]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/page_alloc.c
spelling fixes
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
40 #include <linux/stop_machine.h>
41
42 #include <asm/tlbflush.h>
43 #include <asm/div64.h>
44 #include "internal.h"
45
46 /*
47 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
48 * initializer cleaner
49 */
50 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
51 EXPORT_SYMBOL(node_online_map);
52 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
53 EXPORT_SYMBOL(node_possible_map);
54 unsigned long totalram_pages __read_mostly;
55 unsigned long totalhigh_pages __read_mostly;
56 unsigned long totalreserve_pages __read_mostly;
57 long nr_swap_pages;
58 int percpu_pagelist_fraction;
59
60 static void __free_pages_ok(struct page *page, unsigned int order);
61
62 /*
63 * results with 256, 32 in the lowmem_reserve sysctl:
64 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
65 * 1G machine -> (16M dma, 784M normal, 224M high)
66 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
67 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
68 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
69 *
70 * TBD: should special case ZONE_DMA32 machines here - in those we normally
71 * don't need any ZONE_NORMAL reservation
72 */
73 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
74
75 EXPORT_SYMBOL(totalram_pages);
76
77 /*
78 * Used by page_zone() to look up the address of the struct zone whose
79 * id is encoded in the upper bits of page->flags
80 */
81 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
82 EXPORT_SYMBOL(zone_table);
83
84 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
85 int min_free_kbytes = 1024;
86
87 unsigned long __meminitdata nr_kernel_pages;
88 unsigned long __meminitdata nr_all_pages;
89
90 #ifdef CONFIG_DEBUG_VM
91 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
92 {
93 int ret = 0;
94 unsigned seq;
95 unsigned long pfn = page_to_pfn(page);
96
97 do {
98 seq = zone_span_seqbegin(zone);
99 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
100 ret = 1;
101 else if (pfn < zone->zone_start_pfn)
102 ret = 1;
103 } while (zone_span_seqretry(zone, seq));
104
105 return ret;
106 }
107
108 static int page_is_consistent(struct zone *zone, struct page *page)
109 {
110 #ifdef CONFIG_HOLES_IN_ZONE
111 if (!pfn_valid(page_to_pfn(page)))
112 return 0;
113 #endif
114 if (zone != page_zone(page))
115 return 0;
116
117 return 1;
118 }
119 /*
120 * Temporary debugging check for pages not lying within a given zone.
121 */
122 static int bad_range(struct zone *zone, struct page *page)
123 {
124 if (page_outside_zone_boundaries(zone, page))
125 return 1;
126 if (!page_is_consistent(zone, page))
127 return 1;
128
129 return 0;
130 }
131
132 #else
133 static inline int bad_range(struct zone *zone, struct page *page)
134 {
135 return 0;
136 }
137 #endif
138
139 static void bad_page(struct page *page)
140 {
141 printk(KERN_EMERG "Bad page state in process '%s'\n"
142 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
143 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
144 KERN_EMERG "Backtrace:\n",
145 current->comm, page, (int)(2*sizeof(unsigned long)),
146 (unsigned long)page->flags, page->mapping,
147 page_mapcount(page), page_count(page));
148 dump_stack();
149 page->flags &= ~(1 << PG_lru |
150 1 << PG_private |
151 1 << PG_locked |
152 1 << PG_active |
153 1 << PG_dirty |
154 1 << PG_reclaim |
155 1 << PG_slab |
156 1 << PG_swapcache |
157 1 << PG_writeback |
158 1 << PG_buddy );
159 set_page_count(page, 0);
160 reset_page_mapcount(page);
161 page->mapping = NULL;
162 add_taint(TAINT_BAD_PAGE);
163 }
164
165 /*
166 * Higher-order pages are called "compound pages". They are structured thusly:
167 *
168 * The first PAGE_SIZE page is called the "head page".
169 *
170 * The remaining PAGE_SIZE pages are called "tail pages".
171 *
172 * All pages have PG_compound set. All pages have their ->private pointing at
173 * the head page (even the head page has this).
174 *
175 * The first tail page's ->lru.next holds the address of the compound page's
176 * put_page() function. Its ->lru.prev holds the order of allocation.
177 * This usage means that zero-order pages may not be compound.
178 */
179
180 static void free_compound_page(struct page *page)
181 {
182 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
183 }
184
185 static void prep_compound_page(struct page *page, unsigned long order)
186 {
187 int i;
188 int nr_pages = 1 << order;
189
190 page[1].lru.next = (void *)free_compound_page; /* set dtor */
191 page[1].lru.prev = (void *)order;
192 for (i = 0; i < nr_pages; i++) {
193 struct page *p = page + i;
194
195 __SetPageCompound(p);
196 set_page_private(p, (unsigned long)page);
197 }
198 }
199
200 static void destroy_compound_page(struct page *page, unsigned long order)
201 {
202 int i;
203 int nr_pages = 1 << order;
204
205 if (unlikely((unsigned long)page[1].lru.prev != order))
206 bad_page(page);
207
208 for (i = 0; i < nr_pages; i++) {
209 struct page *p = page + i;
210
211 if (unlikely(!PageCompound(p) |
212 (page_private(p) != (unsigned long)page)))
213 bad_page(page);
214 __ClearPageCompound(p);
215 }
216 }
217
218 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
219 {
220 int i;
221
222 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
223 /*
224 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
225 * and __GFP_HIGHMEM from hard or soft interrupt context.
226 */
227 BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
228 for (i = 0; i < (1 << order); i++)
229 clear_highpage(page + i);
230 }
231
232 /*
233 * function for dealing with page's order in buddy system.
234 * zone->lock is already acquired when we use these.
235 * So, we don't need atomic page->flags operations here.
236 */
237 static inline unsigned long page_order(struct page *page)
238 {
239 return page_private(page);
240 }
241
242 static inline void set_page_order(struct page *page, int order)
243 {
244 set_page_private(page, order);
245 __SetPageBuddy(page);
246 }
247
248 static inline void rmv_page_order(struct page *page)
249 {
250 __ClearPageBuddy(page);
251 set_page_private(page, 0);
252 }
253
254 /*
255 * Locate the struct page for both the matching buddy in our
256 * pair (buddy1) and the combined O(n+1) page they form (page).
257 *
258 * 1) Any buddy B1 will have an order O twin B2 which satisfies
259 * the following equation:
260 * B2 = B1 ^ (1 << O)
261 * For example, if the starting buddy (buddy2) is #8 its order
262 * 1 buddy is #10:
263 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
264 *
265 * 2) Any buddy B will have an order O+1 parent P which
266 * satisfies the following equation:
267 * P = B & ~(1 << O)
268 *
269 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
270 */
271 static inline struct page *
272 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
273 {
274 unsigned long buddy_idx = page_idx ^ (1 << order);
275
276 return page + (buddy_idx - page_idx);
277 }
278
279 static inline unsigned long
280 __find_combined_index(unsigned long page_idx, unsigned int order)
281 {
282 return (page_idx & ~(1 << order));
283 }
284
285 /*
286 * This function checks whether a page is free && is the buddy
287 * we can do coalesce a page and its buddy if
288 * (a) the buddy is not in a hole &&
289 * (b) the buddy is in the buddy system &&
290 * (c) a page and its buddy have the same order &&
291 * (d) a page and its buddy are in the same zone.
292 *
293 * For recording whether a page is in the buddy system, we use PG_buddy.
294 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
295 *
296 * For recording page's order, we use page_private(page).
297 */
298 static inline int page_is_buddy(struct page *page, struct page *buddy,
299 int order)
300 {
301 #ifdef CONFIG_HOLES_IN_ZONE
302 if (!pfn_valid(page_to_pfn(buddy)))
303 return 0;
304 #endif
305
306 if (page_zone_id(page) != page_zone_id(buddy))
307 return 0;
308
309 if (PageBuddy(buddy) && page_order(buddy) == order) {
310 BUG_ON(page_count(buddy) != 0);
311 return 1;
312 }
313 return 0;
314 }
315
316 /*
317 * Freeing function for a buddy system allocator.
318 *
319 * The concept of a buddy system is to maintain direct-mapped table
320 * (containing bit values) for memory blocks of various "orders".
321 * The bottom level table contains the map for the smallest allocatable
322 * units of memory (here, pages), and each level above it describes
323 * pairs of units from the levels below, hence, "buddies".
324 * At a high level, all that happens here is marking the table entry
325 * at the bottom level available, and propagating the changes upward
326 * as necessary, plus some accounting needed to play nicely with other
327 * parts of the VM system.
328 * At each level, we keep a list of pages, which are heads of continuous
329 * free pages of length of (1 << order) and marked with PG_buddy. Page's
330 * order is recorded in page_private(page) field.
331 * So when we are allocating or freeing one, we can derive the state of the
332 * other. That is, if we allocate a small block, and both were
333 * free, the remainder of the region must be split into blocks.
334 * If a block is freed, and its buddy is also free, then this
335 * triggers coalescing into a block of larger size.
336 *
337 * -- wli
338 */
339
340 static inline void __free_one_page(struct page *page,
341 struct zone *zone, unsigned int order)
342 {
343 unsigned long page_idx;
344 int order_size = 1 << order;
345
346 if (unlikely(PageCompound(page)))
347 destroy_compound_page(page, order);
348
349 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
350
351 BUG_ON(page_idx & (order_size - 1));
352 BUG_ON(bad_range(zone, page));
353
354 zone->free_pages += order_size;
355 while (order < MAX_ORDER-1) {
356 unsigned long combined_idx;
357 struct free_area *area;
358 struct page *buddy;
359
360 buddy = __page_find_buddy(page, page_idx, order);
361 if (!page_is_buddy(page, buddy, order))
362 break; /* Move the buddy up one level. */
363
364 list_del(&buddy->lru);
365 area = zone->free_area + order;
366 area->nr_free--;
367 rmv_page_order(buddy);
368 combined_idx = __find_combined_index(page_idx, order);
369 page = page + (combined_idx - page_idx);
370 page_idx = combined_idx;
371 order++;
372 }
373 set_page_order(page, order);
374 list_add(&page->lru, &zone->free_area[order].free_list);
375 zone->free_area[order].nr_free++;
376 }
377
378 static inline int free_pages_check(struct page *page)
379 {
380 if (unlikely(page_mapcount(page) |
381 (page->mapping != NULL) |
382 (page_count(page) != 0) |
383 (page->flags & (
384 1 << PG_lru |
385 1 << PG_private |
386 1 << PG_locked |
387 1 << PG_active |
388 1 << PG_reclaim |
389 1 << PG_slab |
390 1 << PG_swapcache |
391 1 << PG_writeback |
392 1 << PG_reserved |
393 1 << PG_buddy ))))
394 bad_page(page);
395 if (PageDirty(page))
396 __ClearPageDirty(page);
397 /*
398 * For now, we report if PG_reserved was found set, but do not
399 * clear it, and do not free the page. But we shall soon need
400 * to do more, for when the ZERO_PAGE count wraps negative.
401 */
402 return PageReserved(page);
403 }
404
405 /*
406 * Frees a list of pages.
407 * Assumes all pages on list are in same zone, and of same order.
408 * count is the number of pages to free.
409 *
410 * If the zone was previously in an "all pages pinned" state then look to
411 * see if this freeing clears that state.
412 *
413 * And clear the zone's pages_scanned counter, to hold off the "all pages are
414 * pinned" detection logic.
415 */
416 static void free_pages_bulk(struct zone *zone, int count,
417 struct list_head *list, int order)
418 {
419 spin_lock(&zone->lock);
420 zone->all_unreclaimable = 0;
421 zone->pages_scanned = 0;
422 while (count--) {
423 struct page *page;
424
425 BUG_ON(list_empty(list));
426 page = list_entry(list->prev, struct page, lru);
427 /* have to delete it as __free_one_page list manipulates */
428 list_del(&page->lru);
429 __free_one_page(page, zone, order);
430 }
431 spin_unlock(&zone->lock);
432 }
433
434 static void free_one_page(struct zone *zone, struct page *page, int order)
435 {
436 LIST_HEAD(list);
437 list_add(&page->lru, &list);
438 free_pages_bulk(zone, 1, &list, order);
439 }
440
441 static void __free_pages_ok(struct page *page, unsigned int order)
442 {
443 unsigned long flags;
444 int i;
445 int reserved = 0;
446
447 arch_free_page(page, order);
448 if (!PageHighMem(page))
449 mutex_debug_check_no_locks_freed(page_address(page),
450 PAGE_SIZE<<order);
451
452 for (i = 0 ; i < (1 << order) ; ++i)
453 reserved += free_pages_check(page + i);
454 if (reserved)
455 return;
456
457 kernel_map_pages(page, 1 << order, 0);
458 local_irq_save(flags);
459 __mod_page_state(pgfree, 1 << order);
460 free_one_page(page_zone(page), page, order);
461 local_irq_restore(flags);
462 }
463
464 /*
465 * permit the bootmem allocator to evade page validation on high-order frees
466 */
467 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
468 {
469 if (order == 0) {
470 __ClearPageReserved(page);
471 set_page_count(page, 0);
472 set_page_refcounted(page);
473 __free_page(page);
474 } else {
475 int loop;
476
477 prefetchw(page);
478 for (loop = 0; loop < BITS_PER_LONG; loop++) {
479 struct page *p = &page[loop];
480
481 if (loop + 1 < BITS_PER_LONG)
482 prefetchw(p + 1);
483 __ClearPageReserved(p);
484 set_page_count(p, 0);
485 }
486
487 set_page_refcounted(page);
488 __free_pages(page, order);
489 }
490 }
491
492
493 /*
494 * The order of subdivision here is critical for the IO subsystem.
495 * Please do not alter this order without good reasons and regression
496 * testing. Specifically, as large blocks of memory are subdivided,
497 * the order in which smaller blocks are delivered depends on the order
498 * they're subdivided in this function. This is the primary factor
499 * influencing the order in which pages are delivered to the IO
500 * subsystem according to empirical testing, and this is also justified
501 * by considering the behavior of a buddy system containing a single
502 * large block of memory acted on by a series of small allocations.
503 * This behavior is a critical factor in sglist merging's success.
504 *
505 * -- wli
506 */
507 static inline void expand(struct zone *zone, struct page *page,
508 int low, int high, struct free_area *area)
509 {
510 unsigned long size = 1 << high;
511
512 while (high > low) {
513 area--;
514 high--;
515 size >>= 1;
516 BUG_ON(bad_range(zone, &page[size]));
517 list_add(&page[size].lru, &area->free_list);
518 area->nr_free++;
519 set_page_order(&page[size], high);
520 }
521 }
522
523 /*
524 * This page is about to be returned from the page allocator
525 */
526 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
527 {
528 if (unlikely(page_mapcount(page) |
529 (page->mapping != NULL) |
530 (page_count(page) != 0) |
531 (page->flags & (
532 1 << PG_lru |
533 1 << PG_private |
534 1 << PG_locked |
535 1 << PG_active |
536 1 << PG_dirty |
537 1 << PG_reclaim |
538 1 << PG_slab |
539 1 << PG_swapcache |
540 1 << PG_writeback |
541 1 << PG_reserved |
542 1 << PG_buddy ))))
543 bad_page(page);
544
545 /*
546 * For now, we report if PG_reserved was found set, but do not
547 * clear it, and do not allocate the page: as a safety net.
548 */
549 if (PageReserved(page))
550 return 1;
551
552 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
553 1 << PG_referenced | 1 << PG_arch_1 |
554 1 << PG_checked | 1 << PG_mappedtodisk);
555 set_page_private(page, 0);
556 set_page_refcounted(page);
557 kernel_map_pages(page, 1 << order, 1);
558
559 if (gfp_flags & __GFP_ZERO)
560 prep_zero_page(page, order, gfp_flags);
561
562 if (order && (gfp_flags & __GFP_COMP))
563 prep_compound_page(page, order);
564
565 return 0;
566 }
567
568 /*
569 * Do the hard work of removing an element from the buddy allocator.
570 * Call me with the zone->lock already held.
571 */
572 static struct page *__rmqueue(struct zone *zone, unsigned int order)
573 {
574 struct free_area * area;
575 unsigned int current_order;
576 struct page *page;
577
578 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
579 area = zone->free_area + current_order;
580 if (list_empty(&area->free_list))
581 continue;
582
583 page = list_entry(area->free_list.next, struct page, lru);
584 list_del(&page->lru);
585 rmv_page_order(page);
586 area->nr_free--;
587 zone->free_pages -= 1UL << order;
588 expand(zone, page, order, current_order, area);
589 return page;
590 }
591
592 return NULL;
593 }
594
595 /*
596 * Obtain a specified number of elements from the buddy allocator, all under
597 * a single hold of the lock, for efficiency. Add them to the supplied list.
598 * Returns the number of new pages which were placed at *list.
599 */
600 static int rmqueue_bulk(struct zone *zone, unsigned int order,
601 unsigned long count, struct list_head *list)
602 {
603 int i;
604
605 spin_lock(&zone->lock);
606 for (i = 0; i < count; ++i) {
607 struct page *page = __rmqueue(zone, order);
608 if (unlikely(page == NULL))
609 break;
610 list_add_tail(&page->lru, list);
611 }
612 spin_unlock(&zone->lock);
613 return i;
614 }
615
616 #ifdef CONFIG_NUMA
617 /*
618 * Called from the slab reaper to drain pagesets on a particular node that
619 * belong to the currently executing processor.
620 * Note that this function must be called with the thread pinned to
621 * a single processor.
622 */
623 void drain_node_pages(int nodeid)
624 {
625 int i, z;
626 unsigned long flags;
627
628 for (z = 0; z < MAX_NR_ZONES; z++) {
629 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
630 struct per_cpu_pageset *pset;
631
632 pset = zone_pcp(zone, smp_processor_id());
633 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
634 struct per_cpu_pages *pcp;
635
636 pcp = &pset->pcp[i];
637 if (pcp->count) {
638 local_irq_save(flags);
639 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
640 pcp->count = 0;
641 local_irq_restore(flags);
642 }
643 }
644 }
645 }
646 #endif
647
648 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
649 static void __drain_pages(unsigned int cpu)
650 {
651 unsigned long flags;
652 struct zone *zone;
653 int i;
654
655 for_each_zone(zone) {
656 struct per_cpu_pageset *pset;
657
658 pset = zone_pcp(zone, cpu);
659 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
660 struct per_cpu_pages *pcp;
661
662 pcp = &pset->pcp[i];
663 local_irq_save(flags);
664 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
665 pcp->count = 0;
666 local_irq_restore(flags);
667 }
668 }
669 }
670 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
671
672 #ifdef CONFIG_PM
673
674 void mark_free_pages(struct zone *zone)
675 {
676 unsigned long zone_pfn, flags;
677 int order;
678 struct list_head *curr;
679
680 if (!zone->spanned_pages)
681 return;
682
683 spin_lock_irqsave(&zone->lock, flags);
684 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
685 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
686
687 for (order = MAX_ORDER - 1; order >= 0; --order)
688 list_for_each(curr, &zone->free_area[order].free_list) {
689 unsigned long start_pfn, i;
690
691 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
692
693 for (i=0; i < (1<<order); i++)
694 SetPageNosaveFree(pfn_to_page(start_pfn+i));
695 }
696 spin_unlock_irqrestore(&zone->lock, flags);
697 }
698
699 /*
700 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
701 */
702 void drain_local_pages(void)
703 {
704 unsigned long flags;
705
706 local_irq_save(flags);
707 __drain_pages(smp_processor_id());
708 local_irq_restore(flags);
709 }
710 #endif /* CONFIG_PM */
711
712 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
713 {
714 #ifdef CONFIG_NUMA
715 pg_data_t *pg = z->zone_pgdat;
716 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
717 struct per_cpu_pageset *p;
718
719 p = zone_pcp(z, cpu);
720 if (pg == orig) {
721 p->numa_hit++;
722 } else {
723 p->numa_miss++;
724 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
725 }
726 if (pg == NODE_DATA(numa_node_id()))
727 p->local_node++;
728 else
729 p->other_node++;
730 #endif
731 }
732
733 /*
734 * Free a 0-order page
735 */
736 static void fastcall free_hot_cold_page(struct page *page, int cold)
737 {
738 struct zone *zone = page_zone(page);
739 struct per_cpu_pages *pcp;
740 unsigned long flags;
741
742 arch_free_page(page, 0);
743
744 if (PageAnon(page))
745 page->mapping = NULL;
746 if (free_pages_check(page))
747 return;
748
749 kernel_map_pages(page, 1, 0);
750
751 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
752 local_irq_save(flags);
753 __inc_page_state(pgfree);
754 list_add(&page->lru, &pcp->list);
755 pcp->count++;
756 if (pcp->count >= pcp->high) {
757 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
758 pcp->count -= pcp->batch;
759 }
760 local_irq_restore(flags);
761 put_cpu();
762 }
763
764 void fastcall free_hot_page(struct page *page)
765 {
766 free_hot_cold_page(page, 0);
767 }
768
769 void fastcall free_cold_page(struct page *page)
770 {
771 free_hot_cold_page(page, 1);
772 }
773
774 /*
775 * split_page takes a non-compound higher-order page, and splits it into
776 * n (1<<order) sub-pages: page[0..n]
777 * Each sub-page must be freed individually.
778 *
779 * Note: this is probably too low level an operation for use in drivers.
780 * Please consult with lkml before using this in your driver.
781 */
782 void split_page(struct page *page, unsigned int order)
783 {
784 int i;
785
786 BUG_ON(PageCompound(page));
787 BUG_ON(!page_count(page));
788 for (i = 1; i < (1 << order); i++)
789 set_page_refcounted(page + i);
790 }
791
792 /*
793 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
794 * we cheat by calling it from here, in the order > 0 path. Saves a branch
795 * or two.
796 */
797 static struct page *buffered_rmqueue(struct zonelist *zonelist,
798 struct zone *zone, int order, gfp_t gfp_flags)
799 {
800 unsigned long flags;
801 struct page *page;
802 int cold = !!(gfp_flags & __GFP_COLD);
803 int cpu;
804
805 again:
806 cpu = get_cpu();
807 if (likely(order == 0)) {
808 struct per_cpu_pages *pcp;
809
810 pcp = &zone_pcp(zone, cpu)->pcp[cold];
811 local_irq_save(flags);
812 if (!pcp->count) {
813 pcp->count += rmqueue_bulk(zone, 0,
814 pcp->batch, &pcp->list);
815 if (unlikely(!pcp->count))
816 goto failed;
817 }
818 page = list_entry(pcp->list.next, struct page, lru);
819 list_del(&page->lru);
820 pcp->count--;
821 } else {
822 spin_lock_irqsave(&zone->lock, flags);
823 page = __rmqueue(zone, order);
824 spin_unlock(&zone->lock);
825 if (!page)
826 goto failed;
827 }
828
829 __mod_page_state_zone(zone, pgalloc, 1 << order);
830 zone_statistics(zonelist, zone, cpu);
831 local_irq_restore(flags);
832 put_cpu();
833
834 BUG_ON(bad_range(zone, page));
835 if (prep_new_page(page, order, gfp_flags))
836 goto again;
837 return page;
838
839 failed:
840 local_irq_restore(flags);
841 put_cpu();
842 return NULL;
843 }
844
845 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
846 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
847 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
848 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
849 #define ALLOC_HARDER 0x10 /* try to alloc harder */
850 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
851 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
852
853 /*
854 * Return 1 if free pages are above 'mark'. This takes into account the order
855 * of the allocation.
856 */
857 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
858 int classzone_idx, int alloc_flags)
859 {
860 /* free_pages my go negative - that's OK */
861 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
862 int o;
863
864 if (alloc_flags & ALLOC_HIGH)
865 min -= min / 2;
866 if (alloc_flags & ALLOC_HARDER)
867 min -= min / 4;
868
869 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
870 return 0;
871 for (o = 0; o < order; o++) {
872 /* At the next order, this order's pages become unavailable */
873 free_pages -= z->free_area[o].nr_free << o;
874
875 /* Require fewer higher order pages to be free */
876 min >>= 1;
877
878 if (free_pages <= min)
879 return 0;
880 }
881 return 1;
882 }
883
884 /*
885 * get_page_from_freeliest goes through the zonelist trying to allocate
886 * a page.
887 */
888 static struct page *
889 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
890 struct zonelist *zonelist, int alloc_flags)
891 {
892 struct zone **z = zonelist->zones;
893 struct page *page = NULL;
894 int classzone_idx = zone_idx(*z);
895
896 /*
897 * Go through the zonelist once, looking for a zone with enough free.
898 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
899 */
900 do {
901 if ((alloc_flags & ALLOC_CPUSET) &&
902 !cpuset_zone_allowed(*z, gfp_mask))
903 continue;
904
905 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
906 unsigned long mark;
907 if (alloc_flags & ALLOC_WMARK_MIN)
908 mark = (*z)->pages_min;
909 else if (alloc_flags & ALLOC_WMARK_LOW)
910 mark = (*z)->pages_low;
911 else
912 mark = (*z)->pages_high;
913 if (!zone_watermark_ok(*z, order, mark,
914 classzone_idx, alloc_flags))
915 if (!zone_reclaim_mode ||
916 !zone_reclaim(*z, gfp_mask, order))
917 continue;
918 }
919
920 page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
921 if (page) {
922 break;
923 }
924 } while (*(++z) != NULL);
925 return page;
926 }
927
928 /*
929 * This is the 'heart' of the zoned buddy allocator.
930 */
931 struct page * fastcall
932 __alloc_pages(gfp_t gfp_mask, unsigned int order,
933 struct zonelist *zonelist)
934 {
935 const gfp_t wait = gfp_mask & __GFP_WAIT;
936 struct zone **z;
937 struct page *page;
938 struct reclaim_state reclaim_state;
939 struct task_struct *p = current;
940 int do_retry;
941 int alloc_flags;
942 int did_some_progress;
943
944 might_sleep_if(wait);
945
946 restart:
947 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
948
949 if (unlikely(*z == NULL)) {
950 /* Should this ever happen?? */
951 return NULL;
952 }
953
954 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
955 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
956 if (page)
957 goto got_pg;
958
959 do {
960 wakeup_kswapd(*z, order);
961 } while (*(++z));
962
963 /*
964 * OK, we're below the kswapd watermark and have kicked background
965 * reclaim. Now things get more complex, so set up alloc_flags according
966 * to how we want to proceed.
967 *
968 * The caller may dip into page reserves a bit more if the caller
969 * cannot run direct reclaim, or if the caller has realtime scheduling
970 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
971 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
972 */
973 alloc_flags = ALLOC_WMARK_MIN;
974 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
975 alloc_flags |= ALLOC_HARDER;
976 if (gfp_mask & __GFP_HIGH)
977 alloc_flags |= ALLOC_HIGH;
978 if (wait)
979 alloc_flags |= ALLOC_CPUSET;
980
981 /*
982 * Go through the zonelist again. Let __GFP_HIGH and allocations
983 * coming from realtime tasks go deeper into reserves.
984 *
985 * This is the last chance, in general, before the goto nopage.
986 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
987 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
988 */
989 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
990 if (page)
991 goto got_pg;
992
993 /* This allocation should allow future memory freeing. */
994
995 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
996 && !in_interrupt()) {
997 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
998 nofail_alloc:
999 /* go through the zonelist yet again, ignoring mins */
1000 page = get_page_from_freelist(gfp_mask, order,
1001 zonelist, ALLOC_NO_WATERMARKS);
1002 if (page)
1003 goto got_pg;
1004 if (gfp_mask & __GFP_NOFAIL) {
1005 blk_congestion_wait(WRITE, HZ/50);
1006 goto nofail_alloc;
1007 }
1008 }
1009 goto nopage;
1010 }
1011
1012 /* Atomic allocations - we can't balance anything */
1013 if (!wait)
1014 goto nopage;
1015
1016 rebalance:
1017 cond_resched();
1018
1019 /* We now go into synchronous reclaim */
1020 cpuset_memory_pressure_bump();
1021 p->flags |= PF_MEMALLOC;
1022 reclaim_state.reclaimed_slab = 0;
1023 p->reclaim_state = &reclaim_state;
1024
1025 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1026
1027 p->reclaim_state = NULL;
1028 p->flags &= ~PF_MEMALLOC;
1029
1030 cond_resched();
1031
1032 if (likely(did_some_progress)) {
1033 page = get_page_from_freelist(gfp_mask, order,
1034 zonelist, alloc_flags);
1035 if (page)
1036 goto got_pg;
1037 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1038 /*
1039 * Go through the zonelist yet one more time, keep
1040 * very high watermark here, this is only to catch
1041 * a parallel oom killing, we must fail if we're still
1042 * under heavy pressure.
1043 */
1044 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1045 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1046 if (page)
1047 goto got_pg;
1048
1049 out_of_memory(zonelist, gfp_mask, order);
1050 goto restart;
1051 }
1052
1053 /*
1054 * Don't let big-order allocations loop unless the caller explicitly
1055 * requests that. Wait for some write requests to complete then retry.
1056 *
1057 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1058 * <= 3, but that may not be true in other implementations.
1059 */
1060 do_retry = 0;
1061 if (!(gfp_mask & __GFP_NORETRY)) {
1062 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1063 do_retry = 1;
1064 if (gfp_mask & __GFP_NOFAIL)
1065 do_retry = 1;
1066 }
1067 if (do_retry) {
1068 blk_congestion_wait(WRITE, HZ/50);
1069 goto rebalance;
1070 }
1071
1072 nopage:
1073 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1074 printk(KERN_WARNING "%s: page allocation failure."
1075 " order:%d, mode:0x%x\n",
1076 p->comm, order, gfp_mask);
1077 dump_stack();
1078 show_mem();
1079 }
1080 got_pg:
1081 return page;
1082 }
1083
1084 EXPORT_SYMBOL(__alloc_pages);
1085
1086 /*
1087 * Common helper functions.
1088 */
1089 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1090 {
1091 struct page * page;
1092 page = alloc_pages(gfp_mask, order);
1093 if (!page)
1094 return 0;
1095 return (unsigned long) page_address(page);
1096 }
1097
1098 EXPORT_SYMBOL(__get_free_pages);
1099
1100 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1101 {
1102 struct page * page;
1103
1104 /*
1105 * get_zeroed_page() returns a 32-bit address, which cannot represent
1106 * a highmem page
1107 */
1108 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1109
1110 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1111 if (page)
1112 return (unsigned long) page_address(page);
1113 return 0;
1114 }
1115
1116 EXPORT_SYMBOL(get_zeroed_page);
1117
1118 void __pagevec_free(struct pagevec *pvec)
1119 {
1120 int i = pagevec_count(pvec);
1121
1122 while (--i >= 0)
1123 free_hot_cold_page(pvec->pages[i], pvec->cold);
1124 }
1125
1126 fastcall void __free_pages(struct page *page, unsigned int order)
1127 {
1128 if (put_page_testzero(page)) {
1129 if (order == 0)
1130 free_hot_page(page);
1131 else
1132 __free_pages_ok(page, order);
1133 }
1134 }
1135
1136 EXPORT_SYMBOL(__free_pages);
1137
1138 fastcall void free_pages(unsigned long addr, unsigned int order)
1139 {
1140 if (addr != 0) {
1141 BUG_ON(!virt_addr_valid((void *)addr));
1142 __free_pages(virt_to_page((void *)addr), order);
1143 }
1144 }
1145
1146 EXPORT_SYMBOL(free_pages);
1147
1148 /*
1149 * Total amount of free (allocatable) RAM:
1150 */
1151 unsigned int nr_free_pages(void)
1152 {
1153 unsigned int sum = 0;
1154 struct zone *zone;
1155
1156 for_each_zone(zone)
1157 sum += zone->free_pages;
1158
1159 return sum;
1160 }
1161
1162 EXPORT_SYMBOL(nr_free_pages);
1163
1164 #ifdef CONFIG_NUMA
1165 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1166 {
1167 unsigned int i, sum = 0;
1168
1169 for (i = 0; i < MAX_NR_ZONES; i++)
1170 sum += pgdat->node_zones[i].free_pages;
1171
1172 return sum;
1173 }
1174 #endif
1175
1176 static unsigned int nr_free_zone_pages(int offset)
1177 {
1178 /* Just pick one node, since fallback list is circular */
1179 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1180 unsigned int sum = 0;
1181
1182 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1183 struct zone **zonep = zonelist->zones;
1184 struct zone *zone;
1185
1186 for (zone = *zonep++; zone; zone = *zonep++) {
1187 unsigned long size = zone->present_pages;
1188 unsigned long high = zone->pages_high;
1189 if (size > high)
1190 sum += size - high;
1191 }
1192
1193 return sum;
1194 }
1195
1196 /*
1197 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1198 */
1199 unsigned int nr_free_buffer_pages(void)
1200 {
1201 return nr_free_zone_pages(gfp_zone(GFP_USER));
1202 }
1203
1204 /*
1205 * Amount of free RAM allocatable within all zones
1206 */
1207 unsigned int nr_free_pagecache_pages(void)
1208 {
1209 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1210 }
1211
1212 #ifdef CONFIG_HIGHMEM
1213 unsigned int nr_free_highpages (void)
1214 {
1215 pg_data_t *pgdat;
1216 unsigned int pages = 0;
1217
1218 for_each_online_pgdat(pgdat)
1219 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1220
1221 return pages;
1222 }
1223 #endif
1224
1225 #ifdef CONFIG_NUMA
1226 static void show_node(struct zone *zone)
1227 {
1228 printk("Node %d ", zone->zone_pgdat->node_id);
1229 }
1230 #else
1231 #define show_node(zone) do { } while (0)
1232 #endif
1233
1234 /*
1235 * Accumulate the page_state information across all CPUs.
1236 * The result is unavoidably approximate - it can change
1237 * during and after execution of this function.
1238 */
1239 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1240
1241 atomic_t nr_pagecache = ATOMIC_INIT(0);
1242 EXPORT_SYMBOL(nr_pagecache);
1243 #ifdef CONFIG_SMP
1244 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1245 #endif
1246
1247 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1248 {
1249 unsigned cpu;
1250
1251 memset(ret, 0, nr * sizeof(unsigned long));
1252 cpus_and(*cpumask, *cpumask, cpu_online_map);
1253
1254 for_each_cpu_mask(cpu, *cpumask) {
1255 unsigned long *in;
1256 unsigned long *out;
1257 unsigned off;
1258 unsigned next_cpu;
1259
1260 in = (unsigned long *)&per_cpu(page_states, cpu);
1261
1262 next_cpu = next_cpu(cpu, *cpumask);
1263 if (likely(next_cpu < NR_CPUS))
1264 prefetch(&per_cpu(page_states, next_cpu));
1265
1266 out = (unsigned long *)ret;
1267 for (off = 0; off < nr; off++)
1268 *out++ += *in++;
1269 }
1270 }
1271
1272 void get_page_state_node(struct page_state *ret, int node)
1273 {
1274 int nr;
1275 cpumask_t mask = node_to_cpumask(node);
1276
1277 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1278 nr /= sizeof(unsigned long);
1279
1280 __get_page_state(ret, nr+1, &mask);
1281 }
1282
1283 void get_page_state(struct page_state *ret)
1284 {
1285 int nr;
1286 cpumask_t mask = CPU_MASK_ALL;
1287
1288 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1289 nr /= sizeof(unsigned long);
1290
1291 __get_page_state(ret, nr + 1, &mask);
1292 }
1293
1294 void get_full_page_state(struct page_state *ret)
1295 {
1296 cpumask_t mask = CPU_MASK_ALL;
1297
1298 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1299 }
1300
1301 unsigned long read_page_state_offset(unsigned long offset)
1302 {
1303 unsigned long ret = 0;
1304 int cpu;
1305
1306 for_each_online_cpu(cpu) {
1307 unsigned long in;
1308
1309 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1310 ret += *((unsigned long *)in);
1311 }
1312 return ret;
1313 }
1314
1315 void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1316 {
1317 void *ptr;
1318
1319 ptr = &__get_cpu_var(page_states);
1320 *(unsigned long *)(ptr + offset) += delta;
1321 }
1322 EXPORT_SYMBOL(__mod_page_state_offset);
1323
1324 void mod_page_state_offset(unsigned long offset, unsigned long delta)
1325 {
1326 unsigned long flags;
1327 void *ptr;
1328
1329 local_irq_save(flags);
1330 ptr = &__get_cpu_var(page_states);
1331 *(unsigned long *)(ptr + offset) += delta;
1332 local_irq_restore(flags);
1333 }
1334 EXPORT_SYMBOL(mod_page_state_offset);
1335
1336 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1337 unsigned long *free, struct pglist_data *pgdat)
1338 {
1339 struct zone *zones = pgdat->node_zones;
1340 int i;
1341
1342 *active = 0;
1343 *inactive = 0;
1344 *free = 0;
1345 for (i = 0; i < MAX_NR_ZONES; i++) {
1346 *active += zones[i].nr_active;
1347 *inactive += zones[i].nr_inactive;
1348 *free += zones[i].free_pages;
1349 }
1350 }
1351
1352 void get_zone_counts(unsigned long *active,
1353 unsigned long *inactive, unsigned long *free)
1354 {
1355 struct pglist_data *pgdat;
1356
1357 *active = 0;
1358 *inactive = 0;
1359 *free = 0;
1360 for_each_online_pgdat(pgdat) {
1361 unsigned long l, m, n;
1362 __get_zone_counts(&l, &m, &n, pgdat);
1363 *active += l;
1364 *inactive += m;
1365 *free += n;
1366 }
1367 }
1368
1369 void si_meminfo(struct sysinfo *val)
1370 {
1371 val->totalram = totalram_pages;
1372 val->sharedram = 0;
1373 val->freeram = nr_free_pages();
1374 val->bufferram = nr_blockdev_pages();
1375 #ifdef CONFIG_HIGHMEM
1376 val->totalhigh = totalhigh_pages;
1377 val->freehigh = nr_free_highpages();
1378 #else
1379 val->totalhigh = 0;
1380 val->freehigh = 0;
1381 #endif
1382 val->mem_unit = PAGE_SIZE;
1383 }
1384
1385 EXPORT_SYMBOL(si_meminfo);
1386
1387 #ifdef CONFIG_NUMA
1388 void si_meminfo_node(struct sysinfo *val, int nid)
1389 {
1390 pg_data_t *pgdat = NODE_DATA(nid);
1391
1392 val->totalram = pgdat->node_present_pages;
1393 val->freeram = nr_free_pages_pgdat(pgdat);
1394 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1395 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1396 val->mem_unit = PAGE_SIZE;
1397 }
1398 #endif
1399
1400 #define K(x) ((x) << (PAGE_SHIFT-10))
1401
1402 /*
1403 * Show free area list (used inside shift_scroll-lock stuff)
1404 * We also calculate the percentage fragmentation. We do this by counting the
1405 * memory on each free list with the exception of the first item on the list.
1406 */
1407 void show_free_areas(void)
1408 {
1409 struct page_state ps;
1410 int cpu, temperature;
1411 unsigned long active;
1412 unsigned long inactive;
1413 unsigned long free;
1414 struct zone *zone;
1415
1416 for_each_zone(zone) {
1417 show_node(zone);
1418 printk("%s per-cpu:", zone->name);
1419
1420 if (!populated_zone(zone)) {
1421 printk(" empty\n");
1422 continue;
1423 } else
1424 printk("\n");
1425
1426 for_each_online_cpu(cpu) {
1427 struct per_cpu_pageset *pageset;
1428
1429 pageset = zone_pcp(zone, cpu);
1430
1431 for (temperature = 0; temperature < 2; temperature++)
1432 printk("cpu %d %s: high %d, batch %d used:%d\n",
1433 cpu,
1434 temperature ? "cold" : "hot",
1435 pageset->pcp[temperature].high,
1436 pageset->pcp[temperature].batch,
1437 pageset->pcp[temperature].count);
1438 }
1439 }
1440
1441 get_page_state(&ps);
1442 get_zone_counts(&active, &inactive, &free);
1443
1444 printk("Free pages: %11ukB (%ukB HighMem)\n",
1445 K(nr_free_pages()),
1446 K(nr_free_highpages()));
1447
1448 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1449 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1450 active,
1451 inactive,
1452 ps.nr_dirty,
1453 ps.nr_writeback,
1454 ps.nr_unstable,
1455 nr_free_pages(),
1456 ps.nr_slab,
1457 ps.nr_mapped,
1458 ps.nr_page_table_pages);
1459
1460 for_each_zone(zone) {
1461 int i;
1462
1463 show_node(zone);
1464 printk("%s"
1465 " free:%lukB"
1466 " min:%lukB"
1467 " low:%lukB"
1468 " high:%lukB"
1469 " active:%lukB"
1470 " inactive:%lukB"
1471 " present:%lukB"
1472 " pages_scanned:%lu"
1473 " all_unreclaimable? %s"
1474 "\n",
1475 zone->name,
1476 K(zone->free_pages),
1477 K(zone->pages_min),
1478 K(zone->pages_low),
1479 K(zone->pages_high),
1480 K(zone->nr_active),
1481 K(zone->nr_inactive),
1482 K(zone->present_pages),
1483 zone->pages_scanned,
1484 (zone->all_unreclaimable ? "yes" : "no")
1485 );
1486 printk("lowmem_reserve[]:");
1487 for (i = 0; i < MAX_NR_ZONES; i++)
1488 printk(" %lu", zone->lowmem_reserve[i]);
1489 printk("\n");
1490 }
1491
1492 for_each_zone(zone) {
1493 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1494
1495 show_node(zone);
1496 printk("%s: ", zone->name);
1497 if (!populated_zone(zone)) {
1498 printk("empty\n");
1499 continue;
1500 }
1501
1502 spin_lock_irqsave(&zone->lock, flags);
1503 for (order = 0; order < MAX_ORDER; order++) {
1504 nr[order] = zone->free_area[order].nr_free;
1505 total += nr[order] << order;
1506 }
1507 spin_unlock_irqrestore(&zone->lock, flags);
1508 for (order = 0; order < MAX_ORDER; order++)
1509 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1510 printk("= %lukB\n", K(total));
1511 }
1512
1513 show_swap_cache_info();
1514 }
1515
1516 /*
1517 * Builds allocation fallback zone lists.
1518 *
1519 * Add all populated zones of a node to the zonelist.
1520 */
1521 static int __meminit build_zonelists_node(pg_data_t *pgdat,
1522 struct zonelist *zonelist, int nr_zones, int zone_type)
1523 {
1524 struct zone *zone;
1525
1526 BUG_ON(zone_type > ZONE_HIGHMEM);
1527
1528 do {
1529 zone = pgdat->node_zones + zone_type;
1530 if (populated_zone(zone)) {
1531 #ifndef CONFIG_HIGHMEM
1532 BUG_ON(zone_type > ZONE_NORMAL);
1533 #endif
1534 zonelist->zones[nr_zones++] = zone;
1535 check_highest_zone(zone_type);
1536 }
1537 zone_type--;
1538
1539 } while (zone_type >= 0);
1540 return nr_zones;
1541 }
1542
1543 static inline int highest_zone(int zone_bits)
1544 {
1545 int res = ZONE_NORMAL;
1546 if (zone_bits & (__force int)__GFP_HIGHMEM)
1547 res = ZONE_HIGHMEM;
1548 if (zone_bits & (__force int)__GFP_DMA32)
1549 res = ZONE_DMA32;
1550 if (zone_bits & (__force int)__GFP_DMA)
1551 res = ZONE_DMA;
1552 return res;
1553 }
1554
1555 #ifdef CONFIG_NUMA
1556 #define MAX_NODE_LOAD (num_online_nodes())
1557 static int __meminitdata node_load[MAX_NUMNODES];
1558 /**
1559 * find_next_best_node - find the next node that should appear in a given node's fallback list
1560 * @node: node whose fallback list we're appending
1561 * @used_node_mask: nodemask_t of already used nodes
1562 *
1563 * We use a number of factors to determine which is the next node that should
1564 * appear on a given node's fallback list. The node should not have appeared
1565 * already in @node's fallback list, and it should be the next closest node
1566 * according to the distance array (which contains arbitrary distance values
1567 * from each node to each node in the system), and should also prefer nodes
1568 * with no CPUs, since presumably they'll have very little allocation pressure
1569 * on them otherwise.
1570 * It returns -1 if no node is found.
1571 */
1572 static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1573 {
1574 int n, val;
1575 int min_val = INT_MAX;
1576 int best_node = -1;
1577
1578 /* Use the local node if we haven't already */
1579 if (!node_isset(node, *used_node_mask)) {
1580 node_set(node, *used_node_mask);
1581 return node;
1582 }
1583
1584 for_each_online_node(n) {
1585 cpumask_t tmp;
1586
1587 /* Don't want a node to appear more than once */
1588 if (node_isset(n, *used_node_mask))
1589 continue;
1590
1591 /* Use the distance array to find the distance */
1592 val = node_distance(node, n);
1593
1594 /* Penalize nodes under us ("prefer the next node") */
1595 val += (n < node);
1596
1597 /* Give preference to headless and unused nodes */
1598 tmp = node_to_cpumask(n);
1599 if (!cpus_empty(tmp))
1600 val += PENALTY_FOR_NODE_WITH_CPUS;
1601
1602 /* Slight preference for less loaded node */
1603 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1604 val += node_load[n];
1605
1606 if (val < min_val) {
1607 min_val = val;
1608 best_node = n;
1609 }
1610 }
1611
1612 if (best_node >= 0)
1613 node_set(best_node, *used_node_mask);
1614
1615 return best_node;
1616 }
1617
1618 static void __meminit build_zonelists(pg_data_t *pgdat)
1619 {
1620 int i, j, k, node, local_node;
1621 int prev_node, load;
1622 struct zonelist *zonelist;
1623 nodemask_t used_mask;
1624
1625 /* initialize zonelists */
1626 for (i = 0; i < GFP_ZONETYPES; i++) {
1627 zonelist = pgdat->node_zonelists + i;
1628 zonelist->zones[0] = NULL;
1629 }
1630
1631 /* NUMA-aware ordering of nodes */
1632 local_node = pgdat->node_id;
1633 load = num_online_nodes();
1634 prev_node = local_node;
1635 nodes_clear(used_mask);
1636 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1637 int distance = node_distance(local_node, node);
1638
1639 /*
1640 * If another node is sufficiently far away then it is better
1641 * to reclaim pages in a zone before going off node.
1642 */
1643 if (distance > RECLAIM_DISTANCE)
1644 zone_reclaim_mode = 1;
1645
1646 /*
1647 * We don't want to pressure a particular node.
1648 * So adding penalty to the first node in same
1649 * distance group to make it round-robin.
1650 */
1651
1652 if (distance != node_distance(local_node, prev_node))
1653 node_load[node] += load;
1654 prev_node = node;
1655 load--;
1656 for (i = 0; i < GFP_ZONETYPES; i++) {
1657 zonelist = pgdat->node_zonelists + i;
1658 for (j = 0; zonelist->zones[j] != NULL; j++);
1659
1660 k = highest_zone(i);
1661
1662 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1663 zonelist->zones[j] = NULL;
1664 }
1665 }
1666 }
1667
1668 #else /* CONFIG_NUMA */
1669
1670 static void __meminit build_zonelists(pg_data_t *pgdat)
1671 {
1672 int i, j, k, node, local_node;
1673
1674 local_node = pgdat->node_id;
1675 for (i = 0; i < GFP_ZONETYPES; i++) {
1676 struct zonelist *zonelist;
1677
1678 zonelist = pgdat->node_zonelists + i;
1679
1680 j = 0;
1681 k = highest_zone(i);
1682 j = build_zonelists_node(pgdat, zonelist, j, k);
1683 /*
1684 * Now we build the zonelist so that it contains the zones
1685 * of all the other nodes.
1686 * We don't want to pressure a particular node, so when
1687 * building the zones for node N, we make sure that the
1688 * zones coming right after the local ones are those from
1689 * node N+1 (modulo N)
1690 */
1691 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1692 if (!node_online(node))
1693 continue;
1694 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1695 }
1696 for (node = 0; node < local_node; node++) {
1697 if (!node_online(node))
1698 continue;
1699 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1700 }
1701
1702 zonelist->zones[j] = NULL;
1703 }
1704 }
1705
1706 #endif /* CONFIG_NUMA */
1707
1708 /* return values int ....just for stop_machine_run() */
1709 static int __meminit __build_all_zonelists(void *dummy)
1710 {
1711 int nid;
1712 for_each_online_node(nid)
1713 build_zonelists(NODE_DATA(nid));
1714 return 0;
1715 }
1716
1717 void __meminit build_all_zonelists(void)
1718 {
1719 if (system_state == SYSTEM_BOOTING) {
1720 __build_all_zonelists(0);
1721 cpuset_init_current_mems_allowed();
1722 } else {
1723 /* we have to stop all cpus to guaranntee there is no user
1724 of zonelist */
1725 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1726 /* cpuset refresh routine should be here */
1727 }
1728 vm_total_pages = nr_free_pagecache_pages();
1729 printk("Built %i zonelists. Total pages: %ld\n",
1730 num_online_nodes(), vm_total_pages);
1731 }
1732
1733 /*
1734 * Helper functions to size the waitqueue hash table.
1735 * Essentially these want to choose hash table sizes sufficiently
1736 * large so that collisions trying to wait on pages are rare.
1737 * But in fact, the number of active page waitqueues on typical
1738 * systems is ridiculously low, less than 200. So this is even
1739 * conservative, even though it seems large.
1740 *
1741 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1742 * waitqueues, i.e. the size of the waitq table given the number of pages.
1743 */
1744 #define PAGES_PER_WAITQUEUE 256
1745
1746 #ifndef CONFIG_MEMORY_HOTPLUG
1747 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1748 {
1749 unsigned long size = 1;
1750
1751 pages /= PAGES_PER_WAITQUEUE;
1752
1753 while (size < pages)
1754 size <<= 1;
1755
1756 /*
1757 * Once we have dozens or even hundreds of threads sleeping
1758 * on IO we've got bigger problems than wait queue collision.
1759 * Limit the size of the wait table to a reasonable size.
1760 */
1761 size = min(size, 4096UL);
1762
1763 return max(size, 4UL);
1764 }
1765 #else
1766 /*
1767 * A zone's size might be changed by hot-add, so it is not possible to determine
1768 * a suitable size for its wait_table. So we use the maximum size now.
1769 *
1770 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1771 *
1772 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1773 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1774 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1775 *
1776 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1777 * or more by the traditional way. (See above). It equals:
1778 *
1779 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1780 * ia64(16K page size) : = ( 8G + 4M)byte.
1781 * powerpc (64K page size) : = (32G +16M)byte.
1782 */
1783 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1784 {
1785 return 4096UL;
1786 }
1787 #endif
1788
1789 /*
1790 * This is an integer logarithm so that shifts can be used later
1791 * to extract the more random high bits from the multiplicative
1792 * hash function before the remainder is taken.
1793 */
1794 static inline unsigned long wait_table_bits(unsigned long size)
1795 {
1796 return ffz(~size);
1797 }
1798
1799 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1800
1801 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1802 unsigned long *zones_size, unsigned long *zholes_size)
1803 {
1804 unsigned long realtotalpages, totalpages = 0;
1805 int i;
1806
1807 for (i = 0; i < MAX_NR_ZONES; i++)
1808 totalpages += zones_size[i];
1809 pgdat->node_spanned_pages = totalpages;
1810
1811 realtotalpages = totalpages;
1812 if (zholes_size)
1813 for (i = 0; i < MAX_NR_ZONES; i++)
1814 realtotalpages -= zholes_size[i];
1815 pgdat->node_present_pages = realtotalpages;
1816 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1817 }
1818
1819
1820 /*
1821 * Initially all pages are reserved - free ones are freed
1822 * up by free_all_bootmem() once the early boot process is
1823 * done. Non-atomic initialization, single-pass.
1824 */
1825 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1826 unsigned long start_pfn)
1827 {
1828 struct page *page;
1829 unsigned long end_pfn = start_pfn + size;
1830 unsigned long pfn;
1831
1832 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1833 if (!early_pfn_valid(pfn))
1834 continue;
1835 page = pfn_to_page(pfn);
1836 set_page_links(page, zone, nid, pfn);
1837 init_page_count(page);
1838 reset_page_mapcount(page);
1839 SetPageReserved(page);
1840 INIT_LIST_HEAD(&page->lru);
1841 #ifdef WANT_PAGE_VIRTUAL
1842 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1843 if (!is_highmem_idx(zone))
1844 set_page_address(page, __va(pfn << PAGE_SHIFT));
1845 #endif
1846 }
1847 }
1848
1849 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1850 unsigned long size)
1851 {
1852 int order;
1853 for (order = 0; order < MAX_ORDER ; order++) {
1854 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1855 zone->free_area[order].nr_free = 0;
1856 }
1857 }
1858
1859 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1860 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1861 unsigned long size)
1862 {
1863 unsigned long snum = pfn_to_section_nr(pfn);
1864 unsigned long end = pfn_to_section_nr(pfn + size);
1865
1866 if (FLAGS_HAS_NODE)
1867 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1868 else
1869 for (; snum <= end; snum++)
1870 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1871 }
1872
1873 #ifndef __HAVE_ARCH_MEMMAP_INIT
1874 #define memmap_init(size, nid, zone, start_pfn) \
1875 memmap_init_zone((size), (nid), (zone), (start_pfn))
1876 #endif
1877
1878 static int __cpuinit zone_batchsize(struct zone *zone)
1879 {
1880 int batch;
1881
1882 /*
1883 * The per-cpu-pages pools are set to around 1000th of the
1884 * size of the zone. But no more than 1/2 of a meg.
1885 *
1886 * OK, so we don't know how big the cache is. So guess.
1887 */
1888 batch = zone->present_pages / 1024;
1889 if (batch * PAGE_SIZE > 512 * 1024)
1890 batch = (512 * 1024) / PAGE_SIZE;
1891 batch /= 4; /* We effectively *= 4 below */
1892 if (batch < 1)
1893 batch = 1;
1894
1895 /*
1896 * Clamp the batch to a 2^n - 1 value. Having a power
1897 * of 2 value was found to be more likely to have
1898 * suboptimal cache aliasing properties in some cases.
1899 *
1900 * For example if 2 tasks are alternately allocating
1901 * batches of pages, one task can end up with a lot
1902 * of pages of one half of the possible page colors
1903 * and the other with pages of the other colors.
1904 */
1905 batch = (1 << (fls(batch + batch/2)-1)) - 1;
1906
1907 return batch;
1908 }
1909
1910 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1911 {
1912 struct per_cpu_pages *pcp;
1913
1914 memset(p, 0, sizeof(*p));
1915
1916 pcp = &p->pcp[0]; /* hot */
1917 pcp->count = 0;
1918 pcp->high = 6 * batch;
1919 pcp->batch = max(1UL, 1 * batch);
1920 INIT_LIST_HEAD(&pcp->list);
1921
1922 pcp = &p->pcp[1]; /* cold*/
1923 pcp->count = 0;
1924 pcp->high = 2 * batch;
1925 pcp->batch = max(1UL, batch/2);
1926 INIT_LIST_HEAD(&pcp->list);
1927 }
1928
1929 /*
1930 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1931 * to the value high for the pageset p.
1932 */
1933
1934 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1935 unsigned long high)
1936 {
1937 struct per_cpu_pages *pcp;
1938
1939 pcp = &p->pcp[0]; /* hot list */
1940 pcp->high = high;
1941 pcp->batch = max(1UL, high/4);
1942 if ((high/4) > (PAGE_SHIFT * 8))
1943 pcp->batch = PAGE_SHIFT * 8;
1944 }
1945
1946
1947 #ifdef CONFIG_NUMA
1948 /*
1949 * Boot pageset table. One per cpu which is going to be used for all
1950 * zones and all nodes. The parameters will be set in such a way
1951 * that an item put on a list will immediately be handed over to
1952 * the buddy list. This is safe since pageset manipulation is done
1953 * with interrupts disabled.
1954 *
1955 * Some NUMA counter updates may also be caught by the boot pagesets.
1956 *
1957 * The boot_pagesets must be kept even after bootup is complete for
1958 * unused processors and/or zones. They do play a role for bootstrapping
1959 * hotplugged processors.
1960 *
1961 * zoneinfo_show() and maybe other functions do
1962 * not check if the processor is online before following the pageset pointer.
1963 * Other parts of the kernel may not check if the zone is available.
1964 */
1965 static struct per_cpu_pageset boot_pageset[NR_CPUS];
1966
1967 /*
1968 * Dynamically allocate memory for the
1969 * per cpu pageset array in struct zone.
1970 */
1971 static int __cpuinit process_zones(int cpu)
1972 {
1973 struct zone *zone, *dzone;
1974
1975 for_each_zone(zone) {
1976
1977 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1978 GFP_KERNEL, cpu_to_node(cpu));
1979 if (!zone_pcp(zone, cpu))
1980 goto bad;
1981
1982 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1983
1984 if (percpu_pagelist_fraction)
1985 setup_pagelist_highmark(zone_pcp(zone, cpu),
1986 (zone->present_pages / percpu_pagelist_fraction));
1987 }
1988
1989 return 0;
1990 bad:
1991 for_each_zone(dzone) {
1992 if (dzone == zone)
1993 break;
1994 kfree(zone_pcp(dzone, cpu));
1995 zone_pcp(dzone, cpu) = NULL;
1996 }
1997 return -ENOMEM;
1998 }
1999
2000 static inline void free_zone_pagesets(int cpu)
2001 {
2002 struct zone *zone;
2003
2004 for_each_zone(zone) {
2005 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2006
2007 zone_pcp(zone, cpu) = NULL;
2008 kfree(pset);
2009 }
2010 }
2011
2012 static int pageset_cpuup_callback(struct notifier_block *nfb,
2013 unsigned long action,
2014 void *hcpu)
2015 {
2016 int cpu = (long)hcpu;
2017 int ret = NOTIFY_OK;
2018
2019 switch (action) {
2020 case CPU_UP_PREPARE:
2021 if (process_zones(cpu))
2022 ret = NOTIFY_BAD;
2023 break;
2024 case CPU_UP_CANCELED:
2025 case CPU_DEAD:
2026 free_zone_pagesets(cpu);
2027 break;
2028 default:
2029 break;
2030 }
2031 return ret;
2032 }
2033
2034 static struct notifier_block pageset_notifier =
2035 { &pageset_cpuup_callback, NULL, 0 };
2036
2037 void __init setup_per_cpu_pageset(void)
2038 {
2039 int err;
2040
2041 /* Initialize per_cpu_pageset for cpu 0.
2042 * A cpuup callback will do this for every cpu
2043 * as it comes online
2044 */
2045 err = process_zones(smp_processor_id());
2046 BUG_ON(err);
2047 register_cpu_notifier(&pageset_notifier);
2048 }
2049
2050 #endif
2051
2052 static __meminit
2053 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2054 {
2055 int i;
2056 struct pglist_data *pgdat = zone->zone_pgdat;
2057 size_t alloc_size;
2058
2059 /*
2060 * The per-page waitqueue mechanism uses hashed waitqueues
2061 * per zone.
2062 */
2063 zone->wait_table_hash_nr_entries =
2064 wait_table_hash_nr_entries(zone_size_pages);
2065 zone->wait_table_bits =
2066 wait_table_bits(zone->wait_table_hash_nr_entries);
2067 alloc_size = zone->wait_table_hash_nr_entries
2068 * sizeof(wait_queue_head_t);
2069
2070 if (system_state == SYSTEM_BOOTING) {
2071 zone->wait_table = (wait_queue_head_t *)
2072 alloc_bootmem_node(pgdat, alloc_size);
2073 } else {
2074 /*
2075 * This case means that a zone whose size was 0 gets new memory
2076 * via memory hot-add.
2077 * But it may be the case that a new node was hot-added. In
2078 * this case vmalloc() will not be able to use this new node's
2079 * memory - this wait_table must be initialized to use this new
2080 * node itself as well.
2081 * To use this new node's memory, further consideration will be
2082 * necessary.
2083 */
2084 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2085 }
2086 if (!zone->wait_table)
2087 return -ENOMEM;
2088
2089 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2090 init_waitqueue_head(zone->wait_table + i);
2091
2092 return 0;
2093 }
2094
2095 static __meminit void zone_pcp_init(struct zone *zone)
2096 {
2097 int cpu;
2098 unsigned long batch = zone_batchsize(zone);
2099
2100 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2101 #ifdef CONFIG_NUMA
2102 /* Early boot. Slab allocator not functional yet */
2103 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2104 setup_pageset(&boot_pageset[cpu],0);
2105 #else
2106 setup_pageset(zone_pcp(zone,cpu), batch);
2107 #endif
2108 }
2109 if (zone->present_pages)
2110 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2111 zone->name, zone->present_pages, batch);
2112 }
2113
2114 __meminit int init_currently_empty_zone(struct zone *zone,
2115 unsigned long zone_start_pfn,
2116 unsigned long size)
2117 {
2118 struct pglist_data *pgdat = zone->zone_pgdat;
2119 int ret;
2120 ret = zone_wait_table_init(zone, size);
2121 if (ret)
2122 return ret;
2123 pgdat->nr_zones = zone_idx(zone) + 1;
2124
2125 zone->zone_start_pfn = zone_start_pfn;
2126
2127 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2128
2129 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2130
2131 return 0;
2132 }
2133
2134 /*
2135 * Set up the zone data structures:
2136 * - mark all pages reserved
2137 * - mark all memory queues empty
2138 * - clear the memory bitmaps
2139 */
2140 static void __meminit free_area_init_core(struct pglist_data *pgdat,
2141 unsigned long *zones_size, unsigned long *zholes_size)
2142 {
2143 unsigned long j;
2144 int nid = pgdat->node_id;
2145 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2146 int ret;
2147
2148 pgdat_resize_init(pgdat);
2149 pgdat->nr_zones = 0;
2150 init_waitqueue_head(&pgdat->kswapd_wait);
2151 pgdat->kswapd_max_order = 0;
2152
2153 for (j = 0; j < MAX_NR_ZONES; j++) {
2154 struct zone *zone = pgdat->node_zones + j;
2155 unsigned long size, realsize;
2156
2157 realsize = size = zones_size[j];
2158 if (zholes_size)
2159 realsize -= zholes_size[j];
2160
2161 if (j < ZONE_HIGHMEM)
2162 nr_kernel_pages += realsize;
2163 nr_all_pages += realsize;
2164
2165 zone->spanned_pages = size;
2166 zone->present_pages = realsize;
2167 zone->name = zone_names[j];
2168 spin_lock_init(&zone->lock);
2169 spin_lock_init(&zone->lru_lock);
2170 zone_seqlock_init(zone);
2171 zone->zone_pgdat = pgdat;
2172 zone->free_pages = 0;
2173
2174 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2175
2176 zone_pcp_init(zone);
2177 INIT_LIST_HEAD(&zone->active_list);
2178 INIT_LIST_HEAD(&zone->inactive_list);
2179 zone->nr_scan_active = 0;
2180 zone->nr_scan_inactive = 0;
2181 zone->nr_active = 0;
2182 zone->nr_inactive = 0;
2183 atomic_set(&zone->reclaim_in_progress, 0);
2184 if (!size)
2185 continue;
2186
2187 zonetable_add(zone, nid, j, zone_start_pfn, size);
2188 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2189 BUG_ON(ret);
2190 zone_start_pfn += size;
2191 }
2192 }
2193
2194 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2195 {
2196 /* Skip empty nodes */
2197 if (!pgdat->node_spanned_pages)
2198 return;
2199
2200 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2201 /* ia64 gets its own node_mem_map, before this, without bootmem */
2202 if (!pgdat->node_mem_map) {
2203 unsigned long size, start, end;
2204 struct page *map;
2205
2206 /*
2207 * The zone's endpoints aren't required to be MAX_ORDER
2208 * aligned but the node_mem_map endpoints must be in order
2209 * for the buddy allocator to function correctly.
2210 */
2211 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2212 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2213 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2214 size = (end - start) * sizeof(struct page);
2215 map = alloc_remap(pgdat->node_id, size);
2216 if (!map)
2217 map = alloc_bootmem_node(pgdat, size);
2218 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2219 }
2220 #ifdef CONFIG_FLATMEM
2221 /*
2222 * With no DISCONTIG, the global mem_map is just set as node 0's
2223 */
2224 if (pgdat == NODE_DATA(0))
2225 mem_map = NODE_DATA(0)->node_mem_map;
2226 #endif
2227 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2228 }
2229
2230 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2231 unsigned long *zones_size, unsigned long node_start_pfn,
2232 unsigned long *zholes_size)
2233 {
2234 pgdat->node_id = nid;
2235 pgdat->node_start_pfn = node_start_pfn;
2236 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2237
2238 alloc_node_mem_map(pgdat);
2239
2240 free_area_init_core(pgdat, zones_size, zholes_size);
2241 }
2242
2243 #ifndef CONFIG_NEED_MULTIPLE_NODES
2244 static bootmem_data_t contig_bootmem_data;
2245 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2246
2247 EXPORT_SYMBOL(contig_page_data);
2248 #endif
2249
2250 void __init free_area_init(unsigned long *zones_size)
2251 {
2252 free_area_init_node(0, NODE_DATA(0), zones_size,
2253 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2254 }
2255
2256 #ifdef CONFIG_PROC_FS
2257
2258 #include <linux/seq_file.h>
2259
2260 static void *frag_start(struct seq_file *m, loff_t *pos)
2261 {
2262 pg_data_t *pgdat;
2263 loff_t node = *pos;
2264 for (pgdat = first_online_pgdat();
2265 pgdat && node;
2266 pgdat = next_online_pgdat(pgdat))
2267 --node;
2268
2269 return pgdat;
2270 }
2271
2272 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2273 {
2274 pg_data_t *pgdat = (pg_data_t *)arg;
2275
2276 (*pos)++;
2277 return next_online_pgdat(pgdat);
2278 }
2279
2280 static void frag_stop(struct seq_file *m, void *arg)
2281 {
2282 }
2283
2284 /*
2285 * This walks the free areas for each zone.
2286 */
2287 static int frag_show(struct seq_file *m, void *arg)
2288 {
2289 pg_data_t *pgdat = (pg_data_t *)arg;
2290 struct zone *zone;
2291 struct zone *node_zones = pgdat->node_zones;
2292 unsigned long flags;
2293 int order;
2294
2295 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2296 if (!populated_zone(zone))
2297 continue;
2298
2299 spin_lock_irqsave(&zone->lock, flags);
2300 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2301 for (order = 0; order < MAX_ORDER; ++order)
2302 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2303 spin_unlock_irqrestore(&zone->lock, flags);
2304 seq_putc(m, '\n');
2305 }
2306 return 0;
2307 }
2308
2309 struct seq_operations fragmentation_op = {
2310 .start = frag_start,
2311 .next = frag_next,
2312 .stop = frag_stop,
2313 .show = frag_show,
2314 };
2315
2316 /*
2317 * Output information about zones in @pgdat.
2318 */
2319 static int zoneinfo_show(struct seq_file *m, void *arg)
2320 {
2321 pg_data_t *pgdat = arg;
2322 struct zone *zone;
2323 struct zone *node_zones = pgdat->node_zones;
2324 unsigned long flags;
2325
2326 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2327 int i;
2328
2329 if (!populated_zone(zone))
2330 continue;
2331
2332 spin_lock_irqsave(&zone->lock, flags);
2333 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2334 seq_printf(m,
2335 "\n pages free %lu"
2336 "\n min %lu"
2337 "\n low %lu"
2338 "\n high %lu"
2339 "\n active %lu"
2340 "\n inactive %lu"
2341 "\n scanned %lu (a: %lu i: %lu)"
2342 "\n spanned %lu"
2343 "\n present %lu",
2344 zone->free_pages,
2345 zone->pages_min,
2346 zone->pages_low,
2347 zone->pages_high,
2348 zone->nr_active,
2349 zone->nr_inactive,
2350 zone->pages_scanned,
2351 zone->nr_scan_active, zone->nr_scan_inactive,
2352 zone->spanned_pages,
2353 zone->present_pages);
2354 seq_printf(m,
2355 "\n protection: (%lu",
2356 zone->lowmem_reserve[0]);
2357 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2358 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2359 seq_printf(m,
2360 ")"
2361 "\n pagesets");
2362 for_each_online_cpu(i) {
2363 struct per_cpu_pageset *pageset;
2364 int j;
2365
2366 pageset = zone_pcp(zone, i);
2367 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2368 if (pageset->pcp[j].count)
2369 break;
2370 }
2371 if (j == ARRAY_SIZE(pageset->pcp))
2372 continue;
2373 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2374 seq_printf(m,
2375 "\n cpu: %i pcp: %i"
2376 "\n count: %i"
2377 "\n high: %i"
2378 "\n batch: %i",
2379 i, j,
2380 pageset->pcp[j].count,
2381 pageset->pcp[j].high,
2382 pageset->pcp[j].batch);
2383 }
2384 #ifdef CONFIG_NUMA
2385 seq_printf(m,
2386 "\n numa_hit: %lu"
2387 "\n numa_miss: %lu"
2388 "\n numa_foreign: %lu"
2389 "\n interleave_hit: %lu"
2390 "\n local_node: %lu"
2391 "\n other_node: %lu",
2392 pageset->numa_hit,
2393 pageset->numa_miss,
2394 pageset->numa_foreign,
2395 pageset->interleave_hit,
2396 pageset->local_node,
2397 pageset->other_node);
2398 #endif
2399 }
2400 seq_printf(m,
2401 "\n all_unreclaimable: %u"
2402 "\n prev_priority: %i"
2403 "\n temp_priority: %i"
2404 "\n start_pfn: %lu",
2405 zone->all_unreclaimable,
2406 zone->prev_priority,
2407 zone->temp_priority,
2408 zone->zone_start_pfn);
2409 spin_unlock_irqrestore(&zone->lock, flags);
2410 seq_putc(m, '\n');
2411 }
2412 return 0;
2413 }
2414
2415 struct seq_operations zoneinfo_op = {
2416 .start = frag_start, /* iterate over all zones. The same as in
2417 * fragmentation. */
2418 .next = frag_next,
2419 .stop = frag_stop,
2420 .show = zoneinfo_show,
2421 };
2422
2423 static char *vmstat_text[] = {
2424 "nr_dirty",
2425 "nr_writeback",
2426 "nr_unstable",
2427 "nr_page_table_pages",
2428 "nr_mapped",
2429 "nr_slab",
2430
2431 "pgpgin",
2432 "pgpgout",
2433 "pswpin",
2434 "pswpout",
2435
2436 "pgalloc_high",
2437 "pgalloc_normal",
2438 "pgalloc_dma32",
2439 "pgalloc_dma",
2440
2441 "pgfree",
2442 "pgactivate",
2443 "pgdeactivate",
2444
2445 "pgfault",
2446 "pgmajfault",
2447
2448 "pgrefill_high",
2449 "pgrefill_normal",
2450 "pgrefill_dma32",
2451 "pgrefill_dma",
2452
2453 "pgsteal_high",
2454 "pgsteal_normal",
2455 "pgsteal_dma32",
2456 "pgsteal_dma",
2457
2458 "pgscan_kswapd_high",
2459 "pgscan_kswapd_normal",
2460 "pgscan_kswapd_dma32",
2461 "pgscan_kswapd_dma",
2462
2463 "pgscan_direct_high",
2464 "pgscan_direct_normal",
2465 "pgscan_direct_dma32",
2466 "pgscan_direct_dma",
2467
2468 "pginodesteal",
2469 "slabs_scanned",
2470 "kswapd_steal",
2471 "kswapd_inodesteal",
2472 "pageoutrun",
2473 "allocstall",
2474
2475 "pgrotated",
2476 "nr_bounce",
2477 };
2478
2479 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2480 {
2481 struct page_state *ps;
2482
2483 if (*pos >= ARRAY_SIZE(vmstat_text))
2484 return NULL;
2485
2486 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2487 m->private = ps;
2488 if (!ps)
2489 return ERR_PTR(-ENOMEM);
2490 get_full_page_state(ps);
2491 ps->pgpgin /= 2; /* sectors -> kbytes */
2492 ps->pgpgout /= 2;
2493 return (unsigned long *)ps + *pos;
2494 }
2495
2496 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2497 {
2498 (*pos)++;
2499 if (*pos >= ARRAY_SIZE(vmstat_text))
2500 return NULL;
2501 return (unsigned long *)m->private + *pos;
2502 }
2503
2504 static int vmstat_show(struct seq_file *m, void *arg)
2505 {
2506 unsigned long *l = arg;
2507 unsigned long off = l - (unsigned long *)m->private;
2508
2509 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2510 return 0;
2511 }
2512
2513 static void vmstat_stop(struct seq_file *m, void *arg)
2514 {
2515 kfree(m->private);
2516 m->private = NULL;
2517 }
2518
2519 struct seq_operations vmstat_op = {
2520 .start = vmstat_start,
2521 .next = vmstat_next,
2522 .stop = vmstat_stop,
2523 .show = vmstat_show,
2524 };
2525
2526 #endif /* CONFIG_PROC_FS */
2527
2528 #ifdef CONFIG_HOTPLUG_CPU
2529 static int page_alloc_cpu_notify(struct notifier_block *self,
2530 unsigned long action, void *hcpu)
2531 {
2532 int cpu = (unsigned long)hcpu;
2533 long *count;
2534 unsigned long *src, *dest;
2535
2536 if (action == CPU_DEAD) {
2537 int i;
2538
2539 /* Drain local pagecache count. */
2540 count = &per_cpu(nr_pagecache_local, cpu);
2541 atomic_add(*count, &nr_pagecache);
2542 *count = 0;
2543 local_irq_disable();
2544 __drain_pages(cpu);
2545
2546 /* Add dead cpu's page_states to our own. */
2547 dest = (unsigned long *)&__get_cpu_var(page_states);
2548 src = (unsigned long *)&per_cpu(page_states, cpu);
2549
2550 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2551 i++) {
2552 dest[i] += src[i];
2553 src[i] = 0;
2554 }
2555
2556 local_irq_enable();
2557 }
2558 return NOTIFY_OK;
2559 }
2560 #endif /* CONFIG_HOTPLUG_CPU */
2561
2562 void __init page_alloc_init(void)
2563 {
2564 hotcpu_notifier(page_alloc_cpu_notify, 0);
2565 }
2566
2567 /*
2568 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2569 * or min_free_kbytes changes.
2570 */
2571 static void calculate_totalreserve_pages(void)
2572 {
2573 struct pglist_data *pgdat;
2574 unsigned long reserve_pages = 0;
2575 int i, j;
2576
2577 for_each_online_pgdat(pgdat) {
2578 for (i = 0; i < MAX_NR_ZONES; i++) {
2579 struct zone *zone = pgdat->node_zones + i;
2580 unsigned long max = 0;
2581
2582 /* Find valid and maximum lowmem_reserve in the zone */
2583 for (j = i; j < MAX_NR_ZONES; j++) {
2584 if (zone->lowmem_reserve[j] > max)
2585 max = zone->lowmem_reserve[j];
2586 }
2587
2588 /* we treat pages_high as reserved pages. */
2589 max += zone->pages_high;
2590
2591 if (max > zone->present_pages)
2592 max = zone->present_pages;
2593 reserve_pages += max;
2594 }
2595 }
2596 totalreserve_pages = reserve_pages;
2597 }
2598
2599 /*
2600 * setup_per_zone_lowmem_reserve - called whenever
2601 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2602 * has a correct pages reserved value, so an adequate number of
2603 * pages are left in the zone after a successful __alloc_pages().
2604 */
2605 static void setup_per_zone_lowmem_reserve(void)
2606 {
2607 struct pglist_data *pgdat;
2608 int j, idx;
2609
2610 for_each_online_pgdat(pgdat) {
2611 for (j = 0; j < MAX_NR_ZONES; j++) {
2612 struct zone *zone = pgdat->node_zones + j;
2613 unsigned long present_pages = zone->present_pages;
2614
2615 zone->lowmem_reserve[j] = 0;
2616
2617 for (idx = j-1; idx >= 0; idx--) {
2618 struct zone *lower_zone;
2619
2620 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2621 sysctl_lowmem_reserve_ratio[idx] = 1;
2622
2623 lower_zone = pgdat->node_zones + idx;
2624 lower_zone->lowmem_reserve[j] = present_pages /
2625 sysctl_lowmem_reserve_ratio[idx];
2626 present_pages += lower_zone->present_pages;
2627 }
2628 }
2629 }
2630
2631 /* update totalreserve_pages */
2632 calculate_totalreserve_pages();
2633 }
2634
2635 /*
2636 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2637 * that the pages_{min,low,high} values for each zone are set correctly
2638 * with respect to min_free_kbytes.
2639 */
2640 void setup_per_zone_pages_min(void)
2641 {
2642 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2643 unsigned long lowmem_pages = 0;
2644 struct zone *zone;
2645 unsigned long flags;
2646
2647 /* Calculate total number of !ZONE_HIGHMEM pages */
2648 for_each_zone(zone) {
2649 if (!is_highmem(zone))
2650 lowmem_pages += zone->present_pages;
2651 }
2652
2653 for_each_zone(zone) {
2654 u64 tmp;
2655
2656 spin_lock_irqsave(&zone->lru_lock, flags);
2657 tmp = (u64)pages_min * zone->present_pages;
2658 do_div(tmp, lowmem_pages);
2659 if (is_highmem(zone)) {
2660 /*
2661 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2662 * need highmem pages, so cap pages_min to a small
2663 * value here.
2664 *
2665 * The (pages_high-pages_low) and (pages_low-pages_min)
2666 * deltas controls asynch page reclaim, and so should
2667 * not be capped for highmem.
2668 */
2669 int min_pages;
2670
2671 min_pages = zone->present_pages / 1024;
2672 if (min_pages < SWAP_CLUSTER_MAX)
2673 min_pages = SWAP_CLUSTER_MAX;
2674 if (min_pages > 128)
2675 min_pages = 128;
2676 zone->pages_min = min_pages;
2677 } else {
2678 /*
2679 * If it's a lowmem zone, reserve a number of pages
2680 * proportionate to the zone's size.
2681 */
2682 zone->pages_min = tmp;
2683 }
2684
2685 zone->pages_low = zone->pages_min + (tmp >> 2);
2686 zone->pages_high = zone->pages_min + (tmp >> 1);
2687 spin_unlock_irqrestore(&zone->lru_lock, flags);
2688 }
2689
2690 /* update totalreserve_pages */
2691 calculate_totalreserve_pages();
2692 }
2693
2694 /*
2695 * Initialise min_free_kbytes.
2696 *
2697 * For small machines we want it small (128k min). For large machines
2698 * we want it large (64MB max). But it is not linear, because network
2699 * bandwidth does not increase linearly with machine size. We use
2700 *
2701 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2702 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2703 *
2704 * which yields
2705 *
2706 * 16MB: 512k
2707 * 32MB: 724k
2708 * 64MB: 1024k
2709 * 128MB: 1448k
2710 * 256MB: 2048k
2711 * 512MB: 2896k
2712 * 1024MB: 4096k
2713 * 2048MB: 5792k
2714 * 4096MB: 8192k
2715 * 8192MB: 11584k
2716 * 16384MB: 16384k
2717 */
2718 static int __init init_per_zone_pages_min(void)
2719 {
2720 unsigned long lowmem_kbytes;
2721
2722 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2723
2724 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2725 if (min_free_kbytes < 128)
2726 min_free_kbytes = 128;
2727 if (min_free_kbytes > 65536)
2728 min_free_kbytes = 65536;
2729 setup_per_zone_pages_min();
2730 setup_per_zone_lowmem_reserve();
2731 return 0;
2732 }
2733 module_init(init_per_zone_pages_min)
2734
2735 /*
2736 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2737 * that we can call two helper functions whenever min_free_kbytes
2738 * changes.
2739 */
2740 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2741 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2742 {
2743 proc_dointvec(table, write, file, buffer, length, ppos);
2744 setup_per_zone_pages_min();
2745 return 0;
2746 }
2747
2748 /*
2749 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2750 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2751 * whenever sysctl_lowmem_reserve_ratio changes.
2752 *
2753 * The reserve ratio obviously has absolutely no relation with the
2754 * pages_min watermarks. The lowmem reserve ratio can only make sense
2755 * if in function of the boot time zone sizes.
2756 */
2757 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2758 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2759 {
2760 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2761 setup_per_zone_lowmem_reserve();
2762 return 0;
2763 }
2764
2765 /*
2766 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2767 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2768 * can have before it gets flushed back to buddy allocator.
2769 */
2770
2771 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2772 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2773 {
2774 struct zone *zone;
2775 unsigned int cpu;
2776 int ret;
2777
2778 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2779 if (!write || (ret == -EINVAL))
2780 return ret;
2781 for_each_zone(zone) {
2782 for_each_online_cpu(cpu) {
2783 unsigned long high;
2784 high = zone->present_pages / percpu_pagelist_fraction;
2785 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2786 }
2787 }
2788 return 0;
2789 }
2790
2791 __initdata int hashdist = HASHDIST_DEFAULT;
2792
2793 #ifdef CONFIG_NUMA
2794 static int __init set_hashdist(char *str)
2795 {
2796 if (!str)
2797 return 0;
2798 hashdist = simple_strtoul(str, &str, 0);
2799 return 1;
2800 }
2801 __setup("hashdist=", set_hashdist);
2802 #endif
2803
2804 /*
2805 * allocate a large system hash table from bootmem
2806 * - it is assumed that the hash table must contain an exact power-of-2
2807 * quantity of entries
2808 * - limit is the number of hash buckets, not the total allocation size
2809 */
2810 void *__init alloc_large_system_hash(const char *tablename,
2811 unsigned long bucketsize,
2812 unsigned long numentries,
2813 int scale,
2814 int flags,
2815 unsigned int *_hash_shift,
2816 unsigned int *_hash_mask,
2817 unsigned long limit)
2818 {
2819 unsigned long long max = limit;
2820 unsigned long log2qty, size;
2821 void *table = NULL;
2822
2823 /* allow the kernel cmdline to have a say */
2824 if (!numentries) {
2825 /* round applicable memory size up to nearest megabyte */
2826 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2827 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2828 numentries >>= 20 - PAGE_SHIFT;
2829 numentries <<= 20 - PAGE_SHIFT;
2830
2831 /* limit to 1 bucket per 2^scale bytes of low memory */
2832 if (scale > PAGE_SHIFT)
2833 numentries >>= (scale - PAGE_SHIFT);
2834 else
2835 numentries <<= (PAGE_SHIFT - scale);
2836 }
2837 numentries = roundup_pow_of_two(numentries);
2838
2839 /* limit allocation size to 1/16 total memory by default */
2840 if (max == 0) {
2841 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2842 do_div(max, bucketsize);
2843 }
2844
2845 if (numentries > max)
2846 numentries = max;
2847
2848 log2qty = long_log2(numentries);
2849
2850 do {
2851 size = bucketsize << log2qty;
2852 if (flags & HASH_EARLY)
2853 table = alloc_bootmem(size);
2854 else if (hashdist)
2855 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2856 else {
2857 unsigned long order;
2858 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2859 ;
2860 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2861 }
2862 } while (!table && size > PAGE_SIZE && --log2qty);
2863
2864 if (!table)
2865 panic("Failed to allocate %s hash table\n", tablename);
2866
2867 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2868 tablename,
2869 (1U << log2qty),
2870 long_log2(size) - PAGE_SHIFT,
2871 size);
2872
2873 if (_hash_shift)
2874 *_hash_shift = log2qty;
2875 if (_hash_mask)
2876 *_hash_mask = (1 << log2qty) - 1;
2877
2878 return table;
2879 }
2880
2881 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
2882 struct page *pfn_to_page(unsigned long pfn)
2883 {
2884 return __pfn_to_page(pfn);
2885 }
2886 unsigned long page_to_pfn(struct page *page)
2887 {
2888 return __page_to_pfn(page);
2889 }
2890 EXPORT_SYMBOL(pfn_to_page);
2891 EXPORT_SYMBOL(page_to_pfn);
2892 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */