]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/page_alloc.c
bounce: Refactor __blk_queue_bounce to not use bi_io_vec
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 #include <linux/sched/rt.h>
62
63 #include <asm/tlbflush.h>
64 #include <asm/div64.h>
65 #include "internal.h"
66
67 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
68 DEFINE_PER_CPU(int, numa_node);
69 EXPORT_PER_CPU_SYMBOL(numa_node);
70 #endif
71
72 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
73 /*
74 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
75 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
76 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
77 * defined in <linux/topology.h>.
78 */
79 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
80 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
81 #endif
82
83 /*
84 * Array of node states.
85 */
86 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
87 [N_POSSIBLE] = NODE_MASK_ALL,
88 [N_ONLINE] = { { [0] = 1UL } },
89 #ifndef CONFIG_NUMA
90 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
91 #ifdef CONFIG_HIGHMEM
92 [N_HIGH_MEMORY] = { { [0] = 1UL } },
93 #endif
94 #ifdef CONFIG_MOVABLE_NODE
95 [N_MEMORY] = { { [0] = 1UL } },
96 #endif
97 [N_CPU] = { { [0] = 1UL } },
98 #endif /* NUMA */
99 };
100 EXPORT_SYMBOL(node_states);
101
102 unsigned long totalram_pages __read_mostly;
103 unsigned long totalreserve_pages __read_mostly;
104 /*
105 * When calculating the number of globally allowed dirty pages, there
106 * is a certain number of per-zone reserves that should not be
107 * considered dirtyable memory. This is the sum of those reserves
108 * over all existing zones that contribute dirtyable memory.
109 */
110 unsigned long dirty_balance_reserve __read_mostly;
111
112 int percpu_pagelist_fraction;
113 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
114
115 #ifdef CONFIG_PM_SLEEP
116 /*
117 * The following functions are used by the suspend/hibernate code to temporarily
118 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
119 * while devices are suspended. To avoid races with the suspend/hibernate code,
120 * they should always be called with pm_mutex held (gfp_allowed_mask also should
121 * only be modified with pm_mutex held, unless the suspend/hibernate code is
122 * guaranteed not to run in parallel with that modification).
123 */
124
125 static gfp_t saved_gfp_mask;
126
127 void pm_restore_gfp_mask(void)
128 {
129 WARN_ON(!mutex_is_locked(&pm_mutex));
130 if (saved_gfp_mask) {
131 gfp_allowed_mask = saved_gfp_mask;
132 saved_gfp_mask = 0;
133 }
134 }
135
136 void pm_restrict_gfp_mask(void)
137 {
138 WARN_ON(!mutex_is_locked(&pm_mutex));
139 WARN_ON(saved_gfp_mask);
140 saved_gfp_mask = gfp_allowed_mask;
141 gfp_allowed_mask &= ~GFP_IOFS;
142 }
143
144 bool pm_suspended_storage(void)
145 {
146 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
147 return false;
148 return true;
149 }
150 #endif /* CONFIG_PM_SLEEP */
151
152 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
153 int pageblock_order __read_mostly;
154 #endif
155
156 static void __free_pages_ok(struct page *page, unsigned int order);
157
158 /*
159 * results with 256, 32 in the lowmem_reserve sysctl:
160 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
161 * 1G machine -> (16M dma, 784M normal, 224M high)
162 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
163 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
164 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
165 *
166 * TBD: should special case ZONE_DMA32 machines here - in those we normally
167 * don't need any ZONE_NORMAL reservation
168 */
169 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
170 #ifdef CONFIG_ZONE_DMA
171 256,
172 #endif
173 #ifdef CONFIG_ZONE_DMA32
174 256,
175 #endif
176 #ifdef CONFIG_HIGHMEM
177 32,
178 #endif
179 32,
180 };
181
182 EXPORT_SYMBOL(totalram_pages);
183
184 static char * const zone_names[MAX_NR_ZONES] = {
185 #ifdef CONFIG_ZONE_DMA
186 "DMA",
187 #endif
188 #ifdef CONFIG_ZONE_DMA32
189 "DMA32",
190 #endif
191 "Normal",
192 #ifdef CONFIG_HIGHMEM
193 "HighMem",
194 #endif
195 "Movable",
196 };
197
198 int min_free_kbytes = 1024;
199
200 static unsigned long __meminitdata nr_kernel_pages;
201 static unsigned long __meminitdata nr_all_pages;
202 static unsigned long __meminitdata dma_reserve;
203
204 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
205 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
206 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
207 static unsigned long __initdata required_kernelcore;
208 static unsigned long __initdata required_movablecore;
209 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
210
211 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
212 int movable_zone;
213 EXPORT_SYMBOL(movable_zone);
214 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
215
216 #if MAX_NUMNODES > 1
217 int nr_node_ids __read_mostly = MAX_NUMNODES;
218 int nr_online_nodes __read_mostly = 1;
219 EXPORT_SYMBOL(nr_node_ids);
220 EXPORT_SYMBOL(nr_online_nodes);
221 #endif
222
223 int page_group_by_mobility_disabled __read_mostly;
224
225 void set_pageblock_migratetype(struct page *page, int migratetype)
226 {
227
228 if (unlikely(page_group_by_mobility_disabled))
229 migratetype = MIGRATE_UNMOVABLE;
230
231 set_pageblock_flags_group(page, (unsigned long)migratetype,
232 PB_migrate, PB_migrate_end);
233 }
234
235 bool oom_killer_disabled __read_mostly;
236
237 #ifdef CONFIG_DEBUG_VM
238 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
239 {
240 int ret = 0;
241 unsigned seq;
242 unsigned long pfn = page_to_pfn(page);
243 unsigned long sp, start_pfn;
244
245 do {
246 seq = zone_span_seqbegin(zone);
247 start_pfn = zone->zone_start_pfn;
248 sp = zone->spanned_pages;
249 if (!zone_spans_pfn(zone, pfn))
250 ret = 1;
251 } while (zone_span_seqretry(zone, seq));
252
253 if (ret)
254 pr_err("page %lu outside zone [ %lu - %lu ]\n",
255 pfn, start_pfn, start_pfn + sp);
256
257 return ret;
258 }
259
260 static int page_is_consistent(struct zone *zone, struct page *page)
261 {
262 if (!pfn_valid_within(page_to_pfn(page)))
263 return 0;
264 if (zone != page_zone(page))
265 return 0;
266
267 return 1;
268 }
269 /*
270 * Temporary debugging check for pages not lying within a given zone.
271 */
272 static int bad_range(struct zone *zone, struct page *page)
273 {
274 if (page_outside_zone_boundaries(zone, page))
275 return 1;
276 if (!page_is_consistent(zone, page))
277 return 1;
278
279 return 0;
280 }
281 #else
282 static inline int bad_range(struct zone *zone, struct page *page)
283 {
284 return 0;
285 }
286 #endif
287
288 static void bad_page(struct page *page)
289 {
290 static unsigned long resume;
291 static unsigned long nr_shown;
292 static unsigned long nr_unshown;
293
294 /* Don't complain about poisoned pages */
295 if (PageHWPoison(page)) {
296 page_mapcount_reset(page); /* remove PageBuddy */
297 return;
298 }
299
300 /*
301 * Allow a burst of 60 reports, then keep quiet for that minute;
302 * or allow a steady drip of one report per second.
303 */
304 if (nr_shown == 60) {
305 if (time_before(jiffies, resume)) {
306 nr_unshown++;
307 goto out;
308 }
309 if (nr_unshown) {
310 printk(KERN_ALERT
311 "BUG: Bad page state: %lu messages suppressed\n",
312 nr_unshown);
313 nr_unshown = 0;
314 }
315 nr_shown = 0;
316 }
317 if (nr_shown++ == 0)
318 resume = jiffies + 60 * HZ;
319
320 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
321 current->comm, page_to_pfn(page));
322 dump_page(page);
323
324 print_modules();
325 dump_stack();
326 out:
327 /* Leave bad fields for debug, except PageBuddy could make trouble */
328 page_mapcount_reset(page); /* remove PageBuddy */
329 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
330 }
331
332 /*
333 * Higher-order pages are called "compound pages". They are structured thusly:
334 *
335 * The first PAGE_SIZE page is called the "head page".
336 *
337 * The remaining PAGE_SIZE pages are called "tail pages".
338 *
339 * All pages have PG_compound set. All tail pages have their ->first_page
340 * pointing at the head page.
341 *
342 * The first tail page's ->lru.next holds the address of the compound page's
343 * put_page() function. Its ->lru.prev holds the order of allocation.
344 * This usage means that zero-order pages may not be compound.
345 */
346
347 static void free_compound_page(struct page *page)
348 {
349 __free_pages_ok(page, compound_order(page));
350 }
351
352 void prep_compound_page(struct page *page, unsigned long order)
353 {
354 int i;
355 int nr_pages = 1 << order;
356
357 set_compound_page_dtor(page, free_compound_page);
358 set_compound_order(page, order);
359 __SetPageHead(page);
360 for (i = 1; i < nr_pages; i++) {
361 struct page *p = page + i;
362 __SetPageTail(p);
363 set_page_count(p, 0);
364 p->first_page = page;
365 }
366 }
367
368 /* update __split_huge_page_refcount if you change this function */
369 static int destroy_compound_page(struct page *page, unsigned long order)
370 {
371 int i;
372 int nr_pages = 1 << order;
373 int bad = 0;
374
375 if (unlikely(compound_order(page) != order)) {
376 bad_page(page);
377 bad++;
378 }
379
380 __ClearPageHead(page);
381
382 for (i = 1; i < nr_pages; i++) {
383 struct page *p = page + i;
384
385 if (unlikely(!PageTail(p) || (p->first_page != page))) {
386 bad_page(page);
387 bad++;
388 }
389 __ClearPageTail(p);
390 }
391
392 return bad;
393 }
394
395 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
396 {
397 int i;
398
399 /*
400 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
401 * and __GFP_HIGHMEM from hard or soft interrupt context.
402 */
403 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
404 for (i = 0; i < (1 << order); i++)
405 clear_highpage(page + i);
406 }
407
408 #ifdef CONFIG_DEBUG_PAGEALLOC
409 unsigned int _debug_guardpage_minorder;
410
411 static int __init debug_guardpage_minorder_setup(char *buf)
412 {
413 unsigned long res;
414
415 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
416 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
417 return 0;
418 }
419 _debug_guardpage_minorder = res;
420 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
421 return 0;
422 }
423 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
424
425 static inline void set_page_guard_flag(struct page *page)
426 {
427 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
428 }
429
430 static inline void clear_page_guard_flag(struct page *page)
431 {
432 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
433 }
434 #else
435 static inline void set_page_guard_flag(struct page *page) { }
436 static inline void clear_page_guard_flag(struct page *page) { }
437 #endif
438
439 static inline void set_page_order(struct page *page, int order)
440 {
441 set_page_private(page, order);
442 __SetPageBuddy(page);
443 }
444
445 static inline void rmv_page_order(struct page *page)
446 {
447 __ClearPageBuddy(page);
448 set_page_private(page, 0);
449 }
450
451 /*
452 * Locate the struct page for both the matching buddy in our
453 * pair (buddy1) and the combined O(n+1) page they form (page).
454 *
455 * 1) Any buddy B1 will have an order O twin B2 which satisfies
456 * the following equation:
457 * B2 = B1 ^ (1 << O)
458 * For example, if the starting buddy (buddy2) is #8 its order
459 * 1 buddy is #10:
460 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
461 *
462 * 2) Any buddy B will have an order O+1 parent P which
463 * satisfies the following equation:
464 * P = B & ~(1 << O)
465 *
466 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
467 */
468 static inline unsigned long
469 __find_buddy_index(unsigned long page_idx, unsigned int order)
470 {
471 return page_idx ^ (1 << order);
472 }
473
474 /*
475 * This function checks whether a page is free && is the buddy
476 * we can do coalesce a page and its buddy if
477 * (a) the buddy is not in a hole &&
478 * (b) the buddy is in the buddy system &&
479 * (c) a page and its buddy have the same order &&
480 * (d) a page and its buddy are in the same zone.
481 *
482 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
483 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
484 *
485 * For recording page's order, we use page_private(page).
486 */
487 static inline int page_is_buddy(struct page *page, struct page *buddy,
488 int order)
489 {
490 if (!pfn_valid_within(page_to_pfn(buddy)))
491 return 0;
492
493 if (page_zone_id(page) != page_zone_id(buddy))
494 return 0;
495
496 if (page_is_guard(buddy) && page_order(buddy) == order) {
497 VM_BUG_ON(page_count(buddy) != 0);
498 return 1;
499 }
500
501 if (PageBuddy(buddy) && page_order(buddy) == order) {
502 VM_BUG_ON(page_count(buddy) != 0);
503 return 1;
504 }
505 return 0;
506 }
507
508 /*
509 * Freeing function for a buddy system allocator.
510 *
511 * The concept of a buddy system is to maintain direct-mapped table
512 * (containing bit values) for memory blocks of various "orders".
513 * The bottom level table contains the map for the smallest allocatable
514 * units of memory (here, pages), and each level above it describes
515 * pairs of units from the levels below, hence, "buddies".
516 * At a high level, all that happens here is marking the table entry
517 * at the bottom level available, and propagating the changes upward
518 * as necessary, plus some accounting needed to play nicely with other
519 * parts of the VM system.
520 * At each level, we keep a list of pages, which are heads of continuous
521 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
522 * order is recorded in page_private(page) field.
523 * So when we are allocating or freeing one, we can derive the state of the
524 * other. That is, if we allocate a small block, and both were
525 * free, the remainder of the region must be split into blocks.
526 * If a block is freed, and its buddy is also free, then this
527 * triggers coalescing into a block of larger size.
528 *
529 * -- nyc
530 */
531
532 static inline void __free_one_page(struct page *page,
533 struct zone *zone, unsigned int order,
534 int migratetype)
535 {
536 unsigned long page_idx;
537 unsigned long combined_idx;
538 unsigned long uninitialized_var(buddy_idx);
539 struct page *buddy;
540
541 VM_BUG_ON(!zone_is_initialized(zone));
542
543 if (unlikely(PageCompound(page)))
544 if (unlikely(destroy_compound_page(page, order)))
545 return;
546
547 VM_BUG_ON(migratetype == -1);
548
549 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
550
551 VM_BUG_ON(page_idx & ((1 << order) - 1));
552 VM_BUG_ON(bad_range(zone, page));
553
554 while (order < MAX_ORDER-1) {
555 buddy_idx = __find_buddy_index(page_idx, order);
556 buddy = page + (buddy_idx - page_idx);
557 if (!page_is_buddy(page, buddy, order))
558 break;
559 /*
560 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
561 * merge with it and move up one order.
562 */
563 if (page_is_guard(buddy)) {
564 clear_page_guard_flag(buddy);
565 set_page_private(page, 0);
566 __mod_zone_freepage_state(zone, 1 << order,
567 migratetype);
568 } else {
569 list_del(&buddy->lru);
570 zone->free_area[order].nr_free--;
571 rmv_page_order(buddy);
572 }
573 combined_idx = buddy_idx & page_idx;
574 page = page + (combined_idx - page_idx);
575 page_idx = combined_idx;
576 order++;
577 }
578 set_page_order(page, order);
579
580 /*
581 * If this is not the largest possible page, check if the buddy
582 * of the next-highest order is free. If it is, it's possible
583 * that pages are being freed that will coalesce soon. In case,
584 * that is happening, add the free page to the tail of the list
585 * so it's less likely to be used soon and more likely to be merged
586 * as a higher order page
587 */
588 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
589 struct page *higher_page, *higher_buddy;
590 combined_idx = buddy_idx & page_idx;
591 higher_page = page + (combined_idx - page_idx);
592 buddy_idx = __find_buddy_index(combined_idx, order + 1);
593 higher_buddy = higher_page + (buddy_idx - combined_idx);
594 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
595 list_add_tail(&page->lru,
596 &zone->free_area[order].free_list[migratetype]);
597 goto out;
598 }
599 }
600
601 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
602 out:
603 zone->free_area[order].nr_free++;
604 }
605
606 static inline int free_pages_check(struct page *page)
607 {
608 if (unlikely(page_mapcount(page) |
609 (page->mapping != NULL) |
610 (atomic_read(&page->_count) != 0) |
611 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
612 (mem_cgroup_bad_page_check(page)))) {
613 bad_page(page);
614 return 1;
615 }
616 page_nid_reset_last(page);
617 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
618 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
619 return 0;
620 }
621
622 /*
623 * Frees a number of pages from the PCP lists
624 * Assumes all pages on list are in same zone, and of same order.
625 * count is the number of pages to free.
626 *
627 * If the zone was previously in an "all pages pinned" state then look to
628 * see if this freeing clears that state.
629 *
630 * And clear the zone's pages_scanned counter, to hold off the "all pages are
631 * pinned" detection logic.
632 */
633 static void free_pcppages_bulk(struct zone *zone, int count,
634 struct per_cpu_pages *pcp)
635 {
636 int migratetype = 0;
637 int batch_free = 0;
638 int to_free = count;
639
640 spin_lock(&zone->lock);
641 zone->all_unreclaimable = 0;
642 zone->pages_scanned = 0;
643
644 while (to_free) {
645 struct page *page;
646 struct list_head *list;
647
648 /*
649 * Remove pages from lists in a round-robin fashion. A
650 * batch_free count is maintained that is incremented when an
651 * empty list is encountered. This is so more pages are freed
652 * off fuller lists instead of spinning excessively around empty
653 * lists
654 */
655 do {
656 batch_free++;
657 if (++migratetype == MIGRATE_PCPTYPES)
658 migratetype = 0;
659 list = &pcp->lists[migratetype];
660 } while (list_empty(list));
661
662 /* This is the only non-empty list. Free them all. */
663 if (batch_free == MIGRATE_PCPTYPES)
664 batch_free = to_free;
665
666 do {
667 int mt; /* migratetype of the to-be-freed page */
668
669 page = list_entry(list->prev, struct page, lru);
670 /* must delete as __free_one_page list manipulates */
671 list_del(&page->lru);
672 mt = get_freepage_migratetype(page);
673 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
674 __free_one_page(page, zone, 0, mt);
675 trace_mm_page_pcpu_drain(page, 0, mt);
676 if (likely(!is_migrate_isolate_page(page))) {
677 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
678 if (is_migrate_cma(mt))
679 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
680 }
681 } while (--to_free && --batch_free && !list_empty(list));
682 }
683 spin_unlock(&zone->lock);
684 }
685
686 static void free_one_page(struct zone *zone, struct page *page, int order,
687 int migratetype)
688 {
689 spin_lock(&zone->lock);
690 zone->all_unreclaimable = 0;
691 zone->pages_scanned = 0;
692
693 __free_one_page(page, zone, order, migratetype);
694 if (unlikely(!is_migrate_isolate(migratetype)))
695 __mod_zone_freepage_state(zone, 1 << order, migratetype);
696 spin_unlock(&zone->lock);
697 }
698
699 static bool free_pages_prepare(struct page *page, unsigned int order)
700 {
701 int i;
702 int bad = 0;
703
704 trace_mm_page_free(page, order);
705 kmemcheck_free_shadow(page, order);
706
707 if (PageAnon(page))
708 page->mapping = NULL;
709 for (i = 0; i < (1 << order); i++)
710 bad += free_pages_check(page + i);
711 if (bad)
712 return false;
713
714 if (!PageHighMem(page)) {
715 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
716 debug_check_no_obj_freed(page_address(page),
717 PAGE_SIZE << order);
718 }
719 arch_free_page(page, order);
720 kernel_map_pages(page, 1 << order, 0);
721
722 return true;
723 }
724
725 static void __free_pages_ok(struct page *page, unsigned int order)
726 {
727 unsigned long flags;
728 int migratetype;
729
730 if (!free_pages_prepare(page, order))
731 return;
732
733 local_irq_save(flags);
734 __count_vm_events(PGFREE, 1 << order);
735 migratetype = get_pageblock_migratetype(page);
736 set_freepage_migratetype(page, migratetype);
737 free_one_page(page_zone(page), page, order, migratetype);
738 local_irq_restore(flags);
739 }
740
741 /*
742 * Read access to zone->managed_pages is safe because it's unsigned long,
743 * but we still need to serialize writers. Currently all callers of
744 * __free_pages_bootmem() except put_page_bootmem() should only be used
745 * at boot time. So for shorter boot time, we shift the burden to
746 * put_page_bootmem() to serialize writers.
747 */
748 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
749 {
750 unsigned int nr_pages = 1 << order;
751 unsigned int loop;
752
753 prefetchw(page);
754 for (loop = 0; loop < nr_pages; loop++) {
755 struct page *p = &page[loop];
756
757 if (loop + 1 < nr_pages)
758 prefetchw(p + 1);
759 __ClearPageReserved(p);
760 set_page_count(p, 0);
761 }
762
763 page_zone(page)->managed_pages += 1 << order;
764 set_page_refcounted(page);
765 __free_pages(page, order);
766 }
767
768 #ifdef CONFIG_CMA
769 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
770 void __init init_cma_reserved_pageblock(struct page *page)
771 {
772 unsigned i = pageblock_nr_pages;
773 struct page *p = page;
774
775 do {
776 __ClearPageReserved(p);
777 set_page_count(p, 0);
778 } while (++p, --i);
779
780 set_page_refcounted(page);
781 set_pageblock_migratetype(page, MIGRATE_CMA);
782 __free_pages(page, pageblock_order);
783 totalram_pages += pageblock_nr_pages;
784 #ifdef CONFIG_HIGHMEM
785 if (PageHighMem(page))
786 totalhigh_pages += pageblock_nr_pages;
787 #endif
788 }
789 #endif
790
791 /*
792 * The order of subdivision here is critical for the IO subsystem.
793 * Please do not alter this order without good reasons and regression
794 * testing. Specifically, as large blocks of memory are subdivided,
795 * the order in which smaller blocks are delivered depends on the order
796 * they're subdivided in this function. This is the primary factor
797 * influencing the order in which pages are delivered to the IO
798 * subsystem according to empirical testing, and this is also justified
799 * by considering the behavior of a buddy system containing a single
800 * large block of memory acted on by a series of small allocations.
801 * This behavior is a critical factor in sglist merging's success.
802 *
803 * -- nyc
804 */
805 static inline void expand(struct zone *zone, struct page *page,
806 int low, int high, struct free_area *area,
807 int migratetype)
808 {
809 unsigned long size = 1 << high;
810
811 while (high > low) {
812 area--;
813 high--;
814 size >>= 1;
815 VM_BUG_ON(bad_range(zone, &page[size]));
816
817 #ifdef CONFIG_DEBUG_PAGEALLOC
818 if (high < debug_guardpage_minorder()) {
819 /*
820 * Mark as guard pages (or page), that will allow to
821 * merge back to allocator when buddy will be freed.
822 * Corresponding page table entries will not be touched,
823 * pages will stay not present in virtual address space
824 */
825 INIT_LIST_HEAD(&page[size].lru);
826 set_page_guard_flag(&page[size]);
827 set_page_private(&page[size], high);
828 /* Guard pages are not available for any usage */
829 __mod_zone_freepage_state(zone, -(1 << high),
830 migratetype);
831 continue;
832 }
833 #endif
834 list_add(&page[size].lru, &area->free_list[migratetype]);
835 area->nr_free++;
836 set_page_order(&page[size], high);
837 }
838 }
839
840 /*
841 * This page is about to be returned from the page allocator
842 */
843 static inline int check_new_page(struct page *page)
844 {
845 if (unlikely(page_mapcount(page) |
846 (page->mapping != NULL) |
847 (atomic_read(&page->_count) != 0) |
848 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
849 (mem_cgroup_bad_page_check(page)))) {
850 bad_page(page);
851 return 1;
852 }
853 return 0;
854 }
855
856 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
857 {
858 int i;
859
860 for (i = 0; i < (1 << order); i++) {
861 struct page *p = page + i;
862 if (unlikely(check_new_page(p)))
863 return 1;
864 }
865
866 set_page_private(page, 0);
867 set_page_refcounted(page);
868
869 arch_alloc_page(page, order);
870 kernel_map_pages(page, 1 << order, 1);
871
872 if (gfp_flags & __GFP_ZERO)
873 prep_zero_page(page, order, gfp_flags);
874
875 if (order && (gfp_flags & __GFP_COMP))
876 prep_compound_page(page, order);
877
878 return 0;
879 }
880
881 /*
882 * Go through the free lists for the given migratetype and remove
883 * the smallest available page from the freelists
884 */
885 static inline
886 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
887 int migratetype)
888 {
889 unsigned int current_order;
890 struct free_area * area;
891 struct page *page;
892
893 /* Find a page of the appropriate size in the preferred list */
894 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
895 area = &(zone->free_area[current_order]);
896 if (list_empty(&area->free_list[migratetype]))
897 continue;
898
899 page = list_entry(area->free_list[migratetype].next,
900 struct page, lru);
901 list_del(&page->lru);
902 rmv_page_order(page);
903 area->nr_free--;
904 expand(zone, page, order, current_order, area, migratetype);
905 return page;
906 }
907
908 return NULL;
909 }
910
911
912 /*
913 * This array describes the order lists are fallen back to when
914 * the free lists for the desirable migrate type are depleted
915 */
916 static int fallbacks[MIGRATE_TYPES][4] = {
917 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
918 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
919 #ifdef CONFIG_CMA
920 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
921 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
922 #else
923 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
924 #endif
925 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
926 #ifdef CONFIG_MEMORY_ISOLATION
927 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
928 #endif
929 };
930
931 /*
932 * Move the free pages in a range to the free lists of the requested type.
933 * Note that start_page and end_pages are not aligned on a pageblock
934 * boundary. If alignment is required, use move_freepages_block()
935 */
936 int move_freepages(struct zone *zone,
937 struct page *start_page, struct page *end_page,
938 int migratetype)
939 {
940 struct page *page;
941 unsigned long order;
942 int pages_moved = 0;
943
944 #ifndef CONFIG_HOLES_IN_ZONE
945 /*
946 * page_zone is not safe to call in this context when
947 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
948 * anyway as we check zone boundaries in move_freepages_block().
949 * Remove at a later date when no bug reports exist related to
950 * grouping pages by mobility
951 */
952 BUG_ON(page_zone(start_page) != page_zone(end_page));
953 #endif
954
955 for (page = start_page; page <= end_page;) {
956 /* Make sure we are not inadvertently changing nodes */
957 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
958
959 if (!pfn_valid_within(page_to_pfn(page))) {
960 page++;
961 continue;
962 }
963
964 if (!PageBuddy(page)) {
965 page++;
966 continue;
967 }
968
969 order = page_order(page);
970 list_move(&page->lru,
971 &zone->free_area[order].free_list[migratetype]);
972 set_freepage_migratetype(page, migratetype);
973 page += 1 << order;
974 pages_moved += 1 << order;
975 }
976
977 return pages_moved;
978 }
979
980 int move_freepages_block(struct zone *zone, struct page *page,
981 int migratetype)
982 {
983 unsigned long start_pfn, end_pfn;
984 struct page *start_page, *end_page;
985
986 start_pfn = page_to_pfn(page);
987 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
988 start_page = pfn_to_page(start_pfn);
989 end_page = start_page + pageblock_nr_pages - 1;
990 end_pfn = start_pfn + pageblock_nr_pages - 1;
991
992 /* Do not cross zone boundaries */
993 if (!zone_spans_pfn(zone, start_pfn))
994 start_page = page;
995 if (!zone_spans_pfn(zone, end_pfn))
996 return 0;
997
998 return move_freepages(zone, start_page, end_page, migratetype);
999 }
1000
1001 static void change_pageblock_range(struct page *pageblock_page,
1002 int start_order, int migratetype)
1003 {
1004 int nr_pageblocks = 1 << (start_order - pageblock_order);
1005
1006 while (nr_pageblocks--) {
1007 set_pageblock_migratetype(pageblock_page, migratetype);
1008 pageblock_page += pageblock_nr_pages;
1009 }
1010 }
1011
1012 /* Remove an element from the buddy allocator from the fallback list */
1013 static inline struct page *
1014 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1015 {
1016 struct free_area * area;
1017 int current_order;
1018 struct page *page;
1019 int migratetype, i;
1020
1021 /* Find the largest possible block of pages in the other list */
1022 for (current_order = MAX_ORDER-1; current_order >= order;
1023 --current_order) {
1024 for (i = 0;; i++) {
1025 migratetype = fallbacks[start_migratetype][i];
1026
1027 /* MIGRATE_RESERVE handled later if necessary */
1028 if (migratetype == MIGRATE_RESERVE)
1029 break;
1030
1031 area = &(zone->free_area[current_order]);
1032 if (list_empty(&area->free_list[migratetype]))
1033 continue;
1034
1035 page = list_entry(area->free_list[migratetype].next,
1036 struct page, lru);
1037 area->nr_free--;
1038
1039 /*
1040 * If breaking a large block of pages, move all free
1041 * pages to the preferred allocation list. If falling
1042 * back for a reclaimable kernel allocation, be more
1043 * aggressive about taking ownership of free pages
1044 *
1045 * On the other hand, never change migration
1046 * type of MIGRATE_CMA pageblocks nor move CMA
1047 * pages on different free lists. We don't
1048 * want unmovable pages to be allocated from
1049 * MIGRATE_CMA areas.
1050 */
1051 if (!is_migrate_cma(migratetype) &&
1052 (unlikely(current_order >= pageblock_order / 2) ||
1053 start_migratetype == MIGRATE_RECLAIMABLE ||
1054 page_group_by_mobility_disabled)) {
1055 int pages;
1056 pages = move_freepages_block(zone, page,
1057 start_migratetype);
1058
1059 /* Claim the whole block if over half of it is free */
1060 if (pages >= (1 << (pageblock_order-1)) ||
1061 page_group_by_mobility_disabled)
1062 set_pageblock_migratetype(page,
1063 start_migratetype);
1064
1065 migratetype = start_migratetype;
1066 }
1067
1068 /* Remove the page from the freelists */
1069 list_del(&page->lru);
1070 rmv_page_order(page);
1071
1072 /* Take ownership for orders >= pageblock_order */
1073 if (current_order >= pageblock_order &&
1074 !is_migrate_cma(migratetype))
1075 change_pageblock_range(page, current_order,
1076 start_migratetype);
1077
1078 expand(zone, page, order, current_order, area,
1079 is_migrate_cma(migratetype)
1080 ? migratetype : start_migratetype);
1081
1082 trace_mm_page_alloc_extfrag(page, order, current_order,
1083 start_migratetype, migratetype);
1084
1085 return page;
1086 }
1087 }
1088
1089 return NULL;
1090 }
1091
1092 /*
1093 * Do the hard work of removing an element from the buddy allocator.
1094 * Call me with the zone->lock already held.
1095 */
1096 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1097 int migratetype)
1098 {
1099 struct page *page;
1100
1101 retry_reserve:
1102 page = __rmqueue_smallest(zone, order, migratetype);
1103
1104 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1105 page = __rmqueue_fallback(zone, order, migratetype);
1106
1107 /*
1108 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1109 * is used because __rmqueue_smallest is an inline function
1110 * and we want just one call site
1111 */
1112 if (!page) {
1113 migratetype = MIGRATE_RESERVE;
1114 goto retry_reserve;
1115 }
1116 }
1117
1118 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1119 return page;
1120 }
1121
1122 /*
1123 * Obtain a specified number of elements from the buddy allocator, all under
1124 * a single hold of the lock, for efficiency. Add them to the supplied list.
1125 * Returns the number of new pages which were placed at *list.
1126 */
1127 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1128 unsigned long count, struct list_head *list,
1129 int migratetype, int cold)
1130 {
1131 int mt = migratetype, i;
1132
1133 spin_lock(&zone->lock);
1134 for (i = 0; i < count; ++i) {
1135 struct page *page = __rmqueue(zone, order, migratetype);
1136 if (unlikely(page == NULL))
1137 break;
1138
1139 /*
1140 * Split buddy pages returned by expand() are received here
1141 * in physical page order. The page is added to the callers and
1142 * list and the list head then moves forward. From the callers
1143 * perspective, the linked list is ordered by page number in
1144 * some conditions. This is useful for IO devices that can
1145 * merge IO requests if the physical pages are ordered
1146 * properly.
1147 */
1148 if (likely(cold == 0))
1149 list_add(&page->lru, list);
1150 else
1151 list_add_tail(&page->lru, list);
1152 if (IS_ENABLED(CONFIG_CMA)) {
1153 mt = get_pageblock_migratetype(page);
1154 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1155 mt = migratetype;
1156 }
1157 set_freepage_migratetype(page, mt);
1158 list = &page->lru;
1159 if (is_migrate_cma(mt))
1160 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1161 -(1 << order));
1162 }
1163 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1164 spin_unlock(&zone->lock);
1165 return i;
1166 }
1167
1168 #ifdef CONFIG_NUMA
1169 /*
1170 * Called from the vmstat counter updater to drain pagesets of this
1171 * currently executing processor on remote nodes after they have
1172 * expired.
1173 *
1174 * Note that this function must be called with the thread pinned to
1175 * a single processor.
1176 */
1177 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1178 {
1179 unsigned long flags;
1180 int to_drain;
1181
1182 local_irq_save(flags);
1183 if (pcp->count >= pcp->batch)
1184 to_drain = pcp->batch;
1185 else
1186 to_drain = pcp->count;
1187 if (to_drain > 0) {
1188 free_pcppages_bulk(zone, to_drain, pcp);
1189 pcp->count -= to_drain;
1190 }
1191 local_irq_restore(flags);
1192 }
1193 #endif
1194
1195 /*
1196 * Drain pages of the indicated processor.
1197 *
1198 * The processor must either be the current processor and the
1199 * thread pinned to the current processor or a processor that
1200 * is not online.
1201 */
1202 static void drain_pages(unsigned int cpu)
1203 {
1204 unsigned long flags;
1205 struct zone *zone;
1206
1207 for_each_populated_zone(zone) {
1208 struct per_cpu_pageset *pset;
1209 struct per_cpu_pages *pcp;
1210
1211 local_irq_save(flags);
1212 pset = per_cpu_ptr(zone->pageset, cpu);
1213
1214 pcp = &pset->pcp;
1215 if (pcp->count) {
1216 free_pcppages_bulk(zone, pcp->count, pcp);
1217 pcp->count = 0;
1218 }
1219 local_irq_restore(flags);
1220 }
1221 }
1222
1223 /*
1224 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1225 */
1226 void drain_local_pages(void *arg)
1227 {
1228 drain_pages(smp_processor_id());
1229 }
1230
1231 /*
1232 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1233 *
1234 * Note that this code is protected against sending an IPI to an offline
1235 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1236 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1237 * nothing keeps CPUs from showing up after we populated the cpumask and
1238 * before the call to on_each_cpu_mask().
1239 */
1240 void drain_all_pages(void)
1241 {
1242 int cpu;
1243 struct per_cpu_pageset *pcp;
1244 struct zone *zone;
1245
1246 /*
1247 * Allocate in the BSS so we wont require allocation in
1248 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1249 */
1250 static cpumask_t cpus_with_pcps;
1251
1252 /*
1253 * We don't care about racing with CPU hotplug event
1254 * as offline notification will cause the notified
1255 * cpu to drain that CPU pcps and on_each_cpu_mask
1256 * disables preemption as part of its processing
1257 */
1258 for_each_online_cpu(cpu) {
1259 bool has_pcps = false;
1260 for_each_populated_zone(zone) {
1261 pcp = per_cpu_ptr(zone->pageset, cpu);
1262 if (pcp->pcp.count) {
1263 has_pcps = true;
1264 break;
1265 }
1266 }
1267 if (has_pcps)
1268 cpumask_set_cpu(cpu, &cpus_with_pcps);
1269 else
1270 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1271 }
1272 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1273 }
1274
1275 #ifdef CONFIG_HIBERNATION
1276
1277 void mark_free_pages(struct zone *zone)
1278 {
1279 unsigned long pfn, max_zone_pfn;
1280 unsigned long flags;
1281 int order, t;
1282 struct list_head *curr;
1283
1284 if (!zone->spanned_pages)
1285 return;
1286
1287 spin_lock_irqsave(&zone->lock, flags);
1288
1289 max_zone_pfn = zone_end_pfn(zone);
1290 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1291 if (pfn_valid(pfn)) {
1292 struct page *page = pfn_to_page(pfn);
1293
1294 if (!swsusp_page_is_forbidden(page))
1295 swsusp_unset_page_free(page);
1296 }
1297
1298 for_each_migratetype_order(order, t) {
1299 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1300 unsigned long i;
1301
1302 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1303 for (i = 0; i < (1UL << order); i++)
1304 swsusp_set_page_free(pfn_to_page(pfn + i));
1305 }
1306 }
1307 spin_unlock_irqrestore(&zone->lock, flags);
1308 }
1309 #endif /* CONFIG_PM */
1310
1311 /*
1312 * Free a 0-order page
1313 * cold == 1 ? free a cold page : free a hot page
1314 */
1315 void free_hot_cold_page(struct page *page, int cold)
1316 {
1317 struct zone *zone = page_zone(page);
1318 struct per_cpu_pages *pcp;
1319 unsigned long flags;
1320 int migratetype;
1321
1322 if (!free_pages_prepare(page, 0))
1323 return;
1324
1325 migratetype = get_pageblock_migratetype(page);
1326 set_freepage_migratetype(page, migratetype);
1327 local_irq_save(flags);
1328 __count_vm_event(PGFREE);
1329
1330 /*
1331 * We only track unmovable, reclaimable and movable on pcp lists.
1332 * Free ISOLATE pages back to the allocator because they are being
1333 * offlined but treat RESERVE as movable pages so we can get those
1334 * areas back if necessary. Otherwise, we may have to free
1335 * excessively into the page allocator
1336 */
1337 if (migratetype >= MIGRATE_PCPTYPES) {
1338 if (unlikely(is_migrate_isolate(migratetype))) {
1339 free_one_page(zone, page, 0, migratetype);
1340 goto out;
1341 }
1342 migratetype = MIGRATE_MOVABLE;
1343 }
1344
1345 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1346 if (cold)
1347 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1348 else
1349 list_add(&page->lru, &pcp->lists[migratetype]);
1350 pcp->count++;
1351 if (pcp->count >= pcp->high) {
1352 free_pcppages_bulk(zone, pcp->batch, pcp);
1353 pcp->count -= pcp->batch;
1354 }
1355
1356 out:
1357 local_irq_restore(flags);
1358 }
1359
1360 /*
1361 * Free a list of 0-order pages
1362 */
1363 void free_hot_cold_page_list(struct list_head *list, int cold)
1364 {
1365 struct page *page, *next;
1366
1367 list_for_each_entry_safe(page, next, list, lru) {
1368 trace_mm_page_free_batched(page, cold);
1369 free_hot_cold_page(page, cold);
1370 }
1371 }
1372
1373 /*
1374 * split_page takes a non-compound higher-order page, and splits it into
1375 * n (1<<order) sub-pages: page[0..n]
1376 * Each sub-page must be freed individually.
1377 *
1378 * Note: this is probably too low level an operation for use in drivers.
1379 * Please consult with lkml before using this in your driver.
1380 */
1381 void split_page(struct page *page, unsigned int order)
1382 {
1383 int i;
1384
1385 VM_BUG_ON(PageCompound(page));
1386 VM_BUG_ON(!page_count(page));
1387
1388 #ifdef CONFIG_KMEMCHECK
1389 /*
1390 * Split shadow pages too, because free(page[0]) would
1391 * otherwise free the whole shadow.
1392 */
1393 if (kmemcheck_page_is_tracked(page))
1394 split_page(virt_to_page(page[0].shadow), order);
1395 #endif
1396
1397 for (i = 1; i < (1 << order); i++)
1398 set_page_refcounted(page + i);
1399 }
1400
1401 static int __isolate_free_page(struct page *page, unsigned int order)
1402 {
1403 unsigned long watermark;
1404 struct zone *zone;
1405 int mt;
1406
1407 BUG_ON(!PageBuddy(page));
1408
1409 zone = page_zone(page);
1410 mt = get_pageblock_migratetype(page);
1411
1412 if (!is_migrate_isolate(mt)) {
1413 /* Obey watermarks as if the page was being allocated */
1414 watermark = low_wmark_pages(zone) + (1 << order);
1415 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1416 return 0;
1417
1418 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1419 }
1420
1421 /* Remove page from free list */
1422 list_del(&page->lru);
1423 zone->free_area[order].nr_free--;
1424 rmv_page_order(page);
1425
1426 /* Set the pageblock if the isolated page is at least a pageblock */
1427 if (order >= pageblock_order - 1) {
1428 struct page *endpage = page + (1 << order) - 1;
1429 for (; page < endpage; page += pageblock_nr_pages) {
1430 int mt = get_pageblock_migratetype(page);
1431 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1432 set_pageblock_migratetype(page,
1433 MIGRATE_MOVABLE);
1434 }
1435 }
1436
1437 return 1UL << order;
1438 }
1439
1440 /*
1441 * Similar to split_page except the page is already free. As this is only
1442 * being used for migration, the migratetype of the block also changes.
1443 * As this is called with interrupts disabled, the caller is responsible
1444 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1445 * are enabled.
1446 *
1447 * Note: this is probably too low level an operation for use in drivers.
1448 * Please consult with lkml before using this in your driver.
1449 */
1450 int split_free_page(struct page *page)
1451 {
1452 unsigned int order;
1453 int nr_pages;
1454
1455 order = page_order(page);
1456
1457 nr_pages = __isolate_free_page(page, order);
1458 if (!nr_pages)
1459 return 0;
1460
1461 /* Split into individual pages */
1462 set_page_refcounted(page);
1463 split_page(page, order);
1464 return nr_pages;
1465 }
1466
1467 /*
1468 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1469 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1470 * or two.
1471 */
1472 static inline
1473 struct page *buffered_rmqueue(struct zone *preferred_zone,
1474 struct zone *zone, int order, gfp_t gfp_flags,
1475 int migratetype)
1476 {
1477 unsigned long flags;
1478 struct page *page;
1479 int cold = !!(gfp_flags & __GFP_COLD);
1480
1481 again:
1482 if (likely(order == 0)) {
1483 struct per_cpu_pages *pcp;
1484 struct list_head *list;
1485
1486 local_irq_save(flags);
1487 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1488 list = &pcp->lists[migratetype];
1489 if (list_empty(list)) {
1490 pcp->count += rmqueue_bulk(zone, 0,
1491 pcp->batch, list,
1492 migratetype, cold);
1493 if (unlikely(list_empty(list)))
1494 goto failed;
1495 }
1496
1497 if (cold)
1498 page = list_entry(list->prev, struct page, lru);
1499 else
1500 page = list_entry(list->next, struct page, lru);
1501
1502 list_del(&page->lru);
1503 pcp->count--;
1504 } else {
1505 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1506 /*
1507 * __GFP_NOFAIL is not to be used in new code.
1508 *
1509 * All __GFP_NOFAIL callers should be fixed so that they
1510 * properly detect and handle allocation failures.
1511 *
1512 * We most definitely don't want callers attempting to
1513 * allocate greater than order-1 page units with
1514 * __GFP_NOFAIL.
1515 */
1516 WARN_ON_ONCE(order > 1);
1517 }
1518 spin_lock_irqsave(&zone->lock, flags);
1519 page = __rmqueue(zone, order, migratetype);
1520 spin_unlock(&zone->lock);
1521 if (!page)
1522 goto failed;
1523 __mod_zone_freepage_state(zone, -(1 << order),
1524 get_pageblock_migratetype(page));
1525 }
1526
1527 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1528 zone_statistics(preferred_zone, zone, gfp_flags);
1529 local_irq_restore(flags);
1530
1531 VM_BUG_ON(bad_range(zone, page));
1532 if (prep_new_page(page, order, gfp_flags))
1533 goto again;
1534 return page;
1535
1536 failed:
1537 local_irq_restore(flags);
1538 return NULL;
1539 }
1540
1541 #ifdef CONFIG_FAIL_PAGE_ALLOC
1542
1543 static struct {
1544 struct fault_attr attr;
1545
1546 u32 ignore_gfp_highmem;
1547 u32 ignore_gfp_wait;
1548 u32 min_order;
1549 } fail_page_alloc = {
1550 .attr = FAULT_ATTR_INITIALIZER,
1551 .ignore_gfp_wait = 1,
1552 .ignore_gfp_highmem = 1,
1553 .min_order = 1,
1554 };
1555
1556 static int __init setup_fail_page_alloc(char *str)
1557 {
1558 return setup_fault_attr(&fail_page_alloc.attr, str);
1559 }
1560 __setup("fail_page_alloc=", setup_fail_page_alloc);
1561
1562 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1563 {
1564 if (order < fail_page_alloc.min_order)
1565 return false;
1566 if (gfp_mask & __GFP_NOFAIL)
1567 return false;
1568 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1569 return false;
1570 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1571 return false;
1572
1573 return should_fail(&fail_page_alloc.attr, 1 << order);
1574 }
1575
1576 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1577
1578 static int __init fail_page_alloc_debugfs(void)
1579 {
1580 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1581 struct dentry *dir;
1582
1583 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1584 &fail_page_alloc.attr);
1585 if (IS_ERR(dir))
1586 return PTR_ERR(dir);
1587
1588 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1589 &fail_page_alloc.ignore_gfp_wait))
1590 goto fail;
1591 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1592 &fail_page_alloc.ignore_gfp_highmem))
1593 goto fail;
1594 if (!debugfs_create_u32("min-order", mode, dir,
1595 &fail_page_alloc.min_order))
1596 goto fail;
1597
1598 return 0;
1599 fail:
1600 debugfs_remove_recursive(dir);
1601
1602 return -ENOMEM;
1603 }
1604
1605 late_initcall(fail_page_alloc_debugfs);
1606
1607 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1608
1609 #else /* CONFIG_FAIL_PAGE_ALLOC */
1610
1611 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1612 {
1613 return false;
1614 }
1615
1616 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1617
1618 /*
1619 * Return true if free pages are above 'mark'. This takes into account the order
1620 * of the allocation.
1621 */
1622 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1623 int classzone_idx, int alloc_flags, long free_pages)
1624 {
1625 /* free_pages my go negative - that's OK */
1626 long min = mark;
1627 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1628 int o;
1629
1630 free_pages -= (1 << order) - 1;
1631 if (alloc_flags & ALLOC_HIGH)
1632 min -= min / 2;
1633 if (alloc_flags & ALLOC_HARDER)
1634 min -= min / 4;
1635 #ifdef CONFIG_CMA
1636 /* If allocation can't use CMA areas don't use free CMA pages */
1637 if (!(alloc_flags & ALLOC_CMA))
1638 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1639 #endif
1640 if (free_pages <= min + lowmem_reserve)
1641 return false;
1642 for (o = 0; o < order; o++) {
1643 /* At the next order, this order's pages become unavailable */
1644 free_pages -= z->free_area[o].nr_free << o;
1645
1646 /* Require fewer higher order pages to be free */
1647 min >>= 1;
1648
1649 if (free_pages <= min)
1650 return false;
1651 }
1652 return true;
1653 }
1654
1655 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1656 int classzone_idx, int alloc_flags)
1657 {
1658 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1659 zone_page_state(z, NR_FREE_PAGES));
1660 }
1661
1662 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1663 int classzone_idx, int alloc_flags)
1664 {
1665 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1666
1667 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1668 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1669
1670 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1671 free_pages);
1672 }
1673
1674 #ifdef CONFIG_NUMA
1675 /*
1676 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1677 * skip over zones that are not allowed by the cpuset, or that have
1678 * been recently (in last second) found to be nearly full. See further
1679 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1680 * that have to skip over a lot of full or unallowed zones.
1681 *
1682 * If the zonelist cache is present in the passed in zonelist, then
1683 * returns a pointer to the allowed node mask (either the current
1684 * tasks mems_allowed, or node_states[N_MEMORY].)
1685 *
1686 * If the zonelist cache is not available for this zonelist, does
1687 * nothing and returns NULL.
1688 *
1689 * If the fullzones BITMAP in the zonelist cache is stale (more than
1690 * a second since last zap'd) then we zap it out (clear its bits.)
1691 *
1692 * We hold off even calling zlc_setup, until after we've checked the
1693 * first zone in the zonelist, on the theory that most allocations will
1694 * be satisfied from that first zone, so best to examine that zone as
1695 * quickly as we can.
1696 */
1697 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1698 {
1699 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1700 nodemask_t *allowednodes; /* zonelist_cache approximation */
1701
1702 zlc = zonelist->zlcache_ptr;
1703 if (!zlc)
1704 return NULL;
1705
1706 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1707 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1708 zlc->last_full_zap = jiffies;
1709 }
1710
1711 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1712 &cpuset_current_mems_allowed :
1713 &node_states[N_MEMORY];
1714 return allowednodes;
1715 }
1716
1717 /*
1718 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1719 * if it is worth looking at further for free memory:
1720 * 1) Check that the zone isn't thought to be full (doesn't have its
1721 * bit set in the zonelist_cache fullzones BITMAP).
1722 * 2) Check that the zones node (obtained from the zonelist_cache
1723 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1724 * Return true (non-zero) if zone is worth looking at further, or
1725 * else return false (zero) if it is not.
1726 *
1727 * This check -ignores- the distinction between various watermarks,
1728 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1729 * found to be full for any variation of these watermarks, it will
1730 * be considered full for up to one second by all requests, unless
1731 * we are so low on memory on all allowed nodes that we are forced
1732 * into the second scan of the zonelist.
1733 *
1734 * In the second scan we ignore this zonelist cache and exactly
1735 * apply the watermarks to all zones, even it is slower to do so.
1736 * We are low on memory in the second scan, and should leave no stone
1737 * unturned looking for a free page.
1738 */
1739 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1740 nodemask_t *allowednodes)
1741 {
1742 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1743 int i; /* index of *z in zonelist zones */
1744 int n; /* node that zone *z is on */
1745
1746 zlc = zonelist->zlcache_ptr;
1747 if (!zlc)
1748 return 1;
1749
1750 i = z - zonelist->_zonerefs;
1751 n = zlc->z_to_n[i];
1752
1753 /* This zone is worth trying if it is allowed but not full */
1754 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1755 }
1756
1757 /*
1758 * Given 'z' scanning a zonelist, set the corresponding bit in
1759 * zlc->fullzones, so that subsequent attempts to allocate a page
1760 * from that zone don't waste time re-examining it.
1761 */
1762 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1763 {
1764 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1765 int i; /* index of *z in zonelist zones */
1766
1767 zlc = zonelist->zlcache_ptr;
1768 if (!zlc)
1769 return;
1770
1771 i = z - zonelist->_zonerefs;
1772
1773 set_bit(i, zlc->fullzones);
1774 }
1775
1776 /*
1777 * clear all zones full, called after direct reclaim makes progress so that
1778 * a zone that was recently full is not skipped over for up to a second
1779 */
1780 static void zlc_clear_zones_full(struct zonelist *zonelist)
1781 {
1782 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1783
1784 zlc = zonelist->zlcache_ptr;
1785 if (!zlc)
1786 return;
1787
1788 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1789 }
1790
1791 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1792 {
1793 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1794 }
1795
1796 static void __paginginit init_zone_allows_reclaim(int nid)
1797 {
1798 int i;
1799
1800 for_each_online_node(i)
1801 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1802 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1803 else
1804 zone_reclaim_mode = 1;
1805 }
1806
1807 #else /* CONFIG_NUMA */
1808
1809 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1810 {
1811 return NULL;
1812 }
1813
1814 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1815 nodemask_t *allowednodes)
1816 {
1817 return 1;
1818 }
1819
1820 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1821 {
1822 }
1823
1824 static void zlc_clear_zones_full(struct zonelist *zonelist)
1825 {
1826 }
1827
1828 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1829 {
1830 return true;
1831 }
1832
1833 static inline void init_zone_allows_reclaim(int nid)
1834 {
1835 }
1836 #endif /* CONFIG_NUMA */
1837
1838 /*
1839 * get_page_from_freelist goes through the zonelist trying to allocate
1840 * a page.
1841 */
1842 static struct page *
1843 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1844 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1845 struct zone *preferred_zone, int migratetype)
1846 {
1847 struct zoneref *z;
1848 struct page *page = NULL;
1849 int classzone_idx;
1850 struct zone *zone;
1851 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1852 int zlc_active = 0; /* set if using zonelist_cache */
1853 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1854
1855 classzone_idx = zone_idx(preferred_zone);
1856 zonelist_scan:
1857 /*
1858 * Scan zonelist, looking for a zone with enough free.
1859 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1860 */
1861 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1862 high_zoneidx, nodemask) {
1863 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1864 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1865 continue;
1866 if ((alloc_flags & ALLOC_CPUSET) &&
1867 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1868 continue;
1869 /*
1870 * When allocating a page cache page for writing, we
1871 * want to get it from a zone that is within its dirty
1872 * limit, such that no single zone holds more than its
1873 * proportional share of globally allowed dirty pages.
1874 * The dirty limits take into account the zone's
1875 * lowmem reserves and high watermark so that kswapd
1876 * should be able to balance it without having to
1877 * write pages from its LRU list.
1878 *
1879 * This may look like it could increase pressure on
1880 * lower zones by failing allocations in higher zones
1881 * before they are full. But the pages that do spill
1882 * over are limited as the lower zones are protected
1883 * by this very same mechanism. It should not become
1884 * a practical burden to them.
1885 *
1886 * XXX: For now, allow allocations to potentially
1887 * exceed the per-zone dirty limit in the slowpath
1888 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1889 * which is important when on a NUMA setup the allowed
1890 * zones are together not big enough to reach the
1891 * global limit. The proper fix for these situations
1892 * will require awareness of zones in the
1893 * dirty-throttling and the flusher threads.
1894 */
1895 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1896 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1897 goto this_zone_full;
1898
1899 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1900 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1901 unsigned long mark;
1902 int ret;
1903
1904 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1905 if (zone_watermark_ok(zone, order, mark,
1906 classzone_idx, alloc_flags))
1907 goto try_this_zone;
1908
1909 if (IS_ENABLED(CONFIG_NUMA) &&
1910 !did_zlc_setup && nr_online_nodes > 1) {
1911 /*
1912 * we do zlc_setup if there are multiple nodes
1913 * and before considering the first zone allowed
1914 * by the cpuset.
1915 */
1916 allowednodes = zlc_setup(zonelist, alloc_flags);
1917 zlc_active = 1;
1918 did_zlc_setup = 1;
1919 }
1920
1921 if (zone_reclaim_mode == 0 ||
1922 !zone_allows_reclaim(preferred_zone, zone))
1923 goto this_zone_full;
1924
1925 /*
1926 * As we may have just activated ZLC, check if the first
1927 * eligible zone has failed zone_reclaim recently.
1928 */
1929 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1930 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1931 continue;
1932
1933 ret = zone_reclaim(zone, gfp_mask, order);
1934 switch (ret) {
1935 case ZONE_RECLAIM_NOSCAN:
1936 /* did not scan */
1937 continue;
1938 case ZONE_RECLAIM_FULL:
1939 /* scanned but unreclaimable */
1940 continue;
1941 default:
1942 /* did we reclaim enough */
1943 if (!zone_watermark_ok(zone, order, mark,
1944 classzone_idx, alloc_flags))
1945 goto this_zone_full;
1946 }
1947 }
1948
1949 try_this_zone:
1950 page = buffered_rmqueue(preferred_zone, zone, order,
1951 gfp_mask, migratetype);
1952 if (page)
1953 break;
1954 this_zone_full:
1955 if (IS_ENABLED(CONFIG_NUMA))
1956 zlc_mark_zone_full(zonelist, z);
1957 }
1958
1959 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1960 /* Disable zlc cache for second zonelist scan */
1961 zlc_active = 0;
1962 goto zonelist_scan;
1963 }
1964
1965 if (page)
1966 /*
1967 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1968 * necessary to allocate the page. The expectation is
1969 * that the caller is taking steps that will free more
1970 * memory. The caller should avoid the page being used
1971 * for !PFMEMALLOC purposes.
1972 */
1973 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1974
1975 return page;
1976 }
1977
1978 /*
1979 * Large machines with many possible nodes should not always dump per-node
1980 * meminfo in irq context.
1981 */
1982 static inline bool should_suppress_show_mem(void)
1983 {
1984 bool ret = false;
1985
1986 #if NODES_SHIFT > 8
1987 ret = in_interrupt();
1988 #endif
1989 return ret;
1990 }
1991
1992 static DEFINE_RATELIMIT_STATE(nopage_rs,
1993 DEFAULT_RATELIMIT_INTERVAL,
1994 DEFAULT_RATELIMIT_BURST);
1995
1996 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1997 {
1998 unsigned int filter = SHOW_MEM_FILTER_NODES;
1999
2000 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2001 debug_guardpage_minorder() > 0)
2002 return;
2003
2004 /*
2005 * This documents exceptions given to allocations in certain
2006 * contexts that are allowed to allocate outside current's set
2007 * of allowed nodes.
2008 */
2009 if (!(gfp_mask & __GFP_NOMEMALLOC))
2010 if (test_thread_flag(TIF_MEMDIE) ||
2011 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2012 filter &= ~SHOW_MEM_FILTER_NODES;
2013 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2014 filter &= ~SHOW_MEM_FILTER_NODES;
2015
2016 if (fmt) {
2017 struct va_format vaf;
2018 va_list args;
2019
2020 va_start(args, fmt);
2021
2022 vaf.fmt = fmt;
2023 vaf.va = &args;
2024
2025 pr_warn("%pV", &vaf);
2026
2027 va_end(args);
2028 }
2029
2030 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2031 current->comm, order, gfp_mask);
2032
2033 dump_stack();
2034 if (!should_suppress_show_mem())
2035 show_mem(filter);
2036 }
2037
2038 static inline int
2039 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2040 unsigned long did_some_progress,
2041 unsigned long pages_reclaimed)
2042 {
2043 /* Do not loop if specifically requested */
2044 if (gfp_mask & __GFP_NORETRY)
2045 return 0;
2046
2047 /* Always retry if specifically requested */
2048 if (gfp_mask & __GFP_NOFAIL)
2049 return 1;
2050
2051 /*
2052 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2053 * making forward progress without invoking OOM. Suspend also disables
2054 * storage devices so kswapd will not help. Bail if we are suspending.
2055 */
2056 if (!did_some_progress && pm_suspended_storage())
2057 return 0;
2058
2059 /*
2060 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2061 * means __GFP_NOFAIL, but that may not be true in other
2062 * implementations.
2063 */
2064 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2065 return 1;
2066
2067 /*
2068 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2069 * specified, then we retry until we no longer reclaim any pages
2070 * (above), or we've reclaimed an order of pages at least as
2071 * large as the allocation's order. In both cases, if the
2072 * allocation still fails, we stop retrying.
2073 */
2074 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2075 return 1;
2076
2077 return 0;
2078 }
2079
2080 static inline struct page *
2081 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2082 struct zonelist *zonelist, enum zone_type high_zoneidx,
2083 nodemask_t *nodemask, struct zone *preferred_zone,
2084 int migratetype)
2085 {
2086 struct page *page;
2087
2088 /* Acquire the OOM killer lock for the zones in zonelist */
2089 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2090 schedule_timeout_uninterruptible(1);
2091 return NULL;
2092 }
2093
2094 /*
2095 * Go through the zonelist yet one more time, keep very high watermark
2096 * here, this is only to catch a parallel oom killing, we must fail if
2097 * we're still under heavy pressure.
2098 */
2099 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2100 order, zonelist, high_zoneidx,
2101 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2102 preferred_zone, migratetype);
2103 if (page)
2104 goto out;
2105
2106 if (!(gfp_mask & __GFP_NOFAIL)) {
2107 /* The OOM killer will not help higher order allocs */
2108 if (order > PAGE_ALLOC_COSTLY_ORDER)
2109 goto out;
2110 /* The OOM killer does not needlessly kill tasks for lowmem */
2111 if (high_zoneidx < ZONE_NORMAL)
2112 goto out;
2113 /*
2114 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2115 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2116 * The caller should handle page allocation failure by itself if
2117 * it specifies __GFP_THISNODE.
2118 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2119 */
2120 if (gfp_mask & __GFP_THISNODE)
2121 goto out;
2122 }
2123 /* Exhausted what can be done so it's blamo time */
2124 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2125
2126 out:
2127 clear_zonelist_oom(zonelist, gfp_mask);
2128 return page;
2129 }
2130
2131 #ifdef CONFIG_COMPACTION
2132 /* Try memory compaction for high-order allocations before reclaim */
2133 static struct page *
2134 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2135 struct zonelist *zonelist, enum zone_type high_zoneidx,
2136 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2137 int migratetype, bool sync_migration,
2138 bool *contended_compaction, bool *deferred_compaction,
2139 unsigned long *did_some_progress)
2140 {
2141 if (!order)
2142 return NULL;
2143
2144 if (compaction_deferred(preferred_zone, order)) {
2145 *deferred_compaction = true;
2146 return NULL;
2147 }
2148
2149 current->flags |= PF_MEMALLOC;
2150 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2151 nodemask, sync_migration,
2152 contended_compaction);
2153 current->flags &= ~PF_MEMALLOC;
2154
2155 if (*did_some_progress != COMPACT_SKIPPED) {
2156 struct page *page;
2157
2158 /* Page migration frees to the PCP lists but we want merging */
2159 drain_pages(get_cpu());
2160 put_cpu();
2161
2162 page = get_page_from_freelist(gfp_mask, nodemask,
2163 order, zonelist, high_zoneidx,
2164 alloc_flags & ~ALLOC_NO_WATERMARKS,
2165 preferred_zone, migratetype);
2166 if (page) {
2167 preferred_zone->compact_blockskip_flush = false;
2168 preferred_zone->compact_considered = 0;
2169 preferred_zone->compact_defer_shift = 0;
2170 if (order >= preferred_zone->compact_order_failed)
2171 preferred_zone->compact_order_failed = order + 1;
2172 count_vm_event(COMPACTSUCCESS);
2173 return page;
2174 }
2175
2176 /*
2177 * It's bad if compaction run occurs and fails.
2178 * The most likely reason is that pages exist,
2179 * but not enough to satisfy watermarks.
2180 */
2181 count_vm_event(COMPACTFAIL);
2182
2183 /*
2184 * As async compaction considers a subset of pageblocks, only
2185 * defer if the failure was a sync compaction failure.
2186 */
2187 if (sync_migration)
2188 defer_compaction(preferred_zone, order);
2189
2190 cond_resched();
2191 }
2192
2193 return NULL;
2194 }
2195 #else
2196 static inline struct page *
2197 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2198 struct zonelist *zonelist, enum zone_type high_zoneidx,
2199 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2200 int migratetype, bool sync_migration,
2201 bool *contended_compaction, bool *deferred_compaction,
2202 unsigned long *did_some_progress)
2203 {
2204 return NULL;
2205 }
2206 #endif /* CONFIG_COMPACTION */
2207
2208 /* Perform direct synchronous page reclaim */
2209 static int
2210 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2211 nodemask_t *nodemask)
2212 {
2213 struct reclaim_state reclaim_state;
2214 int progress;
2215
2216 cond_resched();
2217
2218 /* We now go into synchronous reclaim */
2219 cpuset_memory_pressure_bump();
2220 current->flags |= PF_MEMALLOC;
2221 lockdep_set_current_reclaim_state(gfp_mask);
2222 reclaim_state.reclaimed_slab = 0;
2223 current->reclaim_state = &reclaim_state;
2224
2225 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2226
2227 current->reclaim_state = NULL;
2228 lockdep_clear_current_reclaim_state();
2229 current->flags &= ~PF_MEMALLOC;
2230
2231 cond_resched();
2232
2233 return progress;
2234 }
2235
2236 /* The really slow allocator path where we enter direct reclaim */
2237 static inline struct page *
2238 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2239 struct zonelist *zonelist, enum zone_type high_zoneidx,
2240 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2241 int migratetype, unsigned long *did_some_progress)
2242 {
2243 struct page *page = NULL;
2244 bool drained = false;
2245
2246 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2247 nodemask);
2248 if (unlikely(!(*did_some_progress)))
2249 return NULL;
2250
2251 /* After successful reclaim, reconsider all zones for allocation */
2252 if (IS_ENABLED(CONFIG_NUMA))
2253 zlc_clear_zones_full(zonelist);
2254
2255 retry:
2256 page = get_page_from_freelist(gfp_mask, nodemask, order,
2257 zonelist, high_zoneidx,
2258 alloc_flags & ~ALLOC_NO_WATERMARKS,
2259 preferred_zone, migratetype);
2260
2261 /*
2262 * If an allocation failed after direct reclaim, it could be because
2263 * pages are pinned on the per-cpu lists. Drain them and try again
2264 */
2265 if (!page && !drained) {
2266 drain_all_pages();
2267 drained = true;
2268 goto retry;
2269 }
2270
2271 return page;
2272 }
2273
2274 /*
2275 * This is called in the allocator slow-path if the allocation request is of
2276 * sufficient urgency to ignore watermarks and take other desperate measures
2277 */
2278 static inline struct page *
2279 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2280 struct zonelist *zonelist, enum zone_type high_zoneidx,
2281 nodemask_t *nodemask, struct zone *preferred_zone,
2282 int migratetype)
2283 {
2284 struct page *page;
2285
2286 do {
2287 page = get_page_from_freelist(gfp_mask, nodemask, order,
2288 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2289 preferred_zone, migratetype);
2290
2291 if (!page && gfp_mask & __GFP_NOFAIL)
2292 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2293 } while (!page && (gfp_mask & __GFP_NOFAIL));
2294
2295 return page;
2296 }
2297
2298 static inline
2299 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2300 enum zone_type high_zoneidx,
2301 enum zone_type classzone_idx)
2302 {
2303 struct zoneref *z;
2304 struct zone *zone;
2305
2306 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2307 wakeup_kswapd(zone, order, classzone_idx);
2308 }
2309
2310 static inline int
2311 gfp_to_alloc_flags(gfp_t gfp_mask)
2312 {
2313 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2314 const gfp_t wait = gfp_mask & __GFP_WAIT;
2315
2316 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2317 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2318
2319 /*
2320 * The caller may dip into page reserves a bit more if the caller
2321 * cannot run direct reclaim, or if the caller has realtime scheduling
2322 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2323 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2324 */
2325 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2326
2327 if (!wait) {
2328 /*
2329 * Not worth trying to allocate harder for
2330 * __GFP_NOMEMALLOC even if it can't schedule.
2331 */
2332 if (!(gfp_mask & __GFP_NOMEMALLOC))
2333 alloc_flags |= ALLOC_HARDER;
2334 /*
2335 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2336 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2337 */
2338 alloc_flags &= ~ALLOC_CPUSET;
2339 } else if (unlikely(rt_task(current)) && !in_interrupt())
2340 alloc_flags |= ALLOC_HARDER;
2341
2342 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2343 if (gfp_mask & __GFP_MEMALLOC)
2344 alloc_flags |= ALLOC_NO_WATERMARKS;
2345 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2346 alloc_flags |= ALLOC_NO_WATERMARKS;
2347 else if (!in_interrupt() &&
2348 ((current->flags & PF_MEMALLOC) ||
2349 unlikely(test_thread_flag(TIF_MEMDIE))))
2350 alloc_flags |= ALLOC_NO_WATERMARKS;
2351 }
2352 #ifdef CONFIG_CMA
2353 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2354 alloc_flags |= ALLOC_CMA;
2355 #endif
2356 return alloc_flags;
2357 }
2358
2359 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2360 {
2361 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2362 }
2363
2364 static inline struct page *
2365 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2366 struct zonelist *zonelist, enum zone_type high_zoneidx,
2367 nodemask_t *nodemask, struct zone *preferred_zone,
2368 int migratetype)
2369 {
2370 const gfp_t wait = gfp_mask & __GFP_WAIT;
2371 struct page *page = NULL;
2372 int alloc_flags;
2373 unsigned long pages_reclaimed = 0;
2374 unsigned long did_some_progress;
2375 bool sync_migration = false;
2376 bool deferred_compaction = false;
2377 bool contended_compaction = false;
2378
2379 /*
2380 * In the slowpath, we sanity check order to avoid ever trying to
2381 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2382 * be using allocators in order of preference for an area that is
2383 * too large.
2384 */
2385 if (order >= MAX_ORDER) {
2386 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2387 return NULL;
2388 }
2389
2390 /*
2391 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2392 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2393 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2394 * using a larger set of nodes after it has established that the
2395 * allowed per node queues are empty and that nodes are
2396 * over allocated.
2397 */
2398 if (IS_ENABLED(CONFIG_NUMA) &&
2399 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2400 goto nopage;
2401
2402 restart:
2403 if (!(gfp_mask & __GFP_NO_KSWAPD))
2404 wake_all_kswapd(order, zonelist, high_zoneidx,
2405 zone_idx(preferred_zone));
2406
2407 /*
2408 * OK, we're below the kswapd watermark and have kicked background
2409 * reclaim. Now things get more complex, so set up alloc_flags according
2410 * to how we want to proceed.
2411 */
2412 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2413
2414 /*
2415 * Find the true preferred zone if the allocation is unconstrained by
2416 * cpusets.
2417 */
2418 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2419 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2420 &preferred_zone);
2421
2422 rebalance:
2423 /* This is the last chance, in general, before the goto nopage. */
2424 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2425 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2426 preferred_zone, migratetype);
2427 if (page)
2428 goto got_pg;
2429
2430 /* Allocate without watermarks if the context allows */
2431 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2432 /*
2433 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2434 * the allocation is high priority and these type of
2435 * allocations are system rather than user orientated
2436 */
2437 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2438
2439 page = __alloc_pages_high_priority(gfp_mask, order,
2440 zonelist, high_zoneidx, nodemask,
2441 preferred_zone, migratetype);
2442 if (page) {
2443 goto got_pg;
2444 }
2445 }
2446
2447 /* Atomic allocations - we can't balance anything */
2448 if (!wait)
2449 goto nopage;
2450
2451 /* Avoid recursion of direct reclaim */
2452 if (current->flags & PF_MEMALLOC)
2453 goto nopage;
2454
2455 /* Avoid allocations with no watermarks from looping endlessly */
2456 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2457 goto nopage;
2458
2459 /*
2460 * Try direct compaction. The first pass is asynchronous. Subsequent
2461 * attempts after direct reclaim are synchronous
2462 */
2463 page = __alloc_pages_direct_compact(gfp_mask, order,
2464 zonelist, high_zoneidx,
2465 nodemask,
2466 alloc_flags, preferred_zone,
2467 migratetype, sync_migration,
2468 &contended_compaction,
2469 &deferred_compaction,
2470 &did_some_progress);
2471 if (page)
2472 goto got_pg;
2473 sync_migration = true;
2474
2475 /*
2476 * If compaction is deferred for high-order allocations, it is because
2477 * sync compaction recently failed. In this is the case and the caller
2478 * requested a movable allocation that does not heavily disrupt the
2479 * system then fail the allocation instead of entering direct reclaim.
2480 */
2481 if ((deferred_compaction || contended_compaction) &&
2482 (gfp_mask & __GFP_NO_KSWAPD))
2483 goto nopage;
2484
2485 /* Try direct reclaim and then allocating */
2486 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2487 zonelist, high_zoneidx,
2488 nodemask,
2489 alloc_flags, preferred_zone,
2490 migratetype, &did_some_progress);
2491 if (page)
2492 goto got_pg;
2493
2494 /*
2495 * If we failed to make any progress reclaiming, then we are
2496 * running out of options and have to consider going OOM
2497 */
2498 if (!did_some_progress) {
2499 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2500 if (oom_killer_disabled)
2501 goto nopage;
2502 /* Coredumps can quickly deplete all memory reserves */
2503 if ((current->flags & PF_DUMPCORE) &&
2504 !(gfp_mask & __GFP_NOFAIL))
2505 goto nopage;
2506 page = __alloc_pages_may_oom(gfp_mask, order,
2507 zonelist, high_zoneidx,
2508 nodemask, preferred_zone,
2509 migratetype);
2510 if (page)
2511 goto got_pg;
2512
2513 if (!(gfp_mask & __GFP_NOFAIL)) {
2514 /*
2515 * The oom killer is not called for high-order
2516 * allocations that may fail, so if no progress
2517 * is being made, there are no other options and
2518 * retrying is unlikely to help.
2519 */
2520 if (order > PAGE_ALLOC_COSTLY_ORDER)
2521 goto nopage;
2522 /*
2523 * The oom killer is not called for lowmem
2524 * allocations to prevent needlessly killing
2525 * innocent tasks.
2526 */
2527 if (high_zoneidx < ZONE_NORMAL)
2528 goto nopage;
2529 }
2530
2531 goto restart;
2532 }
2533 }
2534
2535 /* Check if we should retry the allocation */
2536 pages_reclaimed += did_some_progress;
2537 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2538 pages_reclaimed)) {
2539 /* Wait for some write requests to complete then retry */
2540 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2541 goto rebalance;
2542 } else {
2543 /*
2544 * High-order allocations do not necessarily loop after
2545 * direct reclaim and reclaim/compaction depends on compaction
2546 * being called after reclaim so call directly if necessary
2547 */
2548 page = __alloc_pages_direct_compact(gfp_mask, order,
2549 zonelist, high_zoneidx,
2550 nodemask,
2551 alloc_flags, preferred_zone,
2552 migratetype, sync_migration,
2553 &contended_compaction,
2554 &deferred_compaction,
2555 &did_some_progress);
2556 if (page)
2557 goto got_pg;
2558 }
2559
2560 nopage:
2561 warn_alloc_failed(gfp_mask, order, NULL);
2562 return page;
2563 got_pg:
2564 if (kmemcheck_enabled)
2565 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2566
2567 return page;
2568 }
2569
2570 /*
2571 * This is the 'heart' of the zoned buddy allocator.
2572 */
2573 struct page *
2574 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2575 struct zonelist *zonelist, nodemask_t *nodemask)
2576 {
2577 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2578 struct zone *preferred_zone;
2579 struct page *page = NULL;
2580 int migratetype = allocflags_to_migratetype(gfp_mask);
2581 unsigned int cpuset_mems_cookie;
2582 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2583 struct mem_cgroup *memcg = NULL;
2584
2585 gfp_mask &= gfp_allowed_mask;
2586
2587 lockdep_trace_alloc(gfp_mask);
2588
2589 might_sleep_if(gfp_mask & __GFP_WAIT);
2590
2591 if (should_fail_alloc_page(gfp_mask, order))
2592 return NULL;
2593
2594 /*
2595 * Check the zones suitable for the gfp_mask contain at least one
2596 * valid zone. It's possible to have an empty zonelist as a result
2597 * of GFP_THISNODE and a memoryless node
2598 */
2599 if (unlikely(!zonelist->_zonerefs->zone))
2600 return NULL;
2601
2602 /*
2603 * Will only have any effect when __GFP_KMEMCG is set. This is
2604 * verified in the (always inline) callee
2605 */
2606 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2607 return NULL;
2608
2609 retry_cpuset:
2610 cpuset_mems_cookie = get_mems_allowed();
2611
2612 /* The preferred zone is used for statistics later */
2613 first_zones_zonelist(zonelist, high_zoneidx,
2614 nodemask ? : &cpuset_current_mems_allowed,
2615 &preferred_zone);
2616 if (!preferred_zone)
2617 goto out;
2618
2619 #ifdef CONFIG_CMA
2620 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2621 alloc_flags |= ALLOC_CMA;
2622 #endif
2623 /* First allocation attempt */
2624 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2625 zonelist, high_zoneidx, alloc_flags,
2626 preferred_zone, migratetype);
2627 if (unlikely(!page)) {
2628 /*
2629 * Runtime PM, block IO and its error handling path
2630 * can deadlock because I/O on the device might not
2631 * complete.
2632 */
2633 gfp_mask = memalloc_noio_flags(gfp_mask);
2634 page = __alloc_pages_slowpath(gfp_mask, order,
2635 zonelist, high_zoneidx, nodemask,
2636 preferred_zone, migratetype);
2637 }
2638
2639 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2640
2641 out:
2642 /*
2643 * When updating a task's mems_allowed, it is possible to race with
2644 * parallel threads in such a way that an allocation can fail while
2645 * the mask is being updated. If a page allocation is about to fail,
2646 * check if the cpuset changed during allocation and if so, retry.
2647 */
2648 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2649 goto retry_cpuset;
2650
2651 memcg_kmem_commit_charge(page, memcg, order);
2652
2653 return page;
2654 }
2655 EXPORT_SYMBOL(__alloc_pages_nodemask);
2656
2657 /*
2658 * Common helper functions.
2659 */
2660 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2661 {
2662 struct page *page;
2663
2664 /*
2665 * __get_free_pages() returns a 32-bit address, which cannot represent
2666 * a highmem page
2667 */
2668 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2669
2670 page = alloc_pages(gfp_mask, order);
2671 if (!page)
2672 return 0;
2673 return (unsigned long) page_address(page);
2674 }
2675 EXPORT_SYMBOL(__get_free_pages);
2676
2677 unsigned long get_zeroed_page(gfp_t gfp_mask)
2678 {
2679 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2680 }
2681 EXPORT_SYMBOL(get_zeroed_page);
2682
2683 void __free_pages(struct page *page, unsigned int order)
2684 {
2685 if (put_page_testzero(page)) {
2686 if (order == 0)
2687 free_hot_cold_page(page, 0);
2688 else
2689 __free_pages_ok(page, order);
2690 }
2691 }
2692
2693 EXPORT_SYMBOL(__free_pages);
2694
2695 void free_pages(unsigned long addr, unsigned int order)
2696 {
2697 if (addr != 0) {
2698 VM_BUG_ON(!virt_addr_valid((void *)addr));
2699 __free_pages(virt_to_page((void *)addr), order);
2700 }
2701 }
2702
2703 EXPORT_SYMBOL(free_pages);
2704
2705 /*
2706 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2707 * pages allocated with __GFP_KMEMCG.
2708 *
2709 * Those pages are accounted to a particular memcg, embedded in the
2710 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2711 * for that information only to find out that it is NULL for users who have no
2712 * interest in that whatsoever, we provide these functions.
2713 *
2714 * The caller knows better which flags it relies on.
2715 */
2716 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2717 {
2718 memcg_kmem_uncharge_pages(page, order);
2719 __free_pages(page, order);
2720 }
2721
2722 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2723 {
2724 if (addr != 0) {
2725 VM_BUG_ON(!virt_addr_valid((void *)addr));
2726 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2727 }
2728 }
2729
2730 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2731 {
2732 if (addr) {
2733 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2734 unsigned long used = addr + PAGE_ALIGN(size);
2735
2736 split_page(virt_to_page((void *)addr), order);
2737 while (used < alloc_end) {
2738 free_page(used);
2739 used += PAGE_SIZE;
2740 }
2741 }
2742 return (void *)addr;
2743 }
2744
2745 /**
2746 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2747 * @size: the number of bytes to allocate
2748 * @gfp_mask: GFP flags for the allocation
2749 *
2750 * This function is similar to alloc_pages(), except that it allocates the
2751 * minimum number of pages to satisfy the request. alloc_pages() can only
2752 * allocate memory in power-of-two pages.
2753 *
2754 * This function is also limited by MAX_ORDER.
2755 *
2756 * Memory allocated by this function must be released by free_pages_exact().
2757 */
2758 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2759 {
2760 unsigned int order = get_order(size);
2761 unsigned long addr;
2762
2763 addr = __get_free_pages(gfp_mask, order);
2764 return make_alloc_exact(addr, order, size);
2765 }
2766 EXPORT_SYMBOL(alloc_pages_exact);
2767
2768 /**
2769 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2770 * pages on a node.
2771 * @nid: the preferred node ID where memory should be allocated
2772 * @size: the number of bytes to allocate
2773 * @gfp_mask: GFP flags for the allocation
2774 *
2775 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2776 * back.
2777 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2778 * but is not exact.
2779 */
2780 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2781 {
2782 unsigned order = get_order(size);
2783 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2784 if (!p)
2785 return NULL;
2786 return make_alloc_exact((unsigned long)page_address(p), order, size);
2787 }
2788 EXPORT_SYMBOL(alloc_pages_exact_nid);
2789
2790 /**
2791 * free_pages_exact - release memory allocated via alloc_pages_exact()
2792 * @virt: the value returned by alloc_pages_exact.
2793 * @size: size of allocation, same value as passed to alloc_pages_exact().
2794 *
2795 * Release the memory allocated by a previous call to alloc_pages_exact.
2796 */
2797 void free_pages_exact(void *virt, size_t size)
2798 {
2799 unsigned long addr = (unsigned long)virt;
2800 unsigned long end = addr + PAGE_ALIGN(size);
2801
2802 while (addr < end) {
2803 free_page(addr);
2804 addr += PAGE_SIZE;
2805 }
2806 }
2807 EXPORT_SYMBOL(free_pages_exact);
2808
2809 /**
2810 * nr_free_zone_pages - count number of pages beyond high watermark
2811 * @offset: The zone index of the highest zone
2812 *
2813 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2814 * high watermark within all zones at or below a given zone index. For each
2815 * zone, the number of pages is calculated as:
2816 * present_pages - high_pages
2817 */
2818 static unsigned long nr_free_zone_pages(int offset)
2819 {
2820 struct zoneref *z;
2821 struct zone *zone;
2822
2823 /* Just pick one node, since fallback list is circular */
2824 unsigned long sum = 0;
2825
2826 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2827
2828 for_each_zone_zonelist(zone, z, zonelist, offset) {
2829 unsigned long size = zone->managed_pages;
2830 unsigned long high = high_wmark_pages(zone);
2831 if (size > high)
2832 sum += size - high;
2833 }
2834
2835 return sum;
2836 }
2837
2838 /**
2839 * nr_free_buffer_pages - count number of pages beyond high watermark
2840 *
2841 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2842 * watermark within ZONE_DMA and ZONE_NORMAL.
2843 */
2844 unsigned long nr_free_buffer_pages(void)
2845 {
2846 return nr_free_zone_pages(gfp_zone(GFP_USER));
2847 }
2848 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2849
2850 /**
2851 * nr_free_pagecache_pages - count number of pages beyond high watermark
2852 *
2853 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2854 * high watermark within all zones.
2855 */
2856 unsigned long nr_free_pagecache_pages(void)
2857 {
2858 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2859 }
2860
2861 static inline void show_node(struct zone *zone)
2862 {
2863 if (IS_ENABLED(CONFIG_NUMA))
2864 printk("Node %d ", zone_to_nid(zone));
2865 }
2866
2867 void si_meminfo(struct sysinfo *val)
2868 {
2869 val->totalram = totalram_pages;
2870 val->sharedram = 0;
2871 val->freeram = global_page_state(NR_FREE_PAGES);
2872 val->bufferram = nr_blockdev_pages();
2873 val->totalhigh = totalhigh_pages;
2874 val->freehigh = nr_free_highpages();
2875 val->mem_unit = PAGE_SIZE;
2876 }
2877
2878 EXPORT_SYMBOL(si_meminfo);
2879
2880 #ifdef CONFIG_NUMA
2881 void si_meminfo_node(struct sysinfo *val, int nid)
2882 {
2883 pg_data_t *pgdat = NODE_DATA(nid);
2884
2885 val->totalram = pgdat->node_present_pages;
2886 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2887 #ifdef CONFIG_HIGHMEM
2888 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
2889 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2890 NR_FREE_PAGES);
2891 #else
2892 val->totalhigh = 0;
2893 val->freehigh = 0;
2894 #endif
2895 val->mem_unit = PAGE_SIZE;
2896 }
2897 #endif
2898
2899 /*
2900 * Determine whether the node should be displayed or not, depending on whether
2901 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2902 */
2903 bool skip_free_areas_node(unsigned int flags, int nid)
2904 {
2905 bool ret = false;
2906 unsigned int cpuset_mems_cookie;
2907
2908 if (!(flags & SHOW_MEM_FILTER_NODES))
2909 goto out;
2910
2911 do {
2912 cpuset_mems_cookie = get_mems_allowed();
2913 ret = !node_isset(nid, cpuset_current_mems_allowed);
2914 } while (!put_mems_allowed(cpuset_mems_cookie));
2915 out:
2916 return ret;
2917 }
2918
2919 #define K(x) ((x) << (PAGE_SHIFT-10))
2920
2921 static void show_migration_types(unsigned char type)
2922 {
2923 static const char types[MIGRATE_TYPES] = {
2924 [MIGRATE_UNMOVABLE] = 'U',
2925 [MIGRATE_RECLAIMABLE] = 'E',
2926 [MIGRATE_MOVABLE] = 'M',
2927 [MIGRATE_RESERVE] = 'R',
2928 #ifdef CONFIG_CMA
2929 [MIGRATE_CMA] = 'C',
2930 #endif
2931 #ifdef CONFIG_MEMORY_ISOLATION
2932 [MIGRATE_ISOLATE] = 'I',
2933 #endif
2934 };
2935 char tmp[MIGRATE_TYPES + 1];
2936 char *p = tmp;
2937 int i;
2938
2939 for (i = 0; i < MIGRATE_TYPES; i++) {
2940 if (type & (1 << i))
2941 *p++ = types[i];
2942 }
2943
2944 *p = '\0';
2945 printk("(%s) ", tmp);
2946 }
2947
2948 /*
2949 * Show free area list (used inside shift_scroll-lock stuff)
2950 * We also calculate the percentage fragmentation. We do this by counting the
2951 * memory on each free list with the exception of the first item on the list.
2952 * Suppresses nodes that are not allowed by current's cpuset if
2953 * SHOW_MEM_FILTER_NODES is passed.
2954 */
2955 void show_free_areas(unsigned int filter)
2956 {
2957 int cpu;
2958 struct zone *zone;
2959
2960 for_each_populated_zone(zone) {
2961 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2962 continue;
2963 show_node(zone);
2964 printk("%s per-cpu:\n", zone->name);
2965
2966 for_each_online_cpu(cpu) {
2967 struct per_cpu_pageset *pageset;
2968
2969 pageset = per_cpu_ptr(zone->pageset, cpu);
2970
2971 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2972 cpu, pageset->pcp.high,
2973 pageset->pcp.batch, pageset->pcp.count);
2974 }
2975 }
2976
2977 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2978 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2979 " unevictable:%lu"
2980 " dirty:%lu writeback:%lu unstable:%lu\n"
2981 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2982 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2983 " free_cma:%lu\n",
2984 global_page_state(NR_ACTIVE_ANON),
2985 global_page_state(NR_INACTIVE_ANON),
2986 global_page_state(NR_ISOLATED_ANON),
2987 global_page_state(NR_ACTIVE_FILE),
2988 global_page_state(NR_INACTIVE_FILE),
2989 global_page_state(NR_ISOLATED_FILE),
2990 global_page_state(NR_UNEVICTABLE),
2991 global_page_state(NR_FILE_DIRTY),
2992 global_page_state(NR_WRITEBACK),
2993 global_page_state(NR_UNSTABLE_NFS),
2994 global_page_state(NR_FREE_PAGES),
2995 global_page_state(NR_SLAB_RECLAIMABLE),
2996 global_page_state(NR_SLAB_UNRECLAIMABLE),
2997 global_page_state(NR_FILE_MAPPED),
2998 global_page_state(NR_SHMEM),
2999 global_page_state(NR_PAGETABLE),
3000 global_page_state(NR_BOUNCE),
3001 global_page_state(NR_FREE_CMA_PAGES));
3002
3003 for_each_populated_zone(zone) {
3004 int i;
3005
3006 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3007 continue;
3008 show_node(zone);
3009 printk("%s"
3010 " free:%lukB"
3011 " min:%lukB"
3012 " low:%lukB"
3013 " high:%lukB"
3014 " active_anon:%lukB"
3015 " inactive_anon:%lukB"
3016 " active_file:%lukB"
3017 " inactive_file:%lukB"
3018 " unevictable:%lukB"
3019 " isolated(anon):%lukB"
3020 " isolated(file):%lukB"
3021 " present:%lukB"
3022 " managed:%lukB"
3023 " mlocked:%lukB"
3024 " dirty:%lukB"
3025 " writeback:%lukB"
3026 " mapped:%lukB"
3027 " shmem:%lukB"
3028 " slab_reclaimable:%lukB"
3029 " slab_unreclaimable:%lukB"
3030 " kernel_stack:%lukB"
3031 " pagetables:%lukB"
3032 " unstable:%lukB"
3033 " bounce:%lukB"
3034 " free_cma:%lukB"
3035 " writeback_tmp:%lukB"
3036 " pages_scanned:%lu"
3037 " all_unreclaimable? %s"
3038 "\n",
3039 zone->name,
3040 K(zone_page_state(zone, NR_FREE_PAGES)),
3041 K(min_wmark_pages(zone)),
3042 K(low_wmark_pages(zone)),
3043 K(high_wmark_pages(zone)),
3044 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3045 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3046 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3047 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3048 K(zone_page_state(zone, NR_UNEVICTABLE)),
3049 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3050 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3051 K(zone->present_pages),
3052 K(zone->managed_pages),
3053 K(zone_page_state(zone, NR_MLOCK)),
3054 K(zone_page_state(zone, NR_FILE_DIRTY)),
3055 K(zone_page_state(zone, NR_WRITEBACK)),
3056 K(zone_page_state(zone, NR_FILE_MAPPED)),
3057 K(zone_page_state(zone, NR_SHMEM)),
3058 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3059 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3060 zone_page_state(zone, NR_KERNEL_STACK) *
3061 THREAD_SIZE / 1024,
3062 K(zone_page_state(zone, NR_PAGETABLE)),
3063 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3064 K(zone_page_state(zone, NR_BOUNCE)),
3065 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3066 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3067 zone->pages_scanned,
3068 (zone->all_unreclaimable ? "yes" : "no")
3069 );
3070 printk("lowmem_reserve[]:");
3071 for (i = 0; i < MAX_NR_ZONES; i++)
3072 printk(" %lu", zone->lowmem_reserve[i]);
3073 printk("\n");
3074 }
3075
3076 for_each_populated_zone(zone) {
3077 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3078 unsigned char types[MAX_ORDER];
3079
3080 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3081 continue;
3082 show_node(zone);
3083 printk("%s: ", zone->name);
3084
3085 spin_lock_irqsave(&zone->lock, flags);
3086 for (order = 0; order < MAX_ORDER; order++) {
3087 struct free_area *area = &zone->free_area[order];
3088 int type;
3089
3090 nr[order] = area->nr_free;
3091 total += nr[order] << order;
3092
3093 types[order] = 0;
3094 for (type = 0; type < MIGRATE_TYPES; type++) {
3095 if (!list_empty(&area->free_list[type]))
3096 types[order] |= 1 << type;
3097 }
3098 }
3099 spin_unlock_irqrestore(&zone->lock, flags);
3100 for (order = 0; order < MAX_ORDER; order++) {
3101 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3102 if (nr[order])
3103 show_migration_types(types[order]);
3104 }
3105 printk("= %lukB\n", K(total));
3106 }
3107
3108 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3109
3110 show_swap_cache_info();
3111 }
3112
3113 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3114 {
3115 zoneref->zone = zone;
3116 zoneref->zone_idx = zone_idx(zone);
3117 }
3118
3119 /*
3120 * Builds allocation fallback zone lists.
3121 *
3122 * Add all populated zones of a node to the zonelist.
3123 */
3124 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3125 int nr_zones, enum zone_type zone_type)
3126 {
3127 struct zone *zone;
3128
3129 BUG_ON(zone_type >= MAX_NR_ZONES);
3130 zone_type++;
3131
3132 do {
3133 zone_type--;
3134 zone = pgdat->node_zones + zone_type;
3135 if (populated_zone(zone)) {
3136 zoneref_set_zone(zone,
3137 &zonelist->_zonerefs[nr_zones++]);
3138 check_highest_zone(zone_type);
3139 }
3140
3141 } while (zone_type);
3142 return nr_zones;
3143 }
3144
3145
3146 /*
3147 * zonelist_order:
3148 * 0 = automatic detection of better ordering.
3149 * 1 = order by ([node] distance, -zonetype)
3150 * 2 = order by (-zonetype, [node] distance)
3151 *
3152 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3153 * the same zonelist. So only NUMA can configure this param.
3154 */
3155 #define ZONELIST_ORDER_DEFAULT 0
3156 #define ZONELIST_ORDER_NODE 1
3157 #define ZONELIST_ORDER_ZONE 2
3158
3159 /* zonelist order in the kernel.
3160 * set_zonelist_order() will set this to NODE or ZONE.
3161 */
3162 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3163 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3164
3165
3166 #ifdef CONFIG_NUMA
3167 /* The value user specified ....changed by config */
3168 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3169 /* string for sysctl */
3170 #define NUMA_ZONELIST_ORDER_LEN 16
3171 char numa_zonelist_order[16] = "default";
3172
3173 /*
3174 * interface for configure zonelist ordering.
3175 * command line option "numa_zonelist_order"
3176 * = "[dD]efault - default, automatic configuration.
3177 * = "[nN]ode - order by node locality, then by zone within node
3178 * = "[zZ]one - order by zone, then by locality within zone
3179 */
3180
3181 static int __parse_numa_zonelist_order(char *s)
3182 {
3183 if (*s == 'd' || *s == 'D') {
3184 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3185 } else if (*s == 'n' || *s == 'N') {
3186 user_zonelist_order = ZONELIST_ORDER_NODE;
3187 } else if (*s == 'z' || *s == 'Z') {
3188 user_zonelist_order = ZONELIST_ORDER_ZONE;
3189 } else {
3190 printk(KERN_WARNING
3191 "Ignoring invalid numa_zonelist_order value: "
3192 "%s\n", s);
3193 return -EINVAL;
3194 }
3195 return 0;
3196 }
3197
3198 static __init int setup_numa_zonelist_order(char *s)
3199 {
3200 int ret;
3201
3202 if (!s)
3203 return 0;
3204
3205 ret = __parse_numa_zonelist_order(s);
3206 if (ret == 0)
3207 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3208
3209 return ret;
3210 }
3211 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3212
3213 /*
3214 * sysctl handler for numa_zonelist_order
3215 */
3216 int numa_zonelist_order_handler(ctl_table *table, int write,
3217 void __user *buffer, size_t *length,
3218 loff_t *ppos)
3219 {
3220 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3221 int ret;
3222 static DEFINE_MUTEX(zl_order_mutex);
3223
3224 mutex_lock(&zl_order_mutex);
3225 if (write)
3226 strcpy(saved_string, (char*)table->data);
3227 ret = proc_dostring(table, write, buffer, length, ppos);
3228 if (ret)
3229 goto out;
3230 if (write) {
3231 int oldval = user_zonelist_order;
3232 if (__parse_numa_zonelist_order((char*)table->data)) {
3233 /*
3234 * bogus value. restore saved string
3235 */
3236 strncpy((char*)table->data, saved_string,
3237 NUMA_ZONELIST_ORDER_LEN);
3238 user_zonelist_order = oldval;
3239 } else if (oldval != user_zonelist_order) {
3240 mutex_lock(&zonelists_mutex);
3241 build_all_zonelists(NULL, NULL);
3242 mutex_unlock(&zonelists_mutex);
3243 }
3244 }
3245 out:
3246 mutex_unlock(&zl_order_mutex);
3247 return ret;
3248 }
3249
3250
3251 #define MAX_NODE_LOAD (nr_online_nodes)
3252 static int node_load[MAX_NUMNODES];
3253
3254 /**
3255 * find_next_best_node - find the next node that should appear in a given node's fallback list
3256 * @node: node whose fallback list we're appending
3257 * @used_node_mask: nodemask_t of already used nodes
3258 *
3259 * We use a number of factors to determine which is the next node that should
3260 * appear on a given node's fallback list. The node should not have appeared
3261 * already in @node's fallback list, and it should be the next closest node
3262 * according to the distance array (which contains arbitrary distance values
3263 * from each node to each node in the system), and should also prefer nodes
3264 * with no CPUs, since presumably they'll have very little allocation pressure
3265 * on them otherwise.
3266 * It returns -1 if no node is found.
3267 */
3268 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3269 {
3270 int n, val;
3271 int min_val = INT_MAX;
3272 int best_node = NUMA_NO_NODE;
3273 const struct cpumask *tmp = cpumask_of_node(0);
3274
3275 /* Use the local node if we haven't already */
3276 if (!node_isset(node, *used_node_mask)) {
3277 node_set(node, *used_node_mask);
3278 return node;
3279 }
3280
3281 for_each_node_state(n, N_MEMORY) {
3282
3283 /* Don't want a node to appear more than once */
3284 if (node_isset(n, *used_node_mask))
3285 continue;
3286
3287 /* Use the distance array to find the distance */
3288 val = node_distance(node, n);
3289
3290 /* Penalize nodes under us ("prefer the next node") */
3291 val += (n < node);
3292
3293 /* Give preference to headless and unused nodes */
3294 tmp = cpumask_of_node(n);
3295 if (!cpumask_empty(tmp))
3296 val += PENALTY_FOR_NODE_WITH_CPUS;
3297
3298 /* Slight preference for less loaded node */
3299 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3300 val += node_load[n];
3301
3302 if (val < min_val) {
3303 min_val = val;
3304 best_node = n;
3305 }
3306 }
3307
3308 if (best_node >= 0)
3309 node_set(best_node, *used_node_mask);
3310
3311 return best_node;
3312 }
3313
3314
3315 /*
3316 * Build zonelists ordered by node and zones within node.
3317 * This results in maximum locality--normal zone overflows into local
3318 * DMA zone, if any--but risks exhausting DMA zone.
3319 */
3320 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3321 {
3322 int j;
3323 struct zonelist *zonelist;
3324
3325 zonelist = &pgdat->node_zonelists[0];
3326 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3327 ;
3328 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3329 MAX_NR_ZONES - 1);
3330 zonelist->_zonerefs[j].zone = NULL;
3331 zonelist->_zonerefs[j].zone_idx = 0;
3332 }
3333
3334 /*
3335 * Build gfp_thisnode zonelists
3336 */
3337 static void build_thisnode_zonelists(pg_data_t *pgdat)
3338 {
3339 int j;
3340 struct zonelist *zonelist;
3341
3342 zonelist = &pgdat->node_zonelists[1];
3343 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3344 zonelist->_zonerefs[j].zone = NULL;
3345 zonelist->_zonerefs[j].zone_idx = 0;
3346 }
3347
3348 /*
3349 * Build zonelists ordered by zone and nodes within zones.
3350 * This results in conserving DMA zone[s] until all Normal memory is
3351 * exhausted, but results in overflowing to remote node while memory
3352 * may still exist in local DMA zone.
3353 */
3354 static int node_order[MAX_NUMNODES];
3355
3356 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3357 {
3358 int pos, j, node;
3359 int zone_type; /* needs to be signed */
3360 struct zone *z;
3361 struct zonelist *zonelist;
3362
3363 zonelist = &pgdat->node_zonelists[0];
3364 pos = 0;
3365 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3366 for (j = 0; j < nr_nodes; j++) {
3367 node = node_order[j];
3368 z = &NODE_DATA(node)->node_zones[zone_type];
3369 if (populated_zone(z)) {
3370 zoneref_set_zone(z,
3371 &zonelist->_zonerefs[pos++]);
3372 check_highest_zone(zone_type);
3373 }
3374 }
3375 }
3376 zonelist->_zonerefs[pos].zone = NULL;
3377 zonelist->_zonerefs[pos].zone_idx = 0;
3378 }
3379
3380 static int default_zonelist_order(void)
3381 {
3382 int nid, zone_type;
3383 unsigned long low_kmem_size,total_size;
3384 struct zone *z;
3385 int average_size;
3386 /*
3387 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3388 * If they are really small and used heavily, the system can fall
3389 * into OOM very easily.
3390 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3391 */
3392 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3393 low_kmem_size = 0;
3394 total_size = 0;
3395 for_each_online_node(nid) {
3396 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3397 z = &NODE_DATA(nid)->node_zones[zone_type];
3398 if (populated_zone(z)) {
3399 if (zone_type < ZONE_NORMAL)
3400 low_kmem_size += z->present_pages;
3401 total_size += z->present_pages;
3402 } else if (zone_type == ZONE_NORMAL) {
3403 /*
3404 * If any node has only lowmem, then node order
3405 * is preferred to allow kernel allocations
3406 * locally; otherwise, they can easily infringe
3407 * on other nodes when there is an abundance of
3408 * lowmem available to allocate from.
3409 */
3410 return ZONELIST_ORDER_NODE;
3411 }
3412 }
3413 }
3414 if (!low_kmem_size || /* there are no DMA area. */
3415 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3416 return ZONELIST_ORDER_NODE;
3417 /*
3418 * look into each node's config.
3419 * If there is a node whose DMA/DMA32 memory is very big area on
3420 * local memory, NODE_ORDER may be suitable.
3421 */
3422 average_size = total_size /
3423 (nodes_weight(node_states[N_MEMORY]) + 1);
3424 for_each_online_node(nid) {
3425 low_kmem_size = 0;
3426 total_size = 0;
3427 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3428 z = &NODE_DATA(nid)->node_zones[zone_type];
3429 if (populated_zone(z)) {
3430 if (zone_type < ZONE_NORMAL)
3431 low_kmem_size += z->present_pages;
3432 total_size += z->present_pages;
3433 }
3434 }
3435 if (low_kmem_size &&
3436 total_size > average_size && /* ignore small node */
3437 low_kmem_size > total_size * 70/100)
3438 return ZONELIST_ORDER_NODE;
3439 }
3440 return ZONELIST_ORDER_ZONE;
3441 }
3442
3443 static void set_zonelist_order(void)
3444 {
3445 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3446 current_zonelist_order = default_zonelist_order();
3447 else
3448 current_zonelist_order = user_zonelist_order;
3449 }
3450
3451 static void build_zonelists(pg_data_t *pgdat)
3452 {
3453 int j, node, load;
3454 enum zone_type i;
3455 nodemask_t used_mask;
3456 int local_node, prev_node;
3457 struct zonelist *zonelist;
3458 int order = current_zonelist_order;
3459
3460 /* initialize zonelists */
3461 for (i = 0; i < MAX_ZONELISTS; i++) {
3462 zonelist = pgdat->node_zonelists + i;
3463 zonelist->_zonerefs[0].zone = NULL;
3464 zonelist->_zonerefs[0].zone_idx = 0;
3465 }
3466
3467 /* NUMA-aware ordering of nodes */
3468 local_node = pgdat->node_id;
3469 load = nr_online_nodes;
3470 prev_node = local_node;
3471 nodes_clear(used_mask);
3472
3473 memset(node_order, 0, sizeof(node_order));
3474 j = 0;
3475
3476 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3477 /*
3478 * We don't want to pressure a particular node.
3479 * So adding penalty to the first node in same
3480 * distance group to make it round-robin.
3481 */
3482 if (node_distance(local_node, node) !=
3483 node_distance(local_node, prev_node))
3484 node_load[node] = load;
3485
3486 prev_node = node;
3487 load--;
3488 if (order == ZONELIST_ORDER_NODE)
3489 build_zonelists_in_node_order(pgdat, node);
3490 else
3491 node_order[j++] = node; /* remember order */
3492 }
3493
3494 if (order == ZONELIST_ORDER_ZONE) {
3495 /* calculate node order -- i.e., DMA last! */
3496 build_zonelists_in_zone_order(pgdat, j);
3497 }
3498
3499 build_thisnode_zonelists(pgdat);
3500 }
3501
3502 /* Construct the zonelist performance cache - see further mmzone.h */
3503 static void build_zonelist_cache(pg_data_t *pgdat)
3504 {
3505 struct zonelist *zonelist;
3506 struct zonelist_cache *zlc;
3507 struct zoneref *z;
3508
3509 zonelist = &pgdat->node_zonelists[0];
3510 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3511 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3512 for (z = zonelist->_zonerefs; z->zone; z++)
3513 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3514 }
3515
3516 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3517 /*
3518 * Return node id of node used for "local" allocations.
3519 * I.e., first node id of first zone in arg node's generic zonelist.
3520 * Used for initializing percpu 'numa_mem', which is used primarily
3521 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3522 */
3523 int local_memory_node(int node)
3524 {
3525 struct zone *zone;
3526
3527 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3528 gfp_zone(GFP_KERNEL),
3529 NULL,
3530 &zone);
3531 return zone->node;
3532 }
3533 #endif
3534
3535 #else /* CONFIG_NUMA */
3536
3537 static void set_zonelist_order(void)
3538 {
3539 current_zonelist_order = ZONELIST_ORDER_ZONE;
3540 }
3541
3542 static void build_zonelists(pg_data_t *pgdat)
3543 {
3544 int node, local_node;
3545 enum zone_type j;
3546 struct zonelist *zonelist;
3547
3548 local_node = pgdat->node_id;
3549
3550 zonelist = &pgdat->node_zonelists[0];
3551 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3552
3553 /*
3554 * Now we build the zonelist so that it contains the zones
3555 * of all the other nodes.
3556 * We don't want to pressure a particular node, so when
3557 * building the zones for node N, we make sure that the
3558 * zones coming right after the local ones are those from
3559 * node N+1 (modulo N)
3560 */
3561 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3562 if (!node_online(node))
3563 continue;
3564 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3565 MAX_NR_ZONES - 1);
3566 }
3567 for (node = 0; node < local_node; node++) {
3568 if (!node_online(node))
3569 continue;
3570 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3571 MAX_NR_ZONES - 1);
3572 }
3573
3574 zonelist->_zonerefs[j].zone = NULL;
3575 zonelist->_zonerefs[j].zone_idx = 0;
3576 }
3577
3578 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3579 static void build_zonelist_cache(pg_data_t *pgdat)
3580 {
3581 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3582 }
3583
3584 #endif /* CONFIG_NUMA */
3585
3586 /*
3587 * Boot pageset table. One per cpu which is going to be used for all
3588 * zones and all nodes. The parameters will be set in such a way
3589 * that an item put on a list will immediately be handed over to
3590 * the buddy list. This is safe since pageset manipulation is done
3591 * with interrupts disabled.
3592 *
3593 * The boot_pagesets must be kept even after bootup is complete for
3594 * unused processors and/or zones. They do play a role for bootstrapping
3595 * hotplugged processors.
3596 *
3597 * zoneinfo_show() and maybe other functions do
3598 * not check if the processor is online before following the pageset pointer.
3599 * Other parts of the kernel may not check if the zone is available.
3600 */
3601 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3602 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3603 static void setup_zone_pageset(struct zone *zone);
3604
3605 /*
3606 * Global mutex to protect against size modification of zonelists
3607 * as well as to serialize pageset setup for the new populated zone.
3608 */
3609 DEFINE_MUTEX(zonelists_mutex);
3610
3611 /* return values int ....just for stop_machine() */
3612 static int __build_all_zonelists(void *data)
3613 {
3614 int nid;
3615 int cpu;
3616 pg_data_t *self = data;
3617
3618 #ifdef CONFIG_NUMA
3619 memset(node_load, 0, sizeof(node_load));
3620 #endif
3621
3622 if (self && !node_online(self->node_id)) {
3623 build_zonelists(self);
3624 build_zonelist_cache(self);
3625 }
3626
3627 for_each_online_node(nid) {
3628 pg_data_t *pgdat = NODE_DATA(nid);
3629
3630 build_zonelists(pgdat);
3631 build_zonelist_cache(pgdat);
3632 }
3633
3634 /*
3635 * Initialize the boot_pagesets that are going to be used
3636 * for bootstrapping processors. The real pagesets for
3637 * each zone will be allocated later when the per cpu
3638 * allocator is available.
3639 *
3640 * boot_pagesets are used also for bootstrapping offline
3641 * cpus if the system is already booted because the pagesets
3642 * are needed to initialize allocators on a specific cpu too.
3643 * F.e. the percpu allocator needs the page allocator which
3644 * needs the percpu allocator in order to allocate its pagesets
3645 * (a chicken-egg dilemma).
3646 */
3647 for_each_possible_cpu(cpu) {
3648 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3649
3650 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3651 /*
3652 * We now know the "local memory node" for each node--
3653 * i.e., the node of the first zone in the generic zonelist.
3654 * Set up numa_mem percpu variable for on-line cpus. During
3655 * boot, only the boot cpu should be on-line; we'll init the
3656 * secondary cpus' numa_mem as they come on-line. During
3657 * node/memory hotplug, we'll fixup all on-line cpus.
3658 */
3659 if (cpu_online(cpu))
3660 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3661 #endif
3662 }
3663
3664 return 0;
3665 }
3666
3667 /*
3668 * Called with zonelists_mutex held always
3669 * unless system_state == SYSTEM_BOOTING.
3670 */
3671 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3672 {
3673 set_zonelist_order();
3674
3675 if (system_state == SYSTEM_BOOTING) {
3676 __build_all_zonelists(NULL);
3677 mminit_verify_zonelist();
3678 cpuset_init_current_mems_allowed();
3679 } else {
3680 /* we have to stop all cpus to guarantee there is no user
3681 of zonelist */
3682 #ifdef CONFIG_MEMORY_HOTPLUG
3683 if (zone)
3684 setup_zone_pageset(zone);
3685 #endif
3686 stop_machine(__build_all_zonelists, pgdat, NULL);
3687 /* cpuset refresh routine should be here */
3688 }
3689 vm_total_pages = nr_free_pagecache_pages();
3690 /*
3691 * Disable grouping by mobility if the number of pages in the
3692 * system is too low to allow the mechanism to work. It would be
3693 * more accurate, but expensive to check per-zone. This check is
3694 * made on memory-hotadd so a system can start with mobility
3695 * disabled and enable it later
3696 */
3697 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3698 page_group_by_mobility_disabled = 1;
3699 else
3700 page_group_by_mobility_disabled = 0;
3701
3702 printk("Built %i zonelists in %s order, mobility grouping %s. "
3703 "Total pages: %ld\n",
3704 nr_online_nodes,
3705 zonelist_order_name[current_zonelist_order],
3706 page_group_by_mobility_disabled ? "off" : "on",
3707 vm_total_pages);
3708 #ifdef CONFIG_NUMA
3709 printk("Policy zone: %s\n", zone_names[policy_zone]);
3710 #endif
3711 }
3712
3713 /*
3714 * Helper functions to size the waitqueue hash table.
3715 * Essentially these want to choose hash table sizes sufficiently
3716 * large so that collisions trying to wait on pages are rare.
3717 * But in fact, the number of active page waitqueues on typical
3718 * systems is ridiculously low, less than 200. So this is even
3719 * conservative, even though it seems large.
3720 *
3721 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3722 * waitqueues, i.e. the size of the waitq table given the number of pages.
3723 */
3724 #define PAGES_PER_WAITQUEUE 256
3725
3726 #ifndef CONFIG_MEMORY_HOTPLUG
3727 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3728 {
3729 unsigned long size = 1;
3730
3731 pages /= PAGES_PER_WAITQUEUE;
3732
3733 while (size < pages)
3734 size <<= 1;
3735
3736 /*
3737 * Once we have dozens or even hundreds of threads sleeping
3738 * on IO we've got bigger problems than wait queue collision.
3739 * Limit the size of the wait table to a reasonable size.
3740 */
3741 size = min(size, 4096UL);
3742
3743 return max(size, 4UL);
3744 }
3745 #else
3746 /*
3747 * A zone's size might be changed by hot-add, so it is not possible to determine
3748 * a suitable size for its wait_table. So we use the maximum size now.
3749 *
3750 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3751 *
3752 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3753 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3754 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3755 *
3756 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3757 * or more by the traditional way. (See above). It equals:
3758 *
3759 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3760 * ia64(16K page size) : = ( 8G + 4M)byte.
3761 * powerpc (64K page size) : = (32G +16M)byte.
3762 */
3763 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3764 {
3765 return 4096UL;
3766 }
3767 #endif
3768
3769 /*
3770 * This is an integer logarithm so that shifts can be used later
3771 * to extract the more random high bits from the multiplicative
3772 * hash function before the remainder is taken.
3773 */
3774 static inline unsigned long wait_table_bits(unsigned long size)
3775 {
3776 return ffz(~size);
3777 }
3778
3779 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3780
3781 /*
3782 * Check if a pageblock contains reserved pages
3783 */
3784 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3785 {
3786 unsigned long pfn;
3787
3788 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3789 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3790 return 1;
3791 }
3792 return 0;
3793 }
3794
3795 /*
3796 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3797 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3798 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3799 * higher will lead to a bigger reserve which will get freed as contiguous
3800 * blocks as reclaim kicks in
3801 */
3802 static void setup_zone_migrate_reserve(struct zone *zone)
3803 {
3804 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3805 struct page *page;
3806 unsigned long block_migratetype;
3807 int reserve;
3808
3809 /*
3810 * Get the start pfn, end pfn and the number of blocks to reserve
3811 * We have to be careful to be aligned to pageblock_nr_pages to
3812 * make sure that we always check pfn_valid for the first page in
3813 * the block.
3814 */
3815 start_pfn = zone->zone_start_pfn;
3816 end_pfn = zone_end_pfn(zone);
3817 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3818 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3819 pageblock_order;
3820
3821 /*
3822 * Reserve blocks are generally in place to help high-order atomic
3823 * allocations that are short-lived. A min_free_kbytes value that
3824 * would result in more than 2 reserve blocks for atomic allocations
3825 * is assumed to be in place to help anti-fragmentation for the
3826 * future allocation of hugepages at runtime.
3827 */
3828 reserve = min(2, reserve);
3829
3830 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3831 if (!pfn_valid(pfn))
3832 continue;
3833 page = pfn_to_page(pfn);
3834
3835 /* Watch out for overlapping nodes */
3836 if (page_to_nid(page) != zone_to_nid(zone))
3837 continue;
3838
3839 block_migratetype = get_pageblock_migratetype(page);
3840
3841 /* Only test what is necessary when the reserves are not met */
3842 if (reserve > 0) {
3843 /*
3844 * Blocks with reserved pages will never free, skip
3845 * them.
3846 */
3847 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3848 if (pageblock_is_reserved(pfn, block_end_pfn))
3849 continue;
3850
3851 /* If this block is reserved, account for it */
3852 if (block_migratetype == MIGRATE_RESERVE) {
3853 reserve--;
3854 continue;
3855 }
3856
3857 /* Suitable for reserving if this block is movable */
3858 if (block_migratetype == MIGRATE_MOVABLE) {
3859 set_pageblock_migratetype(page,
3860 MIGRATE_RESERVE);
3861 move_freepages_block(zone, page,
3862 MIGRATE_RESERVE);
3863 reserve--;
3864 continue;
3865 }
3866 }
3867
3868 /*
3869 * If the reserve is met and this is a previous reserved block,
3870 * take it back
3871 */
3872 if (block_migratetype == MIGRATE_RESERVE) {
3873 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3874 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3875 }
3876 }
3877 }
3878
3879 /*
3880 * Initially all pages are reserved - free ones are freed
3881 * up by free_all_bootmem() once the early boot process is
3882 * done. Non-atomic initialization, single-pass.
3883 */
3884 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3885 unsigned long start_pfn, enum memmap_context context)
3886 {
3887 struct page *page;
3888 unsigned long end_pfn = start_pfn + size;
3889 unsigned long pfn;
3890 struct zone *z;
3891
3892 if (highest_memmap_pfn < end_pfn - 1)
3893 highest_memmap_pfn = end_pfn - 1;
3894
3895 z = &NODE_DATA(nid)->node_zones[zone];
3896 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3897 /*
3898 * There can be holes in boot-time mem_map[]s
3899 * handed to this function. They do not
3900 * exist on hotplugged memory.
3901 */
3902 if (context == MEMMAP_EARLY) {
3903 if (!early_pfn_valid(pfn))
3904 continue;
3905 if (!early_pfn_in_nid(pfn, nid))
3906 continue;
3907 }
3908 page = pfn_to_page(pfn);
3909 set_page_links(page, zone, nid, pfn);
3910 mminit_verify_page_links(page, zone, nid, pfn);
3911 init_page_count(page);
3912 page_mapcount_reset(page);
3913 page_nid_reset_last(page);
3914 SetPageReserved(page);
3915 /*
3916 * Mark the block movable so that blocks are reserved for
3917 * movable at startup. This will force kernel allocations
3918 * to reserve their blocks rather than leaking throughout
3919 * the address space during boot when many long-lived
3920 * kernel allocations are made. Later some blocks near
3921 * the start are marked MIGRATE_RESERVE by
3922 * setup_zone_migrate_reserve()
3923 *
3924 * bitmap is created for zone's valid pfn range. but memmap
3925 * can be created for invalid pages (for alignment)
3926 * check here not to call set_pageblock_migratetype() against
3927 * pfn out of zone.
3928 */
3929 if ((z->zone_start_pfn <= pfn)
3930 && (pfn < zone_end_pfn(z))
3931 && !(pfn & (pageblock_nr_pages - 1)))
3932 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3933
3934 INIT_LIST_HEAD(&page->lru);
3935 #ifdef WANT_PAGE_VIRTUAL
3936 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3937 if (!is_highmem_idx(zone))
3938 set_page_address(page, __va(pfn << PAGE_SHIFT));
3939 #endif
3940 }
3941 }
3942
3943 static void __meminit zone_init_free_lists(struct zone *zone)
3944 {
3945 int order, t;
3946 for_each_migratetype_order(order, t) {
3947 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3948 zone->free_area[order].nr_free = 0;
3949 }
3950 }
3951
3952 #ifndef __HAVE_ARCH_MEMMAP_INIT
3953 #define memmap_init(size, nid, zone, start_pfn) \
3954 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3955 #endif
3956
3957 static int __meminit zone_batchsize(struct zone *zone)
3958 {
3959 #ifdef CONFIG_MMU
3960 int batch;
3961
3962 /*
3963 * The per-cpu-pages pools are set to around 1000th of the
3964 * size of the zone. But no more than 1/2 of a meg.
3965 *
3966 * OK, so we don't know how big the cache is. So guess.
3967 */
3968 batch = zone->managed_pages / 1024;
3969 if (batch * PAGE_SIZE > 512 * 1024)
3970 batch = (512 * 1024) / PAGE_SIZE;
3971 batch /= 4; /* We effectively *= 4 below */
3972 if (batch < 1)
3973 batch = 1;
3974
3975 /*
3976 * Clamp the batch to a 2^n - 1 value. Having a power
3977 * of 2 value was found to be more likely to have
3978 * suboptimal cache aliasing properties in some cases.
3979 *
3980 * For example if 2 tasks are alternately allocating
3981 * batches of pages, one task can end up with a lot
3982 * of pages of one half of the possible page colors
3983 * and the other with pages of the other colors.
3984 */
3985 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3986
3987 return batch;
3988
3989 #else
3990 /* The deferral and batching of frees should be suppressed under NOMMU
3991 * conditions.
3992 *
3993 * The problem is that NOMMU needs to be able to allocate large chunks
3994 * of contiguous memory as there's no hardware page translation to
3995 * assemble apparent contiguous memory from discontiguous pages.
3996 *
3997 * Queueing large contiguous runs of pages for batching, however,
3998 * causes the pages to actually be freed in smaller chunks. As there
3999 * can be a significant delay between the individual batches being
4000 * recycled, this leads to the once large chunks of space being
4001 * fragmented and becoming unavailable for high-order allocations.
4002 */
4003 return 0;
4004 #endif
4005 }
4006
4007 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4008 {
4009 struct per_cpu_pages *pcp;
4010 int migratetype;
4011
4012 memset(p, 0, sizeof(*p));
4013
4014 pcp = &p->pcp;
4015 pcp->count = 0;
4016 pcp->high = 6 * batch;
4017 pcp->batch = max(1UL, 1 * batch);
4018 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4019 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4020 }
4021
4022 /*
4023 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
4024 * to the value high for the pageset p.
4025 */
4026
4027 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
4028 unsigned long high)
4029 {
4030 struct per_cpu_pages *pcp;
4031
4032 pcp = &p->pcp;
4033 pcp->high = high;
4034 pcp->batch = max(1UL, high/4);
4035 if ((high/4) > (PAGE_SHIFT * 8))
4036 pcp->batch = PAGE_SHIFT * 8;
4037 }
4038
4039 static void __meminit setup_zone_pageset(struct zone *zone)
4040 {
4041 int cpu;
4042
4043 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4044
4045 for_each_possible_cpu(cpu) {
4046 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4047
4048 setup_pageset(pcp, zone_batchsize(zone));
4049
4050 if (percpu_pagelist_fraction)
4051 setup_pagelist_highmark(pcp,
4052 (zone->managed_pages /
4053 percpu_pagelist_fraction));
4054 }
4055 }
4056
4057 /*
4058 * Allocate per cpu pagesets and initialize them.
4059 * Before this call only boot pagesets were available.
4060 */
4061 void __init setup_per_cpu_pageset(void)
4062 {
4063 struct zone *zone;
4064
4065 for_each_populated_zone(zone)
4066 setup_zone_pageset(zone);
4067 }
4068
4069 static noinline __init_refok
4070 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4071 {
4072 int i;
4073 struct pglist_data *pgdat = zone->zone_pgdat;
4074 size_t alloc_size;
4075
4076 /*
4077 * The per-page waitqueue mechanism uses hashed waitqueues
4078 * per zone.
4079 */
4080 zone->wait_table_hash_nr_entries =
4081 wait_table_hash_nr_entries(zone_size_pages);
4082 zone->wait_table_bits =
4083 wait_table_bits(zone->wait_table_hash_nr_entries);
4084 alloc_size = zone->wait_table_hash_nr_entries
4085 * sizeof(wait_queue_head_t);
4086
4087 if (!slab_is_available()) {
4088 zone->wait_table = (wait_queue_head_t *)
4089 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4090 } else {
4091 /*
4092 * This case means that a zone whose size was 0 gets new memory
4093 * via memory hot-add.
4094 * But it may be the case that a new node was hot-added. In
4095 * this case vmalloc() will not be able to use this new node's
4096 * memory - this wait_table must be initialized to use this new
4097 * node itself as well.
4098 * To use this new node's memory, further consideration will be
4099 * necessary.
4100 */
4101 zone->wait_table = vmalloc(alloc_size);
4102 }
4103 if (!zone->wait_table)
4104 return -ENOMEM;
4105
4106 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4107 init_waitqueue_head(zone->wait_table + i);
4108
4109 return 0;
4110 }
4111
4112 static __meminit void zone_pcp_init(struct zone *zone)
4113 {
4114 /*
4115 * per cpu subsystem is not up at this point. The following code
4116 * relies on the ability of the linker to provide the
4117 * offset of a (static) per cpu variable into the per cpu area.
4118 */
4119 zone->pageset = &boot_pageset;
4120
4121 if (zone->present_pages)
4122 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4123 zone->name, zone->present_pages,
4124 zone_batchsize(zone));
4125 }
4126
4127 int __meminit init_currently_empty_zone(struct zone *zone,
4128 unsigned long zone_start_pfn,
4129 unsigned long size,
4130 enum memmap_context context)
4131 {
4132 struct pglist_data *pgdat = zone->zone_pgdat;
4133 int ret;
4134 ret = zone_wait_table_init(zone, size);
4135 if (ret)
4136 return ret;
4137 pgdat->nr_zones = zone_idx(zone) + 1;
4138
4139 zone->zone_start_pfn = zone_start_pfn;
4140
4141 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4142 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4143 pgdat->node_id,
4144 (unsigned long)zone_idx(zone),
4145 zone_start_pfn, (zone_start_pfn + size));
4146
4147 zone_init_free_lists(zone);
4148
4149 return 0;
4150 }
4151
4152 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4153 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4154 /*
4155 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4156 * Architectures may implement their own version but if add_active_range()
4157 * was used and there are no special requirements, this is a convenient
4158 * alternative
4159 */
4160 int __meminit __early_pfn_to_nid(unsigned long pfn)
4161 {
4162 unsigned long start_pfn, end_pfn;
4163 int i, nid;
4164
4165 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4166 if (start_pfn <= pfn && pfn < end_pfn)
4167 return nid;
4168 /* This is a memory hole */
4169 return -1;
4170 }
4171 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4172
4173 int __meminit early_pfn_to_nid(unsigned long pfn)
4174 {
4175 int nid;
4176
4177 nid = __early_pfn_to_nid(pfn);
4178 if (nid >= 0)
4179 return nid;
4180 /* just returns 0 */
4181 return 0;
4182 }
4183
4184 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4185 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4186 {
4187 int nid;
4188
4189 nid = __early_pfn_to_nid(pfn);
4190 if (nid >= 0 && nid != node)
4191 return false;
4192 return true;
4193 }
4194 #endif
4195
4196 /**
4197 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4198 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4199 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4200 *
4201 * If an architecture guarantees that all ranges registered with
4202 * add_active_ranges() contain no holes and may be freed, this
4203 * this function may be used instead of calling free_bootmem() manually.
4204 */
4205 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4206 {
4207 unsigned long start_pfn, end_pfn;
4208 int i, this_nid;
4209
4210 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4211 start_pfn = min(start_pfn, max_low_pfn);
4212 end_pfn = min(end_pfn, max_low_pfn);
4213
4214 if (start_pfn < end_pfn)
4215 free_bootmem_node(NODE_DATA(this_nid),
4216 PFN_PHYS(start_pfn),
4217 (end_pfn - start_pfn) << PAGE_SHIFT);
4218 }
4219 }
4220
4221 /**
4222 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4223 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4224 *
4225 * If an architecture guarantees that all ranges registered with
4226 * add_active_ranges() contain no holes and may be freed, this
4227 * function may be used instead of calling memory_present() manually.
4228 */
4229 void __init sparse_memory_present_with_active_regions(int nid)
4230 {
4231 unsigned long start_pfn, end_pfn;
4232 int i, this_nid;
4233
4234 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4235 memory_present(this_nid, start_pfn, end_pfn);
4236 }
4237
4238 /**
4239 * get_pfn_range_for_nid - Return the start and end page frames for a node
4240 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4241 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4242 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4243 *
4244 * It returns the start and end page frame of a node based on information
4245 * provided by an arch calling add_active_range(). If called for a node
4246 * with no available memory, a warning is printed and the start and end
4247 * PFNs will be 0.
4248 */
4249 void __meminit get_pfn_range_for_nid(unsigned int nid,
4250 unsigned long *start_pfn, unsigned long *end_pfn)
4251 {
4252 unsigned long this_start_pfn, this_end_pfn;
4253 int i;
4254
4255 *start_pfn = -1UL;
4256 *end_pfn = 0;
4257
4258 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4259 *start_pfn = min(*start_pfn, this_start_pfn);
4260 *end_pfn = max(*end_pfn, this_end_pfn);
4261 }
4262
4263 if (*start_pfn == -1UL)
4264 *start_pfn = 0;
4265 }
4266
4267 /*
4268 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4269 * assumption is made that zones within a node are ordered in monotonic
4270 * increasing memory addresses so that the "highest" populated zone is used
4271 */
4272 static void __init find_usable_zone_for_movable(void)
4273 {
4274 int zone_index;
4275 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4276 if (zone_index == ZONE_MOVABLE)
4277 continue;
4278
4279 if (arch_zone_highest_possible_pfn[zone_index] >
4280 arch_zone_lowest_possible_pfn[zone_index])
4281 break;
4282 }
4283
4284 VM_BUG_ON(zone_index == -1);
4285 movable_zone = zone_index;
4286 }
4287
4288 /*
4289 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4290 * because it is sized independent of architecture. Unlike the other zones,
4291 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4292 * in each node depending on the size of each node and how evenly kernelcore
4293 * is distributed. This helper function adjusts the zone ranges
4294 * provided by the architecture for a given node by using the end of the
4295 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4296 * zones within a node are in order of monotonic increases memory addresses
4297 */
4298 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4299 unsigned long zone_type,
4300 unsigned long node_start_pfn,
4301 unsigned long node_end_pfn,
4302 unsigned long *zone_start_pfn,
4303 unsigned long *zone_end_pfn)
4304 {
4305 /* Only adjust if ZONE_MOVABLE is on this node */
4306 if (zone_movable_pfn[nid]) {
4307 /* Size ZONE_MOVABLE */
4308 if (zone_type == ZONE_MOVABLE) {
4309 *zone_start_pfn = zone_movable_pfn[nid];
4310 *zone_end_pfn = min(node_end_pfn,
4311 arch_zone_highest_possible_pfn[movable_zone]);
4312
4313 /* Adjust for ZONE_MOVABLE starting within this range */
4314 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4315 *zone_end_pfn > zone_movable_pfn[nid]) {
4316 *zone_end_pfn = zone_movable_pfn[nid];
4317
4318 /* Check if this whole range is within ZONE_MOVABLE */
4319 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4320 *zone_start_pfn = *zone_end_pfn;
4321 }
4322 }
4323
4324 /*
4325 * Return the number of pages a zone spans in a node, including holes
4326 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4327 */
4328 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4329 unsigned long zone_type,
4330 unsigned long *ignored)
4331 {
4332 unsigned long node_start_pfn, node_end_pfn;
4333 unsigned long zone_start_pfn, zone_end_pfn;
4334
4335 /* Get the start and end of the node and zone */
4336 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4337 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4338 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4339 adjust_zone_range_for_zone_movable(nid, zone_type,
4340 node_start_pfn, node_end_pfn,
4341 &zone_start_pfn, &zone_end_pfn);
4342
4343 /* Check that this node has pages within the zone's required range */
4344 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4345 return 0;
4346
4347 /* Move the zone boundaries inside the node if necessary */
4348 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4349 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4350
4351 /* Return the spanned pages */
4352 return zone_end_pfn - zone_start_pfn;
4353 }
4354
4355 /*
4356 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4357 * then all holes in the requested range will be accounted for.
4358 */
4359 unsigned long __meminit __absent_pages_in_range(int nid,
4360 unsigned long range_start_pfn,
4361 unsigned long range_end_pfn)
4362 {
4363 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4364 unsigned long start_pfn, end_pfn;
4365 int i;
4366
4367 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4368 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4369 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4370 nr_absent -= end_pfn - start_pfn;
4371 }
4372 return nr_absent;
4373 }
4374
4375 /**
4376 * absent_pages_in_range - Return number of page frames in holes within a range
4377 * @start_pfn: The start PFN to start searching for holes
4378 * @end_pfn: The end PFN to stop searching for holes
4379 *
4380 * It returns the number of pages frames in memory holes within a range.
4381 */
4382 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4383 unsigned long end_pfn)
4384 {
4385 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4386 }
4387
4388 /* Return the number of page frames in holes in a zone on a node */
4389 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4390 unsigned long zone_type,
4391 unsigned long *ignored)
4392 {
4393 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4394 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4395 unsigned long node_start_pfn, node_end_pfn;
4396 unsigned long zone_start_pfn, zone_end_pfn;
4397
4398 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4399 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4400 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4401
4402 adjust_zone_range_for_zone_movable(nid, zone_type,
4403 node_start_pfn, node_end_pfn,
4404 &zone_start_pfn, &zone_end_pfn);
4405 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4406 }
4407
4408 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4409 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4410 unsigned long zone_type,
4411 unsigned long *zones_size)
4412 {
4413 return zones_size[zone_type];
4414 }
4415
4416 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4417 unsigned long zone_type,
4418 unsigned long *zholes_size)
4419 {
4420 if (!zholes_size)
4421 return 0;
4422
4423 return zholes_size[zone_type];
4424 }
4425
4426 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4427
4428 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4429 unsigned long *zones_size, unsigned long *zholes_size)
4430 {
4431 unsigned long realtotalpages, totalpages = 0;
4432 enum zone_type i;
4433
4434 for (i = 0; i < MAX_NR_ZONES; i++)
4435 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4436 zones_size);
4437 pgdat->node_spanned_pages = totalpages;
4438
4439 realtotalpages = totalpages;
4440 for (i = 0; i < MAX_NR_ZONES; i++)
4441 realtotalpages -=
4442 zone_absent_pages_in_node(pgdat->node_id, i,
4443 zholes_size);
4444 pgdat->node_present_pages = realtotalpages;
4445 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4446 realtotalpages);
4447 }
4448
4449 #ifndef CONFIG_SPARSEMEM
4450 /*
4451 * Calculate the size of the zone->blockflags rounded to an unsigned long
4452 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4453 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4454 * round what is now in bits to nearest long in bits, then return it in
4455 * bytes.
4456 */
4457 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4458 {
4459 unsigned long usemapsize;
4460
4461 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4462 usemapsize = roundup(zonesize, pageblock_nr_pages);
4463 usemapsize = usemapsize >> pageblock_order;
4464 usemapsize *= NR_PAGEBLOCK_BITS;
4465 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4466
4467 return usemapsize / 8;
4468 }
4469
4470 static void __init setup_usemap(struct pglist_data *pgdat,
4471 struct zone *zone,
4472 unsigned long zone_start_pfn,
4473 unsigned long zonesize)
4474 {
4475 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4476 zone->pageblock_flags = NULL;
4477 if (usemapsize)
4478 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4479 usemapsize);
4480 }
4481 #else
4482 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4483 unsigned long zone_start_pfn, unsigned long zonesize) {}
4484 #endif /* CONFIG_SPARSEMEM */
4485
4486 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4487
4488 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4489 void __init set_pageblock_order(void)
4490 {
4491 unsigned int order;
4492
4493 /* Check that pageblock_nr_pages has not already been setup */
4494 if (pageblock_order)
4495 return;
4496
4497 if (HPAGE_SHIFT > PAGE_SHIFT)
4498 order = HUGETLB_PAGE_ORDER;
4499 else
4500 order = MAX_ORDER - 1;
4501
4502 /*
4503 * Assume the largest contiguous order of interest is a huge page.
4504 * This value may be variable depending on boot parameters on IA64 and
4505 * powerpc.
4506 */
4507 pageblock_order = order;
4508 }
4509 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4510
4511 /*
4512 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4513 * is unused as pageblock_order is set at compile-time. See
4514 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4515 * the kernel config
4516 */
4517 void __init set_pageblock_order(void)
4518 {
4519 }
4520
4521 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4522
4523 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4524 unsigned long present_pages)
4525 {
4526 unsigned long pages = spanned_pages;
4527
4528 /*
4529 * Provide a more accurate estimation if there are holes within
4530 * the zone and SPARSEMEM is in use. If there are holes within the
4531 * zone, each populated memory region may cost us one or two extra
4532 * memmap pages due to alignment because memmap pages for each
4533 * populated regions may not naturally algined on page boundary.
4534 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4535 */
4536 if (spanned_pages > present_pages + (present_pages >> 4) &&
4537 IS_ENABLED(CONFIG_SPARSEMEM))
4538 pages = present_pages;
4539
4540 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4541 }
4542
4543 /*
4544 * Set up the zone data structures:
4545 * - mark all pages reserved
4546 * - mark all memory queues empty
4547 * - clear the memory bitmaps
4548 *
4549 * NOTE: pgdat should get zeroed by caller.
4550 */
4551 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4552 unsigned long *zones_size, unsigned long *zholes_size)
4553 {
4554 enum zone_type j;
4555 int nid = pgdat->node_id;
4556 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4557 int ret;
4558
4559 pgdat_resize_init(pgdat);
4560 #ifdef CONFIG_NUMA_BALANCING
4561 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4562 pgdat->numabalancing_migrate_nr_pages = 0;
4563 pgdat->numabalancing_migrate_next_window = jiffies;
4564 #endif
4565 init_waitqueue_head(&pgdat->kswapd_wait);
4566 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4567 pgdat_page_cgroup_init(pgdat);
4568
4569 for (j = 0; j < MAX_NR_ZONES; j++) {
4570 struct zone *zone = pgdat->node_zones + j;
4571 unsigned long size, realsize, freesize, memmap_pages;
4572
4573 size = zone_spanned_pages_in_node(nid, j, zones_size);
4574 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4575 zholes_size);
4576
4577 /*
4578 * Adjust freesize so that it accounts for how much memory
4579 * is used by this zone for memmap. This affects the watermark
4580 * and per-cpu initialisations
4581 */
4582 memmap_pages = calc_memmap_size(size, realsize);
4583 if (freesize >= memmap_pages) {
4584 freesize -= memmap_pages;
4585 if (memmap_pages)
4586 printk(KERN_DEBUG
4587 " %s zone: %lu pages used for memmap\n",
4588 zone_names[j], memmap_pages);
4589 } else
4590 printk(KERN_WARNING
4591 " %s zone: %lu pages exceeds freesize %lu\n",
4592 zone_names[j], memmap_pages, freesize);
4593
4594 /* Account for reserved pages */
4595 if (j == 0 && freesize > dma_reserve) {
4596 freesize -= dma_reserve;
4597 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4598 zone_names[0], dma_reserve);
4599 }
4600
4601 if (!is_highmem_idx(j))
4602 nr_kernel_pages += freesize;
4603 /* Charge for highmem memmap if there are enough kernel pages */
4604 else if (nr_kernel_pages > memmap_pages * 2)
4605 nr_kernel_pages -= memmap_pages;
4606 nr_all_pages += freesize;
4607
4608 zone->spanned_pages = size;
4609 zone->present_pages = realsize;
4610 /*
4611 * Set an approximate value for lowmem here, it will be adjusted
4612 * when the bootmem allocator frees pages into the buddy system.
4613 * And all highmem pages will be managed by the buddy system.
4614 */
4615 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4616 #ifdef CONFIG_NUMA
4617 zone->node = nid;
4618 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4619 / 100;
4620 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4621 #endif
4622 zone->name = zone_names[j];
4623 spin_lock_init(&zone->lock);
4624 spin_lock_init(&zone->lru_lock);
4625 zone_seqlock_init(zone);
4626 zone->zone_pgdat = pgdat;
4627
4628 zone_pcp_init(zone);
4629 lruvec_init(&zone->lruvec);
4630 if (!size)
4631 continue;
4632
4633 set_pageblock_order();
4634 setup_usemap(pgdat, zone, zone_start_pfn, size);
4635 ret = init_currently_empty_zone(zone, zone_start_pfn,
4636 size, MEMMAP_EARLY);
4637 BUG_ON(ret);
4638 memmap_init(size, nid, j, zone_start_pfn);
4639 zone_start_pfn += size;
4640 }
4641 }
4642
4643 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4644 {
4645 /* Skip empty nodes */
4646 if (!pgdat->node_spanned_pages)
4647 return;
4648
4649 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4650 /* ia64 gets its own node_mem_map, before this, without bootmem */
4651 if (!pgdat->node_mem_map) {
4652 unsigned long size, start, end;
4653 struct page *map;
4654
4655 /*
4656 * The zone's endpoints aren't required to be MAX_ORDER
4657 * aligned but the node_mem_map endpoints must be in order
4658 * for the buddy allocator to function correctly.
4659 */
4660 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4661 end = pgdat_end_pfn(pgdat);
4662 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4663 size = (end - start) * sizeof(struct page);
4664 map = alloc_remap(pgdat->node_id, size);
4665 if (!map)
4666 map = alloc_bootmem_node_nopanic(pgdat, size);
4667 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4668 }
4669 #ifndef CONFIG_NEED_MULTIPLE_NODES
4670 /*
4671 * With no DISCONTIG, the global mem_map is just set as node 0's
4672 */
4673 if (pgdat == NODE_DATA(0)) {
4674 mem_map = NODE_DATA(0)->node_mem_map;
4675 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4676 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4677 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4678 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4679 }
4680 #endif
4681 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4682 }
4683
4684 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4685 unsigned long node_start_pfn, unsigned long *zholes_size)
4686 {
4687 pg_data_t *pgdat = NODE_DATA(nid);
4688
4689 /* pg_data_t should be reset to zero when it's allocated */
4690 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4691
4692 pgdat->node_id = nid;
4693 pgdat->node_start_pfn = node_start_pfn;
4694 init_zone_allows_reclaim(nid);
4695 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4696
4697 alloc_node_mem_map(pgdat);
4698 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4699 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4700 nid, (unsigned long)pgdat,
4701 (unsigned long)pgdat->node_mem_map);
4702 #endif
4703
4704 free_area_init_core(pgdat, zones_size, zholes_size);
4705 }
4706
4707 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4708
4709 #if MAX_NUMNODES > 1
4710 /*
4711 * Figure out the number of possible node ids.
4712 */
4713 static void __init setup_nr_node_ids(void)
4714 {
4715 unsigned int node;
4716 unsigned int highest = 0;
4717
4718 for_each_node_mask(node, node_possible_map)
4719 highest = node;
4720 nr_node_ids = highest + 1;
4721 }
4722 #else
4723 static inline void setup_nr_node_ids(void)
4724 {
4725 }
4726 #endif
4727
4728 /**
4729 * node_map_pfn_alignment - determine the maximum internode alignment
4730 *
4731 * This function should be called after node map is populated and sorted.
4732 * It calculates the maximum power of two alignment which can distinguish
4733 * all the nodes.
4734 *
4735 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4736 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4737 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4738 * shifted, 1GiB is enough and this function will indicate so.
4739 *
4740 * This is used to test whether pfn -> nid mapping of the chosen memory
4741 * model has fine enough granularity to avoid incorrect mapping for the
4742 * populated node map.
4743 *
4744 * Returns the determined alignment in pfn's. 0 if there is no alignment
4745 * requirement (single node).
4746 */
4747 unsigned long __init node_map_pfn_alignment(void)
4748 {
4749 unsigned long accl_mask = 0, last_end = 0;
4750 unsigned long start, end, mask;
4751 int last_nid = -1;
4752 int i, nid;
4753
4754 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4755 if (!start || last_nid < 0 || last_nid == nid) {
4756 last_nid = nid;
4757 last_end = end;
4758 continue;
4759 }
4760
4761 /*
4762 * Start with a mask granular enough to pin-point to the
4763 * start pfn and tick off bits one-by-one until it becomes
4764 * too coarse to separate the current node from the last.
4765 */
4766 mask = ~((1 << __ffs(start)) - 1);
4767 while (mask && last_end <= (start & (mask << 1)))
4768 mask <<= 1;
4769
4770 /* accumulate all internode masks */
4771 accl_mask |= mask;
4772 }
4773
4774 /* convert mask to number of pages */
4775 return ~accl_mask + 1;
4776 }
4777
4778 /* Find the lowest pfn for a node */
4779 static unsigned long __init find_min_pfn_for_node(int nid)
4780 {
4781 unsigned long min_pfn = ULONG_MAX;
4782 unsigned long start_pfn;
4783 int i;
4784
4785 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4786 min_pfn = min(min_pfn, start_pfn);
4787
4788 if (min_pfn == ULONG_MAX) {
4789 printk(KERN_WARNING
4790 "Could not find start_pfn for node %d\n", nid);
4791 return 0;
4792 }
4793
4794 return min_pfn;
4795 }
4796
4797 /**
4798 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4799 *
4800 * It returns the minimum PFN based on information provided via
4801 * add_active_range().
4802 */
4803 unsigned long __init find_min_pfn_with_active_regions(void)
4804 {
4805 return find_min_pfn_for_node(MAX_NUMNODES);
4806 }
4807
4808 /*
4809 * early_calculate_totalpages()
4810 * Sum pages in active regions for movable zone.
4811 * Populate N_MEMORY for calculating usable_nodes.
4812 */
4813 static unsigned long __init early_calculate_totalpages(void)
4814 {
4815 unsigned long totalpages = 0;
4816 unsigned long start_pfn, end_pfn;
4817 int i, nid;
4818
4819 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4820 unsigned long pages = end_pfn - start_pfn;
4821
4822 totalpages += pages;
4823 if (pages)
4824 node_set_state(nid, N_MEMORY);
4825 }
4826 return totalpages;
4827 }
4828
4829 /*
4830 * Find the PFN the Movable zone begins in each node. Kernel memory
4831 * is spread evenly between nodes as long as the nodes have enough
4832 * memory. When they don't, some nodes will have more kernelcore than
4833 * others
4834 */
4835 static void __init find_zone_movable_pfns_for_nodes(void)
4836 {
4837 int i, nid;
4838 unsigned long usable_startpfn;
4839 unsigned long kernelcore_node, kernelcore_remaining;
4840 /* save the state before borrow the nodemask */
4841 nodemask_t saved_node_state = node_states[N_MEMORY];
4842 unsigned long totalpages = early_calculate_totalpages();
4843 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4844
4845 /*
4846 * If movablecore was specified, calculate what size of
4847 * kernelcore that corresponds so that memory usable for
4848 * any allocation type is evenly spread. If both kernelcore
4849 * and movablecore are specified, then the value of kernelcore
4850 * will be used for required_kernelcore if it's greater than
4851 * what movablecore would have allowed.
4852 */
4853 if (required_movablecore) {
4854 unsigned long corepages;
4855
4856 /*
4857 * Round-up so that ZONE_MOVABLE is at least as large as what
4858 * was requested by the user
4859 */
4860 required_movablecore =
4861 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4862 corepages = totalpages - required_movablecore;
4863
4864 required_kernelcore = max(required_kernelcore, corepages);
4865 }
4866
4867 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4868 if (!required_kernelcore)
4869 goto out;
4870
4871 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4872 find_usable_zone_for_movable();
4873 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4874
4875 restart:
4876 /* Spread kernelcore memory as evenly as possible throughout nodes */
4877 kernelcore_node = required_kernelcore / usable_nodes;
4878 for_each_node_state(nid, N_MEMORY) {
4879 unsigned long start_pfn, end_pfn;
4880
4881 /*
4882 * Recalculate kernelcore_node if the division per node
4883 * now exceeds what is necessary to satisfy the requested
4884 * amount of memory for the kernel
4885 */
4886 if (required_kernelcore < kernelcore_node)
4887 kernelcore_node = required_kernelcore / usable_nodes;
4888
4889 /*
4890 * As the map is walked, we track how much memory is usable
4891 * by the kernel using kernelcore_remaining. When it is
4892 * 0, the rest of the node is usable by ZONE_MOVABLE
4893 */
4894 kernelcore_remaining = kernelcore_node;
4895
4896 /* Go through each range of PFNs within this node */
4897 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4898 unsigned long size_pages;
4899
4900 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4901 if (start_pfn >= end_pfn)
4902 continue;
4903
4904 /* Account for what is only usable for kernelcore */
4905 if (start_pfn < usable_startpfn) {
4906 unsigned long kernel_pages;
4907 kernel_pages = min(end_pfn, usable_startpfn)
4908 - start_pfn;
4909
4910 kernelcore_remaining -= min(kernel_pages,
4911 kernelcore_remaining);
4912 required_kernelcore -= min(kernel_pages,
4913 required_kernelcore);
4914
4915 /* Continue if range is now fully accounted */
4916 if (end_pfn <= usable_startpfn) {
4917
4918 /*
4919 * Push zone_movable_pfn to the end so
4920 * that if we have to rebalance
4921 * kernelcore across nodes, we will
4922 * not double account here
4923 */
4924 zone_movable_pfn[nid] = end_pfn;
4925 continue;
4926 }
4927 start_pfn = usable_startpfn;
4928 }
4929
4930 /*
4931 * The usable PFN range for ZONE_MOVABLE is from
4932 * start_pfn->end_pfn. Calculate size_pages as the
4933 * number of pages used as kernelcore
4934 */
4935 size_pages = end_pfn - start_pfn;
4936 if (size_pages > kernelcore_remaining)
4937 size_pages = kernelcore_remaining;
4938 zone_movable_pfn[nid] = start_pfn + size_pages;
4939
4940 /*
4941 * Some kernelcore has been met, update counts and
4942 * break if the kernelcore for this node has been
4943 * satisified
4944 */
4945 required_kernelcore -= min(required_kernelcore,
4946 size_pages);
4947 kernelcore_remaining -= size_pages;
4948 if (!kernelcore_remaining)
4949 break;
4950 }
4951 }
4952
4953 /*
4954 * If there is still required_kernelcore, we do another pass with one
4955 * less node in the count. This will push zone_movable_pfn[nid] further
4956 * along on the nodes that still have memory until kernelcore is
4957 * satisified
4958 */
4959 usable_nodes--;
4960 if (usable_nodes && required_kernelcore > usable_nodes)
4961 goto restart;
4962
4963 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4964 for (nid = 0; nid < MAX_NUMNODES; nid++)
4965 zone_movable_pfn[nid] =
4966 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4967
4968 out:
4969 /* restore the node_state */
4970 node_states[N_MEMORY] = saved_node_state;
4971 }
4972
4973 /* Any regular or high memory on that node ? */
4974 static void check_for_memory(pg_data_t *pgdat, int nid)
4975 {
4976 enum zone_type zone_type;
4977
4978 if (N_MEMORY == N_NORMAL_MEMORY)
4979 return;
4980
4981 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
4982 struct zone *zone = &pgdat->node_zones[zone_type];
4983 if (zone->present_pages) {
4984 node_set_state(nid, N_HIGH_MEMORY);
4985 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
4986 zone_type <= ZONE_NORMAL)
4987 node_set_state(nid, N_NORMAL_MEMORY);
4988 break;
4989 }
4990 }
4991 }
4992
4993 /**
4994 * free_area_init_nodes - Initialise all pg_data_t and zone data
4995 * @max_zone_pfn: an array of max PFNs for each zone
4996 *
4997 * This will call free_area_init_node() for each active node in the system.
4998 * Using the page ranges provided by add_active_range(), the size of each
4999 * zone in each node and their holes is calculated. If the maximum PFN
5000 * between two adjacent zones match, it is assumed that the zone is empty.
5001 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5002 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5003 * starts where the previous one ended. For example, ZONE_DMA32 starts
5004 * at arch_max_dma_pfn.
5005 */
5006 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5007 {
5008 unsigned long start_pfn, end_pfn;
5009 int i, nid;
5010
5011 /* Record where the zone boundaries are */
5012 memset(arch_zone_lowest_possible_pfn, 0,
5013 sizeof(arch_zone_lowest_possible_pfn));
5014 memset(arch_zone_highest_possible_pfn, 0,
5015 sizeof(arch_zone_highest_possible_pfn));
5016 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5017 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5018 for (i = 1; i < MAX_NR_ZONES; i++) {
5019 if (i == ZONE_MOVABLE)
5020 continue;
5021 arch_zone_lowest_possible_pfn[i] =
5022 arch_zone_highest_possible_pfn[i-1];
5023 arch_zone_highest_possible_pfn[i] =
5024 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5025 }
5026 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5027 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5028
5029 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5030 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5031 find_zone_movable_pfns_for_nodes();
5032
5033 /* Print out the zone ranges */
5034 printk("Zone ranges:\n");
5035 for (i = 0; i < MAX_NR_ZONES; i++) {
5036 if (i == ZONE_MOVABLE)
5037 continue;
5038 printk(KERN_CONT " %-8s ", zone_names[i]);
5039 if (arch_zone_lowest_possible_pfn[i] ==
5040 arch_zone_highest_possible_pfn[i])
5041 printk(KERN_CONT "empty\n");
5042 else
5043 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5044 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5045 (arch_zone_highest_possible_pfn[i]
5046 << PAGE_SHIFT) - 1);
5047 }
5048
5049 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5050 printk("Movable zone start for each node\n");
5051 for (i = 0; i < MAX_NUMNODES; i++) {
5052 if (zone_movable_pfn[i])
5053 printk(" Node %d: %#010lx\n", i,
5054 zone_movable_pfn[i] << PAGE_SHIFT);
5055 }
5056
5057 /* Print out the early node map */
5058 printk("Early memory node ranges\n");
5059 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5060 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5061 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5062
5063 /* Initialise every node */
5064 mminit_verify_pageflags_layout();
5065 setup_nr_node_ids();
5066 for_each_online_node(nid) {
5067 pg_data_t *pgdat = NODE_DATA(nid);
5068 free_area_init_node(nid, NULL,
5069 find_min_pfn_for_node(nid), NULL);
5070
5071 /* Any memory on that node */
5072 if (pgdat->node_present_pages)
5073 node_set_state(nid, N_MEMORY);
5074 check_for_memory(pgdat, nid);
5075 }
5076 }
5077
5078 static int __init cmdline_parse_core(char *p, unsigned long *core)
5079 {
5080 unsigned long long coremem;
5081 if (!p)
5082 return -EINVAL;
5083
5084 coremem = memparse(p, &p);
5085 *core = coremem >> PAGE_SHIFT;
5086
5087 /* Paranoid check that UL is enough for the coremem value */
5088 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5089
5090 return 0;
5091 }
5092
5093 /*
5094 * kernelcore=size sets the amount of memory for use for allocations that
5095 * cannot be reclaimed or migrated.
5096 */
5097 static int __init cmdline_parse_kernelcore(char *p)
5098 {
5099 return cmdline_parse_core(p, &required_kernelcore);
5100 }
5101
5102 /*
5103 * movablecore=size sets the amount of memory for use for allocations that
5104 * can be reclaimed or migrated.
5105 */
5106 static int __init cmdline_parse_movablecore(char *p)
5107 {
5108 return cmdline_parse_core(p, &required_movablecore);
5109 }
5110
5111 early_param("kernelcore", cmdline_parse_kernelcore);
5112 early_param("movablecore", cmdline_parse_movablecore);
5113
5114 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5115
5116 /**
5117 * set_dma_reserve - set the specified number of pages reserved in the first zone
5118 * @new_dma_reserve: The number of pages to mark reserved
5119 *
5120 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5121 * In the DMA zone, a significant percentage may be consumed by kernel image
5122 * and other unfreeable allocations which can skew the watermarks badly. This
5123 * function may optionally be used to account for unfreeable pages in the
5124 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5125 * smaller per-cpu batchsize.
5126 */
5127 void __init set_dma_reserve(unsigned long new_dma_reserve)
5128 {
5129 dma_reserve = new_dma_reserve;
5130 }
5131
5132 void __init free_area_init(unsigned long *zones_size)
5133 {
5134 free_area_init_node(0, zones_size,
5135 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5136 }
5137
5138 static int page_alloc_cpu_notify(struct notifier_block *self,
5139 unsigned long action, void *hcpu)
5140 {
5141 int cpu = (unsigned long)hcpu;
5142
5143 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5144 lru_add_drain_cpu(cpu);
5145 drain_pages(cpu);
5146
5147 /*
5148 * Spill the event counters of the dead processor
5149 * into the current processors event counters.
5150 * This artificially elevates the count of the current
5151 * processor.
5152 */
5153 vm_events_fold_cpu(cpu);
5154
5155 /*
5156 * Zero the differential counters of the dead processor
5157 * so that the vm statistics are consistent.
5158 *
5159 * This is only okay since the processor is dead and cannot
5160 * race with what we are doing.
5161 */
5162 refresh_cpu_vm_stats(cpu);
5163 }
5164 return NOTIFY_OK;
5165 }
5166
5167 void __init page_alloc_init(void)
5168 {
5169 hotcpu_notifier(page_alloc_cpu_notify, 0);
5170 }
5171
5172 /*
5173 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5174 * or min_free_kbytes changes.
5175 */
5176 static void calculate_totalreserve_pages(void)
5177 {
5178 struct pglist_data *pgdat;
5179 unsigned long reserve_pages = 0;
5180 enum zone_type i, j;
5181
5182 for_each_online_pgdat(pgdat) {
5183 for (i = 0; i < MAX_NR_ZONES; i++) {
5184 struct zone *zone = pgdat->node_zones + i;
5185 unsigned long max = 0;
5186
5187 /* Find valid and maximum lowmem_reserve in the zone */
5188 for (j = i; j < MAX_NR_ZONES; j++) {
5189 if (zone->lowmem_reserve[j] > max)
5190 max = zone->lowmem_reserve[j];
5191 }
5192
5193 /* we treat the high watermark as reserved pages. */
5194 max += high_wmark_pages(zone);
5195
5196 if (max > zone->managed_pages)
5197 max = zone->managed_pages;
5198 reserve_pages += max;
5199 /*
5200 * Lowmem reserves are not available to
5201 * GFP_HIGHUSER page cache allocations and
5202 * kswapd tries to balance zones to their high
5203 * watermark. As a result, neither should be
5204 * regarded as dirtyable memory, to prevent a
5205 * situation where reclaim has to clean pages
5206 * in order to balance the zones.
5207 */
5208 zone->dirty_balance_reserve = max;
5209 }
5210 }
5211 dirty_balance_reserve = reserve_pages;
5212 totalreserve_pages = reserve_pages;
5213 }
5214
5215 /*
5216 * setup_per_zone_lowmem_reserve - called whenever
5217 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5218 * has a correct pages reserved value, so an adequate number of
5219 * pages are left in the zone after a successful __alloc_pages().
5220 */
5221 static void setup_per_zone_lowmem_reserve(void)
5222 {
5223 struct pglist_data *pgdat;
5224 enum zone_type j, idx;
5225
5226 for_each_online_pgdat(pgdat) {
5227 for (j = 0; j < MAX_NR_ZONES; j++) {
5228 struct zone *zone = pgdat->node_zones + j;
5229 unsigned long managed_pages = zone->managed_pages;
5230
5231 zone->lowmem_reserve[j] = 0;
5232
5233 idx = j;
5234 while (idx) {
5235 struct zone *lower_zone;
5236
5237 idx--;
5238
5239 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5240 sysctl_lowmem_reserve_ratio[idx] = 1;
5241
5242 lower_zone = pgdat->node_zones + idx;
5243 lower_zone->lowmem_reserve[j] = managed_pages /
5244 sysctl_lowmem_reserve_ratio[idx];
5245 managed_pages += lower_zone->managed_pages;
5246 }
5247 }
5248 }
5249
5250 /* update totalreserve_pages */
5251 calculate_totalreserve_pages();
5252 }
5253
5254 static void __setup_per_zone_wmarks(void)
5255 {
5256 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5257 unsigned long lowmem_pages = 0;
5258 struct zone *zone;
5259 unsigned long flags;
5260
5261 /* Calculate total number of !ZONE_HIGHMEM pages */
5262 for_each_zone(zone) {
5263 if (!is_highmem(zone))
5264 lowmem_pages += zone->managed_pages;
5265 }
5266
5267 for_each_zone(zone) {
5268 u64 tmp;
5269
5270 spin_lock_irqsave(&zone->lock, flags);
5271 tmp = (u64)pages_min * zone->managed_pages;
5272 do_div(tmp, lowmem_pages);
5273 if (is_highmem(zone)) {
5274 /*
5275 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5276 * need highmem pages, so cap pages_min to a small
5277 * value here.
5278 *
5279 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5280 * deltas controls asynch page reclaim, and so should
5281 * not be capped for highmem.
5282 */
5283 unsigned long min_pages;
5284
5285 min_pages = zone->managed_pages / 1024;
5286 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5287 zone->watermark[WMARK_MIN] = min_pages;
5288 } else {
5289 /*
5290 * If it's a lowmem zone, reserve a number of pages
5291 * proportionate to the zone's size.
5292 */
5293 zone->watermark[WMARK_MIN] = tmp;
5294 }
5295
5296 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5297 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5298
5299 setup_zone_migrate_reserve(zone);
5300 spin_unlock_irqrestore(&zone->lock, flags);
5301 }
5302
5303 /* update totalreserve_pages */
5304 calculate_totalreserve_pages();
5305 }
5306
5307 /**
5308 * setup_per_zone_wmarks - called when min_free_kbytes changes
5309 * or when memory is hot-{added|removed}
5310 *
5311 * Ensures that the watermark[min,low,high] values for each zone are set
5312 * correctly with respect to min_free_kbytes.
5313 */
5314 void setup_per_zone_wmarks(void)
5315 {
5316 mutex_lock(&zonelists_mutex);
5317 __setup_per_zone_wmarks();
5318 mutex_unlock(&zonelists_mutex);
5319 }
5320
5321 /*
5322 * The inactive anon list should be small enough that the VM never has to
5323 * do too much work, but large enough that each inactive page has a chance
5324 * to be referenced again before it is swapped out.
5325 *
5326 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5327 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5328 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5329 * the anonymous pages are kept on the inactive list.
5330 *
5331 * total target max
5332 * memory ratio inactive anon
5333 * -------------------------------------
5334 * 10MB 1 5MB
5335 * 100MB 1 50MB
5336 * 1GB 3 250MB
5337 * 10GB 10 0.9GB
5338 * 100GB 31 3GB
5339 * 1TB 101 10GB
5340 * 10TB 320 32GB
5341 */
5342 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5343 {
5344 unsigned int gb, ratio;
5345
5346 /* Zone size in gigabytes */
5347 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5348 if (gb)
5349 ratio = int_sqrt(10 * gb);
5350 else
5351 ratio = 1;
5352
5353 zone->inactive_ratio = ratio;
5354 }
5355
5356 static void __meminit setup_per_zone_inactive_ratio(void)
5357 {
5358 struct zone *zone;
5359
5360 for_each_zone(zone)
5361 calculate_zone_inactive_ratio(zone);
5362 }
5363
5364 /*
5365 * Initialise min_free_kbytes.
5366 *
5367 * For small machines we want it small (128k min). For large machines
5368 * we want it large (64MB max). But it is not linear, because network
5369 * bandwidth does not increase linearly with machine size. We use
5370 *
5371 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5372 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5373 *
5374 * which yields
5375 *
5376 * 16MB: 512k
5377 * 32MB: 724k
5378 * 64MB: 1024k
5379 * 128MB: 1448k
5380 * 256MB: 2048k
5381 * 512MB: 2896k
5382 * 1024MB: 4096k
5383 * 2048MB: 5792k
5384 * 4096MB: 8192k
5385 * 8192MB: 11584k
5386 * 16384MB: 16384k
5387 */
5388 int __meminit init_per_zone_wmark_min(void)
5389 {
5390 unsigned long lowmem_kbytes;
5391
5392 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5393
5394 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5395 if (min_free_kbytes < 128)
5396 min_free_kbytes = 128;
5397 if (min_free_kbytes > 65536)
5398 min_free_kbytes = 65536;
5399 setup_per_zone_wmarks();
5400 refresh_zone_stat_thresholds();
5401 setup_per_zone_lowmem_reserve();
5402 setup_per_zone_inactive_ratio();
5403 return 0;
5404 }
5405 module_init(init_per_zone_wmark_min)
5406
5407 /*
5408 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5409 * that we can call two helper functions whenever min_free_kbytes
5410 * changes.
5411 */
5412 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5413 void __user *buffer, size_t *length, loff_t *ppos)
5414 {
5415 proc_dointvec(table, write, buffer, length, ppos);
5416 if (write)
5417 setup_per_zone_wmarks();
5418 return 0;
5419 }
5420
5421 #ifdef CONFIG_NUMA
5422 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5423 void __user *buffer, size_t *length, loff_t *ppos)
5424 {
5425 struct zone *zone;
5426 int rc;
5427
5428 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5429 if (rc)
5430 return rc;
5431
5432 for_each_zone(zone)
5433 zone->min_unmapped_pages = (zone->managed_pages *
5434 sysctl_min_unmapped_ratio) / 100;
5435 return 0;
5436 }
5437
5438 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5439 void __user *buffer, size_t *length, loff_t *ppos)
5440 {
5441 struct zone *zone;
5442 int rc;
5443
5444 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5445 if (rc)
5446 return rc;
5447
5448 for_each_zone(zone)
5449 zone->min_slab_pages = (zone->managed_pages *
5450 sysctl_min_slab_ratio) / 100;
5451 return 0;
5452 }
5453 #endif
5454
5455 /*
5456 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5457 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5458 * whenever sysctl_lowmem_reserve_ratio changes.
5459 *
5460 * The reserve ratio obviously has absolutely no relation with the
5461 * minimum watermarks. The lowmem reserve ratio can only make sense
5462 * if in function of the boot time zone sizes.
5463 */
5464 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5465 void __user *buffer, size_t *length, loff_t *ppos)
5466 {
5467 proc_dointvec_minmax(table, write, buffer, length, ppos);
5468 setup_per_zone_lowmem_reserve();
5469 return 0;
5470 }
5471
5472 /*
5473 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5474 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5475 * can have before it gets flushed back to buddy allocator.
5476 */
5477
5478 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5479 void __user *buffer, size_t *length, loff_t *ppos)
5480 {
5481 struct zone *zone;
5482 unsigned int cpu;
5483 int ret;
5484
5485 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5486 if (!write || (ret < 0))
5487 return ret;
5488 for_each_populated_zone(zone) {
5489 for_each_possible_cpu(cpu) {
5490 unsigned long high;
5491 high = zone->managed_pages / percpu_pagelist_fraction;
5492 setup_pagelist_highmark(
5493 per_cpu_ptr(zone->pageset, cpu), high);
5494 }
5495 }
5496 return 0;
5497 }
5498
5499 int hashdist = HASHDIST_DEFAULT;
5500
5501 #ifdef CONFIG_NUMA
5502 static int __init set_hashdist(char *str)
5503 {
5504 if (!str)
5505 return 0;
5506 hashdist = simple_strtoul(str, &str, 0);
5507 return 1;
5508 }
5509 __setup("hashdist=", set_hashdist);
5510 #endif
5511
5512 /*
5513 * allocate a large system hash table from bootmem
5514 * - it is assumed that the hash table must contain an exact power-of-2
5515 * quantity of entries
5516 * - limit is the number of hash buckets, not the total allocation size
5517 */
5518 void *__init alloc_large_system_hash(const char *tablename,
5519 unsigned long bucketsize,
5520 unsigned long numentries,
5521 int scale,
5522 int flags,
5523 unsigned int *_hash_shift,
5524 unsigned int *_hash_mask,
5525 unsigned long low_limit,
5526 unsigned long high_limit)
5527 {
5528 unsigned long long max = high_limit;
5529 unsigned long log2qty, size;
5530 void *table = NULL;
5531
5532 /* allow the kernel cmdline to have a say */
5533 if (!numentries) {
5534 /* round applicable memory size up to nearest megabyte */
5535 numentries = nr_kernel_pages;
5536 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5537 numentries >>= 20 - PAGE_SHIFT;
5538 numentries <<= 20 - PAGE_SHIFT;
5539
5540 /* limit to 1 bucket per 2^scale bytes of low memory */
5541 if (scale > PAGE_SHIFT)
5542 numentries >>= (scale - PAGE_SHIFT);
5543 else
5544 numentries <<= (PAGE_SHIFT - scale);
5545
5546 /* Make sure we've got at least a 0-order allocation.. */
5547 if (unlikely(flags & HASH_SMALL)) {
5548 /* Makes no sense without HASH_EARLY */
5549 WARN_ON(!(flags & HASH_EARLY));
5550 if (!(numentries >> *_hash_shift)) {
5551 numentries = 1UL << *_hash_shift;
5552 BUG_ON(!numentries);
5553 }
5554 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5555 numentries = PAGE_SIZE / bucketsize;
5556 }
5557 numentries = roundup_pow_of_two(numentries);
5558
5559 /* limit allocation size to 1/16 total memory by default */
5560 if (max == 0) {
5561 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5562 do_div(max, bucketsize);
5563 }
5564 max = min(max, 0x80000000ULL);
5565
5566 if (numentries < low_limit)
5567 numentries = low_limit;
5568 if (numentries > max)
5569 numentries = max;
5570
5571 log2qty = ilog2(numentries);
5572
5573 do {
5574 size = bucketsize << log2qty;
5575 if (flags & HASH_EARLY)
5576 table = alloc_bootmem_nopanic(size);
5577 else if (hashdist)
5578 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5579 else {
5580 /*
5581 * If bucketsize is not a power-of-two, we may free
5582 * some pages at the end of hash table which
5583 * alloc_pages_exact() automatically does
5584 */
5585 if (get_order(size) < MAX_ORDER) {
5586 table = alloc_pages_exact(size, GFP_ATOMIC);
5587 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5588 }
5589 }
5590 } while (!table && size > PAGE_SIZE && --log2qty);
5591
5592 if (!table)
5593 panic("Failed to allocate %s hash table\n", tablename);
5594
5595 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5596 tablename,
5597 (1UL << log2qty),
5598 ilog2(size) - PAGE_SHIFT,
5599 size);
5600
5601 if (_hash_shift)
5602 *_hash_shift = log2qty;
5603 if (_hash_mask)
5604 *_hash_mask = (1 << log2qty) - 1;
5605
5606 return table;
5607 }
5608
5609 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5610 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5611 unsigned long pfn)
5612 {
5613 #ifdef CONFIG_SPARSEMEM
5614 return __pfn_to_section(pfn)->pageblock_flags;
5615 #else
5616 return zone->pageblock_flags;
5617 #endif /* CONFIG_SPARSEMEM */
5618 }
5619
5620 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5621 {
5622 #ifdef CONFIG_SPARSEMEM
5623 pfn &= (PAGES_PER_SECTION-1);
5624 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5625 #else
5626 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5627 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5628 #endif /* CONFIG_SPARSEMEM */
5629 }
5630
5631 /**
5632 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5633 * @page: The page within the block of interest
5634 * @start_bitidx: The first bit of interest to retrieve
5635 * @end_bitidx: The last bit of interest
5636 * returns pageblock_bits flags
5637 */
5638 unsigned long get_pageblock_flags_group(struct page *page,
5639 int start_bitidx, int end_bitidx)
5640 {
5641 struct zone *zone;
5642 unsigned long *bitmap;
5643 unsigned long pfn, bitidx;
5644 unsigned long flags = 0;
5645 unsigned long value = 1;
5646
5647 zone = page_zone(page);
5648 pfn = page_to_pfn(page);
5649 bitmap = get_pageblock_bitmap(zone, pfn);
5650 bitidx = pfn_to_bitidx(zone, pfn);
5651
5652 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5653 if (test_bit(bitidx + start_bitidx, bitmap))
5654 flags |= value;
5655
5656 return flags;
5657 }
5658
5659 /**
5660 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5661 * @page: The page within the block of interest
5662 * @start_bitidx: The first bit of interest
5663 * @end_bitidx: The last bit of interest
5664 * @flags: The flags to set
5665 */
5666 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5667 int start_bitidx, int end_bitidx)
5668 {
5669 struct zone *zone;
5670 unsigned long *bitmap;
5671 unsigned long pfn, bitidx;
5672 unsigned long value = 1;
5673
5674 zone = page_zone(page);
5675 pfn = page_to_pfn(page);
5676 bitmap = get_pageblock_bitmap(zone, pfn);
5677 bitidx = pfn_to_bitidx(zone, pfn);
5678 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
5679
5680 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5681 if (flags & value)
5682 __set_bit(bitidx + start_bitidx, bitmap);
5683 else
5684 __clear_bit(bitidx + start_bitidx, bitmap);
5685 }
5686
5687 /*
5688 * This function checks whether pageblock includes unmovable pages or not.
5689 * If @count is not zero, it is okay to include less @count unmovable pages
5690 *
5691 * PageLRU check wihtout isolation or lru_lock could race so that
5692 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5693 * expect this function should be exact.
5694 */
5695 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5696 bool skip_hwpoisoned_pages)
5697 {
5698 unsigned long pfn, iter, found;
5699 int mt;
5700
5701 /*
5702 * For avoiding noise data, lru_add_drain_all() should be called
5703 * If ZONE_MOVABLE, the zone never contains unmovable pages
5704 */
5705 if (zone_idx(zone) == ZONE_MOVABLE)
5706 return false;
5707 mt = get_pageblock_migratetype(page);
5708 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5709 return false;
5710
5711 pfn = page_to_pfn(page);
5712 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5713 unsigned long check = pfn + iter;
5714
5715 if (!pfn_valid_within(check))
5716 continue;
5717
5718 page = pfn_to_page(check);
5719 /*
5720 * We can't use page_count without pin a page
5721 * because another CPU can free compound page.
5722 * This check already skips compound tails of THP
5723 * because their page->_count is zero at all time.
5724 */
5725 if (!atomic_read(&page->_count)) {
5726 if (PageBuddy(page))
5727 iter += (1 << page_order(page)) - 1;
5728 continue;
5729 }
5730
5731 /*
5732 * The HWPoisoned page may be not in buddy system, and
5733 * page_count() is not 0.
5734 */
5735 if (skip_hwpoisoned_pages && PageHWPoison(page))
5736 continue;
5737
5738 if (!PageLRU(page))
5739 found++;
5740 /*
5741 * If there are RECLAIMABLE pages, we need to check it.
5742 * But now, memory offline itself doesn't call shrink_slab()
5743 * and it still to be fixed.
5744 */
5745 /*
5746 * If the page is not RAM, page_count()should be 0.
5747 * we don't need more check. This is an _used_ not-movable page.
5748 *
5749 * The problematic thing here is PG_reserved pages. PG_reserved
5750 * is set to both of a memory hole page and a _used_ kernel
5751 * page at boot.
5752 */
5753 if (found > count)
5754 return true;
5755 }
5756 return false;
5757 }
5758
5759 bool is_pageblock_removable_nolock(struct page *page)
5760 {
5761 struct zone *zone;
5762 unsigned long pfn;
5763
5764 /*
5765 * We have to be careful here because we are iterating over memory
5766 * sections which are not zone aware so we might end up outside of
5767 * the zone but still within the section.
5768 * We have to take care about the node as well. If the node is offline
5769 * its NODE_DATA will be NULL - see page_zone.
5770 */
5771 if (!node_online(page_to_nid(page)))
5772 return false;
5773
5774 zone = page_zone(page);
5775 pfn = page_to_pfn(page);
5776 if (!zone_spans_pfn(zone, pfn))
5777 return false;
5778
5779 return !has_unmovable_pages(zone, page, 0, true);
5780 }
5781
5782 #ifdef CONFIG_CMA
5783
5784 static unsigned long pfn_max_align_down(unsigned long pfn)
5785 {
5786 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5787 pageblock_nr_pages) - 1);
5788 }
5789
5790 static unsigned long pfn_max_align_up(unsigned long pfn)
5791 {
5792 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5793 pageblock_nr_pages));
5794 }
5795
5796 /* [start, end) must belong to a single zone. */
5797 static int __alloc_contig_migrate_range(struct compact_control *cc,
5798 unsigned long start, unsigned long end)
5799 {
5800 /* This function is based on compact_zone() from compaction.c. */
5801 unsigned long nr_reclaimed;
5802 unsigned long pfn = start;
5803 unsigned int tries = 0;
5804 int ret = 0;
5805
5806 migrate_prep();
5807
5808 while (pfn < end || !list_empty(&cc->migratepages)) {
5809 if (fatal_signal_pending(current)) {
5810 ret = -EINTR;
5811 break;
5812 }
5813
5814 if (list_empty(&cc->migratepages)) {
5815 cc->nr_migratepages = 0;
5816 pfn = isolate_migratepages_range(cc->zone, cc,
5817 pfn, end, true);
5818 if (!pfn) {
5819 ret = -EINTR;
5820 break;
5821 }
5822 tries = 0;
5823 } else if (++tries == 5) {
5824 ret = ret < 0 ? ret : -EBUSY;
5825 break;
5826 }
5827
5828 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5829 &cc->migratepages);
5830 cc->nr_migratepages -= nr_reclaimed;
5831
5832 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
5833 0, MIGRATE_SYNC, MR_CMA);
5834 }
5835 if (ret < 0) {
5836 putback_movable_pages(&cc->migratepages);
5837 return ret;
5838 }
5839 return 0;
5840 }
5841
5842 /**
5843 * alloc_contig_range() -- tries to allocate given range of pages
5844 * @start: start PFN to allocate
5845 * @end: one-past-the-last PFN to allocate
5846 * @migratetype: migratetype of the underlaying pageblocks (either
5847 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5848 * in range must have the same migratetype and it must
5849 * be either of the two.
5850 *
5851 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5852 * aligned, however it's the caller's responsibility to guarantee that
5853 * we are the only thread that changes migrate type of pageblocks the
5854 * pages fall in.
5855 *
5856 * The PFN range must belong to a single zone.
5857 *
5858 * Returns zero on success or negative error code. On success all
5859 * pages which PFN is in [start, end) are allocated for the caller and
5860 * need to be freed with free_contig_range().
5861 */
5862 int alloc_contig_range(unsigned long start, unsigned long end,
5863 unsigned migratetype)
5864 {
5865 unsigned long outer_start, outer_end;
5866 int ret = 0, order;
5867
5868 struct compact_control cc = {
5869 .nr_migratepages = 0,
5870 .order = -1,
5871 .zone = page_zone(pfn_to_page(start)),
5872 .sync = true,
5873 .ignore_skip_hint = true,
5874 };
5875 INIT_LIST_HEAD(&cc.migratepages);
5876
5877 /*
5878 * What we do here is we mark all pageblocks in range as
5879 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5880 * have different sizes, and due to the way page allocator
5881 * work, we align the range to biggest of the two pages so
5882 * that page allocator won't try to merge buddies from
5883 * different pageblocks and change MIGRATE_ISOLATE to some
5884 * other migration type.
5885 *
5886 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5887 * migrate the pages from an unaligned range (ie. pages that
5888 * we are interested in). This will put all the pages in
5889 * range back to page allocator as MIGRATE_ISOLATE.
5890 *
5891 * When this is done, we take the pages in range from page
5892 * allocator removing them from the buddy system. This way
5893 * page allocator will never consider using them.
5894 *
5895 * This lets us mark the pageblocks back as
5896 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5897 * aligned range but not in the unaligned, original range are
5898 * put back to page allocator so that buddy can use them.
5899 */
5900
5901 ret = start_isolate_page_range(pfn_max_align_down(start),
5902 pfn_max_align_up(end), migratetype,
5903 false);
5904 if (ret)
5905 return ret;
5906
5907 ret = __alloc_contig_migrate_range(&cc, start, end);
5908 if (ret)
5909 goto done;
5910
5911 /*
5912 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5913 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5914 * more, all pages in [start, end) are free in page allocator.
5915 * What we are going to do is to allocate all pages from
5916 * [start, end) (that is remove them from page allocator).
5917 *
5918 * The only problem is that pages at the beginning and at the
5919 * end of interesting range may be not aligned with pages that
5920 * page allocator holds, ie. they can be part of higher order
5921 * pages. Because of this, we reserve the bigger range and
5922 * once this is done free the pages we are not interested in.
5923 *
5924 * We don't have to hold zone->lock here because the pages are
5925 * isolated thus they won't get removed from buddy.
5926 */
5927
5928 lru_add_drain_all();
5929 drain_all_pages();
5930
5931 order = 0;
5932 outer_start = start;
5933 while (!PageBuddy(pfn_to_page(outer_start))) {
5934 if (++order >= MAX_ORDER) {
5935 ret = -EBUSY;
5936 goto done;
5937 }
5938 outer_start &= ~0UL << order;
5939 }
5940
5941 /* Make sure the range is really isolated. */
5942 if (test_pages_isolated(outer_start, end, false)) {
5943 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5944 outer_start, end);
5945 ret = -EBUSY;
5946 goto done;
5947 }
5948
5949
5950 /* Grab isolated pages from freelists. */
5951 outer_end = isolate_freepages_range(&cc, outer_start, end);
5952 if (!outer_end) {
5953 ret = -EBUSY;
5954 goto done;
5955 }
5956
5957 /* Free head and tail (if any) */
5958 if (start != outer_start)
5959 free_contig_range(outer_start, start - outer_start);
5960 if (end != outer_end)
5961 free_contig_range(end, outer_end - end);
5962
5963 done:
5964 undo_isolate_page_range(pfn_max_align_down(start),
5965 pfn_max_align_up(end), migratetype);
5966 return ret;
5967 }
5968
5969 void free_contig_range(unsigned long pfn, unsigned nr_pages)
5970 {
5971 unsigned int count = 0;
5972
5973 for (; nr_pages--; pfn++) {
5974 struct page *page = pfn_to_page(pfn);
5975
5976 count += page_count(page) != 1;
5977 __free_page(page);
5978 }
5979 WARN(count != 0, "%d pages are still in use!\n", count);
5980 }
5981 #endif
5982
5983 #ifdef CONFIG_MEMORY_HOTPLUG
5984 static int __meminit __zone_pcp_update(void *data)
5985 {
5986 struct zone *zone = data;
5987 int cpu;
5988 unsigned long batch = zone_batchsize(zone), flags;
5989
5990 for_each_possible_cpu(cpu) {
5991 struct per_cpu_pageset *pset;
5992 struct per_cpu_pages *pcp;
5993
5994 pset = per_cpu_ptr(zone->pageset, cpu);
5995 pcp = &pset->pcp;
5996
5997 local_irq_save(flags);
5998 if (pcp->count > 0)
5999 free_pcppages_bulk(zone, pcp->count, pcp);
6000 drain_zonestat(zone, pset);
6001 setup_pageset(pset, batch);
6002 local_irq_restore(flags);
6003 }
6004 return 0;
6005 }
6006
6007 void __meminit zone_pcp_update(struct zone *zone)
6008 {
6009 stop_machine(__zone_pcp_update, zone, NULL);
6010 }
6011 #endif
6012
6013 void zone_pcp_reset(struct zone *zone)
6014 {
6015 unsigned long flags;
6016 int cpu;
6017 struct per_cpu_pageset *pset;
6018
6019 /* avoid races with drain_pages() */
6020 local_irq_save(flags);
6021 if (zone->pageset != &boot_pageset) {
6022 for_each_online_cpu(cpu) {
6023 pset = per_cpu_ptr(zone->pageset, cpu);
6024 drain_zonestat(zone, pset);
6025 }
6026 free_percpu(zone->pageset);
6027 zone->pageset = &boot_pageset;
6028 }
6029 local_irq_restore(flags);
6030 }
6031
6032 #ifdef CONFIG_MEMORY_HOTREMOVE
6033 /*
6034 * All pages in the range must be isolated before calling this.
6035 */
6036 void
6037 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6038 {
6039 struct page *page;
6040 struct zone *zone;
6041 int order, i;
6042 unsigned long pfn;
6043 unsigned long flags;
6044 /* find the first valid pfn */
6045 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6046 if (pfn_valid(pfn))
6047 break;
6048 if (pfn == end_pfn)
6049 return;
6050 zone = page_zone(pfn_to_page(pfn));
6051 spin_lock_irqsave(&zone->lock, flags);
6052 pfn = start_pfn;
6053 while (pfn < end_pfn) {
6054 if (!pfn_valid(pfn)) {
6055 pfn++;
6056 continue;
6057 }
6058 page = pfn_to_page(pfn);
6059 /*
6060 * The HWPoisoned page may be not in buddy system, and
6061 * page_count() is not 0.
6062 */
6063 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6064 pfn++;
6065 SetPageReserved(page);
6066 continue;
6067 }
6068
6069 BUG_ON(page_count(page));
6070 BUG_ON(!PageBuddy(page));
6071 order = page_order(page);
6072 #ifdef CONFIG_DEBUG_VM
6073 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6074 pfn, 1 << order, end_pfn);
6075 #endif
6076 list_del(&page->lru);
6077 rmv_page_order(page);
6078 zone->free_area[order].nr_free--;
6079 for (i = 0; i < (1 << order); i++)
6080 SetPageReserved((page+i));
6081 pfn += (1 << order);
6082 }
6083 spin_unlock_irqrestore(&zone->lock, flags);
6084 }
6085 #endif
6086
6087 #ifdef CONFIG_MEMORY_FAILURE
6088 bool is_free_buddy_page(struct page *page)
6089 {
6090 struct zone *zone = page_zone(page);
6091 unsigned long pfn = page_to_pfn(page);
6092 unsigned long flags;
6093 int order;
6094
6095 spin_lock_irqsave(&zone->lock, flags);
6096 for (order = 0; order < MAX_ORDER; order++) {
6097 struct page *page_head = page - (pfn & ((1 << order) - 1));
6098
6099 if (PageBuddy(page_head) && page_order(page_head) >= order)
6100 break;
6101 }
6102 spin_unlock_irqrestore(&zone->lock, flags);
6103
6104 return order < MAX_ORDER;
6105 }
6106 #endif
6107
6108 static const struct trace_print_flags pageflag_names[] = {
6109 {1UL << PG_locked, "locked" },
6110 {1UL << PG_error, "error" },
6111 {1UL << PG_referenced, "referenced" },
6112 {1UL << PG_uptodate, "uptodate" },
6113 {1UL << PG_dirty, "dirty" },
6114 {1UL << PG_lru, "lru" },
6115 {1UL << PG_active, "active" },
6116 {1UL << PG_slab, "slab" },
6117 {1UL << PG_owner_priv_1, "owner_priv_1" },
6118 {1UL << PG_arch_1, "arch_1" },
6119 {1UL << PG_reserved, "reserved" },
6120 {1UL << PG_private, "private" },
6121 {1UL << PG_private_2, "private_2" },
6122 {1UL << PG_writeback, "writeback" },
6123 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6124 {1UL << PG_head, "head" },
6125 {1UL << PG_tail, "tail" },
6126 #else
6127 {1UL << PG_compound, "compound" },
6128 #endif
6129 {1UL << PG_swapcache, "swapcache" },
6130 {1UL << PG_mappedtodisk, "mappedtodisk" },
6131 {1UL << PG_reclaim, "reclaim" },
6132 {1UL << PG_swapbacked, "swapbacked" },
6133 {1UL << PG_unevictable, "unevictable" },
6134 #ifdef CONFIG_MMU
6135 {1UL << PG_mlocked, "mlocked" },
6136 #endif
6137 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6138 {1UL << PG_uncached, "uncached" },
6139 #endif
6140 #ifdef CONFIG_MEMORY_FAILURE
6141 {1UL << PG_hwpoison, "hwpoison" },
6142 #endif
6143 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6144 {1UL << PG_compound_lock, "compound_lock" },
6145 #endif
6146 };
6147
6148 static void dump_page_flags(unsigned long flags)
6149 {
6150 const char *delim = "";
6151 unsigned long mask;
6152 int i;
6153
6154 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6155
6156 printk(KERN_ALERT "page flags: %#lx(", flags);
6157
6158 /* remove zone id */
6159 flags &= (1UL << NR_PAGEFLAGS) - 1;
6160
6161 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6162
6163 mask = pageflag_names[i].mask;
6164 if ((flags & mask) != mask)
6165 continue;
6166
6167 flags &= ~mask;
6168 printk("%s%s", delim, pageflag_names[i].name);
6169 delim = "|";
6170 }
6171
6172 /* check for left over flags */
6173 if (flags)
6174 printk("%s%#lx", delim, flags);
6175
6176 printk(")\n");
6177 }
6178
6179 void dump_page(struct page *page)
6180 {
6181 printk(KERN_ALERT
6182 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6183 page, atomic_read(&page->_count), page_mapcount(page),
6184 page->mapping, page->index);
6185 dump_page_flags(page->flags);
6186 mem_cgroup_print_bad_page(page);
6187 }