]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/page_alloc.c
mm: hugetlb: return immediately for hugetlb page in __delete_from_page_cache()
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69
70 #include <asm/sections.h>
71 #include <asm/tlbflush.h>
72 #include <asm/div64.h>
73 #include "internal.h"
74
75 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76 static DEFINE_MUTEX(pcp_batch_high_lock);
77 #define MIN_PERCPU_PAGELIST_FRACTION (8)
78
79 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80 DEFINE_PER_CPU(int, numa_node);
81 EXPORT_PER_CPU_SYMBOL(numa_node);
82 #endif
83
84 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
85 /*
86 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
87 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
88 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
89 * defined in <linux/topology.h>.
90 */
91 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
92 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
93 int _node_numa_mem_[MAX_NUMNODES];
94 #endif
95
96 /* work_structs for global per-cpu drains */
97 DEFINE_MUTEX(pcpu_drain_mutex);
98 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
99
100 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
101 volatile unsigned long latent_entropy __latent_entropy;
102 EXPORT_SYMBOL(latent_entropy);
103 #endif
104
105 /*
106 * Array of node states.
107 */
108 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
109 [N_POSSIBLE] = NODE_MASK_ALL,
110 [N_ONLINE] = { { [0] = 1UL } },
111 #ifndef CONFIG_NUMA
112 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
113 #ifdef CONFIG_HIGHMEM
114 [N_HIGH_MEMORY] = { { [0] = 1UL } },
115 #endif
116 [N_MEMORY] = { { [0] = 1UL } },
117 [N_CPU] = { { [0] = 1UL } },
118 #endif /* NUMA */
119 };
120 EXPORT_SYMBOL(node_states);
121
122 /* Protect totalram_pages and zone->managed_pages */
123 static DEFINE_SPINLOCK(managed_page_count_lock);
124
125 unsigned long totalram_pages __read_mostly;
126 unsigned long totalreserve_pages __read_mostly;
127 unsigned long totalcma_pages __read_mostly;
128
129 int percpu_pagelist_fraction;
130 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
131
132 /*
133 * A cached value of the page's pageblock's migratetype, used when the page is
134 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
135 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
136 * Also the migratetype set in the page does not necessarily match the pcplist
137 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
138 * other index - this ensures that it will be put on the correct CMA freelist.
139 */
140 static inline int get_pcppage_migratetype(struct page *page)
141 {
142 return page->index;
143 }
144
145 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
146 {
147 page->index = migratetype;
148 }
149
150 #ifdef CONFIG_PM_SLEEP
151 /*
152 * The following functions are used by the suspend/hibernate code to temporarily
153 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
154 * while devices are suspended. To avoid races with the suspend/hibernate code,
155 * they should always be called with pm_mutex held (gfp_allowed_mask also should
156 * only be modified with pm_mutex held, unless the suspend/hibernate code is
157 * guaranteed not to run in parallel with that modification).
158 */
159
160 static gfp_t saved_gfp_mask;
161
162 void pm_restore_gfp_mask(void)
163 {
164 WARN_ON(!mutex_is_locked(&pm_mutex));
165 if (saved_gfp_mask) {
166 gfp_allowed_mask = saved_gfp_mask;
167 saved_gfp_mask = 0;
168 }
169 }
170
171 void pm_restrict_gfp_mask(void)
172 {
173 WARN_ON(!mutex_is_locked(&pm_mutex));
174 WARN_ON(saved_gfp_mask);
175 saved_gfp_mask = gfp_allowed_mask;
176 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
177 }
178
179 bool pm_suspended_storage(void)
180 {
181 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
182 return false;
183 return true;
184 }
185 #endif /* CONFIG_PM_SLEEP */
186
187 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
188 unsigned int pageblock_order __read_mostly;
189 #endif
190
191 static void __free_pages_ok(struct page *page, unsigned int order);
192
193 /*
194 * results with 256, 32 in the lowmem_reserve sysctl:
195 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
196 * 1G machine -> (16M dma, 784M normal, 224M high)
197 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
198 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
199 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
200 *
201 * TBD: should special case ZONE_DMA32 machines here - in those we normally
202 * don't need any ZONE_NORMAL reservation
203 */
204 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
205 #ifdef CONFIG_ZONE_DMA
206 256,
207 #endif
208 #ifdef CONFIG_ZONE_DMA32
209 256,
210 #endif
211 #ifdef CONFIG_HIGHMEM
212 32,
213 #endif
214 32,
215 };
216
217 EXPORT_SYMBOL(totalram_pages);
218
219 static char * const zone_names[MAX_NR_ZONES] = {
220 #ifdef CONFIG_ZONE_DMA
221 "DMA",
222 #endif
223 #ifdef CONFIG_ZONE_DMA32
224 "DMA32",
225 #endif
226 "Normal",
227 #ifdef CONFIG_HIGHMEM
228 "HighMem",
229 #endif
230 "Movable",
231 #ifdef CONFIG_ZONE_DEVICE
232 "Device",
233 #endif
234 };
235
236 char * const migratetype_names[MIGRATE_TYPES] = {
237 "Unmovable",
238 "Movable",
239 "Reclaimable",
240 "HighAtomic",
241 #ifdef CONFIG_CMA
242 "CMA",
243 #endif
244 #ifdef CONFIG_MEMORY_ISOLATION
245 "Isolate",
246 #endif
247 };
248
249 compound_page_dtor * const compound_page_dtors[] = {
250 NULL,
251 free_compound_page,
252 #ifdef CONFIG_HUGETLB_PAGE
253 free_huge_page,
254 #endif
255 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
256 free_transhuge_page,
257 #endif
258 };
259
260 int min_free_kbytes = 1024;
261 int user_min_free_kbytes = -1;
262 int watermark_scale_factor = 10;
263
264 static unsigned long __meminitdata nr_kernel_pages;
265 static unsigned long __meminitdata nr_all_pages;
266 static unsigned long __meminitdata dma_reserve;
267
268 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
269 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
270 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
271 static unsigned long __initdata required_kernelcore;
272 static unsigned long __initdata required_movablecore;
273 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
274 static bool mirrored_kernelcore;
275
276 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
277 int movable_zone;
278 EXPORT_SYMBOL(movable_zone);
279 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
280
281 #if MAX_NUMNODES > 1
282 int nr_node_ids __read_mostly = MAX_NUMNODES;
283 int nr_online_nodes __read_mostly = 1;
284 EXPORT_SYMBOL(nr_node_ids);
285 EXPORT_SYMBOL(nr_online_nodes);
286 #endif
287
288 int page_group_by_mobility_disabled __read_mostly;
289
290 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
291 static inline void reset_deferred_meminit(pg_data_t *pgdat)
292 {
293 unsigned long max_initialise;
294 unsigned long reserved_lowmem;
295
296 /*
297 * Initialise at least 2G of a node but also take into account that
298 * two large system hashes that can take up 1GB for 0.25TB/node.
299 */
300 max_initialise = max(2UL << (30 - PAGE_SHIFT),
301 (pgdat->node_spanned_pages >> 8));
302
303 /*
304 * Compensate the all the memblock reservations (e.g. crash kernel)
305 * from the initial estimation to make sure we will initialize enough
306 * memory to boot.
307 */
308 reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn,
309 pgdat->node_start_pfn + max_initialise);
310 max_initialise += reserved_lowmem;
311
312 pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages);
313 pgdat->first_deferred_pfn = ULONG_MAX;
314 }
315
316 /* Returns true if the struct page for the pfn is uninitialised */
317 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
318 {
319 int nid = early_pfn_to_nid(pfn);
320
321 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
322 return true;
323
324 return false;
325 }
326
327 /*
328 * Returns false when the remaining initialisation should be deferred until
329 * later in the boot cycle when it can be parallelised.
330 */
331 static inline bool update_defer_init(pg_data_t *pgdat,
332 unsigned long pfn, unsigned long zone_end,
333 unsigned long *nr_initialised)
334 {
335 /* Always populate low zones for address-contrained allocations */
336 if (zone_end < pgdat_end_pfn(pgdat))
337 return true;
338 (*nr_initialised)++;
339 if ((*nr_initialised > pgdat->static_init_size) &&
340 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
341 pgdat->first_deferred_pfn = pfn;
342 return false;
343 }
344
345 return true;
346 }
347 #else
348 static inline void reset_deferred_meminit(pg_data_t *pgdat)
349 {
350 }
351
352 static inline bool early_page_uninitialised(unsigned long pfn)
353 {
354 return false;
355 }
356
357 static inline bool update_defer_init(pg_data_t *pgdat,
358 unsigned long pfn, unsigned long zone_end,
359 unsigned long *nr_initialised)
360 {
361 return true;
362 }
363 #endif
364
365 /* Return a pointer to the bitmap storing bits affecting a block of pages */
366 static inline unsigned long *get_pageblock_bitmap(struct page *page,
367 unsigned long pfn)
368 {
369 #ifdef CONFIG_SPARSEMEM
370 return __pfn_to_section(pfn)->pageblock_flags;
371 #else
372 return page_zone(page)->pageblock_flags;
373 #endif /* CONFIG_SPARSEMEM */
374 }
375
376 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
377 {
378 #ifdef CONFIG_SPARSEMEM
379 pfn &= (PAGES_PER_SECTION-1);
380 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
381 #else
382 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
383 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
384 #endif /* CONFIG_SPARSEMEM */
385 }
386
387 /**
388 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
389 * @page: The page within the block of interest
390 * @pfn: The target page frame number
391 * @end_bitidx: The last bit of interest to retrieve
392 * @mask: mask of bits that the caller is interested in
393 *
394 * Return: pageblock_bits flags
395 */
396 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
397 unsigned long pfn,
398 unsigned long end_bitidx,
399 unsigned long mask)
400 {
401 unsigned long *bitmap;
402 unsigned long bitidx, word_bitidx;
403 unsigned long word;
404
405 bitmap = get_pageblock_bitmap(page, pfn);
406 bitidx = pfn_to_bitidx(page, pfn);
407 word_bitidx = bitidx / BITS_PER_LONG;
408 bitidx &= (BITS_PER_LONG-1);
409
410 word = bitmap[word_bitidx];
411 bitidx += end_bitidx;
412 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
413 }
414
415 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
416 unsigned long end_bitidx,
417 unsigned long mask)
418 {
419 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
420 }
421
422 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
423 {
424 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
425 }
426
427 /**
428 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
429 * @page: The page within the block of interest
430 * @flags: The flags to set
431 * @pfn: The target page frame number
432 * @end_bitidx: The last bit of interest
433 * @mask: mask of bits that the caller is interested in
434 */
435 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
436 unsigned long pfn,
437 unsigned long end_bitidx,
438 unsigned long mask)
439 {
440 unsigned long *bitmap;
441 unsigned long bitidx, word_bitidx;
442 unsigned long old_word, word;
443
444 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
445
446 bitmap = get_pageblock_bitmap(page, pfn);
447 bitidx = pfn_to_bitidx(page, pfn);
448 word_bitidx = bitidx / BITS_PER_LONG;
449 bitidx &= (BITS_PER_LONG-1);
450
451 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
452
453 bitidx += end_bitidx;
454 mask <<= (BITS_PER_LONG - bitidx - 1);
455 flags <<= (BITS_PER_LONG - bitidx - 1);
456
457 word = READ_ONCE(bitmap[word_bitidx]);
458 for (;;) {
459 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
460 if (word == old_word)
461 break;
462 word = old_word;
463 }
464 }
465
466 void set_pageblock_migratetype(struct page *page, int migratetype)
467 {
468 if (unlikely(page_group_by_mobility_disabled &&
469 migratetype < MIGRATE_PCPTYPES))
470 migratetype = MIGRATE_UNMOVABLE;
471
472 set_pageblock_flags_group(page, (unsigned long)migratetype,
473 PB_migrate, PB_migrate_end);
474 }
475
476 #ifdef CONFIG_DEBUG_VM
477 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
478 {
479 int ret = 0;
480 unsigned seq;
481 unsigned long pfn = page_to_pfn(page);
482 unsigned long sp, start_pfn;
483
484 do {
485 seq = zone_span_seqbegin(zone);
486 start_pfn = zone->zone_start_pfn;
487 sp = zone->spanned_pages;
488 if (!zone_spans_pfn(zone, pfn))
489 ret = 1;
490 } while (zone_span_seqretry(zone, seq));
491
492 if (ret)
493 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
494 pfn, zone_to_nid(zone), zone->name,
495 start_pfn, start_pfn + sp);
496
497 return ret;
498 }
499
500 static int page_is_consistent(struct zone *zone, struct page *page)
501 {
502 if (!pfn_valid_within(page_to_pfn(page)))
503 return 0;
504 if (zone != page_zone(page))
505 return 0;
506
507 return 1;
508 }
509 /*
510 * Temporary debugging check for pages not lying within a given zone.
511 */
512 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
513 {
514 if (page_outside_zone_boundaries(zone, page))
515 return 1;
516 if (!page_is_consistent(zone, page))
517 return 1;
518
519 return 0;
520 }
521 #else
522 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
523 {
524 return 0;
525 }
526 #endif
527
528 static void bad_page(struct page *page, const char *reason,
529 unsigned long bad_flags)
530 {
531 static unsigned long resume;
532 static unsigned long nr_shown;
533 static unsigned long nr_unshown;
534
535 /*
536 * Allow a burst of 60 reports, then keep quiet for that minute;
537 * or allow a steady drip of one report per second.
538 */
539 if (nr_shown == 60) {
540 if (time_before(jiffies, resume)) {
541 nr_unshown++;
542 goto out;
543 }
544 if (nr_unshown) {
545 pr_alert(
546 "BUG: Bad page state: %lu messages suppressed\n",
547 nr_unshown);
548 nr_unshown = 0;
549 }
550 nr_shown = 0;
551 }
552 if (nr_shown++ == 0)
553 resume = jiffies + 60 * HZ;
554
555 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
556 current->comm, page_to_pfn(page));
557 __dump_page(page, reason);
558 bad_flags &= page->flags;
559 if (bad_flags)
560 pr_alert("bad because of flags: %#lx(%pGp)\n",
561 bad_flags, &bad_flags);
562 dump_page_owner(page);
563
564 print_modules();
565 dump_stack();
566 out:
567 /* Leave bad fields for debug, except PageBuddy could make trouble */
568 page_mapcount_reset(page); /* remove PageBuddy */
569 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
570 }
571
572 /*
573 * Higher-order pages are called "compound pages". They are structured thusly:
574 *
575 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
576 *
577 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
578 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
579 *
580 * The first tail page's ->compound_dtor holds the offset in array of compound
581 * page destructors. See compound_page_dtors.
582 *
583 * The first tail page's ->compound_order holds the order of allocation.
584 * This usage means that zero-order pages may not be compound.
585 */
586
587 void free_compound_page(struct page *page)
588 {
589 __free_pages_ok(page, compound_order(page));
590 }
591
592 void prep_compound_page(struct page *page, unsigned int order)
593 {
594 int i;
595 int nr_pages = 1 << order;
596
597 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
598 set_compound_order(page, order);
599 __SetPageHead(page);
600 for (i = 1; i < nr_pages; i++) {
601 struct page *p = page + i;
602 set_page_count(p, 0);
603 p->mapping = TAIL_MAPPING;
604 set_compound_head(p, page);
605 }
606 atomic_set(compound_mapcount_ptr(page), -1);
607 }
608
609 #ifdef CONFIG_DEBUG_PAGEALLOC
610 unsigned int _debug_guardpage_minorder;
611 bool _debug_pagealloc_enabled __read_mostly
612 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
613 EXPORT_SYMBOL(_debug_pagealloc_enabled);
614 bool _debug_guardpage_enabled __read_mostly;
615
616 static int __init early_debug_pagealloc(char *buf)
617 {
618 if (!buf)
619 return -EINVAL;
620 return kstrtobool(buf, &_debug_pagealloc_enabled);
621 }
622 early_param("debug_pagealloc", early_debug_pagealloc);
623
624 static bool need_debug_guardpage(void)
625 {
626 /* If we don't use debug_pagealloc, we don't need guard page */
627 if (!debug_pagealloc_enabled())
628 return false;
629
630 if (!debug_guardpage_minorder())
631 return false;
632
633 return true;
634 }
635
636 static void init_debug_guardpage(void)
637 {
638 if (!debug_pagealloc_enabled())
639 return;
640
641 if (!debug_guardpage_minorder())
642 return;
643
644 _debug_guardpage_enabled = true;
645 }
646
647 struct page_ext_operations debug_guardpage_ops = {
648 .need = need_debug_guardpage,
649 .init = init_debug_guardpage,
650 };
651
652 static int __init debug_guardpage_minorder_setup(char *buf)
653 {
654 unsigned long res;
655
656 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
657 pr_err("Bad debug_guardpage_minorder value\n");
658 return 0;
659 }
660 _debug_guardpage_minorder = res;
661 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
662 return 0;
663 }
664 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
665
666 static inline bool set_page_guard(struct zone *zone, struct page *page,
667 unsigned int order, int migratetype)
668 {
669 struct page_ext *page_ext;
670
671 if (!debug_guardpage_enabled())
672 return false;
673
674 if (order >= debug_guardpage_minorder())
675 return false;
676
677 page_ext = lookup_page_ext(page);
678 if (unlikely(!page_ext))
679 return false;
680
681 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
682
683 INIT_LIST_HEAD(&page->lru);
684 set_page_private(page, order);
685 /* Guard pages are not available for any usage */
686 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
687
688 return true;
689 }
690
691 static inline void clear_page_guard(struct zone *zone, struct page *page,
692 unsigned int order, int migratetype)
693 {
694 struct page_ext *page_ext;
695
696 if (!debug_guardpage_enabled())
697 return;
698
699 page_ext = lookup_page_ext(page);
700 if (unlikely(!page_ext))
701 return;
702
703 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
704
705 set_page_private(page, 0);
706 if (!is_migrate_isolate(migratetype))
707 __mod_zone_freepage_state(zone, (1 << order), migratetype);
708 }
709 #else
710 struct page_ext_operations debug_guardpage_ops;
711 static inline bool set_page_guard(struct zone *zone, struct page *page,
712 unsigned int order, int migratetype) { return false; }
713 static inline void clear_page_guard(struct zone *zone, struct page *page,
714 unsigned int order, int migratetype) {}
715 #endif
716
717 static inline void set_page_order(struct page *page, unsigned int order)
718 {
719 set_page_private(page, order);
720 __SetPageBuddy(page);
721 }
722
723 static inline void rmv_page_order(struct page *page)
724 {
725 __ClearPageBuddy(page);
726 set_page_private(page, 0);
727 }
728
729 /*
730 * This function checks whether a page is free && is the buddy
731 * we can do coalesce a page and its buddy if
732 * (a) the buddy is not in a hole (check before calling!) &&
733 * (b) the buddy is in the buddy system &&
734 * (c) a page and its buddy have the same order &&
735 * (d) a page and its buddy are in the same zone.
736 *
737 * For recording whether a page is in the buddy system, we set ->_mapcount
738 * PAGE_BUDDY_MAPCOUNT_VALUE.
739 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
740 * serialized by zone->lock.
741 *
742 * For recording page's order, we use page_private(page).
743 */
744 static inline int page_is_buddy(struct page *page, struct page *buddy,
745 unsigned int order)
746 {
747 if (page_is_guard(buddy) && page_order(buddy) == order) {
748 if (page_zone_id(page) != page_zone_id(buddy))
749 return 0;
750
751 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
752
753 return 1;
754 }
755
756 if (PageBuddy(buddy) && page_order(buddy) == order) {
757 /*
758 * zone check is done late to avoid uselessly
759 * calculating zone/node ids for pages that could
760 * never merge.
761 */
762 if (page_zone_id(page) != page_zone_id(buddy))
763 return 0;
764
765 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
766
767 return 1;
768 }
769 return 0;
770 }
771
772 /*
773 * Freeing function for a buddy system allocator.
774 *
775 * The concept of a buddy system is to maintain direct-mapped table
776 * (containing bit values) for memory blocks of various "orders".
777 * The bottom level table contains the map for the smallest allocatable
778 * units of memory (here, pages), and each level above it describes
779 * pairs of units from the levels below, hence, "buddies".
780 * At a high level, all that happens here is marking the table entry
781 * at the bottom level available, and propagating the changes upward
782 * as necessary, plus some accounting needed to play nicely with other
783 * parts of the VM system.
784 * At each level, we keep a list of pages, which are heads of continuous
785 * free pages of length of (1 << order) and marked with _mapcount
786 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
787 * field.
788 * So when we are allocating or freeing one, we can derive the state of the
789 * other. That is, if we allocate a small block, and both were
790 * free, the remainder of the region must be split into blocks.
791 * If a block is freed, and its buddy is also free, then this
792 * triggers coalescing into a block of larger size.
793 *
794 * -- nyc
795 */
796
797 static inline void __free_one_page(struct page *page,
798 unsigned long pfn,
799 struct zone *zone, unsigned int order,
800 int migratetype)
801 {
802 unsigned long combined_pfn;
803 unsigned long uninitialized_var(buddy_pfn);
804 struct page *buddy;
805 unsigned int max_order;
806
807 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
808
809 VM_BUG_ON(!zone_is_initialized(zone));
810 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
811
812 VM_BUG_ON(migratetype == -1);
813 if (likely(!is_migrate_isolate(migratetype)))
814 __mod_zone_freepage_state(zone, 1 << order, migratetype);
815
816 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
817 VM_BUG_ON_PAGE(bad_range(zone, page), page);
818
819 continue_merging:
820 while (order < max_order - 1) {
821 buddy_pfn = __find_buddy_pfn(pfn, order);
822 buddy = page + (buddy_pfn - pfn);
823
824 if (!pfn_valid_within(buddy_pfn))
825 goto done_merging;
826 if (!page_is_buddy(page, buddy, order))
827 goto done_merging;
828 /*
829 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
830 * merge with it and move up one order.
831 */
832 if (page_is_guard(buddy)) {
833 clear_page_guard(zone, buddy, order, migratetype);
834 } else {
835 list_del(&buddy->lru);
836 zone->free_area[order].nr_free--;
837 rmv_page_order(buddy);
838 }
839 combined_pfn = buddy_pfn & pfn;
840 page = page + (combined_pfn - pfn);
841 pfn = combined_pfn;
842 order++;
843 }
844 if (max_order < MAX_ORDER) {
845 /* If we are here, it means order is >= pageblock_order.
846 * We want to prevent merge between freepages on isolate
847 * pageblock and normal pageblock. Without this, pageblock
848 * isolation could cause incorrect freepage or CMA accounting.
849 *
850 * We don't want to hit this code for the more frequent
851 * low-order merging.
852 */
853 if (unlikely(has_isolate_pageblock(zone))) {
854 int buddy_mt;
855
856 buddy_pfn = __find_buddy_pfn(pfn, order);
857 buddy = page + (buddy_pfn - pfn);
858 buddy_mt = get_pageblock_migratetype(buddy);
859
860 if (migratetype != buddy_mt
861 && (is_migrate_isolate(migratetype) ||
862 is_migrate_isolate(buddy_mt)))
863 goto done_merging;
864 }
865 max_order++;
866 goto continue_merging;
867 }
868
869 done_merging:
870 set_page_order(page, order);
871
872 /*
873 * If this is not the largest possible page, check if the buddy
874 * of the next-highest order is free. If it is, it's possible
875 * that pages are being freed that will coalesce soon. In case,
876 * that is happening, add the free page to the tail of the list
877 * so it's less likely to be used soon and more likely to be merged
878 * as a higher order page
879 */
880 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
881 struct page *higher_page, *higher_buddy;
882 combined_pfn = buddy_pfn & pfn;
883 higher_page = page + (combined_pfn - pfn);
884 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
885 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
886 if (pfn_valid_within(buddy_pfn) &&
887 page_is_buddy(higher_page, higher_buddy, order + 1)) {
888 list_add_tail(&page->lru,
889 &zone->free_area[order].free_list[migratetype]);
890 goto out;
891 }
892 }
893
894 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
895 out:
896 zone->free_area[order].nr_free++;
897 }
898
899 /*
900 * A bad page could be due to a number of fields. Instead of multiple branches,
901 * try and check multiple fields with one check. The caller must do a detailed
902 * check if necessary.
903 */
904 static inline bool page_expected_state(struct page *page,
905 unsigned long check_flags)
906 {
907 if (unlikely(atomic_read(&page->_mapcount) != -1))
908 return false;
909
910 if (unlikely((unsigned long)page->mapping |
911 page_ref_count(page) |
912 #ifdef CONFIG_MEMCG
913 (unsigned long)page->mem_cgroup |
914 #endif
915 (page->flags & check_flags)))
916 return false;
917
918 return true;
919 }
920
921 static void free_pages_check_bad(struct page *page)
922 {
923 const char *bad_reason;
924 unsigned long bad_flags;
925
926 bad_reason = NULL;
927 bad_flags = 0;
928
929 if (unlikely(atomic_read(&page->_mapcount) != -1))
930 bad_reason = "nonzero mapcount";
931 if (unlikely(page->mapping != NULL))
932 bad_reason = "non-NULL mapping";
933 if (unlikely(page_ref_count(page) != 0))
934 bad_reason = "nonzero _refcount";
935 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
936 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
937 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
938 }
939 #ifdef CONFIG_MEMCG
940 if (unlikely(page->mem_cgroup))
941 bad_reason = "page still charged to cgroup";
942 #endif
943 bad_page(page, bad_reason, bad_flags);
944 }
945
946 static inline int free_pages_check(struct page *page)
947 {
948 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
949 return 0;
950
951 /* Something has gone sideways, find it */
952 free_pages_check_bad(page);
953 return 1;
954 }
955
956 static int free_tail_pages_check(struct page *head_page, struct page *page)
957 {
958 int ret = 1;
959
960 /*
961 * We rely page->lru.next never has bit 0 set, unless the page
962 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
963 */
964 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
965
966 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
967 ret = 0;
968 goto out;
969 }
970 switch (page - head_page) {
971 case 1:
972 /* the first tail page: ->mapping is compound_mapcount() */
973 if (unlikely(compound_mapcount(page))) {
974 bad_page(page, "nonzero compound_mapcount", 0);
975 goto out;
976 }
977 break;
978 case 2:
979 /*
980 * the second tail page: ->mapping is
981 * page_deferred_list().next -- ignore value.
982 */
983 break;
984 default:
985 if (page->mapping != TAIL_MAPPING) {
986 bad_page(page, "corrupted mapping in tail page", 0);
987 goto out;
988 }
989 break;
990 }
991 if (unlikely(!PageTail(page))) {
992 bad_page(page, "PageTail not set", 0);
993 goto out;
994 }
995 if (unlikely(compound_head(page) != head_page)) {
996 bad_page(page, "compound_head not consistent", 0);
997 goto out;
998 }
999 ret = 0;
1000 out:
1001 page->mapping = NULL;
1002 clear_compound_head(page);
1003 return ret;
1004 }
1005
1006 static __always_inline bool free_pages_prepare(struct page *page,
1007 unsigned int order, bool check_free)
1008 {
1009 int bad = 0;
1010
1011 VM_BUG_ON_PAGE(PageTail(page), page);
1012
1013 trace_mm_page_free(page, order);
1014 kmemcheck_free_shadow(page, order);
1015
1016 /*
1017 * Check tail pages before head page information is cleared to
1018 * avoid checking PageCompound for order-0 pages.
1019 */
1020 if (unlikely(order)) {
1021 bool compound = PageCompound(page);
1022 int i;
1023
1024 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1025
1026 if (compound)
1027 ClearPageDoubleMap(page);
1028 for (i = 1; i < (1 << order); i++) {
1029 if (compound)
1030 bad += free_tail_pages_check(page, page + i);
1031 if (unlikely(free_pages_check(page + i))) {
1032 bad++;
1033 continue;
1034 }
1035 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1036 }
1037 }
1038 if (PageMappingFlags(page))
1039 page->mapping = NULL;
1040 if (memcg_kmem_enabled() && PageKmemcg(page))
1041 memcg_kmem_uncharge(page, order);
1042 if (check_free)
1043 bad += free_pages_check(page);
1044 if (bad)
1045 return false;
1046
1047 page_cpupid_reset_last(page);
1048 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1049 reset_page_owner(page, order);
1050
1051 if (!PageHighMem(page)) {
1052 debug_check_no_locks_freed(page_address(page),
1053 PAGE_SIZE << order);
1054 debug_check_no_obj_freed(page_address(page),
1055 PAGE_SIZE << order);
1056 }
1057 arch_free_page(page, order);
1058 kernel_poison_pages(page, 1 << order, 0);
1059 kernel_map_pages(page, 1 << order, 0);
1060 kasan_free_pages(page, order);
1061
1062 return true;
1063 }
1064
1065 #ifdef CONFIG_DEBUG_VM
1066 static inline bool free_pcp_prepare(struct page *page)
1067 {
1068 return free_pages_prepare(page, 0, true);
1069 }
1070
1071 static inline bool bulkfree_pcp_prepare(struct page *page)
1072 {
1073 return false;
1074 }
1075 #else
1076 static bool free_pcp_prepare(struct page *page)
1077 {
1078 return free_pages_prepare(page, 0, false);
1079 }
1080
1081 static bool bulkfree_pcp_prepare(struct page *page)
1082 {
1083 return free_pages_check(page);
1084 }
1085 #endif /* CONFIG_DEBUG_VM */
1086
1087 /*
1088 * Frees a number of pages from the PCP lists
1089 * Assumes all pages on list are in same zone, and of same order.
1090 * count is the number of pages to free.
1091 *
1092 * If the zone was previously in an "all pages pinned" state then look to
1093 * see if this freeing clears that state.
1094 *
1095 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1096 * pinned" detection logic.
1097 */
1098 static void free_pcppages_bulk(struct zone *zone, int count,
1099 struct per_cpu_pages *pcp)
1100 {
1101 int migratetype = 0;
1102 int batch_free = 0;
1103 bool isolated_pageblocks;
1104
1105 spin_lock(&zone->lock);
1106 isolated_pageblocks = has_isolate_pageblock(zone);
1107
1108 while (count) {
1109 struct page *page;
1110 struct list_head *list;
1111
1112 /*
1113 * Remove pages from lists in a round-robin fashion. A
1114 * batch_free count is maintained that is incremented when an
1115 * empty list is encountered. This is so more pages are freed
1116 * off fuller lists instead of spinning excessively around empty
1117 * lists
1118 */
1119 do {
1120 batch_free++;
1121 if (++migratetype == MIGRATE_PCPTYPES)
1122 migratetype = 0;
1123 list = &pcp->lists[migratetype];
1124 } while (list_empty(list));
1125
1126 /* This is the only non-empty list. Free them all. */
1127 if (batch_free == MIGRATE_PCPTYPES)
1128 batch_free = count;
1129
1130 do {
1131 int mt; /* migratetype of the to-be-freed page */
1132
1133 page = list_last_entry(list, struct page, lru);
1134 /* must delete as __free_one_page list manipulates */
1135 list_del(&page->lru);
1136
1137 mt = get_pcppage_migratetype(page);
1138 /* MIGRATE_ISOLATE page should not go to pcplists */
1139 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1140 /* Pageblock could have been isolated meanwhile */
1141 if (unlikely(isolated_pageblocks))
1142 mt = get_pageblock_migratetype(page);
1143
1144 if (bulkfree_pcp_prepare(page))
1145 continue;
1146
1147 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1148 trace_mm_page_pcpu_drain(page, 0, mt);
1149 } while (--count && --batch_free && !list_empty(list));
1150 }
1151 spin_unlock(&zone->lock);
1152 }
1153
1154 static void free_one_page(struct zone *zone,
1155 struct page *page, unsigned long pfn,
1156 unsigned int order,
1157 int migratetype)
1158 {
1159 spin_lock(&zone->lock);
1160 if (unlikely(has_isolate_pageblock(zone) ||
1161 is_migrate_isolate(migratetype))) {
1162 migratetype = get_pfnblock_migratetype(page, pfn);
1163 }
1164 __free_one_page(page, pfn, zone, order, migratetype);
1165 spin_unlock(&zone->lock);
1166 }
1167
1168 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1169 unsigned long zone, int nid)
1170 {
1171 set_page_links(page, zone, nid, pfn);
1172 init_page_count(page);
1173 page_mapcount_reset(page);
1174 page_cpupid_reset_last(page);
1175
1176 INIT_LIST_HEAD(&page->lru);
1177 #ifdef WANT_PAGE_VIRTUAL
1178 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1179 if (!is_highmem_idx(zone))
1180 set_page_address(page, __va(pfn << PAGE_SHIFT));
1181 #endif
1182 }
1183
1184 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1185 int nid)
1186 {
1187 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1188 }
1189
1190 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1191 static void init_reserved_page(unsigned long pfn)
1192 {
1193 pg_data_t *pgdat;
1194 int nid, zid;
1195
1196 if (!early_page_uninitialised(pfn))
1197 return;
1198
1199 nid = early_pfn_to_nid(pfn);
1200 pgdat = NODE_DATA(nid);
1201
1202 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1203 struct zone *zone = &pgdat->node_zones[zid];
1204
1205 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1206 break;
1207 }
1208 __init_single_pfn(pfn, zid, nid);
1209 }
1210 #else
1211 static inline void init_reserved_page(unsigned long pfn)
1212 {
1213 }
1214 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1215
1216 /*
1217 * Initialised pages do not have PageReserved set. This function is
1218 * called for each range allocated by the bootmem allocator and
1219 * marks the pages PageReserved. The remaining valid pages are later
1220 * sent to the buddy page allocator.
1221 */
1222 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1223 {
1224 unsigned long start_pfn = PFN_DOWN(start);
1225 unsigned long end_pfn = PFN_UP(end);
1226
1227 for (; start_pfn < end_pfn; start_pfn++) {
1228 if (pfn_valid(start_pfn)) {
1229 struct page *page = pfn_to_page(start_pfn);
1230
1231 init_reserved_page(start_pfn);
1232
1233 /* Avoid false-positive PageTail() */
1234 INIT_LIST_HEAD(&page->lru);
1235
1236 SetPageReserved(page);
1237 }
1238 }
1239 }
1240
1241 static void __free_pages_ok(struct page *page, unsigned int order)
1242 {
1243 unsigned long flags;
1244 int migratetype;
1245 unsigned long pfn = page_to_pfn(page);
1246
1247 if (!free_pages_prepare(page, order, true))
1248 return;
1249
1250 migratetype = get_pfnblock_migratetype(page, pfn);
1251 local_irq_save(flags);
1252 __count_vm_events(PGFREE, 1 << order);
1253 free_one_page(page_zone(page), page, pfn, order, migratetype);
1254 local_irq_restore(flags);
1255 }
1256
1257 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1258 {
1259 unsigned int nr_pages = 1 << order;
1260 struct page *p = page;
1261 unsigned int loop;
1262
1263 prefetchw(p);
1264 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1265 prefetchw(p + 1);
1266 __ClearPageReserved(p);
1267 set_page_count(p, 0);
1268 }
1269 __ClearPageReserved(p);
1270 set_page_count(p, 0);
1271
1272 page_zone(page)->managed_pages += nr_pages;
1273 set_page_refcounted(page);
1274 __free_pages(page, order);
1275 }
1276
1277 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1278 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1279
1280 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1281
1282 int __meminit early_pfn_to_nid(unsigned long pfn)
1283 {
1284 static DEFINE_SPINLOCK(early_pfn_lock);
1285 int nid;
1286
1287 spin_lock(&early_pfn_lock);
1288 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1289 if (nid < 0)
1290 nid = first_online_node;
1291 spin_unlock(&early_pfn_lock);
1292
1293 return nid;
1294 }
1295 #endif
1296
1297 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1298 static inline bool __meminit __maybe_unused
1299 meminit_pfn_in_nid(unsigned long pfn, int node,
1300 struct mminit_pfnnid_cache *state)
1301 {
1302 int nid;
1303
1304 nid = __early_pfn_to_nid(pfn, state);
1305 if (nid >= 0 && nid != node)
1306 return false;
1307 return true;
1308 }
1309
1310 /* Only safe to use early in boot when initialisation is single-threaded */
1311 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1312 {
1313 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1314 }
1315
1316 #else
1317
1318 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1319 {
1320 return true;
1321 }
1322 static inline bool __meminit __maybe_unused
1323 meminit_pfn_in_nid(unsigned long pfn, int node,
1324 struct mminit_pfnnid_cache *state)
1325 {
1326 return true;
1327 }
1328 #endif
1329
1330
1331 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1332 unsigned int order)
1333 {
1334 if (early_page_uninitialised(pfn))
1335 return;
1336 return __free_pages_boot_core(page, order);
1337 }
1338
1339 /*
1340 * Check that the whole (or subset of) a pageblock given by the interval of
1341 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1342 * with the migration of free compaction scanner. The scanners then need to
1343 * use only pfn_valid_within() check for arches that allow holes within
1344 * pageblocks.
1345 *
1346 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1347 *
1348 * It's possible on some configurations to have a setup like node0 node1 node0
1349 * i.e. it's possible that all pages within a zones range of pages do not
1350 * belong to a single zone. We assume that a border between node0 and node1
1351 * can occur within a single pageblock, but not a node0 node1 node0
1352 * interleaving within a single pageblock. It is therefore sufficient to check
1353 * the first and last page of a pageblock and avoid checking each individual
1354 * page in a pageblock.
1355 */
1356 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1357 unsigned long end_pfn, struct zone *zone)
1358 {
1359 struct page *start_page;
1360 struct page *end_page;
1361
1362 /* end_pfn is one past the range we are checking */
1363 end_pfn--;
1364
1365 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1366 return NULL;
1367
1368 start_page = pfn_to_online_page(start_pfn);
1369 if (!start_page)
1370 return NULL;
1371
1372 if (page_zone(start_page) != zone)
1373 return NULL;
1374
1375 end_page = pfn_to_page(end_pfn);
1376
1377 /* This gives a shorter code than deriving page_zone(end_page) */
1378 if (page_zone_id(start_page) != page_zone_id(end_page))
1379 return NULL;
1380
1381 return start_page;
1382 }
1383
1384 void set_zone_contiguous(struct zone *zone)
1385 {
1386 unsigned long block_start_pfn = zone->zone_start_pfn;
1387 unsigned long block_end_pfn;
1388
1389 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1390 for (; block_start_pfn < zone_end_pfn(zone);
1391 block_start_pfn = block_end_pfn,
1392 block_end_pfn += pageblock_nr_pages) {
1393
1394 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1395
1396 if (!__pageblock_pfn_to_page(block_start_pfn,
1397 block_end_pfn, zone))
1398 return;
1399 }
1400
1401 /* We confirm that there is no hole */
1402 zone->contiguous = true;
1403 }
1404
1405 void clear_zone_contiguous(struct zone *zone)
1406 {
1407 zone->contiguous = false;
1408 }
1409
1410 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1411 static void __init deferred_free_range(struct page *page,
1412 unsigned long pfn, int nr_pages)
1413 {
1414 int i;
1415
1416 if (!page)
1417 return;
1418
1419 /* Free a large naturally-aligned chunk if possible */
1420 if (nr_pages == pageblock_nr_pages &&
1421 (pfn & (pageblock_nr_pages - 1)) == 0) {
1422 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1423 __free_pages_boot_core(page, pageblock_order);
1424 return;
1425 }
1426
1427 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1428 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1429 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1430 __free_pages_boot_core(page, 0);
1431 }
1432 }
1433
1434 /* Completion tracking for deferred_init_memmap() threads */
1435 static atomic_t pgdat_init_n_undone __initdata;
1436 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1437
1438 static inline void __init pgdat_init_report_one_done(void)
1439 {
1440 if (atomic_dec_and_test(&pgdat_init_n_undone))
1441 complete(&pgdat_init_all_done_comp);
1442 }
1443
1444 /* Initialise remaining memory on a node */
1445 static int __init deferred_init_memmap(void *data)
1446 {
1447 pg_data_t *pgdat = data;
1448 int nid = pgdat->node_id;
1449 struct mminit_pfnnid_cache nid_init_state = { };
1450 unsigned long start = jiffies;
1451 unsigned long nr_pages = 0;
1452 unsigned long walk_start, walk_end;
1453 int i, zid;
1454 struct zone *zone;
1455 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1456 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1457
1458 if (first_init_pfn == ULONG_MAX) {
1459 pgdat_init_report_one_done();
1460 return 0;
1461 }
1462
1463 /* Bind memory initialisation thread to a local node if possible */
1464 if (!cpumask_empty(cpumask))
1465 set_cpus_allowed_ptr(current, cpumask);
1466
1467 /* Sanity check boundaries */
1468 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1469 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1470 pgdat->first_deferred_pfn = ULONG_MAX;
1471
1472 /* Only the highest zone is deferred so find it */
1473 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1474 zone = pgdat->node_zones + zid;
1475 if (first_init_pfn < zone_end_pfn(zone))
1476 break;
1477 }
1478
1479 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1480 unsigned long pfn, end_pfn;
1481 struct page *page = NULL;
1482 struct page *free_base_page = NULL;
1483 unsigned long free_base_pfn = 0;
1484 int nr_to_free = 0;
1485
1486 end_pfn = min(walk_end, zone_end_pfn(zone));
1487 pfn = first_init_pfn;
1488 if (pfn < walk_start)
1489 pfn = walk_start;
1490 if (pfn < zone->zone_start_pfn)
1491 pfn = zone->zone_start_pfn;
1492
1493 for (; pfn < end_pfn; pfn++) {
1494 if (!pfn_valid_within(pfn))
1495 goto free_range;
1496
1497 /*
1498 * Ensure pfn_valid is checked every
1499 * pageblock_nr_pages for memory holes
1500 */
1501 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1502 if (!pfn_valid(pfn)) {
1503 page = NULL;
1504 goto free_range;
1505 }
1506 }
1507
1508 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1509 page = NULL;
1510 goto free_range;
1511 }
1512
1513 /* Minimise pfn page lookups and scheduler checks */
1514 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1515 page++;
1516 } else {
1517 nr_pages += nr_to_free;
1518 deferred_free_range(free_base_page,
1519 free_base_pfn, nr_to_free);
1520 free_base_page = NULL;
1521 free_base_pfn = nr_to_free = 0;
1522
1523 page = pfn_to_page(pfn);
1524 cond_resched();
1525 }
1526
1527 if (page->flags) {
1528 VM_BUG_ON(page_zone(page) != zone);
1529 goto free_range;
1530 }
1531
1532 __init_single_page(page, pfn, zid, nid);
1533 if (!free_base_page) {
1534 free_base_page = page;
1535 free_base_pfn = pfn;
1536 nr_to_free = 0;
1537 }
1538 nr_to_free++;
1539
1540 /* Where possible, batch up pages for a single free */
1541 continue;
1542 free_range:
1543 /* Free the current block of pages to allocator */
1544 nr_pages += nr_to_free;
1545 deferred_free_range(free_base_page, free_base_pfn,
1546 nr_to_free);
1547 free_base_page = NULL;
1548 free_base_pfn = nr_to_free = 0;
1549 }
1550 /* Free the last block of pages to allocator */
1551 nr_pages += nr_to_free;
1552 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1553
1554 first_init_pfn = max(end_pfn, first_init_pfn);
1555 }
1556
1557 /* Sanity check that the next zone really is unpopulated */
1558 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1559
1560 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1561 jiffies_to_msecs(jiffies - start));
1562
1563 pgdat_init_report_one_done();
1564 return 0;
1565 }
1566 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1567
1568 void __init page_alloc_init_late(void)
1569 {
1570 struct zone *zone;
1571
1572 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1573 int nid;
1574
1575 /* There will be num_node_state(N_MEMORY) threads */
1576 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1577 for_each_node_state(nid, N_MEMORY) {
1578 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1579 }
1580
1581 /* Block until all are initialised */
1582 wait_for_completion(&pgdat_init_all_done_comp);
1583
1584 /* Reinit limits that are based on free pages after the kernel is up */
1585 files_maxfiles_init();
1586 #endif
1587
1588 for_each_populated_zone(zone)
1589 set_zone_contiguous(zone);
1590 }
1591
1592 #ifdef CONFIG_CMA
1593 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1594 void __init init_cma_reserved_pageblock(struct page *page)
1595 {
1596 unsigned i = pageblock_nr_pages;
1597 struct page *p = page;
1598
1599 do {
1600 __ClearPageReserved(p);
1601 set_page_count(p, 0);
1602 } while (++p, --i);
1603
1604 set_pageblock_migratetype(page, MIGRATE_CMA);
1605
1606 if (pageblock_order >= MAX_ORDER) {
1607 i = pageblock_nr_pages;
1608 p = page;
1609 do {
1610 set_page_refcounted(p);
1611 __free_pages(p, MAX_ORDER - 1);
1612 p += MAX_ORDER_NR_PAGES;
1613 } while (i -= MAX_ORDER_NR_PAGES);
1614 } else {
1615 set_page_refcounted(page);
1616 __free_pages(page, pageblock_order);
1617 }
1618
1619 adjust_managed_page_count(page, pageblock_nr_pages);
1620 }
1621 #endif
1622
1623 /*
1624 * The order of subdivision here is critical for the IO subsystem.
1625 * Please do not alter this order without good reasons and regression
1626 * testing. Specifically, as large blocks of memory are subdivided,
1627 * the order in which smaller blocks are delivered depends on the order
1628 * they're subdivided in this function. This is the primary factor
1629 * influencing the order in which pages are delivered to the IO
1630 * subsystem according to empirical testing, and this is also justified
1631 * by considering the behavior of a buddy system containing a single
1632 * large block of memory acted on by a series of small allocations.
1633 * This behavior is a critical factor in sglist merging's success.
1634 *
1635 * -- nyc
1636 */
1637 static inline void expand(struct zone *zone, struct page *page,
1638 int low, int high, struct free_area *area,
1639 int migratetype)
1640 {
1641 unsigned long size = 1 << high;
1642
1643 while (high > low) {
1644 area--;
1645 high--;
1646 size >>= 1;
1647 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1648
1649 /*
1650 * Mark as guard pages (or page), that will allow to
1651 * merge back to allocator when buddy will be freed.
1652 * Corresponding page table entries will not be touched,
1653 * pages will stay not present in virtual address space
1654 */
1655 if (set_page_guard(zone, &page[size], high, migratetype))
1656 continue;
1657
1658 list_add(&page[size].lru, &area->free_list[migratetype]);
1659 area->nr_free++;
1660 set_page_order(&page[size], high);
1661 }
1662 }
1663
1664 static void check_new_page_bad(struct page *page)
1665 {
1666 const char *bad_reason = NULL;
1667 unsigned long bad_flags = 0;
1668
1669 if (unlikely(atomic_read(&page->_mapcount) != -1))
1670 bad_reason = "nonzero mapcount";
1671 if (unlikely(page->mapping != NULL))
1672 bad_reason = "non-NULL mapping";
1673 if (unlikely(page_ref_count(page) != 0))
1674 bad_reason = "nonzero _count";
1675 if (unlikely(page->flags & __PG_HWPOISON)) {
1676 bad_reason = "HWPoisoned (hardware-corrupted)";
1677 bad_flags = __PG_HWPOISON;
1678 /* Don't complain about hwpoisoned pages */
1679 page_mapcount_reset(page); /* remove PageBuddy */
1680 return;
1681 }
1682 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1683 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1684 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1685 }
1686 #ifdef CONFIG_MEMCG
1687 if (unlikely(page->mem_cgroup))
1688 bad_reason = "page still charged to cgroup";
1689 #endif
1690 bad_page(page, bad_reason, bad_flags);
1691 }
1692
1693 /*
1694 * This page is about to be returned from the page allocator
1695 */
1696 static inline int check_new_page(struct page *page)
1697 {
1698 if (likely(page_expected_state(page,
1699 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1700 return 0;
1701
1702 check_new_page_bad(page);
1703 return 1;
1704 }
1705
1706 static inline bool free_pages_prezeroed(void)
1707 {
1708 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1709 page_poisoning_enabled();
1710 }
1711
1712 #ifdef CONFIG_DEBUG_VM
1713 static bool check_pcp_refill(struct page *page)
1714 {
1715 return false;
1716 }
1717
1718 static bool check_new_pcp(struct page *page)
1719 {
1720 return check_new_page(page);
1721 }
1722 #else
1723 static bool check_pcp_refill(struct page *page)
1724 {
1725 return check_new_page(page);
1726 }
1727 static bool check_new_pcp(struct page *page)
1728 {
1729 return false;
1730 }
1731 #endif /* CONFIG_DEBUG_VM */
1732
1733 static bool check_new_pages(struct page *page, unsigned int order)
1734 {
1735 int i;
1736 for (i = 0; i < (1 << order); i++) {
1737 struct page *p = page + i;
1738
1739 if (unlikely(check_new_page(p)))
1740 return true;
1741 }
1742
1743 return false;
1744 }
1745
1746 inline void post_alloc_hook(struct page *page, unsigned int order,
1747 gfp_t gfp_flags)
1748 {
1749 set_page_private(page, 0);
1750 set_page_refcounted(page);
1751
1752 arch_alloc_page(page, order);
1753 kernel_map_pages(page, 1 << order, 1);
1754 kernel_poison_pages(page, 1 << order, 1);
1755 kasan_alloc_pages(page, order);
1756 set_page_owner(page, order, gfp_flags);
1757 }
1758
1759 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1760 unsigned int alloc_flags)
1761 {
1762 int i;
1763
1764 post_alloc_hook(page, order, gfp_flags);
1765
1766 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1767 for (i = 0; i < (1 << order); i++)
1768 clear_highpage(page + i);
1769
1770 if (order && (gfp_flags & __GFP_COMP))
1771 prep_compound_page(page, order);
1772
1773 /*
1774 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1775 * allocate the page. The expectation is that the caller is taking
1776 * steps that will free more memory. The caller should avoid the page
1777 * being used for !PFMEMALLOC purposes.
1778 */
1779 if (alloc_flags & ALLOC_NO_WATERMARKS)
1780 set_page_pfmemalloc(page);
1781 else
1782 clear_page_pfmemalloc(page);
1783 }
1784
1785 /*
1786 * Go through the free lists for the given migratetype and remove
1787 * the smallest available page from the freelists
1788 */
1789 static inline
1790 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1791 int migratetype)
1792 {
1793 unsigned int current_order;
1794 struct free_area *area;
1795 struct page *page;
1796
1797 /* Find a page of the appropriate size in the preferred list */
1798 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1799 area = &(zone->free_area[current_order]);
1800 page = list_first_entry_or_null(&area->free_list[migratetype],
1801 struct page, lru);
1802 if (!page)
1803 continue;
1804 list_del(&page->lru);
1805 rmv_page_order(page);
1806 area->nr_free--;
1807 expand(zone, page, order, current_order, area, migratetype);
1808 set_pcppage_migratetype(page, migratetype);
1809 return page;
1810 }
1811
1812 return NULL;
1813 }
1814
1815
1816 /*
1817 * This array describes the order lists are fallen back to when
1818 * the free lists for the desirable migrate type are depleted
1819 */
1820 static int fallbacks[MIGRATE_TYPES][4] = {
1821 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1822 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1823 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1824 #ifdef CONFIG_CMA
1825 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1826 #endif
1827 #ifdef CONFIG_MEMORY_ISOLATION
1828 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1829 #endif
1830 };
1831
1832 #ifdef CONFIG_CMA
1833 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1834 unsigned int order)
1835 {
1836 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1837 }
1838 #else
1839 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1840 unsigned int order) { return NULL; }
1841 #endif
1842
1843 /*
1844 * Move the free pages in a range to the free lists of the requested type.
1845 * Note that start_page and end_pages are not aligned on a pageblock
1846 * boundary. If alignment is required, use move_freepages_block()
1847 */
1848 static int move_freepages(struct zone *zone,
1849 struct page *start_page, struct page *end_page,
1850 int migratetype, int *num_movable)
1851 {
1852 struct page *page;
1853 unsigned int order;
1854 int pages_moved = 0;
1855
1856 #ifndef CONFIG_HOLES_IN_ZONE
1857 /*
1858 * page_zone is not safe to call in this context when
1859 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1860 * anyway as we check zone boundaries in move_freepages_block().
1861 * Remove at a later date when no bug reports exist related to
1862 * grouping pages by mobility
1863 */
1864 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1865 #endif
1866
1867 if (num_movable)
1868 *num_movable = 0;
1869
1870 for (page = start_page; page <= end_page;) {
1871 if (!pfn_valid_within(page_to_pfn(page))) {
1872 page++;
1873 continue;
1874 }
1875
1876 /* Make sure we are not inadvertently changing nodes */
1877 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1878
1879 if (!PageBuddy(page)) {
1880 /*
1881 * We assume that pages that could be isolated for
1882 * migration are movable. But we don't actually try
1883 * isolating, as that would be expensive.
1884 */
1885 if (num_movable &&
1886 (PageLRU(page) || __PageMovable(page)))
1887 (*num_movable)++;
1888
1889 page++;
1890 continue;
1891 }
1892
1893 order = page_order(page);
1894 list_move(&page->lru,
1895 &zone->free_area[order].free_list[migratetype]);
1896 page += 1 << order;
1897 pages_moved += 1 << order;
1898 }
1899
1900 return pages_moved;
1901 }
1902
1903 int move_freepages_block(struct zone *zone, struct page *page,
1904 int migratetype, int *num_movable)
1905 {
1906 unsigned long start_pfn, end_pfn;
1907 struct page *start_page, *end_page;
1908
1909 start_pfn = page_to_pfn(page);
1910 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1911 start_page = pfn_to_page(start_pfn);
1912 end_page = start_page + pageblock_nr_pages - 1;
1913 end_pfn = start_pfn + pageblock_nr_pages - 1;
1914
1915 /* Do not cross zone boundaries */
1916 if (!zone_spans_pfn(zone, start_pfn))
1917 start_page = page;
1918 if (!zone_spans_pfn(zone, end_pfn))
1919 return 0;
1920
1921 return move_freepages(zone, start_page, end_page, migratetype,
1922 num_movable);
1923 }
1924
1925 static void change_pageblock_range(struct page *pageblock_page,
1926 int start_order, int migratetype)
1927 {
1928 int nr_pageblocks = 1 << (start_order - pageblock_order);
1929
1930 while (nr_pageblocks--) {
1931 set_pageblock_migratetype(pageblock_page, migratetype);
1932 pageblock_page += pageblock_nr_pages;
1933 }
1934 }
1935
1936 /*
1937 * When we are falling back to another migratetype during allocation, try to
1938 * steal extra free pages from the same pageblocks to satisfy further
1939 * allocations, instead of polluting multiple pageblocks.
1940 *
1941 * If we are stealing a relatively large buddy page, it is likely there will
1942 * be more free pages in the pageblock, so try to steal them all. For
1943 * reclaimable and unmovable allocations, we steal regardless of page size,
1944 * as fragmentation caused by those allocations polluting movable pageblocks
1945 * is worse than movable allocations stealing from unmovable and reclaimable
1946 * pageblocks.
1947 */
1948 static bool can_steal_fallback(unsigned int order, int start_mt)
1949 {
1950 /*
1951 * Leaving this order check is intended, although there is
1952 * relaxed order check in next check. The reason is that
1953 * we can actually steal whole pageblock if this condition met,
1954 * but, below check doesn't guarantee it and that is just heuristic
1955 * so could be changed anytime.
1956 */
1957 if (order >= pageblock_order)
1958 return true;
1959
1960 if (order >= pageblock_order / 2 ||
1961 start_mt == MIGRATE_RECLAIMABLE ||
1962 start_mt == MIGRATE_UNMOVABLE ||
1963 page_group_by_mobility_disabled)
1964 return true;
1965
1966 return false;
1967 }
1968
1969 /*
1970 * This function implements actual steal behaviour. If order is large enough,
1971 * we can steal whole pageblock. If not, we first move freepages in this
1972 * pageblock to our migratetype and determine how many already-allocated pages
1973 * are there in the pageblock with a compatible migratetype. If at least half
1974 * of pages are free or compatible, we can change migratetype of the pageblock
1975 * itself, so pages freed in the future will be put on the correct free list.
1976 */
1977 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1978 int start_type, bool whole_block)
1979 {
1980 unsigned int current_order = page_order(page);
1981 struct free_area *area;
1982 int free_pages, movable_pages, alike_pages;
1983 int old_block_type;
1984
1985 old_block_type = get_pageblock_migratetype(page);
1986
1987 /*
1988 * This can happen due to races and we want to prevent broken
1989 * highatomic accounting.
1990 */
1991 if (is_migrate_highatomic(old_block_type))
1992 goto single_page;
1993
1994 /* Take ownership for orders >= pageblock_order */
1995 if (current_order >= pageblock_order) {
1996 change_pageblock_range(page, current_order, start_type);
1997 goto single_page;
1998 }
1999
2000 /* We are not allowed to try stealing from the whole block */
2001 if (!whole_block)
2002 goto single_page;
2003
2004 free_pages = move_freepages_block(zone, page, start_type,
2005 &movable_pages);
2006 /*
2007 * Determine how many pages are compatible with our allocation.
2008 * For movable allocation, it's the number of movable pages which
2009 * we just obtained. For other types it's a bit more tricky.
2010 */
2011 if (start_type == MIGRATE_MOVABLE) {
2012 alike_pages = movable_pages;
2013 } else {
2014 /*
2015 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2016 * to MOVABLE pageblock, consider all non-movable pages as
2017 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2018 * vice versa, be conservative since we can't distinguish the
2019 * exact migratetype of non-movable pages.
2020 */
2021 if (old_block_type == MIGRATE_MOVABLE)
2022 alike_pages = pageblock_nr_pages
2023 - (free_pages + movable_pages);
2024 else
2025 alike_pages = 0;
2026 }
2027
2028 /* moving whole block can fail due to zone boundary conditions */
2029 if (!free_pages)
2030 goto single_page;
2031
2032 /*
2033 * If a sufficient number of pages in the block are either free or of
2034 * comparable migratability as our allocation, claim the whole block.
2035 */
2036 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2037 page_group_by_mobility_disabled)
2038 set_pageblock_migratetype(page, start_type);
2039
2040 return;
2041
2042 single_page:
2043 area = &zone->free_area[current_order];
2044 list_move(&page->lru, &area->free_list[start_type]);
2045 }
2046
2047 /*
2048 * Check whether there is a suitable fallback freepage with requested order.
2049 * If only_stealable is true, this function returns fallback_mt only if
2050 * we can steal other freepages all together. This would help to reduce
2051 * fragmentation due to mixed migratetype pages in one pageblock.
2052 */
2053 int find_suitable_fallback(struct free_area *area, unsigned int order,
2054 int migratetype, bool only_stealable, bool *can_steal)
2055 {
2056 int i;
2057 int fallback_mt;
2058
2059 if (area->nr_free == 0)
2060 return -1;
2061
2062 *can_steal = false;
2063 for (i = 0;; i++) {
2064 fallback_mt = fallbacks[migratetype][i];
2065 if (fallback_mt == MIGRATE_TYPES)
2066 break;
2067
2068 if (list_empty(&area->free_list[fallback_mt]))
2069 continue;
2070
2071 if (can_steal_fallback(order, migratetype))
2072 *can_steal = true;
2073
2074 if (!only_stealable)
2075 return fallback_mt;
2076
2077 if (*can_steal)
2078 return fallback_mt;
2079 }
2080
2081 return -1;
2082 }
2083
2084 /*
2085 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2086 * there are no empty page blocks that contain a page with a suitable order
2087 */
2088 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2089 unsigned int alloc_order)
2090 {
2091 int mt;
2092 unsigned long max_managed, flags;
2093
2094 /*
2095 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2096 * Check is race-prone but harmless.
2097 */
2098 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2099 if (zone->nr_reserved_highatomic >= max_managed)
2100 return;
2101
2102 spin_lock_irqsave(&zone->lock, flags);
2103
2104 /* Recheck the nr_reserved_highatomic limit under the lock */
2105 if (zone->nr_reserved_highatomic >= max_managed)
2106 goto out_unlock;
2107
2108 /* Yoink! */
2109 mt = get_pageblock_migratetype(page);
2110 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2111 && !is_migrate_cma(mt)) {
2112 zone->nr_reserved_highatomic += pageblock_nr_pages;
2113 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2114 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2115 }
2116
2117 out_unlock:
2118 spin_unlock_irqrestore(&zone->lock, flags);
2119 }
2120
2121 /*
2122 * Used when an allocation is about to fail under memory pressure. This
2123 * potentially hurts the reliability of high-order allocations when under
2124 * intense memory pressure but failed atomic allocations should be easier
2125 * to recover from than an OOM.
2126 *
2127 * If @force is true, try to unreserve a pageblock even though highatomic
2128 * pageblock is exhausted.
2129 */
2130 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2131 bool force)
2132 {
2133 struct zonelist *zonelist = ac->zonelist;
2134 unsigned long flags;
2135 struct zoneref *z;
2136 struct zone *zone;
2137 struct page *page;
2138 int order;
2139 bool ret;
2140
2141 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2142 ac->nodemask) {
2143 /*
2144 * Preserve at least one pageblock unless memory pressure
2145 * is really high.
2146 */
2147 if (!force && zone->nr_reserved_highatomic <=
2148 pageblock_nr_pages)
2149 continue;
2150
2151 spin_lock_irqsave(&zone->lock, flags);
2152 for (order = 0; order < MAX_ORDER; order++) {
2153 struct free_area *area = &(zone->free_area[order]);
2154
2155 page = list_first_entry_or_null(
2156 &area->free_list[MIGRATE_HIGHATOMIC],
2157 struct page, lru);
2158 if (!page)
2159 continue;
2160
2161 /*
2162 * In page freeing path, migratetype change is racy so
2163 * we can counter several free pages in a pageblock
2164 * in this loop althoug we changed the pageblock type
2165 * from highatomic to ac->migratetype. So we should
2166 * adjust the count once.
2167 */
2168 if (is_migrate_highatomic_page(page)) {
2169 /*
2170 * It should never happen but changes to
2171 * locking could inadvertently allow a per-cpu
2172 * drain to add pages to MIGRATE_HIGHATOMIC
2173 * while unreserving so be safe and watch for
2174 * underflows.
2175 */
2176 zone->nr_reserved_highatomic -= min(
2177 pageblock_nr_pages,
2178 zone->nr_reserved_highatomic);
2179 }
2180
2181 /*
2182 * Convert to ac->migratetype and avoid the normal
2183 * pageblock stealing heuristics. Minimally, the caller
2184 * is doing the work and needs the pages. More
2185 * importantly, if the block was always converted to
2186 * MIGRATE_UNMOVABLE or another type then the number
2187 * of pageblocks that cannot be completely freed
2188 * may increase.
2189 */
2190 set_pageblock_migratetype(page, ac->migratetype);
2191 ret = move_freepages_block(zone, page, ac->migratetype,
2192 NULL);
2193 if (ret) {
2194 spin_unlock_irqrestore(&zone->lock, flags);
2195 return ret;
2196 }
2197 }
2198 spin_unlock_irqrestore(&zone->lock, flags);
2199 }
2200
2201 return false;
2202 }
2203
2204 /*
2205 * Try finding a free buddy page on the fallback list and put it on the free
2206 * list of requested migratetype, possibly along with other pages from the same
2207 * block, depending on fragmentation avoidance heuristics. Returns true if
2208 * fallback was found so that __rmqueue_smallest() can grab it.
2209 */
2210 static inline bool
2211 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2212 {
2213 struct free_area *area;
2214 unsigned int current_order;
2215 struct page *page;
2216 int fallback_mt;
2217 bool can_steal;
2218
2219 /*
2220 * Find the largest available free page in the other list. This roughly
2221 * approximates finding the pageblock with the most free pages, which
2222 * would be too costly to do exactly.
2223 */
2224 for (current_order = MAX_ORDER-1;
2225 current_order >= order && current_order <= MAX_ORDER-1;
2226 --current_order) {
2227 area = &(zone->free_area[current_order]);
2228 fallback_mt = find_suitable_fallback(area, current_order,
2229 start_migratetype, false, &can_steal);
2230 if (fallback_mt == -1)
2231 continue;
2232
2233 /*
2234 * We cannot steal all free pages from the pageblock and the
2235 * requested migratetype is movable. In that case it's better to
2236 * steal and split the smallest available page instead of the
2237 * largest available page, because even if the next movable
2238 * allocation falls back into a different pageblock than this
2239 * one, it won't cause permanent fragmentation.
2240 */
2241 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2242 && current_order > order)
2243 goto find_smallest;
2244
2245 goto do_steal;
2246 }
2247
2248 return false;
2249
2250 find_smallest:
2251 for (current_order = order; current_order < MAX_ORDER;
2252 current_order++) {
2253 area = &(zone->free_area[current_order]);
2254 fallback_mt = find_suitable_fallback(area, current_order,
2255 start_migratetype, false, &can_steal);
2256 if (fallback_mt != -1)
2257 break;
2258 }
2259
2260 /*
2261 * This should not happen - we already found a suitable fallback
2262 * when looking for the largest page.
2263 */
2264 VM_BUG_ON(current_order == MAX_ORDER);
2265
2266 do_steal:
2267 page = list_first_entry(&area->free_list[fallback_mt],
2268 struct page, lru);
2269
2270 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2271
2272 trace_mm_page_alloc_extfrag(page, order, current_order,
2273 start_migratetype, fallback_mt);
2274
2275 return true;
2276
2277 }
2278
2279 /*
2280 * Do the hard work of removing an element from the buddy allocator.
2281 * Call me with the zone->lock already held.
2282 */
2283 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2284 int migratetype)
2285 {
2286 struct page *page;
2287
2288 retry:
2289 page = __rmqueue_smallest(zone, order, migratetype);
2290 if (unlikely(!page)) {
2291 if (migratetype == MIGRATE_MOVABLE)
2292 page = __rmqueue_cma_fallback(zone, order);
2293
2294 if (!page && __rmqueue_fallback(zone, order, migratetype))
2295 goto retry;
2296 }
2297
2298 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2299 return page;
2300 }
2301
2302 /*
2303 * Obtain a specified number of elements from the buddy allocator, all under
2304 * a single hold of the lock, for efficiency. Add them to the supplied list.
2305 * Returns the number of new pages which were placed at *list.
2306 */
2307 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2308 unsigned long count, struct list_head *list,
2309 int migratetype, bool cold)
2310 {
2311 int i, alloced = 0;
2312
2313 spin_lock(&zone->lock);
2314 for (i = 0; i < count; ++i) {
2315 struct page *page = __rmqueue(zone, order, migratetype);
2316 if (unlikely(page == NULL))
2317 break;
2318
2319 if (unlikely(check_pcp_refill(page)))
2320 continue;
2321
2322 /*
2323 * Split buddy pages returned by expand() are received here
2324 * in physical page order. The page is added to the callers and
2325 * list and the list head then moves forward. From the callers
2326 * perspective, the linked list is ordered by page number in
2327 * some conditions. This is useful for IO devices that can
2328 * merge IO requests if the physical pages are ordered
2329 * properly.
2330 */
2331 if (likely(!cold))
2332 list_add(&page->lru, list);
2333 else
2334 list_add_tail(&page->lru, list);
2335 list = &page->lru;
2336 alloced++;
2337 if (is_migrate_cma(get_pcppage_migratetype(page)))
2338 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2339 -(1 << order));
2340 }
2341
2342 /*
2343 * i pages were removed from the buddy list even if some leak due
2344 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2345 * on i. Do not confuse with 'alloced' which is the number of
2346 * pages added to the pcp list.
2347 */
2348 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2349 spin_unlock(&zone->lock);
2350 return alloced;
2351 }
2352
2353 #ifdef CONFIG_NUMA
2354 /*
2355 * Called from the vmstat counter updater to drain pagesets of this
2356 * currently executing processor on remote nodes after they have
2357 * expired.
2358 *
2359 * Note that this function must be called with the thread pinned to
2360 * a single processor.
2361 */
2362 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2363 {
2364 unsigned long flags;
2365 int to_drain, batch;
2366
2367 local_irq_save(flags);
2368 batch = READ_ONCE(pcp->batch);
2369 to_drain = min(pcp->count, batch);
2370 if (to_drain > 0) {
2371 free_pcppages_bulk(zone, to_drain, pcp);
2372 pcp->count -= to_drain;
2373 }
2374 local_irq_restore(flags);
2375 }
2376 #endif
2377
2378 /*
2379 * Drain pcplists of the indicated processor and zone.
2380 *
2381 * The processor must either be the current processor and the
2382 * thread pinned to the current processor or a processor that
2383 * is not online.
2384 */
2385 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2386 {
2387 unsigned long flags;
2388 struct per_cpu_pageset *pset;
2389 struct per_cpu_pages *pcp;
2390
2391 local_irq_save(flags);
2392 pset = per_cpu_ptr(zone->pageset, cpu);
2393
2394 pcp = &pset->pcp;
2395 if (pcp->count) {
2396 free_pcppages_bulk(zone, pcp->count, pcp);
2397 pcp->count = 0;
2398 }
2399 local_irq_restore(flags);
2400 }
2401
2402 /*
2403 * Drain pcplists of all zones on the indicated processor.
2404 *
2405 * The processor must either be the current processor and the
2406 * thread pinned to the current processor or a processor that
2407 * is not online.
2408 */
2409 static void drain_pages(unsigned int cpu)
2410 {
2411 struct zone *zone;
2412
2413 for_each_populated_zone(zone) {
2414 drain_pages_zone(cpu, zone);
2415 }
2416 }
2417
2418 /*
2419 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2420 *
2421 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2422 * the single zone's pages.
2423 */
2424 void drain_local_pages(struct zone *zone)
2425 {
2426 int cpu = smp_processor_id();
2427
2428 if (zone)
2429 drain_pages_zone(cpu, zone);
2430 else
2431 drain_pages(cpu);
2432 }
2433
2434 static void drain_local_pages_wq(struct work_struct *work)
2435 {
2436 /*
2437 * drain_all_pages doesn't use proper cpu hotplug protection so
2438 * we can race with cpu offline when the WQ can move this from
2439 * a cpu pinned worker to an unbound one. We can operate on a different
2440 * cpu which is allright but we also have to make sure to not move to
2441 * a different one.
2442 */
2443 preempt_disable();
2444 drain_local_pages(NULL);
2445 preempt_enable();
2446 }
2447
2448 /*
2449 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2450 *
2451 * When zone parameter is non-NULL, spill just the single zone's pages.
2452 *
2453 * Note that this can be extremely slow as the draining happens in a workqueue.
2454 */
2455 void drain_all_pages(struct zone *zone)
2456 {
2457 int cpu;
2458
2459 /*
2460 * Allocate in the BSS so we wont require allocation in
2461 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2462 */
2463 static cpumask_t cpus_with_pcps;
2464
2465 /*
2466 * Make sure nobody triggers this path before mm_percpu_wq is fully
2467 * initialized.
2468 */
2469 if (WARN_ON_ONCE(!mm_percpu_wq))
2470 return;
2471
2472 /* Workqueues cannot recurse */
2473 if (current->flags & PF_WQ_WORKER)
2474 return;
2475
2476 /*
2477 * Do not drain if one is already in progress unless it's specific to
2478 * a zone. Such callers are primarily CMA and memory hotplug and need
2479 * the drain to be complete when the call returns.
2480 */
2481 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2482 if (!zone)
2483 return;
2484 mutex_lock(&pcpu_drain_mutex);
2485 }
2486
2487 /*
2488 * We don't care about racing with CPU hotplug event
2489 * as offline notification will cause the notified
2490 * cpu to drain that CPU pcps and on_each_cpu_mask
2491 * disables preemption as part of its processing
2492 */
2493 for_each_online_cpu(cpu) {
2494 struct per_cpu_pageset *pcp;
2495 struct zone *z;
2496 bool has_pcps = false;
2497
2498 if (zone) {
2499 pcp = per_cpu_ptr(zone->pageset, cpu);
2500 if (pcp->pcp.count)
2501 has_pcps = true;
2502 } else {
2503 for_each_populated_zone(z) {
2504 pcp = per_cpu_ptr(z->pageset, cpu);
2505 if (pcp->pcp.count) {
2506 has_pcps = true;
2507 break;
2508 }
2509 }
2510 }
2511
2512 if (has_pcps)
2513 cpumask_set_cpu(cpu, &cpus_with_pcps);
2514 else
2515 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2516 }
2517
2518 for_each_cpu(cpu, &cpus_with_pcps) {
2519 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2520 INIT_WORK(work, drain_local_pages_wq);
2521 queue_work_on(cpu, mm_percpu_wq, work);
2522 }
2523 for_each_cpu(cpu, &cpus_with_pcps)
2524 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2525
2526 mutex_unlock(&pcpu_drain_mutex);
2527 }
2528
2529 #ifdef CONFIG_HIBERNATION
2530
2531 void mark_free_pages(struct zone *zone)
2532 {
2533 unsigned long pfn, max_zone_pfn;
2534 unsigned long flags;
2535 unsigned int order, t;
2536 struct page *page;
2537
2538 if (zone_is_empty(zone))
2539 return;
2540
2541 spin_lock_irqsave(&zone->lock, flags);
2542
2543 max_zone_pfn = zone_end_pfn(zone);
2544 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2545 if (pfn_valid(pfn)) {
2546 page = pfn_to_page(pfn);
2547
2548 if (page_zone(page) != zone)
2549 continue;
2550
2551 if (!swsusp_page_is_forbidden(page))
2552 swsusp_unset_page_free(page);
2553 }
2554
2555 for_each_migratetype_order(order, t) {
2556 list_for_each_entry(page,
2557 &zone->free_area[order].free_list[t], lru) {
2558 unsigned long i;
2559
2560 pfn = page_to_pfn(page);
2561 for (i = 0; i < (1UL << order); i++)
2562 swsusp_set_page_free(pfn_to_page(pfn + i));
2563 }
2564 }
2565 spin_unlock_irqrestore(&zone->lock, flags);
2566 }
2567 #endif /* CONFIG_PM */
2568
2569 /*
2570 * Free a 0-order page
2571 * cold == true ? free a cold page : free a hot page
2572 */
2573 void free_hot_cold_page(struct page *page, bool cold)
2574 {
2575 struct zone *zone = page_zone(page);
2576 struct per_cpu_pages *pcp;
2577 unsigned long flags;
2578 unsigned long pfn = page_to_pfn(page);
2579 int migratetype;
2580
2581 if (!free_pcp_prepare(page))
2582 return;
2583
2584 migratetype = get_pfnblock_migratetype(page, pfn);
2585 set_pcppage_migratetype(page, migratetype);
2586 local_irq_save(flags);
2587 __count_vm_event(PGFREE);
2588
2589 /*
2590 * We only track unmovable, reclaimable and movable on pcp lists.
2591 * Free ISOLATE pages back to the allocator because they are being
2592 * offlined but treat HIGHATOMIC as movable pages so we can get those
2593 * areas back if necessary. Otherwise, we may have to free
2594 * excessively into the page allocator
2595 */
2596 if (migratetype >= MIGRATE_PCPTYPES) {
2597 if (unlikely(is_migrate_isolate(migratetype))) {
2598 free_one_page(zone, page, pfn, 0, migratetype);
2599 goto out;
2600 }
2601 migratetype = MIGRATE_MOVABLE;
2602 }
2603
2604 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2605 if (!cold)
2606 list_add(&page->lru, &pcp->lists[migratetype]);
2607 else
2608 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2609 pcp->count++;
2610 if (pcp->count >= pcp->high) {
2611 unsigned long batch = READ_ONCE(pcp->batch);
2612 free_pcppages_bulk(zone, batch, pcp);
2613 pcp->count -= batch;
2614 }
2615
2616 out:
2617 local_irq_restore(flags);
2618 }
2619
2620 /*
2621 * Free a list of 0-order pages
2622 */
2623 void free_hot_cold_page_list(struct list_head *list, bool cold)
2624 {
2625 struct page *page, *next;
2626
2627 list_for_each_entry_safe(page, next, list, lru) {
2628 trace_mm_page_free_batched(page, cold);
2629 free_hot_cold_page(page, cold);
2630 }
2631 }
2632
2633 /*
2634 * split_page takes a non-compound higher-order page, and splits it into
2635 * n (1<<order) sub-pages: page[0..n]
2636 * Each sub-page must be freed individually.
2637 *
2638 * Note: this is probably too low level an operation for use in drivers.
2639 * Please consult with lkml before using this in your driver.
2640 */
2641 void split_page(struct page *page, unsigned int order)
2642 {
2643 int i;
2644
2645 VM_BUG_ON_PAGE(PageCompound(page), page);
2646 VM_BUG_ON_PAGE(!page_count(page), page);
2647
2648 #ifdef CONFIG_KMEMCHECK
2649 /*
2650 * Split shadow pages too, because free(page[0]) would
2651 * otherwise free the whole shadow.
2652 */
2653 if (kmemcheck_page_is_tracked(page))
2654 split_page(virt_to_page(page[0].shadow), order);
2655 #endif
2656
2657 for (i = 1; i < (1 << order); i++)
2658 set_page_refcounted(page + i);
2659 split_page_owner(page, order);
2660 }
2661 EXPORT_SYMBOL_GPL(split_page);
2662
2663 int __isolate_free_page(struct page *page, unsigned int order)
2664 {
2665 unsigned long watermark;
2666 struct zone *zone;
2667 int mt;
2668
2669 BUG_ON(!PageBuddy(page));
2670
2671 zone = page_zone(page);
2672 mt = get_pageblock_migratetype(page);
2673
2674 if (!is_migrate_isolate(mt)) {
2675 /*
2676 * Obey watermarks as if the page was being allocated. We can
2677 * emulate a high-order watermark check with a raised order-0
2678 * watermark, because we already know our high-order page
2679 * exists.
2680 */
2681 watermark = min_wmark_pages(zone) + (1UL << order);
2682 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2683 return 0;
2684
2685 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2686 }
2687
2688 /* Remove page from free list */
2689 list_del(&page->lru);
2690 zone->free_area[order].nr_free--;
2691 rmv_page_order(page);
2692
2693 /*
2694 * Set the pageblock if the isolated page is at least half of a
2695 * pageblock
2696 */
2697 if (order >= pageblock_order - 1) {
2698 struct page *endpage = page + (1 << order) - 1;
2699 for (; page < endpage; page += pageblock_nr_pages) {
2700 int mt = get_pageblock_migratetype(page);
2701 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2702 && !is_migrate_highatomic(mt))
2703 set_pageblock_migratetype(page,
2704 MIGRATE_MOVABLE);
2705 }
2706 }
2707
2708
2709 return 1UL << order;
2710 }
2711
2712 /*
2713 * Update NUMA hit/miss statistics
2714 *
2715 * Must be called with interrupts disabled.
2716 */
2717 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2718 {
2719 #ifdef CONFIG_NUMA
2720 enum zone_stat_item local_stat = NUMA_LOCAL;
2721
2722 if (z->node != numa_node_id())
2723 local_stat = NUMA_OTHER;
2724
2725 if (z->node == preferred_zone->node)
2726 __inc_zone_state(z, NUMA_HIT);
2727 else {
2728 __inc_zone_state(z, NUMA_MISS);
2729 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2730 }
2731 __inc_zone_state(z, local_stat);
2732 #endif
2733 }
2734
2735 /* Remove page from the per-cpu list, caller must protect the list */
2736 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2737 bool cold, struct per_cpu_pages *pcp,
2738 struct list_head *list)
2739 {
2740 struct page *page;
2741
2742 do {
2743 if (list_empty(list)) {
2744 pcp->count += rmqueue_bulk(zone, 0,
2745 pcp->batch, list,
2746 migratetype, cold);
2747 if (unlikely(list_empty(list)))
2748 return NULL;
2749 }
2750
2751 if (cold)
2752 page = list_last_entry(list, struct page, lru);
2753 else
2754 page = list_first_entry(list, struct page, lru);
2755
2756 list_del(&page->lru);
2757 pcp->count--;
2758 } while (check_new_pcp(page));
2759
2760 return page;
2761 }
2762
2763 /* Lock and remove page from the per-cpu list */
2764 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2765 struct zone *zone, unsigned int order,
2766 gfp_t gfp_flags, int migratetype)
2767 {
2768 struct per_cpu_pages *pcp;
2769 struct list_head *list;
2770 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2771 struct page *page;
2772 unsigned long flags;
2773
2774 local_irq_save(flags);
2775 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2776 list = &pcp->lists[migratetype];
2777 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2778 if (page) {
2779 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2780 zone_statistics(preferred_zone, zone);
2781 }
2782 local_irq_restore(flags);
2783 return page;
2784 }
2785
2786 /*
2787 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2788 */
2789 static inline
2790 struct page *rmqueue(struct zone *preferred_zone,
2791 struct zone *zone, unsigned int order,
2792 gfp_t gfp_flags, unsigned int alloc_flags,
2793 int migratetype)
2794 {
2795 unsigned long flags;
2796 struct page *page;
2797
2798 if (likely(order == 0)) {
2799 page = rmqueue_pcplist(preferred_zone, zone, order,
2800 gfp_flags, migratetype);
2801 goto out;
2802 }
2803
2804 /*
2805 * We most definitely don't want callers attempting to
2806 * allocate greater than order-1 page units with __GFP_NOFAIL.
2807 */
2808 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2809 spin_lock_irqsave(&zone->lock, flags);
2810
2811 do {
2812 page = NULL;
2813 if (alloc_flags & ALLOC_HARDER) {
2814 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2815 if (page)
2816 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2817 }
2818 if (!page)
2819 page = __rmqueue(zone, order, migratetype);
2820 } while (page && check_new_pages(page, order));
2821 spin_unlock(&zone->lock);
2822 if (!page)
2823 goto failed;
2824 __mod_zone_freepage_state(zone, -(1 << order),
2825 get_pcppage_migratetype(page));
2826
2827 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2828 zone_statistics(preferred_zone, zone);
2829 local_irq_restore(flags);
2830
2831 out:
2832 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2833 return page;
2834
2835 failed:
2836 local_irq_restore(flags);
2837 return NULL;
2838 }
2839
2840 #ifdef CONFIG_FAIL_PAGE_ALLOC
2841
2842 static struct {
2843 struct fault_attr attr;
2844
2845 bool ignore_gfp_highmem;
2846 bool ignore_gfp_reclaim;
2847 u32 min_order;
2848 } fail_page_alloc = {
2849 .attr = FAULT_ATTR_INITIALIZER,
2850 .ignore_gfp_reclaim = true,
2851 .ignore_gfp_highmem = true,
2852 .min_order = 1,
2853 };
2854
2855 static int __init setup_fail_page_alloc(char *str)
2856 {
2857 return setup_fault_attr(&fail_page_alloc.attr, str);
2858 }
2859 __setup("fail_page_alloc=", setup_fail_page_alloc);
2860
2861 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2862 {
2863 if (order < fail_page_alloc.min_order)
2864 return false;
2865 if (gfp_mask & __GFP_NOFAIL)
2866 return false;
2867 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2868 return false;
2869 if (fail_page_alloc.ignore_gfp_reclaim &&
2870 (gfp_mask & __GFP_DIRECT_RECLAIM))
2871 return false;
2872
2873 return should_fail(&fail_page_alloc.attr, 1 << order);
2874 }
2875
2876 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2877
2878 static int __init fail_page_alloc_debugfs(void)
2879 {
2880 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2881 struct dentry *dir;
2882
2883 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2884 &fail_page_alloc.attr);
2885 if (IS_ERR(dir))
2886 return PTR_ERR(dir);
2887
2888 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2889 &fail_page_alloc.ignore_gfp_reclaim))
2890 goto fail;
2891 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2892 &fail_page_alloc.ignore_gfp_highmem))
2893 goto fail;
2894 if (!debugfs_create_u32("min-order", mode, dir,
2895 &fail_page_alloc.min_order))
2896 goto fail;
2897
2898 return 0;
2899 fail:
2900 debugfs_remove_recursive(dir);
2901
2902 return -ENOMEM;
2903 }
2904
2905 late_initcall(fail_page_alloc_debugfs);
2906
2907 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2908
2909 #else /* CONFIG_FAIL_PAGE_ALLOC */
2910
2911 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2912 {
2913 return false;
2914 }
2915
2916 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2917
2918 /*
2919 * Return true if free base pages are above 'mark'. For high-order checks it
2920 * will return true of the order-0 watermark is reached and there is at least
2921 * one free page of a suitable size. Checking now avoids taking the zone lock
2922 * to check in the allocation paths if no pages are free.
2923 */
2924 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2925 int classzone_idx, unsigned int alloc_flags,
2926 long free_pages)
2927 {
2928 long min = mark;
2929 int o;
2930 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2931
2932 /* free_pages may go negative - that's OK */
2933 free_pages -= (1 << order) - 1;
2934
2935 if (alloc_flags & ALLOC_HIGH)
2936 min -= min / 2;
2937
2938 /*
2939 * If the caller does not have rights to ALLOC_HARDER then subtract
2940 * the high-atomic reserves. This will over-estimate the size of the
2941 * atomic reserve but it avoids a search.
2942 */
2943 if (likely(!alloc_harder))
2944 free_pages -= z->nr_reserved_highatomic;
2945 else
2946 min -= min / 4;
2947
2948 #ifdef CONFIG_CMA
2949 /* If allocation can't use CMA areas don't use free CMA pages */
2950 if (!(alloc_flags & ALLOC_CMA))
2951 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2952 #endif
2953
2954 /*
2955 * Check watermarks for an order-0 allocation request. If these
2956 * are not met, then a high-order request also cannot go ahead
2957 * even if a suitable page happened to be free.
2958 */
2959 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2960 return false;
2961
2962 /* If this is an order-0 request then the watermark is fine */
2963 if (!order)
2964 return true;
2965
2966 /* For a high-order request, check at least one suitable page is free */
2967 for (o = order; o < MAX_ORDER; o++) {
2968 struct free_area *area = &z->free_area[o];
2969 int mt;
2970
2971 if (!area->nr_free)
2972 continue;
2973
2974 if (alloc_harder)
2975 return true;
2976
2977 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2978 if (!list_empty(&area->free_list[mt]))
2979 return true;
2980 }
2981
2982 #ifdef CONFIG_CMA
2983 if ((alloc_flags & ALLOC_CMA) &&
2984 !list_empty(&area->free_list[MIGRATE_CMA])) {
2985 return true;
2986 }
2987 #endif
2988 }
2989 return false;
2990 }
2991
2992 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2993 int classzone_idx, unsigned int alloc_flags)
2994 {
2995 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2996 zone_page_state(z, NR_FREE_PAGES));
2997 }
2998
2999 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3000 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3001 {
3002 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3003 long cma_pages = 0;
3004
3005 #ifdef CONFIG_CMA
3006 /* If allocation can't use CMA areas don't use free CMA pages */
3007 if (!(alloc_flags & ALLOC_CMA))
3008 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3009 #endif
3010
3011 /*
3012 * Fast check for order-0 only. If this fails then the reserves
3013 * need to be calculated. There is a corner case where the check
3014 * passes but only the high-order atomic reserve are free. If
3015 * the caller is !atomic then it'll uselessly search the free
3016 * list. That corner case is then slower but it is harmless.
3017 */
3018 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3019 return true;
3020
3021 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3022 free_pages);
3023 }
3024
3025 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3026 unsigned long mark, int classzone_idx)
3027 {
3028 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3029
3030 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3031 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3032
3033 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3034 free_pages);
3035 }
3036
3037 #ifdef CONFIG_NUMA
3038 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3039 {
3040 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3041 RECLAIM_DISTANCE;
3042 }
3043 #else /* CONFIG_NUMA */
3044 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3045 {
3046 return true;
3047 }
3048 #endif /* CONFIG_NUMA */
3049
3050 /*
3051 * get_page_from_freelist goes through the zonelist trying to allocate
3052 * a page.
3053 */
3054 static struct page *
3055 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3056 const struct alloc_context *ac)
3057 {
3058 struct zoneref *z = ac->preferred_zoneref;
3059 struct zone *zone;
3060 struct pglist_data *last_pgdat_dirty_limit = NULL;
3061
3062 /*
3063 * Scan zonelist, looking for a zone with enough free.
3064 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3065 */
3066 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3067 ac->nodemask) {
3068 struct page *page;
3069 unsigned long mark;
3070
3071 if (cpusets_enabled() &&
3072 (alloc_flags & ALLOC_CPUSET) &&
3073 !__cpuset_zone_allowed(zone, gfp_mask))
3074 continue;
3075 /*
3076 * When allocating a page cache page for writing, we
3077 * want to get it from a node that is within its dirty
3078 * limit, such that no single node holds more than its
3079 * proportional share of globally allowed dirty pages.
3080 * The dirty limits take into account the node's
3081 * lowmem reserves and high watermark so that kswapd
3082 * should be able to balance it without having to
3083 * write pages from its LRU list.
3084 *
3085 * XXX: For now, allow allocations to potentially
3086 * exceed the per-node dirty limit in the slowpath
3087 * (spread_dirty_pages unset) before going into reclaim,
3088 * which is important when on a NUMA setup the allowed
3089 * nodes are together not big enough to reach the
3090 * global limit. The proper fix for these situations
3091 * will require awareness of nodes in the
3092 * dirty-throttling and the flusher threads.
3093 */
3094 if (ac->spread_dirty_pages) {
3095 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3096 continue;
3097
3098 if (!node_dirty_ok(zone->zone_pgdat)) {
3099 last_pgdat_dirty_limit = zone->zone_pgdat;
3100 continue;
3101 }
3102 }
3103
3104 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3105 if (!zone_watermark_fast(zone, order, mark,
3106 ac_classzone_idx(ac), alloc_flags)) {
3107 int ret;
3108
3109 /* Checked here to keep the fast path fast */
3110 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3111 if (alloc_flags & ALLOC_NO_WATERMARKS)
3112 goto try_this_zone;
3113
3114 if (node_reclaim_mode == 0 ||
3115 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3116 continue;
3117
3118 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3119 switch (ret) {
3120 case NODE_RECLAIM_NOSCAN:
3121 /* did not scan */
3122 continue;
3123 case NODE_RECLAIM_FULL:
3124 /* scanned but unreclaimable */
3125 continue;
3126 default:
3127 /* did we reclaim enough */
3128 if (zone_watermark_ok(zone, order, mark,
3129 ac_classzone_idx(ac), alloc_flags))
3130 goto try_this_zone;
3131
3132 continue;
3133 }
3134 }
3135
3136 try_this_zone:
3137 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3138 gfp_mask, alloc_flags, ac->migratetype);
3139 if (page) {
3140 prep_new_page(page, order, gfp_mask, alloc_flags);
3141
3142 /*
3143 * If this is a high-order atomic allocation then check
3144 * if the pageblock should be reserved for the future
3145 */
3146 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3147 reserve_highatomic_pageblock(page, zone, order);
3148
3149 return page;
3150 }
3151 }
3152
3153 return NULL;
3154 }
3155
3156 /*
3157 * Large machines with many possible nodes should not always dump per-node
3158 * meminfo in irq context.
3159 */
3160 static inline bool should_suppress_show_mem(void)
3161 {
3162 bool ret = false;
3163
3164 #if NODES_SHIFT > 8
3165 ret = in_interrupt();
3166 #endif
3167 return ret;
3168 }
3169
3170 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3171 {
3172 unsigned int filter = SHOW_MEM_FILTER_NODES;
3173 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3174
3175 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3176 return;
3177
3178 /*
3179 * This documents exceptions given to allocations in certain
3180 * contexts that are allowed to allocate outside current's set
3181 * of allowed nodes.
3182 */
3183 if (!(gfp_mask & __GFP_NOMEMALLOC))
3184 if (test_thread_flag(TIF_MEMDIE) ||
3185 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3186 filter &= ~SHOW_MEM_FILTER_NODES;
3187 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3188 filter &= ~SHOW_MEM_FILTER_NODES;
3189
3190 show_mem(filter, nodemask);
3191 }
3192
3193 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3194 {
3195 struct va_format vaf;
3196 va_list args;
3197 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3198 DEFAULT_RATELIMIT_BURST);
3199
3200 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3201 return;
3202
3203 pr_warn("%s: ", current->comm);
3204
3205 va_start(args, fmt);
3206 vaf.fmt = fmt;
3207 vaf.va = &args;
3208 pr_cont("%pV", &vaf);
3209 va_end(args);
3210
3211 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3212 if (nodemask)
3213 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3214 else
3215 pr_cont("(null)\n");
3216
3217 cpuset_print_current_mems_allowed();
3218
3219 dump_stack();
3220 warn_alloc_show_mem(gfp_mask, nodemask);
3221 }
3222
3223 static inline struct page *
3224 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3225 unsigned int alloc_flags,
3226 const struct alloc_context *ac)
3227 {
3228 struct page *page;
3229
3230 page = get_page_from_freelist(gfp_mask, order,
3231 alloc_flags|ALLOC_CPUSET, ac);
3232 /*
3233 * fallback to ignore cpuset restriction if our nodes
3234 * are depleted
3235 */
3236 if (!page)
3237 page = get_page_from_freelist(gfp_mask, order,
3238 alloc_flags, ac);
3239
3240 return page;
3241 }
3242
3243 static inline struct page *
3244 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3245 const struct alloc_context *ac, unsigned long *did_some_progress)
3246 {
3247 struct oom_control oc = {
3248 .zonelist = ac->zonelist,
3249 .nodemask = ac->nodemask,
3250 .memcg = NULL,
3251 .gfp_mask = gfp_mask,
3252 .order = order,
3253 };
3254 struct page *page;
3255
3256 *did_some_progress = 0;
3257
3258 /*
3259 * Acquire the oom lock. If that fails, somebody else is
3260 * making progress for us.
3261 */
3262 if (!mutex_trylock(&oom_lock)) {
3263 *did_some_progress = 1;
3264 schedule_timeout_uninterruptible(1);
3265 return NULL;
3266 }
3267
3268 /*
3269 * Go through the zonelist yet one more time, keep very high watermark
3270 * here, this is only to catch a parallel oom killing, we must fail if
3271 * we're still under heavy pressure.
3272 */
3273 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3274 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3275 if (page)
3276 goto out;
3277
3278 /* Coredumps can quickly deplete all memory reserves */
3279 if (current->flags & PF_DUMPCORE)
3280 goto out;
3281 /* The OOM killer will not help higher order allocs */
3282 if (order > PAGE_ALLOC_COSTLY_ORDER)
3283 goto out;
3284 /* The OOM killer does not needlessly kill tasks for lowmem */
3285 if (ac->high_zoneidx < ZONE_NORMAL)
3286 goto out;
3287 if (pm_suspended_storage())
3288 goto out;
3289 /*
3290 * XXX: GFP_NOFS allocations should rather fail than rely on
3291 * other request to make a forward progress.
3292 * We are in an unfortunate situation where out_of_memory cannot
3293 * do much for this context but let's try it to at least get
3294 * access to memory reserved if the current task is killed (see
3295 * out_of_memory). Once filesystems are ready to handle allocation
3296 * failures more gracefully we should just bail out here.
3297 */
3298
3299 /* The OOM killer may not free memory on a specific node */
3300 if (gfp_mask & __GFP_THISNODE)
3301 goto out;
3302
3303 /* Exhausted what can be done so it's blamo time */
3304 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3305 *did_some_progress = 1;
3306
3307 /*
3308 * Help non-failing allocations by giving them access to memory
3309 * reserves
3310 */
3311 if (gfp_mask & __GFP_NOFAIL)
3312 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3313 ALLOC_NO_WATERMARKS, ac);
3314 }
3315 out:
3316 mutex_unlock(&oom_lock);
3317 return page;
3318 }
3319
3320 /*
3321 * Maximum number of compaction retries wit a progress before OOM
3322 * killer is consider as the only way to move forward.
3323 */
3324 #define MAX_COMPACT_RETRIES 16
3325
3326 #ifdef CONFIG_COMPACTION
3327 /* Try memory compaction for high-order allocations before reclaim */
3328 static struct page *
3329 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3330 unsigned int alloc_flags, const struct alloc_context *ac,
3331 enum compact_priority prio, enum compact_result *compact_result)
3332 {
3333 struct page *page;
3334 unsigned int noreclaim_flag;
3335
3336 if (!order)
3337 return NULL;
3338
3339 noreclaim_flag = memalloc_noreclaim_save();
3340 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3341 prio);
3342 memalloc_noreclaim_restore(noreclaim_flag);
3343
3344 if (*compact_result <= COMPACT_INACTIVE)
3345 return NULL;
3346
3347 /*
3348 * At least in one zone compaction wasn't deferred or skipped, so let's
3349 * count a compaction stall
3350 */
3351 count_vm_event(COMPACTSTALL);
3352
3353 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3354
3355 if (page) {
3356 struct zone *zone = page_zone(page);
3357
3358 zone->compact_blockskip_flush = false;
3359 compaction_defer_reset(zone, order, true);
3360 count_vm_event(COMPACTSUCCESS);
3361 return page;
3362 }
3363
3364 /*
3365 * It's bad if compaction run occurs and fails. The most likely reason
3366 * is that pages exist, but not enough to satisfy watermarks.
3367 */
3368 count_vm_event(COMPACTFAIL);
3369
3370 cond_resched();
3371
3372 return NULL;
3373 }
3374
3375 static inline bool
3376 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3377 enum compact_result compact_result,
3378 enum compact_priority *compact_priority,
3379 int *compaction_retries)
3380 {
3381 int max_retries = MAX_COMPACT_RETRIES;
3382 int min_priority;
3383 bool ret = false;
3384 int retries = *compaction_retries;
3385 enum compact_priority priority = *compact_priority;
3386
3387 if (!order)
3388 return false;
3389
3390 if (compaction_made_progress(compact_result))
3391 (*compaction_retries)++;
3392
3393 /*
3394 * compaction considers all the zone as desperately out of memory
3395 * so it doesn't really make much sense to retry except when the
3396 * failure could be caused by insufficient priority
3397 */
3398 if (compaction_failed(compact_result))
3399 goto check_priority;
3400
3401 /*
3402 * make sure the compaction wasn't deferred or didn't bail out early
3403 * due to locks contention before we declare that we should give up.
3404 * But do not retry if the given zonelist is not suitable for
3405 * compaction.
3406 */
3407 if (compaction_withdrawn(compact_result)) {
3408 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3409 goto out;
3410 }
3411
3412 /*
3413 * !costly requests are much more important than __GFP_REPEAT
3414 * costly ones because they are de facto nofail and invoke OOM
3415 * killer to move on while costly can fail and users are ready
3416 * to cope with that. 1/4 retries is rather arbitrary but we
3417 * would need much more detailed feedback from compaction to
3418 * make a better decision.
3419 */
3420 if (order > PAGE_ALLOC_COSTLY_ORDER)
3421 max_retries /= 4;
3422 if (*compaction_retries <= max_retries) {
3423 ret = true;
3424 goto out;
3425 }
3426
3427 /*
3428 * Make sure there are attempts at the highest priority if we exhausted
3429 * all retries or failed at the lower priorities.
3430 */
3431 check_priority:
3432 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3433 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3434
3435 if (*compact_priority > min_priority) {
3436 (*compact_priority)--;
3437 *compaction_retries = 0;
3438 ret = true;
3439 }
3440 out:
3441 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3442 return ret;
3443 }
3444 #else
3445 static inline struct page *
3446 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3447 unsigned int alloc_flags, const struct alloc_context *ac,
3448 enum compact_priority prio, enum compact_result *compact_result)
3449 {
3450 *compact_result = COMPACT_SKIPPED;
3451 return NULL;
3452 }
3453
3454 static inline bool
3455 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3456 enum compact_result compact_result,
3457 enum compact_priority *compact_priority,
3458 int *compaction_retries)
3459 {
3460 struct zone *zone;
3461 struct zoneref *z;
3462
3463 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3464 return false;
3465
3466 /*
3467 * There are setups with compaction disabled which would prefer to loop
3468 * inside the allocator rather than hit the oom killer prematurely.
3469 * Let's give them a good hope and keep retrying while the order-0
3470 * watermarks are OK.
3471 */
3472 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3473 ac->nodemask) {
3474 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3475 ac_classzone_idx(ac), alloc_flags))
3476 return true;
3477 }
3478 return false;
3479 }
3480 #endif /* CONFIG_COMPACTION */
3481
3482 /* Perform direct synchronous page reclaim */
3483 static int
3484 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3485 const struct alloc_context *ac)
3486 {
3487 struct reclaim_state reclaim_state;
3488 int progress;
3489 unsigned int noreclaim_flag;
3490
3491 cond_resched();
3492
3493 /* We now go into synchronous reclaim */
3494 cpuset_memory_pressure_bump();
3495 noreclaim_flag = memalloc_noreclaim_save();
3496 lockdep_set_current_reclaim_state(gfp_mask);
3497 reclaim_state.reclaimed_slab = 0;
3498 current->reclaim_state = &reclaim_state;
3499
3500 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3501 ac->nodemask);
3502
3503 current->reclaim_state = NULL;
3504 lockdep_clear_current_reclaim_state();
3505 memalloc_noreclaim_restore(noreclaim_flag);
3506
3507 cond_resched();
3508
3509 return progress;
3510 }
3511
3512 /* The really slow allocator path where we enter direct reclaim */
3513 static inline struct page *
3514 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3515 unsigned int alloc_flags, const struct alloc_context *ac,
3516 unsigned long *did_some_progress)
3517 {
3518 struct page *page = NULL;
3519 bool drained = false;
3520
3521 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3522 if (unlikely(!(*did_some_progress)))
3523 return NULL;
3524
3525 retry:
3526 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3527
3528 /*
3529 * If an allocation failed after direct reclaim, it could be because
3530 * pages are pinned on the per-cpu lists or in high alloc reserves.
3531 * Shrink them them and try again
3532 */
3533 if (!page && !drained) {
3534 unreserve_highatomic_pageblock(ac, false);
3535 drain_all_pages(NULL);
3536 drained = true;
3537 goto retry;
3538 }
3539
3540 return page;
3541 }
3542
3543 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3544 {
3545 struct zoneref *z;
3546 struct zone *zone;
3547 pg_data_t *last_pgdat = NULL;
3548
3549 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3550 ac->high_zoneidx, ac->nodemask) {
3551 if (last_pgdat != zone->zone_pgdat)
3552 wakeup_kswapd(zone, order, ac->high_zoneidx);
3553 last_pgdat = zone->zone_pgdat;
3554 }
3555 }
3556
3557 static inline unsigned int
3558 gfp_to_alloc_flags(gfp_t gfp_mask)
3559 {
3560 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3561
3562 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3563 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3564
3565 /*
3566 * The caller may dip into page reserves a bit more if the caller
3567 * cannot run direct reclaim, or if the caller has realtime scheduling
3568 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3569 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3570 */
3571 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3572
3573 if (gfp_mask & __GFP_ATOMIC) {
3574 /*
3575 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3576 * if it can't schedule.
3577 */
3578 if (!(gfp_mask & __GFP_NOMEMALLOC))
3579 alloc_flags |= ALLOC_HARDER;
3580 /*
3581 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3582 * comment for __cpuset_node_allowed().
3583 */
3584 alloc_flags &= ~ALLOC_CPUSET;
3585 } else if (unlikely(rt_task(current)) && !in_interrupt())
3586 alloc_flags |= ALLOC_HARDER;
3587
3588 #ifdef CONFIG_CMA
3589 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3590 alloc_flags |= ALLOC_CMA;
3591 #endif
3592 return alloc_flags;
3593 }
3594
3595 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3596 {
3597 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3598 return false;
3599
3600 if (gfp_mask & __GFP_MEMALLOC)
3601 return true;
3602 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3603 return true;
3604 if (!in_interrupt() &&
3605 ((current->flags & PF_MEMALLOC) ||
3606 unlikely(test_thread_flag(TIF_MEMDIE))))
3607 return true;
3608
3609 return false;
3610 }
3611
3612 /*
3613 * Checks whether it makes sense to retry the reclaim to make a forward progress
3614 * for the given allocation request.
3615 *
3616 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3617 * without success, or when we couldn't even meet the watermark if we
3618 * reclaimed all remaining pages on the LRU lists.
3619 *
3620 * Returns true if a retry is viable or false to enter the oom path.
3621 */
3622 static inline bool
3623 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3624 struct alloc_context *ac, int alloc_flags,
3625 bool did_some_progress, int *no_progress_loops)
3626 {
3627 struct zone *zone;
3628 struct zoneref *z;
3629
3630 /*
3631 * Costly allocations might have made a progress but this doesn't mean
3632 * their order will become available due to high fragmentation so
3633 * always increment the no progress counter for them
3634 */
3635 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3636 *no_progress_loops = 0;
3637 else
3638 (*no_progress_loops)++;
3639
3640 /*
3641 * Make sure we converge to OOM if we cannot make any progress
3642 * several times in the row.
3643 */
3644 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3645 /* Before OOM, exhaust highatomic_reserve */
3646 return unreserve_highatomic_pageblock(ac, true);
3647 }
3648
3649 /*
3650 * Keep reclaiming pages while there is a chance this will lead
3651 * somewhere. If none of the target zones can satisfy our allocation
3652 * request even if all reclaimable pages are considered then we are
3653 * screwed and have to go OOM.
3654 */
3655 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3656 ac->nodemask) {
3657 unsigned long available;
3658 unsigned long reclaimable;
3659 unsigned long min_wmark = min_wmark_pages(zone);
3660 bool wmark;
3661
3662 available = reclaimable = zone_reclaimable_pages(zone);
3663 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3664
3665 /*
3666 * Would the allocation succeed if we reclaimed all
3667 * reclaimable pages?
3668 */
3669 wmark = __zone_watermark_ok(zone, order, min_wmark,
3670 ac_classzone_idx(ac), alloc_flags, available);
3671 trace_reclaim_retry_zone(z, order, reclaimable,
3672 available, min_wmark, *no_progress_loops, wmark);
3673 if (wmark) {
3674 /*
3675 * If we didn't make any progress and have a lot of
3676 * dirty + writeback pages then we should wait for
3677 * an IO to complete to slow down the reclaim and
3678 * prevent from pre mature OOM
3679 */
3680 if (!did_some_progress) {
3681 unsigned long write_pending;
3682
3683 write_pending = zone_page_state_snapshot(zone,
3684 NR_ZONE_WRITE_PENDING);
3685
3686 if (2 * write_pending > reclaimable) {
3687 congestion_wait(BLK_RW_ASYNC, HZ/10);
3688 return true;
3689 }
3690 }
3691
3692 /*
3693 * Memory allocation/reclaim might be called from a WQ
3694 * context and the current implementation of the WQ
3695 * concurrency control doesn't recognize that
3696 * a particular WQ is congested if the worker thread is
3697 * looping without ever sleeping. Therefore we have to
3698 * do a short sleep here rather than calling
3699 * cond_resched().
3700 */
3701 if (current->flags & PF_WQ_WORKER)
3702 schedule_timeout_uninterruptible(1);
3703 else
3704 cond_resched();
3705
3706 return true;
3707 }
3708 }
3709
3710 return false;
3711 }
3712
3713 static inline bool
3714 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3715 {
3716 /*
3717 * It's possible that cpuset's mems_allowed and the nodemask from
3718 * mempolicy don't intersect. This should be normally dealt with by
3719 * policy_nodemask(), but it's possible to race with cpuset update in
3720 * such a way the check therein was true, and then it became false
3721 * before we got our cpuset_mems_cookie here.
3722 * This assumes that for all allocations, ac->nodemask can come only
3723 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3724 * when it does not intersect with the cpuset restrictions) or the
3725 * caller can deal with a violated nodemask.
3726 */
3727 if (cpusets_enabled() && ac->nodemask &&
3728 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3729 ac->nodemask = NULL;
3730 return true;
3731 }
3732
3733 /*
3734 * When updating a task's mems_allowed or mempolicy nodemask, it is
3735 * possible to race with parallel threads in such a way that our
3736 * allocation can fail while the mask is being updated. If we are about
3737 * to fail, check if the cpuset changed during allocation and if so,
3738 * retry.
3739 */
3740 if (read_mems_allowed_retry(cpuset_mems_cookie))
3741 return true;
3742
3743 return false;
3744 }
3745
3746 static inline struct page *
3747 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3748 struct alloc_context *ac)
3749 {
3750 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3751 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3752 struct page *page = NULL;
3753 unsigned int alloc_flags;
3754 unsigned long did_some_progress;
3755 enum compact_priority compact_priority;
3756 enum compact_result compact_result;
3757 int compaction_retries;
3758 int no_progress_loops;
3759 unsigned long alloc_start = jiffies;
3760 unsigned int stall_timeout = 10 * HZ;
3761 unsigned int cpuset_mems_cookie;
3762
3763 /*
3764 * In the slowpath, we sanity check order to avoid ever trying to
3765 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3766 * be using allocators in order of preference for an area that is
3767 * too large.
3768 */
3769 if (order >= MAX_ORDER) {
3770 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3771 return NULL;
3772 }
3773
3774 /*
3775 * We also sanity check to catch abuse of atomic reserves being used by
3776 * callers that are not in atomic context.
3777 */
3778 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3779 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3780 gfp_mask &= ~__GFP_ATOMIC;
3781
3782 retry_cpuset:
3783 compaction_retries = 0;
3784 no_progress_loops = 0;
3785 compact_priority = DEF_COMPACT_PRIORITY;
3786 cpuset_mems_cookie = read_mems_allowed_begin();
3787
3788 /*
3789 * The fast path uses conservative alloc_flags to succeed only until
3790 * kswapd needs to be woken up, and to avoid the cost of setting up
3791 * alloc_flags precisely. So we do that now.
3792 */
3793 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3794
3795 /*
3796 * We need to recalculate the starting point for the zonelist iterator
3797 * because we might have used different nodemask in the fast path, or
3798 * there was a cpuset modification and we are retrying - otherwise we
3799 * could end up iterating over non-eligible zones endlessly.
3800 */
3801 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3802 ac->high_zoneidx, ac->nodemask);
3803 if (!ac->preferred_zoneref->zone)
3804 goto nopage;
3805
3806 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3807 wake_all_kswapds(order, ac);
3808
3809 /*
3810 * The adjusted alloc_flags might result in immediate success, so try
3811 * that first
3812 */
3813 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3814 if (page)
3815 goto got_pg;
3816
3817 /*
3818 * For costly allocations, try direct compaction first, as it's likely
3819 * that we have enough base pages and don't need to reclaim. For non-
3820 * movable high-order allocations, do that as well, as compaction will
3821 * try prevent permanent fragmentation by migrating from blocks of the
3822 * same migratetype.
3823 * Don't try this for allocations that are allowed to ignore
3824 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3825 */
3826 if (can_direct_reclaim &&
3827 (costly_order ||
3828 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3829 && !gfp_pfmemalloc_allowed(gfp_mask)) {
3830 page = __alloc_pages_direct_compact(gfp_mask, order,
3831 alloc_flags, ac,
3832 INIT_COMPACT_PRIORITY,
3833 &compact_result);
3834 if (page)
3835 goto got_pg;
3836
3837 /*
3838 * Checks for costly allocations with __GFP_NORETRY, which
3839 * includes THP page fault allocations
3840 */
3841 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3842 /*
3843 * If compaction is deferred for high-order allocations,
3844 * it is because sync compaction recently failed. If
3845 * this is the case and the caller requested a THP
3846 * allocation, we do not want to heavily disrupt the
3847 * system, so we fail the allocation instead of entering
3848 * direct reclaim.
3849 */
3850 if (compact_result == COMPACT_DEFERRED)
3851 goto nopage;
3852
3853 /*
3854 * Looks like reclaim/compaction is worth trying, but
3855 * sync compaction could be very expensive, so keep
3856 * using async compaction.
3857 */
3858 compact_priority = INIT_COMPACT_PRIORITY;
3859 }
3860 }
3861
3862 retry:
3863 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3864 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3865 wake_all_kswapds(order, ac);
3866
3867 if (gfp_pfmemalloc_allowed(gfp_mask))
3868 alloc_flags = ALLOC_NO_WATERMARKS;
3869
3870 /*
3871 * Reset the zonelist iterators if memory policies can be ignored.
3872 * These allocations are high priority and system rather than user
3873 * orientated.
3874 */
3875 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3876 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3877 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3878 ac->high_zoneidx, ac->nodemask);
3879 }
3880
3881 /* Attempt with potentially adjusted zonelist and alloc_flags */
3882 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3883 if (page)
3884 goto got_pg;
3885
3886 /* Caller is not willing to reclaim, we can't balance anything */
3887 if (!can_direct_reclaim)
3888 goto nopage;
3889
3890 /* Make sure we know about allocations which stall for too long */
3891 if (time_after(jiffies, alloc_start + stall_timeout)) {
3892 warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
3893 "page allocation stalls for %ums, order:%u",
3894 jiffies_to_msecs(jiffies-alloc_start), order);
3895 stall_timeout += 10 * HZ;
3896 }
3897
3898 /* Avoid recursion of direct reclaim */
3899 if (current->flags & PF_MEMALLOC)
3900 goto nopage;
3901
3902 /* Try direct reclaim and then allocating */
3903 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3904 &did_some_progress);
3905 if (page)
3906 goto got_pg;
3907
3908 /* Try direct compaction and then allocating */
3909 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3910 compact_priority, &compact_result);
3911 if (page)
3912 goto got_pg;
3913
3914 /* Do not loop if specifically requested */
3915 if (gfp_mask & __GFP_NORETRY)
3916 goto nopage;
3917
3918 /*
3919 * Do not retry costly high order allocations unless they are
3920 * __GFP_REPEAT
3921 */
3922 if (costly_order && !(gfp_mask & __GFP_REPEAT))
3923 goto nopage;
3924
3925 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3926 did_some_progress > 0, &no_progress_loops))
3927 goto retry;
3928
3929 /*
3930 * It doesn't make any sense to retry for the compaction if the order-0
3931 * reclaim is not able to make any progress because the current
3932 * implementation of the compaction depends on the sufficient amount
3933 * of free memory (see __compaction_suitable)
3934 */
3935 if (did_some_progress > 0 &&
3936 should_compact_retry(ac, order, alloc_flags,
3937 compact_result, &compact_priority,
3938 &compaction_retries))
3939 goto retry;
3940
3941
3942 /* Deal with possible cpuset update races before we start OOM killing */
3943 if (check_retry_cpuset(cpuset_mems_cookie, ac))
3944 goto retry_cpuset;
3945
3946 /* Reclaim has failed us, start killing things */
3947 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3948 if (page)
3949 goto got_pg;
3950
3951 /* Avoid allocations with no watermarks from looping endlessly */
3952 if (test_thread_flag(TIF_MEMDIE) &&
3953 (alloc_flags == ALLOC_NO_WATERMARKS ||
3954 (gfp_mask & __GFP_NOMEMALLOC)))
3955 goto nopage;
3956
3957 /* Retry as long as the OOM killer is making progress */
3958 if (did_some_progress) {
3959 no_progress_loops = 0;
3960 goto retry;
3961 }
3962
3963 nopage:
3964 /* Deal with possible cpuset update races before we fail */
3965 if (check_retry_cpuset(cpuset_mems_cookie, ac))
3966 goto retry_cpuset;
3967
3968 /*
3969 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3970 * we always retry
3971 */
3972 if (gfp_mask & __GFP_NOFAIL) {
3973 /*
3974 * All existing users of the __GFP_NOFAIL are blockable, so warn
3975 * of any new users that actually require GFP_NOWAIT
3976 */
3977 if (WARN_ON_ONCE(!can_direct_reclaim))
3978 goto fail;
3979
3980 /*
3981 * PF_MEMALLOC request from this context is rather bizarre
3982 * because we cannot reclaim anything and only can loop waiting
3983 * for somebody to do a work for us
3984 */
3985 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3986
3987 /*
3988 * non failing costly orders are a hard requirement which we
3989 * are not prepared for much so let's warn about these users
3990 * so that we can identify them and convert them to something
3991 * else.
3992 */
3993 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
3994
3995 /*
3996 * Help non-failing allocations by giving them access to memory
3997 * reserves but do not use ALLOC_NO_WATERMARKS because this
3998 * could deplete whole memory reserves which would just make
3999 * the situation worse
4000 */
4001 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4002 if (page)
4003 goto got_pg;
4004
4005 cond_resched();
4006 goto retry;
4007 }
4008 fail:
4009 warn_alloc(gfp_mask, ac->nodemask,
4010 "page allocation failure: order:%u", order);
4011 got_pg:
4012 return page;
4013 }
4014
4015 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4016 int preferred_nid, nodemask_t *nodemask,
4017 struct alloc_context *ac, gfp_t *alloc_mask,
4018 unsigned int *alloc_flags)
4019 {
4020 ac->high_zoneidx = gfp_zone(gfp_mask);
4021 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4022 ac->nodemask = nodemask;
4023 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4024
4025 if (cpusets_enabled()) {
4026 *alloc_mask |= __GFP_HARDWALL;
4027 if (!ac->nodemask)
4028 ac->nodemask = &cpuset_current_mems_allowed;
4029 else
4030 *alloc_flags |= ALLOC_CPUSET;
4031 }
4032
4033 lockdep_trace_alloc(gfp_mask);
4034
4035 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4036
4037 if (should_fail_alloc_page(gfp_mask, order))
4038 return false;
4039
4040 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4041 *alloc_flags |= ALLOC_CMA;
4042
4043 return true;
4044 }
4045
4046 /* Determine whether to spread dirty pages and what the first usable zone */
4047 static inline void finalise_ac(gfp_t gfp_mask,
4048 unsigned int order, struct alloc_context *ac)
4049 {
4050 /* Dirty zone balancing only done in the fast path */
4051 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4052
4053 /*
4054 * The preferred zone is used for statistics but crucially it is
4055 * also used as the starting point for the zonelist iterator. It
4056 * may get reset for allocations that ignore memory policies.
4057 */
4058 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4059 ac->high_zoneidx, ac->nodemask);
4060 }
4061
4062 /*
4063 * This is the 'heart' of the zoned buddy allocator.
4064 */
4065 struct page *
4066 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4067 nodemask_t *nodemask)
4068 {
4069 struct page *page;
4070 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4071 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
4072 struct alloc_context ac = { };
4073
4074 gfp_mask &= gfp_allowed_mask;
4075 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4076 return NULL;
4077
4078 finalise_ac(gfp_mask, order, &ac);
4079
4080 /* First allocation attempt */
4081 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4082 if (likely(page))
4083 goto out;
4084
4085 /*
4086 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4087 * resp. GFP_NOIO which has to be inherited for all allocation requests
4088 * from a particular context which has been marked by
4089 * memalloc_no{fs,io}_{save,restore}.
4090 */
4091 alloc_mask = current_gfp_context(gfp_mask);
4092 ac.spread_dirty_pages = false;
4093
4094 /*
4095 * Restore the original nodemask if it was potentially replaced with
4096 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4097 */
4098 if (unlikely(ac.nodemask != nodemask))
4099 ac.nodemask = nodemask;
4100
4101 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4102
4103 out:
4104 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4105 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4106 __free_pages(page, order);
4107 page = NULL;
4108 }
4109
4110 if (kmemcheck_enabled && page)
4111 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
4112
4113 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4114
4115 return page;
4116 }
4117 EXPORT_SYMBOL(__alloc_pages_nodemask);
4118
4119 /*
4120 * Common helper functions.
4121 */
4122 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4123 {
4124 struct page *page;
4125
4126 /*
4127 * __get_free_pages() returns a 32-bit address, which cannot represent
4128 * a highmem page
4129 */
4130 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4131
4132 page = alloc_pages(gfp_mask, order);
4133 if (!page)
4134 return 0;
4135 return (unsigned long) page_address(page);
4136 }
4137 EXPORT_SYMBOL(__get_free_pages);
4138
4139 unsigned long get_zeroed_page(gfp_t gfp_mask)
4140 {
4141 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4142 }
4143 EXPORT_SYMBOL(get_zeroed_page);
4144
4145 void __free_pages(struct page *page, unsigned int order)
4146 {
4147 if (put_page_testzero(page)) {
4148 if (order == 0)
4149 free_hot_cold_page(page, false);
4150 else
4151 __free_pages_ok(page, order);
4152 }
4153 }
4154
4155 EXPORT_SYMBOL(__free_pages);
4156
4157 void free_pages(unsigned long addr, unsigned int order)
4158 {
4159 if (addr != 0) {
4160 VM_BUG_ON(!virt_addr_valid((void *)addr));
4161 __free_pages(virt_to_page((void *)addr), order);
4162 }
4163 }
4164
4165 EXPORT_SYMBOL(free_pages);
4166
4167 /*
4168 * Page Fragment:
4169 * An arbitrary-length arbitrary-offset area of memory which resides
4170 * within a 0 or higher order page. Multiple fragments within that page
4171 * are individually refcounted, in the page's reference counter.
4172 *
4173 * The page_frag functions below provide a simple allocation framework for
4174 * page fragments. This is used by the network stack and network device
4175 * drivers to provide a backing region of memory for use as either an
4176 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4177 */
4178 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4179 gfp_t gfp_mask)
4180 {
4181 struct page *page = NULL;
4182 gfp_t gfp = gfp_mask;
4183
4184 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4185 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4186 __GFP_NOMEMALLOC;
4187 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4188 PAGE_FRAG_CACHE_MAX_ORDER);
4189 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4190 #endif
4191 if (unlikely(!page))
4192 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4193
4194 nc->va = page ? page_address(page) : NULL;
4195
4196 return page;
4197 }
4198
4199 void __page_frag_cache_drain(struct page *page, unsigned int count)
4200 {
4201 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4202
4203 if (page_ref_sub_and_test(page, count)) {
4204 unsigned int order = compound_order(page);
4205
4206 if (order == 0)
4207 free_hot_cold_page(page, false);
4208 else
4209 __free_pages_ok(page, order);
4210 }
4211 }
4212 EXPORT_SYMBOL(__page_frag_cache_drain);
4213
4214 void *page_frag_alloc(struct page_frag_cache *nc,
4215 unsigned int fragsz, gfp_t gfp_mask)
4216 {
4217 unsigned int size = PAGE_SIZE;
4218 struct page *page;
4219 int offset;
4220
4221 if (unlikely(!nc->va)) {
4222 refill:
4223 page = __page_frag_cache_refill(nc, gfp_mask);
4224 if (!page)
4225 return NULL;
4226
4227 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4228 /* if size can vary use size else just use PAGE_SIZE */
4229 size = nc->size;
4230 #endif
4231 /* Even if we own the page, we do not use atomic_set().
4232 * This would break get_page_unless_zero() users.
4233 */
4234 page_ref_add(page, size - 1);
4235
4236 /* reset page count bias and offset to start of new frag */
4237 nc->pfmemalloc = page_is_pfmemalloc(page);
4238 nc->pagecnt_bias = size;
4239 nc->offset = size;
4240 }
4241
4242 offset = nc->offset - fragsz;
4243 if (unlikely(offset < 0)) {
4244 page = virt_to_page(nc->va);
4245
4246 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4247 goto refill;
4248
4249 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4250 /* if size can vary use size else just use PAGE_SIZE */
4251 size = nc->size;
4252 #endif
4253 /* OK, page count is 0, we can safely set it */
4254 set_page_count(page, size);
4255
4256 /* reset page count bias and offset to start of new frag */
4257 nc->pagecnt_bias = size;
4258 offset = size - fragsz;
4259 }
4260
4261 nc->pagecnt_bias--;
4262 nc->offset = offset;
4263
4264 return nc->va + offset;
4265 }
4266 EXPORT_SYMBOL(page_frag_alloc);
4267
4268 /*
4269 * Frees a page fragment allocated out of either a compound or order 0 page.
4270 */
4271 void page_frag_free(void *addr)
4272 {
4273 struct page *page = virt_to_head_page(addr);
4274
4275 if (unlikely(put_page_testzero(page)))
4276 __free_pages_ok(page, compound_order(page));
4277 }
4278 EXPORT_SYMBOL(page_frag_free);
4279
4280 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4281 size_t size)
4282 {
4283 if (addr) {
4284 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4285 unsigned long used = addr + PAGE_ALIGN(size);
4286
4287 split_page(virt_to_page((void *)addr), order);
4288 while (used < alloc_end) {
4289 free_page(used);
4290 used += PAGE_SIZE;
4291 }
4292 }
4293 return (void *)addr;
4294 }
4295
4296 /**
4297 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4298 * @size: the number of bytes to allocate
4299 * @gfp_mask: GFP flags for the allocation
4300 *
4301 * This function is similar to alloc_pages(), except that it allocates the
4302 * minimum number of pages to satisfy the request. alloc_pages() can only
4303 * allocate memory in power-of-two pages.
4304 *
4305 * This function is also limited by MAX_ORDER.
4306 *
4307 * Memory allocated by this function must be released by free_pages_exact().
4308 */
4309 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4310 {
4311 unsigned int order = get_order(size);
4312 unsigned long addr;
4313
4314 addr = __get_free_pages(gfp_mask, order);
4315 return make_alloc_exact(addr, order, size);
4316 }
4317 EXPORT_SYMBOL(alloc_pages_exact);
4318
4319 /**
4320 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4321 * pages on a node.
4322 * @nid: the preferred node ID where memory should be allocated
4323 * @size: the number of bytes to allocate
4324 * @gfp_mask: GFP flags for the allocation
4325 *
4326 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4327 * back.
4328 */
4329 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4330 {
4331 unsigned int order = get_order(size);
4332 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4333 if (!p)
4334 return NULL;
4335 return make_alloc_exact((unsigned long)page_address(p), order, size);
4336 }
4337
4338 /**
4339 * free_pages_exact - release memory allocated via alloc_pages_exact()
4340 * @virt: the value returned by alloc_pages_exact.
4341 * @size: size of allocation, same value as passed to alloc_pages_exact().
4342 *
4343 * Release the memory allocated by a previous call to alloc_pages_exact.
4344 */
4345 void free_pages_exact(void *virt, size_t size)
4346 {
4347 unsigned long addr = (unsigned long)virt;
4348 unsigned long end = addr + PAGE_ALIGN(size);
4349
4350 while (addr < end) {
4351 free_page(addr);
4352 addr += PAGE_SIZE;
4353 }
4354 }
4355 EXPORT_SYMBOL(free_pages_exact);
4356
4357 /**
4358 * nr_free_zone_pages - count number of pages beyond high watermark
4359 * @offset: The zone index of the highest zone
4360 *
4361 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4362 * high watermark within all zones at or below a given zone index. For each
4363 * zone, the number of pages is calculated as:
4364 *
4365 * nr_free_zone_pages = managed_pages - high_pages
4366 */
4367 static unsigned long nr_free_zone_pages(int offset)
4368 {
4369 struct zoneref *z;
4370 struct zone *zone;
4371
4372 /* Just pick one node, since fallback list is circular */
4373 unsigned long sum = 0;
4374
4375 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4376
4377 for_each_zone_zonelist(zone, z, zonelist, offset) {
4378 unsigned long size = zone->managed_pages;
4379 unsigned long high = high_wmark_pages(zone);
4380 if (size > high)
4381 sum += size - high;
4382 }
4383
4384 return sum;
4385 }
4386
4387 /**
4388 * nr_free_buffer_pages - count number of pages beyond high watermark
4389 *
4390 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4391 * watermark within ZONE_DMA and ZONE_NORMAL.
4392 */
4393 unsigned long nr_free_buffer_pages(void)
4394 {
4395 return nr_free_zone_pages(gfp_zone(GFP_USER));
4396 }
4397 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4398
4399 /**
4400 * nr_free_pagecache_pages - count number of pages beyond high watermark
4401 *
4402 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4403 * high watermark within all zones.
4404 */
4405 unsigned long nr_free_pagecache_pages(void)
4406 {
4407 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4408 }
4409
4410 static inline void show_node(struct zone *zone)
4411 {
4412 if (IS_ENABLED(CONFIG_NUMA))
4413 printk("Node %d ", zone_to_nid(zone));
4414 }
4415
4416 long si_mem_available(void)
4417 {
4418 long available;
4419 unsigned long pagecache;
4420 unsigned long wmark_low = 0;
4421 unsigned long pages[NR_LRU_LISTS];
4422 struct zone *zone;
4423 int lru;
4424
4425 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4426 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4427
4428 for_each_zone(zone)
4429 wmark_low += zone->watermark[WMARK_LOW];
4430
4431 /*
4432 * Estimate the amount of memory available for userspace allocations,
4433 * without causing swapping.
4434 */
4435 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4436
4437 /*
4438 * Not all the page cache can be freed, otherwise the system will
4439 * start swapping. Assume at least half of the page cache, or the
4440 * low watermark worth of cache, needs to stay.
4441 */
4442 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4443 pagecache -= min(pagecache / 2, wmark_low);
4444 available += pagecache;
4445
4446 /*
4447 * Part of the reclaimable slab consists of items that are in use,
4448 * and cannot be freed. Cap this estimate at the low watermark.
4449 */
4450 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4451 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4452
4453 if (available < 0)
4454 available = 0;
4455 return available;
4456 }
4457 EXPORT_SYMBOL_GPL(si_mem_available);
4458
4459 void si_meminfo(struct sysinfo *val)
4460 {
4461 val->totalram = totalram_pages;
4462 val->sharedram = global_node_page_state(NR_SHMEM);
4463 val->freeram = global_page_state(NR_FREE_PAGES);
4464 val->bufferram = nr_blockdev_pages();
4465 val->totalhigh = totalhigh_pages;
4466 val->freehigh = nr_free_highpages();
4467 val->mem_unit = PAGE_SIZE;
4468 }
4469
4470 EXPORT_SYMBOL(si_meminfo);
4471
4472 #ifdef CONFIG_NUMA
4473 void si_meminfo_node(struct sysinfo *val, int nid)
4474 {
4475 int zone_type; /* needs to be signed */
4476 unsigned long managed_pages = 0;
4477 unsigned long managed_highpages = 0;
4478 unsigned long free_highpages = 0;
4479 pg_data_t *pgdat = NODE_DATA(nid);
4480
4481 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4482 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4483 val->totalram = managed_pages;
4484 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4485 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4486 #ifdef CONFIG_HIGHMEM
4487 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4488 struct zone *zone = &pgdat->node_zones[zone_type];
4489
4490 if (is_highmem(zone)) {
4491 managed_highpages += zone->managed_pages;
4492 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4493 }
4494 }
4495 val->totalhigh = managed_highpages;
4496 val->freehigh = free_highpages;
4497 #else
4498 val->totalhigh = managed_highpages;
4499 val->freehigh = free_highpages;
4500 #endif
4501 val->mem_unit = PAGE_SIZE;
4502 }
4503 #endif
4504
4505 /*
4506 * Determine whether the node should be displayed or not, depending on whether
4507 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4508 */
4509 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4510 {
4511 if (!(flags & SHOW_MEM_FILTER_NODES))
4512 return false;
4513
4514 /*
4515 * no node mask - aka implicit memory numa policy. Do not bother with
4516 * the synchronization - read_mems_allowed_begin - because we do not
4517 * have to be precise here.
4518 */
4519 if (!nodemask)
4520 nodemask = &cpuset_current_mems_allowed;
4521
4522 return !node_isset(nid, *nodemask);
4523 }
4524
4525 #define K(x) ((x) << (PAGE_SHIFT-10))
4526
4527 static void show_migration_types(unsigned char type)
4528 {
4529 static const char types[MIGRATE_TYPES] = {
4530 [MIGRATE_UNMOVABLE] = 'U',
4531 [MIGRATE_MOVABLE] = 'M',
4532 [MIGRATE_RECLAIMABLE] = 'E',
4533 [MIGRATE_HIGHATOMIC] = 'H',
4534 #ifdef CONFIG_CMA
4535 [MIGRATE_CMA] = 'C',
4536 #endif
4537 #ifdef CONFIG_MEMORY_ISOLATION
4538 [MIGRATE_ISOLATE] = 'I',
4539 #endif
4540 };
4541 char tmp[MIGRATE_TYPES + 1];
4542 char *p = tmp;
4543 int i;
4544
4545 for (i = 0; i < MIGRATE_TYPES; i++) {
4546 if (type & (1 << i))
4547 *p++ = types[i];
4548 }
4549
4550 *p = '\0';
4551 printk(KERN_CONT "(%s) ", tmp);
4552 }
4553
4554 /*
4555 * Show free area list (used inside shift_scroll-lock stuff)
4556 * We also calculate the percentage fragmentation. We do this by counting the
4557 * memory on each free list with the exception of the first item on the list.
4558 *
4559 * Bits in @filter:
4560 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4561 * cpuset.
4562 */
4563 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4564 {
4565 unsigned long free_pcp = 0;
4566 int cpu;
4567 struct zone *zone;
4568 pg_data_t *pgdat;
4569
4570 for_each_populated_zone(zone) {
4571 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4572 continue;
4573
4574 for_each_online_cpu(cpu)
4575 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4576 }
4577
4578 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4579 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4580 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4581 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4582 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4583 " free:%lu free_pcp:%lu free_cma:%lu\n",
4584 global_node_page_state(NR_ACTIVE_ANON),
4585 global_node_page_state(NR_INACTIVE_ANON),
4586 global_node_page_state(NR_ISOLATED_ANON),
4587 global_node_page_state(NR_ACTIVE_FILE),
4588 global_node_page_state(NR_INACTIVE_FILE),
4589 global_node_page_state(NR_ISOLATED_FILE),
4590 global_node_page_state(NR_UNEVICTABLE),
4591 global_node_page_state(NR_FILE_DIRTY),
4592 global_node_page_state(NR_WRITEBACK),
4593 global_node_page_state(NR_UNSTABLE_NFS),
4594 global_page_state(NR_SLAB_RECLAIMABLE),
4595 global_page_state(NR_SLAB_UNRECLAIMABLE),
4596 global_node_page_state(NR_FILE_MAPPED),
4597 global_node_page_state(NR_SHMEM),
4598 global_page_state(NR_PAGETABLE),
4599 global_page_state(NR_BOUNCE),
4600 global_page_state(NR_FREE_PAGES),
4601 free_pcp,
4602 global_page_state(NR_FREE_CMA_PAGES));
4603
4604 for_each_online_pgdat(pgdat) {
4605 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4606 continue;
4607
4608 printk("Node %d"
4609 " active_anon:%lukB"
4610 " inactive_anon:%lukB"
4611 " active_file:%lukB"
4612 " inactive_file:%lukB"
4613 " unevictable:%lukB"
4614 " isolated(anon):%lukB"
4615 " isolated(file):%lukB"
4616 " mapped:%lukB"
4617 " dirty:%lukB"
4618 " writeback:%lukB"
4619 " shmem:%lukB"
4620 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4621 " shmem_thp: %lukB"
4622 " shmem_pmdmapped: %lukB"
4623 " anon_thp: %lukB"
4624 #endif
4625 " writeback_tmp:%lukB"
4626 " unstable:%lukB"
4627 " all_unreclaimable? %s"
4628 "\n",
4629 pgdat->node_id,
4630 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4631 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4632 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4633 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4634 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4635 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4636 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4637 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4638 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4639 K(node_page_state(pgdat, NR_WRITEBACK)),
4640 K(node_page_state(pgdat, NR_SHMEM)),
4641 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4642 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4643 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4644 * HPAGE_PMD_NR),
4645 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4646 #endif
4647 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4648 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4649 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4650 "yes" : "no");
4651 }
4652
4653 for_each_populated_zone(zone) {
4654 int i;
4655
4656 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4657 continue;
4658
4659 free_pcp = 0;
4660 for_each_online_cpu(cpu)
4661 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4662
4663 show_node(zone);
4664 printk(KERN_CONT
4665 "%s"
4666 " free:%lukB"
4667 " min:%lukB"
4668 " low:%lukB"
4669 " high:%lukB"
4670 " active_anon:%lukB"
4671 " inactive_anon:%lukB"
4672 " active_file:%lukB"
4673 " inactive_file:%lukB"
4674 " unevictable:%lukB"
4675 " writepending:%lukB"
4676 " present:%lukB"
4677 " managed:%lukB"
4678 " mlocked:%lukB"
4679 " kernel_stack:%lukB"
4680 " pagetables:%lukB"
4681 " bounce:%lukB"
4682 " free_pcp:%lukB"
4683 " local_pcp:%ukB"
4684 " free_cma:%lukB"
4685 "\n",
4686 zone->name,
4687 K(zone_page_state(zone, NR_FREE_PAGES)),
4688 K(min_wmark_pages(zone)),
4689 K(low_wmark_pages(zone)),
4690 K(high_wmark_pages(zone)),
4691 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4692 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4693 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4694 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4695 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4696 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4697 K(zone->present_pages),
4698 K(zone->managed_pages),
4699 K(zone_page_state(zone, NR_MLOCK)),
4700 zone_page_state(zone, NR_KERNEL_STACK_KB),
4701 K(zone_page_state(zone, NR_PAGETABLE)),
4702 K(zone_page_state(zone, NR_BOUNCE)),
4703 K(free_pcp),
4704 K(this_cpu_read(zone->pageset->pcp.count)),
4705 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4706 printk("lowmem_reserve[]:");
4707 for (i = 0; i < MAX_NR_ZONES; i++)
4708 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4709 printk(KERN_CONT "\n");
4710 }
4711
4712 for_each_populated_zone(zone) {
4713 unsigned int order;
4714 unsigned long nr[MAX_ORDER], flags, total = 0;
4715 unsigned char types[MAX_ORDER];
4716
4717 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4718 continue;
4719 show_node(zone);
4720 printk(KERN_CONT "%s: ", zone->name);
4721
4722 spin_lock_irqsave(&zone->lock, flags);
4723 for (order = 0; order < MAX_ORDER; order++) {
4724 struct free_area *area = &zone->free_area[order];
4725 int type;
4726
4727 nr[order] = area->nr_free;
4728 total += nr[order] << order;
4729
4730 types[order] = 0;
4731 for (type = 0; type < MIGRATE_TYPES; type++) {
4732 if (!list_empty(&area->free_list[type]))
4733 types[order] |= 1 << type;
4734 }
4735 }
4736 spin_unlock_irqrestore(&zone->lock, flags);
4737 for (order = 0; order < MAX_ORDER; order++) {
4738 printk(KERN_CONT "%lu*%lukB ",
4739 nr[order], K(1UL) << order);
4740 if (nr[order])
4741 show_migration_types(types[order]);
4742 }
4743 printk(KERN_CONT "= %lukB\n", K(total));
4744 }
4745
4746 hugetlb_show_meminfo();
4747
4748 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4749
4750 show_swap_cache_info();
4751 }
4752
4753 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4754 {
4755 zoneref->zone = zone;
4756 zoneref->zone_idx = zone_idx(zone);
4757 }
4758
4759 /*
4760 * Builds allocation fallback zone lists.
4761 *
4762 * Add all populated zones of a node to the zonelist.
4763 */
4764 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4765 int nr_zones)
4766 {
4767 struct zone *zone;
4768 enum zone_type zone_type = MAX_NR_ZONES;
4769
4770 do {
4771 zone_type--;
4772 zone = pgdat->node_zones + zone_type;
4773 if (managed_zone(zone)) {
4774 zoneref_set_zone(zone,
4775 &zonelist->_zonerefs[nr_zones++]);
4776 check_highest_zone(zone_type);
4777 }
4778 } while (zone_type);
4779
4780 return nr_zones;
4781 }
4782
4783
4784 /*
4785 * zonelist_order:
4786 * 0 = automatic detection of better ordering.
4787 * 1 = order by ([node] distance, -zonetype)
4788 * 2 = order by (-zonetype, [node] distance)
4789 *
4790 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4791 * the same zonelist. So only NUMA can configure this param.
4792 */
4793 #define ZONELIST_ORDER_DEFAULT 0
4794 #define ZONELIST_ORDER_NODE 1
4795 #define ZONELIST_ORDER_ZONE 2
4796
4797 /* zonelist order in the kernel.
4798 * set_zonelist_order() will set this to NODE or ZONE.
4799 */
4800 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4801 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4802
4803
4804 #ifdef CONFIG_NUMA
4805 /* The value user specified ....changed by config */
4806 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4807 /* string for sysctl */
4808 #define NUMA_ZONELIST_ORDER_LEN 16
4809 char numa_zonelist_order[16] = "default";
4810
4811 /*
4812 * interface for configure zonelist ordering.
4813 * command line option "numa_zonelist_order"
4814 * = "[dD]efault - default, automatic configuration.
4815 * = "[nN]ode - order by node locality, then by zone within node
4816 * = "[zZ]one - order by zone, then by locality within zone
4817 */
4818
4819 static int __parse_numa_zonelist_order(char *s)
4820 {
4821 if (*s == 'd' || *s == 'D') {
4822 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4823 } else if (*s == 'n' || *s == 'N') {
4824 user_zonelist_order = ZONELIST_ORDER_NODE;
4825 } else if (*s == 'z' || *s == 'Z') {
4826 user_zonelist_order = ZONELIST_ORDER_ZONE;
4827 } else {
4828 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4829 return -EINVAL;
4830 }
4831 return 0;
4832 }
4833
4834 static __init int setup_numa_zonelist_order(char *s)
4835 {
4836 int ret;
4837
4838 if (!s)
4839 return 0;
4840
4841 ret = __parse_numa_zonelist_order(s);
4842 if (ret == 0)
4843 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4844
4845 return ret;
4846 }
4847 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4848
4849 /*
4850 * sysctl handler for numa_zonelist_order
4851 */
4852 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4853 void __user *buffer, size_t *length,
4854 loff_t *ppos)
4855 {
4856 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4857 int ret;
4858 static DEFINE_MUTEX(zl_order_mutex);
4859
4860 mutex_lock(&zl_order_mutex);
4861 if (write) {
4862 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4863 ret = -EINVAL;
4864 goto out;
4865 }
4866 strcpy(saved_string, (char *)table->data);
4867 }
4868 ret = proc_dostring(table, write, buffer, length, ppos);
4869 if (ret)
4870 goto out;
4871 if (write) {
4872 int oldval = user_zonelist_order;
4873
4874 ret = __parse_numa_zonelist_order((char *)table->data);
4875 if (ret) {
4876 /*
4877 * bogus value. restore saved string
4878 */
4879 strncpy((char *)table->data, saved_string,
4880 NUMA_ZONELIST_ORDER_LEN);
4881 user_zonelist_order = oldval;
4882 } else if (oldval != user_zonelist_order) {
4883 mutex_lock(&zonelists_mutex);
4884 build_all_zonelists(NULL, NULL);
4885 mutex_unlock(&zonelists_mutex);
4886 }
4887 }
4888 out:
4889 mutex_unlock(&zl_order_mutex);
4890 return ret;
4891 }
4892
4893
4894 #define MAX_NODE_LOAD (nr_online_nodes)
4895 static int node_load[MAX_NUMNODES];
4896
4897 /**
4898 * find_next_best_node - find the next node that should appear in a given node's fallback list
4899 * @node: node whose fallback list we're appending
4900 * @used_node_mask: nodemask_t of already used nodes
4901 *
4902 * We use a number of factors to determine which is the next node that should
4903 * appear on a given node's fallback list. The node should not have appeared
4904 * already in @node's fallback list, and it should be the next closest node
4905 * according to the distance array (which contains arbitrary distance values
4906 * from each node to each node in the system), and should also prefer nodes
4907 * with no CPUs, since presumably they'll have very little allocation pressure
4908 * on them otherwise.
4909 * It returns -1 if no node is found.
4910 */
4911 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4912 {
4913 int n, val;
4914 int min_val = INT_MAX;
4915 int best_node = NUMA_NO_NODE;
4916 const struct cpumask *tmp = cpumask_of_node(0);
4917
4918 /* Use the local node if we haven't already */
4919 if (!node_isset(node, *used_node_mask)) {
4920 node_set(node, *used_node_mask);
4921 return node;
4922 }
4923
4924 for_each_node_state(n, N_MEMORY) {
4925
4926 /* Don't want a node to appear more than once */
4927 if (node_isset(n, *used_node_mask))
4928 continue;
4929
4930 /* Use the distance array to find the distance */
4931 val = node_distance(node, n);
4932
4933 /* Penalize nodes under us ("prefer the next node") */
4934 val += (n < node);
4935
4936 /* Give preference to headless and unused nodes */
4937 tmp = cpumask_of_node(n);
4938 if (!cpumask_empty(tmp))
4939 val += PENALTY_FOR_NODE_WITH_CPUS;
4940
4941 /* Slight preference for less loaded node */
4942 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4943 val += node_load[n];
4944
4945 if (val < min_val) {
4946 min_val = val;
4947 best_node = n;
4948 }
4949 }
4950
4951 if (best_node >= 0)
4952 node_set(best_node, *used_node_mask);
4953
4954 return best_node;
4955 }
4956
4957
4958 /*
4959 * Build zonelists ordered by node and zones within node.
4960 * This results in maximum locality--normal zone overflows into local
4961 * DMA zone, if any--but risks exhausting DMA zone.
4962 */
4963 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4964 {
4965 int j;
4966 struct zonelist *zonelist;
4967
4968 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4969 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4970 ;
4971 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4972 zonelist->_zonerefs[j].zone = NULL;
4973 zonelist->_zonerefs[j].zone_idx = 0;
4974 }
4975
4976 /*
4977 * Build gfp_thisnode zonelists
4978 */
4979 static void build_thisnode_zonelists(pg_data_t *pgdat)
4980 {
4981 int j;
4982 struct zonelist *zonelist;
4983
4984 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4985 j = build_zonelists_node(pgdat, zonelist, 0);
4986 zonelist->_zonerefs[j].zone = NULL;
4987 zonelist->_zonerefs[j].zone_idx = 0;
4988 }
4989
4990 /*
4991 * Build zonelists ordered by zone and nodes within zones.
4992 * This results in conserving DMA zone[s] until all Normal memory is
4993 * exhausted, but results in overflowing to remote node while memory
4994 * may still exist in local DMA zone.
4995 */
4996 static int node_order[MAX_NUMNODES];
4997
4998 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4999 {
5000 int pos, j, node;
5001 int zone_type; /* needs to be signed */
5002 struct zone *z;
5003 struct zonelist *zonelist;
5004
5005 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5006 pos = 0;
5007 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
5008 for (j = 0; j < nr_nodes; j++) {
5009 node = node_order[j];
5010 z = &NODE_DATA(node)->node_zones[zone_type];
5011 if (managed_zone(z)) {
5012 zoneref_set_zone(z,
5013 &zonelist->_zonerefs[pos++]);
5014 check_highest_zone(zone_type);
5015 }
5016 }
5017 }
5018 zonelist->_zonerefs[pos].zone = NULL;
5019 zonelist->_zonerefs[pos].zone_idx = 0;
5020 }
5021
5022 #if defined(CONFIG_64BIT)
5023 /*
5024 * Devices that require DMA32/DMA are relatively rare and do not justify a
5025 * penalty to every machine in case the specialised case applies. Default
5026 * to Node-ordering on 64-bit NUMA machines
5027 */
5028 static int default_zonelist_order(void)
5029 {
5030 return ZONELIST_ORDER_NODE;
5031 }
5032 #else
5033 /*
5034 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
5035 * by the kernel. If processes running on node 0 deplete the low memory zone
5036 * then reclaim will occur more frequency increasing stalls and potentially
5037 * be easier to OOM if a large percentage of the zone is under writeback or
5038 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
5039 * Hence, default to zone ordering on 32-bit.
5040 */
5041 static int default_zonelist_order(void)
5042 {
5043 return ZONELIST_ORDER_ZONE;
5044 }
5045 #endif /* CONFIG_64BIT */
5046
5047 static void set_zonelist_order(void)
5048 {
5049 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
5050 current_zonelist_order = default_zonelist_order();
5051 else
5052 current_zonelist_order = user_zonelist_order;
5053 }
5054
5055 static void build_zonelists(pg_data_t *pgdat)
5056 {
5057 int i, node, load;
5058 nodemask_t used_mask;
5059 int local_node, prev_node;
5060 struct zonelist *zonelist;
5061 unsigned int order = current_zonelist_order;
5062
5063 /* initialize zonelists */
5064 for (i = 0; i < MAX_ZONELISTS; i++) {
5065 zonelist = pgdat->node_zonelists + i;
5066 zonelist->_zonerefs[0].zone = NULL;
5067 zonelist->_zonerefs[0].zone_idx = 0;
5068 }
5069
5070 /* NUMA-aware ordering of nodes */
5071 local_node = pgdat->node_id;
5072 load = nr_online_nodes;
5073 prev_node = local_node;
5074 nodes_clear(used_mask);
5075
5076 memset(node_order, 0, sizeof(node_order));
5077 i = 0;
5078
5079 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5080 /*
5081 * We don't want to pressure a particular node.
5082 * So adding penalty to the first node in same
5083 * distance group to make it round-robin.
5084 */
5085 if (node_distance(local_node, node) !=
5086 node_distance(local_node, prev_node))
5087 node_load[node] = load;
5088
5089 prev_node = node;
5090 load--;
5091 if (order == ZONELIST_ORDER_NODE)
5092 build_zonelists_in_node_order(pgdat, node);
5093 else
5094 node_order[i++] = node; /* remember order */
5095 }
5096
5097 if (order == ZONELIST_ORDER_ZONE) {
5098 /* calculate node order -- i.e., DMA last! */
5099 build_zonelists_in_zone_order(pgdat, i);
5100 }
5101
5102 build_thisnode_zonelists(pgdat);
5103 }
5104
5105 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5106 /*
5107 * Return node id of node used for "local" allocations.
5108 * I.e., first node id of first zone in arg node's generic zonelist.
5109 * Used for initializing percpu 'numa_mem', which is used primarily
5110 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5111 */
5112 int local_memory_node(int node)
5113 {
5114 struct zoneref *z;
5115
5116 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5117 gfp_zone(GFP_KERNEL),
5118 NULL);
5119 return z->zone->node;
5120 }
5121 #endif
5122
5123 static void setup_min_unmapped_ratio(void);
5124 static void setup_min_slab_ratio(void);
5125 #else /* CONFIG_NUMA */
5126
5127 static void set_zonelist_order(void)
5128 {
5129 current_zonelist_order = ZONELIST_ORDER_ZONE;
5130 }
5131
5132 static void build_zonelists(pg_data_t *pgdat)
5133 {
5134 int node, local_node;
5135 enum zone_type j;
5136 struct zonelist *zonelist;
5137
5138 local_node = pgdat->node_id;
5139
5140 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5141 j = build_zonelists_node(pgdat, zonelist, 0);
5142
5143 /*
5144 * Now we build the zonelist so that it contains the zones
5145 * of all the other nodes.
5146 * We don't want to pressure a particular node, so when
5147 * building the zones for node N, we make sure that the
5148 * zones coming right after the local ones are those from
5149 * node N+1 (modulo N)
5150 */
5151 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5152 if (!node_online(node))
5153 continue;
5154 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5155 }
5156 for (node = 0; node < local_node; node++) {
5157 if (!node_online(node))
5158 continue;
5159 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5160 }
5161
5162 zonelist->_zonerefs[j].zone = NULL;
5163 zonelist->_zonerefs[j].zone_idx = 0;
5164 }
5165
5166 #endif /* CONFIG_NUMA */
5167
5168 /*
5169 * Boot pageset table. One per cpu which is going to be used for all
5170 * zones and all nodes. The parameters will be set in such a way
5171 * that an item put on a list will immediately be handed over to
5172 * the buddy list. This is safe since pageset manipulation is done
5173 * with interrupts disabled.
5174 *
5175 * The boot_pagesets must be kept even after bootup is complete for
5176 * unused processors and/or zones. They do play a role for bootstrapping
5177 * hotplugged processors.
5178 *
5179 * zoneinfo_show() and maybe other functions do
5180 * not check if the processor is online before following the pageset pointer.
5181 * Other parts of the kernel may not check if the zone is available.
5182 */
5183 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5184 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5185 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5186 static void setup_zone_pageset(struct zone *zone);
5187
5188 /*
5189 * Global mutex to protect against size modification of zonelists
5190 * as well as to serialize pageset setup for the new populated zone.
5191 */
5192 DEFINE_MUTEX(zonelists_mutex);
5193
5194 /* return values int ....just for stop_machine() */
5195 static int __build_all_zonelists(void *data)
5196 {
5197 int nid;
5198 int cpu;
5199 pg_data_t *self = data;
5200
5201 #ifdef CONFIG_NUMA
5202 memset(node_load, 0, sizeof(node_load));
5203 #endif
5204
5205 if (self && !node_online(self->node_id)) {
5206 build_zonelists(self);
5207 }
5208
5209 for_each_online_node(nid) {
5210 pg_data_t *pgdat = NODE_DATA(nid);
5211
5212 build_zonelists(pgdat);
5213 }
5214
5215 /*
5216 * Initialize the boot_pagesets that are going to be used
5217 * for bootstrapping processors. The real pagesets for
5218 * each zone will be allocated later when the per cpu
5219 * allocator is available.
5220 *
5221 * boot_pagesets are used also for bootstrapping offline
5222 * cpus if the system is already booted because the pagesets
5223 * are needed to initialize allocators on a specific cpu too.
5224 * F.e. the percpu allocator needs the page allocator which
5225 * needs the percpu allocator in order to allocate its pagesets
5226 * (a chicken-egg dilemma).
5227 */
5228 for_each_possible_cpu(cpu) {
5229 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5230
5231 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5232 /*
5233 * We now know the "local memory node" for each node--
5234 * i.e., the node of the first zone in the generic zonelist.
5235 * Set up numa_mem percpu variable for on-line cpus. During
5236 * boot, only the boot cpu should be on-line; we'll init the
5237 * secondary cpus' numa_mem as they come on-line. During
5238 * node/memory hotplug, we'll fixup all on-line cpus.
5239 */
5240 if (cpu_online(cpu))
5241 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5242 #endif
5243 }
5244
5245 return 0;
5246 }
5247
5248 static noinline void __init
5249 build_all_zonelists_init(void)
5250 {
5251 __build_all_zonelists(NULL);
5252 mminit_verify_zonelist();
5253 cpuset_init_current_mems_allowed();
5254 }
5255
5256 /*
5257 * Called with zonelists_mutex held always
5258 * unless system_state == SYSTEM_BOOTING.
5259 *
5260 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5261 * [we're only called with non-NULL zone through __meminit paths] and
5262 * (2) call of __init annotated helper build_all_zonelists_init
5263 * [protected by SYSTEM_BOOTING].
5264 */
5265 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5266 {
5267 set_zonelist_order();
5268
5269 if (system_state == SYSTEM_BOOTING) {
5270 build_all_zonelists_init();
5271 } else {
5272 #ifdef CONFIG_MEMORY_HOTPLUG
5273 if (zone)
5274 setup_zone_pageset(zone);
5275 #endif
5276 /* we have to stop all cpus to guarantee there is no user
5277 of zonelist */
5278 stop_machine(__build_all_zonelists, pgdat, NULL);
5279 /* cpuset refresh routine should be here */
5280 }
5281 vm_total_pages = nr_free_pagecache_pages();
5282 /*
5283 * Disable grouping by mobility if the number of pages in the
5284 * system is too low to allow the mechanism to work. It would be
5285 * more accurate, but expensive to check per-zone. This check is
5286 * made on memory-hotadd so a system can start with mobility
5287 * disabled and enable it later
5288 */
5289 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5290 page_group_by_mobility_disabled = 1;
5291 else
5292 page_group_by_mobility_disabled = 0;
5293
5294 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5295 nr_online_nodes,
5296 zonelist_order_name[current_zonelist_order],
5297 page_group_by_mobility_disabled ? "off" : "on",
5298 vm_total_pages);
5299 #ifdef CONFIG_NUMA
5300 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5301 #endif
5302 }
5303
5304 /*
5305 * Initially all pages are reserved - free ones are freed
5306 * up by free_all_bootmem() once the early boot process is
5307 * done. Non-atomic initialization, single-pass.
5308 */
5309 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5310 unsigned long start_pfn, enum memmap_context context)
5311 {
5312 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5313 unsigned long end_pfn = start_pfn + size;
5314 pg_data_t *pgdat = NODE_DATA(nid);
5315 unsigned long pfn;
5316 unsigned long nr_initialised = 0;
5317 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5318 struct memblock_region *r = NULL, *tmp;
5319 #endif
5320
5321 if (highest_memmap_pfn < end_pfn - 1)
5322 highest_memmap_pfn = end_pfn - 1;
5323
5324 /*
5325 * Honor reservation requested by the driver for this ZONE_DEVICE
5326 * memory
5327 */
5328 if (altmap && start_pfn == altmap->base_pfn)
5329 start_pfn += altmap->reserve;
5330
5331 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5332 /*
5333 * There can be holes in boot-time mem_map[]s handed to this
5334 * function. They do not exist on hotplugged memory.
5335 */
5336 if (context != MEMMAP_EARLY)
5337 goto not_early;
5338
5339 if (!early_pfn_valid(pfn)) {
5340 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5341 /*
5342 * Skip to the pfn preceding the next valid one (or
5343 * end_pfn), such that we hit a valid pfn (or end_pfn)
5344 * on our next iteration of the loop.
5345 */
5346 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5347 #endif
5348 continue;
5349 }
5350 if (!early_pfn_in_nid(pfn, nid))
5351 continue;
5352 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5353 break;
5354
5355 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5356 /*
5357 * Check given memblock attribute by firmware which can affect
5358 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5359 * mirrored, it's an overlapped memmap init. skip it.
5360 */
5361 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5362 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5363 for_each_memblock(memory, tmp)
5364 if (pfn < memblock_region_memory_end_pfn(tmp))
5365 break;
5366 r = tmp;
5367 }
5368 if (pfn >= memblock_region_memory_base_pfn(r) &&
5369 memblock_is_mirror(r)) {
5370 /* already initialized as NORMAL */
5371 pfn = memblock_region_memory_end_pfn(r);
5372 continue;
5373 }
5374 }
5375 #endif
5376
5377 not_early:
5378 /*
5379 * Mark the block movable so that blocks are reserved for
5380 * movable at startup. This will force kernel allocations
5381 * to reserve their blocks rather than leaking throughout
5382 * the address space during boot when many long-lived
5383 * kernel allocations are made.
5384 *
5385 * bitmap is created for zone's valid pfn range. but memmap
5386 * can be created for invalid pages (for alignment)
5387 * check here not to call set_pageblock_migratetype() against
5388 * pfn out of zone.
5389 */
5390 if (!(pfn & (pageblock_nr_pages - 1))) {
5391 struct page *page = pfn_to_page(pfn);
5392
5393 __init_single_page(page, pfn, zone, nid);
5394 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5395 } else {
5396 __init_single_pfn(pfn, zone, nid);
5397 }
5398 }
5399 }
5400
5401 static void __meminit zone_init_free_lists(struct zone *zone)
5402 {
5403 unsigned int order, t;
5404 for_each_migratetype_order(order, t) {
5405 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5406 zone->free_area[order].nr_free = 0;
5407 }
5408 }
5409
5410 #ifndef __HAVE_ARCH_MEMMAP_INIT
5411 #define memmap_init(size, nid, zone, start_pfn) \
5412 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5413 #endif
5414
5415 static int zone_batchsize(struct zone *zone)
5416 {
5417 #ifdef CONFIG_MMU
5418 int batch;
5419
5420 /*
5421 * The per-cpu-pages pools are set to around 1000th of the
5422 * size of the zone. But no more than 1/2 of a meg.
5423 *
5424 * OK, so we don't know how big the cache is. So guess.
5425 */
5426 batch = zone->managed_pages / 1024;
5427 if (batch * PAGE_SIZE > 512 * 1024)
5428 batch = (512 * 1024) / PAGE_SIZE;
5429 batch /= 4; /* We effectively *= 4 below */
5430 if (batch < 1)
5431 batch = 1;
5432
5433 /*
5434 * Clamp the batch to a 2^n - 1 value. Having a power
5435 * of 2 value was found to be more likely to have
5436 * suboptimal cache aliasing properties in some cases.
5437 *
5438 * For example if 2 tasks are alternately allocating
5439 * batches of pages, one task can end up with a lot
5440 * of pages of one half of the possible page colors
5441 * and the other with pages of the other colors.
5442 */
5443 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5444
5445 return batch;
5446
5447 #else
5448 /* The deferral and batching of frees should be suppressed under NOMMU
5449 * conditions.
5450 *
5451 * The problem is that NOMMU needs to be able to allocate large chunks
5452 * of contiguous memory as there's no hardware page translation to
5453 * assemble apparent contiguous memory from discontiguous pages.
5454 *
5455 * Queueing large contiguous runs of pages for batching, however,
5456 * causes the pages to actually be freed in smaller chunks. As there
5457 * can be a significant delay between the individual batches being
5458 * recycled, this leads to the once large chunks of space being
5459 * fragmented and becoming unavailable for high-order allocations.
5460 */
5461 return 0;
5462 #endif
5463 }
5464
5465 /*
5466 * pcp->high and pcp->batch values are related and dependent on one another:
5467 * ->batch must never be higher then ->high.
5468 * The following function updates them in a safe manner without read side
5469 * locking.
5470 *
5471 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5472 * those fields changing asynchronously (acording the the above rule).
5473 *
5474 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5475 * outside of boot time (or some other assurance that no concurrent updaters
5476 * exist).
5477 */
5478 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5479 unsigned long batch)
5480 {
5481 /* start with a fail safe value for batch */
5482 pcp->batch = 1;
5483 smp_wmb();
5484
5485 /* Update high, then batch, in order */
5486 pcp->high = high;
5487 smp_wmb();
5488
5489 pcp->batch = batch;
5490 }
5491
5492 /* a companion to pageset_set_high() */
5493 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5494 {
5495 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5496 }
5497
5498 static void pageset_init(struct per_cpu_pageset *p)
5499 {
5500 struct per_cpu_pages *pcp;
5501 int migratetype;
5502
5503 memset(p, 0, sizeof(*p));
5504
5505 pcp = &p->pcp;
5506 pcp->count = 0;
5507 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5508 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5509 }
5510
5511 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5512 {
5513 pageset_init(p);
5514 pageset_set_batch(p, batch);
5515 }
5516
5517 /*
5518 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5519 * to the value high for the pageset p.
5520 */
5521 static void pageset_set_high(struct per_cpu_pageset *p,
5522 unsigned long high)
5523 {
5524 unsigned long batch = max(1UL, high / 4);
5525 if ((high / 4) > (PAGE_SHIFT * 8))
5526 batch = PAGE_SHIFT * 8;
5527
5528 pageset_update(&p->pcp, high, batch);
5529 }
5530
5531 static void pageset_set_high_and_batch(struct zone *zone,
5532 struct per_cpu_pageset *pcp)
5533 {
5534 if (percpu_pagelist_fraction)
5535 pageset_set_high(pcp,
5536 (zone->managed_pages /
5537 percpu_pagelist_fraction));
5538 else
5539 pageset_set_batch(pcp, zone_batchsize(zone));
5540 }
5541
5542 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5543 {
5544 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5545
5546 pageset_init(pcp);
5547 pageset_set_high_and_batch(zone, pcp);
5548 }
5549
5550 static void __meminit setup_zone_pageset(struct zone *zone)
5551 {
5552 int cpu;
5553 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5554 for_each_possible_cpu(cpu)
5555 zone_pageset_init(zone, cpu);
5556 }
5557
5558 /*
5559 * Allocate per cpu pagesets and initialize them.
5560 * Before this call only boot pagesets were available.
5561 */
5562 void __init setup_per_cpu_pageset(void)
5563 {
5564 struct pglist_data *pgdat;
5565 struct zone *zone;
5566
5567 for_each_populated_zone(zone)
5568 setup_zone_pageset(zone);
5569
5570 for_each_online_pgdat(pgdat)
5571 pgdat->per_cpu_nodestats =
5572 alloc_percpu(struct per_cpu_nodestat);
5573 }
5574
5575 static __meminit void zone_pcp_init(struct zone *zone)
5576 {
5577 /*
5578 * per cpu subsystem is not up at this point. The following code
5579 * relies on the ability of the linker to provide the
5580 * offset of a (static) per cpu variable into the per cpu area.
5581 */
5582 zone->pageset = &boot_pageset;
5583
5584 if (populated_zone(zone))
5585 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5586 zone->name, zone->present_pages,
5587 zone_batchsize(zone));
5588 }
5589
5590 void __meminit init_currently_empty_zone(struct zone *zone,
5591 unsigned long zone_start_pfn,
5592 unsigned long size)
5593 {
5594 struct pglist_data *pgdat = zone->zone_pgdat;
5595
5596 pgdat->nr_zones = zone_idx(zone) + 1;
5597
5598 zone->zone_start_pfn = zone_start_pfn;
5599
5600 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5601 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5602 pgdat->node_id,
5603 (unsigned long)zone_idx(zone),
5604 zone_start_pfn, (zone_start_pfn + size));
5605
5606 zone_init_free_lists(zone);
5607 zone->initialized = 1;
5608 }
5609
5610 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5611 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5612
5613 /*
5614 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5615 */
5616 int __meminit __early_pfn_to_nid(unsigned long pfn,
5617 struct mminit_pfnnid_cache *state)
5618 {
5619 unsigned long start_pfn, end_pfn;
5620 int nid;
5621
5622 if (state->last_start <= pfn && pfn < state->last_end)
5623 return state->last_nid;
5624
5625 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5626 if (nid != -1) {
5627 state->last_start = start_pfn;
5628 state->last_end = end_pfn;
5629 state->last_nid = nid;
5630 }
5631
5632 return nid;
5633 }
5634 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5635
5636 /**
5637 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5638 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5639 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5640 *
5641 * If an architecture guarantees that all ranges registered contain no holes
5642 * and may be freed, this this function may be used instead of calling
5643 * memblock_free_early_nid() manually.
5644 */
5645 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5646 {
5647 unsigned long start_pfn, end_pfn;
5648 int i, this_nid;
5649
5650 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5651 start_pfn = min(start_pfn, max_low_pfn);
5652 end_pfn = min(end_pfn, max_low_pfn);
5653
5654 if (start_pfn < end_pfn)
5655 memblock_free_early_nid(PFN_PHYS(start_pfn),
5656 (end_pfn - start_pfn) << PAGE_SHIFT,
5657 this_nid);
5658 }
5659 }
5660
5661 /**
5662 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5663 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5664 *
5665 * If an architecture guarantees that all ranges registered contain no holes and may
5666 * be freed, this function may be used instead of calling memory_present() manually.
5667 */
5668 void __init sparse_memory_present_with_active_regions(int nid)
5669 {
5670 unsigned long start_pfn, end_pfn;
5671 int i, this_nid;
5672
5673 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5674 memory_present(this_nid, start_pfn, end_pfn);
5675 }
5676
5677 /**
5678 * get_pfn_range_for_nid - Return the start and end page frames for a node
5679 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5680 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5681 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5682 *
5683 * It returns the start and end page frame of a node based on information
5684 * provided by memblock_set_node(). If called for a node
5685 * with no available memory, a warning is printed and the start and end
5686 * PFNs will be 0.
5687 */
5688 void __meminit get_pfn_range_for_nid(unsigned int nid,
5689 unsigned long *start_pfn, unsigned long *end_pfn)
5690 {
5691 unsigned long this_start_pfn, this_end_pfn;
5692 int i;
5693
5694 *start_pfn = -1UL;
5695 *end_pfn = 0;
5696
5697 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5698 *start_pfn = min(*start_pfn, this_start_pfn);
5699 *end_pfn = max(*end_pfn, this_end_pfn);
5700 }
5701
5702 if (*start_pfn == -1UL)
5703 *start_pfn = 0;
5704 }
5705
5706 /*
5707 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5708 * assumption is made that zones within a node are ordered in monotonic
5709 * increasing memory addresses so that the "highest" populated zone is used
5710 */
5711 static void __init find_usable_zone_for_movable(void)
5712 {
5713 int zone_index;
5714 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5715 if (zone_index == ZONE_MOVABLE)
5716 continue;
5717
5718 if (arch_zone_highest_possible_pfn[zone_index] >
5719 arch_zone_lowest_possible_pfn[zone_index])
5720 break;
5721 }
5722
5723 VM_BUG_ON(zone_index == -1);
5724 movable_zone = zone_index;
5725 }
5726
5727 /*
5728 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5729 * because it is sized independent of architecture. Unlike the other zones,
5730 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5731 * in each node depending on the size of each node and how evenly kernelcore
5732 * is distributed. This helper function adjusts the zone ranges
5733 * provided by the architecture for a given node by using the end of the
5734 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5735 * zones within a node are in order of monotonic increases memory addresses
5736 */
5737 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5738 unsigned long zone_type,
5739 unsigned long node_start_pfn,
5740 unsigned long node_end_pfn,
5741 unsigned long *zone_start_pfn,
5742 unsigned long *zone_end_pfn)
5743 {
5744 /* Only adjust if ZONE_MOVABLE is on this node */
5745 if (zone_movable_pfn[nid]) {
5746 /* Size ZONE_MOVABLE */
5747 if (zone_type == ZONE_MOVABLE) {
5748 *zone_start_pfn = zone_movable_pfn[nid];
5749 *zone_end_pfn = min(node_end_pfn,
5750 arch_zone_highest_possible_pfn[movable_zone]);
5751
5752 /* Adjust for ZONE_MOVABLE starting within this range */
5753 } else if (!mirrored_kernelcore &&
5754 *zone_start_pfn < zone_movable_pfn[nid] &&
5755 *zone_end_pfn > zone_movable_pfn[nid]) {
5756 *zone_end_pfn = zone_movable_pfn[nid];
5757
5758 /* Check if this whole range is within ZONE_MOVABLE */
5759 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5760 *zone_start_pfn = *zone_end_pfn;
5761 }
5762 }
5763
5764 /*
5765 * Return the number of pages a zone spans in a node, including holes
5766 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5767 */
5768 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5769 unsigned long zone_type,
5770 unsigned long node_start_pfn,
5771 unsigned long node_end_pfn,
5772 unsigned long *zone_start_pfn,
5773 unsigned long *zone_end_pfn,
5774 unsigned long *ignored)
5775 {
5776 /* When hotadd a new node from cpu_up(), the node should be empty */
5777 if (!node_start_pfn && !node_end_pfn)
5778 return 0;
5779
5780 /* Get the start and end of the zone */
5781 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5782 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5783 adjust_zone_range_for_zone_movable(nid, zone_type,
5784 node_start_pfn, node_end_pfn,
5785 zone_start_pfn, zone_end_pfn);
5786
5787 /* Check that this node has pages within the zone's required range */
5788 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5789 return 0;
5790
5791 /* Move the zone boundaries inside the node if necessary */
5792 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5793 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5794
5795 /* Return the spanned pages */
5796 return *zone_end_pfn - *zone_start_pfn;
5797 }
5798
5799 /*
5800 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5801 * then all holes in the requested range will be accounted for.
5802 */
5803 unsigned long __meminit __absent_pages_in_range(int nid,
5804 unsigned long range_start_pfn,
5805 unsigned long range_end_pfn)
5806 {
5807 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5808 unsigned long start_pfn, end_pfn;
5809 int i;
5810
5811 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5812 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5813 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5814 nr_absent -= end_pfn - start_pfn;
5815 }
5816 return nr_absent;
5817 }
5818
5819 /**
5820 * absent_pages_in_range - Return number of page frames in holes within a range
5821 * @start_pfn: The start PFN to start searching for holes
5822 * @end_pfn: The end PFN to stop searching for holes
5823 *
5824 * It returns the number of pages frames in memory holes within a range.
5825 */
5826 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5827 unsigned long end_pfn)
5828 {
5829 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5830 }
5831
5832 /* Return the number of page frames in holes in a zone on a node */
5833 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5834 unsigned long zone_type,
5835 unsigned long node_start_pfn,
5836 unsigned long node_end_pfn,
5837 unsigned long *ignored)
5838 {
5839 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5840 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5841 unsigned long zone_start_pfn, zone_end_pfn;
5842 unsigned long nr_absent;
5843
5844 /* When hotadd a new node from cpu_up(), the node should be empty */
5845 if (!node_start_pfn && !node_end_pfn)
5846 return 0;
5847
5848 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5849 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5850
5851 adjust_zone_range_for_zone_movable(nid, zone_type,
5852 node_start_pfn, node_end_pfn,
5853 &zone_start_pfn, &zone_end_pfn);
5854 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5855
5856 /*
5857 * ZONE_MOVABLE handling.
5858 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5859 * and vice versa.
5860 */
5861 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5862 unsigned long start_pfn, end_pfn;
5863 struct memblock_region *r;
5864
5865 for_each_memblock(memory, r) {
5866 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5867 zone_start_pfn, zone_end_pfn);
5868 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5869 zone_start_pfn, zone_end_pfn);
5870
5871 if (zone_type == ZONE_MOVABLE &&
5872 memblock_is_mirror(r))
5873 nr_absent += end_pfn - start_pfn;
5874
5875 if (zone_type == ZONE_NORMAL &&
5876 !memblock_is_mirror(r))
5877 nr_absent += end_pfn - start_pfn;
5878 }
5879 }
5880
5881 return nr_absent;
5882 }
5883
5884 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5885 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5886 unsigned long zone_type,
5887 unsigned long node_start_pfn,
5888 unsigned long node_end_pfn,
5889 unsigned long *zone_start_pfn,
5890 unsigned long *zone_end_pfn,
5891 unsigned long *zones_size)
5892 {
5893 unsigned int zone;
5894
5895 *zone_start_pfn = node_start_pfn;
5896 for (zone = 0; zone < zone_type; zone++)
5897 *zone_start_pfn += zones_size[zone];
5898
5899 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5900
5901 return zones_size[zone_type];
5902 }
5903
5904 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5905 unsigned long zone_type,
5906 unsigned long node_start_pfn,
5907 unsigned long node_end_pfn,
5908 unsigned long *zholes_size)
5909 {
5910 if (!zholes_size)
5911 return 0;
5912
5913 return zholes_size[zone_type];
5914 }
5915
5916 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5917
5918 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5919 unsigned long node_start_pfn,
5920 unsigned long node_end_pfn,
5921 unsigned long *zones_size,
5922 unsigned long *zholes_size)
5923 {
5924 unsigned long realtotalpages = 0, totalpages = 0;
5925 enum zone_type i;
5926
5927 for (i = 0; i < MAX_NR_ZONES; i++) {
5928 struct zone *zone = pgdat->node_zones + i;
5929 unsigned long zone_start_pfn, zone_end_pfn;
5930 unsigned long size, real_size;
5931
5932 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5933 node_start_pfn,
5934 node_end_pfn,
5935 &zone_start_pfn,
5936 &zone_end_pfn,
5937 zones_size);
5938 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5939 node_start_pfn, node_end_pfn,
5940 zholes_size);
5941 if (size)
5942 zone->zone_start_pfn = zone_start_pfn;
5943 else
5944 zone->zone_start_pfn = 0;
5945 zone->spanned_pages = size;
5946 zone->present_pages = real_size;
5947
5948 totalpages += size;
5949 realtotalpages += real_size;
5950 }
5951
5952 pgdat->node_spanned_pages = totalpages;
5953 pgdat->node_present_pages = realtotalpages;
5954 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5955 realtotalpages);
5956 }
5957
5958 #ifndef CONFIG_SPARSEMEM
5959 /*
5960 * Calculate the size of the zone->blockflags rounded to an unsigned long
5961 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5962 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5963 * round what is now in bits to nearest long in bits, then return it in
5964 * bytes.
5965 */
5966 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5967 {
5968 unsigned long usemapsize;
5969
5970 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5971 usemapsize = roundup(zonesize, pageblock_nr_pages);
5972 usemapsize = usemapsize >> pageblock_order;
5973 usemapsize *= NR_PAGEBLOCK_BITS;
5974 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5975
5976 return usemapsize / 8;
5977 }
5978
5979 static void __init setup_usemap(struct pglist_data *pgdat,
5980 struct zone *zone,
5981 unsigned long zone_start_pfn,
5982 unsigned long zonesize)
5983 {
5984 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5985 zone->pageblock_flags = NULL;
5986 if (usemapsize)
5987 zone->pageblock_flags =
5988 memblock_virt_alloc_node_nopanic(usemapsize,
5989 pgdat->node_id);
5990 }
5991 #else
5992 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5993 unsigned long zone_start_pfn, unsigned long zonesize) {}
5994 #endif /* CONFIG_SPARSEMEM */
5995
5996 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5997
5998 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5999 void __paginginit set_pageblock_order(void)
6000 {
6001 unsigned int order;
6002
6003 /* Check that pageblock_nr_pages has not already been setup */
6004 if (pageblock_order)
6005 return;
6006
6007 if (HPAGE_SHIFT > PAGE_SHIFT)
6008 order = HUGETLB_PAGE_ORDER;
6009 else
6010 order = MAX_ORDER - 1;
6011
6012 /*
6013 * Assume the largest contiguous order of interest is a huge page.
6014 * This value may be variable depending on boot parameters on IA64 and
6015 * powerpc.
6016 */
6017 pageblock_order = order;
6018 }
6019 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6020
6021 /*
6022 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6023 * is unused as pageblock_order is set at compile-time. See
6024 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6025 * the kernel config
6026 */
6027 void __paginginit set_pageblock_order(void)
6028 {
6029 }
6030
6031 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6032
6033 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6034 unsigned long present_pages)
6035 {
6036 unsigned long pages = spanned_pages;
6037
6038 /*
6039 * Provide a more accurate estimation if there are holes within
6040 * the zone and SPARSEMEM is in use. If there are holes within the
6041 * zone, each populated memory region may cost us one or two extra
6042 * memmap pages due to alignment because memmap pages for each
6043 * populated regions may not be naturally aligned on page boundary.
6044 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6045 */
6046 if (spanned_pages > present_pages + (present_pages >> 4) &&
6047 IS_ENABLED(CONFIG_SPARSEMEM))
6048 pages = present_pages;
6049
6050 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6051 }
6052
6053 /*
6054 * Set up the zone data structures:
6055 * - mark all pages reserved
6056 * - mark all memory queues empty
6057 * - clear the memory bitmaps
6058 *
6059 * NOTE: pgdat should get zeroed by caller.
6060 */
6061 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6062 {
6063 enum zone_type j;
6064 int nid = pgdat->node_id;
6065
6066 pgdat_resize_init(pgdat);
6067 #ifdef CONFIG_NUMA_BALANCING
6068 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6069 pgdat->numabalancing_migrate_nr_pages = 0;
6070 pgdat->numabalancing_migrate_next_window = jiffies;
6071 #endif
6072 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6073 spin_lock_init(&pgdat->split_queue_lock);
6074 INIT_LIST_HEAD(&pgdat->split_queue);
6075 pgdat->split_queue_len = 0;
6076 #endif
6077 init_waitqueue_head(&pgdat->kswapd_wait);
6078 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6079 #ifdef CONFIG_COMPACTION
6080 init_waitqueue_head(&pgdat->kcompactd_wait);
6081 #endif
6082 pgdat_page_ext_init(pgdat);
6083 spin_lock_init(&pgdat->lru_lock);
6084 lruvec_init(node_lruvec(pgdat));
6085
6086 pgdat->per_cpu_nodestats = &boot_nodestats;
6087
6088 for (j = 0; j < MAX_NR_ZONES; j++) {
6089 struct zone *zone = pgdat->node_zones + j;
6090 unsigned long size, realsize, freesize, memmap_pages;
6091 unsigned long zone_start_pfn = zone->zone_start_pfn;
6092
6093 size = zone->spanned_pages;
6094 realsize = freesize = zone->present_pages;
6095
6096 /*
6097 * Adjust freesize so that it accounts for how much memory
6098 * is used by this zone for memmap. This affects the watermark
6099 * and per-cpu initialisations
6100 */
6101 memmap_pages = calc_memmap_size(size, realsize);
6102 if (!is_highmem_idx(j)) {
6103 if (freesize >= memmap_pages) {
6104 freesize -= memmap_pages;
6105 if (memmap_pages)
6106 printk(KERN_DEBUG
6107 " %s zone: %lu pages used for memmap\n",
6108 zone_names[j], memmap_pages);
6109 } else
6110 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6111 zone_names[j], memmap_pages, freesize);
6112 }
6113
6114 /* Account for reserved pages */
6115 if (j == 0 && freesize > dma_reserve) {
6116 freesize -= dma_reserve;
6117 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6118 zone_names[0], dma_reserve);
6119 }
6120
6121 if (!is_highmem_idx(j))
6122 nr_kernel_pages += freesize;
6123 /* Charge for highmem memmap if there are enough kernel pages */
6124 else if (nr_kernel_pages > memmap_pages * 2)
6125 nr_kernel_pages -= memmap_pages;
6126 nr_all_pages += freesize;
6127
6128 /*
6129 * Set an approximate value for lowmem here, it will be adjusted
6130 * when the bootmem allocator frees pages into the buddy system.
6131 * And all highmem pages will be managed by the buddy system.
6132 */
6133 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6134 #ifdef CONFIG_NUMA
6135 zone->node = nid;
6136 #endif
6137 zone->name = zone_names[j];
6138 zone->zone_pgdat = pgdat;
6139 spin_lock_init(&zone->lock);
6140 zone_seqlock_init(zone);
6141 zone_pcp_init(zone);
6142
6143 if (!size)
6144 continue;
6145
6146 set_pageblock_order();
6147 setup_usemap(pgdat, zone, zone_start_pfn, size);
6148 init_currently_empty_zone(zone, zone_start_pfn, size);
6149 memmap_init(size, nid, j, zone_start_pfn);
6150 }
6151 }
6152
6153 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6154 {
6155 unsigned long __maybe_unused start = 0;
6156 unsigned long __maybe_unused offset = 0;
6157
6158 /* Skip empty nodes */
6159 if (!pgdat->node_spanned_pages)
6160 return;
6161
6162 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6163 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6164 offset = pgdat->node_start_pfn - start;
6165 /* ia64 gets its own node_mem_map, before this, without bootmem */
6166 if (!pgdat->node_mem_map) {
6167 unsigned long size, end;
6168 struct page *map;
6169
6170 /*
6171 * The zone's endpoints aren't required to be MAX_ORDER
6172 * aligned but the node_mem_map endpoints must be in order
6173 * for the buddy allocator to function correctly.
6174 */
6175 end = pgdat_end_pfn(pgdat);
6176 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6177 size = (end - start) * sizeof(struct page);
6178 map = alloc_remap(pgdat->node_id, size);
6179 if (!map)
6180 map = memblock_virt_alloc_node_nopanic(size,
6181 pgdat->node_id);
6182 pgdat->node_mem_map = map + offset;
6183 }
6184 #ifndef CONFIG_NEED_MULTIPLE_NODES
6185 /*
6186 * With no DISCONTIG, the global mem_map is just set as node 0's
6187 */
6188 if (pgdat == NODE_DATA(0)) {
6189 mem_map = NODE_DATA(0)->node_mem_map;
6190 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6191 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6192 mem_map -= offset;
6193 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6194 }
6195 #endif
6196 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6197 }
6198
6199 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6200 unsigned long node_start_pfn, unsigned long *zholes_size)
6201 {
6202 pg_data_t *pgdat = NODE_DATA(nid);
6203 unsigned long start_pfn = 0;
6204 unsigned long end_pfn = 0;
6205
6206 /* pg_data_t should be reset to zero when it's allocated */
6207 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6208
6209 pgdat->node_id = nid;
6210 pgdat->node_start_pfn = node_start_pfn;
6211 pgdat->per_cpu_nodestats = NULL;
6212 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6213 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6214 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6215 (u64)start_pfn << PAGE_SHIFT,
6216 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6217 #else
6218 start_pfn = node_start_pfn;
6219 #endif
6220 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6221 zones_size, zholes_size);
6222
6223 alloc_node_mem_map(pgdat);
6224 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6225 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6226 nid, (unsigned long)pgdat,
6227 (unsigned long)pgdat->node_mem_map);
6228 #endif
6229
6230 reset_deferred_meminit(pgdat);
6231 free_area_init_core(pgdat);
6232 }
6233
6234 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6235
6236 #if MAX_NUMNODES > 1
6237 /*
6238 * Figure out the number of possible node ids.
6239 */
6240 void __init setup_nr_node_ids(void)
6241 {
6242 unsigned int highest;
6243
6244 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6245 nr_node_ids = highest + 1;
6246 }
6247 #endif
6248
6249 /**
6250 * node_map_pfn_alignment - determine the maximum internode alignment
6251 *
6252 * This function should be called after node map is populated and sorted.
6253 * It calculates the maximum power of two alignment which can distinguish
6254 * all the nodes.
6255 *
6256 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6257 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6258 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6259 * shifted, 1GiB is enough and this function will indicate so.
6260 *
6261 * This is used to test whether pfn -> nid mapping of the chosen memory
6262 * model has fine enough granularity to avoid incorrect mapping for the
6263 * populated node map.
6264 *
6265 * Returns the determined alignment in pfn's. 0 if there is no alignment
6266 * requirement (single node).
6267 */
6268 unsigned long __init node_map_pfn_alignment(void)
6269 {
6270 unsigned long accl_mask = 0, last_end = 0;
6271 unsigned long start, end, mask;
6272 int last_nid = -1;
6273 int i, nid;
6274
6275 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6276 if (!start || last_nid < 0 || last_nid == nid) {
6277 last_nid = nid;
6278 last_end = end;
6279 continue;
6280 }
6281
6282 /*
6283 * Start with a mask granular enough to pin-point to the
6284 * start pfn and tick off bits one-by-one until it becomes
6285 * too coarse to separate the current node from the last.
6286 */
6287 mask = ~((1 << __ffs(start)) - 1);
6288 while (mask && last_end <= (start & (mask << 1)))
6289 mask <<= 1;
6290
6291 /* accumulate all internode masks */
6292 accl_mask |= mask;
6293 }
6294
6295 /* convert mask to number of pages */
6296 return ~accl_mask + 1;
6297 }
6298
6299 /* Find the lowest pfn for a node */
6300 static unsigned long __init find_min_pfn_for_node(int nid)
6301 {
6302 unsigned long min_pfn = ULONG_MAX;
6303 unsigned long start_pfn;
6304 int i;
6305
6306 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6307 min_pfn = min(min_pfn, start_pfn);
6308
6309 if (min_pfn == ULONG_MAX) {
6310 pr_warn("Could not find start_pfn for node %d\n", nid);
6311 return 0;
6312 }
6313
6314 return min_pfn;
6315 }
6316
6317 /**
6318 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6319 *
6320 * It returns the minimum PFN based on information provided via
6321 * memblock_set_node().
6322 */
6323 unsigned long __init find_min_pfn_with_active_regions(void)
6324 {
6325 return find_min_pfn_for_node(MAX_NUMNODES);
6326 }
6327
6328 /*
6329 * early_calculate_totalpages()
6330 * Sum pages in active regions for movable zone.
6331 * Populate N_MEMORY for calculating usable_nodes.
6332 */
6333 static unsigned long __init early_calculate_totalpages(void)
6334 {
6335 unsigned long totalpages = 0;
6336 unsigned long start_pfn, end_pfn;
6337 int i, nid;
6338
6339 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6340 unsigned long pages = end_pfn - start_pfn;
6341
6342 totalpages += pages;
6343 if (pages)
6344 node_set_state(nid, N_MEMORY);
6345 }
6346 return totalpages;
6347 }
6348
6349 /*
6350 * Find the PFN the Movable zone begins in each node. Kernel memory
6351 * is spread evenly between nodes as long as the nodes have enough
6352 * memory. When they don't, some nodes will have more kernelcore than
6353 * others
6354 */
6355 static void __init find_zone_movable_pfns_for_nodes(void)
6356 {
6357 int i, nid;
6358 unsigned long usable_startpfn;
6359 unsigned long kernelcore_node, kernelcore_remaining;
6360 /* save the state before borrow the nodemask */
6361 nodemask_t saved_node_state = node_states[N_MEMORY];
6362 unsigned long totalpages = early_calculate_totalpages();
6363 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6364 struct memblock_region *r;
6365
6366 /* Need to find movable_zone earlier when movable_node is specified. */
6367 find_usable_zone_for_movable();
6368
6369 /*
6370 * If movable_node is specified, ignore kernelcore and movablecore
6371 * options.
6372 */
6373 if (movable_node_is_enabled()) {
6374 for_each_memblock(memory, r) {
6375 if (!memblock_is_hotpluggable(r))
6376 continue;
6377
6378 nid = r->nid;
6379
6380 usable_startpfn = PFN_DOWN(r->base);
6381 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6382 min(usable_startpfn, zone_movable_pfn[nid]) :
6383 usable_startpfn;
6384 }
6385
6386 goto out2;
6387 }
6388
6389 /*
6390 * If kernelcore=mirror is specified, ignore movablecore option
6391 */
6392 if (mirrored_kernelcore) {
6393 bool mem_below_4gb_not_mirrored = false;
6394
6395 for_each_memblock(memory, r) {
6396 if (memblock_is_mirror(r))
6397 continue;
6398
6399 nid = r->nid;
6400
6401 usable_startpfn = memblock_region_memory_base_pfn(r);
6402
6403 if (usable_startpfn < 0x100000) {
6404 mem_below_4gb_not_mirrored = true;
6405 continue;
6406 }
6407
6408 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6409 min(usable_startpfn, zone_movable_pfn[nid]) :
6410 usable_startpfn;
6411 }
6412
6413 if (mem_below_4gb_not_mirrored)
6414 pr_warn("This configuration results in unmirrored kernel memory.");
6415
6416 goto out2;
6417 }
6418
6419 /*
6420 * If movablecore=nn[KMG] was specified, calculate what size of
6421 * kernelcore that corresponds so that memory usable for
6422 * any allocation type is evenly spread. If both kernelcore
6423 * and movablecore are specified, then the value of kernelcore
6424 * will be used for required_kernelcore if it's greater than
6425 * what movablecore would have allowed.
6426 */
6427 if (required_movablecore) {
6428 unsigned long corepages;
6429
6430 /*
6431 * Round-up so that ZONE_MOVABLE is at least as large as what
6432 * was requested by the user
6433 */
6434 required_movablecore =
6435 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6436 required_movablecore = min(totalpages, required_movablecore);
6437 corepages = totalpages - required_movablecore;
6438
6439 required_kernelcore = max(required_kernelcore, corepages);
6440 }
6441
6442 /*
6443 * If kernelcore was not specified or kernelcore size is larger
6444 * than totalpages, there is no ZONE_MOVABLE.
6445 */
6446 if (!required_kernelcore || required_kernelcore >= totalpages)
6447 goto out;
6448
6449 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6450 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6451
6452 restart:
6453 /* Spread kernelcore memory as evenly as possible throughout nodes */
6454 kernelcore_node = required_kernelcore / usable_nodes;
6455 for_each_node_state(nid, N_MEMORY) {
6456 unsigned long start_pfn, end_pfn;
6457
6458 /*
6459 * Recalculate kernelcore_node if the division per node
6460 * now exceeds what is necessary to satisfy the requested
6461 * amount of memory for the kernel
6462 */
6463 if (required_kernelcore < kernelcore_node)
6464 kernelcore_node = required_kernelcore / usable_nodes;
6465
6466 /*
6467 * As the map is walked, we track how much memory is usable
6468 * by the kernel using kernelcore_remaining. When it is
6469 * 0, the rest of the node is usable by ZONE_MOVABLE
6470 */
6471 kernelcore_remaining = kernelcore_node;
6472
6473 /* Go through each range of PFNs within this node */
6474 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6475 unsigned long size_pages;
6476
6477 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6478 if (start_pfn >= end_pfn)
6479 continue;
6480
6481 /* Account for what is only usable for kernelcore */
6482 if (start_pfn < usable_startpfn) {
6483 unsigned long kernel_pages;
6484 kernel_pages = min(end_pfn, usable_startpfn)
6485 - start_pfn;
6486
6487 kernelcore_remaining -= min(kernel_pages,
6488 kernelcore_remaining);
6489 required_kernelcore -= min(kernel_pages,
6490 required_kernelcore);
6491
6492 /* Continue if range is now fully accounted */
6493 if (end_pfn <= usable_startpfn) {
6494
6495 /*
6496 * Push zone_movable_pfn to the end so
6497 * that if we have to rebalance
6498 * kernelcore across nodes, we will
6499 * not double account here
6500 */
6501 zone_movable_pfn[nid] = end_pfn;
6502 continue;
6503 }
6504 start_pfn = usable_startpfn;
6505 }
6506
6507 /*
6508 * The usable PFN range for ZONE_MOVABLE is from
6509 * start_pfn->end_pfn. Calculate size_pages as the
6510 * number of pages used as kernelcore
6511 */
6512 size_pages = end_pfn - start_pfn;
6513 if (size_pages > kernelcore_remaining)
6514 size_pages = kernelcore_remaining;
6515 zone_movable_pfn[nid] = start_pfn + size_pages;
6516
6517 /*
6518 * Some kernelcore has been met, update counts and
6519 * break if the kernelcore for this node has been
6520 * satisfied
6521 */
6522 required_kernelcore -= min(required_kernelcore,
6523 size_pages);
6524 kernelcore_remaining -= size_pages;
6525 if (!kernelcore_remaining)
6526 break;
6527 }
6528 }
6529
6530 /*
6531 * If there is still required_kernelcore, we do another pass with one
6532 * less node in the count. This will push zone_movable_pfn[nid] further
6533 * along on the nodes that still have memory until kernelcore is
6534 * satisfied
6535 */
6536 usable_nodes--;
6537 if (usable_nodes && required_kernelcore > usable_nodes)
6538 goto restart;
6539
6540 out2:
6541 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6542 for (nid = 0; nid < MAX_NUMNODES; nid++)
6543 zone_movable_pfn[nid] =
6544 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6545
6546 out:
6547 /* restore the node_state */
6548 node_states[N_MEMORY] = saved_node_state;
6549 }
6550
6551 /* Any regular or high memory on that node ? */
6552 static void check_for_memory(pg_data_t *pgdat, int nid)
6553 {
6554 enum zone_type zone_type;
6555
6556 if (N_MEMORY == N_NORMAL_MEMORY)
6557 return;
6558
6559 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6560 struct zone *zone = &pgdat->node_zones[zone_type];
6561 if (populated_zone(zone)) {
6562 node_set_state(nid, N_HIGH_MEMORY);
6563 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6564 zone_type <= ZONE_NORMAL)
6565 node_set_state(nid, N_NORMAL_MEMORY);
6566 break;
6567 }
6568 }
6569 }
6570
6571 /**
6572 * free_area_init_nodes - Initialise all pg_data_t and zone data
6573 * @max_zone_pfn: an array of max PFNs for each zone
6574 *
6575 * This will call free_area_init_node() for each active node in the system.
6576 * Using the page ranges provided by memblock_set_node(), the size of each
6577 * zone in each node and their holes is calculated. If the maximum PFN
6578 * between two adjacent zones match, it is assumed that the zone is empty.
6579 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6580 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6581 * starts where the previous one ended. For example, ZONE_DMA32 starts
6582 * at arch_max_dma_pfn.
6583 */
6584 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6585 {
6586 unsigned long start_pfn, end_pfn;
6587 int i, nid;
6588
6589 /* Record where the zone boundaries are */
6590 memset(arch_zone_lowest_possible_pfn, 0,
6591 sizeof(arch_zone_lowest_possible_pfn));
6592 memset(arch_zone_highest_possible_pfn, 0,
6593 sizeof(arch_zone_highest_possible_pfn));
6594
6595 start_pfn = find_min_pfn_with_active_regions();
6596
6597 for (i = 0; i < MAX_NR_ZONES; i++) {
6598 if (i == ZONE_MOVABLE)
6599 continue;
6600
6601 end_pfn = max(max_zone_pfn[i], start_pfn);
6602 arch_zone_lowest_possible_pfn[i] = start_pfn;
6603 arch_zone_highest_possible_pfn[i] = end_pfn;
6604
6605 start_pfn = end_pfn;
6606 }
6607
6608 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6609 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6610 find_zone_movable_pfns_for_nodes();
6611
6612 /* Print out the zone ranges */
6613 pr_info("Zone ranges:\n");
6614 for (i = 0; i < MAX_NR_ZONES; i++) {
6615 if (i == ZONE_MOVABLE)
6616 continue;
6617 pr_info(" %-8s ", zone_names[i]);
6618 if (arch_zone_lowest_possible_pfn[i] ==
6619 arch_zone_highest_possible_pfn[i])
6620 pr_cont("empty\n");
6621 else
6622 pr_cont("[mem %#018Lx-%#018Lx]\n",
6623 (u64)arch_zone_lowest_possible_pfn[i]
6624 << PAGE_SHIFT,
6625 ((u64)arch_zone_highest_possible_pfn[i]
6626 << PAGE_SHIFT) - 1);
6627 }
6628
6629 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6630 pr_info("Movable zone start for each node\n");
6631 for (i = 0; i < MAX_NUMNODES; i++) {
6632 if (zone_movable_pfn[i])
6633 pr_info(" Node %d: %#018Lx\n", i,
6634 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6635 }
6636
6637 /* Print out the early node map */
6638 pr_info("Early memory node ranges\n");
6639 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6640 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6641 (u64)start_pfn << PAGE_SHIFT,
6642 ((u64)end_pfn << PAGE_SHIFT) - 1);
6643
6644 /* Initialise every node */
6645 mminit_verify_pageflags_layout();
6646 setup_nr_node_ids();
6647 for_each_online_node(nid) {
6648 pg_data_t *pgdat = NODE_DATA(nid);
6649 free_area_init_node(nid, NULL,
6650 find_min_pfn_for_node(nid), NULL);
6651
6652 /* Any memory on that node */
6653 if (pgdat->node_present_pages)
6654 node_set_state(nid, N_MEMORY);
6655 check_for_memory(pgdat, nid);
6656 }
6657 }
6658
6659 static int __init cmdline_parse_core(char *p, unsigned long *core)
6660 {
6661 unsigned long long coremem;
6662 if (!p)
6663 return -EINVAL;
6664
6665 coremem = memparse(p, &p);
6666 *core = coremem >> PAGE_SHIFT;
6667
6668 /* Paranoid check that UL is enough for the coremem value */
6669 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6670
6671 return 0;
6672 }
6673
6674 /*
6675 * kernelcore=size sets the amount of memory for use for allocations that
6676 * cannot be reclaimed or migrated.
6677 */
6678 static int __init cmdline_parse_kernelcore(char *p)
6679 {
6680 /* parse kernelcore=mirror */
6681 if (parse_option_str(p, "mirror")) {
6682 mirrored_kernelcore = true;
6683 return 0;
6684 }
6685
6686 return cmdline_parse_core(p, &required_kernelcore);
6687 }
6688
6689 /*
6690 * movablecore=size sets the amount of memory for use for allocations that
6691 * can be reclaimed or migrated.
6692 */
6693 static int __init cmdline_parse_movablecore(char *p)
6694 {
6695 return cmdline_parse_core(p, &required_movablecore);
6696 }
6697
6698 early_param("kernelcore", cmdline_parse_kernelcore);
6699 early_param("movablecore", cmdline_parse_movablecore);
6700
6701 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6702
6703 void adjust_managed_page_count(struct page *page, long count)
6704 {
6705 spin_lock(&managed_page_count_lock);
6706 page_zone(page)->managed_pages += count;
6707 totalram_pages += count;
6708 #ifdef CONFIG_HIGHMEM
6709 if (PageHighMem(page))
6710 totalhigh_pages += count;
6711 #endif
6712 spin_unlock(&managed_page_count_lock);
6713 }
6714 EXPORT_SYMBOL(adjust_managed_page_count);
6715
6716 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6717 {
6718 void *pos;
6719 unsigned long pages = 0;
6720
6721 start = (void *)PAGE_ALIGN((unsigned long)start);
6722 end = (void *)((unsigned long)end & PAGE_MASK);
6723 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6724 if ((unsigned int)poison <= 0xFF)
6725 memset(pos, poison, PAGE_SIZE);
6726 free_reserved_page(virt_to_page(pos));
6727 }
6728
6729 if (pages && s)
6730 pr_info("Freeing %s memory: %ldK\n",
6731 s, pages << (PAGE_SHIFT - 10));
6732
6733 return pages;
6734 }
6735 EXPORT_SYMBOL(free_reserved_area);
6736
6737 #ifdef CONFIG_HIGHMEM
6738 void free_highmem_page(struct page *page)
6739 {
6740 __free_reserved_page(page);
6741 totalram_pages++;
6742 page_zone(page)->managed_pages++;
6743 totalhigh_pages++;
6744 }
6745 #endif
6746
6747
6748 void __init mem_init_print_info(const char *str)
6749 {
6750 unsigned long physpages, codesize, datasize, rosize, bss_size;
6751 unsigned long init_code_size, init_data_size;
6752
6753 physpages = get_num_physpages();
6754 codesize = _etext - _stext;
6755 datasize = _edata - _sdata;
6756 rosize = __end_rodata - __start_rodata;
6757 bss_size = __bss_stop - __bss_start;
6758 init_data_size = __init_end - __init_begin;
6759 init_code_size = _einittext - _sinittext;
6760
6761 /*
6762 * Detect special cases and adjust section sizes accordingly:
6763 * 1) .init.* may be embedded into .data sections
6764 * 2) .init.text.* may be out of [__init_begin, __init_end],
6765 * please refer to arch/tile/kernel/vmlinux.lds.S.
6766 * 3) .rodata.* may be embedded into .text or .data sections.
6767 */
6768 #define adj_init_size(start, end, size, pos, adj) \
6769 do { \
6770 if (start <= pos && pos < end && size > adj) \
6771 size -= adj; \
6772 } while (0)
6773
6774 adj_init_size(__init_begin, __init_end, init_data_size,
6775 _sinittext, init_code_size);
6776 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6777 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6778 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6779 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6780
6781 #undef adj_init_size
6782
6783 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6784 #ifdef CONFIG_HIGHMEM
6785 ", %luK highmem"
6786 #endif
6787 "%s%s)\n",
6788 nr_free_pages() << (PAGE_SHIFT - 10),
6789 physpages << (PAGE_SHIFT - 10),
6790 codesize >> 10, datasize >> 10, rosize >> 10,
6791 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6792 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6793 totalcma_pages << (PAGE_SHIFT - 10),
6794 #ifdef CONFIG_HIGHMEM
6795 totalhigh_pages << (PAGE_SHIFT - 10),
6796 #endif
6797 str ? ", " : "", str ? str : "");
6798 }
6799
6800 /**
6801 * set_dma_reserve - set the specified number of pages reserved in the first zone
6802 * @new_dma_reserve: The number of pages to mark reserved
6803 *
6804 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6805 * In the DMA zone, a significant percentage may be consumed by kernel image
6806 * and other unfreeable allocations which can skew the watermarks badly. This
6807 * function may optionally be used to account for unfreeable pages in the
6808 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6809 * smaller per-cpu batchsize.
6810 */
6811 void __init set_dma_reserve(unsigned long new_dma_reserve)
6812 {
6813 dma_reserve = new_dma_reserve;
6814 }
6815
6816 void __init free_area_init(unsigned long *zones_size)
6817 {
6818 free_area_init_node(0, zones_size,
6819 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6820 }
6821
6822 static int page_alloc_cpu_dead(unsigned int cpu)
6823 {
6824
6825 lru_add_drain_cpu(cpu);
6826 drain_pages(cpu);
6827
6828 /*
6829 * Spill the event counters of the dead processor
6830 * into the current processors event counters.
6831 * This artificially elevates the count of the current
6832 * processor.
6833 */
6834 vm_events_fold_cpu(cpu);
6835
6836 /*
6837 * Zero the differential counters of the dead processor
6838 * so that the vm statistics are consistent.
6839 *
6840 * This is only okay since the processor is dead and cannot
6841 * race with what we are doing.
6842 */
6843 cpu_vm_stats_fold(cpu);
6844 return 0;
6845 }
6846
6847 void __init page_alloc_init(void)
6848 {
6849 int ret;
6850
6851 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6852 "mm/page_alloc:dead", NULL,
6853 page_alloc_cpu_dead);
6854 WARN_ON(ret < 0);
6855 }
6856
6857 /*
6858 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6859 * or min_free_kbytes changes.
6860 */
6861 static void calculate_totalreserve_pages(void)
6862 {
6863 struct pglist_data *pgdat;
6864 unsigned long reserve_pages = 0;
6865 enum zone_type i, j;
6866
6867 for_each_online_pgdat(pgdat) {
6868
6869 pgdat->totalreserve_pages = 0;
6870
6871 for (i = 0; i < MAX_NR_ZONES; i++) {
6872 struct zone *zone = pgdat->node_zones + i;
6873 long max = 0;
6874
6875 /* Find valid and maximum lowmem_reserve in the zone */
6876 for (j = i; j < MAX_NR_ZONES; j++) {
6877 if (zone->lowmem_reserve[j] > max)
6878 max = zone->lowmem_reserve[j];
6879 }
6880
6881 /* we treat the high watermark as reserved pages. */
6882 max += high_wmark_pages(zone);
6883
6884 if (max > zone->managed_pages)
6885 max = zone->managed_pages;
6886
6887 pgdat->totalreserve_pages += max;
6888
6889 reserve_pages += max;
6890 }
6891 }
6892 totalreserve_pages = reserve_pages;
6893 }
6894
6895 /*
6896 * setup_per_zone_lowmem_reserve - called whenever
6897 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6898 * has a correct pages reserved value, so an adequate number of
6899 * pages are left in the zone after a successful __alloc_pages().
6900 */
6901 static void setup_per_zone_lowmem_reserve(void)
6902 {
6903 struct pglist_data *pgdat;
6904 enum zone_type j, idx;
6905
6906 for_each_online_pgdat(pgdat) {
6907 for (j = 0; j < MAX_NR_ZONES; j++) {
6908 struct zone *zone = pgdat->node_zones + j;
6909 unsigned long managed_pages = zone->managed_pages;
6910
6911 zone->lowmem_reserve[j] = 0;
6912
6913 idx = j;
6914 while (idx) {
6915 struct zone *lower_zone;
6916
6917 idx--;
6918
6919 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6920 sysctl_lowmem_reserve_ratio[idx] = 1;
6921
6922 lower_zone = pgdat->node_zones + idx;
6923 lower_zone->lowmem_reserve[j] = managed_pages /
6924 sysctl_lowmem_reserve_ratio[idx];
6925 managed_pages += lower_zone->managed_pages;
6926 }
6927 }
6928 }
6929
6930 /* update totalreserve_pages */
6931 calculate_totalreserve_pages();
6932 }
6933
6934 static void __setup_per_zone_wmarks(void)
6935 {
6936 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6937 unsigned long lowmem_pages = 0;
6938 struct zone *zone;
6939 unsigned long flags;
6940
6941 /* Calculate total number of !ZONE_HIGHMEM pages */
6942 for_each_zone(zone) {
6943 if (!is_highmem(zone))
6944 lowmem_pages += zone->managed_pages;
6945 }
6946
6947 for_each_zone(zone) {
6948 u64 tmp;
6949
6950 spin_lock_irqsave(&zone->lock, flags);
6951 tmp = (u64)pages_min * zone->managed_pages;
6952 do_div(tmp, lowmem_pages);
6953 if (is_highmem(zone)) {
6954 /*
6955 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6956 * need highmem pages, so cap pages_min to a small
6957 * value here.
6958 *
6959 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6960 * deltas control asynch page reclaim, and so should
6961 * not be capped for highmem.
6962 */
6963 unsigned long min_pages;
6964
6965 min_pages = zone->managed_pages / 1024;
6966 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6967 zone->watermark[WMARK_MIN] = min_pages;
6968 } else {
6969 /*
6970 * If it's a lowmem zone, reserve a number of pages
6971 * proportionate to the zone's size.
6972 */
6973 zone->watermark[WMARK_MIN] = tmp;
6974 }
6975
6976 /*
6977 * Set the kswapd watermarks distance according to the
6978 * scale factor in proportion to available memory, but
6979 * ensure a minimum size on small systems.
6980 */
6981 tmp = max_t(u64, tmp >> 2,
6982 mult_frac(zone->managed_pages,
6983 watermark_scale_factor, 10000));
6984
6985 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6986 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6987
6988 spin_unlock_irqrestore(&zone->lock, flags);
6989 }
6990
6991 /* update totalreserve_pages */
6992 calculate_totalreserve_pages();
6993 }
6994
6995 /**
6996 * setup_per_zone_wmarks - called when min_free_kbytes changes
6997 * or when memory is hot-{added|removed}
6998 *
6999 * Ensures that the watermark[min,low,high] values for each zone are set
7000 * correctly with respect to min_free_kbytes.
7001 */
7002 void setup_per_zone_wmarks(void)
7003 {
7004 mutex_lock(&zonelists_mutex);
7005 __setup_per_zone_wmarks();
7006 mutex_unlock(&zonelists_mutex);
7007 }
7008
7009 /*
7010 * Initialise min_free_kbytes.
7011 *
7012 * For small machines we want it small (128k min). For large machines
7013 * we want it large (64MB max). But it is not linear, because network
7014 * bandwidth does not increase linearly with machine size. We use
7015 *
7016 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7017 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7018 *
7019 * which yields
7020 *
7021 * 16MB: 512k
7022 * 32MB: 724k
7023 * 64MB: 1024k
7024 * 128MB: 1448k
7025 * 256MB: 2048k
7026 * 512MB: 2896k
7027 * 1024MB: 4096k
7028 * 2048MB: 5792k
7029 * 4096MB: 8192k
7030 * 8192MB: 11584k
7031 * 16384MB: 16384k
7032 */
7033 int __meminit init_per_zone_wmark_min(void)
7034 {
7035 unsigned long lowmem_kbytes;
7036 int new_min_free_kbytes;
7037
7038 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7039 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7040
7041 if (new_min_free_kbytes > user_min_free_kbytes) {
7042 min_free_kbytes = new_min_free_kbytes;
7043 if (min_free_kbytes < 128)
7044 min_free_kbytes = 128;
7045 if (min_free_kbytes > 65536)
7046 min_free_kbytes = 65536;
7047 } else {
7048 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7049 new_min_free_kbytes, user_min_free_kbytes);
7050 }
7051 setup_per_zone_wmarks();
7052 refresh_zone_stat_thresholds();
7053 setup_per_zone_lowmem_reserve();
7054
7055 #ifdef CONFIG_NUMA
7056 setup_min_unmapped_ratio();
7057 setup_min_slab_ratio();
7058 #endif
7059
7060 return 0;
7061 }
7062 core_initcall(init_per_zone_wmark_min)
7063
7064 /*
7065 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7066 * that we can call two helper functions whenever min_free_kbytes
7067 * changes.
7068 */
7069 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7070 void __user *buffer, size_t *length, loff_t *ppos)
7071 {
7072 int rc;
7073
7074 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7075 if (rc)
7076 return rc;
7077
7078 if (write) {
7079 user_min_free_kbytes = min_free_kbytes;
7080 setup_per_zone_wmarks();
7081 }
7082 return 0;
7083 }
7084
7085 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7086 void __user *buffer, size_t *length, loff_t *ppos)
7087 {
7088 int rc;
7089
7090 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7091 if (rc)
7092 return rc;
7093
7094 if (write)
7095 setup_per_zone_wmarks();
7096
7097 return 0;
7098 }
7099
7100 #ifdef CONFIG_NUMA
7101 static void setup_min_unmapped_ratio(void)
7102 {
7103 pg_data_t *pgdat;
7104 struct zone *zone;
7105
7106 for_each_online_pgdat(pgdat)
7107 pgdat->min_unmapped_pages = 0;
7108
7109 for_each_zone(zone)
7110 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7111 sysctl_min_unmapped_ratio) / 100;
7112 }
7113
7114
7115 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7116 void __user *buffer, size_t *length, loff_t *ppos)
7117 {
7118 int rc;
7119
7120 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7121 if (rc)
7122 return rc;
7123
7124 setup_min_unmapped_ratio();
7125
7126 return 0;
7127 }
7128
7129 static void setup_min_slab_ratio(void)
7130 {
7131 pg_data_t *pgdat;
7132 struct zone *zone;
7133
7134 for_each_online_pgdat(pgdat)
7135 pgdat->min_slab_pages = 0;
7136
7137 for_each_zone(zone)
7138 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7139 sysctl_min_slab_ratio) / 100;
7140 }
7141
7142 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7143 void __user *buffer, size_t *length, loff_t *ppos)
7144 {
7145 int rc;
7146
7147 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7148 if (rc)
7149 return rc;
7150
7151 setup_min_slab_ratio();
7152
7153 return 0;
7154 }
7155 #endif
7156
7157 /*
7158 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7159 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7160 * whenever sysctl_lowmem_reserve_ratio changes.
7161 *
7162 * The reserve ratio obviously has absolutely no relation with the
7163 * minimum watermarks. The lowmem reserve ratio can only make sense
7164 * if in function of the boot time zone sizes.
7165 */
7166 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7167 void __user *buffer, size_t *length, loff_t *ppos)
7168 {
7169 proc_dointvec_minmax(table, write, buffer, length, ppos);
7170 setup_per_zone_lowmem_reserve();
7171 return 0;
7172 }
7173
7174 /*
7175 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7176 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7177 * pagelist can have before it gets flushed back to buddy allocator.
7178 */
7179 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7180 void __user *buffer, size_t *length, loff_t *ppos)
7181 {
7182 struct zone *zone;
7183 int old_percpu_pagelist_fraction;
7184 int ret;
7185
7186 mutex_lock(&pcp_batch_high_lock);
7187 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7188
7189 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7190 if (!write || ret < 0)
7191 goto out;
7192
7193 /* Sanity checking to avoid pcp imbalance */
7194 if (percpu_pagelist_fraction &&
7195 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7196 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7197 ret = -EINVAL;
7198 goto out;
7199 }
7200
7201 /* No change? */
7202 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7203 goto out;
7204
7205 for_each_populated_zone(zone) {
7206 unsigned int cpu;
7207
7208 for_each_possible_cpu(cpu)
7209 pageset_set_high_and_batch(zone,
7210 per_cpu_ptr(zone->pageset, cpu));
7211 }
7212 out:
7213 mutex_unlock(&pcp_batch_high_lock);
7214 return ret;
7215 }
7216
7217 #ifdef CONFIG_NUMA
7218 int hashdist = HASHDIST_DEFAULT;
7219
7220 static int __init set_hashdist(char *str)
7221 {
7222 if (!str)
7223 return 0;
7224 hashdist = simple_strtoul(str, &str, 0);
7225 return 1;
7226 }
7227 __setup("hashdist=", set_hashdist);
7228 #endif
7229
7230 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7231 /*
7232 * Returns the number of pages that arch has reserved but
7233 * is not known to alloc_large_system_hash().
7234 */
7235 static unsigned long __init arch_reserved_kernel_pages(void)
7236 {
7237 return 0;
7238 }
7239 #endif
7240
7241 /*
7242 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7243 * machines. As memory size is increased the scale is also increased but at
7244 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7245 * quadruples the scale is increased by one, which means the size of hash table
7246 * only doubles, instead of quadrupling as well.
7247 * Because 32-bit systems cannot have large physical memory, where this scaling
7248 * makes sense, it is disabled on such platforms.
7249 */
7250 #if __BITS_PER_LONG > 32
7251 #define ADAPT_SCALE_BASE (64ul << 30)
7252 #define ADAPT_SCALE_SHIFT 2
7253 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7254 #endif
7255
7256 /*
7257 * allocate a large system hash table from bootmem
7258 * - it is assumed that the hash table must contain an exact power-of-2
7259 * quantity of entries
7260 * - limit is the number of hash buckets, not the total allocation size
7261 */
7262 void *__init alloc_large_system_hash(const char *tablename,
7263 unsigned long bucketsize,
7264 unsigned long numentries,
7265 int scale,
7266 int flags,
7267 unsigned int *_hash_shift,
7268 unsigned int *_hash_mask,
7269 unsigned long low_limit,
7270 unsigned long high_limit)
7271 {
7272 unsigned long long max = high_limit;
7273 unsigned long log2qty, size;
7274 void *table = NULL;
7275 gfp_t gfp_flags;
7276
7277 /* allow the kernel cmdline to have a say */
7278 if (!numentries) {
7279 /* round applicable memory size up to nearest megabyte */
7280 numentries = nr_kernel_pages;
7281 numentries -= arch_reserved_kernel_pages();
7282
7283 /* It isn't necessary when PAGE_SIZE >= 1MB */
7284 if (PAGE_SHIFT < 20)
7285 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7286
7287 #if __BITS_PER_LONG > 32
7288 if (!high_limit) {
7289 unsigned long adapt;
7290
7291 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7292 adapt <<= ADAPT_SCALE_SHIFT)
7293 scale++;
7294 }
7295 #endif
7296
7297 /* limit to 1 bucket per 2^scale bytes of low memory */
7298 if (scale > PAGE_SHIFT)
7299 numentries >>= (scale - PAGE_SHIFT);
7300 else
7301 numentries <<= (PAGE_SHIFT - scale);
7302
7303 /* Make sure we've got at least a 0-order allocation.. */
7304 if (unlikely(flags & HASH_SMALL)) {
7305 /* Makes no sense without HASH_EARLY */
7306 WARN_ON(!(flags & HASH_EARLY));
7307 if (!(numentries >> *_hash_shift)) {
7308 numentries = 1UL << *_hash_shift;
7309 BUG_ON(!numentries);
7310 }
7311 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7312 numentries = PAGE_SIZE / bucketsize;
7313 }
7314 numentries = roundup_pow_of_two(numentries);
7315
7316 /* limit allocation size to 1/16 total memory by default */
7317 if (max == 0) {
7318 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7319 do_div(max, bucketsize);
7320 }
7321 max = min(max, 0x80000000ULL);
7322
7323 if (numentries < low_limit)
7324 numentries = low_limit;
7325 if (numentries > max)
7326 numentries = max;
7327
7328 log2qty = ilog2(numentries);
7329
7330 /*
7331 * memblock allocator returns zeroed memory already, so HASH_ZERO is
7332 * currently not used when HASH_EARLY is specified.
7333 */
7334 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7335 do {
7336 size = bucketsize << log2qty;
7337 if (flags & HASH_EARLY)
7338 table = memblock_virt_alloc_nopanic(size, 0);
7339 else if (hashdist)
7340 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7341 else {
7342 /*
7343 * If bucketsize is not a power-of-two, we may free
7344 * some pages at the end of hash table which
7345 * alloc_pages_exact() automatically does
7346 */
7347 if (get_order(size) < MAX_ORDER) {
7348 table = alloc_pages_exact(size, gfp_flags);
7349 kmemleak_alloc(table, size, 1, gfp_flags);
7350 }
7351 }
7352 } while (!table && size > PAGE_SIZE && --log2qty);
7353
7354 if (!table)
7355 panic("Failed to allocate %s hash table\n", tablename);
7356
7357 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7358 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7359
7360 if (_hash_shift)
7361 *_hash_shift = log2qty;
7362 if (_hash_mask)
7363 *_hash_mask = (1 << log2qty) - 1;
7364
7365 return table;
7366 }
7367
7368 /*
7369 * This function checks whether pageblock includes unmovable pages or not.
7370 * If @count is not zero, it is okay to include less @count unmovable pages
7371 *
7372 * PageLRU check without isolation or lru_lock could race so that
7373 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7374 * check without lock_page also may miss some movable non-lru pages at
7375 * race condition. So you can't expect this function should be exact.
7376 */
7377 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7378 bool skip_hwpoisoned_pages)
7379 {
7380 unsigned long pfn, iter, found;
7381 int mt;
7382
7383 /*
7384 * For avoiding noise data, lru_add_drain_all() should be called
7385 * If ZONE_MOVABLE, the zone never contains unmovable pages
7386 */
7387 if (zone_idx(zone) == ZONE_MOVABLE)
7388 return false;
7389 mt = get_pageblock_migratetype(page);
7390 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7391 return false;
7392
7393 pfn = page_to_pfn(page);
7394 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7395 unsigned long check = pfn + iter;
7396
7397 if (!pfn_valid_within(check))
7398 continue;
7399
7400 page = pfn_to_page(check);
7401
7402 /*
7403 * Hugepages are not in LRU lists, but they're movable.
7404 * We need not scan over tail pages bacause we don't
7405 * handle each tail page individually in migration.
7406 */
7407 if (PageHuge(page)) {
7408 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7409 continue;
7410 }
7411
7412 /*
7413 * We can't use page_count without pin a page
7414 * because another CPU can free compound page.
7415 * This check already skips compound tails of THP
7416 * because their page->_refcount is zero at all time.
7417 */
7418 if (!page_ref_count(page)) {
7419 if (PageBuddy(page))
7420 iter += (1 << page_order(page)) - 1;
7421 continue;
7422 }
7423
7424 /*
7425 * The HWPoisoned page may be not in buddy system, and
7426 * page_count() is not 0.
7427 */
7428 if (skip_hwpoisoned_pages && PageHWPoison(page))
7429 continue;
7430
7431 if (__PageMovable(page))
7432 continue;
7433
7434 if (!PageLRU(page))
7435 found++;
7436 /*
7437 * If there are RECLAIMABLE pages, we need to check
7438 * it. But now, memory offline itself doesn't call
7439 * shrink_node_slabs() and it still to be fixed.
7440 */
7441 /*
7442 * If the page is not RAM, page_count()should be 0.
7443 * we don't need more check. This is an _used_ not-movable page.
7444 *
7445 * The problematic thing here is PG_reserved pages. PG_reserved
7446 * is set to both of a memory hole page and a _used_ kernel
7447 * page at boot.
7448 */
7449 if (found > count)
7450 return true;
7451 }
7452 return false;
7453 }
7454
7455 bool is_pageblock_removable_nolock(struct page *page)
7456 {
7457 struct zone *zone;
7458 unsigned long pfn;
7459
7460 /*
7461 * We have to be careful here because we are iterating over memory
7462 * sections which are not zone aware so we might end up outside of
7463 * the zone but still within the section.
7464 * We have to take care about the node as well. If the node is offline
7465 * its NODE_DATA will be NULL - see page_zone.
7466 */
7467 if (!node_online(page_to_nid(page)))
7468 return false;
7469
7470 zone = page_zone(page);
7471 pfn = page_to_pfn(page);
7472 if (!zone_spans_pfn(zone, pfn))
7473 return false;
7474
7475 return !has_unmovable_pages(zone, page, 0, true);
7476 }
7477
7478 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7479
7480 static unsigned long pfn_max_align_down(unsigned long pfn)
7481 {
7482 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7483 pageblock_nr_pages) - 1);
7484 }
7485
7486 static unsigned long pfn_max_align_up(unsigned long pfn)
7487 {
7488 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7489 pageblock_nr_pages));
7490 }
7491
7492 /* [start, end) must belong to a single zone. */
7493 static int __alloc_contig_migrate_range(struct compact_control *cc,
7494 unsigned long start, unsigned long end)
7495 {
7496 /* This function is based on compact_zone() from compaction.c. */
7497 unsigned long nr_reclaimed;
7498 unsigned long pfn = start;
7499 unsigned int tries = 0;
7500 int ret = 0;
7501
7502 migrate_prep();
7503
7504 while (pfn < end || !list_empty(&cc->migratepages)) {
7505 if (fatal_signal_pending(current)) {
7506 ret = -EINTR;
7507 break;
7508 }
7509
7510 if (list_empty(&cc->migratepages)) {
7511 cc->nr_migratepages = 0;
7512 pfn = isolate_migratepages_range(cc, pfn, end);
7513 if (!pfn) {
7514 ret = -EINTR;
7515 break;
7516 }
7517 tries = 0;
7518 } else if (++tries == 5) {
7519 ret = ret < 0 ? ret : -EBUSY;
7520 break;
7521 }
7522
7523 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7524 &cc->migratepages);
7525 cc->nr_migratepages -= nr_reclaimed;
7526
7527 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7528 NULL, 0, cc->mode, MR_CMA);
7529 }
7530 if (ret < 0) {
7531 putback_movable_pages(&cc->migratepages);
7532 return ret;
7533 }
7534 return 0;
7535 }
7536
7537 /**
7538 * alloc_contig_range() -- tries to allocate given range of pages
7539 * @start: start PFN to allocate
7540 * @end: one-past-the-last PFN to allocate
7541 * @migratetype: migratetype of the underlaying pageblocks (either
7542 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7543 * in range must have the same migratetype and it must
7544 * be either of the two.
7545 * @gfp_mask: GFP mask to use during compaction
7546 *
7547 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7548 * aligned, however it's the caller's responsibility to guarantee that
7549 * we are the only thread that changes migrate type of pageblocks the
7550 * pages fall in.
7551 *
7552 * The PFN range must belong to a single zone.
7553 *
7554 * Returns zero on success or negative error code. On success all
7555 * pages which PFN is in [start, end) are allocated for the caller and
7556 * need to be freed with free_contig_range().
7557 */
7558 int alloc_contig_range(unsigned long start, unsigned long end,
7559 unsigned migratetype, gfp_t gfp_mask)
7560 {
7561 unsigned long outer_start, outer_end;
7562 unsigned int order;
7563 int ret = 0;
7564
7565 struct compact_control cc = {
7566 .nr_migratepages = 0,
7567 .order = -1,
7568 .zone = page_zone(pfn_to_page(start)),
7569 .mode = MIGRATE_SYNC,
7570 .ignore_skip_hint = true,
7571 .gfp_mask = current_gfp_context(gfp_mask),
7572 };
7573 INIT_LIST_HEAD(&cc.migratepages);
7574
7575 /*
7576 * What we do here is we mark all pageblocks in range as
7577 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7578 * have different sizes, and due to the way page allocator
7579 * work, we align the range to biggest of the two pages so
7580 * that page allocator won't try to merge buddies from
7581 * different pageblocks and change MIGRATE_ISOLATE to some
7582 * other migration type.
7583 *
7584 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7585 * migrate the pages from an unaligned range (ie. pages that
7586 * we are interested in). This will put all the pages in
7587 * range back to page allocator as MIGRATE_ISOLATE.
7588 *
7589 * When this is done, we take the pages in range from page
7590 * allocator removing them from the buddy system. This way
7591 * page allocator will never consider using them.
7592 *
7593 * This lets us mark the pageblocks back as
7594 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7595 * aligned range but not in the unaligned, original range are
7596 * put back to page allocator so that buddy can use them.
7597 */
7598
7599 ret = start_isolate_page_range(pfn_max_align_down(start),
7600 pfn_max_align_up(end), migratetype,
7601 false);
7602 if (ret)
7603 return ret;
7604
7605 /*
7606 * In case of -EBUSY, we'd like to know which page causes problem.
7607 * So, just fall through. We will check it in test_pages_isolated().
7608 */
7609 ret = __alloc_contig_migrate_range(&cc, start, end);
7610 if (ret && ret != -EBUSY)
7611 goto done;
7612
7613 /*
7614 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7615 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7616 * more, all pages in [start, end) are free in page allocator.
7617 * What we are going to do is to allocate all pages from
7618 * [start, end) (that is remove them from page allocator).
7619 *
7620 * The only problem is that pages at the beginning and at the
7621 * end of interesting range may be not aligned with pages that
7622 * page allocator holds, ie. they can be part of higher order
7623 * pages. Because of this, we reserve the bigger range and
7624 * once this is done free the pages we are not interested in.
7625 *
7626 * We don't have to hold zone->lock here because the pages are
7627 * isolated thus they won't get removed from buddy.
7628 */
7629
7630 lru_add_drain_all();
7631 drain_all_pages(cc.zone);
7632
7633 order = 0;
7634 outer_start = start;
7635 while (!PageBuddy(pfn_to_page(outer_start))) {
7636 if (++order >= MAX_ORDER) {
7637 outer_start = start;
7638 break;
7639 }
7640 outer_start &= ~0UL << order;
7641 }
7642
7643 if (outer_start != start) {
7644 order = page_order(pfn_to_page(outer_start));
7645
7646 /*
7647 * outer_start page could be small order buddy page and
7648 * it doesn't include start page. Adjust outer_start
7649 * in this case to report failed page properly
7650 * on tracepoint in test_pages_isolated()
7651 */
7652 if (outer_start + (1UL << order) <= start)
7653 outer_start = start;
7654 }
7655
7656 /* Make sure the range is really isolated. */
7657 if (test_pages_isolated(outer_start, end, false)) {
7658 pr_info("%s: [%lx, %lx) PFNs busy\n",
7659 __func__, outer_start, end);
7660 ret = -EBUSY;
7661 goto done;
7662 }
7663
7664 /* Grab isolated pages from freelists. */
7665 outer_end = isolate_freepages_range(&cc, outer_start, end);
7666 if (!outer_end) {
7667 ret = -EBUSY;
7668 goto done;
7669 }
7670
7671 /* Free head and tail (if any) */
7672 if (start != outer_start)
7673 free_contig_range(outer_start, start - outer_start);
7674 if (end != outer_end)
7675 free_contig_range(end, outer_end - end);
7676
7677 done:
7678 undo_isolate_page_range(pfn_max_align_down(start),
7679 pfn_max_align_up(end), migratetype);
7680 return ret;
7681 }
7682
7683 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7684 {
7685 unsigned int count = 0;
7686
7687 for (; nr_pages--; pfn++) {
7688 struct page *page = pfn_to_page(pfn);
7689
7690 count += page_count(page) != 1;
7691 __free_page(page);
7692 }
7693 WARN(count != 0, "%d pages are still in use!\n", count);
7694 }
7695 #endif
7696
7697 #ifdef CONFIG_MEMORY_HOTPLUG
7698 /*
7699 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7700 * page high values need to be recalulated.
7701 */
7702 void __meminit zone_pcp_update(struct zone *zone)
7703 {
7704 unsigned cpu;
7705 mutex_lock(&pcp_batch_high_lock);
7706 for_each_possible_cpu(cpu)
7707 pageset_set_high_and_batch(zone,
7708 per_cpu_ptr(zone->pageset, cpu));
7709 mutex_unlock(&pcp_batch_high_lock);
7710 }
7711 #endif
7712
7713 void zone_pcp_reset(struct zone *zone)
7714 {
7715 unsigned long flags;
7716 int cpu;
7717 struct per_cpu_pageset *pset;
7718
7719 /* avoid races with drain_pages() */
7720 local_irq_save(flags);
7721 if (zone->pageset != &boot_pageset) {
7722 for_each_online_cpu(cpu) {
7723 pset = per_cpu_ptr(zone->pageset, cpu);
7724 drain_zonestat(zone, pset);
7725 }
7726 free_percpu(zone->pageset);
7727 zone->pageset = &boot_pageset;
7728 }
7729 local_irq_restore(flags);
7730 }
7731
7732 #ifdef CONFIG_MEMORY_HOTREMOVE
7733 /*
7734 * All pages in the range must be in a single zone and isolated
7735 * before calling this.
7736 */
7737 void
7738 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7739 {
7740 struct page *page;
7741 struct zone *zone;
7742 unsigned int order, i;
7743 unsigned long pfn;
7744 unsigned long flags;
7745 /* find the first valid pfn */
7746 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7747 if (pfn_valid(pfn))
7748 break;
7749 if (pfn == end_pfn)
7750 return;
7751 offline_mem_sections(pfn, end_pfn);
7752 zone = page_zone(pfn_to_page(pfn));
7753 spin_lock_irqsave(&zone->lock, flags);
7754 pfn = start_pfn;
7755 while (pfn < end_pfn) {
7756 if (!pfn_valid(pfn)) {
7757 pfn++;
7758 continue;
7759 }
7760 page = pfn_to_page(pfn);
7761 /*
7762 * The HWPoisoned page may be not in buddy system, and
7763 * page_count() is not 0.
7764 */
7765 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7766 pfn++;
7767 SetPageReserved(page);
7768 continue;
7769 }
7770
7771 BUG_ON(page_count(page));
7772 BUG_ON(!PageBuddy(page));
7773 order = page_order(page);
7774 #ifdef CONFIG_DEBUG_VM
7775 pr_info("remove from free list %lx %d %lx\n",
7776 pfn, 1 << order, end_pfn);
7777 #endif
7778 list_del(&page->lru);
7779 rmv_page_order(page);
7780 zone->free_area[order].nr_free--;
7781 for (i = 0; i < (1 << order); i++)
7782 SetPageReserved((page+i));
7783 pfn += (1 << order);
7784 }
7785 spin_unlock_irqrestore(&zone->lock, flags);
7786 }
7787 #endif
7788
7789 bool is_free_buddy_page(struct page *page)
7790 {
7791 struct zone *zone = page_zone(page);
7792 unsigned long pfn = page_to_pfn(page);
7793 unsigned long flags;
7794 unsigned int order;
7795
7796 spin_lock_irqsave(&zone->lock, flags);
7797 for (order = 0; order < MAX_ORDER; order++) {
7798 struct page *page_head = page - (pfn & ((1 << order) - 1));
7799
7800 if (PageBuddy(page_head) && page_order(page_head) >= order)
7801 break;
7802 }
7803 spin_unlock_irqrestore(&zone->lock, flags);
7804
7805 return order < MAX_ORDER;
7806 }