*
3919 * Disable grouping by mobility if the number of pages in the
3920 * system is too low to allow the mechanism to work. It would be
3921 * more accurate, but expensive to check per-zone. This check is
3922 * made on memory-hotadd so a system can start with mobility
3923 * disabled and enable it later
3924 */
3925 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3926 page_group_by_mobility_disabled = 1;
3927 else
3928 page_group_by_mobility_disabled = 0;
3929
3930 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
3931 "Total pages: %ld\n",
3932 nr_online_nodes,
3933 zonelist_order_name[current_zonelist_order],
3934 page_group_by_mobility_disabled ? "off" : "on",
3935 vm_total_pages);
3936 #ifdef CONFIG_NUMA
3937 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
3938 #endif
3939 }
3940
3941 /*
3942 * Helper functions to size the waitqueue hash table.
3943 * Essentially these want to choose hash table sizes sufficiently
3944 * large so that collisions trying to wait on pages are rare.
3945 * But in fact, the number of active page waitqueues on typical
3946 * systems is ridiculously low, less than 200. So this is even
3947 * conservative, even though it seems large.
3948 *
3949 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3950 * waitqueues, i.e. the size of the waitq table given the number of pages.
3951 */
3952 #define PAGES_PER_WAITQUEUE 256
3953
3954 #ifndef CONFIG_MEMORY_HOTPLUG
3955 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3956 {
3957 unsigned long size = 1;
3958
3959 pages /= PAGES_PER_WAITQUEUE;
3960
3961 while (size < pages)
3962 size <<= 1;
3963
3964 /*
3965 * Once we have dozens or even hundreds of threads sleeping
3966 * on IO we've got bigger problems than wait queue collision.
3967 * Limit the size of the wait table to a reasonable size.
3968 */
3969 size = min(size, 4096UL);
3970
3971 return max(size, 4UL);
3972 }
3973 #else
3974 /*
3975 * A zone's size might be changed by hot-add, so it is not possible to determine
3976 * a suitable size for its wait_table. So we use the maximum size now.
3977 *
3978 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3979 *
3980 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3981 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3982 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3983 *
3984 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3985 * or more by the traditional way. (See above). It equals:
3986 *
3987 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3988 * ia64(16K page size) : = ( 8G + 4M)byte.
3989 * powerpc (64K page size) : = (32G +16M)byte.
3990 */
3991 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3992 {
3993 return 4096UL;
3994 }
3995 #endif
3996
3997 /*
3998 * This is an integer logarithm so that shifts can be used later
3999 * to extract the more random high bits from the multiplicative
4000 * hash function before the remainder is taken.
4001 */
4002 static inline unsigned long wait_table_bits(unsigned long size)
4003 {
4004 return ffz(~size);
4005 }
4006
4007 /*
4008 * Check if a pageblock contains reserved pages
4009 */
4010 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4011 {
4012 unsigned long pfn;
4013
4014 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4015 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4016 return 1;
4017 }
4018 return 0;
4019 }
4020
4021 /*
4022 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4023 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4024 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4025 * higher will lead to a bigger reserve which will get freed as contiguous
4026 * blocks as reclaim kicks in
4027 */
4028 static void setup_zone_migrate_reserve(struct zone *zone)
4029 {
4030 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4031 struct page *page;
4032 unsigned long block_migratetype;
4033 int reserve;
4034 int old_reserve;
4035
4036 /*
4037 * Get the start pfn, end pfn and the number of blocks to reserve
4038 * We have to be careful to be aligned to pageblock_nr_pages to
4039 * make sure that we always check pfn_valid for the first page in
4040 * the block.
4041 */
4042 start_pfn = zone->zone_start_pfn;
4043 end_pfn = zone_end_pfn(zone);
4044 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4045 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4046 pageblock_order;
4047
4048 /*
4049 * Reserve blocks are generally in place to help high-order atomic
4050 * allocations that are short-lived. A min_free_kbytes value that
4051 * would result in more than 2 reserve blocks for atomic allocations
4052 * is assumed to be in place to help anti-fragmentation for the
4053 * future allocation of hugepages at runtime.
4054 */
4055 reserve = min(2, reserve);
4056 old_reserve = zone->nr_migrate_reserve_block;
4057
4058 /* When memory hot-add, we almost always need to do nothing */
4059 if (reserve == old_reserve)
4060 return;
4061 zone->nr_migrate_reserve_block = reserve;
4062
4063 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4064 if (!pfn_valid(pfn))
4065 continue;
4066 page = pfn_to_page(pfn);
4067
4068 /* Watch out for overlapping nodes */
4069 if (page_to_nid(page) != zone_to_nid(zone))
4070 continue;
4071
4072 block_migratetype = get_pageblock_migratetype(page);
4073
4074 /* Only test what is necessary when the reserves are not met */
4075 if (reserve > 0) {
4076 /*
4077 * Blocks with reserved pages will never free, skip
4078 * them.
4079 */
4080 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4081 if (pageblock_is_reserved(pfn, block_end_pfn))
4082 continue;
4083
4084 /* If this block is reserved, account for it */
4085 if (block_migratetype == MIGRATE_RESERVE) {
4086 reserve--;
4087 continue;
4088 }
4089
4090 /* Suitable for reserving if this block is movable */
4091 if (block_migratetype == MIGRATE_MOVABLE) {
4092 set_pageblock_migratetype(page,
4093 MIGRATE_RESERVE);
4094 move_freepages_block(zone, page,
4095 MIGRATE_RESERVE);
4096 reserve--;
4097 continue;
4098 }
4099 } else if (!old_reserve) {
4100 /*
4101 * At boot time we don't need to scan the whole zone
4102 * for turning off MIGRATE_RESERVE.
4103 */
4104 break;
4105 }
4106
4107 /*
4108 * If the reserve is met and this is a previous reserved block,
4109 * take it back
4110 */
4111 if (block_migratetype == MIGRATE_RESERVE) {
4112 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4113 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4114 }
4115 }
4116 }
4117
4118 /*
4119 * Initially all pages are reserved - free ones are freed
4120 * up by free_all_bootmem() once the early boot process is
4121 * done. Non-atomic initialization, single-pass.
4122 */
4123 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4124 unsigned long start_pfn, enum memmap_context context)
4125 {
4126 struct page *page;
4127 unsigned long end_pfn = start_pfn + size;
4128 unsigned long pfn;
4129 struct zone *z;
4130
4131 if (highest_memmap_pfn < end_pfn - 1)
4132 highest_memmap_pfn = end_pfn - 1;
4133
4134 z = &NODE_DATA(nid)->node_zones[zone];
4135 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4136 /*
4137 * There can be holes in boot-time mem_map[]s
4138 * handed to this function. They do not
4139 * exist on hotplugged memory.
4140 */
4141 if (context == MEMMAP_EARLY) {
4142 if (!early_pfn_valid(pfn))
4143 continue;
4144 if (!early_pfn_in_nid(pfn, nid))
4145 continue;
4146 }
4147 page = pfn_to_page(pfn);
4148 set_page_links(page, zone, nid, pfn);
4149 mminit_verify_page_links(page, zone, nid, pfn);
4150 init_page_count(page);
4151 page_mapcount_reset(page);
4152 page_cpupid_reset_last(page);
4153 SetPageReserved(page);
4154 /*
4155 * Mark the block movable so that blocks are reserved for
4156 * movable at startup. This will force kernel allocations
4157 * to reserve their blocks rather than leaking throughout
4158 * the address space during boot when many long-lived
4159 * kernel allocations are made. Later some blocks near
4160 * the start are marked MIGRATE_RESERVE by
4161 * setup_zone_migrate_reserve()
4162 *
4163 * bitmap is created for zone's valid pfn range. but memmap
4164 * can be created for invalid pages (for alignment)
4165 * check here not to call set_pageblock_migratetype() against
4166 * pfn out of zone.
4167 */
4168 if ((z->zone_start_pfn <= pfn)
4169 && (pfn < zone_end_pfn(z))
4170 && !(pfn & (pageblock_nr_pages - 1)))
4171 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4172
4173 INIT_LIST_HEAD(&page->lru);
4174 #ifdef WANT_PAGE_VIRTUAL
4175 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4176 if (!is_highmem_idx(zone))
4177 set_page_address(page, __va(pfn << PAGE_SHIFT));
4178 #endif
4179 }
4180 }
4181
4182 static void __meminit zone_init_free_lists(struct zone *zone)
4183 {
4184 unsigned int order, t;
4185 for_each_migratetype_order(order, t) {
4186 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4187 zone->free_area[order].nr_free = 0;
4188 }
4189 }
4190
4191 #ifndef __HAVE_ARCH_MEMMAP_INIT
4192 #define memmap_init(size, nid, zone, start_pfn) \
4193 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4194 #endif
4195
4196 static int zone_batchsize(struct zone *zone)
4197 {
4198 #ifdef CONFIG_MMU
4199 int batch;
4200
4201 /*
4202 * The per-cpu-pages pools are set to around 1000th of the
4203 * size of the zone. But no more than 1/2 of a meg.
4204 *
4205 * OK, so we don't know how big the cache is. So guess.
4206 */
4207 batch = zone->managed_pages / 1024;
4208 if (batch * PAGE_SIZE > 512 * 1024)
4209 batch = (512 * 1024) / PAGE_SIZE;
4210 batch /= 4; /* We effectively *= 4 below */
4211 if (batch < 1)
4212 batch = 1;
4213
4214 /*
4215 * Clamp the batch to a 2^n - 1 value. Having a power
4216 * of 2 value was found to be more likely to have
4217 * suboptimal cache aliasing properties in some cases.
4218 *
4219 * For example if 2 tasks are alternately allocating
4220 * batches of pages, one task can end up with a lot
4221 * of pages of one half of the possible page colors
4222 * and the other with pages of the other colors.
4223 */
4224 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4225
4226 return batch;
4227
4228 #else
4229 /* The deferral and batching of frees should be suppressed under NOMMU
4230 * conditions.
4231 *
4232 * The problem is that NOMMU needs to be able to allocate large chunks
4233 * of contiguous memory as there's no hardware page translation to
4234 * assemble apparent contiguous memory from discontiguous pages.
4235 *
4236 * Queueing large contiguous runs of pages for batching, however,
4237 * causes the pages to actually be freed in smaller chunks. As there
4238 * can be a significant delay between the individual batches being
4239 * recycled, this leads to the once large chunks of space being
4240 * fragmented and becoming unavailable for high-order allocations.
4241 */
4242 return 0;
4243 #endif
4244 }
4245
4246 /*
4247 * pcp->high and pcp->batch values are related and dependent on one another:
4248 * ->batch must never be higher then ->high.
4249 * The following function updates them in a safe manner without read side
4250 * locking.
4251 *
4252 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4253 * those fields changing asynchronously (acording the the above rule).
4254 *
4255 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4256 * outside of boot time (or some other assurance that no concurrent updaters
4257 * exist).
4258 */
4259 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4260 unsigned long batch)
4261 {
4262 /* start with a fail safe value for batch */
4263 pcp->batch = 1;
4264 smp_wmb();
4265
4266 /* Update high, then batch, in order */
4267 pcp->high = high;
4268 smp_wmb();
4269
4270 pcp->batch = batch;
4271 }
4272
4273 /* a companion to pageset_set_high() */
4274 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4275 {
4276 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4277 }
4278
4279 static void pageset_init(struct per_cpu_pageset *p)
4280 {
4281 struct per_cpu_pages *pcp;
4282 int migratetype;
4283
4284 memset(p, 0, sizeof(*p));
4285
4286 pcp = &p->pcp;
4287 pcp->count = 0;
4288 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4289 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4290 }
4291
4292 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4293 {
4294 pageset_init(p);
4295 pageset_set_batch(p, batch);
4296 }
4297
4298 /*
4299 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4300 * to the value high for the pageset p.
4301 */
4302 static void pageset_set_high(struct per_cpu_pageset *p,
4303 unsigned long high)
4304 {
4305 unsigned long batch = max(1UL, high / 4);
4306 if ((high / 4) > (PAGE_SHIFT * 8))
4307 batch = PAGE_SHIFT * 8;
4308
4309 pageset_update(&p->pcp, high, batch);
4310 }
4311
4312 static void pageset_set_high_and_batch(struct zone *zone,
4313 struct per_cpu_pageset *pcp)
4314 {
4315 if (percpu_pagelist_fraction)
4316 pageset_set_high(pcp,
4317 (zone->managed_pages /
4318 percpu_pagelist_fraction));
4319 else
4320 pageset_set_batch(pcp, zone_batchsize(zone));
4321 }
4322
4323 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4324 {
4325 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4326
4327 pageset_init(pcp);
4328 pageset_set_high_and_batch(zone, pcp);
4329 }
4330
4331 static void __meminit setup_zone_pageset(struct zone *zone)
4332 {
4333 int cpu;
4334 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4335 for_each_possible_cpu(cpu)
4336 zone_pageset_init(zone, cpu);
4337 }
4338
4339 /*
4340 * Allocate per cpu pagesets and initialize them.
4341 * Before this call only boot pagesets were available.
4342 */
4343 void __init setup_per_cpu_pageset(void)
4344 {
4345 struct zone *zone;
4346
4347 for_each_populated_zone(zone)
4348 setup_zone_pageset(zone);
4349 }
4350
4351 static noinline __init_refok
4352 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4353 {
4354 int i;
4355 size_t alloc_size;
4356
4357 /*
4358 * The per-page waitqueue mechanism uses hashed waitqueues
4359 * per zone.
4360 */
4361 zone->wait_table_hash_nr_entries =
4362 wait_table_hash_nr_entries(zone_size_pages);
4363 zone->wait_table_bits =
4364 wait_table_bits(zone->wait_table_hash_nr_entries);
4365 alloc_size = zone->wait_table_hash_nr_entries
4366 * sizeof(wait_queue_head_t);
4367
4368 if (!slab_is_available()) {
4369 zone->wait_table = (wait_queue_head_t *)
4370 memblock_virt_alloc_node_nopanic(
4371 alloc_size, zone->zone_pgdat->node_id);
4372 } else {
4373 /*
4374 * This case means that a zone whose size was 0 gets new memory
4375 * via memory hot-add.
4376 * But it may be the case that a new node was hot-added. In
4377 * this case vmalloc() will not be able to use this new node's
4378 * memory - this wait_table must be initialized to use this new
4379 * node itself as well.
4380 * To use this new node's memory, further consideration will be
4381 * necessary.
4382 */
4383 zone->wait_table = vmalloc(alloc_size);
4384 }
4385 if (!zone->wait_table)
4386 return -ENOMEM;
4387
4388 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4389 init_waitqueue_head(zone->wait_table + i);
4390
4391 return 0;
4392 }
4393
4394 static __meminit void zone_pcp_init(struct zone *zone)
4395 {
4396 /*
4397 * per cpu subsystem is not up at this point. The following code
4398 * relies on the ability of the linker to provide the
4399 * offset of a (static) per cpu variable into the per cpu area.
4400 */
4401 zone->pageset = &boot_pageset;
4402
4403 if (populated_zone(zone))
4404 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4405 zone->name, zone->present_pages,
4406 zone_batchsize(zone));
4407 }
4408
4409 int __meminit init_currently_empty_zone(struct zone *zone,
4410 unsigned long zone_start_pfn,
4411 unsigned long size,
4412 enum memmap_context context)
4413 {
4414 struct pglist_data *pgdat = zone->zone_pgdat;
4415 int ret;
4416 ret = zone_wait_table_init(zone, size);
4417 if (ret)
4418 return ret;
4419 pgdat->nr_zones = zone_idx(zone) + 1;
4420
4421 zone->zone_start_pfn = zone_start_pfn;
4422
4423 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4424 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4425 pgdat->node_id,
4426 (unsigned long)zone_idx(zone),
4427 zone_start_pfn, (zone_start_pfn + size));
4428
4429 zone_init_free_lists(zone);
4430
4431 return 0;
4432 }
4433
4434 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4435 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4436 /*
4437 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4438 */
4439 int __meminit __early_pfn_to_nid(unsigned long pfn)
4440 {
4441 unsigned long start_pfn, end_pfn;
4442 int nid;
4443 /*
4444 * NOTE: The following SMP-unsafe globals are only used early in boot
4445 * when the kernel is running single-threaded.
4446 */
4447 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4448 static int __meminitdata last_nid;
4449
4450 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4451 return last_nid;
4452
4453 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4454 if (nid != -1) {
4455 last_start_pfn = start_pfn;
4456 last_end_pfn = end_pfn;
4457 last_nid = nid;
4458 }
4459
4460 return nid;
4461 }
4462 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4463
4464 int __meminit early_pfn_to_nid(unsigned long pfn)
4465 {
4466 int nid;
4467
4468 nid = __early_pfn_to_nid(pfn);
4469 if (nid >= 0)
4470 return nid;
4471 /* just returns 0 */
4472 return 0;
4473 }
4474
4475 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4476 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4477 {
4478 int nid;
4479
4480 nid = __early_pfn_to_nid(pfn);
4481 if (nid >= 0 && nid != node)
4482 return false;
4483 return true;
4484 }
4485 #endif
4486
4487 /**
4488 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4489 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4490 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4491 *
4492 * If an architecture guarantees that all ranges registered contain no holes
4493 * and may be freed, this this function may be used instead of calling
4494 * memblock_free_early_nid() manually.
4495 */
4496 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4497 {
4498 unsigned long start_pfn, end_pfn;
4499 int i, this_nid;
4500
4501 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4502 start_pfn = min(start_pfn, max_low_pfn);
4503 end_pfn = min(end_pfn, max_low_pfn);
4504
4505 if (start_pfn < end_pfn)
4506 memblock_free_early_nid(PFN_PHYS(start_pfn),
4507 (end_pfn - start_pfn) << PAGE_SHIFT,
4508 this_nid);
4509 }
4510 }
4511
4512 /**
4513 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4514 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4515 *
4516 * If an architecture guarantees that all ranges registered contain no holes and may
4517 * be freed, this function may be used instead of calling memory_present() manually.
4518 */
4519 void __init sparse_memory_present_with_active_regions(int nid)
4520 {
4521 unsigned long start_pfn, end_pfn;
4522 int i, this_nid;
4523
4524 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4525 memory_present(this_nid, start_pfn, end_pfn);
4526 }
4527
4528 /**
4529 * get_pfn_range_for_nid - Return the start and end page frames for a node
4530 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4531 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4532 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4533 *
4534 * It returns the start and end page frame of a node based on information
4535 * provided by memblock_set_node(). If called for a node
4536 * with no available memory, a warning is printed and the start and end
4537 * PFNs will be 0.
4538 */
4539 void __meminit get_pfn_range_for_nid(unsigned int nid,
4540 unsigned long *start_pfn, unsigned long *end_pfn)
4541 {
4542 unsigned long this_start_pfn, this_end_pfn;
4543 int i;
4544
4545 *start_pfn = -1UL;
4546 *end_pfn = 0;
4547
4548 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4549 *start_pfn = min(*start_pfn, this_start_pfn);
4550 *end_pfn = max(*end_pfn, this_end_pfn);
4551 }
4552
4553 if (*start_pfn == -1UL)
4554 *start_pfn = 0;
4555 }
4556
4557 /*
4558 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4559 * assumption is made that zones within a node are ordered in monotonic
4560 * increasing memory addresses so that the "highest" populated zone is used
4561 */
4562 static void __init find_usable_zone_for_movable(void)
4563 {
4564 int zone_index;
4565 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4566 if (zone_index == ZONE_MOVABLE)
4567 continue;
4568
4569 if (arch_zone_highest_possible_pfn[zone_index] >
4570 arch_zone_lowest_possible_pfn[zone_index])
4571 break;
4572 }
4573
4574 VM_BUG_ON(zone_index == -1);
4575 movable_zone = zone_index;
4576 }
4577
4578 /*
4579 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4580 * because it is sized independent of architecture. Unlike the other zones,
4581 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4582 * in each node depending on the size of each node and how evenly kernelcore
4583 * is distributed. This helper function adjusts the zone ranges
4584 * provided by the architecture for a given node by using the end of the
4585 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4586 * zones within a node are in order of monotonic increases memory addresses
4587 */
4588 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4589 unsigned long zone_type,
4590 unsigned long node_start_pfn,
4591 unsigned long node_end_pfn,
4592 unsigned long *zone_start_pfn,
4593 unsigned long *zone_end_pfn)
4594 {
4595 /* Only adjust if ZONE_MOVABLE is on this node */
4596 if (zone_movable_pfn[nid]) {
4597 /* Size ZONE_MOVABLE */
4598 if (zone_type == ZONE_MOVABLE) {
4599 *zone_start_pfn = zone_movable_pfn[nid];
4600 *zone_end_pfn = min(node_end_pfn,
4601 arch_zone_highest_possible_pfn[movable_zone]);
4602
4603 /* Adjust for ZONE_MOVABLE starting within this range */
4604 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4605 *zone_end_pfn > zone_movable_pfn[nid]) {
4606 *zone_end_pfn = zone_movable_pfn[nid];
4607
4608 /* Check if this whole range is within ZONE_MOVABLE */
4609 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4610 *zone_start_pfn = *zone_end_pfn;
4611 }
4612 }
4613
4614 /*
4615 * Return the number of pages a zone spans in a node, including holes
4616 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4617 */
4618 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4619 unsigned long zone_type,
4620 unsigned long node_start_pfn,
4621 unsigned long node_end_pfn,
4622 unsigned long *ignored)
4623 {
4624 unsigned long zone_start_pfn, zone_end_pfn;
4625
4626 /* Get the start and end of the zone */
4627 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4628 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4629 adjust_zone_range_for_zone_movable(nid, zone_type,
4630 node_start_pfn, node_end_pfn,
4631 &zone_start_pfn, &zone_end_pfn);
4632
4633 /* Check that this node has pages within the zone's required range */
4634 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4635 return 0;
4636
4637 /* Move the zone boundaries inside the node if necessary */
4638 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4639 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4640
4641 /* Return the spanned pages */
4642 return zone_end_pfn - zone_start_pfn;
4643 }
4644
4645 /*
4646 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4647 * then all holes in the requested range will be accounted for.
4648 */
4649 unsigned long __meminit __absent_pages_in_range(int nid,
4650 unsigned long range_start_pfn,
4651 unsigned long range_end_pfn)
4652 {
4653 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4654 unsigned long start_pfn, end_pfn;
4655 int i;
4656
4657 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4658 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4659 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4660 nr_absent -= end_pfn - start_pfn;
4661 }
4662 return nr_absent;
4663 }
4664
4665 /**
4666 * absent_pages_in_range - Return number of page frames in holes within a range
4667 * @start_pfn: The start PFN to start searching for holes
4668 * @end_pfn: The end PFN to stop searching for holes
4669 *
4670 * It returns the number of pages frames in memory holes within a range.
4671 */
4672 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4673 unsigned long end_pfn)
4674 {
4675 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4676 }
4677
4678 /* Return the number of page frames in holes in a zone on a node */
4679 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4680 unsigned long zone_type,
4681 unsigned long node_start_pfn,
4682 unsigned long node_end_pfn,
4683 unsigned long *ignored)
4684 {
4685 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4686 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4687 unsigned long zone_start_pfn, zone_end_pfn;
4688
4689 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4690 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4691
4692 adjust_zone_range_for_zone_movable(nid, zone_type,
4693 node_start_pfn, node_end_pfn,
4694 &zone_start_pfn, &zone_end_pfn);
4695 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4696 }
4697
4698 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4699 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4700 unsigned long zone_type,
4701 unsigned long node_start_pfn,
4702 unsigned long node_end_pfn,
4703 unsigned long *zones_size)
4704 {
4705 return zones_size[zone_type];
4706 }
4707
4708 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4709 unsigned long zone_type,
4710 unsigned long node_start_pfn,
4711 unsigned long node_end_pfn,
4712 unsigned long *zholes_size)
4713 {
4714 if (!zholes_size)
4715 return 0;
4716
4717 return zholes_size[zone_type];
4718 }
4719
4720 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4721
4722 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4723 unsigned long node_start_pfn,
4724 unsigned long node_end_pfn,
4725 unsigned long *zones_size,
4726 unsigned long *zholes_size)
4727 {
4728 unsigned long realtotalpages, totalpages = 0;
4729 enum zone_type i;
4730
4731 for (i = 0; i < MAX_NR_ZONES; i++)
4732 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4733 node_start_pfn,
4734 node_end_pfn,
4735 zones_size);
4736 pgdat->node_spanned_pages = totalpages;
4737
4738 realtotalpages = totalpages;
4739 for (i = 0; i < MAX_NR_ZONES; i++)
4740 realtotalpages -=
4741 zone_absent_pages_in_node(pgdat->node_id, i,
4742 node_start_pfn, node_end_pfn,
4743 zholes_size);
4744 pgdat->node_present_pages = realtotalpages;
4745 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4746 realtotalpages);
4747 }
4748
4749 #ifndef CONFIG_SPARSEMEM
4750 /*
4751 * Calculate the size of the zone->blockflags rounded to an unsigned long
4752 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4753 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4754 * round what is now in bits to nearest long in bits, then return it in
4755 * bytes.
4756 */
4757 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4758 {
4759 unsigned long usemapsize;
4760
4761 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4762 usemapsize = roundup(zonesize, pageblock_nr_pages);
4763 usemapsize = usemapsize >> pageblock_order;
4764 usemapsize *= NR_PAGEBLOCK_BITS;
4765 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4766
4767 return usemapsize / 8;
4768 }
4769
4770 static void __init setup_usemap(struct pglist_data *pgdat,
4771 struct zone *zone,
4772 unsigned long zone_start_pfn,
4773 unsigned long zonesize)
4774 {
4775 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4776 zone->pageblock_flags = NULL;
4777 if (usemapsize)
4778 zone->pageblock_flags =
4779 memblock_virt_alloc_node_nopanic(usemapsize,
4780 pgdat->node_id);
4781 }
4782 #else
4783 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4784 unsigned long zone_start_pfn, unsigned long zonesize) {}
4785 #endif /* CONFIG_SPARSEMEM */
4786
4787 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4788
4789 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4790 void __paginginit set_pageblock_order(void)
4791 {
4792 unsigned int order;
4793
4794 /* Check that pageblock_nr_pages has not already been setup */
4795 if (pageblock_order)
4796 return;
4797
4798 if (HPAGE_SHIFT > PAGE_SHIFT)
4799 order = HUGETLB_PAGE_ORDER;
4800 else
4801 order = MAX_ORDER - 1;
4802
4803 /*
4804 * Assume the largest contiguous order of interest is a huge page.
4805 * This value may be variable depending on boot parameters on IA64 and
4806 * powerpc.
4807 */
4808 pageblock_order = order;
4809 }
4810 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4811
4812 /*
4813 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4814 * is unused as pageblock_order is set at compile-time. See
4815 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4816 * the kernel config
4817 */
4818 void __paginginit set_pageblock_order(void)
4819 {
4820 }
4821
4822 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4823
4824 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4825 unsigned long present_pages)
4826 {
4827 unsigned long pages = spanned_pages;
4828
4829 /*
4830 * Provide a more accurate estimation if there are holes within
4831 * the zone and SPARSEMEM is in use. If there are holes within the
4832 * zone, each populated memory region may cost us one or two extra
4833 * memmap pages due to alignment because memmap pages for each
4834 * populated regions may not naturally algined on page boundary.
4835 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4836 */
4837 if (spanned_pages > present_pages + (present_pages >> 4) &&
4838 IS_ENABLED(CONFIG_SPARSEMEM))
4839 pages = present_pages;
4840
4841 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4842 }
4843
4844 /*
4845 * Set up the zone data structures:
4846 * - mark all pages reserved
4847 * - mark all memory queues empty
4848 * - clear the memory bitmaps
4849 *
4850 * NOTE: pgdat should get zeroed by caller.
4851 */
4852 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4853 unsigned long node_start_pfn, unsigned long node_end_pfn,
4854 unsigned long *zones_size, unsigned long *zholes_size)
4855 {
4856 enum zone_type j;
4857 int nid = pgdat->node_id;
4858 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4859 int ret;
4860
4861 pgdat_resize_init(pgdat);
4862 #ifdef CONFIG_NUMA_BALANCING
4863 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4864 pgdat->numabalancing_migrate_nr_pages = 0;
4865 pgdat->numabalancing_migrate_next_window = jiffies;
4866 #endif
4867 init_waitqueue_head(&pgdat->kswapd_wait);
4868 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4869 pgdat_page_ext_init(pgdat);
4870
4871 for (j = 0; j < MAX_NR_ZONES; j++) {
4872 struct zone *zone = pgdat->node_zones + j;
4873 unsigned long size, realsize, freesize, memmap_pages;
4874
4875 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4876 node_end_pfn, zones_size);
4877 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4878 node_start_pfn,
4879 node_end_pfn,
4880 zholes_size);
4881
4882 /*
4883 * Adjust freesize so that it accounts for how much memory
4884 * is used by this zone for memmap. This affects the watermark
4885 * and per-cpu initialisations
4886 */
4887 memmap_pages = calc_memmap_size(size, realsize);
4888 if (!is_highmem_idx(j)) {
4889 if (freesize >= memmap_pages) {
4890 freesize -= memmap_pages;
4891 if (memmap_pages)
4892 printk(KERN_DEBUG
4893 " %s zone: %lu pages used for memmap\n",
4894 zone_names[j], memmap_pages);
4895 } else
4896 printk(KERN_WARNING
4897 " %s zone: %lu pages exceeds freesize %lu\n",
4898 zone_names[j], memmap_pages, freesize);
4899 }
4900
4901 /* Account for reserved pages */
4902 if (j == 0 && freesize > dma_reserve) {
4903 freesize -= dma_reserve;
4904 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4905 zone_names[0], dma_reserve);
4906 }
4907
4908 if (!is_highmem_idx(j))
4909 nr_kernel_pages += freesize;
4910 /* Charge for highmem memmap if there are enough kernel pages */
4911 else if (nr_kernel_pages > memmap_pages * 2)
4912 nr_kernel_pages -= memmap_pages;
4913 nr_all_pages += freesize;
4914
4915 zone->spanned_pages = size;
4916 zone->present_pages = realsize;
4917 /*
4918 * Set an approximate value for lowmem here, it will be adjusted
4919 * when the bootmem allocator frees pages into the buddy system.
4920 * And all highmem pages will be managed by the buddy system.
4921 */
4922 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4923 #ifdef CONFIG_NUMA
4924 zone->node = nid;
4925 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4926 / 100;
4927 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4928 #endif
4929 zone->name = zone_names[j];
4930 spin_lock_init(&zone->lock);
4931 spin_lock_init(&zone->lru_lock);
4932 zone_seqlock_init(zone);
4933 zone->zone_pgdat = pgdat;
4934 zone_pcp_init(zone);
4935
4936 /* For bootup, initialized properly in watermark setup */
4937 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4938
4939 lruvec_init(&zone->lruvec);
4940 if (!size)
4941 continue;
4942
4943 set_pageblock_order();
4944 setup_usemap(pgdat, zone, zone_start_pfn, size);
4945 ret = init_currently_empty_zone(zone, zone_start_pfn,
4946 size, MEMMAP_EARLY);
4947 BUG_ON(ret);
4948 memmap_init(size, nid, j, zone_start_pfn);
4949 zone_start_pfn += size;
4950 }
4951 }
4952
4953 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4954 {
4955 /* Skip empty nodes */
4956 if (!pgdat->node_spanned_pages)
4957 return;
4958
4959 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4960 /* ia64 gets its own node_mem_map, before this, without bootmem */
4961 if (!pgdat->node_mem_map) {
4962 unsigned long size, start, end;
4963 struct page *map;
4964
4965 /*
4966 * The zone's endpoints aren't required to be MAX_ORDER
4967 * aligned but the node_mem_map endpoints must be in order
4968 * for the buddy allocator to function correctly.
4969 */
4970 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4971 end = pgdat_end_pfn(pgdat);
4972 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4973 size = (end - start) * sizeof(struct page);
4974 map = alloc_remap(pgdat->node_id, size);
4975 if (!map)
4976 map = memblock_virt_alloc_node_nopanic(size,
4977 pgdat->node_id);
4978 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4979 }
4980 #ifndef CONFIG_NEED_MULTIPLE_NODES
4981 /*
4982 * With no DISCONTIG, the global mem_map is just set as node 0's
4983 */
4984 if (pgdat == NODE_DATA(0)) {
4985 mem_map = NODE_DATA(0)->node_mem_map;
4986 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4987 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4988 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4989 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4990 }
4991 #endif
4992 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4993 }
4994
4995 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4996 unsigned long node_start_pfn, unsigned long *zholes_size)
4997 {
4998 pg_data_t *pgdat = NODE_DATA(nid);
4999 unsigned long start_pfn = 0;
5000 unsigned long end_pfn = 0;
5001
5002 /* pg_data_t should be reset to zero when it's allocated */
5003 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5004
5005 pgdat->node_id = nid;
5006 pgdat->node_start_pfn = node_start_pfn;
5007 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5008 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5009 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5010 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
5011 #endif
5012 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5013 zones_size, zholes_size);
5014
5015 alloc_node_mem_map(pgdat);
5016 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5017 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5018 nid, (unsigned long)pgdat,
5019 (unsigned long)pgdat->node_mem_map);
5020 #endif
5021
5022 free_area_init_core(pgdat, start_pfn, end_pfn,
5023 zones_size, zholes_size);
5024 }
5025
5026 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5027
5028 #if MAX_NUMNODES > 1
5029 /*
5030 * Figure out the number of possible node ids.
5031 */
5032 void __init setup_nr_node_ids(void)
5033 {
5034 unsigned int node;
5035 unsigned int highest = 0;
5036
5037 for_each_node_mask(node, node_possible_map)
5038 highest = node;
5039 nr_node_ids = highest + 1;
5040 }
5041 #endif
5042
5043 /**
5044 * node_map_pfn_alignment - determine the maximum internode alignment
5045 *
5046 * This function should be called after node map is populated and sorted.
5047 * It calculates the maximum power of two alignment which can distinguish
5048 * all the nodes.
5049 *
5050 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5051 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5052 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5053 * shifted, 1GiB is enough and this function will indicate so.
5054 *
5055 * This is used to test whether pfn -> nid mapping of the chosen memory
5056 * model has fine enough granularity to avoid incorrect mapping for the
5057 * populated node map.
5058 *
5059 * Returns the determined alignment in pfn's. 0 if there is no alignment
5060 * requirement (single node).
5061 */
5062 unsigned long __init node_map_pfn_alignment(void)
5063 {
5064 unsigned long accl_mask = 0, last_end = 0;
5065 unsigned long start, end, mask;
5066 int last_nid = -1;
5067 int i, nid;
5068
5069 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5070 if (!start || last_nid < 0 || last_nid == nid) {
5071 last_nid = nid;
5072 last_end = end;
5073 continue;
5074 }
5075
5076 /*
5077 * Start with a mask granular enough to pin-point to the
5078 * start pfn and tick off bits one-by-one until it becomes
5079 * too coarse to separate the current node from the last.
5080 */
5081 mask = ~((1 << __ffs(start)) - 1);
5082 while (mask && last_end <= (start & (mask << 1)))
5083 mask <<= 1;
5084
5085 /* accumulate all internode masks */
5086 accl_mask |= mask;
5087 }
5088
5089 /* convert mask to number of pages */
5090 return ~accl_mask + 1;
5091 }
5092
5093 /* Find the lowest pfn for a node */
5094 static unsigned long __init find_min_pfn_for_node(int nid)
5095 {
5096 unsigned long min_pfn = ULONG_MAX;
5097 unsigned long start_pfn;
5098 int i;
5099
5100 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5101 min_pfn = min(min_pfn, start_pfn);
5102
5103 if (min_pfn == ULONG_MAX) {
5104 printk(KERN_WARNING
5105 "Could not find start_pfn for node %d\n", nid);
5106 return 0;
5107 }
5108
5109 return min_pfn;
5110 }
5111
5112 /**
5113 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5114 *
5115 * It returns the minimum PFN based on information provided via
5116 * memblock_set_node().
5117 */
5118 unsigned long __init find_min_pfn_with_active_regions(void)
5119 {
5120 return find_min_pfn_for_node(MAX_NUMNODES);
5121 }
5122
5123 /*
5124 * early_calculate_totalpages()
5125 * Sum pages in active regions for movable zone.
5126 * Populate N_MEMORY for calculating usable_nodes.
5127 */
5128 static unsigned long __init early_calculate_totalpages(void)
5129 {
5130 unsigned long totalpages = 0;
5131 unsigned long start_pfn, end_pfn;
5132 int i, nid;
5133
5134 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5135 unsigned long pages = end_pfn - start_pfn;
5136
5137 totalpages += pages;
5138 if (pages)
5139 node_set_state(nid, N_MEMORY);
5140 }
5141 return totalpages;
5142 }
5143
5144 /*
5145 * Find the PFN the Movable zone begins in each node. Kernel memory
5146 * is spread evenly between nodes as long as the nodes have enough
5147 * memory. When they don't, some nodes will have more kernelcore than
5148 * others
5149 */
5150 static void __init find_zone_movable_pfns_for_nodes(void)
5151 {
5152 int i, nid;
5153 unsigned long usable_startpfn;
5154 unsigned long kernelcore_node, kernelcore_remaining;
5155 /* save the state before borrow the nodemask */
5156 nodemask_t saved_node_state = node_states[N_MEMORY];
5157 unsigned long totalpages = early_calculate_totalpages();
5158 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5159 struct memblock_region *r;
5160
5161 /* Need to find movable_zone earlier when movable_node is specified. */
5162 find_usable_zone_for_movable();
5163
5164 /*
5165 * If movable_node is specified, ignore kernelcore and movablecore
5166 * options.
5167 */
5168 if (movable_node_is_enabled()) {
5169 for_each_memblock(memory, r) {
5170 if (!memblock_is_hotpluggable(r))
5171 continue;
5172
5173 nid = r->nid;
5174
5175 usable_startpfn = PFN_DOWN(r->base);
5176 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5177 min(usable_startpfn, zone_movable_pfn[nid]) :
5178 usable_startpfn;
5179 }
5180
5181 goto out2;
5182 }
5183
5184 /*
5185 * If movablecore=nn[KMG] was specified, calculate what size of
5186 * kernelcore that corresponds so that memory usable for
5187 * any allocation type is evenly spread. If both kernelcore
5188 * and movablecore are specified, then the value of kernelcore
5189 * will be used for required_kernelcore if it's greater than
5190 * what movablecore would have allowed.
5191 */
5192 if (required_movablecore) {
5193 unsigned long corepages;
5194
5195 /*
5196 * Round-up so that ZONE_MOVABLE is at least as large as what
5197 * was requested by the user
5198 */
5199 required_movablecore =
5200 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5201 corepages = totalpages - required_movablecore;
5202
5203 required_kernelcore = max(required_kernelcore, corepages);
5204 }
5205
5206 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5207 if (!required_kernelcore)
5208 goto out;
5209
5210 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5211 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5212
5213 restart:
5214 /* Spread kernelcore memory as evenly as possible throughout nodes */
5215 kernelcore_node = required_kernelcore / usable_nodes;
5216 for_each_node_state(nid, N_MEMORY) {
5217 unsigned long start_pfn, end_pfn;
5218
5219 /*
5220 * Recalculate kernelcore_node if the division per node
5221 * now exceeds what is necessary to satisfy the requested
5222 * amount of memory for the kernel
5223 */
5224 if (required_kernelcore < kernelcore_node)
5225 kernelcore_node = required_kernelcore / usable_nodes;
5226
5227 /*
5228 * As the map is walked, we track how much memory is usable
5229 * by the kernel using kernelcore_remaining. When it is
5230 * 0, the rest of the node is usable by ZONE_MOVABLE
5231 */
5232 kernelcore_remaining = kernelcore_node;
5233
5234 /* Go through each range of PFNs within this node */
5235 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5236 unsigned long size_pages;
5237
5238 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5239 if (start_pfn >= end_pfn)
5240 continue;
5241
5242 /* Account for what is only usable for kernelcore */
5243 if (start_pfn < usable_startpfn) {
5244 unsigned long kernel_pages;
5245 kernel_pages = min(end_pfn, usable_startpfn)
5246 - start_pfn;
5247
5248 kernelcore_remaining -= min(kernel_pages,
5249 kernelcore_remaining);
5250 required_kernelcore -= min(kernel_pages,
5251 required_kernelcore);
5252
5253 /* Continue if range is now fully accounted */
5254 if (end_pfn <= usable_startpfn) {
5255
5256 /*
5257 * Push zone_movable_pfn to the end so
5258 * that if we have to rebalance
5259 * kernelcore across nodes, we will
5260 * not double account here
5261 */
5262 zone_movable_pfn[nid] = end_pfn;
5263 continue;
5264 }
5265 start_pfn = usable_startpfn;
5266 }
5267
5268 /*
5269 * The usable PFN range for ZONE_MOVABLE is from
5270 * start_pfn->end_pfn. Calculate size_pages as the
5271 * number of pages used as kernelcore
5272 */
5273 size_pages = end_pfn - start_pfn;
5274 if (size_pages > kernelcore_remaining)
5275 size_pages = kernelcore_remaining;
5276 zone_movable_pfn[nid] = start_pfn + size_pages;
5277
5278 /*
5279 * Some kernelcore has been met, update counts and
5280 * break if the kernelcore for this node has been
5281 * satisfied
5282 */
5283 required_kernelcore -= min(required_kernelcore,
5284 size_pages);
5285 kernelcore_remaining -= size_pages;
5286 if (!kernelcore_remaining)
5287 break;
5288 }
5289 }
5290
5291 /*
5292 * If there is still required_kernelcore, we do another pass with one
5293 * less node in the count. This will push zone_movable_pfn[nid] further
5294 * along on the nodes that still have memory until kernelcore is
5295 * satisfied
5296 */
5297 usable_nodes--;
5298 if (usable_nodes && required_kernelcore > usable_nodes)
5299 goto restart;
5300
5301 out2:
5302 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5303 for (nid = 0; nid < MAX_NUMNODES; nid++)
5304 zone_movable_pfn[nid] =
5305 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5306
5307 out:
5308 /* restore the node_state */
5309 node_states[N_MEMORY] = saved_node_state;
5310 }
5311
5312 /* Any regular or high memory on that node ? */
5313 static void check_for_memory(pg_data_t *pgdat, int nid)
5314 {
5315 enum zone_type zone_type;
5316
5317 if (N_MEMORY == N_NORMAL_MEMORY)
5318 return;
5319
5320 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5321 struct zone *zone = &pgdat->node_zones[zone_type];
5322 if (populated_zone(zone)) {
5323 node_set_state(nid, N_HIGH_MEMORY);
5324 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5325 zone_type <= ZONE_NORMAL)
5326 node_set_state(nid, N_NORMAL_MEMORY);
5327 break;
5328 }
5329 }
5330 }
5331
5332 /**
5333 * free_area_init_nodes - Initialise all pg_data_t and zone data
5334 * @max_zone_pfn: an array of max PFNs for each zone
5335 *
5336 * This will call free_area_init_node() for each active node in the system.
5337 * Using the page ranges provided by memblock_set_node(), the size of each
5338 * zone in each node and their holes is calculated. If the maximum PFN
5339 * between two adjacent zones match, it is assumed that the zone is empty.
5340 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5341 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5342 * starts where the previous one ended. For example, ZONE_DMA32 starts
5343 * at arch_max_dma_pfn.
5344 */
5345 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5346 {
5347 unsigned long start_pfn, end_pfn;
5348 int i, nid;
5349
5350 /* Record where the zone boundaries are */
5351 memset(arch_zone_lowest_possible_pfn, 0,
5352 sizeof(arch_zone_lowest_possible_pfn));
5353 memset(arch_zone_highest_possible_pfn, 0,
5354 sizeof(arch_zone_highest_possible_pfn));
5355 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5356 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5357 for (i = 1; i < MAX_NR_ZONES; i++) {
5358 if (i == ZONE_MOVABLE)
5359 continue;
5360 arch_zone_lowest_possible_pfn[i] =
5361 arch_zone_highest_possible_pfn[i-1];
5362 arch_zone_highest_possible_pfn[i] =
5363 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5364 }
5365 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5366 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5367
5368 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5369 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5370 find_zone_movable_pfns_for_nodes();
5371
5372 /* Print out the zone ranges */
5373 pr_info("Zone ranges:\n");
5374 for (i = 0; i < MAX_NR_ZONES; i++) {
5375 if (i == ZONE_MOVABLE)
5376 continue;
5377 pr_info(" %-8s ", zone_names[i]);
5378 if (arch_zone_lowest_possible_pfn[i] ==
5379 arch_zone_highest_possible_pfn[i])
5380 pr_cont("empty\n");
5381 else
5382 pr_cont("[mem %#018Lx-%#018Lx]\n",
5383 (u64)arch_zone_lowest_possible_pfn[i]
5384 << PAGE_SHIFT,
5385 ((u64)arch_zone_highest_possible_pfn[i]
5386 << PAGE_SHIFT) - 1);
5387 }
5388
5389 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5390 pr_info("Movable zone start for each node\n");
5391 for (i = 0; i < MAX_NUMNODES; i++) {
5392 if (zone_movable_pfn[i])
5393 pr_info(" Node %d: %#018Lx\n", i,
5394 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5395 }
5396
5397 /* Print out the early node map */
5398 pr_info("Early memory node ranges\n");
5399 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5400 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5401 (u64)start_pfn << PAGE_SHIFT,
5402 ((u64)end_pfn << PAGE_SHIFT) - 1);
5403
5404 /* Initialise every node */
5405 mminit_verify_pageflags_layout();
5406 setup_nr_node_ids();
5407 for_each_online_node(nid) {
5408 pg_data_t *pgdat = NODE_DATA(nid);
5409 free_area_init_node(nid, NULL,
5410 find_min_pfn_for_node(nid), NULL);
5411
5412 /* Any memory on that node */
5413 if (pgdat->node_present_pages)
5414 node_set_state(nid, N_MEMORY);
5415 check_for_memory(pgdat, nid);
5416 }
5417 }
5418
5419 static int __init cmdline_parse_core(char *p, unsigned long *core)
5420 {
5421 unsigned long long coremem;
5422 if (!p)
5423 return -EINVAL;
5424
5425 coremem = memparse(p, &p);
5426 *core = coremem >> PAGE_SHIFT;
5427
5428 /* Paranoid check that UL is enough for the coremem value */
5429 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5430
5431 return 0;
5432 }
5433
5434 /*
5435 * kernelcore=size sets the amount of memory for use for allocations that
5436 * cannot be reclaimed or migrated.
5437 */
5438 static int __init cmdline_parse_kernelcore(char *p)
5439 {
5440 return cmdline_parse_core(p, &required_kernelcore);
5441 }
5442
5443 /*
5444 * movablecore=size sets the amount of memory for use for allocations that
5445 * can be reclaimed or migrated.
5446 */
5447 static int __init cmdline_parse_movablecore(char *p)
5448 {
5449 return cmdline_parse_core(p, &required_movablecore);
5450 }
5451
5452 early_param("kernelcore", cmdline_parse_kernelcore);
5453 early_param("movablecore", cmdline_parse_movablecore);
5454
5455 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5456
5457 void adjust_managed_page_count(struct page *page, long count)
5458 {
5459 spin_lock(&managed_page_count_lock);
5460 page_zone(page)->managed_pages += count;
5461 totalram_pages += count;
5462 #ifdef CONFIG_HIGHMEM
5463 if (PageHighMem(page))
5464 totalhigh_pages += count;
5465 #endif
5466 spin_unlock(&managed_page_count_lock);
5467 }
5468 EXPORT_SYMBOL(adjust_managed_page_count);
5469
5470 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5471 {
5472 void *pos;
5473 unsigned long pages = 0;
5474
5475 start = (void *)PAGE_ALIGN((unsigned long)start);
5476 end = (void *)((unsigned long)end & PAGE_MASK);
5477 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5478 if ((unsigned int)poison <= 0xFF)
5479 memset(pos, poison, PAGE_SIZE);
5480 free_reserved_page(virt_to_page(pos));
5481 }
5482
5483 if (pages && s)
5484 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5485 s, pages << (PAGE_SHIFT - 10), start, end);
5486
5487 return pages;
5488 }
5489 EXPORT_SYMBOL(free_reserved_area);
5490
5491 #ifdef CONFIG_HIGHMEM
5492 void free_highmem_page(struct page *page)
5493 {
5494 __free_reserved_page(page);
5495 totalram_pages++;
5496 page_zone(page)->managed_pages++;
5497 totalhigh_pages++;
5498 }
5499 #endif
5500
5501
5502 void __init mem_init_print_info(const char *str)
5503 {
5504 unsigned long physpages, codesize, datasize, rosize, bss_size;
5505 unsigned long init_code_size, init_data_size;
5506
5507 physpages = get_num_physpages();
5508 codesize = _etext - _stext;
5509 datasize = _edata - _sdata;
5510 rosize = __end_rodata - __start_rodata;
5511 bss_size = __bss_stop - __bss_start;
5512 init_data_size = __init_end - __init_begin;
5513 init_code_size = _einittext - _sinittext;
5514
5515 /*
5516 * Detect special cases and adjust section sizes accordingly:
5517 * 1) .init.* may be embedded into .data sections
5518 * 2) .init.text.* may be out of [__init_begin, __init_end],
5519 * please refer to arch/tile/kernel/vmlinux.lds.S.
5520 * 3) .rodata.* may be embedded into .text or .data sections.
5521 */
5522 #define adj_init_size(start, end, size, pos, adj) \
5523 do { \
5524 if (start <= pos && pos < end && size > adj) \
5525 size -= adj; \
5526 } while (0)
5527
5528 adj_init_size(__init_begin, __init_end, init_data_size,
5529 _sinittext, init_code_size);
5530 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5531 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5532 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5533 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5534
5535 #undef adj_init_size
5536
5537 pr_info("Memory: %luK/%luK available "
5538 "(%luK kernel code, %luK rwdata, %luK rodata, "
5539 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5540 #ifdef CONFIG_HIGHMEM
5541 ", %luK highmem"
5542 #endif
5543 "%s%s)\n",
5544 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5545 codesize >> 10, datasize >> 10, rosize >> 10,
5546 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5547 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5548 totalcma_pages << (PAGE_SHIFT-10),
5549 #ifdef CONFIG_HIGHMEM
5550 totalhigh_pages << (PAGE_SHIFT-10),
5551 #endif
5552 str ? ", " : "", str ? str : "");
5553 }
5554
5555 /**
5556 * set_dma_reserve - set the specified number of pages reserved in the first zone
5557 * @new_dma_reserve: The number of pages to mark reserved
5558 *
5559 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5560 * In the DMA zone, a significant percentage may be consumed by kernel image
5561 * and other unfreeable allocations which can skew the watermarks badly. This
5562 * function may optionally be used to account for unfreeable pages in the
5563 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5564 * smaller per-cpu batchsize.
5565 */
5566 void __init set_dma_reserve(unsigned long new_dma_reserve)
5567 {
5568 dma_reserve = new_dma_reserve;
5569 }
5570
5571 void __init free_area_init(unsigned long *zones_size)
5572 {
5573 free_area_init_node(0, zones_size,
5574 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5575 }
5576
5577 static int page_alloc_cpu_notify(struct notifier_block *self,
5578 unsigned long action, void *hcpu)
5579 {
5580 int cpu = (unsigned long)hcpu;
5581
5582 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5583 lru_add_drain_cpu(cpu);
5584 drain_pages(cpu);
5585
5586 /*
5587 * Spill the event counters of the dead processor
5588 * into the current processors event counters.
5589 * This artificially elevates the count of the current
5590 * processor.
5591 */
5592 vm_events_fold_cpu(cpu);
5593
5594 /*
5595 * Zero the differential counters of the dead processor
5596 * so that the vm statistics are consistent.
5597 *
5598 * This is only okay since the processor is dead and cannot
5599 * race with what we are doing.
5600 */
5601 cpu_vm_stats_fold(cpu);
5602 }
5603 return NOTIFY_OK;
5604 }
5605
5606 void __init page_alloc_init(void)
5607 {
5608 hotcpu_notifier(page_alloc_cpu_notify, 0);
5609 }
5610
5611 /*
5612 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5613 * or min_free_kbytes changes.
5614 */
5615 static void calculate_totalreserve_pages(void)
5616 {
5617 struct pglist_data *pgdat;
5618 unsigned long reserve_pages = 0;
5619 enum zone_type i, j;
5620
5621 for_each_online_pgdat(pgdat) {
5622 for (i = 0; i < MAX_NR_ZONES; i++) {
5623 struct zone *zone = pgdat->node_zones + i;
5624 long max = 0;
5625
5626 /* Find valid and maximum lowmem_reserve in the zone */
5627 for (j = i; j < MAX_NR_ZONES; j++) {
5628 if (zone->lowmem_reserve[j] > max)
5629 max = zone->lowmem_reserve[j];
5630 }
5631
5632 /* we treat the high watermark as reserved pages. */
5633 max += high_wmark_pages(zone);
5634
5635 if (max > zone->managed_pages)
5636 max = zone->managed_pages;
5637 reserve_pages += max;
5638 /*
5639 * Lowmem reserves are not available to
5640 * GFP_HIGHUSER page cache allocations and
5641 * kswapd tries to balance zones to their high
5642 * watermark. As a result, neither should be
5643 * regarded as dirtyable memory, to prevent a
5644 * situation where reclaim has to clean pages
5645 * in order to balance the zones.
5646 */
5647 zone->dirty_balance_reserve = max;
5648 }
5649 }
5650 dirty_balance_reserve = reserve_pages;
5651 totalreserve_pages = reserve_pages;
5652 }
5653
5654 /*
5655 * setup_per_zone_lowmem_reserve - called whenever
5656 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5657 * has a correct pages reserved value, so an adequate number of
5658 * pages are left in the zone after a successful __alloc_pages().
5659 */
5660 static void setup_per_zone_lowmem_reserve(void)
5661 {
5662 struct pglist_data *pgdat;
5663 enum zone_type j, idx;
5664
5665 for_each_online_pgdat(pgdat) {
5666 for (j = 0; j < MAX_NR_ZONES; j++) {
5667 struct zone *zone = pgdat->node_zones + j;
5668 unsigned long managed_pages = zone->managed_pages;
5669
5670 zone->lowmem_reserve[j] = 0;
5671
5672 idx = j;
5673 while (idx) {
5674 struct zone *lower_zone;
5675
5676 idx--;
5677
5678 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5679 sysctl_lowmem_reserve_ratio[idx] = 1;
5680
5681 lower_zone = pgdat->node_zones + idx;
5682 lower_zone->lowmem_reserve[j] = managed_pages /
5683 sysctl_lowmem_reserve_ratio[idx];
5684 managed_pages += lower_zone->managed_pages;
5685 }
5686 }
5687 }
5688
5689 /* update totalreserve_pages */
5690 calculate_totalreserve_pages();
5691 }
5692
5693 static void __setup_per_zone_wmarks(void)
5694 {
5695 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5696 unsigned long lowmem_pages = 0;
5697 struct zone *zone;
5698 unsigned long flags;
5699
5700 /* Calculate total number of !ZONE_HIGHMEM pages */
5701 for_each_zone(zone) {
5702 if (!is_highmem(zone))
5703 lowmem_pages += zone->managed_pages;
5704 }
5705
5706 for_each_zone(zone) {
5707 u64 tmp;
5708
5709 spin_lock_irqsave(&zone->lock, flags);
5710 tmp = (u64)pages_min * zone->managed_pages;
5711 do_div(tmp, lowmem_pages);
5712 if (is_highmem(zone)) {
5713 /*
5714 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5715 * need highmem pages, so cap pages_min to a small
5716 * value here.
5717 *
5718 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5719 * deltas controls asynch page reclaim, and so should
5720 * not be capped for highmem.
5721 */
5722 unsigned long min_pages;
5723
5724 min_pages = zone->managed_pages / 1024;
5725 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5726 zone->watermark[WMARK_MIN] = min_pages;
5727 } else {
5728 /*
5729 * If it's a lowmem zone, reserve a number of pages
5730 * proportionate to the zone's size.
5731 */
5732 zone->watermark[WMARK_MIN] = tmp;
5733 }
5734
5735 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5736 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5737
5738 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5739 high_wmark_pages(zone) - low_wmark_pages(zone) -
5740 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5741
5742 setup_zone_migrate_reserve(zone);
5743 spin_unlock_irqrestore(&zone->lock, flags);
5744 }
5745
5746 /* update totalreserve_pages */
5747 calculate_totalreserve_pages();
5748 }
5749
5750 /**
5751 * setup_per_zone_wmarks - called when min_free_kbytes changes
5752 * or when memory is hot-{added|removed}
5753 *
5754 * Ensures that the watermark[min,low,high] values for each zone are set
5755 * correctly with respect to min_free_kbytes.
5756 */
5757 void setup_per_zone_wmarks(void)
5758 {
5759 mutex_lock(&zonelists_mutex);
5760 __setup_per_zone_wmarks();
5761 mutex_unlock(&zonelists_mutex);
5762 }
5763
5764 /*
5765 * The inactive anon list should be small enough that the VM never has to
5766 * do too much work, but large enough that each inactive page has a chance
5767 * to be referenced again before it is swapped out.
5768 *
5769 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5770 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5771 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5772 * the anonymous pages are kept on the inactive list.
5773 *
5774 * total target max
5775 * memory ratio inactive anon
5776 * -------------------------------------
5777 * 10MB 1 5MB
5778 * 100MB 1 50MB
5779 * 1GB 3 250MB
5780 * 10GB 10 0.9GB
5781 * 100GB 31 3GB
5782 * 1TB 101 10GB
5783 * 10TB 320 32GB
5784 */
5785 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5786 {
5787 unsigned int gb, ratio;
5788
5789 /* Zone size in gigabytes */
5790 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5791 if (gb)
5792 ratio = int_sqrt(10 * gb);
5793 else
5794 ratio = 1;
5795
5796 zone->inactive_ratio = ratio;
5797 }
5798
5799 static void __meminit setup_per_zone_inactive_ratio(void)
5800 {
5801 struct zone *zone;
5802
5803 for_each_zone(zone)
5804 calculate_zone_inactive_ratio(zone);
5805 }
5806
5807 /*
5808 * Initialise min_free_kbytes.
5809 *
5810 * For small machines we want it small (128k min). For large machines
5811 * we want it large (64MB max). But it is not linear, because network
5812 * bandwidth does not increase linearly with machine size. We use
5813 *
5814 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5815 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5816 *
5817 * which yields
5818 *
5819 * 16MB: 512k
5820 * 32MB: 724k
5821 * 64MB: 1024k
5822 * 128MB: 1448k
5823 * 256MB: 2048k
5824 * 512MB: 2896k
5825 * 1024MB: 4096k
5826 * 2048MB: 5792k
5827 * 4096MB: 8192k
5828 * 8192MB: 11584k
5829 * 16384MB: 16384k
5830 */
5831 int __meminit init_per_zone_wmark_min(void)
5832 {
5833 unsigned long lowmem_kbytes;
5834 int new_min_free_kbytes;
5835
5836 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5837 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5838
5839 if (new_min_free_kbytes > user_min_free_kbytes) {
5840 min_free_kbytes = new_min_free_kbytes;
5841 if (min_free_kbytes < 128)
5842 min_free_kbytes = 128;
5843 if (min_free_kbytes > 65536)
5844 min_free_kbytes = 65536;
5845 } else {
5846 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5847 new_min_free_kbytes, user_min_free_kbytes);
5848 }
5849 setup_per_zone_wmarks();
5850 refresh_zone_stat_thresholds();
5851 setup_per_zone_lowmem_reserve();
5852 setup_per_zone_inactive_ratio();
5853 return 0;
5854 }
5855 module_init(init_per_zone_wmark_min)
5856
5857 /*
5858 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5859 * that we can call two helper functions whenever min_free_kbytes
5860 * changes.
5861 */
5862 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5863 void __user *buffer, size_t *length, loff_t *ppos)
5864 {
5865 int rc;
5866
5867 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5868 if (rc)
5869 return rc;
5870
5871 if (write) {
5872 user_min_free_kbytes = min_free_kbytes;
5873 setup_per_zone_wmarks();
5874 }
5875 return 0;
5876 }
5877
5878 #ifdef CONFIG_NUMA
5879 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5880 void __user *buffer, size_t *length, loff_t *ppos)
5881 {
5882 struct zone *zone;
5883 int rc;
5884
5885 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5886 if (rc)
5887 return rc;
5888
5889 for_each_zone(zone)
5890 zone->min_unmapped_pages = (zone->managed_pages *
5891 sysctl_min_unmapped_ratio) / 100;
5892 return 0;
5893 }
5894
5895 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5896 void __user *buffer, size_t *length, loff_t *ppos)
5897 {
5898 struct zone *zone;
5899 int rc;
5900
5901 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5902 if (rc)
5903 return rc;
5904
5905 for_each_zone(zone)
5906 zone->min_slab_pages = (zone->managed_pages *
5907 sysctl_min_slab_ratio) / 100;
5908 return 0;
5909 }
5910 #endif
5911
5912 /*
5913 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5914 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5915 * whenever sysctl_lowmem_reserve_ratio changes.
5916 *
5917 * The reserve ratio obviously has absolutely no relation with the
5918 * minimum watermarks. The lowmem reserve ratio can only make sense
5919 * if in function of the boot time zone sizes.
5920 */
5921 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5922 void __user *buffer, size_t *length, loff_t *ppos)
5923 {
5924 proc_dointvec_minmax(table, write, buffer, length, ppos);
5925 setup_per_zone_lowmem_reserve();
5926 return 0;
5927 }
5928
5929 /*
5930 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5931 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5932 * pagelist can have before it gets flushed back to buddy allocator.
5933 */
5934 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5935 void __user *buffer, size_t *length, loff_t *ppos)
5936 {
5937 struct zone *zone;
5938 int old_percpu_pagelist_fraction;
5939 int ret;
5940
5941 mutex_lock(&pcp_batch_high_lock);
5942 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5943
5944 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5945 if (!write || ret < 0)
5946 goto out;
5947
5948 /* Sanity checking to avoid pcp imbalance */
5949 if (percpu_pagelist_fraction &&
5950 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5951 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5952 ret = -EINVAL;
5953 goto out;
5954 }
5955
5956 /* No change? */
5957 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5958 goto out;
5959
5960 for_each_populated_zone(zone) {
5961 unsigned int cpu;
5962
5963 for_each_possible_cpu(cpu)
5964 pageset_set_high_and_batch(zone,
5965 per_cpu_ptr(zone->pageset, cpu));
5966 }
5967 out:
5968 mutex_unlock(&pcp_batch_high_lock);
5969 return ret;
5970 }
5971
5972 int hashdist = HASHDIST_DEFAULT;
5973
5974 #ifdef CONFIG_NUMA
5975 static int __init set_hashdist(char *str)
5976 {
5977 if (!str)
5978 return 0;
5979 hashdist = simple_strtoul(str, &str, 0);
5980 return 1;
5981 }
5982 __setup("hashdist=", set_hashdist);
5983 #endif
5984
5985 /*
5986 * allocate a large system hash table from bootmem
5987 * - it is assumed that the hash table must contain an exact power-of-2
5988 * quantity of entries
5989 * - limit is the number of hash buckets, not the total allocation size
5990 */
5991 void *__init alloc_large_system_hash(const char *tablename,
5992 unsigned long bucketsize,
5993 unsigned long numentries,
5994 int scale,
5995 int flags,
5996 unsigned int *_hash_shift,
5997 unsigned int *_hash_mask,
5998 unsigned long low_limit,
5999 unsigned long high_limit)
6000 {
6001 unsigned long long max = high_limit;
6002 unsigned long log2qty, size;
6003 void *table = NULL;
6004
6005 /* allow the kernel cmdline to have a say */
6006 if (!numentries) {
6007 /* round applicable memory size up to nearest megabyte */
6008 numentries = nr_kernel_pages;
6009
6010 /* It isn't necessary when PAGE_SIZE >= 1MB */
6011 if (PAGE_SHIFT < 20)
6012 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6013
6014 /* limit to 1 bucket per 2^scale bytes of low memory */
6015 if (scale > PAGE_SHIFT)
6016 numentries >>= (scale - PAGE_SHIFT);
6017 else
6018 numentries <<= (PAGE_SHIFT - scale);
6019
6020 /* Make sure we've got at least a 0-order allocation.. */
6021 if (unlikely(flags & HASH_SMALL)) {
6022 /* Makes no sense without HASH_EARLY */
6023 WARN_ON(!(flags & HASH_EARLY));
6024 if (!(numentries >> *_hash_shift)) {
6025 numentries = 1UL << *_hash_shift;
6026 BUG_ON(!numentries);
6027 }
6028 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6029 numentries = PAGE_SIZE / bucketsize;
6030 }
6031 numentries = roundup_pow_of_two(numentries);
6032
6033 /* limit allocation size to 1/16 total memory by default */
6034 if (max == 0) {
6035 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6036 do_div(max, bucketsize);
6037 }
6038 max = min(max, 0x80000000ULL);
6039
6040 if (numentries < low_limit)
6041 numentries = low_limit;
6042 if (numentries > max)
6043 numentries = max;
6044
6045 log2qty = ilog2(numentries);
6046
6047 do {
6048 size = bucketsize << log2qty;
6049 if (flags & HASH_EARLY)
6050 table = memblock_virt_alloc_nopanic(size, 0);
6051 else if (hashdist)
6052 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6053 else {
6054 /*
6055 * If bucketsize is not a power-of-two, we may free
6056 * some pages at the end of hash table which
6057 * alloc_pages_exact() automatically does
6058 */
6059 if (get_order(size) < MAX_ORDER) {
6060 table = alloc_pages_exact(size, GFP_ATOMIC);
6061 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6062 }
6063 }
6064 } while (!table && size > PAGE_SIZE && --log2qty);
6065
6066 if (!table)
6067 panic("Failed to allocate %s hash table\n", tablename);
6068
6069 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6070 tablename,
6071 (1UL << log2qty),
6072 ilog2(size) - PAGE_SHIFT,
6073 size);
6074
6075 if (_hash_shift)
6076 *_hash_shift = log2qty;
6077 if (_hash_mask)
6078 *_hash_mask = (1 << log2qty) - 1;
6079
6080 return table;
6081 }
6082
6083 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6084 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6085 unsigned long pfn)
6086 {
6087 #ifdef CONFIG_SPARSEMEM
6088 return __pfn_to_section(pfn)->pageblock_flags;
6089 #else
6090 return zone->pageblock_flags;
6091 #endif /* CONFIG_SPARSEMEM */
6092 }
6093
6094 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6095 {
6096 #ifdef CONFIG_SPARSEMEM
6097 pfn &= (PAGES_PER_SECTION-1);
6098 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6099 #else
6100 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6101 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6102 #endif /* CONFIG_SPARSEMEM */
6103 }
6104
6105 /**
6106 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6107 * @page: The page within the block of interest
6108 * @pfn: The target page frame number
6109 * @end_bitidx: The last bit of interest to retrieve
6110 * @mask: mask of bits that the caller is interested in
6111 *
6112 * Return: pageblock_bits flags
6113 */
6114 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6115 unsigned long end_bitidx,
6116 unsigned long mask)
6117 {
6118 struct zone *zone;
6119 unsigned long *bitmap;
6120 unsigned long bitidx, word_bitidx;
6121 unsigned long word;
6122
6123 zone = page_zone(page);
6124 bitmap = get_pageblock_bitmap(zone, pfn);
6125 bitidx = pfn_to_bitidx(zone, pfn);
6126 word_bitidx = bitidx / BITS_PER_LONG;
6127 bitidx &= (BITS_PER_LONG-1);
6128
6129 word = bitmap[word_bitidx];
6130 bitidx += end_bitidx;
6131 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6132 }
6133
6134 /**
6135 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6136 * @page: The page within the block of interest
6137 * @flags: The flags to set
6138 * @pfn: The target page frame number
6139 * @end_bitidx: The last bit of interest
6140 * @mask: mask of bits that the caller is interested in
6141 */
6142 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6143 unsigned long pfn,
6144 unsigned long end_bitidx,
6145 unsigned long mask)
6146 {
6147 struct zone *zone;
6148 unsigned long *bitmap;
6149 unsigned long bitidx, word_bitidx;
6150 unsigned long old_word, word;
6151
6152 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6153
6154 zone = page_zone(page);
6155 bitmap = get_pageblock_bitmap(zone, pfn);
6156 bitidx = pfn_to_bitidx(zone, pfn);
6157 word_bitidx = bitidx / BITS_PER_LONG;
6158 bitidx &= (BITS_PER_LONG-1);
6159
6160 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6161
6162 bitidx += end_bitidx;
6163 mask <<= (BITS_PER_LONG - bitidx - 1);
6164 flags <<= (BITS_PER_LONG - bitidx - 1);
6165
6166 word = ACCESS_ONCE(bitmap[word_bitidx]);
6167 for (;;) {
6168 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6169 if (word == old_word)
6170 break;
6171 word = old_word;
6172 }
6173 }
6174
6175 /*
6176 * This function checks whether pageblock includes unmovable pages or not.
6177 * If @count is not zero, it is okay to include less @count unmovable pages
6178 *
6179 * PageLRU check without isolation or lru_lock could race so that
6180 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6181 * expect this function should be exact.
6182 */
6183 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6184 bool skip_hwpoisoned_pages)
6185 {
6186 unsigned long pfn, iter, found;
6187 int mt;
6188
6189 /*
6190 * For avoiding noise data, lru_add_drain_all() should be called
6191 * If ZONE_MOVABLE, the zone never contains unmovable pages
6192 */
6193 if (zone_idx(zone) == ZONE_MOVABLE)
6194 return false;
6195 mt = get_pageblock_migratetype(page);
6196 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6197 return false;
6198
6199 pfn = page_to_pfn(page);
6200 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6201 unsigned long check = pfn + iter;
6202
6203 if (!pfn_valid_within(check))
6204 continue;
6205
6206 page = pfn_to_page(check);
6207
6208 /*
6209 * Hugepages are not in LRU lists, but they're movable.
6210 * We need not scan over tail pages bacause we don't
6211 * handle each tail page individually in migration.
6212 */
6213 if (PageHuge(page)) {
6214 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6215 continue;
6216 }
6217
6218 /*
6219 * We can't use page_count without pin a page
6220 * because another CPU can free compound page.
6221 * This check already skips compound tails of THP
6222 * because their page->_count is zero at all time.
6223 */
6224 if (!atomic_read(&page->_count)) {
6225 if (PageBuddy(page))
6226 iter += (1 << page_order(page)) - 1;
6227 continue;
6228 }
6229
6230 /*
6231 * The HWPoisoned page may be not in buddy system, and
6232 * page_count() is not 0.
6233 */
6234 if (skip_hwpoisoned_pages && PageHWPoison(page))
6235 continue;
6236
6237 if (!PageLRU(page))
6238 found++;
6239 /*
6240 * If there are RECLAIMABLE pages, we need to check
6241 * it. But now, memory offline itself doesn't call
6242 * shrink_node_slabs() and it still to be fixed.
6243 */
6244 /*
6245 * If the page is not RAM, page_count()should be 0.
6246 * we don't need more check. This is an _used_ not-movable page.
6247 *
6248 * The problematic thing here is PG_reserved pages. PG_reserved
6249 * is set to both of a memory hole page and a _used_ kernel
6250 * page at boot.
6251 */
6252 if (found > count)
6253 return true;
6254 }
6255 return false;
6256 }
6257
6258 bool is_pageblock_removable_nolock(struct page *page)
6259 {
6260 struct zone *zone;
6261 unsigned long pfn;
6262
6263 /*
6264 * We have to be careful here because we are iterating over memory
6265 * sections which are not zone aware so we might end up outside of
6266 * the zone but still within the section.
6267 * We have to take care about the node as well. If the node is offline
6268 * its NODE_DATA will be NULL - see page_zone.
6269 */
6270 if (!node_online(page_to_nid(page)))
6271 return false;
6272
6273 zone = page_zone(page);
6274 pfn = page_to_pfn(page);
6275 if (!zone_spans_pfn(zone, pfn))
6276 return false;
6277
6278 return !has_unmovable_pages(zone, page, 0, true);
6279 }
6280
6281 #ifdef CONFIG_CMA
6282
6283 static unsigned long pfn_max_align_down(unsigned long pfn)
6284 {
6285 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6286 pageblock_nr_pages) - 1);
6287 }
6288
6289 static unsigned long pfn_max_align_up(unsigned long pfn)
6290 {
6291 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6292 pageblock_nr_pages));
6293 }
6294
6295 /* [start, end) must belong to a single zone. */
6296 static int __alloc_contig_migrate_range(struct compact_control *cc,
6297 unsigned long start, unsigned long end)
6298 {
6299 /* This function is based on compact_zone() from compaction.c. */
6300 unsigned long nr_reclaimed;
6301 unsigned long pfn = start;
6302 unsigned int tries = 0;
6303 int ret = 0;
6304
6305 migrate_prep();
6306
6307 while (pfn < end || !list_empty(&cc->migratepages)) {
6308 if (fatal_signal_pending(current)) {
6309 ret = -EINTR;
6310 break;
6311 }
6312
6313 if (list_empty(&cc->migratepages)) {
6314 cc->nr_migratepages = 0;
6315 pfn = isolate_migratepages_range(cc, pfn, end);
6316 if (!pfn) {
6317 ret = -EINTR;
6318 break;
6319 }
6320 tries = 0;
6321 } else if (++tries == 5) {
6322 ret = ret < 0 ? ret : -EBUSY;
6323 break;
6324 }
6325
6326 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6327 &cc->migratepages);
6328 cc->nr_migratepages -= nr_reclaimed;
6329
6330 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6331 NULL, 0, cc->mode, MR_CMA);
6332 }
6333 if (ret < 0) {
6334 putback_movable_pages(&cc->migratepages);
6335 return ret;
6336 }
6337 return 0;
6338 }
6339
6340 /**
6341 * alloc_contig_range() -- tries to allocate given range of pages
6342 * @start: start PFN to allocate
6343 * @end: one-past-the-last PFN to allocate
6344 * @migratetype: migratetype of the underlaying pageblocks (either
6345 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6346 * in range must have the same migratetype and it must
6347 * be either of the two.
6348 *
6349 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6350 * aligned, however it's the caller's responsibility to guarantee that
6351 * we are the only thread that changes migrate type of pageblocks the
6352 * pages fall in.
6353 *
6354 * The PFN range must belong to a single zone.
6355 *
6356 * Returns zero on success or negative error code. On success all
6357 * pages which PFN is in [start, end) are allocated for the caller and
6358 * need to be freed with free_contig_range().
6359 */
6360 int alloc_contig_range(unsigned long start, unsigned long end,
6361 unsigned migratetype)
6362 {
6363 unsigned long outer_start, outer_end;
6364 int ret = 0, order;
6365
6366 struct compact_control cc = {
6367 .nr_migratepages = 0,
6368 .order = -1,
6369 .zone = page_zone(pfn_to_page(start)),
6370 .mode = MIGRATE_SYNC,
6371 .ignore_skip_hint = true,
6372 };
6373 INIT_LIST_HEAD(&cc.migratepages);
6374
6375 /*
6376 * What we do here is we mark all pageblocks in range as
6377 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6378 * have different sizes, and due to the way page allocator
6379 * work, we align the range to biggest of the two pages so
6380 * that page allocator won't try to merge buddies from
6381 * different pageblocks and change MIGRATE_ISOLATE to some
6382 * other migration type.
6383 *
6384 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6385 * migrate the pages from an unaligned range (ie. pages that
6386 * we are interested in). This will put all the pages in
6387 * range back to page allocator as MIGRATE_ISOLATE.
6388 *
6389 * When this is done, we take the pages in range from page
6390 * allocator removing them from the buddy system. This way
6391 * page allocator will never consider using them.
6392 *
6393 * This lets us mark the pageblocks back as
6394 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6395 * aligned range but not in the unaligned, original range are
6396 * put back to page allocator so that buddy can use them.
6397 */
6398
6399 ret = start_isolate_page_range(pfn_max_align_down(start),
6400 pfn_max_align_up(end), migratetype,
6401 false);
6402 if (ret)
6403 return ret;
6404
6405 ret = __alloc_contig_migrate_range(&cc, start, end);
6406 if (ret)
6407 goto done;
6408
6409 /*
6410 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6411 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6412 * more, all pages in [start, end) are free in page allocator.
6413 * What we are going to do is to allocate all pages from
6414 * [start, end) (that is remove them from page allocator).
6415 *
6416 * The only problem is that pages at the beginning and at the
6417 * end of interesting range may be not aligned with pages that
6418 * page allocator holds, ie. they can be part of higher order
6419 * pages. Because of this, we reserve the bigger range and
6420 * once this is done free the pages we are not interested in.
6421 *
6422 * We don't have to hold zone->lock here because the pages are
6423 * isolated thus they won't get removed from buddy.
6424 */
6425
6426 lru_add_drain_all();
6427 drain_all_pages(cc.zone);
6428
6429 order = 0;
6430 outer_start = start;
6431 while (!PageBuddy(pfn_to_page(outer_start))) {
6432 if (++order >= MAX_ORDER) {
6433 ret = -EBUSY;
6434 goto done;
6435 }
6436 outer_start &= ~0UL << order;
6437 }
6438
6439 /* Make sure the range is really isolated. */
6440 if (test_pages_isolated(outer_start, end, false)) {
6441 pr_info("%s: [%lx, %lx) PFNs busy\n",
6442 __func__, outer_start, end);
6443 ret = -EBUSY;
6444 goto done;
6445 }
6446
6447 /* Grab isolated pages from freelists. */
6448 outer_end = isolate_freepages_range(&cc, outer_start, end);
6449 if (!outer_end) {
6450 ret = -EBUSY;
6451 goto done;
6452 }
6453
6454 /* Free head and tail (if any) */
6455 if (start != outer_start)
6456 free_contig_range(outer_start, start - outer_start);
6457 if (end != outer_end)
6458 free_contig_range(end, outer_end - end);
6459
6460 done:
6461 undo_isolate_page_range(pfn_max_align_down(start),
6462 pfn_max_align_up(end), migratetype);
6463 return ret;
6464 }
6465
6466 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6467 {
6468 unsigned int count = 0;
6469
6470 for (; nr_pages--; pfn++) {
6471 struct page *page = pfn_to_page(pfn);
6472
6473 count += page_count(page) != 1;
6474 __free_page(page);
6475 }
6476 WARN(count != 0, "%d pages are still in use!\n", count);
6477 }
6478 #endif
6479
6480 #ifdef CONFIG_MEMORY_HOTPLUG
6481 /*
6482 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6483 * page high values need to be recalulated.
6484 */
6485 void __meminit zone_pcp_update(struct zone *zone)
6486 {
6487 unsigned cpu;
6488 mutex_lock(&pcp_batch_high_lock);
6489 for_each_possible_cpu(cpu)
6490 pageset_set_high_and_batch(zone,
6491 per_cpu_ptr(zone->pageset, cpu));
6492 mutex_unlock(&pcp_batch_high_lock);
6493 }
6494 #endif
6495
6496 void zone_pcp_reset(struct zone *zone)
6497 {
6498 unsigned long flags;
6499 int cpu;
6500 struct per_cpu_pageset *pset;
6501
6502 /* avoid races with drain_pages() */
6503 local_irq_save(flags);
6504 if (zone->pageset != &boot_pageset) {
6505 for_each_online_cpu(cpu) {
6506 pset = per_cpu_ptr(zone->pageset, cpu);
6507 drain_zonestat(zone, pset);
6508 }
6509 free_percpu(zone->pageset);
6510 zone->pageset = &boot_pageset;
6511 }
6512 local_irq_restore(flags);
6513 }
6514
6515 #ifdef CONFIG_MEMORY_HOTREMOVE
6516 /*
6517 * All pages in the range must be isolated before calling this.
6518 */
6519 void
6520 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6521 {
6522 struct page *page;
6523 struct zone *zone;
6524 unsigned int order, i;
6525 unsigned long pfn;
6526 unsigned long flags;
6527 /* find the first valid pfn */
6528 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6529 if (pfn_valid(pfn))
6530 break;
6531 if (pfn == end_pfn)
6532 return;
6533 zone = page_zone(pfn_to_page(pfn));
6534 spin_lock_irqsave(&zone->lock, flags);
6535 pfn = start_pfn;
6536 while (pfn < end_pfn) {
6537 if (!pfn_valid(pfn)) {
6538 pfn++;
6539 continue;
6540 }
6541 page = pfn_to_page(pfn);
6542 /*
6543 * The HWPoisoned page may be not in buddy system, and
6544 * page_count() is not 0.
6545 */
6546 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6547 pfn++;
6548 SetPageReserved(page);
6549 continue;
6550 }
6551
6552 BUG_ON(page_count(page));
6553 BUG_ON(!PageBuddy(page));
6554 order = page_order(page);
6555 #ifdef CONFIG_DEBUG_VM
6556 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6557 pfn, 1 << order, end_pfn);
6558 #endif
6559 list_del(&page->lru);
6560 rmv_page_order(page);
6561 zone->free_area[order].nr_free--;
6562 for (i = 0; i < (1 << order); i++)
6563 SetPageReserved((page+i));
6564 pfn += (1 << order);
6565 }
6566 spin_unlock_irqrestore(&zone->lock, flags);
6567 }
6568 #endif
6569
6570 #ifdef CONFIG_MEMORY_FAILURE
6571 bool is_free_buddy_page(struct page *page)
6572 {
6573 struct zone *zone = page_zone(page);
6574 unsigned long pfn = page_to_pfn(page);
6575 unsigned long flags;
6576 unsigned int order;
6577
6578 spin_lock_irqsave(&zone->lock, flags);
6579 for (order = 0; order < MAX_ORDER; order++) {
6580 struct page *page_head = page - (pfn & ((1 << order) - 1));
6581
6582 if (PageBuddy(page_head) && page_order(page_head) >= order)
6583 break;
6584 }
6585 spin_unlock_irqrestore(&zone->lock, flags);
6586
6587 return order < MAX_ORDER;
6588 }
6589 #endif