]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/page_alloc.c
mm/secretmem: use refcount_t instead of atomic_t
[mirror_ubuntu-kernels.git] / mm / page_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <linux/buffer_head.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77 #include <asm/div64.h>
78 #include "internal.h"
79 #include "shuffle.h"
80 #include "page_reporting.h"
81
82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83 typedef int __bitwise fpi_t;
84
85 /* No special request */
86 #define FPI_NONE ((__force fpi_t)0)
87
88 /*
89 * Skip free page reporting notification for the (possibly merged) page.
90 * This does not hinder free page reporting from grabbing the page,
91 * reporting it and marking it "reported" - it only skips notifying
92 * the free page reporting infrastructure about a newly freed page. For
93 * example, used when temporarily pulling a page from a freelist and
94 * putting it back unmodified.
95 */
96 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
97
98 /*
99 * Place the (possibly merged) page to the tail of the freelist. Will ignore
100 * page shuffling (relevant code - e.g., memory onlining - is expected to
101 * shuffle the whole zone).
102 *
103 * Note: No code should rely on this flag for correctness - it's purely
104 * to allow for optimizations when handing back either fresh pages
105 * (memory onlining) or untouched pages (page isolation, free page
106 * reporting).
107 */
108 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
109
110 /*
111 * Don't poison memory with KASAN (only for the tag-based modes).
112 * During boot, all non-reserved memblock memory is exposed to page_alloc.
113 * Poisoning all that memory lengthens boot time, especially on systems with
114 * large amount of RAM. This flag is used to skip that poisoning.
115 * This is only done for the tag-based KASAN modes, as those are able to
116 * detect memory corruptions with the memory tags assigned by default.
117 * All memory allocated normally after boot gets poisoned as usual.
118 */
119 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
120
121 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
122 static DEFINE_MUTEX(pcp_batch_high_lock);
123 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
124
125 struct pagesets {
126 local_lock_t lock;
127 };
128 static DEFINE_PER_CPU(struct pagesets, pagesets) = {
129 .lock = INIT_LOCAL_LOCK(lock),
130 };
131
132 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
133 DEFINE_PER_CPU(int, numa_node);
134 EXPORT_PER_CPU_SYMBOL(numa_node);
135 #endif
136
137 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
138
139 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
140 /*
141 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
142 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
143 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
144 * defined in <linux/topology.h>.
145 */
146 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
147 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
148 #endif
149
150 /* work_structs for global per-cpu drains */
151 struct pcpu_drain {
152 struct zone *zone;
153 struct work_struct work;
154 };
155 static DEFINE_MUTEX(pcpu_drain_mutex);
156 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
157
158 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
159 volatile unsigned long latent_entropy __latent_entropy;
160 EXPORT_SYMBOL(latent_entropy);
161 #endif
162
163 /*
164 * Array of node states.
165 */
166 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
167 [N_POSSIBLE] = NODE_MASK_ALL,
168 [N_ONLINE] = { { [0] = 1UL } },
169 #ifndef CONFIG_NUMA
170 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
171 #ifdef CONFIG_HIGHMEM
172 [N_HIGH_MEMORY] = { { [0] = 1UL } },
173 #endif
174 [N_MEMORY] = { { [0] = 1UL } },
175 [N_CPU] = { { [0] = 1UL } },
176 #endif /* NUMA */
177 };
178 EXPORT_SYMBOL(node_states);
179
180 atomic_long_t _totalram_pages __read_mostly;
181 EXPORT_SYMBOL(_totalram_pages);
182 unsigned long totalreserve_pages __read_mostly;
183 unsigned long totalcma_pages __read_mostly;
184
185 int percpu_pagelist_high_fraction;
186 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
187 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
188 EXPORT_SYMBOL(init_on_alloc);
189
190 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
191 EXPORT_SYMBOL(init_on_free);
192
193 static bool _init_on_alloc_enabled_early __read_mostly
194 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
195 static int __init early_init_on_alloc(char *buf)
196 {
197
198 return kstrtobool(buf, &_init_on_alloc_enabled_early);
199 }
200 early_param("init_on_alloc", early_init_on_alloc);
201
202 static bool _init_on_free_enabled_early __read_mostly
203 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
204 static int __init early_init_on_free(char *buf)
205 {
206 return kstrtobool(buf, &_init_on_free_enabled_early);
207 }
208 early_param("init_on_free", early_init_on_free);
209
210 /*
211 * A cached value of the page's pageblock's migratetype, used when the page is
212 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
213 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
214 * Also the migratetype set in the page does not necessarily match the pcplist
215 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
216 * other index - this ensures that it will be put on the correct CMA freelist.
217 */
218 static inline int get_pcppage_migratetype(struct page *page)
219 {
220 return page->index;
221 }
222
223 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
224 {
225 page->index = migratetype;
226 }
227
228 #ifdef CONFIG_PM_SLEEP
229 /*
230 * The following functions are used by the suspend/hibernate code to temporarily
231 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
232 * while devices are suspended. To avoid races with the suspend/hibernate code,
233 * they should always be called with system_transition_mutex held
234 * (gfp_allowed_mask also should only be modified with system_transition_mutex
235 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
236 * with that modification).
237 */
238
239 static gfp_t saved_gfp_mask;
240
241 void pm_restore_gfp_mask(void)
242 {
243 WARN_ON(!mutex_is_locked(&system_transition_mutex));
244 if (saved_gfp_mask) {
245 gfp_allowed_mask = saved_gfp_mask;
246 saved_gfp_mask = 0;
247 }
248 }
249
250 void pm_restrict_gfp_mask(void)
251 {
252 WARN_ON(!mutex_is_locked(&system_transition_mutex));
253 WARN_ON(saved_gfp_mask);
254 saved_gfp_mask = gfp_allowed_mask;
255 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
256 }
257
258 bool pm_suspended_storage(void)
259 {
260 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
261 return false;
262 return true;
263 }
264 #endif /* CONFIG_PM_SLEEP */
265
266 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
267 unsigned int pageblock_order __read_mostly;
268 #endif
269
270 static void __free_pages_ok(struct page *page, unsigned int order,
271 fpi_t fpi_flags);
272
273 /*
274 * results with 256, 32 in the lowmem_reserve sysctl:
275 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
276 * 1G machine -> (16M dma, 784M normal, 224M high)
277 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
278 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
279 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
280 *
281 * TBD: should special case ZONE_DMA32 machines here - in those we normally
282 * don't need any ZONE_NORMAL reservation
283 */
284 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
285 #ifdef CONFIG_ZONE_DMA
286 [ZONE_DMA] = 256,
287 #endif
288 #ifdef CONFIG_ZONE_DMA32
289 [ZONE_DMA32] = 256,
290 #endif
291 [ZONE_NORMAL] = 32,
292 #ifdef CONFIG_HIGHMEM
293 [ZONE_HIGHMEM] = 0,
294 #endif
295 [ZONE_MOVABLE] = 0,
296 };
297
298 static char * const zone_names[MAX_NR_ZONES] = {
299 #ifdef CONFIG_ZONE_DMA
300 "DMA",
301 #endif
302 #ifdef CONFIG_ZONE_DMA32
303 "DMA32",
304 #endif
305 "Normal",
306 #ifdef CONFIG_HIGHMEM
307 "HighMem",
308 #endif
309 "Movable",
310 #ifdef CONFIG_ZONE_DEVICE
311 "Device",
312 #endif
313 };
314
315 const char * const migratetype_names[MIGRATE_TYPES] = {
316 "Unmovable",
317 "Movable",
318 "Reclaimable",
319 "HighAtomic",
320 #ifdef CONFIG_CMA
321 "CMA",
322 #endif
323 #ifdef CONFIG_MEMORY_ISOLATION
324 "Isolate",
325 #endif
326 };
327
328 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
329 [NULL_COMPOUND_DTOR] = NULL,
330 [COMPOUND_PAGE_DTOR] = free_compound_page,
331 #ifdef CONFIG_HUGETLB_PAGE
332 [HUGETLB_PAGE_DTOR] = free_huge_page,
333 #endif
334 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
335 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
336 #endif
337 };
338
339 int min_free_kbytes = 1024;
340 int user_min_free_kbytes = -1;
341 int watermark_boost_factor __read_mostly = 15000;
342 int watermark_scale_factor = 10;
343
344 static unsigned long nr_kernel_pages __initdata;
345 static unsigned long nr_all_pages __initdata;
346 static unsigned long dma_reserve __initdata;
347
348 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
349 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
350 static unsigned long required_kernelcore __initdata;
351 static unsigned long required_kernelcore_percent __initdata;
352 static unsigned long required_movablecore __initdata;
353 static unsigned long required_movablecore_percent __initdata;
354 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
355 static bool mirrored_kernelcore __meminitdata;
356
357 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
358 int movable_zone;
359 EXPORT_SYMBOL(movable_zone);
360
361 #if MAX_NUMNODES > 1
362 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
363 unsigned int nr_online_nodes __read_mostly = 1;
364 EXPORT_SYMBOL(nr_node_ids);
365 EXPORT_SYMBOL(nr_online_nodes);
366 #endif
367
368 int page_group_by_mobility_disabled __read_mostly;
369
370 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
371 /*
372 * During boot we initialize deferred pages on-demand, as needed, but once
373 * page_alloc_init_late() has finished, the deferred pages are all initialized,
374 * and we can permanently disable that path.
375 */
376 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
377
378 /*
379 * Calling kasan_poison_pages() only after deferred memory initialization
380 * has completed. Poisoning pages during deferred memory init will greatly
381 * lengthen the process and cause problem in large memory systems as the
382 * deferred pages initialization is done with interrupt disabled.
383 *
384 * Assuming that there will be no reference to those newly initialized
385 * pages before they are ever allocated, this should have no effect on
386 * KASAN memory tracking as the poison will be properly inserted at page
387 * allocation time. The only corner case is when pages are allocated by
388 * on-demand allocation and then freed again before the deferred pages
389 * initialization is done, but this is not likely to happen.
390 */
391 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
392 {
393 return static_branch_unlikely(&deferred_pages) ||
394 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
395 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
396 PageSkipKASanPoison(page);
397 }
398
399 /* Returns true if the struct page for the pfn is uninitialised */
400 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
401 {
402 int nid = early_pfn_to_nid(pfn);
403
404 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
405 return true;
406
407 return false;
408 }
409
410 /*
411 * Returns true when the remaining initialisation should be deferred until
412 * later in the boot cycle when it can be parallelised.
413 */
414 static bool __meminit
415 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
416 {
417 static unsigned long prev_end_pfn, nr_initialised;
418
419 /*
420 * prev_end_pfn static that contains the end of previous zone
421 * No need to protect because called very early in boot before smp_init.
422 */
423 if (prev_end_pfn != end_pfn) {
424 prev_end_pfn = end_pfn;
425 nr_initialised = 0;
426 }
427
428 /* Always populate low zones for address-constrained allocations */
429 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
430 return false;
431
432 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
433 return true;
434 /*
435 * We start only with one section of pages, more pages are added as
436 * needed until the rest of deferred pages are initialized.
437 */
438 nr_initialised++;
439 if ((nr_initialised > PAGES_PER_SECTION) &&
440 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
441 NODE_DATA(nid)->first_deferred_pfn = pfn;
442 return true;
443 }
444 return false;
445 }
446 #else
447 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
448 {
449 return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
450 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
451 PageSkipKASanPoison(page);
452 }
453
454 static inline bool early_page_uninitialised(unsigned long pfn)
455 {
456 return false;
457 }
458
459 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
460 {
461 return false;
462 }
463 #endif
464
465 /* Return a pointer to the bitmap storing bits affecting a block of pages */
466 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
467 unsigned long pfn)
468 {
469 #ifdef CONFIG_SPARSEMEM
470 return section_to_usemap(__pfn_to_section(pfn));
471 #else
472 return page_zone(page)->pageblock_flags;
473 #endif /* CONFIG_SPARSEMEM */
474 }
475
476 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
477 {
478 #ifdef CONFIG_SPARSEMEM
479 pfn &= (PAGES_PER_SECTION-1);
480 #else
481 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
482 #endif /* CONFIG_SPARSEMEM */
483 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
484 }
485
486 static __always_inline
487 unsigned long __get_pfnblock_flags_mask(const struct page *page,
488 unsigned long pfn,
489 unsigned long mask)
490 {
491 unsigned long *bitmap;
492 unsigned long bitidx, word_bitidx;
493 unsigned long word;
494
495 bitmap = get_pageblock_bitmap(page, pfn);
496 bitidx = pfn_to_bitidx(page, pfn);
497 word_bitidx = bitidx / BITS_PER_LONG;
498 bitidx &= (BITS_PER_LONG-1);
499
500 word = bitmap[word_bitidx];
501 return (word >> bitidx) & mask;
502 }
503
504 /**
505 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
506 * @page: The page within the block of interest
507 * @pfn: The target page frame number
508 * @mask: mask of bits that the caller is interested in
509 *
510 * Return: pageblock_bits flags
511 */
512 unsigned long get_pfnblock_flags_mask(const struct page *page,
513 unsigned long pfn, unsigned long mask)
514 {
515 return __get_pfnblock_flags_mask(page, pfn, mask);
516 }
517
518 static __always_inline int get_pfnblock_migratetype(const struct page *page,
519 unsigned long pfn)
520 {
521 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
522 }
523
524 /**
525 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
526 * @page: The page within the block of interest
527 * @flags: The flags to set
528 * @pfn: The target page frame number
529 * @mask: mask of bits that the caller is interested in
530 */
531 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
532 unsigned long pfn,
533 unsigned long mask)
534 {
535 unsigned long *bitmap;
536 unsigned long bitidx, word_bitidx;
537 unsigned long old_word, word;
538
539 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
540 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
541
542 bitmap = get_pageblock_bitmap(page, pfn);
543 bitidx = pfn_to_bitidx(page, pfn);
544 word_bitidx = bitidx / BITS_PER_LONG;
545 bitidx &= (BITS_PER_LONG-1);
546
547 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
548
549 mask <<= bitidx;
550 flags <<= bitidx;
551
552 word = READ_ONCE(bitmap[word_bitidx]);
553 for (;;) {
554 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
555 if (word == old_word)
556 break;
557 word = old_word;
558 }
559 }
560
561 void set_pageblock_migratetype(struct page *page, int migratetype)
562 {
563 if (unlikely(page_group_by_mobility_disabled &&
564 migratetype < MIGRATE_PCPTYPES))
565 migratetype = MIGRATE_UNMOVABLE;
566
567 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
568 page_to_pfn(page), MIGRATETYPE_MASK);
569 }
570
571 #ifdef CONFIG_DEBUG_VM
572 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
573 {
574 int ret = 0;
575 unsigned seq;
576 unsigned long pfn = page_to_pfn(page);
577 unsigned long sp, start_pfn;
578
579 do {
580 seq = zone_span_seqbegin(zone);
581 start_pfn = zone->zone_start_pfn;
582 sp = zone->spanned_pages;
583 if (!zone_spans_pfn(zone, pfn))
584 ret = 1;
585 } while (zone_span_seqretry(zone, seq));
586
587 if (ret)
588 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
589 pfn, zone_to_nid(zone), zone->name,
590 start_pfn, start_pfn + sp);
591
592 return ret;
593 }
594
595 static int page_is_consistent(struct zone *zone, struct page *page)
596 {
597 if (zone != page_zone(page))
598 return 0;
599
600 return 1;
601 }
602 /*
603 * Temporary debugging check for pages not lying within a given zone.
604 */
605 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
606 {
607 if (page_outside_zone_boundaries(zone, page))
608 return 1;
609 if (!page_is_consistent(zone, page))
610 return 1;
611
612 return 0;
613 }
614 #else
615 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
616 {
617 return 0;
618 }
619 #endif
620
621 static void bad_page(struct page *page, const char *reason)
622 {
623 static unsigned long resume;
624 static unsigned long nr_shown;
625 static unsigned long nr_unshown;
626
627 /*
628 * Allow a burst of 60 reports, then keep quiet for that minute;
629 * or allow a steady drip of one report per second.
630 */
631 if (nr_shown == 60) {
632 if (time_before(jiffies, resume)) {
633 nr_unshown++;
634 goto out;
635 }
636 if (nr_unshown) {
637 pr_alert(
638 "BUG: Bad page state: %lu messages suppressed\n",
639 nr_unshown);
640 nr_unshown = 0;
641 }
642 nr_shown = 0;
643 }
644 if (nr_shown++ == 0)
645 resume = jiffies + 60 * HZ;
646
647 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
648 current->comm, page_to_pfn(page));
649 dump_page(page, reason);
650
651 print_modules();
652 dump_stack();
653 out:
654 /* Leave bad fields for debug, except PageBuddy could make trouble */
655 page_mapcount_reset(page); /* remove PageBuddy */
656 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
657 }
658
659 static inline unsigned int order_to_pindex(int migratetype, int order)
660 {
661 int base = order;
662
663 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
664 if (order > PAGE_ALLOC_COSTLY_ORDER) {
665 VM_BUG_ON(order != pageblock_order);
666 base = PAGE_ALLOC_COSTLY_ORDER + 1;
667 }
668 #else
669 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
670 #endif
671
672 return (MIGRATE_PCPTYPES * base) + migratetype;
673 }
674
675 static inline int pindex_to_order(unsigned int pindex)
676 {
677 int order = pindex / MIGRATE_PCPTYPES;
678
679 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
680 if (order > PAGE_ALLOC_COSTLY_ORDER) {
681 order = pageblock_order;
682 VM_BUG_ON(order != pageblock_order);
683 }
684 #else
685 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
686 #endif
687
688 return order;
689 }
690
691 static inline bool pcp_allowed_order(unsigned int order)
692 {
693 if (order <= PAGE_ALLOC_COSTLY_ORDER)
694 return true;
695 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
696 if (order == pageblock_order)
697 return true;
698 #endif
699 return false;
700 }
701
702 static inline void free_the_page(struct page *page, unsigned int order)
703 {
704 if (pcp_allowed_order(order)) /* Via pcp? */
705 free_unref_page(page, order);
706 else
707 __free_pages_ok(page, order, FPI_NONE);
708 }
709
710 /*
711 * Higher-order pages are called "compound pages". They are structured thusly:
712 *
713 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
714 *
715 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
716 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
717 *
718 * The first tail page's ->compound_dtor holds the offset in array of compound
719 * page destructors. See compound_page_dtors.
720 *
721 * The first tail page's ->compound_order holds the order of allocation.
722 * This usage means that zero-order pages may not be compound.
723 */
724
725 void free_compound_page(struct page *page)
726 {
727 mem_cgroup_uncharge(page);
728 free_the_page(page, compound_order(page));
729 }
730
731 void prep_compound_page(struct page *page, unsigned int order)
732 {
733 int i;
734 int nr_pages = 1 << order;
735
736 __SetPageHead(page);
737 for (i = 1; i < nr_pages; i++) {
738 struct page *p = page + i;
739 p->mapping = TAIL_MAPPING;
740 set_compound_head(p, page);
741 }
742
743 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
744 set_compound_order(page, order);
745 atomic_set(compound_mapcount_ptr(page), -1);
746 if (hpage_pincount_available(page))
747 atomic_set(compound_pincount_ptr(page), 0);
748 }
749
750 #ifdef CONFIG_DEBUG_PAGEALLOC
751 unsigned int _debug_guardpage_minorder;
752
753 bool _debug_pagealloc_enabled_early __read_mostly
754 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
755 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
756 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
757 EXPORT_SYMBOL(_debug_pagealloc_enabled);
758
759 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
760
761 static int __init early_debug_pagealloc(char *buf)
762 {
763 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
764 }
765 early_param("debug_pagealloc", early_debug_pagealloc);
766
767 static int __init debug_guardpage_minorder_setup(char *buf)
768 {
769 unsigned long res;
770
771 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
772 pr_err("Bad debug_guardpage_minorder value\n");
773 return 0;
774 }
775 _debug_guardpage_minorder = res;
776 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
777 return 0;
778 }
779 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
780
781 static inline bool set_page_guard(struct zone *zone, struct page *page,
782 unsigned int order, int migratetype)
783 {
784 if (!debug_guardpage_enabled())
785 return false;
786
787 if (order >= debug_guardpage_minorder())
788 return false;
789
790 __SetPageGuard(page);
791 INIT_LIST_HEAD(&page->lru);
792 set_page_private(page, order);
793 /* Guard pages are not available for any usage */
794 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
795
796 return true;
797 }
798
799 static inline void clear_page_guard(struct zone *zone, struct page *page,
800 unsigned int order, int migratetype)
801 {
802 if (!debug_guardpage_enabled())
803 return;
804
805 __ClearPageGuard(page);
806
807 set_page_private(page, 0);
808 if (!is_migrate_isolate(migratetype))
809 __mod_zone_freepage_state(zone, (1 << order), migratetype);
810 }
811 #else
812 static inline bool set_page_guard(struct zone *zone, struct page *page,
813 unsigned int order, int migratetype) { return false; }
814 static inline void clear_page_guard(struct zone *zone, struct page *page,
815 unsigned int order, int migratetype) {}
816 #endif
817
818 /*
819 * Enable static keys related to various memory debugging and hardening options.
820 * Some override others, and depend on early params that are evaluated in the
821 * order of appearance. So we need to first gather the full picture of what was
822 * enabled, and then make decisions.
823 */
824 void init_mem_debugging_and_hardening(void)
825 {
826 bool page_poisoning_requested = false;
827
828 #ifdef CONFIG_PAGE_POISONING
829 /*
830 * Page poisoning is debug page alloc for some arches. If
831 * either of those options are enabled, enable poisoning.
832 */
833 if (page_poisoning_enabled() ||
834 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
835 debug_pagealloc_enabled())) {
836 static_branch_enable(&_page_poisoning_enabled);
837 page_poisoning_requested = true;
838 }
839 #endif
840
841 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
842 page_poisoning_requested) {
843 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
844 "will take precedence over init_on_alloc and init_on_free\n");
845 _init_on_alloc_enabled_early = false;
846 _init_on_free_enabled_early = false;
847 }
848
849 if (_init_on_alloc_enabled_early)
850 static_branch_enable(&init_on_alloc);
851 else
852 static_branch_disable(&init_on_alloc);
853
854 if (_init_on_free_enabled_early)
855 static_branch_enable(&init_on_free);
856 else
857 static_branch_disable(&init_on_free);
858
859 #ifdef CONFIG_DEBUG_PAGEALLOC
860 if (!debug_pagealloc_enabled())
861 return;
862
863 static_branch_enable(&_debug_pagealloc_enabled);
864
865 if (!debug_guardpage_minorder())
866 return;
867
868 static_branch_enable(&_debug_guardpage_enabled);
869 #endif
870 }
871
872 static inline void set_buddy_order(struct page *page, unsigned int order)
873 {
874 set_page_private(page, order);
875 __SetPageBuddy(page);
876 }
877
878 /*
879 * This function checks whether a page is free && is the buddy
880 * we can coalesce a page and its buddy if
881 * (a) the buddy is not in a hole (check before calling!) &&
882 * (b) the buddy is in the buddy system &&
883 * (c) a page and its buddy have the same order &&
884 * (d) a page and its buddy are in the same zone.
885 *
886 * For recording whether a page is in the buddy system, we set PageBuddy.
887 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
888 *
889 * For recording page's order, we use page_private(page).
890 */
891 static inline bool page_is_buddy(struct page *page, struct page *buddy,
892 unsigned int order)
893 {
894 if (!page_is_guard(buddy) && !PageBuddy(buddy))
895 return false;
896
897 if (buddy_order(buddy) != order)
898 return false;
899
900 /*
901 * zone check is done late to avoid uselessly calculating
902 * zone/node ids for pages that could never merge.
903 */
904 if (page_zone_id(page) != page_zone_id(buddy))
905 return false;
906
907 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
908
909 return true;
910 }
911
912 #ifdef CONFIG_COMPACTION
913 static inline struct capture_control *task_capc(struct zone *zone)
914 {
915 struct capture_control *capc = current->capture_control;
916
917 return unlikely(capc) &&
918 !(current->flags & PF_KTHREAD) &&
919 !capc->page &&
920 capc->cc->zone == zone ? capc : NULL;
921 }
922
923 static inline bool
924 compaction_capture(struct capture_control *capc, struct page *page,
925 int order, int migratetype)
926 {
927 if (!capc || order != capc->cc->order)
928 return false;
929
930 /* Do not accidentally pollute CMA or isolated regions*/
931 if (is_migrate_cma(migratetype) ||
932 is_migrate_isolate(migratetype))
933 return false;
934
935 /*
936 * Do not let lower order allocations pollute a movable pageblock.
937 * This might let an unmovable request use a reclaimable pageblock
938 * and vice-versa but no more than normal fallback logic which can
939 * have trouble finding a high-order free page.
940 */
941 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
942 return false;
943
944 capc->page = page;
945 return true;
946 }
947
948 #else
949 static inline struct capture_control *task_capc(struct zone *zone)
950 {
951 return NULL;
952 }
953
954 static inline bool
955 compaction_capture(struct capture_control *capc, struct page *page,
956 int order, int migratetype)
957 {
958 return false;
959 }
960 #endif /* CONFIG_COMPACTION */
961
962 /* Used for pages not on another list */
963 static inline void add_to_free_list(struct page *page, struct zone *zone,
964 unsigned int order, int migratetype)
965 {
966 struct free_area *area = &zone->free_area[order];
967
968 list_add(&page->lru, &area->free_list[migratetype]);
969 area->nr_free++;
970 }
971
972 /* Used for pages not on another list */
973 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
974 unsigned int order, int migratetype)
975 {
976 struct free_area *area = &zone->free_area[order];
977
978 list_add_tail(&page->lru, &area->free_list[migratetype]);
979 area->nr_free++;
980 }
981
982 /*
983 * Used for pages which are on another list. Move the pages to the tail
984 * of the list - so the moved pages won't immediately be considered for
985 * allocation again (e.g., optimization for memory onlining).
986 */
987 static inline void move_to_free_list(struct page *page, struct zone *zone,
988 unsigned int order, int migratetype)
989 {
990 struct free_area *area = &zone->free_area[order];
991
992 list_move_tail(&page->lru, &area->free_list[migratetype]);
993 }
994
995 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
996 unsigned int order)
997 {
998 /* clear reported state and update reported page count */
999 if (page_reported(page))
1000 __ClearPageReported(page);
1001
1002 list_del(&page->lru);
1003 __ClearPageBuddy(page);
1004 set_page_private(page, 0);
1005 zone->free_area[order].nr_free--;
1006 }
1007
1008 /*
1009 * If this is not the largest possible page, check if the buddy
1010 * of the next-highest order is free. If it is, it's possible
1011 * that pages are being freed that will coalesce soon. In case,
1012 * that is happening, add the free page to the tail of the list
1013 * so it's less likely to be used soon and more likely to be merged
1014 * as a higher order page
1015 */
1016 static inline bool
1017 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1018 struct page *page, unsigned int order)
1019 {
1020 struct page *higher_page, *higher_buddy;
1021 unsigned long combined_pfn;
1022
1023 if (order >= MAX_ORDER - 2)
1024 return false;
1025
1026 combined_pfn = buddy_pfn & pfn;
1027 higher_page = page + (combined_pfn - pfn);
1028 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1029 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1030
1031 return page_is_buddy(higher_page, higher_buddy, order + 1);
1032 }
1033
1034 /*
1035 * Freeing function for a buddy system allocator.
1036 *
1037 * The concept of a buddy system is to maintain direct-mapped table
1038 * (containing bit values) for memory blocks of various "orders".
1039 * The bottom level table contains the map for the smallest allocatable
1040 * units of memory (here, pages), and each level above it describes
1041 * pairs of units from the levels below, hence, "buddies".
1042 * At a high level, all that happens here is marking the table entry
1043 * at the bottom level available, and propagating the changes upward
1044 * as necessary, plus some accounting needed to play nicely with other
1045 * parts of the VM system.
1046 * At each level, we keep a list of pages, which are heads of continuous
1047 * free pages of length of (1 << order) and marked with PageBuddy.
1048 * Page's order is recorded in page_private(page) field.
1049 * So when we are allocating or freeing one, we can derive the state of the
1050 * other. That is, if we allocate a small block, and both were
1051 * free, the remainder of the region must be split into blocks.
1052 * If a block is freed, and its buddy is also free, then this
1053 * triggers coalescing into a block of larger size.
1054 *
1055 * -- nyc
1056 */
1057
1058 static inline void __free_one_page(struct page *page,
1059 unsigned long pfn,
1060 struct zone *zone, unsigned int order,
1061 int migratetype, fpi_t fpi_flags)
1062 {
1063 struct capture_control *capc = task_capc(zone);
1064 unsigned long buddy_pfn;
1065 unsigned long combined_pfn;
1066 unsigned int max_order;
1067 struct page *buddy;
1068 bool to_tail;
1069
1070 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1071
1072 VM_BUG_ON(!zone_is_initialized(zone));
1073 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1074
1075 VM_BUG_ON(migratetype == -1);
1076 if (likely(!is_migrate_isolate(migratetype)))
1077 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1078
1079 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1080 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1081
1082 continue_merging:
1083 while (order < max_order) {
1084 if (compaction_capture(capc, page, order, migratetype)) {
1085 __mod_zone_freepage_state(zone, -(1 << order),
1086 migratetype);
1087 return;
1088 }
1089 buddy_pfn = __find_buddy_pfn(pfn, order);
1090 buddy = page + (buddy_pfn - pfn);
1091
1092 if (!page_is_buddy(page, buddy, order))
1093 goto done_merging;
1094 /*
1095 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1096 * merge with it and move up one order.
1097 */
1098 if (page_is_guard(buddy))
1099 clear_page_guard(zone, buddy, order, migratetype);
1100 else
1101 del_page_from_free_list(buddy, zone, order);
1102 combined_pfn = buddy_pfn & pfn;
1103 page = page + (combined_pfn - pfn);
1104 pfn = combined_pfn;
1105 order++;
1106 }
1107 if (order < MAX_ORDER - 1) {
1108 /* If we are here, it means order is >= pageblock_order.
1109 * We want to prevent merge between freepages on isolate
1110 * pageblock and normal pageblock. Without this, pageblock
1111 * isolation could cause incorrect freepage or CMA accounting.
1112 *
1113 * We don't want to hit this code for the more frequent
1114 * low-order merging.
1115 */
1116 if (unlikely(has_isolate_pageblock(zone))) {
1117 int buddy_mt;
1118
1119 buddy_pfn = __find_buddy_pfn(pfn, order);
1120 buddy = page + (buddy_pfn - pfn);
1121 buddy_mt = get_pageblock_migratetype(buddy);
1122
1123 if (migratetype != buddy_mt
1124 && (is_migrate_isolate(migratetype) ||
1125 is_migrate_isolate(buddy_mt)))
1126 goto done_merging;
1127 }
1128 max_order = order + 1;
1129 goto continue_merging;
1130 }
1131
1132 done_merging:
1133 set_buddy_order(page, order);
1134
1135 if (fpi_flags & FPI_TO_TAIL)
1136 to_tail = true;
1137 else if (is_shuffle_order(order))
1138 to_tail = shuffle_pick_tail();
1139 else
1140 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1141
1142 if (to_tail)
1143 add_to_free_list_tail(page, zone, order, migratetype);
1144 else
1145 add_to_free_list(page, zone, order, migratetype);
1146
1147 /* Notify page reporting subsystem of freed page */
1148 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1149 page_reporting_notify_free(order);
1150 }
1151
1152 /*
1153 * A bad page could be due to a number of fields. Instead of multiple branches,
1154 * try and check multiple fields with one check. The caller must do a detailed
1155 * check if necessary.
1156 */
1157 static inline bool page_expected_state(struct page *page,
1158 unsigned long check_flags)
1159 {
1160 if (unlikely(atomic_read(&page->_mapcount) != -1))
1161 return false;
1162
1163 if (unlikely((unsigned long)page->mapping |
1164 page_ref_count(page) |
1165 #ifdef CONFIG_MEMCG
1166 page->memcg_data |
1167 #endif
1168 (page->flags & check_flags)))
1169 return false;
1170
1171 return true;
1172 }
1173
1174 static const char *page_bad_reason(struct page *page, unsigned long flags)
1175 {
1176 const char *bad_reason = NULL;
1177
1178 if (unlikely(atomic_read(&page->_mapcount) != -1))
1179 bad_reason = "nonzero mapcount";
1180 if (unlikely(page->mapping != NULL))
1181 bad_reason = "non-NULL mapping";
1182 if (unlikely(page_ref_count(page) != 0))
1183 bad_reason = "nonzero _refcount";
1184 if (unlikely(page->flags & flags)) {
1185 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1186 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1187 else
1188 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1189 }
1190 #ifdef CONFIG_MEMCG
1191 if (unlikely(page->memcg_data))
1192 bad_reason = "page still charged to cgroup";
1193 #endif
1194 return bad_reason;
1195 }
1196
1197 static void check_free_page_bad(struct page *page)
1198 {
1199 bad_page(page,
1200 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1201 }
1202
1203 static inline int check_free_page(struct page *page)
1204 {
1205 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1206 return 0;
1207
1208 /* Something has gone sideways, find it */
1209 check_free_page_bad(page);
1210 return 1;
1211 }
1212
1213 static int free_tail_pages_check(struct page *head_page, struct page *page)
1214 {
1215 int ret = 1;
1216
1217 /*
1218 * We rely page->lru.next never has bit 0 set, unless the page
1219 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1220 */
1221 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1222
1223 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1224 ret = 0;
1225 goto out;
1226 }
1227 switch (page - head_page) {
1228 case 1:
1229 /* the first tail page: ->mapping may be compound_mapcount() */
1230 if (unlikely(compound_mapcount(page))) {
1231 bad_page(page, "nonzero compound_mapcount");
1232 goto out;
1233 }
1234 break;
1235 case 2:
1236 /*
1237 * the second tail page: ->mapping is
1238 * deferred_list.next -- ignore value.
1239 */
1240 break;
1241 default:
1242 if (page->mapping != TAIL_MAPPING) {
1243 bad_page(page, "corrupted mapping in tail page");
1244 goto out;
1245 }
1246 break;
1247 }
1248 if (unlikely(!PageTail(page))) {
1249 bad_page(page, "PageTail not set");
1250 goto out;
1251 }
1252 if (unlikely(compound_head(page) != head_page)) {
1253 bad_page(page, "compound_head not consistent");
1254 goto out;
1255 }
1256 ret = 0;
1257 out:
1258 page->mapping = NULL;
1259 clear_compound_head(page);
1260 return ret;
1261 }
1262
1263 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
1264 {
1265 int i;
1266
1267 if (zero_tags) {
1268 for (i = 0; i < numpages; i++)
1269 tag_clear_highpage(page + i);
1270 return;
1271 }
1272
1273 /* s390's use of memset() could override KASAN redzones. */
1274 kasan_disable_current();
1275 for (i = 0; i < numpages; i++) {
1276 u8 tag = page_kasan_tag(page + i);
1277 page_kasan_tag_reset(page + i);
1278 clear_highpage(page + i);
1279 page_kasan_tag_set(page + i, tag);
1280 }
1281 kasan_enable_current();
1282 }
1283
1284 static __always_inline bool free_pages_prepare(struct page *page,
1285 unsigned int order, bool check_free, fpi_t fpi_flags)
1286 {
1287 int bad = 0;
1288 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1289
1290 VM_BUG_ON_PAGE(PageTail(page), page);
1291
1292 trace_mm_page_free(page, order);
1293
1294 if (unlikely(PageHWPoison(page)) && !order) {
1295 /*
1296 * Do not let hwpoison pages hit pcplists/buddy
1297 * Untie memcg state and reset page's owner
1298 */
1299 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1300 __memcg_kmem_uncharge_page(page, order);
1301 reset_page_owner(page, order);
1302 return false;
1303 }
1304
1305 /*
1306 * Check tail pages before head page information is cleared to
1307 * avoid checking PageCompound for order-0 pages.
1308 */
1309 if (unlikely(order)) {
1310 bool compound = PageCompound(page);
1311 int i;
1312
1313 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1314
1315 if (compound)
1316 ClearPageDoubleMap(page);
1317 for (i = 1; i < (1 << order); i++) {
1318 if (compound)
1319 bad += free_tail_pages_check(page, page + i);
1320 if (unlikely(check_free_page(page + i))) {
1321 bad++;
1322 continue;
1323 }
1324 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1325 }
1326 }
1327 if (PageMappingFlags(page))
1328 page->mapping = NULL;
1329 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1330 __memcg_kmem_uncharge_page(page, order);
1331 if (check_free)
1332 bad += check_free_page(page);
1333 if (bad)
1334 return false;
1335
1336 page_cpupid_reset_last(page);
1337 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1338 reset_page_owner(page, order);
1339
1340 if (!PageHighMem(page)) {
1341 debug_check_no_locks_freed(page_address(page),
1342 PAGE_SIZE << order);
1343 debug_check_no_obj_freed(page_address(page),
1344 PAGE_SIZE << order);
1345 }
1346
1347 kernel_poison_pages(page, 1 << order);
1348
1349 /*
1350 * As memory initialization might be integrated into KASAN,
1351 * kasan_free_pages and kernel_init_free_pages must be
1352 * kept together to avoid discrepancies in behavior.
1353 *
1354 * With hardware tag-based KASAN, memory tags must be set before the
1355 * page becomes unavailable via debug_pagealloc or arch_free_page.
1356 */
1357 if (kasan_has_integrated_init()) {
1358 if (!skip_kasan_poison)
1359 kasan_free_pages(page, order);
1360 } else {
1361 bool init = want_init_on_free();
1362
1363 if (init)
1364 kernel_init_free_pages(page, 1 << order, false);
1365 if (!skip_kasan_poison)
1366 kasan_poison_pages(page, order, init);
1367 }
1368
1369 /*
1370 * arch_free_page() can make the page's contents inaccessible. s390
1371 * does this. So nothing which can access the page's contents should
1372 * happen after this.
1373 */
1374 arch_free_page(page, order);
1375
1376 debug_pagealloc_unmap_pages(page, 1 << order);
1377
1378 return true;
1379 }
1380
1381 #ifdef CONFIG_DEBUG_VM
1382 /*
1383 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1384 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1385 * moved from pcp lists to free lists.
1386 */
1387 static bool free_pcp_prepare(struct page *page, unsigned int order)
1388 {
1389 return free_pages_prepare(page, order, true, FPI_NONE);
1390 }
1391
1392 static bool bulkfree_pcp_prepare(struct page *page)
1393 {
1394 if (debug_pagealloc_enabled_static())
1395 return check_free_page(page);
1396 else
1397 return false;
1398 }
1399 #else
1400 /*
1401 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1402 * moving from pcp lists to free list in order to reduce overhead. With
1403 * debug_pagealloc enabled, they are checked also immediately when being freed
1404 * to the pcp lists.
1405 */
1406 static bool free_pcp_prepare(struct page *page, unsigned int order)
1407 {
1408 if (debug_pagealloc_enabled_static())
1409 return free_pages_prepare(page, order, true, FPI_NONE);
1410 else
1411 return free_pages_prepare(page, order, false, FPI_NONE);
1412 }
1413
1414 static bool bulkfree_pcp_prepare(struct page *page)
1415 {
1416 return check_free_page(page);
1417 }
1418 #endif /* CONFIG_DEBUG_VM */
1419
1420 static inline void prefetch_buddy(struct page *page)
1421 {
1422 unsigned long pfn = page_to_pfn(page);
1423 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1424 struct page *buddy = page + (buddy_pfn - pfn);
1425
1426 prefetch(buddy);
1427 }
1428
1429 /*
1430 * Frees a number of pages from the PCP lists
1431 * Assumes all pages on list are in same zone, and of same order.
1432 * count is the number of pages to free.
1433 *
1434 * If the zone was previously in an "all pages pinned" state then look to
1435 * see if this freeing clears that state.
1436 *
1437 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1438 * pinned" detection logic.
1439 */
1440 static void free_pcppages_bulk(struct zone *zone, int count,
1441 struct per_cpu_pages *pcp)
1442 {
1443 int pindex = 0;
1444 int batch_free = 0;
1445 int nr_freed = 0;
1446 unsigned int order;
1447 int prefetch_nr = READ_ONCE(pcp->batch);
1448 bool isolated_pageblocks;
1449 struct page *page, *tmp;
1450 LIST_HEAD(head);
1451
1452 /*
1453 * Ensure proper count is passed which otherwise would stuck in the
1454 * below while (list_empty(list)) loop.
1455 */
1456 count = min(pcp->count, count);
1457 while (count > 0) {
1458 struct list_head *list;
1459
1460 /*
1461 * Remove pages from lists in a round-robin fashion. A
1462 * batch_free count is maintained that is incremented when an
1463 * empty list is encountered. This is so more pages are freed
1464 * off fuller lists instead of spinning excessively around empty
1465 * lists
1466 */
1467 do {
1468 batch_free++;
1469 if (++pindex == NR_PCP_LISTS)
1470 pindex = 0;
1471 list = &pcp->lists[pindex];
1472 } while (list_empty(list));
1473
1474 /* This is the only non-empty list. Free them all. */
1475 if (batch_free == NR_PCP_LISTS)
1476 batch_free = count;
1477
1478 order = pindex_to_order(pindex);
1479 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1480 do {
1481 page = list_last_entry(list, struct page, lru);
1482 /* must delete to avoid corrupting pcp list */
1483 list_del(&page->lru);
1484 nr_freed += 1 << order;
1485 count -= 1 << order;
1486
1487 if (bulkfree_pcp_prepare(page))
1488 continue;
1489
1490 /* Encode order with the migratetype */
1491 page->index <<= NR_PCP_ORDER_WIDTH;
1492 page->index |= order;
1493
1494 list_add_tail(&page->lru, &head);
1495
1496 /*
1497 * We are going to put the page back to the global
1498 * pool, prefetch its buddy to speed up later access
1499 * under zone->lock. It is believed the overhead of
1500 * an additional test and calculating buddy_pfn here
1501 * can be offset by reduced memory latency later. To
1502 * avoid excessive prefetching due to large count, only
1503 * prefetch buddy for the first pcp->batch nr of pages.
1504 */
1505 if (prefetch_nr) {
1506 prefetch_buddy(page);
1507 prefetch_nr--;
1508 }
1509 } while (count > 0 && --batch_free && !list_empty(list));
1510 }
1511 pcp->count -= nr_freed;
1512
1513 /*
1514 * local_lock_irq held so equivalent to spin_lock_irqsave for
1515 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1516 */
1517 spin_lock(&zone->lock);
1518 isolated_pageblocks = has_isolate_pageblock(zone);
1519
1520 /*
1521 * Use safe version since after __free_one_page(),
1522 * page->lru.next will not point to original list.
1523 */
1524 list_for_each_entry_safe(page, tmp, &head, lru) {
1525 int mt = get_pcppage_migratetype(page);
1526
1527 /* mt has been encoded with the order (see above) */
1528 order = mt & NR_PCP_ORDER_MASK;
1529 mt >>= NR_PCP_ORDER_WIDTH;
1530
1531 /* MIGRATE_ISOLATE page should not go to pcplists */
1532 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1533 /* Pageblock could have been isolated meanwhile */
1534 if (unlikely(isolated_pageblocks))
1535 mt = get_pageblock_migratetype(page);
1536
1537 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1538 trace_mm_page_pcpu_drain(page, order, mt);
1539 }
1540 spin_unlock(&zone->lock);
1541 }
1542
1543 static void free_one_page(struct zone *zone,
1544 struct page *page, unsigned long pfn,
1545 unsigned int order,
1546 int migratetype, fpi_t fpi_flags)
1547 {
1548 unsigned long flags;
1549
1550 spin_lock_irqsave(&zone->lock, flags);
1551 if (unlikely(has_isolate_pageblock(zone) ||
1552 is_migrate_isolate(migratetype))) {
1553 migratetype = get_pfnblock_migratetype(page, pfn);
1554 }
1555 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1556 spin_unlock_irqrestore(&zone->lock, flags);
1557 }
1558
1559 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1560 unsigned long zone, int nid)
1561 {
1562 mm_zero_struct_page(page);
1563 set_page_links(page, zone, nid, pfn);
1564 init_page_count(page);
1565 page_mapcount_reset(page);
1566 page_cpupid_reset_last(page);
1567 page_kasan_tag_reset(page);
1568
1569 INIT_LIST_HEAD(&page->lru);
1570 #ifdef WANT_PAGE_VIRTUAL
1571 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1572 if (!is_highmem_idx(zone))
1573 set_page_address(page, __va(pfn << PAGE_SHIFT));
1574 #endif
1575 }
1576
1577 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1578 static void __meminit init_reserved_page(unsigned long pfn)
1579 {
1580 pg_data_t *pgdat;
1581 int nid, zid;
1582
1583 if (!early_page_uninitialised(pfn))
1584 return;
1585
1586 nid = early_pfn_to_nid(pfn);
1587 pgdat = NODE_DATA(nid);
1588
1589 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1590 struct zone *zone = &pgdat->node_zones[zid];
1591
1592 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1593 break;
1594 }
1595 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1596 }
1597 #else
1598 static inline void init_reserved_page(unsigned long pfn)
1599 {
1600 }
1601 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1602
1603 /*
1604 * Initialised pages do not have PageReserved set. This function is
1605 * called for each range allocated by the bootmem allocator and
1606 * marks the pages PageReserved. The remaining valid pages are later
1607 * sent to the buddy page allocator.
1608 */
1609 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1610 {
1611 unsigned long start_pfn = PFN_DOWN(start);
1612 unsigned long end_pfn = PFN_UP(end);
1613
1614 for (; start_pfn < end_pfn; start_pfn++) {
1615 if (pfn_valid(start_pfn)) {
1616 struct page *page = pfn_to_page(start_pfn);
1617
1618 init_reserved_page(start_pfn);
1619
1620 /* Avoid false-positive PageTail() */
1621 INIT_LIST_HEAD(&page->lru);
1622
1623 /*
1624 * no need for atomic set_bit because the struct
1625 * page is not visible yet so nobody should
1626 * access it yet.
1627 */
1628 __SetPageReserved(page);
1629 }
1630 }
1631 }
1632
1633 static void __free_pages_ok(struct page *page, unsigned int order,
1634 fpi_t fpi_flags)
1635 {
1636 unsigned long flags;
1637 int migratetype;
1638 unsigned long pfn = page_to_pfn(page);
1639 struct zone *zone = page_zone(page);
1640
1641 if (!free_pages_prepare(page, order, true, fpi_flags))
1642 return;
1643
1644 migratetype = get_pfnblock_migratetype(page, pfn);
1645
1646 spin_lock_irqsave(&zone->lock, flags);
1647 if (unlikely(has_isolate_pageblock(zone) ||
1648 is_migrate_isolate(migratetype))) {
1649 migratetype = get_pfnblock_migratetype(page, pfn);
1650 }
1651 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1652 spin_unlock_irqrestore(&zone->lock, flags);
1653
1654 __count_vm_events(PGFREE, 1 << order);
1655 }
1656
1657 void __free_pages_core(struct page *page, unsigned int order)
1658 {
1659 unsigned int nr_pages = 1 << order;
1660 struct page *p = page;
1661 unsigned int loop;
1662
1663 /*
1664 * When initializing the memmap, __init_single_page() sets the refcount
1665 * of all pages to 1 ("allocated"/"not free"). We have to set the
1666 * refcount of all involved pages to 0.
1667 */
1668 prefetchw(p);
1669 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1670 prefetchw(p + 1);
1671 __ClearPageReserved(p);
1672 set_page_count(p, 0);
1673 }
1674 __ClearPageReserved(p);
1675 set_page_count(p, 0);
1676
1677 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1678
1679 /*
1680 * Bypass PCP and place fresh pages right to the tail, primarily
1681 * relevant for memory onlining.
1682 */
1683 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1684 }
1685
1686 #ifdef CONFIG_NUMA
1687
1688 /*
1689 * During memory init memblocks map pfns to nids. The search is expensive and
1690 * this caches recent lookups. The implementation of __early_pfn_to_nid
1691 * treats start/end as pfns.
1692 */
1693 struct mminit_pfnnid_cache {
1694 unsigned long last_start;
1695 unsigned long last_end;
1696 int last_nid;
1697 };
1698
1699 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1700
1701 /*
1702 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1703 */
1704 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1705 struct mminit_pfnnid_cache *state)
1706 {
1707 unsigned long start_pfn, end_pfn;
1708 int nid;
1709
1710 if (state->last_start <= pfn && pfn < state->last_end)
1711 return state->last_nid;
1712
1713 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1714 if (nid != NUMA_NO_NODE) {
1715 state->last_start = start_pfn;
1716 state->last_end = end_pfn;
1717 state->last_nid = nid;
1718 }
1719
1720 return nid;
1721 }
1722
1723 int __meminit early_pfn_to_nid(unsigned long pfn)
1724 {
1725 static DEFINE_SPINLOCK(early_pfn_lock);
1726 int nid;
1727
1728 spin_lock(&early_pfn_lock);
1729 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1730 if (nid < 0)
1731 nid = first_online_node;
1732 spin_unlock(&early_pfn_lock);
1733
1734 return nid;
1735 }
1736 #endif /* CONFIG_NUMA */
1737
1738 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1739 unsigned int order)
1740 {
1741 if (early_page_uninitialised(pfn))
1742 return;
1743 __free_pages_core(page, order);
1744 }
1745
1746 /*
1747 * Check that the whole (or subset of) a pageblock given by the interval of
1748 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1749 * with the migration of free compaction scanner.
1750 *
1751 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1752 *
1753 * It's possible on some configurations to have a setup like node0 node1 node0
1754 * i.e. it's possible that all pages within a zones range of pages do not
1755 * belong to a single zone. We assume that a border between node0 and node1
1756 * can occur within a single pageblock, but not a node0 node1 node0
1757 * interleaving within a single pageblock. It is therefore sufficient to check
1758 * the first and last page of a pageblock and avoid checking each individual
1759 * page in a pageblock.
1760 */
1761 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1762 unsigned long end_pfn, struct zone *zone)
1763 {
1764 struct page *start_page;
1765 struct page *end_page;
1766
1767 /* end_pfn is one past the range we are checking */
1768 end_pfn--;
1769
1770 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1771 return NULL;
1772
1773 start_page = pfn_to_online_page(start_pfn);
1774 if (!start_page)
1775 return NULL;
1776
1777 if (page_zone(start_page) != zone)
1778 return NULL;
1779
1780 end_page = pfn_to_page(end_pfn);
1781
1782 /* This gives a shorter code than deriving page_zone(end_page) */
1783 if (page_zone_id(start_page) != page_zone_id(end_page))
1784 return NULL;
1785
1786 return start_page;
1787 }
1788
1789 void set_zone_contiguous(struct zone *zone)
1790 {
1791 unsigned long block_start_pfn = zone->zone_start_pfn;
1792 unsigned long block_end_pfn;
1793
1794 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1795 for (; block_start_pfn < zone_end_pfn(zone);
1796 block_start_pfn = block_end_pfn,
1797 block_end_pfn += pageblock_nr_pages) {
1798
1799 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1800
1801 if (!__pageblock_pfn_to_page(block_start_pfn,
1802 block_end_pfn, zone))
1803 return;
1804 cond_resched();
1805 }
1806
1807 /* We confirm that there is no hole */
1808 zone->contiguous = true;
1809 }
1810
1811 void clear_zone_contiguous(struct zone *zone)
1812 {
1813 zone->contiguous = false;
1814 }
1815
1816 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1817 static void __init deferred_free_range(unsigned long pfn,
1818 unsigned long nr_pages)
1819 {
1820 struct page *page;
1821 unsigned long i;
1822
1823 if (!nr_pages)
1824 return;
1825
1826 page = pfn_to_page(pfn);
1827
1828 /* Free a large naturally-aligned chunk if possible */
1829 if (nr_pages == pageblock_nr_pages &&
1830 (pfn & (pageblock_nr_pages - 1)) == 0) {
1831 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1832 __free_pages_core(page, pageblock_order);
1833 return;
1834 }
1835
1836 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1837 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1838 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1839 __free_pages_core(page, 0);
1840 }
1841 }
1842
1843 /* Completion tracking for deferred_init_memmap() threads */
1844 static atomic_t pgdat_init_n_undone __initdata;
1845 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1846
1847 static inline void __init pgdat_init_report_one_done(void)
1848 {
1849 if (atomic_dec_and_test(&pgdat_init_n_undone))
1850 complete(&pgdat_init_all_done_comp);
1851 }
1852
1853 /*
1854 * Returns true if page needs to be initialized or freed to buddy allocator.
1855 *
1856 * First we check if pfn is valid on architectures where it is possible to have
1857 * holes within pageblock_nr_pages. On systems where it is not possible, this
1858 * function is optimized out.
1859 *
1860 * Then, we check if a current large page is valid by only checking the validity
1861 * of the head pfn.
1862 */
1863 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1864 {
1865 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1866 return false;
1867 return true;
1868 }
1869
1870 /*
1871 * Free pages to buddy allocator. Try to free aligned pages in
1872 * pageblock_nr_pages sizes.
1873 */
1874 static void __init deferred_free_pages(unsigned long pfn,
1875 unsigned long end_pfn)
1876 {
1877 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1878 unsigned long nr_free = 0;
1879
1880 for (; pfn < end_pfn; pfn++) {
1881 if (!deferred_pfn_valid(pfn)) {
1882 deferred_free_range(pfn - nr_free, nr_free);
1883 nr_free = 0;
1884 } else if (!(pfn & nr_pgmask)) {
1885 deferred_free_range(pfn - nr_free, nr_free);
1886 nr_free = 1;
1887 } else {
1888 nr_free++;
1889 }
1890 }
1891 /* Free the last block of pages to allocator */
1892 deferred_free_range(pfn - nr_free, nr_free);
1893 }
1894
1895 /*
1896 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1897 * by performing it only once every pageblock_nr_pages.
1898 * Return number of pages initialized.
1899 */
1900 static unsigned long __init deferred_init_pages(struct zone *zone,
1901 unsigned long pfn,
1902 unsigned long end_pfn)
1903 {
1904 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1905 int nid = zone_to_nid(zone);
1906 unsigned long nr_pages = 0;
1907 int zid = zone_idx(zone);
1908 struct page *page = NULL;
1909
1910 for (; pfn < end_pfn; pfn++) {
1911 if (!deferred_pfn_valid(pfn)) {
1912 page = NULL;
1913 continue;
1914 } else if (!page || !(pfn & nr_pgmask)) {
1915 page = pfn_to_page(pfn);
1916 } else {
1917 page++;
1918 }
1919 __init_single_page(page, pfn, zid, nid);
1920 nr_pages++;
1921 }
1922 return (nr_pages);
1923 }
1924
1925 /*
1926 * This function is meant to pre-load the iterator for the zone init.
1927 * Specifically it walks through the ranges until we are caught up to the
1928 * first_init_pfn value and exits there. If we never encounter the value we
1929 * return false indicating there are no valid ranges left.
1930 */
1931 static bool __init
1932 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1933 unsigned long *spfn, unsigned long *epfn,
1934 unsigned long first_init_pfn)
1935 {
1936 u64 j;
1937
1938 /*
1939 * Start out by walking through the ranges in this zone that have
1940 * already been initialized. We don't need to do anything with them
1941 * so we just need to flush them out of the system.
1942 */
1943 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1944 if (*epfn <= first_init_pfn)
1945 continue;
1946 if (*spfn < first_init_pfn)
1947 *spfn = first_init_pfn;
1948 *i = j;
1949 return true;
1950 }
1951
1952 return false;
1953 }
1954
1955 /*
1956 * Initialize and free pages. We do it in two loops: first we initialize
1957 * struct page, then free to buddy allocator, because while we are
1958 * freeing pages we can access pages that are ahead (computing buddy
1959 * page in __free_one_page()).
1960 *
1961 * In order to try and keep some memory in the cache we have the loop
1962 * broken along max page order boundaries. This way we will not cause
1963 * any issues with the buddy page computation.
1964 */
1965 static unsigned long __init
1966 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1967 unsigned long *end_pfn)
1968 {
1969 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1970 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1971 unsigned long nr_pages = 0;
1972 u64 j = *i;
1973
1974 /* First we loop through and initialize the page values */
1975 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1976 unsigned long t;
1977
1978 if (mo_pfn <= *start_pfn)
1979 break;
1980
1981 t = min(mo_pfn, *end_pfn);
1982 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1983
1984 if (mo_pfn < *end_pfn) {
1985 *start_pfn = mo_pfn;
1986 break;
1987 }
1988 }
1989
1990 /* Reset values and now loop through freeing pages as needed */
1991 swap(j, *i);
1992
1993 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1994 unsigned long t;
1995
1996 if (mo_pfn <= spfn)
1997 break;
1998
1999 t = min(mo_pfn, epfn);
2000 deferred_free_pages(spfn, t);
2001
2002 if (mo_pfn <= epfn)
2003 break;
2004 }
2005
2006 return nr_pages;
2007 }
2008
2009 static void __init
2010 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2011 void *arg)
2012 {
2013 unsigned long spfn, epfn;
2014 struct zone *zone = arg;
2015 u64 i;
2016
2017 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2018
2019 /*
2020 * Initialize and free pages in MAX_ORDER sized increments so that we
2021 * can avoid introducing any issues with the buddy allocator.
2022 */
2023 while (spfn < end_pfn) {
2024 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2025 cond_resched();
2026 }
2027 }
2028
2029 /* An arch may override for more concurrency. */
2030 __weak int __init
2031 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2032 {
2033 return 1;
2034 }
2035
2036 /* Initialise remaining memory on a node */
2037 static int __init deferred_init_memmap(void *data)
2038 {
2039 pg_data_t *pgdat = data;
2040 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2041 unsigned long spfn = 0, epfn = 0;
2042 unsigned long first_init_pfn, flags;
2043 unsigned long start = jiffies;
2044 struct zone *zone;
2045 int zid, max_threads;
2046 u64 i;
2047
2048 /* Bind memory initialisation thread to a local node if possible */
2049 if (!cpumask_empty(cpumask))
2050 set_cpus_allowed_ptr(current, cpumask);
2051
2052 pgdat_resize_lock(pgdat, &flags);
2053 first_init_pfn = pgdat->first_deferred_pfn;
2054 if (first_init_pfn == ULONG_MAX) {
2055 pgdat_resize_unlock(pgdat, &flags);
2056 pgdat_init_report_one_done();
2057 return 0;
2058 }
2059
2060 /* Sanity check boundaries */
2061 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2062 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2063 pgdat->first_deferred_pfn = ULONG_MAX;
2064
2065 /*
2066 * Once we unlock here, the zone cannot be grown anymore, thus if an
2067 * interrupt thread must allocate this early in boot, zone must be
2068 * pre-grown prior to start of deferred page initialization.
2069 */
2070 pgdat_resize_unlock(pgdat, &flags);
2071
2072 /* Only the highest zone is deferred so find it */
2073 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2074 zone = pgdat->node_zones + zid;
2075 if (first_init_pfn < zone_end_pfn(zone))
2076 break;
2077 }
2078
2079 /* If the zone is empty somebody else may have cleared out the zone */
2080 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2081 first_init_pfn))
2082 goto zone_empty;
2083
2084 max_threads = deferred_page_init_max_threads(cpumask);
2085
2086 while (spfn < epfn) {
2087 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2088 struct padata_mt_job job = {
2089 .thread_fn = deferred_init_memmap_chunk,
2090 .fn_arg = zone,
2091 .start = spfn,
2092 .size = epfn_align - spfn,
2093 .align = PAGES_PER_SECTION,
2094 .min_chunk = PAGES_PER_SECTION,
2095 .max_threads = max_threads,
2096 };
2097
2098 padata_do_multithreaded(&job);
2099 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2100 epfn_align);
2101 }
2102 zone_empty:
2103 /* Sanity check that the next zone really is unpopulated */
2104 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2105
2106 pr_info("node %d deferred pages initialised in %ums\n",
2107 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2108
2109 pgdat_init_report_one_done();
2110 return 0;
2111 }
2112
2113 /*
2114 * If this zone has deferred pages, try to grow it by initializing enough
2115 * deferred pages to satisfy the allocation specified by order, rounded up to
2116 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2117 * of SECTION_SIZE bytes by initializing struct pages in increments of
2118 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2119 *
2120 * Return true when zone was grown, otherwise return false. We return true even
2121 * when we grow less than requested, to let the caller decide if there are
2122 * enough pages to satisfy the allocation.
2123 *
2124 * Note: We use noinline because this function is needed only during boot, and
2125 * it is called from a __ref function _deferred_grow_zone. This way we are
2126 * making sure that it is not inlined into permanent text section.
2127 */
2128 static noinline bool __init
2129 deferred_grow_zone(struct zone *zone, unsigned int order)
2130 {
2131 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2132 pg_data_t *pgdat = zone->zone_pgdat;
2133 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2134 unsigned long spfn, epfn, flags;
2135 unsigned long nr_pages = 0;
2136 u64 i;
2137
2138 /* Only the last zone may have deferred pages */
2139 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2140 return false;
2141
2142 pgdat_resize_lock(pgdat, &flags);
2143
2144 /*
2145 * If someone grew this zone while we were waiting for spinlock, return
2146 * true, as there might be enough pages already.
2147 */
2148 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2149 pgdat_resize_unlock(pgdat, &flags);
2150 return true;
2151 }
2152
2153 /* If the zone is empty somebody else may have cleared out the zone */
2154 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2155 first_deferred_pfn)) {
2156 pgdat->first_deferred_pfn = ULONG_MAX;
2157 pgdat_resize_unlock(pgdat, &flags);
2158 /* Retry only once. */
2159 return first_deferred_pfn != ULONG_MAX;
2160 }
2161
2162 /*
2163 * Initialize and free pages in MAX_ORDER sized increments so
2164 * that we can avoid introducing any issues with the buddy
2165 * allocator.
2166 */
2167 while (spfn < epfn) {
2168 /* update our first deferred PFN for this section */
2169 first_deferred_pfn = spfn;
2170
2171 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2172 touch_nmi_watchdog();
2173
2174 /* We should only stop along section boundaries */
2175 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2176 continue;
2177
2178 /* If our quota has been met we can stop here */
2179 if (nr_pages >= nr_pages_needed)
2180 break;
2181 }
2182
2183 pgdat->first_deferred_pfn = spfn;
2184 pgdat_resize_unlock(pgdat, &flags);
2185
2186 return nr_pages > 0;
2187 }
2188
2189 /*
2190 * deferred_grow_zone() is __init, but it is called from
2191 * get_page_from_freelist() during early boot until deferred_pages permanently
2192 * disables this call. This is why we have refdata wrapper to avoid warning,
2193 * and to ensure that the function body gets unloaded.
2194 */
2195 static bool __ref
2196 _deferred_grow_zone(struct zone *zone, unsigned int order)
2197 {
2198 return deferred_grow_zone(zone, order);
2199 }
2200
2201 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2202
2203 void __init page_alloc_init_late(void)
2204 {
2205 struct zone *zone;
2206 int nid;
2207
2208 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2209
2210 /* There will be num_node_state(N_MEMORY) threads */
2211 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2212 for_each_node_state(nid, N_MEMORY) {
2213 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2214 }
2215
2216 /* Block until all are initialised */
2217 wait_for_completion(&pgdat_init_all_done_comp);
2218
2219 /*
2220 * We initialized the rest of the deferred pages. Permanently disable
2221 * on-demand struct page initialization.
2222 */
2223 static_branch_disable(&deferred_pages);
2224
2225 /* Reinit limits that are based on free pages after the kernel is up */
2226 files_maxfiles_init();
2227 #endif
2228
2229 buffer_init();
2230
2231 /* Discard memblock private memory */
2232 memblock_discard();
2233
2234 for_each_node_state(nid, N_MEMORY)
2235 shuffle_free_memory(NODE_DATA(nid));
2236
2237 for_each_populated_zone(zone)
2238 set_zone_contiguous(zone);
2239 }
2240
2241 #ifdef CONFIG_CMA
2242 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2243 void __init init_cma_reserved_pageblock(struct page *page)
2244 {
2245 unsigned i = pageblock_nr_pages;
2246 struct page *p = page;
2247
2248 do {
2249 __ClearPageReserved(p);
2250 set_page_count(p, 0);
2251 } while (++p, --i);
2252
2253 set_pageblock_migratetype(page, MIGRATE_CMA);
2254
2255 if (pageblock_order >= MAX_ORDER) {
2256 i = pageblock_nr_pages;
2257 p = page;
2258 do {
2259 set_page_refcounted(p);
2260 __free_pages(p, MAX_ORDER - 1);
2261 p += MAX_ORDER_NR_PAGES;
2262 } while (i -= MAX_ORDER_NR_PAGES);
2263 } else {
2264 set_page_refcounted(page);
2265 __free_pages(page, pageblock_order);
2266 }
2267
2268 adjust_managed_page_count(page, pageblock_nr_pages);
2269 page_zone(page)->cma_pages += pageblock_nr_pages;
2270 }
2271 #endif
2272
2273 /*
2274 * The order of subdivision here is critical for the IO subsystem.
2275 * Please do not alter this order without good reasons and regression
2276 * testing. Specifically, as large blocks of memory are subdivided,
2277 * the order in which smaller blocks are delivered depends on the order
2278 * they're subdivided in this function. This is the primary factor
2279 * influencing the order in which pages are delivered to the IO
2280 * subsystem according to empirical testing, and this is also justified
2281 * by considering the behavior of a buddy system containing a single
2282 * large block of memory acted on by a series of small allocations.
2283 * This behavior is a critical factor in sglist merging's success.
2284 *
2285 * -- nyc
2286 */
2287 static inline void expand(struct zone *zone, struct page *page,
2288 int low, int high, int migratetype)
2289 {
2290 unsigned long size = 1 << high;
2291
2292 while (high > low) {
2293 high--;
2294 size >>= 1;
2295 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2296
2297 /*
2298 * Mark as guard pages (or page), that will allow to
2299 * merge back to allocator when buddy will be freed.
2300 * Corresponding page table entries will not be touched,
2301 * pages will stay not present in virtual address space
2302 */
2303 if (set_page_guard(zone, &page[size], high, migratetype))
2304 continue;
2305
2306 add_to_free_list(&page[size], zone, high, migratetype);
2307 set_buddy_order(&page[size], high);
2308 }
2309 }
2310
2311 static void check_new_page_bad(struct page *page)
2312 {
2313 if (unlikely(page->flags & __PG_HWPOISON)) {
2314 /* Don't complain about hwpoisoned pages */
2315 page_mapcount_reset(page); /* remove PageBuddy */
2316 return;
2317 }
2318
2319 bad_page(page,
2320 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2321 }
2322
2323 /*
2324 * This page is about to be returned from the page allocator
2325 */
2326 static inline int check_new_page(struct page *page)
2327 {
2328 if (likely(page_expected_state(page,
2329 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2330 return 0;
2331
2332 check_new_page_bad(page);
2333 return 1;
2334 }
2335
2336 #ifdef CONFIG_DEBUG_VM
2337 /*
2338 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2339 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2340 * also checked when pcp lists are refilled from the free lists.
2341 */
2342 static inline bool check_pcp_refill(struct page *page)
2343 {
2344 if (debug_pagealloc_enabled_static())
2345 return check_new_page(page);
2346 else
2347 return false;
2348 }
2349
2350 static inline bool check_new_pcp(struct page *page)
2351 {
2352 return check_new_page(page);
2353 }
2354 #else
2355 /*
2356 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2357 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2358 * enabled, they are also checked when being allocated from the pcp lists.
2359 */
2360 static inline bool check_pcp_refill(struct page *page)
2361 {
2362 return check_new_page(page);
2363 }
2364 static inline bool check_new_pcp(struct page *page)
2365 {
2366 if (debug_pagealloc_enabled_static())
2367 return check_new_page(page);
2368 else
2369 return false;
2370 }
2371 #endif /* CONFIG_DEBUG_VM */
2372
2373 static bool check_new_pages(struct page *page, unsigned int order)
2374 {
2375 int i;
2376 for (i = 0; i < (1 << order); i++) {
2377 struct page *p = page + i;
2378
2379 if (unlikely(check_new_page(p)))
2380 return true;
2381 }
2382
2383 return false;
2384 }
2385
2386 inline void post_alloc_hook(struct page *page, unsigned int order,
2387 gfp_t gfp_flags)
2388 {
2389 set_page_private(page, 0);
2390 set_page_refcounted(page);
2391
2392 arch_alloc_page(page, order);
2393 debug_pagealloc_map_pages(page, 1 << order);
2394
2395 /*
2396 * Page unpoisoning must happen before memory initialization.
2397 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2398 * allocations and the page unpoisoning code will complain.
2399 */
2400 kernel_unpoison_pages(page, 1 << order);
2401
2402 /*
2403 * As memory initialization might be integrated into KASAN,
2404 * kasan_alloc_pages and kernel_init_free_pages must be
2405 * kept together to avoid discrepancies in behavior.
2406 */
2407 if (kasan_has_integrated_init()) {
2408 kasan_alloc_pages(page, order, gfp_flags);
2409 } else {
2410 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2411
2412 kasan_unpoison_pages(page, order, init);
2413 if (init)
2414 kernel_init_free_pages(page, 1 << order,
2415 gfp_flags & __GFP_ZEROTAGS);
2416 }
2417
2418 set_page_owner(page, order, gfp_flags);
2419 }
2420
2421 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2422 unsigned int alloc_flags)
2423 {
2424 post_alloc_hook(page, order, gfp_flags);
2425
2426 if (order && (gfp_flags & __GFP_COMP))
2427 prep_compound_page(page, order);
2428
2429 /*
2430 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2431 * allocate the page. The expectation is that the caller is taking
2432 * steps that will free more memory. The caller should avoid the page
2433 * being used for !PFMEMALLOC purposes.
2434 */
2435 if (alloc_flags & ALLOC_NO_WATERMARKS)
2436 set_page_pfmemalloc(page);
2437 else
2438 clear_page_pfmemalloc(page);
2439 }
2440
2441 /*
2442 * Go through the free lists for the given migratetype and remove
2443 * the smallest available page from the freelists
2444 */
2445 static __always_inline
2446 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2447 int migratetype)
2448 {
2449 unsigned int current_order;
2450 struct free_area *area;
2451 struct page *page;
2452
2453 /* Find a page of the appropriate size in the preferred list */
2454 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2455 area = &(zone->free_area[current_order]);
2456 page = get_page_from_free_area(area, migratetype);
2457 if (!page)
2458 continue;
2459 del_page_from_free_list(page, zone, current_order);
2460 expand(zone, page, order, current_order, migratetype);
2461 set_pcppage_migratetype(page, migratetype);
2462 return page;
2463 }
2464
2465 return NULL;
2466 }
2467
2468
2469 /*
2470 * This array describes the order lists are fallen back to when
2471 * the free lists for the desirable migrate type are depleted
2472 */
2473 static int fallbacks[MIGRATE_TYPES][3] = {
2474 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2475 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2476 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2477 #ifdef CONFIG_CMA
2478 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2479 #endif
2480 #ifdef CONFIG_MEMORY_ISOLATION
2481 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2482 #endif
2483 };
2484
2485 #ifdef CONFIG_CMA
2486 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2487 unsigned int order)
2488 {
2489 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2490 }
2491 #else
2492 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2493 unsigned int order) { return NULL; }
2494 #endif
2495
2496 /*
2497 * Move the free pages in a range to the freelist tail of the requested type.
2498 * Note that start_page and end_pages are not aligned on a pageblock
2499 * boundary. If alignment is required, use move_freepages_block()
2500 */
2501 static int move_freepages(struct zone *zone,
2502 unsigned long start_pfn, unsigned long end_pfn,
2503 int migratetype, int *num_movable)
2504 {
2505 struct page *page;
2506 unsigned long pfn;
2507 unsigned int order;
2508 int pages_moved = 0;
2509
2510 for (pfn = start_pfn; pfn <= end_pfn;) {
2511 page = pfn_to_page(pfn);
2512 if (!PageBuddy(page)) {
2513 /*
2514 * We assume that pages that could be isolated for
2515 * migration are movable. But we don't actually try
2516 * isolating, as that would be expensive.
2517 */
2518 if (num_movable &&
2519 (PageLRU(page) || __PageMovable(page)))
2520 (*num_movable)++;
2521 pfn++;
2522 continue;
2523 }
2524
2525 /* Make sure we are not inadvertently changing nodes */
2526 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2527 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2528
2529 order = buddy_order(page);
2530 move_to_free_list(page, zone, order, migratetype);
2531 pfn += 1 << order;
2532 pages_moved += 1 << order;
2533 }
2534
2535 return pages_moved;
2536 }
2537
2538 int move_freepages_block(struct zone *zone, struct page *page,
2539 int migratetype, int *num_movable)
2540 {
2541 unsigned long start_pfn, end_pfn, pfn;
2542
2543 if (num_movable)
2544 *num_movable = 0;
2545
2546 pfn = page_to_pfn(page);
2547 start_pfn = pfn & ~(pageblock_nr_pages - 1);
2548 end_pfn = start_pfn + pageblock_nr_pages - 1;
2549
2550 /* Do not cross zone boundaries */
2551 if (!zone_spans_pfn(zone, start_pfn))
2552 start_pfn = pfn;
2553 if (!zone_spans_pfn(zone, end_pfn))
2554 return 0;
2555
2556 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2557 num_movable);
2558 }
2559
2560 static void change_pageblock_range(struct page *pageblock_page,
2561 int start_order, int migratetype)
2562 {
2563 int nr_pageblocks = 1 << (start_order - pageblock_order);
2564
2565 while (nr_pageblocks--) {
2566 set_pageblock_migratetype(pageblock_page, migratetype);
2567 pageblock_page += pageblock_nr_pages;
2568 }
2569 }
2570
2571 /*
2572 * When we are falling back to another migratetype during allocation, try to
2573 * steal extra free pages from the same pageblocks to satisfy further
2574 * allocations, instead of polluting multiple pageblocks.
2575 *
2576 * If we are stealing a relatively large buddy page, it is likely there will
2577 * be more free pages in the pageblock, so try to steal them all. For
2578 * reclaimable and unmovable allocations, we steal regardless of page size,
2579 * as fragmentation caused by those allocations polluting movable pageblocks
2580 * is worse than movable allocations stealing from unmovable and reclaimable
2581 * pageblocks.
2582 */
2583 static bool can_steal_fallback(unsigned int order, int start_mt)
2584 {
2585 /*
2586 * Leaving this order check is intended, although there is
2587 * relaxed order check in next check. The reason is that
2588 * we can actually steal whole pageblock if this condition met,
2589 * but, below check doesn't guarantee it and that is just heuristic
2590 * so could be changed anytime.
2591 */
2592 if (order >= pageblock_order)
2593 return true;
2594
2595 if (order >= pageblock_order / 2 ||
2596 start_mt == MIGRATE_RECLAIMABLE ||
2597 start_mt == MIGRATE_UNMOVABLE ||
2598 page_group_by_mobility_disabled)
2599 return true;
2600
2601 return false;
2602 }
2603
2604 static inline bool boost_watermark(struct zone *zone)
2605 {
2606 unsigned long max_boost;
2607
2608 if (!watermark_boost_factor)
2609 return false;
2610 /*
2611 * Don't bother in zones that are unlikely to produce results.
2612 * On small machines, including kdump capture kernels running
2613 * in a small area, boosting the watermark can cause an out of
2614 * memory situation immediately.
2615 */
2616 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2617 return false;
2618
2619 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2620 watermark_boost_factor, 10000);
2621
2622 /*
2623 * high watermark may be uninitialised if fragmentation occurs
2624 * very early in boot so do not boost. We do not fall
2625 * through and boost by pageblock_nr_pages as failing
2626 * allocations that early means that reclaim is not going
2627 * to help and it may even be impossible to reclaim the
2628 * boosted watermark resulting in a hang.
2629 */
2630 if (!max_boost)
2631 return false;
2632
2633 max_boost = max(pageblock_nr_pages, max_boost);
2634
2635 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2636 max_boost);
2637
2638 return true;
2639 }
2640
2641 /*
2642 * This function implements actual steal behaviour. If order is large enough,
2643 * we can steal whole pageblock. If not, we first move freepages in this
2644 * pageblock to our migratetype and determine how many already-allocated pages
2645 * are there in the pageblock with a compatible migratetype. If at least half
2646 * of pages are free or compatible, we can change migratetype of the pageblock
2647 * itself, so pages freed in the future will be put on the correct free list.
2648 */
2649 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2650 unsigned int alloc_flags, int start_type, bool whole_block)
2651 {
2652 unsigned int current_order = buddy_order(page);
2653 int free_pages, movable_pages, alike_pages;
2654 int old_block_type;
2655
2656 old_block_type = get_pageblock_migratetype(page);
2657
2658 /*
2659 * This can happen due to races and we want to prevent broken
2660 * highatomic accounting.
2661 */
2662 if (is_migrate_highatomic(old_block_type))
2663 goto single_page;
2664
2665 /* Take ownership for orders >= pageblock_order */
2666 if (current_order >= pageblock_order) {
2667 change_pageblock_range(page, current_order, start_type);
2668 goto single_page;
2669 }
2670
2671 /*
2672 * Boost watermarks to increase reclaim pressure to reduce the
2673 * likelihood of future fallbacks. Wake kswapd now as the node
2674 * may be balanced overall and kswapd will not wake naturally.
2675 */
2676 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2677 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2678
2679 /* We are not allowed to try stealing from the whole block */
2680 if (!whole_block)
2681 goto single_page;
2682
2683 free_pages = move_freepages_block(zone, page, start_type,
2684 &movable_pages);
2685 /*
2686 * Determine how many pages are compatible with our allocation.
2687 * For movable allocation, it's the number of movable pages which
2688 * we just obtained. For other types it's a bit more tricky.
2689 */
2690 if (start_type == MIGRATE_MOVABLE) {
2691 alike_pages = movable_pages;
2692 } else {
2693 /*
2694 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2695 * to MOVABLE pageblock, consider all non-movable pages as
2696 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2697 * vice versa, be conservative since we can't distinguish the
2698 * exact migratetype of non-movable pages.
2699 */
2700 if (old_block_type == MIGRATE_MOVABLE)
2701 alike_pages = pageblock_nr_pages
2702 - (free_pages + movable_pages);
2703 else
2704 alike_pages = 0;
2705 }
2706
2707 /* moving whole block can fail due to zone boundary conditions */
2708 if (!free_pages)
2709 goto single_page;
2710
2711 /*
2712 * If a sufficient number of pages in the block are either free or of
2713 * comparable migratability as our allocation, claim the whole block.
2714 */
2715 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2716 page_group_by_mobility_disabled)
2717 set_pageblock_migratetype(page, start_type);
2718
2719 return;
2720
2721 single_page:
2722 move_to_free_list(page, zone, current_order, start_type);
2723 }
2724
2725 /*
2726 * Check whether there is a suitable fallback freepage with requested order.
2727 * If only_stealable is true, this function returns fallback_mt only if
2728 * we can steal other freepages all together. This would help to reduce
2729 * fragmentation due to mixed migratetype pages in one pageblock.
2730 */
2731 int find_suitable_fallback(struct free_area *area, unsigned int order,
2732 int migratetype, bool only_stealable, bool *can_steal)
2733 {
2734 int i;
2735 int fallback_mt;
2736
2737 if (area->nr_free == 0)
2738 return -1;
2739
2740 *can_steal = false;
2741 for (i = 0;; i++) {
2742 fallback_mt = fallbacks[migratetype][i];
2743 if (fallback_mt == MIGRATE_TYPES)
2744 break;
2745
2746 if (free_area_empty(area, fallback_mt))
2747 continue;
2748
2749 if (can_steal_fallback(order, migratetype))
2750 *can_steal = true;
2751
2752 if (!only_stealable)
2753 return fallback_mt;
2754
2755 if (*can_steal)
2756 return fallback_mt;
2757 }
2758
2759 return -1;
2760 }
2761
2762 /*
2763 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2764 * there are no empty page blocks that contain a page with a suitable order
2765 */
2766 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2767 unsigned int alloc_order)
2768 {
2769 int mt;
2770 unsigned long max_managed, flags;
2771
2772 /*
2773 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2774 * Check is race-prone but harmless.
2775 */
2776 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2777 if (zone->nr_reserved_highatomic >= max_managed)
2778 return;
2779
2780 spin_lock_irqsave(&zone->lock, flags);
2781
2782 /* Recheck the nr_reserved_highatomic limit under the lock */
2783 if (zone->nr_reserved_highatomic >= max_managed)
2784 goto out_unlock;
2785
2786 /* Yoink! */
2787 mt = get_pageblock_migratetype(page);
2788 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2789 && !is_migrate_cma(mt)) {
2790 zone->nr_reserved_highatomic += pageblock_nr_pages;
2791 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2792 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2793 }
2794
2795 out_unlock:
2796 spin_unlock_irqrestore(&zone->lock, flags);
2797 }
2798
2799 /*
2800 * Used when an allocation is about to fail under memory pressure. This
2801 * potentially hurts the reliability of high-order allocations when under
2802 * intense memory pressure but failed atomic allocations should be easier
2803 * to recover from than an OOM.
2804 *
2805 * If @force is true, try to unreserve a pageblock even though highatomic
2806 * pageblock is exhausted.
2807 */
2808 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2809 bool force)
2810 {
2811 struct zonelist *zonelist = ac->zonelist;
2812 unsigned long flags;
2813 struct zoneref *z;
2814 struct zone *zone;
2815 struct page *page;
2816 int order;
2817 bool ret;
2818
2819 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2820 ac->nodemask) {
2821 /*
2822 * Preserve at least one pageblock unless memory pressure
2823 * is really high.
2824 */
2825 if (!force && zone->nr_reserved_highatomic <=
2826 pageblock_nr_pages)
2827 continue;
2828
2829 spin_lock_irqsave(&zone->lock, flags);
2830 for (order = 0; order < MAX_ORDER; order++) {
2831 struct free_area *area = &(zone->free_area[order]);
2832
2833 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2834 if (!page)
2835 continue;
2836
2837 /*
2838 * In page freeing path, migratetype change is racy so
2839 * we can counter several free pages in a pageblock
2840 * in this loop although we changed the pageblock type
2841 * from highatomic to ac->migratetype. So we should
2842 * adjust the count once.
2843 */
2844 if (is_migrate_highatomic_page(page)) {
2845 /*
2846 * It should never happen but changes to
2847 * locking could inadvertently allow a per-cpu
2848 * drain to add pages to MIGRATE_HIGHATOMIC
2849 * while unreserving so be safe and watch for
2850 * underflows.
2851 */
2852 zone->nr_reserved_highatomic -= min(
2853 pageblock_nr_pages,
2854 zone->nr_reserved_highatomic);
2855 }
2856
2857 /*
2858 * Convert to ac->migratetype and avoid the normal
2859 * pageblock stealing heuristics. Minimally, the caller
2860 * is doing the work and needs the pages. More
2861 * importantly, if the block was always converted to
2862 * MIGRATE_UNMOVABLE or another type then the number
2863 * of pageblocks that cannot be completely freed
2864 * may increase.
2865 */
2866 set_pageblock_migratetype(page, ac->migratetype);
2867 ret = move_freepages_block(zone, page, ac->migratetype,
2868 NULL);
2869 if (ret) {
2870 spin_unlock_irqrestore(&zone->lock, flags);
2871 return ret;
2872 }
2873 }
2874 spin_unlock_irqrestore(&zone->lock, flags);
2875 }
2876
2877 return false;
2878 }
2879
2880 /*
2881 * Try finding a free buddy page on the fallback list and put it on the free
2882 * list of requested migratetype, possibly along with other pages from the same
2883 * block, depending on fragmentation avoidance heuristics. Returns true if
2884 * fallback was found so that __rmqueue_smallest() can grab it.
2885 *
2886 * The use of signed ints for order and current_order is a deliberate
2887 * deviation from the rest of this file, to make the for loop
2888 * condition simpler.
2889 */
2890 static __always_inline bool
2891 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2892 unsigned int alloc_flags)
2893 {
2894 struct free_area *area;
2895 int current_order;
2896 int min_order = order;
2897 struct page *page;
2898 int fallback_mt;
2899 bool can_steal;
2900
2901 /*
2902 * Do not steal pages from freelists belonging to other pageblocks
2903 * i.e. orders < pageblock_order. If there are no local zones free,
2904 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2905 */
2906 if (alloc_flags & ALLOC_NOFRAGMENT)
2907 min_order = pageblock_order;
2908
2909 /*
2910 * Find the largest available free page in the other list. This roughly
2911 * approximates finding the pageblock with the most free pages, which
2912 * would be too costly to do exactly.
2913 */
2914 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2915 --current_order) {
2916 area = &(zone->free_area[current_order]);
2917 fallback_mt = find_suitable_fallback(area, current_order,
2918 start_migratetype, false, &can_steal);
2919 if (fallback_mt == -1)
2920 continue;
2921
2922 /*
2923 * We cannot steal all free pages from the pageblock and the
2924 * requested migratetype is movable. In that case it's better to
2925 * steal and split the smallest available page instead of the
2926 * largest available page, because even if the next movable
2927 * allocation falls back into a different pageblock than this
2928 * one, it won't cause permanent fragmentation.
2929 */
2930 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2931 && current_order > order)
2932 goto find_smallest;
2933
2934 goto do_steal;
2935 }
2936
2937 return false;
2938
2939 find_smallest:
2940 for (current_order = order; current_order < MAX_ORDER;
2941 current_order++) {
2942 area = &(zone->free_area[current_order]);
2943 fallback_mt = find_suitable_fallback(area, current_order,
2944 start_migratetype, false, &can_steal);
2945 if (fallback_mt != -1)
2946 break;
2947 }
2948
2949 /*
2950 * This should not happen - we already found a suitable fallback
2951 * when looking for the largest page.
2952 */
2953 VM_BUG_ON(current_order == MAX_ORDER);
2954
2955 do_steal:
2956 page = get_page_from_free_area(area, fallback_mt);
2957
2958 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2959 can_steal);
2960
2961 trace_mm_page_alloc_extfrag(page, order, current_order,
2962 start_migratetype, fallback_mt);
2963
2964 return true;
2965
2966 }
2967
2968 /*
2969 * Do the hard work of removing an element from the buddy allocator.
2970 * Call me with the zone->lock already held.
2971 */
2972 static __always_inline struct page *
2973 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2974 unsigned int alloc_flags)
2975 {
2976 struct page *page;
2977
2978 if (IS_ENABLED(CONFIG_CMA)) {
2979 /*
2980 * Balance movable allocations between regular and CMA areas by
2981 * allocating from CMA when over half of the zone's free memory
2982 * is in the CMA area.
2983 */
2984 if (alloc_flags & ALLOC_CMA &&
2985 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2986 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2987 page = __rmqueue_cma_fallback(zone, order);
2988 if (page)
2989 goto out;
2990 }
2991 }
2992 retry:
2993 page = __rmqueue_smallest(zone, order, migratetype);
2994 if (unlikely(!page)) {
2995 if (alloc_flags & ALLOC_CMA)
2996 page = __rmqueue_cma_fallback(zone, order);
2997
2998 if (!page && __rmqueue_fallback(zone, order, migratetype,
2999 alloc_flags))
3000 goto retry;
3001 }
3002 out:
3003 if (page)
3004 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3005 return page;
3006 }
3007
3008 /*
3009 * Obtain a specified number of elements from the buddy allocator, all under
3010 * a single hold of the lock, for efficiency. Add them to the supplied list.
3011 * Returns the number of new pages which were placed at *list.
3012 */
3013 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3014 unsigned long count, struct list_head *list,
3015 int migratetype, unsigned int alloc_flags)
3016 {
3017 int i, allocated = 0;
3018
3019 /*
3020 * local_lock_irq held so equivalent to spin_lock_irqsave for
3021 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3022 */
3023 spin_lock(&zone->lock);
3024 for (i = 0; i < count; ++i) {
3025 struct page *page = __rmqueue(zone, order, migratetype,
3026 alloc_flags);
3027 if (unlikely(page == NULL))
3028 break;
3029
3030 if (unlikely(check_pcp_refill(page)))
3031 continue;
3032
3033 /*
3034 * Split buddy pages returned by expand() are received here in
3035 * physical page order. The page is added to the tail of
3036 * caller's list. From the callers perspective, the linked list
3037 * is ordered by page number under some conditions. This is
3038 * useful for IO devices that can forward direction from the
3039 * head, thus also in the physical page order. This is useful
3040 * for IO devices that can merge IO requests if the physical
3041 * pages are ordered properly.
3042 */
3043 list_add_tail(&page->lru, list);
3044 allocated++;
3045 if (is_migrate_cma(get_pcppage_migratetype(page)))
3046 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3047 -(1 << order));
3048 }
3049
3050 /*
3051 * i pages were removed from the buddy list even if some leak due
3052 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3053 * on i. Do not confuse with 'allocated' which is the number of
3054 * pages added to the pcp list.
3055 */
3056 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3057 spin_unlock(&zone->lock);
3058 return allocated;
3059 }
3060
3061 #ifdef CONFIG_NUMA
3062 /*
3063 * Called from the vmstat counter updater to drain pagesets of this
3064 * currently executing processor on remote nodes after they have
3065 * expired.
3066 *
3067 * Note that this function must be called with the thread pinned to
3068 * a single processor.
3069 */
3070 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3071 {
3072 unsigned long flags;
3073 int to_drain, batch;
3074
3075 local_lock_irqsave(&pagesets.lock, flags);
3076 batch = READ_ONCE(pcp->batch);
3077 to_drain = min(pcp->count, batch);
3078 if (to_drain > 0)
3079 free_pcppages_bulk(zone, to_drain, pcp);
3080 local_unlock_irqrestore(&pagesets.lock, flags);
3081 }
3082 #endif
3083
3084 /*
3085 * Drain pcplists of the indicated processor and zone.
3086 *
3087 * The processor must either be the current processor and the
3088 * thread pinned to the current processor or a processor that
3089 * is not online.
3090 */
3091 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3092 {
3093 unsigned long flags;
3094 struct per_cpu_pages *pcp;
3095
3096 local_lock_irqsave(&pagesets.lock, flags);
3097
3098 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3099 if (pcp->count)
3100 free_pcppages_bulk(zone, pcp->count, pcp);
3101
3102 local_unlock_irqrestore(&pagesets.lock, flags);
3103 }
3104
3105 /*
3106 * Drain pcplists of all zones on the indicated processor.
3107 *
3108 * The processor must either be the current processor and the
3109 * thread pinned to the current processor or a processor that
3110 * is not online.
3111 */
3112 static void drain_pages(unsigned int cpu)
3113 {
3114 struct zone *zone;
3115
3116 for_each_populated_zone(zone) {
3117 drain_pages_zone(cpu, zone);
3118 }
3119 }
3120
3121 /*
3122 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3123 *
3124 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3125 * the single zone's pages.
3126 */
3127 void drain_local_pages(struct zone *zone)
3128 {
3129 int cpu = smp_processor_id();
3130
3131 if (zone)
3132 drain_pages_zone(cpu, zone);
3133 else
3134 drain_pages(cpu);
3135 }
3136
3137 static void drain_local_pages_wq(struct work_struct *work)
3138 {
3139 struct pcpu_drain *drain;
3140
3141 drain = container_of(work, struct pcpu_drain, work);
3142
3143 /*
3144 * drain_all_pages doesn't use proper cpu hotplug protection so
3145 * we can race with cpu offline when the WQ can move this from
3146 * a cpu pinned worker to an unbound one. We can operate on a different
3147 * cpu which is alright but we also have to make sure to not move to
3148 * a different one.
3149 */
3150 preempt_disable();
3151 drain_local_pages(drain->zone);
3152 preempt_enable();
3153 }
3154
3155 /*
3156 * The implementation of drain_all_pages(), exposing an extra parameter to
3157 * drain on all cpus.
3158 *
3159 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3160 * not empty. The check for non-emptiness can however race with a free to
3161 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3162 * that need the guarantee that every CPU has drained can disable the
3163 * optimizing racy check.
3164 */
3165 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3166 {
3167 int cpu;
3168
3169 /*
3170 * Allocate in the BSS so we won't require allocation in
3171 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3172 */
3173 static cpumask_t cpus_with_pcps;
3174
3175 /*
3176 * Make sure nobody triggers this path before mm_percpu_wq is fully
3177 * initialized.
3178 */
3179 if (WARN_ON_ONCE(!mm_percpu_wq))
3180 return;
3181
3182 /*
3183 * Do not drain if one is already in progress unless it's specific to
3184 * a zone. Such callers are primarily CMA and memory hotplug and need
3185 * the drain to be complete when the call returns.
3186 */
3187 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3188 if (!zone)
3189 return;
3190 mutex_lock(&pcpu_drain_mutex);
3191 }
3192
3193 /*
3194 * We don't care about racing with CPU hotplug event
3195 * as offline notification will cause the notified
3196 * cpu to drain that CPU pcps and on_each_cpu_mask
3197 * disables preemption as part of its processing
3198 */
3199 for_each_online_cpu(cpu) {
3200 struct per_cpu_pages *pcp;
3201 struct zone *z;
3202 bool has_pcps = false;
3203
3204 if (force_all_cpus) {
3205 /*
3206 * The pcp.count check is racy, some callers need a
3207 * guarantee that no cpu is missed.
3208 */
3209 has_pcps = true;
3210 } else if (zone) {
3211 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3212 if (pcp->count)
3213 has_pcps = true;
3214 } else {
3215 for_each_populated_zone(z) {
3216 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3217 if (pcp->count) {
3218 has_pcps = true;
3219 break;
3220 }
3221 }
3222 }
3223
3224 if (has_pcps)
3225 cpumask_set_cpu(cpu, &cpus_with_pcps);
3226 else
3227 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3228 }
3229
3230 for_each_cpu(cpu, &cpus_with_pcps) {
3231 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3232
3233 drain->zone = zone;
3234 INIT_WORK(&drain->work, drain_local_pages_wq);
3235 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3236 }
3237 for_each_cpu(cpu, &cpus_with_pcps)
3238 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3239
3240 mutex_unlock(&pcpu_drain_mutex);
3241 }
3242
3243 /*
3244 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3245 *
3246 * When zone parameter is non-NULL, spill just the single zone's pages.
3247 *
3248 * Note that this can be extremely slow as the draining happens in a workqueue.
3249 */
3250 void drain_all_pages(struct zone *zone)
3251 {
3252 __drain_all_pages(zone, false);
3253 }
3254
3255 #ifdef CONFIG_HIBERNATION
3256
3257 /*
3258 * Touch the watchdog for every WD_PAGE_COUNT pages.
3259 */
3260 #define WD_PAGE_COUNT (128*1024)
3261
3262 void mark_free_pages(struct zone *zone)
3263 {
3264 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3265 unsigned long flags;
3266 unsigned int order, t;
3267 struct page *page;
3268
3269 if (zone_is_empty(zone))
3270 return;
3271
3272 spin_lock_irqsave(&zone->lock, flags);
3273
3274 max_zone_pfn = zone_end_pfn(zone);
3275 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3276 if (pfn_valid(pfn)) {
3277 page = pfn_to_page(pfn);
3278
3279 if (!--page_count) {
3280 touch_nmi_watchdog();
3281 page_count = WD_PAGE_COUNT;
3282 }
3283
3284 if (page_zone(page) != zone)
3285 continue;
3286
3287 if (!swsusp_page_is_forbidden(page))
3288 swsusp_unset_page_free(page);
3289 }
3290
3291 for_each_migratetype_order(order, t) {
3292 list_for_each_entry(page,
3293 &zone->free_area[order].free_list[t], lru) {
3294 unsigned long i;
3295
3296 pfn = page_to_pfn(page);
3297 for (i = 0; i < (1UL << order); i++) {
3298 if (!--page_count) {
3299 touch_nmi_watchdog();
3300 page_count = WD_PAGE_COUNT;
3301 }
3302 swsusp_set_page_free(pfn_to_page(pfn + i));
3303 }
3304 }
3305 }
3306 spin_unlock_irqrestore(&zone->lock, flags);
3307 }
3308 #endif /* CONFIG_PM */
3309
3310 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3311 unsigned int order)
3312 {
3313 int migratetype;
3314
3315 if (!free_pcp_prepare(page, order))
3316 return false;
3317
3318 migratetype = get_pfnblock_migratetype(page, pfn);
3319 set_pcppage_migratetype(page, migratetype);
3320 return true;
3321 }
3322
3323 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3324 {
3325 int min_nr_free, max_nr_free;
3326
3327 /* Check for PCP disabled or boot pageset */
3328 if (unlikely(high < batch))
3329 return 1;
3330
3331 /* Leave at least pcp->batch pages on the list */
3332 min_nr_free = batch;
3333 max_nr_free = high - batch;
3334
3335 /*
3336 * Double the number of pages freed each time there is subsequent
3337 * freeing of pages without any allocation.
3338 */
3339 batch <<= pcp->free_factor;
3340 if (batch < max_nr_free)
3341 pcp->free_factor++;
3342 batch = clamp(batch, min_nr_free, max_nr_free);
3343
3344 return batch;
3345 }
3346
3347 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3348 {
3349 int high = READ_ONCE(pcp->high);
3350
3351 if (unlikely(!high))
3352 return 0;
3353
3354 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3355 return high;
3356
3357 /*
3358 * If reclaim is active, limit the number of pages that can be
3359 * stored on pcp lists
3360 */
3361 return min(READ_ONCE(pcp->batch) << 2, high);
3362 }
3363
3364 static void free_unref_page_commit(struct page *page, unsigned long pfn,
3365 int migratetype, unsigned int order)
3366 {
3367 struct zone *zone = page_zone(page);
3368 struct per_cpu_pages *pcp;
3369 int high;
3370 int pindex;
3371
3372 __count_vm_event(PGFREE);
3373 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3374 pindex = order_to_pindex(migratetype, order);
3375 list_add(&page->lru, &pcp->lists[pindex]);
3376 pcp->count += 1 << order;
3377 high = nr_pcp_high(pcp, zone);
3378 if (pcp->count >= high) {
3379 int batch = READ_ONCE(pcp->batch);
3380
3381 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3382 }
3383 }
3384
3385 /*
3386 * Free a pcp page
3387 */
3388 void free_unref_page(struct page *page, unsigned int order)
3389 {
3390 unsigned long flags;
3391 unsigned long pfn = page_to_pfn(page);
3392 int migratetype;
3393
3394 if (!free_unref_page_prepare(page, pfn, order))
3395 return;
3396
3397 /*
3398 * We only track unmovable, reclaimable and movable on pcp lists.
3399 * Place ISOLATE pages on the isolated list because they are being
3400 * offlined but treat HIGHATOMIC as movable pages so we can get those
3401 * areas back if necessary. Otherwise, we may have to free
3402 * excessively into the page allocator
3403 */
3404 migratetype = get_pcppage_migratetype(page);
3405 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3406 if (unlikely(is_migrate_isolate(migratetype))) {
3407 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3408 return;
3409 }
3410 migratetype = MIGRATE_MOVABLE;
3411 }
3412
3413 local_lock_irqsave(&pagesets.lock, flags);
3414 free_unref_page_commit(page, pfn, migratetype, order);
3415 local_unlock_irqrestore(&pagesets.lock, flags);
3416 }
3417
3418 /*
3419 * Free a list of 0-order pages
3420 */
3421 void free_unref_page_list(struct list_head *list)
3422 {
3423 struct page *page, *next;
3424 unsigned long flags, pfn;
3425 int batch_count = 0;
3426 int migratetype;
3427
3428 /* Prepare pages for freeing */
3429 list_for_each_entry_safe(page, next, list, lru) {
3430 pfn = page_to_pfn(page);
3431 if (!free_unref_page_prepare(page, pfn, 0))
3432 list_del(&page->lru);
3433
3434 /*
3435 * Free isolated pages directly to the allocator, see
3436 * comment in free_unref_page.
3437 */
3438 migratetype = get_pcppage_migratetype(page);
3439 if (unlikely(is_migrate_isolate(migratetype))) {
3440 list_del(&page->lru);
3441 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3442 continue;
3443 }
3444
3445 set_page_private(page, pfn);
3446 }
3447
3448 local_lock_irqsave(&pagesets.lock, flags);
3449 list_for_each_entry_safe(page, next, list, lru) {
3450 pfn = page_private(page);
3451 set_page_private(page, 0);
3452
3453 /*
3454 * Non-isolated types over MIGRATE_PCPTYPES get added
3455 * to the MIGRATE_MOVABLE pcp list.
3456 */
3457 migratetype = get_pcppage_migratetype(page);
3458 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3459 migratetype = MIGRATE_MOVABLE;
3460
3461 trace_mm_page_free_batched(page);
3462 free_unref_page_commit(page, pfn, migratetype, 0);
3463
3464 /*
3465 * Guard against excessive IRQ disabled times when we get
3466 * a large list of pages to free.
3467 */
3468 if (++batch_count == SWAP_CLUSTER_MAX) {
3469 local_unlock_irqrestore(&pagesets.lock, flags);
3470 batch_count = 0;
3471 local_lock_irqsave(&pagesets.lock, flags);
3472 }
3473 }
3474 local_unlock_irqrestore(&pagesets.lock, flags);
3475 }
3476
3477 /*
3478 * split_page takes a non-compound higher-order page, and splits it into
3479 * n (1<<order) sub-pages: page[0..n]
3480 * Each sub-page must be freed individually.
3481 *
3482 * Note: this is probably too low level an operation for use in drivers.
3483 * Please consult with lkml before using this in your driver.
3484 */
3485 void split_page(struct page *page, unsigned int order)
3486 {
3487 int i;
3488
3489 VM_BUG_ON_PAGE(PageCompound(page), page);
3490 VM_BUG_ON_PAGE(!page_count(page), page);
3491
3492 for (i = 1; i < (1 << order); i++)
3493 set_page_refcounted(page + i);
3494 split_page_owner(page, 1 << order);
3495 split_page_memcg(page, 1 << order);
3496 }
3497 EXPORT_SYMBOL_GPL(split_page);
3498
3499 int __isolate_free_page(struct page *page, unsigned int order)
3500 {
3501 unsigned long watermark;
3502 struct zone *zone;
3503 int mt;
3504
3505 BUG_ON(!PageBuddy(page));
3506
3507 zone = page_zone(page);
3508 mt = get_pageblock_migratetype(page);
3509
3510 if (!is_migrate_isolate(mt)) {
3511 /*
3512 * Obey watermarks as if the page was being allocated. We can
3513 * emulate a high-order watermark check with a raised order-0
3514 * watermark, because we already know our high-order page
3515 * exists.
3516 */
3517 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3518 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3519 return 0;
3520
3521 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3522 }
3523
3524 /* Remove page from free list */
3525
3526 del_page_from_free_list(page, zone, order);
3527
3528 /*
3529 * Set the pageblock if the isolated page is at least half of a
3530 * pageblock
3531 */
3532 if (order >= pageblock_order - 1) {
3533 struct page *endpage = page + (1 << order) - 1;
3534 for (; page < endpage; page += pageblock_nr_pages) {
3535 int mt = get_pageblock_migratetype(page);
3536 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3537 && !is_migrate_highatomic(mt))
3538 set_pageblock_migratetype(page,
3539 MIGRATE_MOVABLE);
3540 }
3541 }
3542
3543
3544 return 1UL << order;
3545 }
3546
3547 /**
3548 * __putback_isolated_page - Return a now-isolated page back where we got it
3549 * @page: Page that was isolated
3550 * @order: Order of the isolated page
3551 * @mt: The page's pageblock's migratetype
3552 *
3553 * This function is meant to return a page pulled from the free lists via
3554 * __isolate_free_page back to the free lists they were pulled from.
3555 */
3556 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3557 {
3558 struct zone *zone = page_zone(page);
3559
3560 /* zone lock should be held when this function is called */
3561 lockdep_assert_held(&zone->lock);
3562
3563 /* Return isolated page to tail of freelist. */
3564 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3565 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3566 }
3567
3568 /*
3569 * Update NUMA hit/miss statistics
3570 *
3571 * Must be called with interrupts disabled.
3572 */
3573 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3574 long nr_account)
3575 {
3576 #ifdef CONFIG_NUMA
3577 enum numa_stat_item local_stat = NUMA_LOCAL;
3578
3579 /* skip numa counters update if numa stats is disabled */
3580 if (!static_branch_likely(&vm_numa_stat_key))
3581 return;
3582
3583 if (zone_to_nid(z) != numa_node_id())
3584 local_stat = NUMA_OTHER;
3585
3586 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3587 __count_numa_events(z, NUMA_HIT, nr_account);
3588 else {
3589 __count_numa_events(z, NUMA_MISS, nr_account);
3590 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3591 }
3592 __count_numa_events(z, local_stat, nr_account);
3593 #endif
3594 }
3595
3596 /* Remove page from the per-cpu list, caller must protect the list */
3597 static inline
3598 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3599 int migratetype,
3600 unsigned int alloc_flags,
3601 struct per_cpu_pages *pcp,
3602 struct list_head *list)
3603 {
3604 struct page *page;
3605
3606 do {
3607 if (list_empty(list)) {
3608 int batch = READ_ONCE(pcp->batch);
3609 int alloced;
3610
3611 /*
3612 * Scale batch relative to order if batch implies
3613 * free pages can be stored on the PCP. Batch can
3614 * be 1 for small zones or for boot pagesets which
3615 * should never store free pages as the pages may
3616 * belong to arbitrary zones.
3617 */
3618 if (batch > 1)
3619 batch = max(batch >> order, 2);
3620 alloced = rmqueue_bulk(zone, order,
3621 batch, list,
3622 migratetype, alloc_flags);
3623
3624 pcp->count += alloced << order;
3625 if (unlikely(list_empty(list)))
3626 return NULL;
3627 }
3628
3629 page = list_first_entry(list, struct page, lru);
3630 list_del(&page->lru);
3631 pcp->count -= 1 << order;
3632 } while (check_new_pcp(page));
3633
3634 return page;
3635 }
3636
3637 /* Lock and remove page from the per-cpu list */
3638 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3639 struct zone *zone, unsigned int order,
3640 gfp_t gfp_flags, int migratetype,
3641 unsigned int alloc_flags)
3642 {
3643 struct per_cpu_pages *pcp;
3644 struct list_head *list;
3645 struct page *page;
3646 unsigned long flags;
3647
3648 local_lock_irqsave(&pagesets.lock, flags);
3649
3650 /*
3651 * On allocation, reduce the number of pages that are batch freed.
3652 * See nr_pcp_free() where free_factor is increased for subsequent
3653 * frees.
3654 */
3655 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3656 pcp->free_factor >>= 1;
3657 list = &pcp->lists[order_to_pindex(migratetype, order)];
3658 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3659 local_unlock_irqrestore(&pagesets.lock, flags);
3660 if (page) {
3661 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3662 zone_statistics(preferred_zone, zone, 1);
3663 }
3664 return page;
3665 }
3666
3667 /*
3668 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3669 */
3670 static inline
3671 struct page *rmqueue(struct zone *preferred_zone,
3672 struct zone *zone, unsigned int order,
3673 gfp_t gfp_flags, unsigned int alloc_flags,
3674 int migratetype)
3675 {
3676 unsigned long flags;
3677 struct page *page;
3678
3679 if (likely(pcp_allowed_order(order))) {
3680 /*
3681 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3682 * we need to skip it when CMA area isn't allowed.
3683 */
3684 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3685 migratetype != MIGRATE_MOVABLE) {
3686 page = rmqueue_pcplist(preferred_zone, zone, order,
3687 gfp_flags, migratetype, alloc_flags);
3688 goto out;
3689 }
3690 }
3691
3692 /*
3693 * We most definitely don't want callers attempting to
3694 * allocate greater than order-1 page units with __GFP_NOFAIL.
3695 */
3696 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3697 spin_lock_irqsave(&zone->lock, flags);
3698
3699 do {
3700 page = NULL;
3701 /*
3702 * order-0 request can reach here when the pcplist is skipped
3703 * due to non-CMA allocation context. HIGHATOMIC area is
3704 * reserved for high-order atomic allocation, so order-0
3705 * request should skip it.
3706 */
3707 if (order > 0 && alloc_flags & ALLOC_HARDER) {
3708 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3709 if (page)
3710 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3711 }
3712 if (!page)
3713 page = __rmqueue(zone, order, migratetype, alloc_flags);
3714 } while (page && check_new_pages(page, order));
3715 if (!page)
3716 goto failed;
3717
3718 __mod_zone_freepage_state(zone, -(1 << order),
3719 get_pcppage_migratetype(page));
3720 spin_unlock_irqrestore(&zone->lock, flags);
3721
3722 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3723 zone_statistics(preferred_zone, zone, 1);
3724
3725 out:
3726 /* Separate test+clear to avoid unnecessary atomics */
3727 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3728 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3729 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3730 }
3731
3732 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3733 return page;
3734
3735 failed:
3736 spin_unlock_irqrestore(&zone->lock, flags);
3737 return NULL;
3738 }
3739
3740 #ifdef CONFIG_FAIL_PAGE_ALLOC
3741
3742 static struct {
3743 struct fault_attr attr;
3744
3745 bool ignore_gfp_highmem;
3746 bool ignore_gfp_reclaim;
3747 u32 min_order;
3748 } fail_page_alloc = {
3749 .attr = FAULT_ATTR_INITIALIZER,
3750 .ignore_gfp_reclaim = true,
3751 .ignore_gfp_highmem = true,
3752 .min_order = 1,
3753 };
3754
3755 static int __init setup_fail_page_alloc(char *str)
3756 {
3757 return setup_fault_attr(&fail_page_alloc.attr, str);
3758 }
3759 __setup("fail_page_alloc=", setup_fail_page_alloc);
3760
3761 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3762 {
3763 if (order < fail_page_alloc.min_order)
3764 return false;
3765 if (gfp_mask & __GFP_NOFAIL)
3766 return false;
3767 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3768 return false;
3769 if (fail_page_alloc.ignore_gfp_reclaim &&
3770 (gfp_mask & __GFP_DIRECT_RECLAIM))
3771 return false;
3772
3773 return should_fail(&fail_page_alloc.attr, 1 << order);
3774 }
3775
3776 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3777
3778 static int __init fail_page_alloc_debugfs(void)
3779 {
3780 umode_t mode = S_IFREG | 0600;
3781 struct dentry *dir;
3782
3783 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3784 &fail_page_alloc.attr);
3785
3786 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3787 &fail_page_alloc.ignore_gfp_reclaim);
3788 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3789 &fail_page_alloc.ignore_gfp_highmem);
3790 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3791
3792 return 0;
3793 }
3794
3795 late_initcall(fail_page_alloc_debugfs);
3796
3797 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3798
3799 #else /* CONFIG_FAIL_PAGE_ALLOC */
3800
3801 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3802 {
3803 return false;
3804 }
3805
3806 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3807
3808 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3809 {
3810 return __should_fail_alloc_page(gfp_mask, order);
3811 }
3812 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3813
3814 static inline long __zone_watermark_unusable_free(struct zone *z,
3815 unsigned int order, unsigned int alloc_flags)
3816 {
3817 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3818 long unusable_free = (1 << order) - 1;
3819
3820 /*
3821 * If the caller does not have rights to ALLOC_HARDER then subtract
3822 * the high-atomic reserves. This will over-estimate the size of the
3823 * atomic reserve but it avoids a search.
3824 */
3825 if (likely(!alloc_harder))
3826 unusable_free += z->nr_reserved_highatomic;
3827
3828 #ifdef CONFIG_CMA
3829 /* If allocation can't use CMA areas don't use free CMA pages */
3830 if (!(alloc_flags & ALLOC_CMA))
3831 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3832 #endif
3833
3834 return unusable_free;
3835 }
3836
3837 /*
3838 * Return true if free base pages are above 'mark'. For high-order checks it
3839 * will return true of the order-0 watermark is reached and there is at least
3840 * one free page of a suitable size. Checking now avoids taking the zone lock
3841 * to check in the allocation paths if no pages are free.
3842 */
3843 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3844 int highest_zoneidx, unsigned int alloc_flags,
3845 long free_pages)
3846 {
3847 long min = mark;
3848 int o;
3849 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3850
3851 /* free_pages may go negative - that's OK */
3852 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3853
3854 if (alloc_flags & ALLOC_HIGH)
3855 min -= min / 2;
3856
3857 if (unlikely(alloc_harder)) {
3858 /*
3859 * OOM victims can try even harder than normal ALLOC_HARDER
3860 * users on the grounds that it's definitely going to be in
3861 * the exit path shortly and free memory. Any allocation it
3862 * makes during the free path will be small and short-lived.
3863 */
3864 if (alloc_flags & ALLOC_OOM)
3865 min -= min / 2;
3866 else
3867 min -= min / 4;
3868 }
3869
3870 /*
3871 * Check watermarks for an order-0 allocation request. If these
3872 * are not met, then a high-order request also cannot go ahead
3873 * even if a suitable page happened to be free.
3874 */
3875 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3876 return false;
3877
3878 /* If this is an order-0 request then the watermark is fine */
3879 if (!order)
3880 return true;
3881
3882 /* For a high-order request, check at least one suitable page is free */
3883 for (o = order; o < MAX_ORDER; o++) {
3884 struct free_area *area = &z->free_area[o];
3885 int mt;
3886
3887 if (!area->nr_free)
3888 continue;
3889
3890 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3891 if (!free_area_empty(area, mt))
3892 return true;
3893 }
3894
3895 #ifdef CONFIG_CMA
3896 if ((alloc_flags & ALLOC_CMA) &&
3897 !free_area_empty(area, MIGRATE_CMA)) {
3898 return true;
3899 }
3900 #endif
3901 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3902 return true;
3903 }
3904 return false;
3905 }
3906
3907 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3908 int highest_zoneidx, unsigned int alloc_flags)
3909 {
3910 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3911 zone_page_state(z, NR_FREE_PAGES));
3912 }
3913
3914 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3915 unsigned long mark, int highest_zoneidx,
3916 unsigned int alloc_flags, gfp_t gfp_mask)
3917 {
3918 long free_pages;
3919
3920 free_pages = zone_page_state(z, NR_FREE_PAGES);
3921
3922 /*
3923 * Fast check for order-0 only. If this fails then the reserves
3924 * need to be calculated.
3925 */
3926 if (!order) {
3927 long fast_free;
3928
3929 fast_free = free_pages;
3930 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3931 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3932 return true;
3933 }
3934
3935 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3936 free_pages))
3937 return true;
3938 /*
3939 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3940 * when checking the min watermark. The min watermark is the
3941 * point where boosting is ignored so that kswapd is woken up
3942 * when below the low watermark.
3943 */
3944 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3945 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3946 mark = z->_watermark[WMARK_MIN];
3947 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3948 alloc_flags, free_pages);
3949 }
3950
3951 return false;
3952 }
3953
3954 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3955 unsigned long mark, int highest_zoneidx)
3956 {
3957 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3958
3959 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3960 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3961
3962 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3963 free_pages);
3964 }
3965
3966 #ifdef CONFIG_NUMA
3967 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3968 {
3969 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3970 node_reclaim_distance;
3971 }
3972 #else /* CONFIG_NUMA */
3973 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3974 {
3975 return true;
3976 }
3977 #endif /* CONFIG_NUMA */
3978
3979 /*
3980 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3981 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3982 * premature use of a lower zone may cause lowmem pressure problems that
3983 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3984 * probably too small. It only makes sense to spread allocations to avoid
3985 * fragmentation between the Normal and DMA32 zones.
3986 */
3987 static inline unsigned int
3988 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3989 {
3990 unsigned int alloc_flags;
3991
3992 /*
3993 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3994 * to save a branch.
3995 */
3996 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3997
3998 #ifdef CONFIG_ZONE_DMA32
3999 if (!zone)
4000 return alloc_flags;
4001
4002 if (zone_idx(zone) != ZONE_NORMAL)
4003 return alloc_flags;
4004
4005 /*
4006 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4007 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4008 * on UMA that if Normal is populated then so is DMA32.
4009 */
4010 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4011 if (nr_online_nodes > 1 && !populated_zone(--zone))
4012 return alloc_flags;
4013
4014 alloc_flags |= ALLOC_NOFRAGMENT;
4015 #endif /* CONFIG_ZONE_DMA32 */
4016 return alloc_flags;
4017 }
4018
4019 /* Must be called after current_gfp_context() which can change gfp_mask */
4020 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4021 unsigned int alloc_flags)
4022 {
4023 #ifdef CONFIG_CMA
4024 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4025 alloc_flags |= ALLOC_CMA;
4026 #endif
4027 return alloc_flags;
4028 }
4029
4030 /*
4031 * get_page_from_freelist goes through the zonelist trying to allocate
4032 * a page.
4033 */
4034 static struct page *
4035 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4036 const struct alloc_context *ac)
4037 {
4038 struct zoneref *z;
4039 struct zone *zone;
4040 struct pglist_data *last_pgdat_dirty_limit = NULL;
4041 bool no_fallback;
4042
4043 retry:
4044 /*
4045 * Scan zonelist, looking for a zone with enough free.
4046 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4047 */
4048 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4049 z = ac->preferred_zoneref;
4050 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4051 ac->nodemask) {
4052 struct page *page;
4053 unsigned long mark;
4054
4055 if (cpusets_enabled() &&
4056 (alloc_flags & ALLOC_CPUSET) &&
4057 !__cpuset_zone_allowed(zone, gfp_mask))
4058 continue;
4059 /*
4060 * When allocating a page cache page for writing, we
4061 * want to get it from a node that is within its dirty
4062 * limit, such that no single node holds more than its
4063 * proportional share of globally allowed dirty pages.
4064 * The dirty limits take into account the node's
4065 * lowmem reserves and high watermark so that kswapd
4066 * should be able to balance it without having to
4067 * write pages from its LRU list.
4068 *
4069 * XXX: For now, allow allocations to potentially
4070 * exceed the per-node dirty limit in the slowpath
4071 * (spread_dirty_pages unset) before going into reclaim,
4072 * which is important when on a NUMA setup the allowed
4073 * nodes are together not big enough to reach the
4074 * global limit. The proper fix for these situations
4075 * will require awareness of nodes in the
4076 * dirty-throttling and the flusher threads.
4077 */
4078 if (ac->spread_dirty_pages) {
4079 if (last_pgdat_dirty_limit == zone->zone_pgdat)
4080 continue;
4081
4082 if (!node_dirty_ok(zone->zone_pgdat)) {
4083 last_pgdat_dirty_limit = zone->zone_pgdat;
4084 continue;
4085 }
4086 }
4087
4088 if (no_fallback && nr_online_nodes > 1 &&
4089 zone != ac->preferred_zoneref->zone) {
4090 int local_nid;
4091
4092 /*
4093 * If moving to a remote node, retry but allow
4094 * fragmenting fallbacks. Locality is more important
4095 * than fragmentation avoidance.
4096 */
4097 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4098 if (zone_to_nid(zone) != local_nid) {
4099 alloc_flags &= ~ALLOC_NOFRAGMENT;
4100 goto retry;
4101 }
4102 }
4103
4104 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4105 if (!zone_watermark_fast(zone, order, mark,
4106 ac->highest_zoneidx, alloc_flags,
4107 gfp_mask)) {
4108 int ret;
4109
4110 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4111 /*
4112 * Watermark failed for this zone, but see if we can
4113 * grow this zone if it contains deferred pages.
4114 */
4115 if (static_branch_unlikely(&deferred_pages)) {
4116 if (_deferred_grow_zone(zone, order))
4117 goto try_this_zone;
4118 }
4119 #endif
4120 /* Checked here to keep the fast path fast */
4121 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4122 if (alloc_flags & ALLOC_NO_WATERMARKS)
4123 goto try_this_zone;
4124
4125 if (!node_reclaim_enabled() ||
4126 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4127 continue;
4128
4129 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4130 switch (ret) {
4131 case NODE_RECLAIM_NOSCAN:
4132 /* did not scan */
4133 continue;
4134 case NODE_RECLAIM_FULL:
4135 /* scanned but unreclaimable */
4136 continue;
4137 default:
4138 /* did we reclaim enough */
4139 if (zone_watermark_ok(zone, order, mark,
4140 ac->highest_zoneidx, alloc_flags))
4141 goto try_this_zone;
4142
4143 continue;
4144 }
4145 }
4146
4147 try_this_zone:
4148 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4149 gfp_mask, alloc_flags, ac->migratetype);
4150 if (page) {
4151 prep_new_page(page, order, gfp_mask, alloc_flags);
4152
4153 /*
4154 * If this is a high-order atomic allocation then check
4155 * if the pageblock should be reserved for the future
4156 */
4157 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4158 reserve_highatomic_pageblock(page, zone, order);
4159
4160 return page;
4161 } else {
4162 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4163 /* Try again if zone has deferred pages */
4164 if (static_branch_unlikely(&deferred_pages)) {
4165 if (_deferred_grow_zone(zone, order))
4166 goto try_this_zone;
4167 }
4168 #endif
4169 }
4170 }
4171
4172 /*
4173 * It's possible on a UMA machine to get through all zones that are
4174 * fragmented. If avoiding fragmentation, reset and try again.
4175 */
4176 if (no_fallback) {
4177 alloc_flags &= ~ALLOC_NOFRAGMENT;
4178 goto retry;
4179 }
4180
4181 return NULL;
4182 }
4183
4184 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4185 {
4186 unsigned int filter = SHOW_MEM_FILTER_NODES;
4187
4188 /*
4189 * This documents exceptions given to allocations in certain
4190 * contexts that are allowed to allocate outside current's set
4191 * of allowed nodes.
4192 */
4193 if (!(gfp_mask & __GFP_NOMEMALLOC))
4194 if (tsk_is_oom_victim(current) ||
4195 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4196 filter &= ~SHOW_MEM_FILTER_NODES;
4197 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4198 filter &= ~SHOW_MEM_FILTER_NODES;
4199
4200 show_mem(filter, nodemask);
4201 }
4202
4203 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4204 {
4205 struct va_format vaf;
4206 va_list args;
4207 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4208
4209 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4210 return;
4211
4212 va_start(args, fmt);
4213 vaf.fmt = fmt;
4214 vaf.va = &args;
4215 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4216 current->comm, &vaf, gfp_mask, &gfp_mask,
4217 nodemask_pr_args(nodemask));
4218 va_end(args);
4219
4220 cpuset_print_current_mems_allowed();
4221 pr_cont("\n");
4222 dump_stack();
4223 warn_alloc_show_mem(gfp_mask, nodemask);
4224 }
4225
4226 static inline struct page *
4227 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4228 unsigned int alloc_flags,
4229 const struct alloc_context *ac)
4230 {
4231 struct page *page;
4232
4233 page = get_page_from_freelist(gfp_mask, order,
4234 alloc_flags|ALLOC_CPUSET, ac);
4235 /*
4236 * fallback to ignore cpuset restriction if our nodes
4237 * are depleted
4238 */
4239 if (!page)
4240 page = get_page_from_freelist(gfp_mask, order,
4241 alloc_flags, ac);
4242
4243 return page;
4244 }
4245
4246 static inline struct page *
4247 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4248 const struct alloc_context *ac, unsigned long *did_some_progress)
4249 {
4250 struct oom_control oc = {
4251 .zonelist = ac->zonelist,
4252 .nodemask = ac->nodemask,
4253 .memcg = NULL,
4254 .gfp_mask = gfp_mask,
4255 .order = order,
4256 };
4257 struct page *page;
4258
4259 *did_some_progress = 0;
4260
4261 /*
4262 * Acquire the oom lock. If that fails, somebody else is
4263 * making progress for us.
4264 */
4265 if (!mutex_trylock(&oom_lock)) {
4266 *did_some_progress = 1;
4267 schedule_timeout_uninterruptible(1);
4268 return NULL;
4269 }
4270
4271 /*
4272 * Go through the zonelist yet one more time, keep very high watermark
4273 * here, this is only to catch a parallel oom killing, we must fail if
4274 * we're still under heavy pressure. But make sure that this reclaim
4275 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4276 * allocation which will never fail due to oom_lock already held.
4277 */
4278 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4279 ~__GFP_DIRECT_RECLAIM, order,
4280 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4281 if (page)
4282 goto out;
4283
4284 /* Coredumps can quickly deplete all memory reserves */
4285 if (current->flags & PF_DUMPCORE)
4286 goto out;
4287 /* The OOM killer will not help higher order allocs */
4288 if (order > PAGE_ALLOC_COSTLY_ORDER)
4289 goto out;
4290 /*
4291 * We have already exhausted all our reclaim opportunities without any
4292 * success so it is time to admit defeat. We will skip the OOM killer
4293 * because it is very likely that the caller has a more reasonable
4294 * fallback than shooting a random task.
4295 *
4296 * The OOM killer may not free memory on a specific node.
4297 */
4298 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4299 goto out;
4300 /* The OOM killer does not needlessly kill tasks for lowmem */
4301 if (ac->highest_zoneidx < ZONE_NORMAL)
4302 goto out;
4303 if (pm_suspended_storage())
4304 goto out;
4305 /*
4306 * XXX: GFP_NOFS allocations should rather fail than rely on
4307 * other request to make a forward progress.
4308 * We are in an unfortunate situation where out_of_memory cannot
4309 * do much for this context but let's try it to at least get
4310 * access to memory reserved if the current task is killed (see
4311 * out_of_memory). Once filesystems are ready to handle allocation
4312 * failures more gracefully we should just bail out here.
4313 */
4314
4315 /* Exhausted what can be done so it's blame time */
4316 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4317 *did_some_progress = 1;
4318
4319 /*
4320 * Help non-failing allocations by giving them access to memory
4321 * reserves
4322 */
4323 if (gfp_mask & __GFP_NOFAIL)
4324 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4325 ALLOC_NO_WATERMARKS, ac);
4326 }
4327 out:
4328 mutex_unlock(&oom_lock);
4329 return page;
4330 }
4331
4332 /*
4333 * Maximum number of compaction retries with a progress before OOM
4334 * killer is consider as the only way to move forward.
4335 */
4336 #define MAX_COMPACT_RETRIES 16
4337
4338 #ifdef CONFIG_COMPACTION
4339 /* Try memory compaction for high-order allocations before reclaim */
4340 static struct page *
4341 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4342 unsigned int alloc_flags, const struct alloc_context *ac,
4343 enum compact_priority prio, enum compact_result *compact_result)
4344 {
4345 struct page *page = NULL;
4346 unsigned long pflags;
4347 unsigned int noreclaim_flag;
4348
4349 if (!order)
4350 return NULL;
4351
4352 psi_memstall_enter(&pflags);
4353 noreclaim_flag = memalloc_noreclaim_save();
4354
4355 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4356 prio, &page);
4357
4358 memalloc_noreclaim_restore(noreclaim_flag);
4359 psi_memstall_leave(&pflags);
4360
4361 if (*compact_result == COMPACT_SKIPPED)
4362 return NULL;
4363 /*
4364 * At least in one zone compaction wasn't deferred or skipped, so let's
4365 * count a compaction stall
4366 */
4367 count_vm_event(COMPACTSTALL);
4368
4369 /* Prep a captured page if available */
4370 if (page)
4371 prep_new_page(page, order, gfp_mask, alloc_flags);
4372
4373 /* Try get a page from the freelist if available */
4374 if (!page)
4375 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4376
4377 if (page) {
4378 struct zone *zone = page_zone(page);
4379
4380 zone->compact_blockskip_flush = false;
4381 compaction_defer_reset(zone, order, true);
4382 count_vm_event(COMPACTSUCCESS);
4383 return page;
4384 }
4385
4386 /*
4387 * It's bad if compaction run occurs and fails. The most likely reason
4388 * is that pages exist, but not enough to satisfy watermarks.
4389 */
4390 count_vm_event(COMPACTFAIL);
4391
4392 cond_resched();
4393
4394 return NULL;
4395 }
4396
4397 static inline bool
4398 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4399 enum compact_result compact_result,
4400 enum compact_priority *compact_priority,
4401 int *compaction_retries)
4402 {
4403 int max_retries = MAX_COMPACT_RETRIES;
4404 int min_priority;
4405 bool ret = false;
4406 int retries = *compaction_retries;
4407 enum compact_priority priority = *compact_priority;
4408
4409 if (!order)
4410 return false;
4411
4412 if (fatal_signal_pending(current))
4413 return false;
4414
4415 if (compaction_made_progress(compact_result))
4416 (*compaction_retries)++;
4417
4418 /*
4419 * compaction considers all the zone as desperately out of memory
4420 * so it doesn't really make much sense to retry except when the
4421 * failure could be caused by insufficient priority
4422 */
4423 if (compaction_failed(compact_result))
4424 goto check_priority;
4425
4426 /*
4427 * compaction was skipped because there are not enough order-0 pages
4428 * to work with, so we retry only if it looks like reclaim can help.
4429 */
4430 if (compaction_needs_reclaim(compact_result)) {
4431 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4432 goto out;
4433 }
4434
4435 /*
4436 * make sure the compaction wasn't deferred or didn't bail out early
4437 * due to locks contention before we declare that we should give up.
4438 * But the next retry should use a higher priority if allowed, so
4439 * we don't just keep bailing out endlessly.
4440 */
4441 if (compaction_withdrawn(compact_result)) {
4442 goto check_priority;
4443 }
4444
4445 /*
4446 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4447 * costly ones because they are de facto nofail and invoke OOM
4448 * killer to move on while costly can fail and users are ready
4449 * to cope with that. 1/4 retries is rather arbitrary but we
4450 * would need much more detailed feedback from compaction to
4451 * make a better decision.
4452 */
4453 if (order > PAGE_ALLOC_COSTLY_ORDER)
4454 max_retries /= 4;
4455 if (*compaction_retries <= max_retries) {
4456 ret = true;
4457 goto out;
4458 }
4459
4460 /*
4461 * Make sure there are attempts at the highest priority if we exhausted
4462 * all retries or failed at the lower priorities.
4463 */
4464 check_priority:
4465 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4466 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4467
4468 if (*compact_priority > min_priority) {
4469 (*compact_priority)--;
4470 *compaction_retries = 0;
4471 ret = true;
4472 }
4473 out:
4474 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4475 return ret;
4476 }
4477 #else
4478 static inline struct page *
4479 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4480 unsigned int alloc_flags, const struct alloc_context *ac,
4481 enum compact_priority prio, enum compact_result *compact_result)
4482 {
4483 *compact_result = COMPACT_SKIPPED;
4484 return NULL;
4485 }
4486
4487 static inline bool
4488 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4489 enum compact_result compact_result,
4490 enum compact_priority *compact_priority,
4491 int *compaction_retries)
4492 {
4493 struct zone *zone;
4494 struct zoneref *z;
4495
4496 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4497 return false;
4498
4499 /*
4500 * There are setups with compaction disabled which would prefer to loop
4501 * inside the allocator rather than hit the oom killer prematurely.
4502 * Let's give them a good hope and keep retrying while the order-0
4503 * watermarks are OK.
4504 */
4505 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4506 ac->highest_zoneidx, ac->nodemask) {
4507 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4508 ac->highest_zoneidx, alloc_flags))
4509 return true;
4510 }
4511 return false;
4512 }
4513 #endif /* CONFIG_COMPACTION */
4514
4515 #ifdef CONFIG_LOCKDEP
4516 static struct lockdep_map __fs_reclaim_map =
4517 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4518
4519 static bool __need_reclaim(gfp_t gfp_mask)
4520 {
4521 /* no reclaim without waiting on it */
4522 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4523 return false;
4524
4525 /* this guy won't enter reclaim */
4526 if (current->flags & PF_MEMALLOC)
4527 return false;
4528
4529 if (gfp_mask & __GFP_NOLOCKDEP)
4530 return false;
4531
4532 return true;
4533 }
4534
4535 void __fs_reclaim_acquire(void)
4536 {
4537 lock_map_acquire(&__fs_reclaim_map);
4538 }
4539
4540 void __fs_reclaim_release(void)
4541 {
4542 lock_map_release(&__fs_reclaim_map);
4543 }
4544
4545 void fs_reclaim_acquire(gfp_t gfp_mask)
4546 {
4547 gfp_mask = current_gfp_context(gfp_mask);
4548
4549 if (__need_reclaim(gfp_mask)) {
4550 if (gfp_mask & __GFP_FS)
4551 __fs_reclaim_acquire();
4552
4553 #ifdef CONFIG_MMU_NOTIFIER
4554 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4555 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4556 #endif
4557
4558 }
4559 }
4560 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4561
4562 void fs_reclaim_release(gfp_t gfp_mask)
4563 {
4564 gfp_mask = current_gfp_context(gfp_mask);
4565
4566 if (__need_reclaim(gfp_mask)) {
4567 if (gfp_mask & __GFP_FS)
4568 __fs_reclaim_release();
4569 }
4570 }
4571 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4572 #endif
4573
4574 /* Perform direct synchronous page reclaim */
4575 static unsigned long
4576 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4577 const struct alloc_context *ac)
4578 {
4579 unsigned int noreclaim_flag;
4580 unsigned long pflags, progress;
4581
4582 cond_resched();
4583
4584 /* We now go into synchronous reclaim */
4585 cpuset_memory_pressure_bump();
4586 psi_memstall_enter(&pflags);
4587 fs_reclaim_acquire(gfp_mask);
4588 noreclaim_flag = memalloc_noreclaim_save();
4589
4590 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4591 ac->nodemask);
4592
4593 memalloc_noreclaim_restore(noreclaim_flag);
4594 fs_reclaim_release(gfp_mask);
4595 psi_memstall_leave(&pflags);
4596
4597 cond_resched();
4598
4599 return progress;
4600 }
4601
4602 /* The really slow allocator path where we enter direct reclaim */
4603 static inline struct page *
4604 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4605 unsigned int alloc_flags, const struct alloc_context *ac,
4606 unsigned long *did_some_progress)
4607 {
4608 struct page *page = NULL;
4609 bool drained = false;
4610
4611 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4612 if (unlikely(!(*did_some_progress)))
4613 return NULL;
4614
4615 retry:
4616 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4617
4618 /*
4619 * If an allocation failed after direct reclaim, it could be because
4620 * pages are pinned on the per-cpu lists or in high alloc reserves.
4621 * Shrink them and try again
4622 */
4623 if (!page && !drained) {
4624 unreserve_highatomic_pageblock(ac, false);
4625 drain_all_pages(NULL);
4626 drained = true;
4627 goto retry;
4628 }
4629
4630 return page;
4631 }
4632
4633 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4634 const struct alloc_context *ac)
4635 {
4636 struct zoneref *z;
4637 struct zone *zone;
4638 pg_data_t *last_pgdat = NULL;
4639 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4640
4641 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4642 ac->nodemask) {
4643 if (last_pgdat != zone->zone_pgdat)
4644 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4645 last_pgdat = zone->zone_pgdat;
4646 }
4647 }
4648
4649 static inline unsigned int
4650 gfp_to_alloc_flags(gfp_t gfp_mask)
4651 {
4652 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4653
4654 /*
4655 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4656 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4657 * to save two branches.
4658 */
4659 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4660 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4661
4662 /*
4663 * The caller may dip into page reserves a bit more if the caller
4664 * cannot run direct reclaim, or if the caller has realtime scheduling
4665 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4666 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4667 */
4668 alloc_flags |= (__force int)
4669 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4670
4671 if (gfp_mask & __GFP_ATOMIC) {
4672 /*
4673 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4674 * if it can't schedule.
4675 */
4676 if (!(gfp_mask & __GFP_NOMEMALLOC))
4677 alloc_flags |= ALLOC_HARDER;
4678 /*
4679 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4680 * comment for __cpuset_node_allowed().
4681 */
4682 alloc_flags &= ~ALLOC_CPUSET;
4683 } else if (unlikely(rt_task(current)) && !in_interrupt())
4684 alloc_flags |= ALLOC_HARDER;
4685
4686 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4687
4688 return alloc_flags;
4689 }
4690
4691 static bool oom_reserves_allowed(struct task_struct *tsk)
4692 {
4693 if (!tsk_is_oom_victim(tsk))
4694 return false;
4695
4696 /*
4697 * !MMU doesn't have oom reaper so give access to memory reserves
4698 * only to the thread with TIF_MEMDIE set
4699 */
4700 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4701 return false;
4702
4703 return true;
4704 }
4705
4706 /*
4707 * Distinguish requests which really need access to full memory
4708 * reserves from oom victims which can live with a portion of it
4709 */
4710 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4711 {
4712 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4713 return 0;
4714 if (gfp_mask & __GFP_MEMALLOC)
4715 return ALLOC_NO_WATERMARKS;
4716 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4717 return ALLOC_NO_WATERMARKS;
4718 if (!in_interrupt()) {
4719 if (current->flags & PF_MEMALLOC)
4720 return ALLOC_NO_WATERMARKS;
4721 else if (oom_reserves_allowed(current))
4722 return ALLOC_OOM;
4723 }
4724
4725 return 0;
4726 }
4727
4728 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4729 {
4730 return !!__gfp_pfmemalloc_flags(gfp_mask);
4731 }
4732
4733 /*
4734 * Checks whether it makes sense to retry the reclaim to make a forward progress
4735 * for the given allocation request.
4736 *
4737 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4738 * without success, or when we couldn't even meet the watermark if we
4739 * reclaimed all remaining pages on the LRU lists.
4740 *
4741 * Returns true if a retry is viable or false to enter the oom path.
4742 */
4743 static inline bool
4744 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4745 struct alloc_context *ac, int alloc_flags,
4746 bool did_some_progress, int *no_progress_loops)
4747 {
4748 struct zone *zone;
4749 struct zoneref *z;
4750 bool ret = false;
4751
4752 /*
4753 * Costly allocations might have made a progress but this doesn't mean
4754 * their order will become available due to high fragmentation so
4755 * always increment the no progress counter for them
4756 */
4757 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4758 *no_progress_loops = 0;
4759 else
4760 (*no_progress_loops)++;
4761
4762 /*
4763 * Make sure we converge to OOM if we cannot make any progress
4764 * several times in the row.
4765 */
4766 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4767 /* Before OOM, exhaust highatomic_reserve */
4768 return unreserve_highatomic_pageblock(ac, true);
4769 }
4770
4771 /*
4772 * Keep reclaiming pages while there is a chance this will lead
4773 * somewhere. If none of the target zones can satisfy our allocation
4774 * request even if all reclaimable pages are considered then we are
4775 * screwed and have to go OOM.
4776 */
4777 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4778 ac->highest_zoneidx, ac->nodemask) {
4779 unsigned long available;
4780 unsigned long reclaimable;
4781 unsigned long min_wmark = min_wmark_pages(zone);
4782 bool wmark;
4783
4784 available = reclaimable = zone_reclaimable_pages(zone);
4785 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4786
4787 /*
4788 * Would the allocation succeed if we reclaimed all
4789 * reclaimable pages?
4790 */
4791 wmark = __zone_watermark_ok(zone, order, min_wmark,
4792 ac->highest_zoneidx, alloc_flags, available);
4793 trace_reclaim_retry_zone(z, order, reclaimable,
4794 available, min_wmark, *no_progress_loops, wmark);
4795 if (wmark) {
4796 /*
4797 * If we didn't make any progress and have a lot of
4798 * dirty + writeback pages then we should wait for
4799 * an IO to complete to slow down the reclaim and
4800 * prevent from pre mature OOM
4801 */
4802 if (!did_some_progress) {
4803 unsigned long write_pending;
4804
4805 write_pending = zone_page_state_snapshot(zone,
4806 NR_ZONE_WRITE_PENDING);
4807
4808 if (2 * write_pending > reclaimable) {
4809 congestion_wait(BLK_RW_ASYNC, HZ/10);
4810 return true;
4811 }
4812 }
4813
4814 ret = true;
4815 goto out;
4816 }
4817 }
4818
4819 out:
4820 /*
4821 * Memory allocation/reclaim might be called from a WQ context and the
4822 * current implementation of the WQ concurrency control doesn't
4823 * recognize that a particular WQ is congested if the worker thread is
4824 * looping without ever sleeping. Therefore we have to do a short sleep
4825 * here rather than calling cond_resched().
4826 */
4827 if (current->flags & PF_WQ_WORKER)
4828 schedule_timeout_uninterruptible(1);
4829 else
4830 cond_resched();
4831 return ret;
4832 }
4833
4834 static inline bool
4835 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4836 {
4837 /*
4838 * It's possible that cpuset's mems_allowed and the nodemask from
4839 * mempolicy don't intersect. This should be normally dealt with by
4840 * policy_nodemask(), but it's possible to race with cpuset update in
4841 * such a way the check therein was true, and then it became false
4842 * before we got our cpuset_mems_cookie here.
4843 * This assumes that for all allocations, ac->nodemask can come only
4844 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4845 * when it does not intersect with the cpuset restrictions) or the
4846 * caller can deal with a violated nodemask.
4847 */
4848 if (cpusets_enabled() && ac->nodemask &&
4849 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4850 ac->nodemask = NULL;
4851 return true;
4852 }
4853
4854 /*
4855 * When updating a task's mems_allowed or mempolicy nodemask, it is
4856 * possible to race with parallel threads in such a way that our
4857 * allocation can fail while the mask is being updated. If we are about
4858 * to fail, check if the cpuset changed during allocation and if so,
4859 * retry.
4860 */
4861 if (read_mems_allowed_retry(cpuset_mems_cookie))
4862 return true;
4863
4864 return false;
4865 }
4866
4867 static inline struct page *
4868 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4869 struct alloc_context *ac)
4870 {
4871 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4872 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4873 struct page *page = NULL;
4874 unsigned int alloc_flags;
4875 unsigned long did_some_progress;
4876 enum compact_priority compact_priority;
4877 enum compact_result compact_result;
4878 int compaction_retries;
4879 int no_progress_loops;
4880 unsigned int cpuset_mems_cookie;
4881 int reserve_flags;
4882
4883 /*
4884 * We also sanity check to catch abuse of atomic reserves being used by
4885 * callers that are not in atomic context.
4886 */
4887 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4888 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4889 gfp_mask &= ~__GFP_ATOMIC;
4890
4891 retry_cpuset:
4892 compaction_retries = 0;
4893 no_progress_loops = 0;
4894 compact_priority = DEF_COMPACT_PRIORITY;
4895 cpuset_mems_cookie = read_mems_allowed_begin();
4896
4897 /*
4898 * The fast path uses conservative alloc_flags to succeed only until
4899 * kswapd needs to be woken up, and to avoid the cost of setting up
4900 * alloc_flags precisely. So we do that now.
4901 */
4902 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4903
4904 /*
4905 * We need to recalculate the starting point for the zonelist iterator
4906 * because we might have used different nodemask in the fast path, or
4907 * there was a cpuset modification and we are retrying - otherwise we
4908 * could end up iterating over non-eligible zones endlessly.
4909 */
4910 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4911 ac->highest_zoneidx, ac->nodemask);
4912 if (!ac->preferred_zoneref->zone)
4913 goto nopage;
4914
4915 if (alloc_flags & ALLOC_KSWAPD)
4916 wake_all_kswapds(order, gfp_mask, ac);
4917
4918 /*
4919 * The adjusted alloc_flags might result in immediate success, so try
4920 * that first
4921 */
4922 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4923 if (page)
4924 goto got_pg;
4925
4926 /*
4927 * For costly allocations, try direct compaction first, as it's likely
4928 * that we have enough base pages and don't need to reclaim. For non-
4929 * movable high-order allocations, do that as well, as compaction will
4930 * try prevent permanent fragmentation by migrating from blocks of the
4931 * same migratetype.
4932 * Don't try this for allocations that are allowed to ignore
4933 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4934 */
4935 if (can_direct_reclaim &&
4936 (costly_order ||
4937 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4938 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4939 page = __alloc_pages_direct_compact(gfp_mask, order,
4940 alloc_flags, ac,
4941 INIT_COMPACT_PRIORITY,
4942 &compact_result);
4943 if (page)
4944 goto got_pg;
4945
4946 /*
4947 * Checks for costly allocations with __GFP_NORETRY, which
4948 * includes some THP page fault allocations
4949 */
4950 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4951 /*
4952 * If allocating entire pageblock(s) and compaction
4953 * failed because all zones are below low watermarks
4954 * or is prohibited because it recently failed at this
4955 * order, fail immediately unless the allocator has
4956 * requested compaction and reclaim retry.
4957 *
4958 * Reclaim is
4959 * - potentially very expensive because zones are far
4960 * below their low watermarks or this is part of very
4961 * bursty high order allocations,
4962 * - not guaranteed to help because isolate_freepages()
4963 * may not iterate over freed pages as part of its
4964 * linear scan, and
4965 * - unlikely to make entire pageblocks free on its
4966 * own.
4967 */
4968 if (compact_result == COMPACT_SKIPPED ||
4969 compact_result == COMPACT_DEFERRED)
4970 goto nopage;
4971
4972 /*
4973 * Looks like reclaim/compaction is worth trying, but
4974 * sync compaction could be very expensive, so keep
4975 * using async compaction.
4976 */
4977 compact_priority = INIT_COMPACT_PRIORITY;
4978 }
4979 }
4980
4981 retry:
4982 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4983 if (alloc_flags & ALLOC_KSWAPD)
4984 wake_all_kswapds(order, gfp_mask, ac);
4985
4986 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4987 if (reserve_flags)
4988 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
4989
4990 /*
4991 * Reset the nodemask and zonelist iterators if memory policies can be
4992 * ignored. These allocations are high priority and system rather than
4993 * user oriented.
4994 */
4995 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4996 ac->nodemask = NULL;
4997 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4998 ac->highest_zoneidx, ac->nodemask);
4999 }
5000
5001 /* Attempt with potentially adjusted zonelist and alloc_flags */
5002 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5003 if (page)
5004 goto got_pg;
5005
5006 /* Caller is not willing to reclaim, we can't balance anything */
5007 if (!can_direct_reclaim)
5008 goto nopage;
5009
5010 /* Avoid recursion of direct reclaim */
5011 if (current->flags & PF_MEMALLOC)
5012 goto nopage;
5013
5014 /* Try direct reclaim and then allocating */
5015 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5016 &did_some_progress);
5017 if (page)
5018 goto got_pg;
5019
5020 /* Try direct compaction and then allocating */
5021 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5022 compact_priority, &compact_result);
5023 if (page)
5024 goto got_pg;
5025
5026 /* Do not loop if specifically requested */
5027 if (gfp_mask & __GFP_NORETRY)
5028 goto nopage;
5029
5030 /*
5031 * Do not retry costly high order allocations unless they are
5032 * __GFP_RETRY_MAYFAIL
5033 */
5034 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5035 goto nopage;
5036
5037 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5038 did_some_progress > 0, &no_progress_loops))
5039 goto retry;
5040
5041 /*
5042 * It doesn't make any sense to retry for the compaction if the order-0
5043 * reclaim is not able to make any progress because the current
5044 * implementation of the compaction depends on the sufficient amount
5045 * of free memory (see __compaction_suitable)
5046 */
5047 if (did_some_progress > 0 &&
5048 should_compact_retry(ac, order, alloc_flags,
5049 compact_result, &compact_priority,
5050 &compaction_retries))
5051 goto retry;
5052
5053
5054 /* Deal with possible cpuset update races before we start OOM killing */
5055 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5056 goto retry_cpuset;
5057
5058 /* Reclaim has failed us, start killing things */
5059 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5060 if (page)
5061 goto got_pg;
5062
5063 /* Avoid allocations with no watermarks from looping endlessly */
5064 if (tsk_is_oom_victim(current) &&
5065 (alloc_flags & ALLOC_OOM ||
5066 (gfp_mask & __GFP_NOMEMALLOC)))
5067 goto nopage;
5068
5069 /* Retry as long as the OOM killer is making progress */
5070 if (did_some_progress) {
5071 no_progress_loops = 0;
5072 goto retry;
5073 }
5074
5075 nopage:
5076 /* Deal with possible cpuset update races before we fail */
5077 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5078 goto retry_cpuset;
5079
5080 /*
5081 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5082 * we always retry
5083 */
5084 if (gfp_mask & __GFP_NOFAIL) {
5085 /*
5086 * All existing users of the __GFP_NOFAIL are blockable, so warn
5087 * of any new users that actually require GFP_NOWAIT
5088 */
5089 if (WARN_ON_ONCE(!can_direct_reclaim))
5090 goto fail;
5091
5092 /*
5093 * PF_MEMALLOC request from this context is rather bizarre
5094 * because we cannot reclaim anything and only can loop waiting
5095 * for somebody to do a work for us
5096 */
5097 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5098
5099 /*
5100 * non failing costly orders are a hard requirement which we
5101 * are not prepared for much so let's warn about these users
5102 * so that we can identify them and convert them to something
5103 * else.
5104 */
5105 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5106
5107 /*
5108 * Help non-failing allocations by giving them access to memory
5109 * reserves but do not use ALLOC_NO_WATERMARKS because this
5110 * could deplete whole memory reserves which would just make
5111 * the situation worse
5112 */
5113 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5114 if (page)
5115 goto got_pg;
5116
5117 cond_resched();
5118 goto retry;
5119 }
5120 fail:
5121 warn_alloc(gfp_mask, ac->nodemask,
5122 "page allocation failure: order:%u", order);
5123 got_pg:
5124 return page;
5125 }
5126
5127 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5128 int preferred_nid, nodemask_t *nodemask,
5129 struct alloc_context *ac, gfp_t *alloc_gfp,
5130 unsigned int *alloc_flags)
5131 {
5132 ac->highest_zoneidx = gfp_zone(gfp_mask);
5133 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5134 ac->nodemask = nodemask;
5135 ac->migratetype = gfp_migratetype(gfp_mask);
5136
5137 if (cpusets_enabled()) {
5138 *alloc_gfp |= __GFP_HARDWALL;
5139 /*
5140 * When we are in the interrupt context, it is irrelevant
5141 * to the current task context. It means that any node ok.
5142 */
5143 if (!in_interrupt() && !ac->nodemask)
5144 ac->nodemask = &cpuset_current_mems_allowed;
5145 else
5146 *alloc_flags |= ALLOC_CPUSET;
5147 }
5148
5149 fs_reclaim_acquire(gfp_mask);
5150 fs_reclaim_release(gfp_mask);
5151
5152 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5153
5154 if (should_fail_alloc_page(gfp_mask, order))
5155 return false;
5156
5157 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5158
5159 /* Dirty zone balancing only done in the fast path */
5160 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5161
5162 /*
5163 * The preferred zone is used for statistics but crucially it is
5164 * also used as the starting point for the zonelist iterator. It
5165 * may get reset for allocations that ignore memory policies.
5166 */
5167 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5168 ac->highest_zoneidx, ac->nodemask);
5169
5170 return true;
5171 }
5172
5173 /*
5174 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5175 * @gfp: GFP flags for the allocation
5176 * @preferred_nid: The preferred NUMA node ID to allocate from
5177 * @nodemask: Set of nodes to allocate from, may be NULL
5178 * @nr_pages: The number of pages desired on the list or array
5179 * @page_list: Optional list to store the allocated pages
5180 * @page_array: Optional array to store the pages
5181 *
5182 * This is a batched version of the page allocator that attempts to
5183 * allocate nr_pages quickly. Pages are added to page_list if page_list
5184 * is not NULL, otherwise it is assumed that the page_array is valid.
5185 *
5186 * For lists, nr_pages is the number of pages that should be allocated.
5187 *
5188 * For arrays, only NULL elements are populated with pages and nr_pages
5189 * is the maximum number of pages that will be stored in the array.
5190 *
5191 * Returns the number of pages on the list or array.
5192 */
5193 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5194 nodemask_t *nodemask, int nr_pages,
5195 struct list_head *page_list,
5196 struct page **page_array)
5197 {
5198 struct page *page;
5199 unsigned long flags;
5200 struct zone *zone;
5201 struct zoneref *z;
5202 struct per_cpu_pages *pcp;
5203 struct list_head *pcp_list;
5204 struct alloc_context ac;
5205 gfp_t alloc_gfp;
5206 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5207 int nr_populated = 0, nr_account = 0;
5208
5209 /*
5210 * Skip populated array elements to determine if any pages need
5211 * to be allocated before disabling IRQs.
5212 */
5213 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5214 nr_populated++;
5215
5216 /* No pages requested? */
5217 if (unlikely(nr_pages <= 0))
5218 goto out;
5219
5220 /* Already populated array? */
5221 if (unlikely(page_array && nr_pages - nr_populated == 0))
5222 goto out;
5223
5224 /* Use the single page allocator for one page. */
5225 if (nr_pages - nr_populated == 1)
5226 goto failed;
5227
5228 #ifdef CONFIG_PAGE_OWNER
5229 /*
5230 * PAGE_OWNER may recurse into the allocator to allocate space to
5231 * save the stack with pagesets.lock held. Releasing/reacquiring
5232 * removes much of the performance benefit of bulk allocation so
5233 * force the caller to allocate one page at a time as it'll have
5234 * similar performance to added complexity to the bulk allocator.
5235 */
5236 if (static_branch_unlikely(&page_owner_inited))
5237 goto failed;
5238 #endif
5239
5240 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5241 gfp &= gfp_allowed_mask;
5242 alloc_gfp = gfp;
5243 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5244 goto out;
5245 gfp = alloc_gfp;
5246
5247 /* Find an allowed local zone that meets the low watermark. */
5248 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5249 unsigned long mark;
5250
5251 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5252 !__cpuset_zone_allowed(zone, gfp)) {
5253 continue;
5254 }
5255
5256 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5257 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5258 goto failed;
5259 }
5260
5261 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5262 if (zone_watermark_fast(zone, 0, mark,
5263 zonelist_zone_idx(ac.preferred_zoneref),
5264 alloc_flags, gfp)) {
5265 break;
5266 }
5267 }
5268
5269 /*
5270 * If there are no allowed local zones that meets the watermarks then
5271 * try to allocate a single page and reclaim if necessary.
5272 */
5273 if (unlikely(!zone))
5274 goto failed;
5275
5276 /* Attempt the batch allocation */
5277 local_lock_irqsave(&pagesets.lock, flags);
5278 pcp = this_cpu_ptr(zone->per_cpu_pageset);
5279 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5280
5281 while (nr_populated < nr_pages) {
5282
5283 /* Skip existing pages */
5284 if (page_array && page_array[nr_populated]) {
5285 nr_populated++;
5286 continue;
5287 }
5288
5289 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5290 pcp, pcp_list);
5291 if (unlikely(!page)) {
5292 /* Try and get at least one page */
5293 if (!nr_populated)
5294 goto failed_irq;
5295 break;
5296 }
5297 nr_account++;
5298
5299 prep_new_page(page, 0, gfp, 0);
5300 if (page_list)
5301 list_add(&page->lru, page_list);
5302 else
5303 page_array[nr_populated] = page;
5304 nr_populated++;
5305 }
5306
5307 local_unlock_irqrestore(&pagesets.lock, flags);
5308
5309 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5310 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5311
5312 out:
5313 return nr_populated;
5314
5315 failed_irq:
5316 local_unlock_irqrestore(&pagesets.lock, flags);
5317
5318 failed:
5319 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5320 if (page) {
5321 if (page_list)
5322 list_add(&page->lru, page_list);
5323 else
5324 page_array[nr_populated] = page;
5325 nr_populated++;
5326 }
5327
5328 goto out;
5329 }
5330 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5331
5332 /*
5333 * This is the 'heart' of the zoned buddy allocator.
5334 */
5335 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5336 nodemask_t *nodemask)
5337 {
5338 struct page *page;
5339 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5340 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5341 struct alloc_context ac = { };
5342
5343 /*
5344 * There are several places where we assume that the order value is sane
5345 * so bail out early if the request is out of bound.
5346 */
5347 if (unlikely(order >= MAX_ORDER)) {
5348 WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5349 return NULL;
5350 }
5351
5352 gfp &= gfp_allowed_mask;
5353 /*
5354 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5355 * resp. GFP_NOIO which has to be inherited for all allocation requests
5356 * from a particular context which has been marked by
5357 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5358 * movable zones are not used during allocation.
5359 */
5360 gfp = current_gfp_context(gfp);
5361 alloc_gfp = gfp;
5362 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5363 &alloc_gfp, &alloc_flags))
5364 return NULL;
5365
5366 /*
5367 * Forbid the first pass from falling back to types that fragment
5368 * memory until all local zones are considered.
5369 */
5370 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5371
5372 /* First allocation attempt */
5373 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5374 if (likely(page))
5375 goto out;
5376
5377 alloc_gfp = gfp;
5378 ac.spread_dirty_pages = false;
5379
5380 /*
5381 * Restore the original nodemask if it was potentially replaced with
5382 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5383 */
5384 ac.nodemask = nodemask;
5385
5386 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5387
5388 out:
5389 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5390 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5391 __free_pages(page, order);
5392 page = NULL;
5393 }
5394
5395 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5396
5397 return page;
5398 }
5399 EXPORT_SYMBOL(__alloc_pages);
5400
5401 /*
5402 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5403 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5404 * you need to access high mem.
5405 */
5406 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5407 {
5408 struct page *page;
5409
5410 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5411 if (!page)
5412 return 0;
5413 return (unsigned long) page_address(page);
5414 }
5415 EXPORT_SYMBOL(__get_free_pages);
5416
5417 unsigned long get_zeroed_page(gfp_t gfp_mask)
5418 {
5419 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5420 }
5421 EXPORT_SYMBOL(get_zeroed_page);
5422
5423 /**
5424 * __free_pages - Free pages allocated with alloc_pages().
5425 * @page: The page pointer returned from alloc_pages().
5426 * @order: The order of the allocation.
5427 *
5428 * This function can free multi-page allocations that are not compound
5429 * pages. It does not check that the @order passed in matches that of
5430 * the allocation, so it is easy to leak memory. Freeing more memory
5431 * than was allocated will probably emit a warning.
5432 *
5433 * If the last reference to this page is speculative, it will be released
5434 * by put_page() which only frees the first page of a non-compound
5435 * allocation. To prevent the remaining pages from being leaked, we free
5436 * the subsequent pages here. If you want to use the page's reference
5437 * count to decide when to free the allocation, you should allocate a
5438 * compound page, and use put_page() instead of __free_pages().
5439 *
5440 * Context: May be called in interrupt context or while holding a normal
5441 * spinlock, but not in NMI context or while holding a raw spinlock.
5442 */
5443 void __free_pages(struct page *page, unsigned int order)
5444 {
5445 if (put_page_testzero(page))
5446 free_the_page(page, order);
5447 else if (!PageHead(page))
5448 while (order-- > 0)
5449 free_the_page(page + (1 << order), order);
5450 }
5451 EXPORT_SYMBOL(__free_pages);
5452
5453 void free_pages(unsigned long addr, unsigned int order)
5454 {
5455 if (addr != 0) {
5456 VM_BUG_ON(!virt_addr_valid((void *)addr));
5457 __free_pages(virt_to_page((void *)addr), order);
5458 }
5459 }
5460
5461 EXPORT_SYMBOL(free_pages);
5462
5463 /*
5464 * Page Fragment:
5465 * An arbitrary-length arbitrary-offset area of memory which resides
5466 * within a 0 or higher order page. Multiple fragments within that page
5467 * are individually refcounted, in the page's reference counter.
5468 *
5469 * The page_frag functions below provide a simple allocation framework for
5470 * page fragments. This is used by the network stack and network device
5471 * drivers to provide a backing region of memory for use as either an
5472 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5473 */
5474 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5475 gfp_t gfp_mask)
5476 {
5477 struct page *page = NULL;
5478 gfp_t gfp = gfp_mask;
5479
5480 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5481 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5482 __GFP_NOMEMALLOC;
5483 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5484 PAGE_FRAG_CACHE_MAX_ORDER);
5485 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5486 #endif
5487 if (unlikely(!page))
5488 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5489
5490 nc->va = page ? page_address(page) : NULL;
5491
5492 return page;
5493 }
5494
5495 void __page_frag_cache_drain(struct page *page, unsigned int count)
5496 {
5497 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5498
5499 if (page_ref_sub_and_test(page, count))
5500 free_the_page(page, compound_order(page));
5501 }
5502 EXPORT_SYMBOL(__page_frag_cache_drain);
5503
5504 void *page_frag_alloc_align(struct page_frag_cache *nc,
5505 unsigned int fragsz, gfp_t gfp_mask,
5506 unsigned int align_mask)
5507 {
5508 unsigned int size = PAGE_SIZE;
5509 struct page *page;
5510 int offset;
5511
5512 if (unlikely(!nc->va)) {
5513 refill:
5514 page = __page_frag_cache_refill(nc, gfp_mask);
5515 if (!page)
5516 return NULL;
5517
5518 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5519 /* if size can vary use size else just use PAGE_SIZE */
5520 size = nc->size;
5521 #endif
5522 /* Even if we own the page, we do not use atomic_set().
5523 * This would break get_page_unless_zero() users.
5524 */
5525 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5526
5527 /* reset page count bias and offset to start of new frag */
5528 nc->pfmemalloc = page_is_pfmemalloc(page);
5529 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5530 nc->offset = size;
5531 }
5532
5533 offset = nc->offset - fragsz;
5534 if (unlikely(offset < 0)) {
5535 page = virt_to_page(nc->va);
5536
5537 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5538 goto refill;
5539
5540 if (unlikely(nc->pfmemalloc)) {
5541 free_the_page(page, compound_order(page));
5542 goto refill;
5543 }
5544
5545 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5546 /* if size can vary use size else just use PAGE_SIZE */
5547 size = nc->size;
5548 #endif
5549 /* OK, page count is 0, we can safely set it */
5550 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5551
5552 /* reset page count bias and offset to start of new frag */
5553 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5554 offset = size - fragsz;
5555 }
5556
5557 nc->pagecnt_bias--;
5558 offset &= align_mask;
5559 nc->offset = offset;
5560
5561 return nc->va + offset;
5562 }
5563 EXPORT_SYMBOL(page_frag_alloc_align);
5564
5565 /*
5566 * Frees a page fragment allocated out of either a compound or order 0 page.
5567 */
5568 void page_frag_free(void *addr)
5569 {
5570 struct page *page = virt_to_head_page(addr);
5571
5572 if (unlikely(put_page_testzero(page)))
5573 free_the_page(page, compound_order(page));
5574 }
5575 EXPORT_SYMBOL(page_frag_free);
5576
5577 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5578 size_t size)
5579 {
5580 if (addr) {
5581 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5582 unsigned long used = addr + PAGE_ALIGN(size);
5583
5584 split_page(virt_to_page((void *)addr), order);
5585 while (used < alloc_end) {
5586 free_page(used);
5587 used += PAGE_SIZE;
5588 }
5589 }
5590 return (void *)addr;
5591 }
5592
5593 /**
5594 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5595 * @size: the number of bytes to allocate
5596 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5597 *
5598 * This function is similar to alloc_pages(), except that it allocates the
5599 * minimum number of pages to satisfy the request. alloc_pages() can only
5600 * allocate memory in power-of-two pages.
5601 *
5602 * This function is also limited by MAX_ORDER.
5603 *
5604 * Memory allocated by this function must be released by free_pages_exact().
5605 *
5606 * Return: pointer to the allocated area or %NULL in case of error.
5607 */
5608 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5609 {
5610 unsigned int order = get_order(size);
5611 unsigned long addr;
5612
5613 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5614 gfp_mask &= ~__GFP_COMP;
5615
5616 addr = __get_free_pages(gfp_mask, order);
5617 return make_alloc_exact(addr, order, size);
5618 }
5619 EXPORT_SYMBOL(alloc_pages_exact);
5620
5621 /**
5622 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5623 * pages on a node.
5624 * @nid: the preferred node ID where memory should be allocated
5625 * @size: the number of bytes to allocate
5626 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5627 *
5628 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5629 * back.
5630 *
5631 * Return: pointer to the allocated area or %NULL in case of error.
5632 */
5633 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5634 {
5635 unsigned int order = get_order(size);
5636 struct page *p;
5637
5638 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5639 gfp_mask &= ~__GFP_COMP;
5640
5641 p = alloc_pages_node(nid, gfp_mask, order);
5642 if (!p)
5643 return NULL;
5644 return make_alloc_exact((unsigned long)page_address(p), order, size);
5645 }
5646
5647 /**
5648 * free_pages_exact - release memory allocated via alloc_pages_exact()
5649 * @virt: the value returned by alloc_pages_exact.
5650 * @size: size of allocation, same value as passed to alloc_pages_exact().
5651 *
5652 * Release the memory allocated by a previous call to alloc_pages_exact.
5653 */
5654 void free_pages_exact(void *virt, size_t size)
5655 {
5656 unsigned long addr = (unsigned long)virt;
5657 unsigned long end = addr + PAGE_ALIGN(size);
5658
5659 while (addr < end) {
5660 free_page(addr);
5661 addr += PAGE_SIZE;
5662 }
5663 }
5664 EXPORT_SYMBOL(free_pages_exact);
5665
5666 /**
5667 * nr_free_zone_pages - count number of pages beyond high watermark
5668 * @offset: The zone index of the highest zone
5669 *
5670 * nr_free_zone_pages() counts the number of pages which are beyond the
5671 * high watermark within all zones at or below a given zone index. For each
5672 * zone, the number of pages is calculated as:
5673 *
5674 * nr_free_zone_pages = managed_pages - high_pages
5675 *
5676 * Return: number of pages beyond high watermark.
5677 */
5678 static unsigned long nr_free_zone_pages(int offset)
5679 {
5680 struct zoneref *z;
5681 struct zone *zone;
5682
5683 /* Just pick one node, since fallback list is circular */
5684 unsigned long sum = 0;
5685
5686 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5687
5688 for_each_zone_zonelist(zone, z, zonelist, offset) {
5689 unsigned long size = zone_managed_pages(zone);
5690 unsigned long high = high_wmark_pages(zone);
5691 if (size > high)
5692 sum += size - high;
5693 }
5694
5695 return sum;
5696 }
5697
5698 /**
5699 * nr_free_buffer_pages - count number of pages beyond high watermark
5700 *
5701 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5702 * watermark within ZONE_DMA and ZONE_NORMAL.
5703 *
5704 * Return: number of pages beyond high watermark within ZONE_DMA and
5705 * ZONE_NORMAL.
5706 */
5707 unsigned long nr_free_buffer_pages(void)
5708 {
5709 return nr_free_zone_pages(gfp_zone(GFP_USER));
5710 }
5711 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5712
5713 static inline void show_node(struct zone *zone)
5714 {
5715 if (IS_ENABLED(CONFIG_NUMA))
5716 printk("Node %d ", zone_to_nid(zone));
5717 }
5718
5719 long si_mem_available(void)
5720 {
5721 long available;
5722 unsigned long pagecache;
5723 unsigned long wmark_low = 0;
5724 unsigned long pages[NR_LRU_LISTS];
5725 unsigned long reclaimable;
5726 struct zone *zone;
5727 int lru;
5728
5729 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5730 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5731
5732 for_each_zone(zone)
5733 wmark_low += low_wmark_pages(zone);
5734
5735 /*
5736 * Estimate the amount of memory available for userspace allocations,
5737 * without causing swapping.
5738 */
5739 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5740
5741 /*
5742 * Not all the page cache can be freed, otherwise the system will
5743 * start swapping. Assume at least half of the page cache, or the
5744 * low watermark worth of cache, needs to stay.
5745 */
5746 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5747 pagecache -= min(pagecache / 2, wmark_low);
5748 available += pagecache;
5749
5750 /*
5751 * Part of the reclaimable slab and other kernel memory consists of
5752 * items that are in use, and cannot be freed. Cap this estimate at the
5753 * low watermark.
5754 */
5755 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5756 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5757 available += reclaimable - min(reclaimable / 2, wmark_low);
5758
5759 if (available < 0)
5760 available = 0;
5761 return available;
5762 }
5763 EXPORT_SYMBOL_GPL(si_mem_available);
5764
5765 void si_meminfo(struct sysinfo *val)
5766 {
5767 val->totalram = totalram_pages();
5768 val->sharedram = global_node_page_state(NR_SHMEM);
5769 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5770 val->bufferram = nr_blockdev_pages();
5771 val->totalhigh = totalhigh_pages();
5772 val->freehigh = nr_free_highpages();
5773 val->mem_unit = PAGE_SIZE;
5774 }
5775
5776 EXPORT_SYMBOL(si_meminfo);
5777
5778 #ifdef CONFIG_NUMA
5779 void si_meminfo_node(struct sysinfo *val, int nid)
5780 {
5781 int zone_type; /* needs to be signed */
5782 unsigned long managed_pages = 0;
5783 unsigned long managed_highpages = 0;
5784 unsigned long free_highpages = 0;
5785 pg_data_t *pgdat = NODE_DATA(nid);
5786
5787 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5788 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5789 val->totalram = managed_pages;
5790 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5791 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5792 #ifdef CONFIG_HIGHMEM
5793 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5794 struct zone *zone = &pgdat->node_zones[zone_type];
5795
5796 if (is_highmem(zone)) {
5797 managed_highpages += zone_managed_pages(zone);
5798 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5799 }
5800 }
5801 val->totalhigh = managed_highpages;
5802 val->freehigh = free_highpages;
5803 #else
5804 val->totalhigh = managed_highpages;
5805 val->freehigh = free_highpages;
5806 #endif
5807 val->mem_unit = PAGE_SIZE;
5808 }
5809 #endif
5810
5811 /*
5812 * Determine whether the node should be displayed or not, depending on whether
5813 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5814 */
5815 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5816 {
5817 if (!(flags & SHOW_MEM_FILTER_NODES))
5818 return false;
5819
5820 /*
5821 * no node mask - aka implicit memory numa policy. Do not bother with
5822 * the synchronization - read_mems_allowed_begin - because we do not
5823 * have to be precise here.
5824 */
5825 if (!nodemask)
5826 nodemask = &cpuset_current_mems_allowed;
5827
5828 return !node_isset(nid, *nodemask);
5829 }
5830
5831 #define K(x) ((x) << (PAGE_SHIFT-10))
5832
5833 static void show_migration_types(unsigned char type)
5834 {
5835 static const char types[MIGRATE_TYPES] = {
5836 [MIGRATE_UNMOVABLE] = 'U',
5837 [MIGRATE_MOVABLE] = 'M',
5838 [MIGRATE_RECLAIMABLE] = 'E',
5839 [MIGRATE_HIGHATOMIC] = 'H',
5840 #ifdef CONFIG_CMA
5841 [MIGRATE_CMA] = 'C',
5842 #endif
5843 #ifdef CONFIG_MEMORY_ISOLATION
5844 [MIGRATE_ISOLATE] = 'I',
5845 #endif
5846 };
5847 char tmp[MIGRATE_TYPES + 1];
5848 char *p = tmp;
5849 int i;
5850
5851 for (i = 0; i < MIGRATE_TYPES; i++) {
5852 if (type & (1 << i))
5853 *p++ = types[i];
5854 }
5855
5856 *p = '\0';
5857 printk(KERN_CONT "(%s) ", tmp);
5858 }
5859
5860 /*
5861 * Show free area list (used inside shift_scroll-lock stuff)
5862 * We also calculate the percentage fragmentation. We do this by counting the
5863 * memory on each free list with the exception of the first item on the list.
5864 *
5865 * Bits in @filter:
5866 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5867 * cpuset.
5868 */
5869 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5870 {
5871 unsigned long free_pcp = 0;
5872 int cpu;
5873 struct zone *zone;
5874 pg_data_t *pgdat;
5875
5876 for_each_populated_zone(zone) {
5877 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5878 continue;
5879
5880 for_each_online_cpu(cpu)
5881 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5882 }
5883
5884 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5885 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5886 " unevictable:%lu dirty:%lu writeback:%lu\n"
5887 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5888 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5889 " free:%lu free_pcp:%lu free_cma:%lu\n",
5890 global_node_page_state(NR_ACTIVE_ANON),
5891 global_node_page_state(NR_INACTIVE_ANON),
5892 global_node_page_state(NR_ISOLATED_ANON),
5893 global_node_page_state(NR_ACTIVE_FILE),
5894 global_node_page_state(NR_INACTIVE_FILE),
5895 global_node_page_state(NR_ISOLATED_FILE),
5896 global_node_page_state(NR_UNEVICTABLE),
5897 global_node_page_state(NR_FILE_DIRTY),
5898 global_node_page_state(NR_WRITEBACK),
5899 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5900 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5901 global_node_page_state(NR_FILE_MAPPED),
5902 global_node_page_state(NR_SHMEM),
5903 global_node_page_state(NR_PAGETABLE),
5904 global_zone_page_state(NR_BOUNCE),
5905 global_zone_page_state(NR_FREE_PAGES),
5906 free_pcp,
5907 global_zone_page_state(NR_FREE_CMA_PAGES));
5908
5909 for_each_online_pgdat(pgdat) {
5910 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5911 continue;
5912
5913 printk("Node %d"
5914 " active_anon:%lukB"
5915 " inactive_anon:%lukB"
5916 " active_file:%lukB"
5917 " inactive_file:%lukB"
5918 " unevictable:%lukB"
5919 " isolated(anon):%lukB"
5920 " isolated(file):%lukB"
5921 " mapped:%lukB"
5922 " dirty:%lukB"
5923 " writeback:%lukB"
5924 " shmem:%lukB"
5925 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5926 " shmem_thp: %lukB"
5927 " shmem_pmdmapped: %lukB"
5928 " anon_thp: %lukB"
5929 #endif
5930 " writeback_tmp:%lukB"
5931 " kernel_stack:%lukB"
5932 #ifdef CONFIG_SHADOW_CALL_STACK
5933 " shadow_call_stack:%lukB"
5934 #endif
5935 " pagetables:%lukB"
5936 " all_unreclaimable? %s"
5937 "\n",
5938 pgdat->node_id,
5939 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5940 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5941 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5942 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5943 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5944 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5945 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5946 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5947 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5948 K(node_page_state(pgdat, NR_WRITEBACK)),
5949 K(node_page_state(pgdat, NR_SHMEM)),
5950 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5951 K(node_page_state(pgdat, NR_SHMEM_THPS)),
5952 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5953 K(node_page_state(pgdat, NR_ANON_THPS)),
5954 #endif
5955 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5956 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5957 #ifdef CONFIG_SHADOW_CALL_STACK
5958 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5959 #endif
5960 K(node_page_state(pgdat, NR_PAGETABLE)),
5961 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5962 "yes" : "no");
5963 }
5964
5965 for_each_populated_zone(zone) {
5966 int i;
5967
5968 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5969 continue;
5970
5971 free_pcp = 0;
5972 for_each_online_cpu(cpu)
5973 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5974
5975 show_node(zone);
5976 printk(KERN_CONT
5977 "%s"
5978 " free:%lukB"
5979 " min:%lukB"
5980 " low:%lukB"
5981 " high:%lukB"
5982 " reserved_highatomic:%luKB"
5983 " active_anon:%lukB"
5984 " inactive_anon:%lukB"
5985 " active_file:%lukB"
5986 " inactive_file:%lukB"
5987 " unevictable:%lukB"
5988 " writepending:%lukB"
5989 " present:%lukB"
5990 " managed:%lukB"
5991 " mlocked:%lukB"
5992 " bounce:%lukB"
5993 " free_pcp:%lukB"
5994 " local_pcp:%ukB"
5995 " free_cma:%lukB"
5996 "\n",
5997 zone->name,
5998 K(zone_page_state(zone, NR_FREE_PAGES)),
5999 K(min_wmark_pages(zone)),
6000 K(low_wmark_pages(zone)),
6001 K(high_wmark_pages(zone)),
6002 K(zone->nr_reserved_highatomic),
6003 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6004 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6005 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6006 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6007 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6008 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6009 K(zone->present_pages),
6010 K(zone_managed_pages(zone)),
6011 K(zone_page_state(zone, NR_MLOCK)),
6012 K(zone_page_state(zone, NR_BOUNCE)),
6013 K(free_pcp),
6014 K(this_cpu_read(zone->per_cpu_pageset->count)),
6015 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6016 printk("lowmem_reserve[]:");
6017 for (i = 0; i < MAX_NR_ZONES; i++)
6018 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6019 printk(KERN_CONT "\n");
6020 }
6021
6022 for_each_populated_zone(zone) {
6023 unsigned int order;
6024 unsigned long nr[MAX_ORDER], flags, total = 0;
6025 unsigned char types[MAX_ORDER];
6026
6027 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6028 continue;
6029 show_node(zone);
6030 printk(KERN_CONT "%s: ", zone->name);
6031
6032 spin_lock_irqsave(&zone->lock, flags);
6033 for (order = 0; order < MAX_ORDER; order++) {
6034 struct free_area *area = &zone->free_area[order];
6035 int type;
6036
6037 nr[order] = area->nr_free;
6038 total += nr[order] << order;
6039
6040 types[order] = 0;
6041 for (type = 0; type < MIGRATE_TYPES; type++) {
6042 if (!free_area_empty(area, type))
6043 types[order] |= 1 << type;
6044 }
6045 }
6046 spin_unlock_irqrestore(&zone->lock, flags);
6047 for (order = 0; order < MAX_ORDER; order++) {
6048 printk(KERN_CONT "%lu*%lukB ",
6049 nr[order], K(1UL) << order);
6050 if (nr[order])
6051 show_migration_types(types[order]);
6052 }
6053 printk(KERN_CONT "= %lukB\n", K(total));
6054 }
6055
6056 hugetlb_show_meminfo();
6057
6058 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6059
6060 show_swap_cache_info();
6061 }
6062
6063 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6064 {
6065 zoneref->zone = zone;
6066 zoneref->zone_idx = zone_idx(zone);
6067 }
6068
6069 /*
6070 * Builds allocation fallback zone lists.
6071 *
6072 * Add all populated zones of a node to the zonelist.
6073 */
6074 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6075 {
6076 struct zone *zone;
6077 enum zone_type zone_type = MAX_NR_ZONES;
6078 int nr_zones = 0;
6079
6080 do {
6081 zone_type--;
6082 zone = pgdat->node_zones + zone_type;
6083 if (managed_zone(zone)) {
6084 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6085 check_highest_zone(zone_type);
6086 }
6087 } while (zone_type);
6088
6089 return nr_zones;
6090 }
6091
6092 #ifdef CONFIG_NUMA
6093
6094 static int __parse_numa_zonelist_order(char *s)
6095 {
6096 /*
6097 * We used to support different zonelists modes but they turned
6098 * out to be just not useful. Let's keep the warning in place
6099 * if somebody still use the cmd line parameter so that we do
6100 * not fail it silently
6101 */
6102 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6103 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6104 return -EINVAL;
6105 }
6106 return 0;
6107 }
6108
6109 char numa_zonelist_order[] = "Node";
6110
6111 /*
6112 * sysctl handler for numa_zonelist_order
6113 */
6114 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6115 void *buffer, size_t *length, loff_t *ppos)
6116 {
6117 if (write)
6118 return __parse_numa_zonelist_order(buffer);
6119 return proc_dostring(table, write, buffer, length, ppos);
6120 }
6121
6122
6123 #define MAX_NODE_LOAD (nr_online_nodes)
6124 static int node_load[MAX_NUMNODES];
6125
6126 /**
6127 * find_next_best_node - find the next node that should appear in a given node's fallback list
6128 * @node: node whose fallback list we're appending
6129 * @used_node_mask: nodemask_t of already used nodes
6130 *
6131 * We use a number of factors to determine which is the next node that should
6132 * appear on a given node's fallback list. The node should not have appeared
6133 * already in @node's fallback list, and it should be the next closest node
6134 * according to the distance array (which contains arbitrary distance values
6135 * from each node to each node in the system), and should also prefer nodes
6136 * with no CPUs, since presumably they'll have very little allocation pressure
6137 * on them otherwise.
6138 *
6139 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6140 */
6141 static int find_next_best_node(int node, nodemask_t *used_node_mask)
6142 {
6143 int n, val;
6144 int min_val = INT_MAX;
6145 int best_node = NUMA_NO_NODE;
6146
6147 /* Use the local node if we haven't already */
6148 if (!node_isset(node, *used_node_mask)) {
6149 node_set(node, *used_node_mask);
6150 return node;
6151 }
6152
6153 for_each_node_state(n, N_MEMORY) {
6154
6155 /* Don't want a node to appear more than once */
6156 if (node_isset(n, *used_node_mask))
6157 continue;
6158
6159 /* Use the distance array to find the distance */
6160 val = node_distance(node, n);
6161
6162 /* Penalize nodes under us ("prefer the next node") */
6163 val += (n < node);
6164
6165 /* Give preference to headless and unused nodes */
6166 if (!cpumask_empty(cpumask_of_node(n)))
6167 val += PENALTY_FOR_NODE_WITH_CPUS;
6168
6169 /* Slight preference for less loaded node */
6170 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6171 val += node_load[n];
6172
6173 if (val < min_val) {
6174 min_val = val;
6175 best_node = n;
6176 }
6177 }
6178
6179 if (best_node >= 0)
6180 node_set(best_node, *used_node_mask);
6181
6182 return best_node;
6183 }
6184
6185
6186 /*
6187 * Build zonelists ordered by node and zones within node.
6188 * This results in maximum locality--normal zone overflows into local
6189 * DMA zone, if any--but risks exhausting DMA zone.
6190 */
6191 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6192 unsigned nr_nodes)
6193 {
6194 struct zoneref *zonerefs;
6195 int i;
6196
6197 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6198
6199 for (i = 0; i < nr_nodes; i++) {
6200 int nr_zones;
6201
6202 pg_data_t *node = NODE_DATA(node_order[i]);
6203
6204 nr_zones = build_zonerefs_node(node, zonerefs);
6205 zonerefs += nr_zones;
6206 }
6207 zonerefs->zone = NULL;
6208 zonerefs->zone_idx = 0;
6209 }
6210
6211 /*
6212 * Build gfp_thisnode zonelists
6213 */
6214 static void build_thisnode_zonelists(pg_data_t *pgdat)
6215 {
6216 struct zoneref *zonerefs;
6217 int nr_zones;
6218
6219 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6220 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6221 zonerefs += nr_zones;
6222 zonerefs->zone = NULL;
6223 zonerefs->zone_idx = 0;
6224 }
6225
6226 /*
6227 * Build zonelists ordered by zone and nodes within zones.
6228 * This results in conserving DMA zone[s] until all Normal memory is
6229 * exhausted, but results in overflowing to remote node while memory
6230 * may still exist in local DMA zone.
6231 */
6232
6233 static void build_zonelists(pg_data_t *pgdat)
6234 {
6235 static int node_order[MAX_NUMNODES];
6236 int node, load, nr_nodes = 0;
6237 nodemask_t used_mask = NODE_MASK_NONE;
6238 int local_node, prev_node;
6239
6240 /* NUMA-aware ordering of nodes */
6241 local_node = pgdat->node_id;
6242 load = nr_online_nodes;
6243 prev_node = local_node;
6244
6245 memset(node_order, 0, sizeof(node_order));
6246 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6247 /*
6248 * We don't want to pressure a particular node.
6249 * So adding penalty to the first node in same
6250 * distance group to make it round-robin.
6251 */
6252 if (node_distance(local_node, node) !=
6253 node_distance(local_node, prev_node))
6254 node_load[node] = load;
6255
6256 node_order[nr_nodes++] = node;
6257 prev_node = node;
6258 load--;
6259 }
6260
6261 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6262 build_thisnode_zonelists(pgdat);
6263 }
6264
6265 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6266 /*
6267 * Return node id of node used for "local" allocations.
6268 * I.e., first node id of first zone in arg node's generic zonelist.
6269 * Used for initializing percpu 'numa_mem', which is used primarily
6270 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6271 */
6272 int local_memory_node(int node)
6273 {
6274 struct zoneref *z;
6275
6276 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6277 gfp_zone(GFP_KERNEL),
6278 NULL);
6279 return zone_to_nid(z->zone);
6280 }
6281 #endif
6282
6283 static void setup_min_unmapped_ratio(void);
6284 static void setup_min_slab_ratio(void);
6285 #else /* CONFIG_NUMA */
6286
6287 static void build_zonelists(pg_data_t *pgdat)
6288 {
6289 int node, local_node;
6290 struct zoneref *zonerefs;
6291 int nr_zones;
6292
6293 local_node = pgdat->node_id;
6294
6295 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6296 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6297 zonerefs += nr_zones;
6298
6299 /*
6300 * Now we build the zonelist so that it contains the zones
6301 * of all the other nodes.
6302 * We don't want to pressure a particular node, so when
6303 * building the zones for node N, we make sure that the
6304 * zones coming right after the local ones are those from
6305 * node N+1 (modulo N)
6306 */
6307 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6308 if (!node_online(node))
6309 continue;
6310 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6311 zonerefs += nr_zones;
6312 }
6313 for (node = 0; node < local_node; node++) {
6314 if (!node_online(node))
6315 continue;
6316 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6317 zonerefs += nr_zones;
6318 }
6319
6320 zonerefs->zone = NULL;
6321 zonerefs->zone_idx = 0;
6322 }
6323
6324 #endif /* CONFIG_NUMA */
6325
6326 /*
6327 * Boot pageset table. One per cpu which is going to be used for all
6328 * zones and all nodes. The parameters will be set in such a way
6329 * that an item put on a list will immediately be handed over to
6330 * the buddy list. This is safe since pageset manipulation is done
6331 * with interrupts disabled.
6332 *
6333 * The boot_pagesets must be kept even after bootup is complete for
6334 * unused processors and/or zones. They do play a role for bootstrapping
6335 * hotplugged processors.
6336 *
6337 * zoneinfo_show() and maybe other functions do
6338 * not check if the processor is online before following the pageset pointer.
6339 * Other parts of the kernel may not check if the zone is available.
6340 */
6341 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6342 /* These effectively disable the pcplists in the boot pageset completely */
6343 #define BOOT_PAGESET_HIGH 0
6344 #define BOOT_PAGESET_BATCH 1
6345 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6346 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6347 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6348
6349 static void __build_all_zonelists(void *data)
6350 {
6351 int nid;
6352 int __maybe_unused cpu;
6353 pg_data_t *self = data;
6354 static DEFINE_SPINLOCK(lock);
6355
6356 spin_lock(&lock);
6357
6358 #ifdef CONFIG_NUMA
6359 memset(node_load, 0, sizeof(node_load));
6360 #endif
6361
6362 /*
6363 * This node is hotadded and no memory is yet present. So just
6364 * building zonelists is fine - no need to touch other nodes.
6365 */
6366 if (self && !node_online(self->node_id)) {
6367 build_zonelists(self);
6368 } else {
6369 for_each_online_node(nid) {
6370 pg_data_t *pgdat = NODE_DATA(nid);
6371
6372 build_zonelists(pgdat);
6373 }
6374
6375 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6376 /*
6377 * We now know the "local memory node" for each node--
6378 * i.e., the node of the first zone in the generic zonelist.
6379 * Set up numa_mem percpu variable for on-line cpus. During
6380 * boot, only the boot cpu should be on-line; we'll init the
6381 * secondary cpus' numa_mem as they come on-line. During
6382 * node/memory hotplug, we'll fixup all on-line cpus.
6383 */
6384 for_each_online_cpu(cpu)
6385 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6386 #endif
6387 }
6388
6389 spin_unlock(&lock);
6390 }
6391
6392 static noinline void __init
6393 build_all_zonelists_init(void)
6394 {
6395 int cpu;
6396
6397 __build_all_zonelists(NULL);
6398
6399 /*
6400 * Initialize the boot_pagesets that are going to be used
6401 * for bootstrapping processors. The real pagesets for
6402 * each zone will be allocated later when the per cpu
6403 * allocator is available.
6404 *
6405 * boot_pagesets are used also for bootstrapping offline
6406 * cpus if the system is already booted because the pagesets
6407 * are needed to initialize allocators on a specific cpu too.
6408 * F.e. the percpu allocator needs the page allocator which
6409 * needs the percpu allocator in order to allocate its pagesets
6410 * (a chicken-egg dilemma).
6411 */
6412 for_each_possible_cpu(cpu)
6413 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6414
6415 mminit_verify_zonelist();
6416 cpuset_init_current_mems_allowed();
6417 }
6418
6419 /*
6420 * unless system_state == SYSTEM_BOOTING.
6421 *
6422 * __ref due to call of __init annotated helper build_all_zonelists_init
6423 * [protected by SYSTEM_BOOTING].
6424 */
6425 void __ref build_all_zonelists(pg_data_t *pgdat)
6426 {
6427 unsigned long vm_total_pages;
6428
6429 if (system_state == SYSTEM_BOOTING) {
6430 build_all_zonelists_init();
6431 } else {
6432 __build_all_zonelists(pgdat);
6433 /* cpuset refresh routine should be here */
6434 }
6435 /* Get the number of free pages beyond high watermark in all zones. */
6436 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6437 /*
6438 * Disable grouping by mobility if the number of pages in the
6439 * system is too low to allow the mechanism to work. It would be
6440 * more accurate, but expensive to check per-zone. This check is
6441 * made on memory-hotadd so a system can start with mobility
6442 * disabled and enable it later
6443 */
6444 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6445 page_group_by_mobility_disabled = 1;
6446 else
6447 page_group_by_mobility_disabled = 0;
6448
6449 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6450 nr_online_nodes,
6451 page_group_by_mobility_disabled ? "off" : "on",
6452 vm_total_pages);
6453 #ifdef CONFIG_NUMA
6454 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6455 #endif
6456 }
6457
6458 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6459 static bool __meminit
6460 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6461 {
6462 static struct memblock_region *r;
6463
6464 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6465 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6466 for_each_mem_region(r) {
6467 if (*pfn < memblock_region_memory_end_pfn(r))
6468 break;
6469 }
6470 }
6471 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6472 memblock_is_mirror(r)) {
6473 *pfn = memblock_region_memory_end_pfn(r);
6474 return true;
6475 }
6476 }
6477 return false;
6478 }
6479
6480 /*
6481 * Initially all pages are reserved - free ones are freed
6482 * up by memblock_free_all() once the early boot process is
6483 * done. Non-atomic initialization, single-pass.
6484 *
6485 * All aligned pageblocks are initialized to the specified migratetype
6486 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6487 * zone stats (e.g., nr_isolate_pageblock) are touched.
6488 */
6489 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6490 unsigned long start_pfn, unsigned long zone_end_pfn,
6491 enum meminit_context context,
6492 struct vmem_altmap *altmap, int migratetype)
6493 {
6494 unsigned long pfn, end_pfn = start_pfn + size;
6495 struct page *page;
6496
6497 if (highest_memmap_pfn < end_pfn - 1)
6498 highest_memmap_pfn = end_pfn - 1;
6499
6500 #ifdef CONFIG_ZONE_DEVICE
6501 /*
6502 * Honor reservation requested by the driver for this ZONE_DEVICE
6503 * memory. We limit the total number of pages to initialize to just
6504 * those that might contain the memory mapping. We will defer the
6505 * ZONE_DEVICE page initialization until after we have released
6506 * the hotplug lock.
6507 */
6508 if (zone == ZONE_DEVICE) {
6509 if (!altmap)
6510 return;
6511
6512 if (start_pfn == altmap->base_pfn)
6513 start_pfn += altmap->reserve;
6514 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6515 }
6516 #endif
6517
6518 for (pfn = start_pfn; pfn < end_pfn; ) {
6519 /*
6520 * There can be holes in boot-time mem_map[]s handed to this
6521 * function. They do not exist on hotplugged memory.
6522 */
6523 if (context == MEMINIT_EARLY) {
6524 if (overlap_memmap_init(zone, &pfn))
6525 continue;
6526 if (defer_init(nid, pfn, zone_end_pfn))
6527 break;
6528 }
6529
6530 page = pfn_to_page(pfn);
6531 __init_single_page(page, pfn, zone, nid);
6532 if (context == MEMINIT_HOTPLUG)
6533 __SetPageReserved(page);
6534
6535 /*
6536 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6537 * such that unmovable allocations won't be scattered all
6538 * over the place during system boot.
6539 */
6540 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6541 set_pageblock_migratetype(page, migratetype);
6542 cond_resched();
6543 }
6544 pfn++;
6545 }
6546 }
6547
6548 #ifdef CONFIG_ZONE_DEVICE
6549 void __ref memmap_init_zone_device(struct zone *zone,
6550 unsigned long start_pfn,
6551 unsigned long nr_pages,
6552 struct dev_pagemap *pgmap)
6553 {
6554 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6555 struct pglist_data *pgdat = zone->zone_pgdat;
6556 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6557 unsigned long zone_idx = zone_idx(zone);
6558 unsigned long start = jiffies;
6559 int nid = pgdat->node_id;
6560
6561 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6562 return;
6563
6564 /*
6565 * The call to memmap_init should have already taken care
6566 * of the pages reserved for the memmap, so we can just jump to
6567 * the end of that region and start processing the device pages.
6568 */
6569 if (altmap) {
6570 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6571 nr_pages = end_pfn - start_pfn;
6572 }
6573
6574 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6575 struct page *page = pfn_to_page(pfn);
6576
6577 __init_single_page(page, pfn, zone_idx, nid);
6578
6579 /*
6580 * Mark page reserved as it will need to wait for onlining
6581 * phase for it to be fully associated with a zone.
6582 *
6583 * We can use the non-atomic __set_bit operation for setting
6584 * the flag as we are still initializing the pages.
6585 */
6586 __SetPageReserved(page);
6587
6588 /*
6589 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6590 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6591 * ever freed or placed on a driver-private list.
6592 */
6593 page->pgmap = pgmap;
6594 page->zone_device_data = NULL;
6595
6596 /*
6597 * Mark the block movable so that blocks are reserved for
6598 * movable at startup. This will force kernel allocations
6599 * to reserve their blocks rather than leaking throughout
6600 * the address space during boot when many long-lived
6601 * kernel allocations are made.
6602 *
6603 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6604 * because this is done early in section_activate()
6605 */
6606 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6607 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6608 cond_resched();
6609 }
6610 }
6611
6612 pr_info("%s initialised %lu pages in %ums\n", __func__,
6613 nr_pages, jiffies_to_msecs(jiffies - start));
6614 }
6615
6616 #endif
6617 static void __meminit zone_init_free_lists(struct zone *zone)
6618 {
6619 unsigned int order, t;
6620 for_each_migratetype_order(order, t) {
6621 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6622 zone->free_area[order].nr_free = 0;
6623 }
6624 }
6625
6626 #if !defined(CONFIG_FLATMEM)
6627 /*
6628 * Only struct pages that correspond to ranges defined by memblock.memory
6629 * are zeroed and initialized by going through __init_single_page() during
6630 * memmap_init_zone_range().
6631 *
6632 * But, there could be struct pages that correspond to holes in
6633 * memblock.memory. This can happen because of the following reasons:
6634 * - physical memory bank size is not necessarily the exact multiple of the
6635 * arbitrary section size
6636 * - early reserved memory may not be listed in memblock.memory
6637 * - memory layouts defined with memmap= kernel parameter may not align
6638 * nicely with memmap sections
6639 *
6640 * Explicitly initialize those struct pages so that:
6641 * - PG_Reserved is set
6642 * - zone and node links point to zone and node that span the page if the
6643 * hole is in the middle of a zone
6644 * - zone and node links point to adjacent zone/node if the hole falls on
6645 * the zone boundary; the pages in such holes will be prepended to the
6646 * zone/node above the hole except for the trailing pages in the last
6647 * section that will be appended to the zone/node below.
6648 */
6649 static void __init init_unavailable_range(unsigned long spfn,
6650 unsigned long epfn,
6651 int zone, int node)
6652 {
6653 unsigned long pfn;
6654 u64 pgcnt = 0;
6655
6656 for (pfn = spfn; pfn < epfn; pfn++) {
6657 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6658 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6659 + pageblock_nr_pages - 1;
6660 continue;
6661 }
6662 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6663 __SetPageReserved(pfn_to_page(pfn));
6664 pgcnt++;
6665 }
6666
6667 if (pgcnt)
6668 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6669 node, zone_names[zone], pgcnt);
6670 }
6671 #else
6672 static inline void init_unavailable_range(unsigned long spfn,
6673 unsigned long epfn,
6674 int zone, int node)
6675 {
6676 }
6677 #endif
6678
6679 static void __init memmap_init_zone_range(struct zone *zone,
6680 unsigned long start_pfn,
6681 unsigned long end_pfn,
6682 unsigned long *hole_pfn)
6683 {
6684 unsigned long zone_start_pfn = zone->zone_start_pfn;
6685 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6686 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6687
6688 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6689 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6690
6691 if (start_pfn >= end_pfn)
6692 return;
6693
6694 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6695 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6696
6697 if (*hole_pfn < start_pfn)
6698 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6699
6700 *hole_pfn = end_pfn;
6701 }
6702
6703 static void __init memmap_init(void)
6704 {
6705 unsigned long start_pfn, end_pfn;
6706 unsigned long hole_pfn = 0;
6707 int i, j, zone_id, nid;
6708
6709 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6710 struct pglist_data *node = NODE_DATA(nid);
6711
6712 for (j = 0; j < MAX_NR_ZONES; j++) {
6713 struct zone *zone = node->node_zones + j;
6714
6715 if (!populated_zone(zone))
6716 continue;
6717
6718 memmap_init_zone_range(zone, start_pfn, end_pfn,
6719 &hole_pfn);
6720 zone_id = j;
6721 }
6722 }
6723
6724 #ifdef CONFIG_SPARSEMEM
6725 /*
6726 * Initialize the memory map for hole in the range [memory_end,
6727 * section_end].
6728 * Append the pages in this hole to the highest zone in the last
6729 * node.
6730 * The call to init_unavailable_range() is outside the ifdef to
6731 * silence the compiler warining about zone_id set but not used;
6732 * for FLATMEM it is a nop anyway
6733 */
6734 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6735 if (hole_pfn < end_pfn)
6736 #endif
6737 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6738 }
6739
6740 static int zone_batchsize(struct zone *zone)
6741 {
6742 #ifdef CONFIG_MMU
6743 int batch;
6744
6745 /*
6746 * The number of pages to batch allocate is either ~0.1%
6747 * of the zone or 1MB, whichever is smaller. The batch
6748 * size is striking a balance between allocation latency
6749 * and zone lock contention.
6750 */
6751 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6752 batch /= 4; /* We effectively *= 4 below */
6753 if (batch < 1)
6754 batch = 1;
6755
6756 /*
6757 * Clamp the batch to a 2^n - 1 value. Having a power
6758 * of 2 value was found to be more likely to have
6759 * suboptimal cache aliasing properties in some cases.
6760 *
6761 * For example if 2 tasks are alternately allocating
6762 * batches of pages, one task can end up with a lot
6763 * of pages of one half of the possible page colors
6764 * and the other with pages of the other colors.
6765 */
6766 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6767
6768 return batch;
6769
6770 #else
6771 /* The deferral and batching of frees should be suppressed under NOMMU
6772 * conditions.
6773 *
6774 * The problem is that NOMMU needs to be able to allocate large chunks
6775 * of contiguous memory as there's no hardware page translation to
6776 * assemble apparent contiguous memory from discontiguous pages.
6777 *
6778 * Queueing large contiguous runs of pages for batching, however,
6779 * causes the pages to actually be freed in smaller chunks. As there
6780 * can be a significant delay between the individual batches being
6781 * recycled, this leads to the once large chunks of space being
6782 * fragmented and becoming unavailable for high-order allocations.
6783 */
6784 return 0;
6785 #endif
6786 }
6787
6788 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6789 {
6790 #ifdef CONFIG_MMU
6791 int high;
6792 int nr_split_cpus;
6793 unsigned long total_pages;
6794
6795 if (!percpu_pagelist_high_fraction) {
6796 /*
6797 * By default, the high value of the pcp is based on the zone
6798 * low watermark so that if they are full then background
6799 * reclaim will not be started prematurely.
6800 */
6801 total_pages = low_wmark_pages(zone);
6802 } else {
6803 /*
6804 * If percpu_pagelist_high_fraction is configured, the high
6805 * value is based on a fraction of the managed pages in the
6806 * zone.
6807 */
6808 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6809 }
6810
6811 /*
6812 * Split the high value across all online CPUs local to the zone. Note
6813 * that early in boot that CPUs may not be online yet and that during
6814 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6815 * onlined. For memory nodes that have no CPUs, split pcp->high across
6816 * all online CPUs to mitigate the risk that reclaim is triggered
6817 * prematurely due to pages stored on pcp lists.
6818 */
6819 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6820 if (!nr_split_cpus)
6821 nr_split_cpus = num_online_cpus();
6822 high = total_pages / nr_split_cpus;
6823
6824 /*
6825 * Ensure high is at least batch*4. The multiple is based on the
6826 * historical relationship between high and batch.
6827 */
6828 high = max(high, batch << 2);
6829
6830 return high;
6831 #else
6832 return 0;
6833 #endif
6834 }
6835
6836 /*
6837 * pcp->high and pcp->batch values are related and generally batch is lower
6838 * than high. They are also related to pcp->count such that count is lower
6839 * than high, and as soon as it reaches high, the pcplist is flushed.
6840 *
6841 * However, guaranteeing these relations at all times would require e.g. write
6842 * barriers here but also careful usage of read barriers at the read side, and
6843 * thus be prone to error and bad for performance. Thus the update only prevents
6844 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6845 * can cope with those fields changing asynchronously, and fully trust only the
6846 * pcp->count field on the local CPU with interrupts disabled.
6847 *
6848 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6849 * outside of boot time (or some other assurance that no concurrent updaters
6850 * exist).
6851 */
6852 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6853 unsigned long batch)
6854 {
6855 WRITE_ONCE(pcp->batch, batch);
6856 WRITE_ONCE(pcp->high, high);
6857 }
6858
6859 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6860 {
6861 int pindex;
6862
6863 memset(pcp, 0, sizeof(*pcp));
6864 memset(pzstats, 0, sizeof(*pzstats));
6865
6866 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6867 INIT_LIST_HEAD(&pcp->lists[pindex]);
6868
6869 /*
6870 * Set batch and high values safe for a boot pageset. A true percpu
6871 * pageset's initialization will update them subsequently. Here we don't
6872 * need to be as careful as pageset_update() as nobody can access the
6873 * pageset yet.
6874 */
6875 pcp->high = BOOT_PAGESET_HIGH;
6876 pcp->batch = BOOT_PAGESET_BATCH;
6877 pcp->free_factor = 0;
6878 }
6879
6880 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6881 unsigned long batch)
6882 {
6883 struct per_cpu_pages *pcp;
6884 int cpu;
6885
6886 for_each_possible_cpu(cpu) {
6887 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6888 pageset_update(pcp, high, batch);
6889 }
6890 }
6891
6892 /*
6893 * Calculate and set new high and batch values for all per-cpu pagesets of a
6894 * zone based on the zone's size.
6895 */
6896 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6897 {
6898 int new_high, new_batch;
6899
6900 new_batch = max(1, zone_batchsize(zone));
6901 new_high = zone_highsize(zone, new_batch, cpu_online);
6902
6903 if (zone->pageset_high == new_high &&
6904 zone->pageset_batch == new_batch)
6905 return;
6906
6907 zone->pageset_high = new_high;
6908 zone->pageset_batch = new_batch;
6909
6910 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6911 }
6912
6913 void __meminit setup_zone_pageset(struct zone *zone)
6914 {
6915 int cpu;
6916
6917 /* Size may be 0 on !SMP && !NUMA */
6918 if (sizeof(struct per_cpu_zonestat) > 0)
6919 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6920
6921 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6922 for_each_possible_cpu(cpu) {
6923 struct per_cpu_pages *pcp;
6924 struct per_cpu_zonestat *pzstats;
6925
6926 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6927 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6928 per_cpu_pages_init(pcp, pzstats);
6929 }
6930
6931 zone_set_pageset_high_and_batch(zone, 0);
6932 }
6933
6934 /*
6935 * Allocate per cpu pagesets and initialize them.
6936 * Before this call only boot pagesets were available.
6937 */
6938 void __init setup_per_cpu_pageset(void)
6939 {
6940 struct pglist_data *pgdat;
6941 struct zone *zone;
6942 int __maybe_unused cpu;
6943
6944 for_each_populated_zone(zone)
6945 setup_zone_pageset(zone);
6946
6947 #ifdef CONFIG_NUMA
6948 /*
6949 * Unpopulated zones continue using the boot pagesets.
6950 * The numa stats for these pagesets need to be reset.
6951 * Otherwise, they will end up skewing the stats of
6952 * the nodes these zones are associated with.
6953 */
6954 for_each_possible_cpu(cpu) {
6955 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6956 memset(pzstats->vm_numa_event, 0,
6957 sizeof(pzstats->vm_numa_event));
6958 }
6959 #endif
6960
6961 for_each_online_pgdat(pgdat)
6962 pgdat->per_cpu_nodestats =
6963 alloc_percpu(struct per_cpu_nodestat);
6964 }
6965
6966 static __meminit void zone_pcp_init(struct zone *zone)
6967 {
6968 /*
6969 * per cpu subsystem is not up at this point. The following code
6970 * relies on the ability of the linker to provide the
6971 * offset of a (static) per cpu variable into the per cpu area.
6972 */
6973 zone->per_cpu_pageset = &boot_pageset;
6974 zone->per_cpu_zonestats = &boot_zonestats;
6975 zone->pageset_high = BOOT_PAGESET_HIGH;
6976 zone->pageset_batch = BOOT_PAGESET_BATCH;
6977
6978 if (populated_zone(zone))
6979 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
6980 zone->present_pages, zone_batchsize(zone));
6981 }
6982
6983 void __meminit init_currently_empty_zone(struct zone *zone,
6984 unsigned long zone_start_pfn,
6985 unsigned long size)
6986 {
6987 struct pglist_data *pgdat = zone->zone_pgdat;
6988 int zone_idx = zone_idx(zone) + 1;
6989
6990 if (zone_idx > pgdat->nr_zones)
6991 pgdat->nr_zones = zone_idx;
6992
6993 zone->zone_start_pfn = zone_start_pfn;
6994
6995 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6996 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6997 pgdat->node_id,
6998 (unsigned long)zone_idx(zone),
6999 zone_start_pfn, (zone_start_pfn + size));
7000
7001 zone_init_free_lists(zone);
7002 zone->initialized = 1;
7003 }
7004
7005 /**
7006 * get_pfn_range_for_nid - Return the start and end page frames for a node
7007 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7008 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7009 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7010 *
7011 * It returns the start and end page frame of a node based on information
7012 * provided by memblock_set_node(). If called for a node
7013 * with no available memory, a warning is printed and the start and end
7014 * PFNs will be 0.
7015 */
7016 void __init get_pfn_range_for_nid(unsigned int nid,
7017 unsigned long *start_pfn, unsigned long *end_pfn)
7018 {
7019 unsigned long this_start_pfn, this_end_pfn;
7020 int i;
7021
7022 *start_pfn = -1UL;
7023 *end_pfn = 0;
7024
7025 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7026 *start_pfn = min(*start_pfn, this_start_pfn);
7027 *end_pfn = max(*end_pfn, this_end_pfn);
7028 }
7029
7030 if (*start_pfn == -1UL)
7031 *start_pfn = 0;
7032 }
7033
7034 /*
7035 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7036 * assumption is made that zones within a node are ordered in monotonic
7037 * increasing memory addresses so that the "highest" populated zone is used
7038 */
7039 static void __init find_usable_zone_for_movable(void)
7040 {
7041 int zone_index;
7042 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7043 if (zone_index == ZONE_MOVABLE)
7044 continue;
7045
7046 if (arch_zone_highest_possible_pfn[zone_index] >
7047 arch_zone_lowest_possible_pfn[zone_index])
7048 break;
7049 }
7050
7051 VM_BUG_ON(zone_index == -1);
7052 movable_zone = zone_index;
7053 }
7054
7055 /*
7056 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7057 * because it is sized independent of architecture. Unlike the other zones,
7058 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7059 * in each node depending on the size of each node and how evenly kernelcore
7060 * is distributed. This helper function adjusts the zone ranges
7061 * provided by the architecture for a given node by using the end of the
7062 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7063 * zones within a node are in order of monotonic increases memory addresses
7064 */
7065 static void __init adjust_zone_range_for_zone_movable(int nid,
7066 unsigned long zone_type,
7067 unsigned long node_start_pfn,
7068 unsigned long node_end_pfn,
7069 unsigned long *zone_start_pfn,
7070 unsigned long *zone_end_pfn)
7071 {
7072 /* Only adjust if ZONE_MOVABLE is on this node */
7073 if (zone_movable_pfn[nid]) {
7074 /* Size ZONE_MOVABLE */
7075 if (zone_type == ZONE_MOVABLE) {
7076 *zone_start_pfn = zone_movable_pfn[nid];
7077 *zone_end_pfn = min(node_end_pfn,
7078 arch_zone_highest_possible_pfn[movable_zone]);
7079
7080 /* Adjust for ZONE_MOVABLE starting within this range */
7081 } else if (!mirrored_kernelcore &&
7082 *zone_start_pfn < zone_movable_pfn[nid] &&
7083 *zone_end_pfn > zone_movable_pfn[nid]) {
7084 *zone_end_pfn = zone_movable_pfn[nid];
7085
7086 /* Check if this whole range is within ZONE_MOVABLE */
7087 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7088 *zone_start_pfn = *zone_end_pfn;
7089 }
7090 }
7091
7092 /*
7093 * Return the number of pages a zone spans in a node, including holes
7094 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7095 */
7096 static unsigned long __init zone_spanned_pages_in_node(int nid,
7097 unsigned long zone_type,
7098 unsigned long node_start_pfn,
7099 unsigned long node_end_pfn,
7100 unsigned long *zone_start_pfn,
7101 unsigned long *zone_end_pfn)
7102 {
7103 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7104 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7105 /* When hotadd a new node from cpu_up(), the node should be empty */
7106 if (!node_start_pfn && !node_end_pfn)
7107 return 0;
7108
7109 /* Get the start and end of the zone */
7110 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7111 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7112 adjust_zone_range_for_zone_movable(nid, zone_type,
7113 node_start_pfn, node_end_pfn,
7114 zone_start_pfn, zone_end_pfn);
7115
7116 /* Check that this node has pages within the zone's required range */
7117 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7118 return 0;
7119
7120 /* Move the zone boundaries inside the node if necessary */
7121 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7122 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7123
7124 /* Return the spanned pages */
7125 return *zone_end_pfn - *zone_start_pfn;
7126 }
7127
7128 /*
7129 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7130 * then all holes in the requested range will be accounted for.
7131 */
7132 unsigned long __init __absent_pages_in_range(int nid,
7133 unsigned long range_start_pfn,
7134 unsigned long range_end_pfn)
7135 {
7136 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7137 unsigned long start_pfn, end_pfn;
7138 int i;
7139
7140 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7141 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7142 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7143 nr_absent -= end_pfn - start_pfn;
7144 }
7145 return nr_absent;
7146 }
7147
7148 /**
7149 * absent_pages_in_range - Return number of page frames in holes within a range
7150 * @start_pfn: The start PFN to start searching for holes
7151 * @end_pfn: The end PFN to stop searching for holes
7152 *
7153 * Return: the number of pages frames in memory holes within a range.
7154 */
7155 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7156 unsigned long end_pfn)
7157 {
7158 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7159 }
7160
7161 /* Return the number of page frames in holes in a zone on a node */
7162 static unsigned long __init zone_absent_pages_in_node(int nid,
7163 unsigned long zone_type,
7164 unsigned long node_start_pfn,
7165 unsigned long node_end_pfn)
7166 {
7167 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7168 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7169 unsigned long zone_start_pfn, zone_end_pfn;
7170 unsigned long nr_absent;
7171
7172 /* When hotadd a new node from cpu_up(), the node should be empty */
7173 if (!node_start_pfn && !node_end_pfn)
7174 return 0;
7175
7176 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7177 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7178
7179 adjust_zone_range_for_zone_movable(nid, zone_type,
7180 node_start_pfn, node_end_pfn,
7181 &zone_start_pfn, &zone_end_pfn);
7182 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7183
7184 /*
7185 * ZONE_MOVABLE handling.
7186 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7187 * and vice versa.
7188 */
7189 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7190 unsigned long start_pfn, end_pfn;
7191 struct memblock_region *r;
7192
7193 for_each_mem_region(r) {
7194 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7195 zone_start_pfn, zone_end_pfn);
7196 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7197 zone_start_pfn, zone_end_pfn);
7198
7199 if (zone_type == ZONE_MOVABLE &&
7200 memblock_is_mirror(r))
7201 nr_absent += end_pfn - start_pfn;
7202
7203 if (zone_type == ZONE_NORMAL &&
7204 !memblock_is_mirror(r))
7205 nr_absent += end_pfn - start_pfn;
7206 }
7207 }
7208
7209 return nr_absent;
7210 }
7211
7212 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7213 unsigned long node_start_pfn,
7214 unsigned long node_end_pfn)
7215 {
7216 unsigned long realtotalpages = 0, totalpages = 0;
7217 enum zone_type i;
7218
7219 for (i = 0; i < MAX_NR_ZONES; i++) {
7220 struct zone *zone = pgdat->node_zones + i;
7221 unsigned long zone_start_pfn, zone_end_pfn;
7222 unsigned long spanned, absent;
7223 unsigned long size, real_size;
7224
7225 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7226 node_start_pfn,
7227 node_end_pfn,
7228 &zone_start_pfn,
7229 &zone_end_pfn);
7230 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7231 node_start_pfn,
7232 node_end_pfn);
7233
7234 size = spanned;
7235 real_size = size - absent;
7236
7237 if (size)
7238 zone->zone_start_pfn = zone_start_pfn;
7239 else
7240 zone->zone_start_pfn = 0;
7241 zone->spanned_pages = size;
7242 zone->present_pages = real_size;
7243 #if defined(CONFIG_MEMORY_HOTPLUG)
7244 zone->present_early_pages = real_size;
7245 #endif
7246
7247 totalpages += size;
7248 realtotalpages += real_size;
7249 }
7250
7251 pgdat->node_spanned_pages = totalpages;
7252 pgdat->node_present_pages = realtotalpages;
7253 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7254 }
7255
7256 #ifndef CONFIG_SPARSEMEM
7257 /*
7258 * Calculate the size of the zone->blockflags rounded to an unsigned long
7259 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7260 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7261 * round what is now in bits to nearest long in bits, then return it in
7262 * bytes.
7263 */
7264 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7265 {
7266 unsigned long usemapsize;
7267
7268 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7269 usemapsize = roundup(zonesize, pageblock_nr_pages);
7270 usemapsize = usemapsize >> pageblock_order;
7271 usemapsize *= NR_PAGEBLOCK_BITS;
7272 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7273
7274 return usemapsize / 8;
7275 }
7276
7277 static void __ref setup_usemap(struct zone *zone)
7278 {
7279 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7280 zone->spanned_pages);
7281 zone->pageblock_flags = NULL;
7282 if (usemapsize) {
7283 zone->pageblock_flags =
7284 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7285 zone_to_nid(zone));
7286 if (!zone->pageblock_flags)
7287 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7288 usemapsize, zone->name, zone_to_nid(zone));
7289 }
7290 }
7291 #else
7292 static inline void setup_usemap(struct zone *zone) {}
7293 #endif /* CONFIG_SPARSEMEM */
7294
7295 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7296
7297 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7298 void __init set_pageblock_order(void)
7299 {
7300 unsigned int order;
7301
7302 /* Check that pageblock_nr_pages has not already been setup */
7303 if (pageblock_order)
7304 return;
7305
7306 if (HPAGE_SHIFT > PAGE_SHIFT)
7307 order = HUGETLB_PAGE_ORDER;
7308 else
7309 order = MAX_ORDER - 1;
7310
7311 /*
7312 * Assume the largest contiguous order of interest is a huge page.
7313 * This value may be variable depending on boot parameters on IA64 and
7314 * powerpc.
7315 */
7316 pageblock_order = order;
7317 }
7318 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7319
7320 /*
7321 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7322 * is unused as pageblock_order is set at compile-time. See
7323 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7324 * the kernel config
7325 */
7326 void __init set_pageblock_order(void)
7327 {
7328 }
7329
7330 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7331
7332 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7333 unsigned long present_pages)
7334 {
7335 unsigned long pages = spanned_pages;
7336
7337 /*
7338 * Provide a more accurate estimation if there are holes within
7339 * the zone and SPARSEMEM is in use. If there are holes within the
7340 * zone, each populated memory region may cost us one or two extra
7341 * memmap pages due to alignment because memmap pages for each
7342 * populated regions may not be naturally aligned on page boundary.
7343 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7344 */
7345 if (spanned_pages > present_pages + (present_pages >> 4) &&
7346 IS_ENABLED(CONFIG_SPARSEMEM))
7347 pages = present_pages;
7348
7349 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7350 }
7351
7352 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7353 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7354 {
7355 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7356
7357 spin_lock_init(&ds_queue->split_queue_lock);
7358 INIT_LIST_HEAD(&ds_queue->split_queue);
7359 ds_queue->split_queue_len = 0;
7360 }
7361 #else
7362 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7363 #endif
7364
7365 #ifdef CONFIG_COMPACTION
7366 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7367 {
7368 init_waitqueue_head(&pgdat->kcompactd_wait);
7369 }
7370 #else
7371 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7372 #endif
7373
7374 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7375 {
7376 pgdat_resize_init(pgdat);
7377
7378 pgdat_init_split_queue(pgdat);
7379 pgdat_init_kcompactd(pgdat);
7380
7381 init_waitqueue_head(&pgdat->kswapd_wait);
7382 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7383
7384 pgdat_page_ext_init(pgdat);
7385 lruvec_init(&pgdat->__lruvec);
7386 }
7387
7388 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7389 unsigned long remaining_pages)
7390 {
7391 atomic_long_set(&zone->managed_pages, remaining_pages);
7392 zone_set_nid(zone, nid);
7393 zone->name = zone_names[idx];
7394 zone->zone_pgdat = NODE_DATA(nid);
7395 spin_lock_init(&zone->lock);
7396 zone_seqlock_init(zone);
7397 zone_pcp_init(zone);
7398 }
7399
7400 /*
7401 * Set up the zone data structures
7402 * - init pgdat internals
7403 * - init all zones belonging to this node
7404 *
7405 * NOTE: this function is only called during memory hotplug
7406 */
7407 #ifdef CONFIG_MEMORY_HOTPLUG
7408 void __ref free_area_init_core_hotplug(int nid)
7409 {
7410 enum zone_type z;
7411 pg_data_t *pgdat = NODE_DATA(nid);
7412
7413 pgdat_init_internals(pgdat);
7414 for (z = 0; z < MAX_NR_ZONES; z++)
7415 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7416 }
7417 #endif
7418
7419 /*
7420 * Set up the zone data structures:
7421 * - mark all pages reserved
7422 * - mark all memory queues empty
7423 * - clear the memory bitmaps
7424 *
7425 * NOTE: pgdat should get zeroed by caller.
7426 * NOTE: this function is only called during early init.
7427 */
7428 static void __init free_area_init_core(struct pglist_data *pgdat)
7429 {
7430 enum zone_type j;
7431 int nid = pgdat->node_id;
7432
7433 pgdat_init_internals(pgdat);
7434 pgdat->per_cpu_nodestats = &boot_nodestats;
7435
7436 for (j = 0; j < MAX_NR_ZONES; j++) {
7437 struct zone *zone = pgdat->node_zones + j;
7438 unsigned long size, freesize, memmap_pages;
7439
7440 size = zone->spanned_pages;
7441 freesize = zone->present_pages;
7442
7443 /*
7444 * Adjust freesize so that it accounts for how much memory
7445 * is used by this zone for memmap. This affects the watermark
7446 * and per-cpu initialisations
7447 */
7448 memmap_pages = calc_memmap_size(size, freesize);
7449 if (!is_highmem_idx(j)) {
7450 if (freesize >= memmap_pages) {
7451 freesize -= memmap_pages;
7452 if (memmap_pages)
7453 pr_debug(" %s zone: %lu pages used for memmap\n",
7454 zone_names[j], memmap_pages);
7455 } else
7456 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7457 zone_names[j], memmap_pages, freesize);
7458 }
7459
7460 /* Account for reserved pages */
7461 if (j == 0 && freesize > dma_reserve) {
7462 freesize -= dma_reserve;
7463 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7464 }
7465
7466 if (!is_highmem_idx(j))
7467 nr_kernel_pages += freesize;
7468 /* Charge for highmem memmap if there are enough kernel pages */
7469 else if (nr_kernel_pages > memmap_pages * 2)
7470 nr_kernel_pages -= memmap_pages;
7471 nr_all_pages += freesize;
7472
7473 /*
7474 * Set an approximate value for lowmem here, it will be adjusted
7475 * when the bootmem allocator frees pages into the buddy system.
7476 * And all highmem pages will be managed by the buddy system.
7477 */
7478 zone_init_internals(zone, j, nid, freesize);
7479
7480 if (!size)
7481 continue;
7482
7483 set_pageblock_order();
7484 setup_usemap(zone);
7485 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7486 }
7487 }
7488
7489 #ifdef CONFIG_FLATMEM
7490 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
7491 {
7492 unsigned long __maybe_unused start = 0;
7493 unsigned long __maybe_unused offset = 0;
7494
7495 /* Skip empty nodes */
7496 if (!pgdat->node_spanned_pages)
7497 return;
7498
7499 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7500 offset = pgdat->node_start_pfn - start;
7501 /* ia64 gets its own node_mem_map, before this, without bootmem */
7502 if (!pgdat->node_mem_map) {
7503 unsigned long size, end;
7504 struct page *map;
7505
7506 /*
7507 * The zone's endpoints aren't required to be MAX_ORDER
7508 * aligned but the node_mem_map endpoints must be in order
7509 * for the buddy allocator to function correctly.
7510 */
7511 end = pgdat_end_pfn(pgdat);
7512 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7513 size = (end - start) * sizeof(struct page);
7514 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7515 pgdat->node_id);
7516 if (!map)
7517 panic("Failed to allocate %ld bytes for node %d memory map\n",
7518 size, pgdat->node_id);
7519 pgdat->node_mem_map = map + offset;
7520 }
7521 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7522 __func__, pgdat->node_id, (unsigned long)pgdat,
7523 (unsigned long)pgdat->node_mem_map);
7524 #ifndef CONFIG_NUMA
7525 /*
7526 * With no DISCONTIG, the global mem_map is just set as node 0's
7527 */
7528 if (pgdat == NODE_DATA(0)) {
7529 mem_map = NODE_DATA(0)->node_mem_map;
7530 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7531 mem_map -= offset;
7532 }
7533 #endif
7534 }
7535 #else
7536 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7537 #endif /* CONFIG_FLATMEM */
7538
7539 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7540 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7541 {
7542 pgdat->first_deferred_pfn = ULONG_MAX;
7543 }
7544 #else
7545 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7546 #endif
7547
7548 static void __init free_area_init_node(int nid)
7549 {
7550 pg_data_t *pgdat = NODE_DATA(nid);
7551 unsigned long start_pfn = 0;
7552 unsigned long end_pfn = 0;
7553
7554 /* pg_data_t should be reset to zero when it's allocated */
7555 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7556
7557 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7558
7559 pgdat->node_id = nid;
7560 pgdat->node_start_pfn = start_pfn;
7561 pgdat->per_cpu_nodestats = NULL;
7562
7563 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7564 (u64)start_pfn << PAGE_SHIFT,
7565 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7566 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7567
7568 alloc_node_mem_map(pgdat);
7569 pgdat_set_deferred_range(pgdat);
7570
7571 free_area_init_core(pgdat);
7572 }
7573
7574 void __init free_area_init_memoryless_node(int nid)
7575 {
7576 free_area_init_node(nid);
7577 }
7578
7579 #if MAX_NUMNODES > 1
7580 /*
7581 * Figure out the number of possible node ids.
7582 */
7583 void __init setup_nr_node_ids(void)
7584 {
7585 unsigned int highest;
7586
7587 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7588 nr_node_ids = highest + 1;
7589 }
7590 #endif
7591
7592 /**
7593 * node_map_pfn_alignment - determine the maximum internode alignment
7594 *
7595 * This function should be called after node map is populated and sorted.
7596 * It calculates the maximum power of two alignment which can distinguish
7597 * all the nodes.
7598 *
7599 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7600 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7601 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7602 * shifted, 1GiB is enough and this function will indicate so.
7603 *
7604 * This is used to test whether pfn -> nid mapping of the chosen memory
7605 * model has fine enough granularity to avoid incorrect mapping for the
7606 * populated node map.
7607 *
7608 * Return: the determined alignment in pfn's. 0 if there is no alignment
7609 * requirement (single node).
7610 */
7611 unsigned long __init node_map_pfn_alignment(void)
7612 {
7613 unsigned long accl_mask = 0, last_end = 0;
7614 unsigned long start, end, mask;
7615 int last_nid = NUMA_NO_NODE;
7616 int i, nid;
7617
7618 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7619 if (!start || last_nid < 0 || last_nid == nid) {
7620 last_nid = nid;
7621 last_end = end;
7622 continue;
7623 }
7624
7625 /*
7626 * Start with a mask granular enough to pin-point to the
7627 * start pfn and tick off bits one-by-one until it becomes
7628 * too coarse to separate the current node from the last.
7629 */
7630 mask = ~((1 << __ffs(start)) - 1);
7631 while (mask && last_end <= (start & (mask << 1)))
7632 mask <<= 1;
7633
7634 /* accumulate all internode masks */
7635 accl_mask |= mask;
7636 }
7637
7638 /* convert mask to number of pages */
7639 return ~accl_mask + 1;
7640 }
7641
7642 /**
7643 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7644 *
7645 * Return: the minimum PFN based on information provided via
7646 * memblock_set_node().
7647 */
7648 unsigned long __init find_min_pfn_with_active_regions(void)
7649 {
7650 return PHYS_PFN(memblock_start_of_DRAM());
7651 }
7652
7653 /*
7654 * early_calculate_totalpages()
7655 * Sum pages in active regions for movable zone.
7656 * Populate N_MEMORY for calculating usable_nodes.
7657 */
7658 static unsigned long __init early_calculate_totalpages(void)
7659 {
7660 unsigned long totalpages = 0;
7661 unsigned long start_pfn, end_pfn;
7662 int i, nid;
7663
7664 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7665 unsigned long pages = end_pfn - start_pfn;
7666
7667 totalpages += pages;
7668 if (pages)
7669 node_set_state(nid, N_MEMORY);
7670 }
7671 return totalpages;
7672 }
7673
7674 /*
7675 * Find the PFN the Movable zone begins in each node. Kernel memory
7676 * is spread evenly between nodes as long as the nodes have enough
7677 * memory. When they don't, some nodes will have more kernelcore than
7678 * others
7679 */
7680 static void __init find_zone_movable_pfns_for_nodes(void)
7681 {
7682 int i, nid;
7683 unsigned long usable_startpfn;
7684 unsigned long kernelcore_node, kernelcore_remaining;
7685 /* save the state before borrow the nodemask */
7686 nodemask_t saved_node_state = node_states[N_MEMORY];
7687 unsigned long totalpages = early_calculate_totalpages();
7688 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7689 struct memblock_region *r;
7690
7691 /* Need to find movable_zone earlier when movable_node is specified. */
7692 find_usable_zone_for_movable();
7693
7694 /*
7695 * If movable_node is specified, ignore kernelcore and movablecore
7696 * options.
7697 */
7698 if (movable_node_is_enabled()) {
7699 for_each_mem_region(r) {
7700 if (!memblock_is_hotpluggable(r))
7701 continue;
7702
7703 nid = memblock_get_region_node(r);
7704
7705 usable_startpfn = PFN_DOWN(r->base);
7706 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7707 min(usable_startpfn, zone_movable_pfn[nid]) :
7708 usable_startpfn;
7709 }
7710
7711 goto out2;
7712 }
7713
7714 /*
7715 * If kernelcore=mirror is specified, ignore movablecore option
7716 */
7717 if (mirrored_kernelcore) {
7718 bool mem_below_4gb_not_mirrored = false;
7719
7720 for_each_mem_region(r) {
7721 if (memblock_is_mirror(r))
7722 continue;
7723
7724 nid = memblock_get_region_node(r);
7725
7726 usable_startpfn = memblock_region_memory_base_pfn(r);
7727
7728 if (usable_startpfn < 0x100000) {
7729 mem_below_4gb_not_mirrored = true;
7730 continue;
7731 }
7732
7733 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7734 min(usable_startpfn, zone_movable_pfn[nid]) :
7735 usable_startpfn;
7736 }
7737
7738 if (mem_below_4gb_not_mirrored)
7739 pr_warn("This configuration results in unmirrored kernel memory.\n");
7740
7741 goto out2;
7742 }
7743
7744 /*
7745 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7746 * amount of necessary memory.
7747 */
7748 if (required_kernelcore_percent)
7749 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7750 10000UL;
7751 if (required_movablecore_percent)
7752 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7753 10000UL;
7754
7755 /*
7756 * If movablecore= was specified, calculate what size of
7757 * kernelcore that corresponds so that memory usable for
7758 * any allocation type is evenly spread. If both kernelcore
7759 * and movablecore are specified, then the value of kernelcore
7760 * will be used for required_kernelcore if it's greater than
7761 * what movablecore would have allowed.
7762 */
7763 if (required_movablecore) {
7764 unsigned long corepages;
7765
7766 /*
7767 * Round-up so that ZONE_MOVABLE is at least as large as what
7768 * was requested by the user
7769 */
7770 required_movablecore =
7771 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7772 required_movablecore = min(totalpages, required_movablecore);
7773 corepages = totalpages - required_movablecore;
7774
7775 required_kernelcore = max(required_kernelcore, corepages);
7776 }
7777
7778 /*
7779 * If kernelcore was not specified or kernelcore size is larger
7780 * than totalpages, there is no ZONE_MOVABLE.
7781 */
7782 if (!required_kernelcore || required_kernelcore >= totalpages)
7783 goto out;
7784
7785 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7786 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7787
7788 restart:
7789 /* Spread kernelcore memory as evenly as possible throughout nodes */
7790 kernelcore_node = required_kernelcore / usable_nodes;
7791 for_each_node_state(nid, N_MEMORY) {
7792 unsigned long start_pfn, end_pfn;
7793
7794 /*
7795 * Recalculate kernelcore_node if the division per node
7796 * now exceeds what is necessary to satisfy the requested
7797 * amount of memory for the kernel
7798 */
7799 if (required_kernelcore < kernelcore_node)
7800 kernelcore_node = required_kernelcore / usable_nodes;
7801
7802 /*
7803 * As the map is walked, we track how much memory is usable
7804 * by the kernel using kernelcore_remaining. When it is
7805 * 0, the rest of the node is usable by ZONE_MOVABLE
7806 */
7807 kernelcore_remaining = kernelcore_node;
7808
7809 /* Go through each range of PFNs within this node */
7810 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7811 unsigned long size_pages;
7812
7813 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7814 if (start_pfn >= end_pfn)
7815 continue;
7816
7817 /* Account for what is only usable for kernelcore */
7818 if (start_pfn < usable_startpfn) {
7819 unsigned long kernel_pages;
7820 kernel_pages = min(end_pfn, usable_startpfn)
7821 - start_pfn;
7822
7823 kernelcore_remaining -= min(kernel_pages,
7824 kernelcore_remaining);
7825 required_kernelcore -= min(kernel_pages,
7826 required_kernelcore);
7827
7828 /* Continue if range is now fully accounted */
7829 if (end_pfn <= usable_startpfn) {
7830
7831 /*
7832 * Push zone_movable_pfn to the end so
7833 * that if we have to rebalance
7834 * kernelcore across nodes, we will
7835 * not double account here
7836 */
7837 zone_movable_pfn[nid] = end_pfn;
7838 continue;
7839 }
7840 start_pfn = usable_startpfn;
7841 }
7842
7843 /*
7844 * The usable PFN range for ZONE_MOVABLE is from
7845 * start_pfn->end_pfn. Calculate size_pages as the
7846 * number of pages used as kernelcore
7847 */
7848 size_pages = end_pfn - start_pfn;
7849 if (size_pages > kernelcore_remaining)
7850 size_pages = kernelcore_remaining;
7851 zone_movable_pfn[nid] = start_pfn + size_pages;
7852
7853 /*
7854 * Some kernelcore has been met, update counts and
7855 * break if the kernelcore for this node has been
7856 * satisfied
7857 */
7858 required_kernelcore -= min(required_kernelcore,
7859 size_pages);
7860 kernelcore_remaining -= size_pages;
7861 if (!kernelcore_remaining)
7862 break;
7863 }
7864 }
7865
7866 /*
7867 * If there is still required_kernelcore, we do another pass with one
7868 * less node in the count. This will push zone_movable_pfn[nid] further
7869 * along on the nodes that still have memory until kernelcore is
7870 * satisfied
7871 */
7872 usable_nodes--;
7873 if (usable_nodes && required_kernelcore > usable_nodes)
7874 goto restart;
7875
7876 out2:
7877 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7878 for (nid = 0; nid < MAX_NUMNODES; nid++)
7879 zone_movable_pfn[nid] =
7880 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7881
7882 out:
7883 /* restore the node_state */
7884 node_states[N_MEMORY] = saved_node_state;
7885 }
7886
7887 /* Any regular or high memory on that node ? */
7888 static void check_for_memory(pg_data_t *pgdat, int nid)
7889 {
7890 enum zone_type zone_type;
7891
7892 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7893 struct zone *zone = &pgdat->node_zones[zone_type];
7894 if (populated_zone(zone)) {
7895 if (IS_ENABLED(CONFIG_HIGHMEM))
7896 node_set_state(nid, N_HIGH_MEMORY);
7897 if (zone_type <= ZONE_NORMAL)
7898 node_set_state(nid, N_NORMAL_MEMORY);
7899 break;
7900 }
7901 }
7902 }
7903
7904 /*
7905 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7906 * such cases we allow max_zone_pfn sorted in the descending order
7907 */
7908 bool __weak arch_has_descending_max_zone_pfns(void)
7909 {
7910 return false;
7911 }
7912
7913 /**
7914 * free_area_init - Initialise all pg_data_t and zone data
7915 * @max_zone_pfn: an array of max PFNs for each zone
7916 *
7917 * This will call free_area_init_node() for each active node in the system.
7918 * Using the page ranges provided by memblock_set_node(), the size of each
7919 * zone in each node and their holes is calculated. If the maximum PFN
7920 * between two adjacent zones match, it is assumed that the zone is empty.
7921 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7922 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7923 * starts where the previous one ended. For example, ZONE_DMA32 starts
7924 * at arch_max_dma_pfn.
7925 */
7926 void __init free_area_init(unsigned long *max_zone_pfn)
7927 {
7928 unsigned long start_pfn, end_pfn;
7929 int i, nid, zone;
7930 bool descending;
7931
7932 /* Record where the zone boundaries are */
7933 memset(arch_zone_lowest_possible_pfn, 0,
7934 sizeof(arch_zone_lowest_possible_pfn));
7935 memset(arch_zone_highest_possible_pfn, 0,
7936 sizeof(arch_zone_highest_possible_pfn));
7937
7938 start_pfn = find_min_pfn_with_active_regions();
7939 descending = arch_has_descending_max_zone_pfns();
7940
7941 for (i = 0; i < MAX_NR_ZONES; i++) {
7942 if (descending)
7943 zone = MAX_NR_ZONES - i - 1;
7944 else
7945 zone = i;
7946
7947 if (zone == ZONE_MOVABLE)
7948 continue;
7949
7950 end_pfn = max(max_zone_pfn[zone], start_pfn);
7951 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7952 arch_zone_highest_possible_pfn[zone] = end_pfn;
7953
7954 start_pfn = end_pfn;
7955 }
7956
7957 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7958 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7959 find_zone_movable_pfns_for_nodes();
7960
7961 /* Print out the zone ranges */
7962 pr_info("Zone ranges:\n");
7963 for (i = 0; i < MAX_NR_ZONES; i++) {
7964 if (i == ZONE_MOVABLE)
7965 continue;
7966 pr_info(" %-8s ", zone_names[i]);
7967 if (arch_zone_lowest_possible_pfn[i] ==
7968 arch_zone_highest_possible_pfn[i])
7969 pr_cont("empty\n");
7970 else
7971 pr_cont("[mem %#018Lx-%#018Lx]\n",
7972 (u64)arch_zone_lowest_possible_pfn[i]
7973 << PAGE_SHIFT,
7974 ((u64)arch_zone_highest_possible_pfn[i]
7975 << PAGE_SHIFT) - 1);
7976 }
7977
7978 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7979 pr_info("Movable zone start for each node\n");
7980 for (i = 0; i < MAX_NUMNODES; i++) {
7981 if (zone_movable_pfn[i])
7982 pr_info(" Node %d: %#018Lx\n", i,
7983 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7984 }
7985
7986 /*
7987 * Print out the early node map, and initialize the
7988 * subsection-map relative to active online memory ranges to
7989 * enable future "sub-section" extensions of the memory map.
7990 */
7991 pr_info("Early memory node ranges\n");
7992 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7993 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7994 (u64)start_pfn << PAGE_SHIFT,
7995 ((u64)end_pfn << PAGE_SHIFT) - 1);
7996 subsection_map_init(start_pfn, end_pfn - start_pfn);
7997 }
7998
7999 /* Initialise every node */
8000 mminit_verify_pageflags_layout();
8001 setup_nr_node_ids();
8002 for_each_online_node(nid) {
8003 pg_data_t *pgdat = NODE_DATA(nid);
8004 free_area_init_node(nid);
8005
8006 /* Any memory on that node */
8007 if (pgdat->node_present_pages)
8008 node_set_state(nid, N_MEMORY);
8009 check_for_memory(pgdat, nid);
8010 }
8011
8012 memmap_init();
8013 }
8014
8015 static int __init cmdline_parse_core(char *p, unsigned long *core,
8016 unsigned long *percent)
8017 {
8018 unsigned long long coremem;
8019 char *endptr;
8020
8021 if (!p)
8022 return -EINVAL;
8023
8024 /* Value may be a percentage of total memory, otherwise bytes */
8025 coremem = simple_strtoull(p, &endptr, 0);
8026 if (*endptr == '%') {
8027 /* Paranoid check for percent values greater than 100 */
8028 WARN_ON(coremem > 100);
8029
8030 *percent = coremem;
8031 } else {
8032 coremem = memparse(p, &p);
8033 /* Paranoid check that UL is enough for the coremem value */
8034 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8035
8036 *core = coremem >> PAGE_SHIFT;
8037 *percent = 0UL;
8038 }
8039 return 0;
8040 }
8041
8042 /*
8043 * kernelcore=size sets the amount of memory for use for allocations that
8044 * cannot be reclaimed or migrated.
8045 */
8046 static int __init cmdline_parse_kernelcore(char *p)
8047 {
8048 /* parse kernelcore=mirror */
8049 if (parse_option_str(p, "mirror")) {
8050 mirrored_kernelcore = true;
8051 return 0;
8052 }
8053
8054 return cmdline_parse_core(p, &required_kernelcore,
8055 &required_kernelcore_percent);
8056 }
8057
8058 /*
8059 * movablecore=size sets the amount of memory for use for allocations that
8060 * can be reclaimed or migrated.
8061 */
8062 static int __init cmdline_parse_movablecore(char *p)
8063 {
8064 return cmdline_parse_core(p, &required_movablecore,
8065 &required_movablecore_percent);
8066 }
8067
8068 early_param("kernelcore", cmdline_parse_kernelcore);
8069 early_param("movablecore", cmdline_parse_movablecore);
8070
8071 void adjust_managed_page_count(struct page *page, long count)
8072 {
8073 atomic_long_add(count, &page_zone(page)->managed_pages);
8074 totalram_pages_add(count);
8075 #ifdef CONFIG_HIGHMEM
8076 if (PageHighMem(page))
8077 totalhigh_pages_add(count);
8078 #endif
8079 }
8080 EXPORT_SYMBOL(adjust_managed_page_count);
8081
8082 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8083 {
8084 void *pos;
8085 unsigned long pages = 0;
8086
8087 start = (void *)PAGE_ALIGN((unsigned long)start);
8088 end = (void *)((unsigned long)end & PAGE_MASK);
8089 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8090 struct page *page = virt_to_page(pos);
8091 void *direct_map_addr;
8092
8093 /*
8094 * 'direct_map_addr' might be different from 'pos'
8095 * because some architectures' virt_to_page()
8096 * work with aliases. Getting the direct map
8097 * address ensures that we get a _writeable_
8098 * alias for the memset().
8099 */
8100 direct_map_addr = page_address(page);
8101 /*
8102 * Perform a kasan-unchecked memset() since this memory
8103 * has not been initialized.
8104 */
8105 direct_map_addr = kasan_reset_tag(direct_map_addr);
8106 if ((unsigned int)poison <= 0xFF)
8107 memset(direct_map_addr, poison, PAGE_SIZE);
8108
8109 free_reserved_page(page);
8110 }
8111
8112 if (pages && s)
8113 pr_info("Freeing %s memory: %ldK\n",
8114 s, pages << (PAGE_SHIFT - 10));
8115
8116 return pages;
8117 }
8118
8119 void __init mem_init_print_info(void)
8120 {
8121 unsigned long physpages, codesize, datasize, rosize, bss_size;
8122 unsigned long init_code_size, init_data_size;
8123
8124 physpages = get_num_physpages();
8125 codesize = _etext - _stext;
8126 datasize = _edata - _sdata;
8127 rosize = __end_rodata - __start_rodata;
8128 bss_size = __bss_stop - __bss_start;
8129 init_data_size = __init_end - __init_begin;
8130 init_code_size = _einittext - _sinittext;
8131
8132 /*
8133 * Detect special cases and adjust section sizes accordingly:
8134 * 1) .init.* may be embedded into .data sections
8135 * 2) .init.text.* may be out of [__init_begin, __init_end],
8136 * please refer to arch/tile/kernel/vmlinux.lds.S.
8137 * 3) .rodata.* may be embedded into .text or .data sections.
8138 */
8139 #define adj_init_size(start, end, size, pos, adj) \
8140 do { \
8141 if (start <= pos && pos < end && size > adj) \
8142 size -= adj; \
8143 } while (0)
8144
8145 adj_init_size(__init_begin, __init_end, init_data_size,
8146 _sinittext, init_code_size);
8147 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8148 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8149 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8150 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8151
8152 #undef adj_init_size
8153
8154 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8155 #ifdef CONFIG_HIGHMEM
8156 ", %luK highmem"
8157 #endif
8158 ")\n",
8159 nr_free_pages() << (PAGE_SHIFT - 10),
8160 physpages << (PAGE_SHIFT - 10),
8161 codesize >> 10, datasize >> 10, rosize >> 10,
8162 (init_data_size + init_code_size) >> 10, bss_size >> 10,
8163 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
8164 totalcma_pages << (PAGE_SHIFT - 10)
8165 #ifdef CONFIG_HIGHMEM
8166 , totalhigh_pages() << (PAGE_SHIFT - 10)
8167 #endif
8168 );
8169 }
8170
8171 /**
8172 * set_dma_reserve - set the specified number of pages reserved in the first zone
8173 * @new_dma_reserve: The number of pages to mark reserved
8174 *
8175 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8176 * In the DMA zone, a significant percentage may be consumed by kernel image
8177 * and other unfreeable allocations which can skew the watermarks badly. This
8178 * function may optionally be used to account for unfreeable pages in the
8179 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8180 * smaller per-cpu batchsize.
8181 */
8182 void __init set_dma_reserve(unsigned long new_dma_reserve)
8183 {
8184 dma_reserve = new_dma_reserve;
8185 }
8186
8187 static int page_alloc_cpu_dead(unsigned int cpu)
8188 {
8189 struct zone *zone;
8190
8191 lru_add_drain_cpu(cpu);
8192 drain_pages(cpu);
8193
8194 /*
8195 * Spill the event counters of the dead processor
8196 * into the current processors event counters.
8197 * This artificially elevates the count of the current
8198 * processor.
8199 */
8200 vm_events_fold_cpu(cpu);
8201
8202 /*
8203 * Zero the differential counters of the dead processor
8204 * so that the vm statistics are consistent.
8205 *
8206 * This is only okay since the processor is dead and cannot
8207 * race with what we are doing.
8208 */
8209 cpu_vm_stats_fold(cpu);
8210
8211 for_each_populated_zone(zone)
8212 zone_pcp_update(zone, 0);
8213
8214 return 0;
8215 }
8216
8217 static int page_alloc_cpu_online(unsigned int cpu)
8218 {
8219 struct zone *zone;
8220
8221 for_each_populated_zone(zone)
8222 zone_pcp_update(zone, 1);
8223 return 0;
8224 }
8225
8226 #ifdef CONFIG_NUMA
8227 int hashdist = HASHDIST_DEFAULT;
8228
8229 static int __init set_hashdist(char *str)
8230 {
8231 if (!str)
8232 return 0;
8233 hashdist = simple_strtoul(str, &str, 0);
8234 return 1;
8235 }
8236 __setup("hashdist=", set_hashdist);
8237 #endif
8238
8239 void __init page_alloc_init(void)
8240 {
8241 int ret;
8242
8243 #ifdef CONFIG_NUMA
8244 if (num_node_state(N_MEMORY) == 1)
8245 hashdist = 0;
8246 #endif
8247
8248 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8249 "mm/page_alloc:pcp",
8250 page_alloc_cpu_online,
8251 page_alloc_cpu_dead);
8252 WARN_ON(ret < 0);
8253 }
8254
8255 /*
8256 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8257 * or min_free_kbytes changes.
8258 */
8259 static void calculate_totalreserve_pages(void)
8260 {
8261 struct pglist_data *pgdat;
8262 unsigned long reserve_pages = 0;
8263 enum zone_type i, j;
8264
8265 for_each_online_pgdat(pgdat) {
8266
8267 pgdat->totalreserve_pages = 0;
8268
8269 for (i = 0; i < MAX_NR_ZONES; i++) {
8270 struct zone *zone = pgdat->node_zones + i;
8271 long max = 0;
8272 unsigned long managed_pages = zone_managed_pages(zone);
8273
8274 /* Find valid and maximum lowmem_reserve in the zone */
8275 for (j = i; j < MAX_NR_ZONES; j++) {
8276 if (zone->lowmem_reserve[j] > max)
8277 max = zone->lowmem_reserve[j];
8278 }
8279
8280 /* we treat the high watermark as reserved pages. */
8281 max += high_wmark_pages(zone);
8282
8283 if (max > managed_pages)
8284 max = managed_pages;
8285
8286 pgdat->totalreserve_pages += max;
8287
8288 reserve_pages += max;
8289 }
8290 }
8291 totalreserve_pages = reserve_pages;
8292 }
8293
8294 /*
8295 * setup_per_zone_lowmem_reserve - called whenever
8296 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8297 * has a correct pages reserved value, so an adequate number of
8298 * pages are left in the zone after a successful __alloc_pages().
8299 */
8300 static void setup_per_zone_lowmem_reserve(void)
8301 {
8302 struct pglist_data *pgdat;
8303 enum zone_type i, j;
8304
8305 for_each_online_pgdat(pgdat) {
8306 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8307 struct zone *zone = &pgdat->node_zones[i];
8308 int ratio = sysctl_lowmem_reserve_ratio[i];
8309 bool clear = !ratio || !zone_managed_pages(zone);
8310 unsigned long managed_pages = 0;
8311
8312 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8313 struct zone *upper_zone = &pgdat->node_zones[j];
8314
8315 managed_pages += zone_managed_pages(upper_zone);
8316
8317 if (clear)
8318 zone->lowmem_reserve[j] = 0;
8319 else
8320 zone->lowmem_reserve[j] = managed_pages / ratio;
8321 }
8322 }
8323 }
8324
8325 /* update totalreserve_pages */
8326 calculate_totalreserve_pages();
8327 }
8328
8329 static void __setup_per_zone_wmarks(void)
8330 {
8331 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8332 unsigned long lowmem_pages = 0;
8333 struct zone *zone;
8334 unsigned long flags;
8335
8336 /* Calculate total number of !ZONE_HIGHMEM pages */
8337 for_each_zone(zone) {
8338 if (!is_highmem(zone))
8339 lowmem_pages += zone_managed_pages(zone);
8340 }
8341
8342 for_each_zone(zone) {
8343 u64 tmp;
8344
8345 spin_lock_irqsave(&zone->lock, flags);
8346 tmp = (u64)pages_min * zone_managed_pages(zone);
8347 do_div(tmp, lowmem_pages);
8348 if (is_highmem(zone)) {
8349 /*
8350 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8351 * need highmem pages, so cap pages_min to a small
8352 * value here.
8353 *
8354 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8355 * deltas control async page reclaim, and so should
8356 * not be capped for highmem.
8357 */
8358 unsigned long min_pages;
8359
8360 min_pages = zone_managed_pages(zone) / 1024;
8361 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8362 zone->_watermark[WMARK_MIN] = min_pages;
8363 } else {
8364 /*
8365 * If it's a lowmem zone, reserve a number of pages
8366 * proportionate to the zone's size.
8367 */
8368 zone->_watermark[WMARK_MIN] = tmp;
8369 }
8370
8371 /*
8372 * Set the kswapd watermarks distance according to the
8373 * scale factor in proportion to available memory, but
8374 * ensure a minimum size on small systems.
8375 */
8376 tmp = max_t(u64, tmp >> 2,
8377 mult_frac(zone_managed_pages(zone),
8378 watermark_scale_factor, 10000));
8379
8380 zone->watermark_boost = 0;
8381 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8382 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8383
8384 spin_unlock_irqrestore(&zone->lock, flags);
8385 }
8386
8387 /* update totalreserve_pages */
8388 calculate_totalreserve_pages();
8389 }
8390
8391 /**
8392 * setup_per_zone_wmarks - called when min_free_kbytes changes
8393 * or when memory is hot-{added|removed}
8394 *
8395 * Ensures that the watermark[min,low,high] values for each zone are set
8396 * correctly with respect to min_free_kbytes.
8397 */
8398 void setup_per_zone_wmarks(void)
8399 {
8400 struct zone *zone;
8401 static DEFINE_SPINLOCK(lock);
8402
8403 spin_lock(&lock);
8404 __setup_per_zone_wmarks();
8405 spin_unlock(&lock);
8406
8407 /*
8408 * The watermark size have changed so update the pcpu batch
8409 * and high limits or the limits may be inappropriate.
8410 */
8411 for_each_zone(zone)
8412 zone_pcp_update(zone, 0);
8413 }
8414
8415 /*
8416 * Initialise min_free_kbytes.
8417 *
8418 * For small machines we want it small (128k min). For large machines
8419 * we want it large (256MB max). But it is not linear, because network
8420 * bandwidth does not increase linearly with machine size. We use
8421 *
8422 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8423 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8424 *
8425 * which yields
8426 *
8427 * 16MB: 512k
8428 * 32MB: 724k
8429 * 64MB: 1024k
8430 * 128MB: 1448k
8431 * 256MB: 2048k
8432 * 512MB: 2896k
8433 * 1024MB: 4096k
8434 * 2048MB: 5792k
8435 * 4096MB: 8192k
8436 * 8192MB: 11584k
8437 * 16384MB: 16384k
8438 */
8439 int __meminit init_per_zone_wmark_min(void)
8440 {
8441 unsigned long lowmem_kbytes;
8442 int new_min_free_kbytes;
8443
8444 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8445 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8446
8447 if (new_min_free_kbytes > user_min_free_kbytes) {
8448 min_free_kbytes = new_min_free_kbytes;
8449 if (min_free_kbytes < 128)
8450 min_free_kbytes = 128;
8451 if (min_free_kbytes > 262144)
8452 min_free_kbytes = 262144;
8453 } else {
8454 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8455 new_min_free_kbytes, user_min_free_kbytes);
8456 }
8457 setup_per_zone_wmarks();
8458 refresh_zone_stat_thresholds();
8459 setup_per_zone_lowmem_reserve();
8460
8461 #ifdef CONFIG_NUMA
8462 setup_min_unmapped_ratio();
8463 setup_min_slab_ratio();
8464 #endif
8465
8466 khugepaged_min_free_kbytes_update();
8467
8468 return 0;
8469 }
8470 postcore_initcall(init_per_zone_wmark_min)
8471
8472 /*
8473 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8474 * that we can call two helper functions whenever min_free_kbytes
8475 * changes.
8476 */
8477 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8478 void *buffer, size_t *length, loff_t *ppos)
8479 {
8480 int rc;
8481
8482 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8483 if (rc)
8484 return rc;
8485
8486 if (write) {
8487 user_min_free_kbytes = min_free_kbytes;
8488 setup_per_zone_wmarks();
8489 }
8490 return 0;
8491 }
8492
8493 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8494 void *buffer, size_t *length, loff_t *ppos)
8495 {
8496 int rc;
8497
8498 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8499 if (rc)
8500 return rc;
8501
8502 if (write)
8503 setup_per_zone_wmarks();
8504
8505 return 0;
8506 }
8507
8508 #ifdef CONFIG_NUMA
8509 static void setup_min_unmapped_ratio(void)
8510 {
8511 pg_data_t *pgdat;
8512 struct zone *zone;
8513
8514 for_each_online_pgdat(pgdat)
8515 pgdat->min_unmapped_pages = 0;
8516
8517 for_each_zone(zone)
8518 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8519 sysctl_min_unmapped_ratio) / 100;
8520 }
8521
8522
8523 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8524 void *buffer, size_t *length, loff_t *ppos)
8525 {
8526 int rc;
8527
8528 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8529 if (rc)
8530 return rc;
8531
8532 setup_min_unmapped_ratio();
8533
8534 return 0;
8535 }
8536
8537 static void setup_min_slab_ratio(void)
8538 {
8539 pg_data_t *pgdat;
8540 struct zone *zone;
8541
8542 for_each_online_pgdat(pgdat)
8543 pgdat->min_slab_pages = 0;
8544
8545 for_each_zone(zone)
8546 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8547 sysctl_min_slab_ratio) / 100;
8548 }
8549
8550 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8551 void *buffer, size_t *length, loff_t *ppos)
8552 {
8553 int rc;
8554
8555 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8556 if (rc)
8557 return rc;
8558
8559 setup_min_slab_ratio();
8560
8561 return 0;
8562 }
8563 #endif
8564
8565 /*
8566 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8567 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8568 * whenever sysctl_lowmem_reserve_ratio changes.
8569 *
8570 * The reserve ratio obviously has absolutely no relation with the
8571 * minimum watermarks. The lowmem reserve ratio can only make sense
8572 * if in function of the boot time zone sizes.
8573 */
8574 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8575 void *buffer, size_t *length, loff_t *ppos)
8576 {
8577 int i;
8578
8579 proc_dointvec_minmax(table, write, buffer, length, ppos);
8580
8581 for (i = 0; i < MAX_NR_ZONES; i++) {
8582 if (sysctl_lowmem_reserve_ratio[i] < 1)
8583 sysctl_lowmem_reserve_ratio[i] = 0;
8584 }
8585
8586 setup_per_zone_lowmem_reserve();
8587 return 0;
8588 }
8589
8590 /*
8591 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8592 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8593 * pagelist can have before it gets flushed back to buddy allocator.
8594 */
8595 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8596 int write, void *buffer, size_t *length, loff_t *ppos)
8597 {
8598 struct zone *zone;
8599 int old_percpu_pagelist_high_fraction;
8600 int ret;
8601
8602 mutex_lock(&pcp_batch_high_lock);
8603 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8604
8605 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8606 if (!write || ret < 0)
8607 goto out;
8608
8609 /* Sanity checking to avoid pcp imbalance */
8610 if (percpu_pagelist_high_fraction &&
8611 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8612 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8613 ret = -EINVAL;
8614 goto out;
8615 }
8616
8617 /* No change? */
8618 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8619 goto out;
8620
8621 for_each_populated_zone(zone)
8622 zone_set_pageset_high_and_batch(zone, 0);
8623 out:
8624 mutex_unlock(&pcp_batch_high_lock);
8625 return ret;
8626 }
8627
8628 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8629 /*
8630 * Returns the number of pages that arch has reserved but
8631 * is not known to alloc_large_system_hash().
8632 */
8633 static unsigned long __init arch_reserved_kernel_pages(void)
8634 {
8635 return 0;
8636 }
8637 #endif
8638
8639 /*
8640 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8641 * machines. As memory size is increased the scale is also increased but at
8642 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8643 * quadruples the scale is increased by one, which means the size of hash table
8644 * only doubles, instead of quadrupling as well.
8645 * Because 32-bit systems cannot have large physical memory, where this scaling
8646 * makes sense, it is disabled on such platforms.
8647 */
8648 #if __BITS_PER_LONG > 32
8649 #define ADAPT_SCALE_BASE (64ul << 30)
8650 #define ADAPT_SCALE_SHIFT 2
8651 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8652 #endif
8653
8654 /*
8655 * allocate a large system hash table from bootmem
8656 * - it is assumed that the hash table must contain an exact power-of-2
8657 * quantity of entries
8658 * - limit is the number of hash buckets, not the total allocation size
8659 */
8660 void *__init alloc_large_system_hash(const char *tablename,
8661 unsigned long bucketsize,
8662 unsigned long numentries,
8663 int scale,
8664 int flags,
8665 unsigned int *_hash_shift,
8666 unsigned int *_hash_mask,
8667 unsigned long low_limit,
8668 unsigned long high_limit)
8669 {
8670 unsigned long long max = high_limit;
8671 unsigned long log2qty, size;
8672 void *table = NULL;
8673 gfp_t gfp_flags;
8674 bool virt;
8675 bool huge;
8676
8677 /* allow the kernel cmdline to have a say */
8678 if (!numentries) {
8679 /* round applicable memory size up to nearest megabyte */
8680 numentries = nr_kernel_pages;
8681 numentries -= arch_reserved_kernel_pages();
8682
8683 /* It isn't necessary when PAGE_SIZE >= 1MB */
8684 if (PAGE_SHIFT < 20)
8685 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8686
8687 #if __BITS_PER_LONG > 32
8688 if (!high_limit) {
8689 unsigned long adapt;
8690
8691 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8692 adapt <<= ADAPT_SCALE_SHIFT)
8693 scale++;
8694 }
8695 #endif
8696
8697 /* limit to 1 bucket per 2^scale bytes of low memory */
8698 if (scale > PAGE_SHIFT)
8699 numentries >>= (scale - PAGE_SHIFT);
8700 else
8701 numentries <<= (PAGE_SHIFT - scale);
8702
8703 /* Make sure we've got at least a 0-order allocation.. */
8704 if (unlikely(flags & HASH_SMALL)) {
8705 /* Makes no sense without HASH_EARLY */
8706 WARN_ON(!(flags & HASH_EARLY));
8707 if (!(numentries >> *_hash_shift)) {
8708 numentries = 1UL << *_hash_shift;
8709 BUG_ON(!numentries);
8710 }
8711 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8712 numentries = PAGE_SIZE / bucketsize;
8713 }
8714 numentries = roundup_pow_of_two(numentries);
8715
8716 /* limit allocation size to 1/16 total memory by default */
8717 if (max == 0) {
8718 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8719 do_div(max, bucketsize);
8720 }
8721 max = min(max, 0x80000000ULL);
8722
8723 if (numentries < low_limit)
8724 numentries = low_limit;
8725 if (numentries > max)
8726 numentries = max;
8727
8728 log2qty = ilog2(numentries);
8729
8730 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8731 do {
8732 virt = false;
8733 size = bucketsize << log2qty;
8734 if (flags & HASH_EARLY) {
8735 if (flags & HASH_ZERO)
8736 table = memblock_alloc(size, SMP_CACHE_BYTES);
8737 else
8738 table = memblock_alloc_raw(size,
8739 SMP_CACHE_BYTES);
8740 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8741 table = __vmalloc(size, gfp_flags);
8742 virt = true;
8743 huge = is_vm_area_hugepages(table);
8744 } else {
8745 /*
8746 * If bucketsize is not a power-of-two, we may free
8747 * some pages at the end of hash table which
8748 * alloc_pages_exact() automatically does
8749 */
8750 table = alloc_pages_exact(size, gfp_flags);
8751 kmemleak_alloc(table, size, 1, gfp_flags);
8752 }
8753 } while (!table && size > PAGE_SIZE && --log2qty);
8754
8755 if (!table)
8756 panic("Failed to allocate %s hash table\n", tablename);
8757
8758 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8759 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8760 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8761
8762 if (_hash_shift)
8763 *_hash_shift = log2qty;
8764 if (_hash_mask)
8765 *_hash_mask = (1 << log2qty) - 1;
8766
8767 return table;
8768 }
8769
8770 /*
8771 * This function checks whether pageblock includes unmovable pages or not.
8772 *
8773 * PageLRU check without isolation or lru_lock could race so that
8774 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8775 * check without lock_page also may miss some movable non-lru pages at
8776 * race condition. So you can't expect this function should be exact.
8777 *
8778 * Returns a page without holding a reference. If the caller wants to
8779 * dereference that page (e.g., dumping), it has to make sure that it
8780 * cannot get removed (e.g., via memory unplug) concurrently.
8781 *
8782 */
8783 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8784 int migratetype, int flags)
8785 {
8786 unsigned long iter = 0;
8787 unsigned long pfn = page_to_pfn(page);
8788 unsigned long offset = pfn % pageblock_nr_pages;
8789
8790 if (is_migrate_cma_page(page)) {
8791 /*
8792 * CMA allocations (alloc_contig_range) really need to mark
8793 * isolate CMA pageblocks even when they are not movable in fact
8794 * so consider them movable here.
8795 */
8796 if (is_migrate_cma(migratetype))
8797 return NULL;
8798
8799 return page;
8800 }
8801
8802 for (; iter < pageblock_nr_pages - offset; iter++) {
8803 page = pfn_to_page(pfn + iter);
8804
8805 /*
8806 * Both, bootmem allocations and memory holes are marked
8807 * PG_reserved and are unmovable. We can even have unmovable
8808 * allocations inside ZONE_MOVABLE, for example when
8809 * specifying "movablecore".
8810 */
8811 if (PageReserved(page))
8812 return page;
8813
8814 /*
8815 * If the zone is movable and we have ruled out all reserved
8816 * pages then it should be reasonably safe to assume the rest
8817 * is movable.
8818 */
8819 if (zone_idx(zone) == ZONE_MOVABLE)
8820 continue;
8821
8822 /*
8823 * Hugepages are not in LRU lists, but they're movable.
8824 * THPs are on the LRU, but need to be counted as #small pages.
8825 * We need not scan over tail pages because we don't
8826 * handle each tail page individually in migration.
8827 */
8828 if (PageHuge(page) || PageTransCompound(page)) {
8829 struct page *head = compound_head(page);
8830 unsigned int skip_pages;
8831
8832 if (PageHuge(page)) {
8833 if (!hugepage_migration_supported(page_hstate(head)))
8834 return page;
8835 } else if (!PageLRU(head) && !__PageMovable(head)) {
8836 return page;
8837 }
8838
8839 skip_pages = compound_nr(head) - (page - head);
8840 iter += skip_pages - 1;
8841 continue;
8842 }
8843
8844 /*
8845 * We can't use page_count without pin a page
8846 * because another CPU can free compound page.
8847 * This check already skips compound tails of THP
8848 * because their page->_refcount is zero at all time.
8849 */
8850 if (!page_ref_count(page)) {
8851 if (PageBuddy(page))
8852 iter += (1 << buddy_order(page)) - 1;
8853 continue;
8854 }
8855
8856 /*
8857 * The HWPoisoned page may be not in buddy system, and
8858 * page_count() is not 0.
8859 */
8860 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8861 continue;
8862
8863 /*
8864 * We treat all PageOffline() pages as movable when offlining
8865 * to give drivers a chance to decrement their reference count
8866 * in MEM_GOING_OFFLINE in order to indicate that these pages
8867 * can be offlined as there are no direct references anymore.
8868 * For actually unmovable PageOffline() where the driver does
8869 * not support this, we will fail later when trying to actually
8870 * move these pages that still have a reference count > 0.
8871 * (false negatives in this function only)
8872 */
8873 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8874 continue;
8875
8876 if (__PageMovable(page) || PageLRU(page))
8877 continue;
8878
8879 /*
8880 * If there are RECLAIMABLE pages, we need to check
8881 * it. But now, memory offline itself doesn't call
8882 * shrink_node_slabs() and it still to be fixed.
8883 */
8884 return page;
8885 }
8886 return NULL;
8887 }
8888
8889 #ifdef CONFIG_CONTIG_ALLOC
8890 static unsigned long pfn_max_align_down(unsigned long pfn)
8891 {
8892 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8893 pageblock_nr_pages) - 1);
8894 }
8895
8896 static unsigned long pfn_max_align_up(unsigned long pfn)
8897 {
8898 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8899 pageblock_nr_pages));
8900 }
8901
8902 #if defined(CONFIG_DYNAMIC_DEBUG) || \
8903 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8904 /* Usage: See admin-guide/dynamic-debug-howto.rst */
8905 static void alloc_contig_dump_pages(struct list_head *page_list)
8906 {
8907 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8908
8909 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8910 struct page *page;
8911
8912 dump_stack();
8913 list_for_each_entry(page, page_list, lru)
8914 dump_page(page, "migration failure");
8915 }
8916 }
8917 #else
8918 static inline void alloc_contig_dump_pages(struct list_head *page_list)
8919 {
8920 }
8921 #endif
8922
8923 /* [start, end) must belong to a single zone. */
8924 static int __alloc_contig_migrate_range(struct compact_control *cc,
8925 unsigned long start, unsigned long end)
8926 {
8927 /* This function is based on compact_zone() from compaction.c. */
8928 unsigned int nr_reclaimed;
8929 unsigned long pfn = start;
8930 unsigned int tries = 0;
8931 int ret = 0;
8932 struct migration_target_control mtc = {
8933 .nid = zone_to_nid(cc->zone),
8934 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8935 };
8936
8937 lru_cache_disable();
8938
8939 while (pfn < end || !list_empty(&cc->migratepages)) {
8940 if (fatal_signal_pending(current)) {
8941 ret = -EINTR;
8942 break;
8943 }
8944
8945 if (list_empty(&cc->migratepages)) {
8946 cc->nr_migratepages = 0;
8947 ret = isolate_migratepages_range(cc, pfn, end);
8948 if (ret && ret != -EAGAIN)
8949 break;
8950 pfn = cc->migrate_pfn;
8951 tries = 0;
8952 } else if (++tries == 5) {
8953 ret = -EBUSY;
8954 break;
8955 }
8956
8957 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8958 &cc->migratepages);
8959 cc->nr_migratepages -= nr_reclaimed;
8960
8961 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8962 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8963
8964 /*
8965 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
8966 * to retry again over this error, so do the same here.
8967 */
8968 if (ret == -ENOMEM)
8969 break;
8970 }
8971
8972 lru_cache_enable();
8973 if (ret < 0) {
8974 if (ret == -EBUSY)
8975 alloc_contig_dump_pages(&cc->migratepages);
8976 putback_movable_pages(&cc->migratepages);
8977 return ret;
8978 }
8979 return 0;
8980 }
8981
8982 /**
8983 * alloc_contig_range() -- tries to allocate given range of pages
8984 * @start: start PFN to allocate
8985 * @end: one-past-the-last PFN to allocate
8986 * @migratetype: migratetype of the underlying pageblocks (either
8987 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8988 * in range must have the same migratetype and it must
8989 * be either of the two.
8990 * @gfp_mask: GFP mask to use during compaction
8991 *
8992 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8993 * aligned. The PFN range must belong to a single zone.
8994 *
8995 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8996 * pageblocks in the range. Once isolated, the pageblocks should not
8997 * be modified by others.
8998 *
8999 * Return: zero on success or negative error code. On success all
9000 * pages which PFN is in [start, end) are allocated for the caller and
9001 * need to be freed with free_contig_range().
9002 */
9003 int alloc_contig_range(unsigned long start, unsigned long end,
9004 unsigned migratetype, gfp_t gfp_mask)
9005 {
9006 unsigned long outer_start, outer_end;
9007 unsigned int order;
9008 int ret = 0;
9009
9010 struct compact_control cc = {
9011 .nr_migratepages = 0,
9012 .order = -1,
9013 .zone = page_zone(pfn_to_page(start)),
9014 .mode = MIGRATE_SYNC,
9015 .ignore_skip_hint = true,
9016 .no_set_skip_hint = true,
9017 .gfp_mask = current_gfp_context(gfp_mask),
9018 .alloc_contig = true,
9019 };
9020 INIT_LIST_HEAD(&cc.migratepages);
9021
9022 /*
9023 * What we do here is we mark all pageblocks in range as
9024 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9025 * have different sizes, and due to the way page allocator
9026 * work, we align the range to biggest of the two pages so
9027 * that page allocator won't try to merge buddies from
9028 * different pageblocks and change MIGRATE_ISOLATE to some
9029 * other migration type.
9030 *
9031 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9032 * migrate the pages from an unaligned range (ie. pages that
9033 * we are interested in). This will put all the pages in
9034 * range back to page allocator as MIGRATE_ISOLATE.
9035 *
9036 * When this is done, we take the pages in range from page
9037 * allocator removing them from the buddy system. This way
9038 * page allocator will never consider using them.
9039 *
9040 * This lets us mark the pageblocks back as
9041 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9042 * aligned range but not in the unaligned, original range are
9043 * put back to page allocator so that buddy can use them.
9044 */
9045
9046 ret = start_isolate_page_range(pfn_max_align_down(start),
9047 pfn_max_align_up(end), migratetype, 0);
9048 if (ret)
9049 return ret;
9050
9051 drain_all_pages(cc.zone);
9052
9053 /*
9054 * In case of -EBUSY, we'd like to know which page causes problem.
9055 * So, just fall through. test_pages_isolated() has a tracepoint
9056 * which will report the busy page.
9057 *
9058 * It is possible that busy pages could become available before
9059 * the call to test_pages_isolated, and the range will actually be
9060 * allocated. So, if we fall through be sure to clear ret so that
9061 * -EBUSY is not accidentally used or returned to caller.
9062 */
9063 ret = __alloc_contig_migrate_range(&cc, start, end);
9064 if (ret && ret != -EBUSY)
9065 goto done;
9066 ret = 0;
9067
9068 /*
9069 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9070 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9071 * more, all pages in [start, end) are free in page allocator.
9072 * What we are going to do is to allocate all pages from
9073 * [start, end) (that is remove them from page allocator).
9074 *
9075 * The only problem is that pages at the beginning and at the
9076 * end of interesting range may be not aligned with pages that
9077 * page allocator holds, ie. they can be part of higher order
9078 * pages. Because of this, we reserve the bigger range and
9079 * once this is done free the pages we are not interested in.
9080 *
9081 * We don't have to hold zone->lock here because the pages are
9082 * isolated thus they won't get removed from buddy.
9083 */
9084
9085 order = 0;
9086 outer_start = start;
9087 while (!PageBuddy(pfn_to_page(outer_start))) {
9088 if (++order >= MAX_ORDER) {
9089 outer_start = start;
9090 break;
9091 }
9092 outer_start &= ~0UL << order;
9093 }
9094
9095 if (outer_start != start) {
9096 order = buddy_order(pfn_to_page(outer_start));
9097
9098 /*
9099 * outer_start page could be small order buddy page and
9100 * it doesn't include start page. Adjust outer_start
9101 * in this case to report failed page properly
9102 * on tracepoint in test_pages_isolated()
9103 */
9104 if (outer_start + (1UL << order) <= start)
9105 outer_start = start;
9106 }
9107
9108 /* Make sure the range is really isolated. */
9109 if (test_pages_isolated(outer_start, end, 0)) {
9110 ret = -EBUSY;
9111 goto done;
9112 }
9113
9114 /* Grab isolated pages from freelists. */
9115 outer_end = isolate_freepages_range(&cc, outer_start, end);
9116 if (!outer_end) {
9117 ret = -EBUSY;
9118 goto done;
9119 }
9120
9121 /* Free head and tail (if any) */
9122 if (start != outer_start)
9123 free_contig_range(outer_start, start - outer_start);
9124 if (end != outer_end)
9125 free_contig_range(end, outer_end - end);
9126
9127 done:
9128 undo_isolate_page_range(pfn_max_align_down(start),
9129 pfn_max_align_up(end), migratetype);
9130 return ret;
9131 }
9132 EXPORT_SYMBOL(alloc_contig_range);
9133
9134 static int __alloc_contig_pages(unsigned long start_pfn,
9135 unsigned long nr_pages, gfp_t gfp_mask)
9136 {
9137 unsigned long end_pfn = start_pfn + nr_pages;
9138
9139 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9140 gfp_mask);
9141 }
9142
9143 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9144 unsigned long nr_pages)
9145 {
9146 unsigned long i, end_pfn = start_pfn + nr_pages;
9147 struct page *page;
9148
9149 for (i = start_pfn; i < end_pfn; i++) {
9150 page = pfn_to_online_page(i);
9151 if (!page)
9152 return false;
9153
9154 if (page_zone(page) != z)
9155 return false;
9156
9157 if (PageReserved(page))
9158 return false;
9159 }
9160 return true;
9161 }
9162
9163 static bool zone_spans_last_pfn(const struct zone *zone,
9164 unsigned long start_pfn, unsigned long nr_pages)
9165 {
9166 unsigned long last_pfn = start_pfn + nr_pages - 1;
9167
9168 return zone_spans_pfn(zone, last_pfn);
9169 }
9170
9171 /**
9172 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9173 * @nr_pages: Number of contiguous pages to allocate
9174 * @gfp_mask: GFP mask to limit search and used during compaction
9175 * @nid: Target node
9176 * @nodemask: Mask for other possible nodes
9177 *
9178 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9179 * on an applicable zonelist to find a contiguous pfn range which can then be
9180 * tried for allocation with alloc_contig_range(). This routine is intended
9181 * for allocation requests which can not be fulfilled with the buddy allocator.
9182 *
9183 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9184 * power of two then the alignment is guaranteed to be to the given nr_pages
9185 * (e.g. 1GB request would be aligned to 1GB).
9186 *
9187 * Allocated pages can be freed with free_contig_range() or by manually calling
9188 * __free_page() on each allocated page.
9189 *
9190 * Return: pointer to contiguous pages on success, or NULL if not successful.
9191 */
9192 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9193 int nid, nodemask_t *nodemask)
9194 {
9195 unsigned long ret, pfn, flags;
9196 struct zonelist *zonelist;
9197 struct zone *zone;
9198 struct zoneref *z;
9199
9200 zonelist = node_zonelist(nid, gfp_mask);
9201 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9202 gfp_zone(gfp_mask), nodemask) {
9203 spin_lock_irqsave(&zone->lock, flags);
9204
9205 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9206 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9207 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9208 /*
9209 * We release the zone lock here because
9210 * alloc_contig_range() will also lock the zone
9211 * at some point. If there's an allocation
9212 * spinning on this lock, it may win the race
9213 * and cause alloc_contig_range() to fail...
9214 */
9215 spin_unlock_irqrestore(&zone->lock, flags);
9216 ret = __alloc_contig_pages(pfn, nr_pages,
9217 gfp_mask);
9218 if (!ret)
9219 return pfn_to_page(pfn);
9220 spin_lock_irqsave(&zone->lock, flags);
9221 }
9222 pfn += nr_pages;
9223 }
9224 spin_unlock_irqrestore(&zone->lock, flags);
9225 }
9226 return NULL;
9227 }
9228 #endif /* CONFIG_CONTIG_ALLOC */
9229
9230 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9231 {
9232 unsigned long count = 0;
9233
9234 for (; nr_pages--; pfn++) {
9235 struct page *page = pfn_to_page(pfn);
9236
9237 count += page_count(page) != 1;
9238 __free_page(page);
9239 }
9240 WARN(count != 0, "%lu pages are still in use!\n", count);
9241 }
9242 EXPORT_SYMBOL(free_contig_range);
9243
9244 /*
9245 * The zone indicated has a new number of managed_pages; batch sizes and percpu
9246 * page high values need to be recalculated.
9247 */
9248 void zone_pcp_update(struct zone *zone, int cpu_online)
9249 {
9250 mutex_lock(&pcp_batch_high_lock);
9251 zone_set_pageset_high_and_batch(zone, cpu_online);
9252 mutex_unlock(&pcp_batch_high_lock);
9253 }
9254
9255 /*
9256 * Effectively disable pcplists for the zone by setting the high limit to 0
9257 * and draining all cpus. A concurrent page freeing on another CPU that's about
9258 * to put the page on pcplist will either finish before the drain and the page
9259 * will be drained, or observe the new high limit and skip the pcplist.
9260 *
9261 * Must be paired with a call to zone_pcp_enable().
9262 */
9263 void zone_pcp_disable(struct zone *zone)
9264 {
9265 mutex_lock(&pcp_batch_high_lock);
9266 __zone_set_pageset_high_and_batch(zone, 0, 1);
9267 __drain_all_pages(zone, true);
9268 }
9269
9270 void zone_pcp_enable(struct zone *zone)
9271 {
9272 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9273 mutex_unlock(&pcp_batch_high_lock);
9274 }
9275
9276 void zone_pcp_reset(struct zone *zone)
9277 {
9278 int cpu;
9279 struct per_cpu_zonestat *pzstats;
9280
9281 if (zone->per_cpu_pageset != &boot_pageset) {
9282 for_each_online_cpu(cpu) {
9283 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9284 drain_zonestat(zone, pzstats);
9285 }
9286 free_percpu(zone->per_cpu_pageset);
9287 free_percpu(zone->per_cpu_zonestats);
9288 zone->per_cpu_pageset = &boot_pageset;
9289 zone->per_cpu_zonestats = &boot_zonestats;
9290 }
9291 }
9292
9293 #ifdef CONFIG_MEMORY_HOTREMOVE
9294 /*
9295 * All pages in the range must be in a single zone, must not contain holes,
9296 * must span full sections, and must be isolated before calling this function.
9297 */
9298 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9299 {
9300 unsigned long pfn = start_pfn;
9301 struct page *page;
9302 struct zone *zone;
9303 unsigned int order;
9304 unsigned long flags;
9305
9306 offline_mem_sections(pfn, end_pfn);
9307 zone = page_zone(pfn_to_page(pfn));
9308 spin_lock_irqsave(&zone->lock, flags);
9309 while (pfn < end_pfn) {
9310 page = pfn_to_page(pfn);
9311 /*
9312 * The HWPoisoned page may be not in buddy system, and
9313 * page_count() is not 0.
9314 */
9315 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9316 pfn++;
9317 continue;
9318 }
9319 /*
9320 * At this point all remaining PageOffline() pages have a
9321 * reference count of 0 and can simply be skipped.
9322 */
9323 if (PageOffline(page)) {
9324 BUG_ON(page_count(page));
9325 BUG_ON(PageBuddy(page));
9326 pfn++;
9327 continue;
9328 }
9329
9330 BUG_ON(page_count(page));
9331 BUG_ON(!PageBuddy(page));
9332 order = buddy_order(page);
9333 del_page_from_free_list(page, zone, order);
9334 pfn += (1 << order);
9335 }
9336 spin_unlock_irqrestore(&zone->lock, flags);
9337 }
9338 #endif
9339
9340 bool is_free_buddy_page(struct page *page)
9341 {
9342 struct zone *zone = page_zone(page);
9343 unsigned long pfn = page_to_pfn(page);
9344 unsigned long flags;
9345 unsigned int order;
9346
9347 spin_lock_irqsave(&zone->lock, flags);
9348 for (order = 0; order < MAX_ORDER; order++) {
9349 struct page *page_head = page - (pfn & ((1 << order) - 1));
9350
9351 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9352 break;
9353 }
9354 spin_unlock_irqrestore(&zone->lock, flags);
9355
9356 return order < MAX_ORDER;
9357 }
9358
9359 #ifdef CONFIG_MEMORY_FAILURE
9360 /*
9361 * Break down a higher-order page in sub-pages, and keep our target out of
9362 * buddy allocator.
9363 */
9364 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9365 struct page *target, int low, int high,
9366 int migratetype)
9367 {
9368 unsigned long size = 1 << high;
9369 struct page *current_buddy, *next_page;
9370
9371 while (high > low) {
9372 high--;
9373 size >>= 1;
9374
9375 if (target >= &page[size]) {
9376 next_page = page + size;
9377 current_buddy = page;
9378 } else {
9379 next_page = page;
9380 current_buddy = page + size;
9381 }
9382
9383 if (set_page_guard(zone, current_buddy, high, migratetype))
9384 continue;
9385
9386 if (current_buddy != target) {
9387 add_to_free_list(current_buddy, zone, high, migratetype);
9388 set_buddy_order(current_buddy, high);
9389 page = next_page;
9390 }
9391 }
9392 }
9393
9394 /*
9395 * Take a page that will be marked as poisoned off the buddy allocator.
9396 */
9397 bool take_page_off_buddy(struct page *page)
9398 {
9399 struct zone *zone = page_zone(page);
9400 unsigned long pfn = page_to_pfn(page);
9401 unsigned long flags;
9402 unsigned int order;
9403 bool ret = false;
9404
9405 spin_lock_irqsave(&zone->lock, flags);
9406 for (order = 0; order < MAX_ORDER; order++) {
9407 struct page *page_head = page - (pfn & ((1 << order) - 1));
9408 int page_order = buddy_order(page_head);
9409
9410 if (PageBuddy(page_head) && page_order >= order) {
9411 unsigned long pfn_head = page_to_pfn(page_head);
9412 int migratetype = get_pfnblock_migratetype(page_head,
9413 pfn_head);
9414
9415 del_page_from_free_list(page_head, zone, page_order);
9416 break_down_buddy_pages(zone, page_head, page, 0,
9417 page_order, migratetype);
9418 if (!is_migrate_isolate(migratetype))
9419 __mod_zone_freepage_state(zone, -1, migratetype);
9420 ret = true;
9421 break;
9422 }
9423 if (page_count(page_head) > 0)
9424 break;
9425 }
9426 spin_unlock_irqrestore(&zone->lock, flags);
9427 return ret;
9428 }
9429 #endif