]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/page_alloc.c
UBUNTU: Ubuntu-5.15.0-37.39
[mirror_ubuntu-jammy-kernel.git] / mm / page_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <linux/buffer_head.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77 #include <asm/div64.h>
78 #include "internal.h"
79 #include "shuffle.h"
80 #include "page_reporting.h"
81
82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83 typedef int __bitwise fpi_t;
84
85 /* No special request */
86 #define FPI_NONE ((__force fpi_t)0)
87
88 /*
89 * Skip free page reporting notification for the (possibly merged) page.
90 * This does not hinder free page reporting from grabbing the page,
91 * reporting it and marking it "reported" - it only skips notifying
92 * the free page reporting infrastructure about a newly freed page. For
93 * example, used when temporarily pulling a page from a freelist and
94 * putting it back unmodified.
95 */
96 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
97
98 /*
99 * Place the (possibly merged) page to the tail of the freelist. Will ignore
100 * page shuffling (relevant code - e.g., memory onlining - is expected to
101 * shuffle the whole zone).
102 *
103 * Note: No code should rely on this flag for correctness - it's purely
104 * to allow for optimizations when handing back either fresh pages
105 * (memory onlining) or untouched pages (page isolation, free page
106 * reporting).
107 */
108 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
109
110 /*
111 * Don't poison memory with KASAN (only for the tag-based modes).
112 * During boot, all non-reserved memblock memory is exposed to page_alloc.
113 * Poisoning all that memory lengthens boot time, especially on systems with
114 * large amount of RAM. This flag is used to skip that poisoning.
115 * This is only done for the tag-based KASAN modes, as those are able to
116 * detect memory corruptions with the memory tags assigned by default.
117 * All memory allocated normally after boot gets poisoned as usual.
118 */
119 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
120
121 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
122 static DEFINE_MUTEX(pcp_batch_high_lock);
123 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
124
125 struct pagesets {
126 local_lock_t lock;
127 };
128 static DEFINE_PER_CPU(struct pagesets, pagesets) = {
129 .lock = INIT_LOCAL_LOCK(lock),
130 };
131
132 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
133 DEFINE_PER_CPU(int, numa_node);
134 EXPORT_PER_CPU_SYMBOL(numa_node);
135 #endif
136
137 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
138
139 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
140 /*
141 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
142 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
143 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
144 * defined in <linux/topology.h>.
145 */
146 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
147 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
148 #endif
149
150 /* work_structs for global per-cpu drains */
151 struct pcpu_drain {
152 struct zone *zone;
153 struct work_struct work;
154 };
155 static DEFINE_MUTEX(pcpu_drain_mutex);
156 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
157
158 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
159 volatile unsigned long latent_entropy __latent_entropy;
160 EXPORT_SYMBOL(latent_entropy);
161 #endif
162
163 /*
164 * Array of node states.
165 */
166 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
167 [N_POSSIBLE] = NODE_MASK_ALL,
168 [N_ONLINE] = { { [0] = 1UL } },
169 #ifndef CONFIG_NUMA
170 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
171 #ifdef CONFIG_HIGHMEM
172 [N_HIGH_MEMORY] = { { [0] = 1UL } },
173 #endif
174 [N_MEMORY] = { { [0] = 1UL } },
175 [N_CPU] = { { [0] = 1UL } },
176 #endif /* NUMA */
177 };
178 EXPORT_SYMBOL(node_states);
179
180 atomic_long_t _totalram_pages __read_mostly;
181 EXPORT_SYMBOL(_totalram_pages);
182 unsigned long totalreserve_pages __read_mostly;
183 unsigned long totalcma_pages __read_mostly;
184
185 int percpu_pagelist_high_fraction;
186 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
187 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
188 EXPORT_SYMBOL(init_on_alloc);
189
190 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
191 EXPORT_SYMBOL(init_on_free);
192
193 static bool _init_on_alloc_enabled_early __read_mostly
194 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
195 static int __init early_init_on_alloc(char *buf)
196 {
197
198 return kstrtobool(buf, &_init_on_alloc_enabled_early);
199 }
200 early_param("init_on_alloc", early_init_on_alloc);
201
202 static bool _init_on_free_enabled_early __read_mostly
203 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
204 static int __init early_init_on_free(char *buf)
205 {
206 return kstrtobool(buf, &_init_on_free_enabled_early);
207 }
208 early_param("init_on_free", early_init_on_free);
209
210 /*
211 * A cached value of the page's pageblock's migratetype, used when the page is
212 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
213 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
214 * Also the migratetype set in the page does not necessarily match the pcplist
215 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
216 * other index - this ensures that it will be put on the correct CMA freelist.
217 */
218 static inline int get_pcppage_migratetype(struct page *page)
219 {
220 return page->index;
221 }
222
223 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
224 {
225 page->index = migratetype;
226 }
227
228 #ifdef CONFIG_PM_SLEEP
229 /*
230 * The following functions are used by the suspend/hibernate code to temporarily
231 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
232 * while devices are suspended. To avoid races with the suspend/hibernate code,
233 * they should always be called with system_transition_mutex held
234 * (gfp_allowed_mask also should only be modified with system_transition_mutex
235 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
236 * with that modification).
237 */
238
239 static gfp_t saved_gfp_mask;
240
241 void pm_restore_gfp_mask(void)
242 {
243 WARN_ON(!mutex_is_locked(&system_transition_mutex));
244 if (saved_gfp_mask) {
245 gfp_allowed_mask = saved_gfp_mask;
246 saved_gfp_mask = 0;
247 }
248 }
249
250 void pm_restrict_gfp_mask(void)
251 {
252 WARN_ON(!mutex_is_locked(&system_transition_mutex));
253 WARN_ON(saved_gfp_mask);
254 saved_gfp_mask = gfp_allowed_mask;
255 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
256 }
257
258 bool pm_suspended_storage(void)
259 {
260 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
261 return false;
262 return true;
263 }
264 #endif /* CONFIG_PM_SLEEP */
265
266 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
267 unsigned int pageblock_order __read_mostly;
268 #endif
269
270 static void __free_pages_ok(struct page *page, unsigned int order,
271 fpi_t fpi_flags);
272
273 /*
274 * results with 256, 32 in the lowmem_reserve sysctl:
275 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
276 * 1G machine -> (16M dma, 784M normal, 224M high)
277 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
278 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
279 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
280 *
281 * TBD: should special case ZONE_DMA32 machines here - in those we normally
282 * don't need any ZONE_NORMAL reservation
283 */
284 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
285 #ifdef CONFIG_ZONE_DMA
286 [ZONE_DMA] = 256,
287 #endif
288 #ifdef CONFIG_ZONE_DMA32
289 [ZONE_DMA32] = 256,
290 #endif
291 [ZONE_NORMAL] = 32,
292 #ifdef CONFIG_HIGHMEM
293 [ZONE_HIGHMEM] = 0,
294 #endif
295 [ZONE_MOVABLE] = 0,
296 };
297
298 static char * const zone_names[MAX_NR_ZONES] = {
299 #ifdef CONFIG_ZONE_DMA
300 "DMA",
301 #endif
302 #ifdef CONFIG_ZONE_DMA32
303 "DMA32",
304 #endif
305 "Normal",
306 #ifdef CONFIG_HIGHMEM
307 "HighMem",
308 #endif
309 "Movable",
310 #ifdef CONFIG_ZONE_DEVICE
311 "Device",
312 #endif
313 };
314
315 const char * const migratetype_names[MIGRATE_TYPES] = {
316 "Unmovable",
317 "Movable",
318 "Reclaimable",
319 "HighAtomic",
320 #ifdef CONFIG_CMA
321 "CMA",
322 #endif
323 #ifdef CONFIG_MEMORY_ISOLATION
324 "Isolate",
325 #endif
326 };
327
328 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
329 [NULL_COMPOUND_DTOR] = NULL,
330 [COMPOUND_PAGE_DTOR] = free_compound_page,
331 #ifdef CONFIG_HUGETLB_PAGE
332 [HUGETLB_PAGE_DTOR] = free_huge_page,
333 #endif
334 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
335 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
336 #endif
337 };
338
339 int min_free_kbytes = 1024;
340 int user_min_free_kbytes = -1;
341 int watermark_boost_factor __read_mostly = 15000;
342 int watermark_scale_factor = 10;
343
344 static unsigned long nr_kernel_pages __initdata;
345 static unsigned long nr_all_pages __initdata;
346 static unsigned long dma_reserve __initdata;
347
348 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
349 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
350 static unsigned long required_kernelcore __initdata;
351 static unsigned long required_kernelcore_percent __initdata;
352 static unsigned long required_movablecore __initdata;
353 static unsigned long required_movablecore_percent __initdata;
354 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
355 static bool mirrored_kernelcore __meminitdata;
356
357 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
358 int movable_zone;
359 EXPORT_SYMBOL(movable_zone);
360
361 #if MAX_NUMNODES > 1
362 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
363 unsigned int nr_online_nodes __read_mostly = 1;
364 EXPORT_SYMBOL(nr_node_ids);
365 EXPORT_SYMBOL(nr_online_nodes);
366 #endif
367
368 int page_group_by_mobility_disabled __read_mostly;
369
370 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
371 /*
372 * During boot we initialize deferred pages on-demand, as needed, but once
373 * page_alloc_init_late() has finished, the deferred pages are all initialized,
374 * and we can permanently disable that path.
375 */
376 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
377
378 /*
379 * Calling kasan_poison_pages() only after deferred memory initialization
380 * has completed. Poisoning pages during deferred memory init will greatly
381 * lengthen the process and cause problem in large memory systems as the
382 * deferred pages initialization is done with interrupt disabled.
383 *
384 * Assuming that there will be no reference to those newly initialized
385 * pages before they are ever allocated, this should have no effect on
386 * KASAN memory tracking as the poison will be properly inserted at page
387 * allocation time. The only corner case is when pages are allocated by
388 * on-demand allocation and then freed again before the deferred pages
389 * initialization is done, but this is not likely to happen.
390 */
391 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
392 {
393 return static_branch_unlikely(&deferred_pages) ||
394 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
395 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
396 PageSkipKASanPoison(page);
397 }
398
399 /* Returns true if the struct page for the pfn is uninitialised */
400 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
401 {
402 int nid = early_pfn_to_nid(pfn);
403
404 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
405 return true;
406
407 return false;
408 }
409
410 /*
411 * Returns true when the remaining initialisation should be deferred until
412 * later in the boot cycle when it can be parallelised.
413 */
414 static bool __meminit
415 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
416 {
417 static unsigned long prev_end_pfn, nr_initialised;
418
419 /*
420 * prev_end_pfn static that contains the end of previous zone
421 * No need to protect because called very early in boot before smp_init.
422 */
423 if (prev_end_pfn != end_pfn) {
424 prev_end_pfn = end_pfn;
425 nr_initialised = 0;
426 }
427
428 /* Always populate low zones for address-constrained allocations */
429 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
430 return false;
431
432 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
433 return true;
434 /*
435 * We start only with one section of pages, more pages are added as
436 * needed until the rest of deferred pages are initialized.
437 */
438 nr_initialised++;
439 if ((nr_initialised > PAGES_PER_SECTION) &&
440 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
441 NODE_DATA(nid)->first_deferred_pfn = pfn;
442 return true;
443 }
444 return false;
445 }
446 #else
447 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
448 {
449 return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
450 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
451 PageSkipKASanPoison(page);
452 }
453
454 static inline bool early_page_uninitialised(unsigned long pfn)
455 {
456 return false;
457 }
458
459 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
460 {
461 return false;
462 }
463 #endif
464
465 /* Return a pointer to the bitmap storing bits affecting a block of pages */
466 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
467 unsigned long pfn)
468 {
469 #ifdef CONFIG_SPARSEMEM
470 return section_to_usemap(__pfn_to_section(pfn));
471 #else
472 return page_zone(page)->pageblock_flags;
473 #endif /* CONFIG_SPARSEMEM */
474 }
475
476 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
477 {
478 #ifdef CONFIG_SPARSEMEM
479 pfn &= (PAGES_PER_SECTION-1);
480 #else
481 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
482 #endif /* CONFIG_SPARSEMEM */
483 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
484 }
485
486 static __always_inline
487 unsigned long __get_pfnblock_flags_mask(const struct page *page,
488 unsigned long pfn,
489 unsigned long mask)
490 {
491 unsigned long *bitmap;
492 unsigned long bitidx, word_bitidx;
493 unsigned long word;
494
495 bitmap = get_pageblock_bitmap(page, pfn);
496 bitidx = pfn_to_bitidx(page, pfn);
497 word_bitidx = bitidx / BITS_PER_LONG;
498 bitidx &= (BITS_PER_LONG-1);
499
500 word = bitmap[word_bitidx];
501 return (word >> bitidx) & mask;
502 }
503
504 /**
505 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
506 * @page: The page within the block of interest
507 * @pfn: The target page frame number
508 * @mask: mask of bits that the caller is interested in
509 *
510 * Return: pageblock_bits flags
511 */
512 unsigned long get_pfnblock_flags_mask(const struct page *page,
513 unsigned long pfn, unsigned long mask)
514 {
515 return __get_pfnblock_flags_mask(page, pfn, mask);
516 }
517
518 static __always_inline int get_pfnblock_migratetype(const struct page *page,
519 unsigned long pfn)
520 {
521 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
522 }
523
524 /**
525 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
526 * @page: The page within the block of interest
527 * @flags: The flags to set
528 * @pfn: The target page frame number
529 * @mask: mask of bits that the caller is interested in
530 */
531 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
532 unsigned long pfn,
533 unsigned long mask)
534 {
535 unsigned long *bitmap;
536 unsigned long bitidx, word_bitidx;
537 unsigned long old_word, word;
538
539 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
540 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
541
542 bitmap = get_pageblock_bitmap(page, pfn);
543 bitidx = pfn_to_bitidx(page, pfn);
544 word_bitidx = bitidx / BITS_PER_LONG;
545 bitidx &= (BITS_PER_LONG-1);
546
547 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
548
549 mask <<= bitidx;
550 flags <<= bitidx;
551
552 word = READ_ONCE(bitmap[word_bitidx]);
553 for (;;) {
554 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
555 if (word == old_word)
556 break;
557 word = old_word;
558 }
559 }
560
561 void set_pageblock_migratetype(struct page *page, int migratetype)
562 {
563 if (unlikely(page_group_by_mobility_disabled &&
564 migratetype < MIGRATE_PCPTYPES))
565 migratetype = MIGRATE_UNMOVABLE;
566
567 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
568 page_to_pfn(page), MIGRATETYPE_MASK);
569 }
570
571 #ifdef CONFIG_DEBUG_VM
572 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
573 {
574 int ret = 0;
575 unsigned seq;
576 unsigned long pfn = page_to_pfn(page);
577 unsigned long sp, start_pfn;
578
579 do {
580 seq = zone_span_seqbegin(zone);
581 start_pfn = zone->zone_start_pfn;
582 sp = zone->spanned_pages;
583 if (!zone_spans_pfn(zone, pfn))
584 ret = 1;
585 } while (zone_span_seqretry(zone, seq));
586
587 if (ret)
588 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
589 pfn, zone_to_nid(zone), zone->name,
590 start_pfn, start_pfn + sp);
591
592 return ret;
593 }
594
595 static int page_is_consistent(struct zone *zone, struct page *page)
596 {
597 if (zone != page_zone(page))
598 return 0;
599
600 return 1;
601 }
602 /*
603 * Temporary debugging check for pages not lying within a given zone.
604 */
605 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
606 {
607 if (page_outside_zone_boundaries(zone, page))
608 return 1;
609 if (!page_is_consistent(zone, page))
610 return 1;
611
612 return 0;
613 }
614 #else
615 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
616 {
617 return 0;
618 }
619 #endif
620
621 static void bad_page(struct page *page, const char *reason)
622 {
623 static unsigned long resume;
624 static unsigned long nr_shown;
625 static unsigned long nr_unshown;
626
627 /*
628 * Allow a burst of 60 reports, then keep quiet for that minute;
629 * or allow a steady drip of one report per second.
630 */
631 if (nr_shown == 60) {
632 if (time_before(jiffies, resume)) {
633 nr_unshown++;
634 goto out;
635 }
636 if (nr_unshown) {
637 pr_alert(
638 "BUG: Bad page state: %lu messages suppressed\n",
639 nr_unshown);
640 nr_unshown = 0;
641 }
642 nr_shown = 0;
643 }
644 if (nr_shown++ == 0)
645 resume = jiffies + 60 * HZ;
646
647 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
648 current->comm, page_to_pfn(page));
649 dump_page(page, reason);
650
651 print_modules();
652 dump_stack();
653 out:
654 /* Leave bad fields for debug, except PageBuddy could make trouble */
655 page_mapcount_reset(page); /* remove PageBuddy */
656 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
657 }
658
659 static inline unsigned int order_to_pindex(int migratetype, int order)
660 {
661 int base = order;
662
663 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
664 if (order > PAGE_ALLOC_COSTLY_ORDER) {
665 VM_BUG_ON(order != pageblock_order);
666 base = PAGE_ALLOC_COSTLY_ORDER + 1;
667 }
668 #else
669 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
670 #endif
671
672 return (MIGRATE_PCPTYPES * base) + migratetype;
673 }
674
675 static inline int pindex_to_order(unsigned int pindex)
676 {
677 int order = pindex / MIGRATE_PCPTYPES;
678
679 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
680 if (order > PAGE_ALLOC_COSTLY_ORDER) {
681 order = pageblock_order;
682 VM_BUG_ON(order != pageblock_order);
683 }
684 #else
685 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
686 #endif
687
688 return order;
689 }
690
691 static inline bool pcp_allowed_order(unsigned int order)
692 {
693 if (order <= PAGE_ALLOC_COSTLY_ORDER)
694 return true;
695 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
696 if (order == pageblock_order)
697 return true;
698 #endif
699 return false;
700 }
701
702 static inline void free_the_page(struct page *page, unsigned int order)
703 {
704 if (pcp_allowed_order(order)) /* Via pcp? */
705 free_unref_page(page, order);
706 else
707 __free_pages_ok(page, order, FPI_NONE);
708 }
709
710 /*
711 * Higher-order pages are called "compound pages". They are structured thusly:
712 *
713 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
714 *
715 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
716 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
717 *
718 * The first tail page's ->compound_dtor holds the offset in array of compound
719 * page destructors. See compound_page_dtors.
720 *
721 * The first tail page's ->compound_order holds the order of allocation.
722 * This usage means that zero-order pages may not be compound.
723 */
724
725 void free_compound_page(struct page *page)
726 {
727 mem_cgroup_uncharge(page);
728 free_the_page(page, compound_order(page));
729 }
730
731 void prep_compound_page(struct page *page, unsigned int order)
732 {
733 int i;
734 int nr_pages = 1 << order;
735
736 __SetPageHead(page);
737 for (i = 1; i < nr_pages; i++) {
738 struct page *p = page + i;
739 p->mapping = TAIL_MAPPING;
740 set_compound_head(p, page);
741 }
742
743 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
744 set_compound_order(page, order);
745 atomic_set(compound_mapcount_ptr(page), -1);
746 if (hpage_pincount_available(page))
747 atomic_set(compound_pincount_ptr(page), 0);
748 }
749
750 #ifdef CONFIG_DEBUG_PAGEALLOC
751 unsigned int _debug_guardpage_minorder;
752
753 bool _debug_pagealloc_enabled_early __read_mostly
754 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
755 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
756 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
757 EXPORT_SYMBOL(_debug_pagealloc_enabled);
758
759 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
760
761 static int __init early_debug_pagealloc(char *buf)
762 {
763 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
764 }
765 early_param("debug_pagealloc", early_debug_pagealloc);
766
767 static int __init debug_guardpage_minorder_setup(char *buf)
768 {
769 unsigned long res;
770
771 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
772 pr_err("Bad debug_guardpage_minorder value\n");
773 return 0;
774 }
775 _debug_guardpage_minorder = res;
776 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
777 return 0;
778 }
779 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
780
781 static inline bool set_page_guard(struct zone *zone, struct page *page,
782 unsigned int order, int migratetype)
783 {
784 if (!debug_guardpage_enabled())
785 return false;
786
787 if (order >= debug_guardpage_minorder())
788 return false;
789
790 __SetPageGuard(page);
791 INIT_LIST_HEAD(&page->lru);
792 set_page_private(page, order);
793 /* Guard pages are not available for any usage */
794 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
795
796 return true;
797 }
798
799 static inline void clear_page_guard(struct zone *zone, struct page *page,
800 unsigned int order, int migratetype)
801 {
802 if (!debug_guardpage_enabled())
803 return;
804
805 __ClearPageGuard(page);
806
807 set_page_private(page, 0);
808 if (!is_migrate_isolate(migratetype))
809 __mod_zone_freepage_state(zone, (1 << order), migratetype);
810 }
811 #else
812 static inline bool set_page_guard(struct zone *zone, struct page *page,
813 unsigned int order, int migratetype) { return false; }
814 static inline void clear_page_guard(struct zone *zone, struct page *page,
815 unsigned int order, int migratetype) {}
816 #endif
817
818 /*
819 * Enable static keys related to various memory debugging and hardening options.
820 * Some override others, and depend on early params that are evaluated in the
821 * order of appearance. So we need to first gather the full picture of what was
822 * enabled, and then make decisions.
823 */
824 void init_mem_debugging_and_hardening(void)
825 {
826 bool page_poisoning_requested = false;
827
828 #ifdef CONFIG_PAGE_POISONING
829 /*
830 * Page poisoning is debug page alloc for some arches. If
831 * either of those options are enabled, enable poisoning.
832 */
833 if (page_poisoning_enabled() ||
834 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
835 debug_pagealloc_enabled())) {
836 static_branch_enable(&_page_poisoning_enabled);
837 page_poisoning_requested = true;
838 }
839 #endif
840
841 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
842 page_poisoning_requested) {
843 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
844 "will take precedence over init_on_alloc and init_on_free\n");
845 _init_on_alloc_enabled_early = false;
846 _init_on_free_enabled_early = false;
847 }
848
849 if (_init_on_alloc_enabled_early)
850 static_branch_enable(&init_on_alloc);
851 else
852 static_branch_disable(&init_on_alloc);
853
854 if (_init_on_free_enabled_early)
855 static_branch_enable(&init_on_free);
856 else
857 static_branch_disable(&init_on_free);
858
859 #ifdef CONFIG_DEBUG_PAGEALLOC
860 if (!debug_pagealloc_enabled())
861 return;
862
863 static_branch_enable(&_debug_pagealloc_enabled);
864
865 if (!debug_guardpage_minorder())
866 return;
867
868 static_branch_enable(&_debug_guardpage_enabled);
869 #endif
870 }
871
872 static inline void set_buddy_order(struct page *page, unsigned int order)
873 {
874 set_page_private(page, order);
875 __SetPageBuddy(page);
876 }
877
878 /*
879 * This function checks whether a page is free && is the buddy
880 * we can coalesce a page and its buddy if
881 * (a) the buddy is not in a hole (check before calling!) &&
882 * (b) the buddy is in the buddy system &&
883 * (c) a page and its buddy have the same order &&
884 * (d) a page and its buddy are in the same zone.
885 *
886 * For recording whether a page is in the buddy system, we set PageBuddy.
887 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
888 *
889 * For recording page's order, we use page_private(page).
890 */
891 static inline bool page_is_buddy(struct page *page, struct page *buddy,
892 unsigned int order)
893 {
894 if (!page_is_guard(buddy) && !PageBuddy(buddy))
895 return false;
896
897 if (buddy_order(buddy) != order)
898 return false;
899
900 /*
901 * zone check is done late to avoid uselessly calculating
902 * zone/node ids for pages that could never merge.
903 */
904 if (page_zone_id(page) != page_zone_id(buddy))
905 return false;
906
907 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
908
909 return true;
910 }
911
912 #ifdef CONFIG_COMPACTION
913 static inline struct capture_control *task_capc(struct zone *zone)
914 {
915 struct capture_control *capc = current->capture_control;
916
917 return unlikely(capc) &&
918 !(current->flags & PF_KTHREAD) &&
919 !capc->page &&
920 capc->cc->zone == zone ? capc : NULL;
921 }
922
923 static inline bool
924 compaction_capture(struct capture_control *capc, struct page *page,
925 int order, int migratetype)
926 {
927 if (!capc || order != capc->cc->order)
928 return false;
929
930 /* Do not accidentally pollute CMA or isolated regions*/
931 if (is_migrate_cma(migratetype) ||
932 is_migrate_isolate(migratetype))
933 return false;
934
935 /*
936 * Do not let lower order allocations pollute a movable pageblock.
937 * This might let an unmovable request use a reclaimable pageblock
938 * and vice-versa but no more than normal fallback logic which can
939 * have trouble finding a high-order free page.
940 */
941 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
942 return false;
943
944 capc->page = page;
945 return true;
946 }
947
948 #else
949 static inline struct capture_control *task_capc(struct zone *zone)
950 {
951 return NULL;
952 }
953
954 static inline bool
955 compaction_capture(struct capture_control *capc, struct page *page,
956 int order, int migratetype)
957 {
958 return false;
959 }
960 #endif /* CONFIG_COMPACTION */
961
962 /* Used for pages not on another list */
963 static inline void add_to_free_list(struct page *page, struct zone *zone,
964 unsigned int order, int migratetype)
965 {
966 struct free_area *area = &zone->free_area[order];
967
968 list_add(&page->lru, &area->free_list[migratetype]);
969 area->nr_free++;
970 }
971
972 /* Used for pages not on another list */
973 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
974 unsigned int order, int migratetype)
975 {
976 struct free_area *area = &zone->free_area[order];
977
978 list_add_tail(&page->lru, &area->free_list[migratetype]);
979 area->nr_free++;
980 }
981
982 /*
983 * Used for pages which are on another list. Move the pages to the tail
984 * of the list - so the moved pages won't immediately be considered for
985 * allocation again (e.g., optimization for memory onlining).
986 */
987 static inline void move_to_free_list(struct page *page, struct zone *zone,
988 unsigned int order, int migratetype)
989 {
990 struct free_area *area = &zone->free_area[order];
991
992 list_move_tail(&page->lru, &area->free_list[migratetype]);
993 }
994
995 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
996 unsigned int order)
997 {
998 /* clear reported state and update reported page count */
999 if (page_reported(page))
1000 __ClearPageReported(page);
1001
1002 list_del(&page->lru);
1003 __ClearPageBuddy(page);
1004 set_page_private(page, 0);
1005 zone->free_area[order].nr_free--;
1006 }
1007
1008 /*
1009 * If this is not the largest possible page, check if the buddy
1010 * of the next-highest order is free. If it is, it's possible
1011 * that pages are being freed that will coalesce soon. In case,
1012 * that is happening, add the free page to the tail of the list
1013 * so it's less likely to be used soon and more likely to be merged
1014 * as a higher order page
1015 */
1016 static inline bool
1017 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1018 struct page *page, unsigned int order)
1019 {
1020 struct page *higher_page, *higher_buddy;
1021 unsigned long combined_pfn;
1022
1023 if (order >= MAX_ORDER - 2)
1024 return false;
1025
1026 combined_pfn = buddy_pfn & pfn;
1027 higher_page = page + (combined_pfn - pfn);
1028 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1029 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1030
1031 return page_is_buddy(higher_page, higher_buddy, order + 1);
1032 }
1033
1034 /*
1035 * Freeing function for a buddy system allocator.
1036 *
1037 * The concept of a buddy system is to maintain direct-mapped table
1038 * (containing bit values) for memory blocks of various "orders".
1039 * The bottom level table contains the map for the smallest allocatable
1040 * units of memory (here, pages), and each level above it describes
1041 * pairs of units from the levels below, hence, "buddies".
1042 * At a high level, all that happens here is marking the table entry
1043 * at the bottom level available, and propagating the changes upward
1044 * as necessary, plus some accounting needed to play nicely with other
1045 * parts of the VM system.
1046 * At each level, we keep a list of pages, which are heads of continuous
1047 * free pages of length of (1 << order) and marked with PageBuddy.
1048 * Page's order is recorded in page_private(page) field.
1049 * So when we are allocating or freeing one, we can derive the state of the
1050 * other. That is, if we allocate a small block, and both were
1051 * free, the remainder of the region must be split into blocks.
1052 * If a block is freed, and its buddy is also free, then this
1053 * triggers coalescing into a block of larger size.
1054 *
1055 * -- nyc
1056 */
1057
1058 static inline void __free_one_page(struct page *page,
1059 unsigned long pfn,
1060 struct zone *zone, unsigned int order,
1061 int migratetype, fpi_t fpi_flags)
1062 {
1063 struct capture_control *capc = task_capc(zone);
1064 unsigned long buddy_pfn;
1065 unsigned long combined_pfn;
1066 unsigned int max_order;
1067 struct page *buddy;
1068 bool to_tail;
1069
1070 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1071
1072 VM_BUG_ON(!zone_is_initialized(zone));
1073 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1074
1075 VM_BUG_ON(migratetype == -1);
1076 if (likely(!is_migrate_isolate(migratetype)))
1077 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1078
1079 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1080 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1081
1082 continue_merging:
1083 while (order < max_order) {
1084 if (compaction_capture(capc, page, order, migratetype)) {
1085 __mod_zone_freepage_state(zone, -(1 << order),
1086 migratetype);
1087 return;
1088 }
1089 buddy_pfn = __find_buddy_pfn(pfn, order);
1090 buddy = page + (buddy_pfn - pfn);
1091
1092 if (!page_is_buddy(page, buddy, order))
1093 goto done_merging;
1094 /*
1095 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1096 * merge with it and move up one order.
1097 */
1098 if (page_is_guard(buddy))
1099 clear_page_guard(zone, buddy, order, migratetype);
1100 else
1101 del_page_from_free_list(buddy, zone, order);
1102 combined_pfn = buddy_pfn & pfn;
1103 page = page + (combined_pfn - pfn);
1104 pfn = combined_pfn;
1105 order++;
1106 }
1107 if (order < MAX_ORDER - 1) {
1108 /* If we are here, it means order is >= pageblock_order.
1109 * We want to prevent merge between freepages on isolate
1110 * pageblock and normal pageblock. Without this, pageblock
1111 * isolation could cause incorrect freepage or CMA accounting.
1112 *
1113 * We don't want to hit this code for the more frequent
1114 * low-order merging.
1115 */
1116 if (unlikely(has_isolate_pageblock(zone))) {
1117 int buddy_mt;
1118
1119 buddy_pfn = __find_buddy_pfn(pfn, order);
1120 buddy = page + (buddy_pfn - pfn);
1121 buddy_mt = get_pageblock_migratetype(buddy);
1122
1123 if (migratetype != buddy_mt
1124 && (is_migrate_isolate(migratetype) ||
1125 is_migrate_isolate(buddy_mt)))
1126 goto done_merging;
1127 }
1128 max_order = order + 1;
1129 goto continue_merging;
1130 }
1131
1132 done_merging:
1133 set_buddy_order(page, order);
1134
1135 if (fpi_flags & FPI_TO_TAIL)
1136 to_tail = true;
1137 else if (is_shuffle_order(order))
1138 to_tail = shuffle_pick_tail();
1139 else
1140 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1141
1142 if (to_tail)
1143 add_to_free_list_tail(page, zone, order, migratetype);
1144 else
1145 add_to_free_list(page, zone, order, migratetype);
1146
1147 /* Notify page reporting subsystem of freed page */
1148 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1149 page_reporting_notify_free(order);
1150 }
1151
1152 /*
1153 * A bad page could be due to a number of fields. Instead of multiple branches,
1154 * try and check multiple fields with one check. The caller must do a detailed
1155 * check if necessary.
1156 */
1157 static inline bool page_expected_state(struct page *page,
1158 unsigned long check_flags)
1159 {
1160 if (unlikely(atomic_read(&page->_mapcount) != -1))
1161 return false;
1162
1163 if (unlikely((unsigned long)page->mapping |
1164 page_ref_count(page) |
1165 #ifdef CONFIG_MEMCG
1166 page->memcg_data |
1167 #endif
1168 (page->flags & check_flags)))
1169 return false;
1170
1171 return true;
1172 }
1173
1174 static const char *page_bad_reason(struct page *page, unsigned long flags)
1175 {
1176 const char *bad_reason = NULL;
1177
1178 if (unlikely(atomic_read(&page->_mapcount) != -1))
1179 bad_reason = "nonzero mapcount";
1180 if (unlikely(page->mapping != NULL))
1181 bad_reason = "non-NULL mapping";
1182 if (unlikely(page_ref_count(page) != 0))
1183 bad_reason = "nonzero _refcount";
1184 if (unlikely(page->flags & flags)) {
1185 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1186 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1187 else
1188 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1189 }
1190 #ifdef CONFIG_MEMCG
1191 if (unlikely(page->memcg_data))
1192 bad_reason = "page still charged to cgroup";
1193 #endif
1194 return bad_reason;
1195 }
1196
1197 static void check_free_page_bad(struct page *page)
1198 {
1199 bad_page(page,
1200 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1201 }
1202
1203 static inline int check_free_page(struct page *page)
1204 {
1205 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1206 return 0;
1207
1208 /* Something has gone sideways, find it */
1209 check_free_page_bad(page);
1210 return 1;
1211 }
1212
1213 static int free_tail_pages_check(struct page *head_page, struct page *page)
1214 {
1215 int ret = 1;
1216
1217 /*
1218 * We rely page->lru.next never has bit 0 set, unless the page
1219 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1220 */
1221 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1222
1223 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1224 ret = 0;
1225 goto out;
1226 }
1227 switch (page - head_page) {
1228 case 1:
1229 /* the first tail page: ->mapping may be compound_mapcount() */
1230 if (unlikely(compound_mapcount(page))) {
1231 bad_page(page, "nonzero compound_mapcount");
1232 goto out;
1233 }
1234 break;
1235 case 2:
1236 /*
1237 * the second tail page: ->mapping is
1238 * deferred_list.next -- ignore value.
1239 */
1240 break;
1241 default:
1242 if (page->mapping != TAIL_MAPPING) {
1243 bad_page(page, "corrupted mapping in tail page");
1244 goto out;
1245 }
1246 break;
1247 }
1248 if (unlikely(!PageTail(page))) {
1249 bad_page(page, "PageTail not set");
1250 goto out;
1251 }
1252 if (unlikely(compound_head(page) != head_page)) {
1253 bad_page(page, "compound_head not consistent");
1254 goto out;
1255 }
1256 ret = 0;
1257 out:
1258 page->mapping = NULL;
1259 clear_compound_head(page);
1260 return ret;
1261 }
1262
1263 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
1264 {
1265 int i;
1266
1267 if (zero_tags) {
1268 for (i = 0; i < numpages; i++)
1269 tag_clear_highpage(page + i);
1270 return;
1271 }
1272
1273 /* s390's use of memset() could override KASAN redzones. */
1274 kasan_disable_current();
1275 for (i = 0; i < numpages; i++) {
1276 u8 tag = page_kasan_tag(page + i);
1277 page_kasan_tag_reset(page + i);
1278 clear_highpage(page + i);
1279 page_kasan_tag_set(page + i, tag);
1280 }
1281 kasan_enable_current();
1282 }
1283
1284 static __always_inline bool free_pages_prepare(struct page *page,
1285 unsigned int order, bool check_free, fpi_t fpi_flags)
1286 {
1287 int bad = 0;
1288 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1289
1290 VM_BUG_ON_PAGE(PageTail(page), page);
1291
1292 trace_mm_page_free(page, order);
1293
1294 if (unlikely(PageHWPoison(page)) && !order) {
1295 /*
1296 * Do not let hwpoison pages hit pcplists/buddy
1297 * Untie memcg state and reset page's owner
1298 */
1299 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1300 __memcg_kmem_uncharge_page(page, order);
1301 reset_page_owner(page, order);
1302 return false;
1303 }
1304
1305 /*
1306 * Check tail pages before head page information is cleared to
1307 * avoid checking PageCompound for order-0 pages.
1308 */
1309 if (unlikely(order)) {
1310 bool compound = PageCompound(page);
1311 int i;
1312
1313 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1314
1315 if (compound) {
1316 ClearPageDoubleMap(page);
1317 ClearPageHasHWPoisoned(page);
1318 }
1319 for (i = 1; i < (1 << order); i++) {
1320 if (compound)
1321 bad += free_tail_pages_check(page, page + i);
1322 if (unlikely(check_free_page(page + i))) {
1323 bad++;
1324 continue;
1325 }
1326 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1327 }
1328 }
1329 if (PageMappingFlags(page))
1330 page->mapping = NULL;
1331 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1332 __memcg_kmem_uncharge_page(page, order);
1333 if (check_free)
1334 bad += check_free_page(page);
1335 if (bad)
1336 return false;
1337
1338 page_cpupid_reset_last(page);
1339 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1340 reset_page_owner(page, order);
1341
1342 if (!PageHighMem(page)) {
1343 debug_check_no_locks_freed(page_address(page),
1344 PAGE_SIZE << order);
1345 debug_check_no_obj_freed(page_address(page),
1346 PAGE_SIZE << order);
1347 }
1348
1349 kernel_poison_pages(page, 1 << order);
1350
1351 /*
1352 * As memory initialization might be integrated into KASAN,
1353 * kasan_free_pages and kernel_init_free_pages must be
1354 * kept together to avoid discrepancies in behavior.
1355 *
1356 * With hardware tag-based KASAN, memory tags must be set before the
1357 * page becomes unavailable via debug_pagealloc or arch_free_page.
1358 */
1359 if (kasan_has_integrated_init()) {
1360 if (!skip_kasan_poison)
1361 kasan_free_pages(page, order);
1362 } else {
1363 bool init = want_init_on_free();
1364
1365 if (init)
1366 kernel_init_free_pages(page, 1 << order, false);
1367 if (!skip_kasan_poison)
1368 kasan_poison_pages(page, order, init);
1369 }
1370
1371 /*
1372 * arch_free_page() can make the page's contents inaccessible. s390
1373 * does this. So nothing which can access the page's contents should
1374 * happen after this.
1375 */
1376 arch_free_page(page, order);
1377
1378 debug_pagealloc_unmap_pages(page, 1 << order);
1379
1380 return true;
1381 }
1382
1383 #ifdef CONFIG_DEBUG_VM
1384 /*
1385 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1386 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1387 * moved from pcp lists to free lists.
1388 */
1389 static bool free_pcp_prepare(struct page *page, unsigned int order)
1390 {
1391 return free_pages_prepare(page, order, true, FPI_NONE);
1392 }
1393
1394 static bool bulkfree_pcp_prepare(struct page *page)
1395 {
1396 if (debug_pagealloc_enabled_static())
1397 return check_free_page(page);
1398 else
1399 return false;
1400 }
1401 #else
1402 /*
1403 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1404 * moving from pcp lists to free list in order to reduce overhead. With
1405 * debug_pagealloc enabled, they are checked also immediately when being freed
1406 * to the pcp lists.
1407 */
1408 static bool free_pcp_prepare(struct page *page, unsigned int order)
1409 {
1410 if (debug_pagealloc_enabled_static())
1411 return free_pages_prepare(page, order, true, FPI_NONE);
1412 else
1413 return free_pages_prepare(page, order, false, FPI_NONE);
1414 }
1415
1416 static bool bulkfree_pcp_prepare(struct page *page)
1417 {
1418 return check_free_page(page);
1419 }
1420 #endif /* CONFIG_DEBUG_VM */
1421
1422 static inline void prefetch_buddy(struct page *page)
1423 {
1424 unsigned long pfn = page_to_pfn(page);
1425 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1426 struct page *buddy = page + (buddy_pfn - pfn);
1427
1428 prefetch(buddy);
1429 }
1430
1431 /*
1432 * Frees a number of pages from the PCP lists
1433 * Assumes all pages on list are in same zone, and of same order.
1434 * count is the number of pages to free.
1435 *
1436 * If the zone was previously in an "all pages pinned" state then look to
1437 * see if this freeing clears that state.
1438 *
1439 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1440 * pinned" detection logic.
1441 */
1442 static void free_pcppages_bulk(struct zone *zone, int count,
1443 struct per_cpu_pages *pcp)
1444 {
1445 int pindex = 0;
1446 int batch_free = 0;
1447 int nr_freed = 0;
1448 unsigned int order;
1449 int prefetch_nr = READ_ONCE(pcp->batch);
1450 bool isolated_pageblocks;
1451 struct page *page, *tmp;
1452 LIST_HEAD(head);
1453
1454 /*
1455 * Ensure proper count is passed which otherwise would stuck in the
1456 * below while (list_empty(list)) loop.
1457 */
1458 count = min(pcp->count, count);
1459 while (count > 0) {
1460 struct list_head *list;
1461
1462 /*
1463 * Remove pages from lists in a round-robin fashion. A
1464 * batch_free count is maintained that is incremented when an
1465 * empty list is encountered. This is so more pages are freed
1466 * off fuller lists instead of spinning excessively around empty
1467 * lists
1468 */
1469 do {
1470 batch_free++;
1471 if (++pindex == NR_PCP_LISTS)
1472 pindex = 0;
1473 list = &pcp->lists[pindex];
1474 } while (list_empty(list));
1475
1476 /* This is the only non-empty list. Free them all. */
1477 if (batch_free == NR_PCP_LISTS)
1478 batch_free = count;
1479
1480 order = pindex_to_order(pindex);
1481 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1482 do {
1483 page = list_last_entry(list, struct page, lru);
1484 /* must delete to avoid corrupting pcp list */
1485 list_del(&page->lru);
1486 nr_freed += 1 << order;
1487 count -= 1 << order;
1488
1489 if (bulkfree_pcp_prepare(page))
1490 continue;
1491
1492 /* Encode order with the migratetype */
1493 page->index <<= NR_PCP_ORDER_WIDTH;
1494 page->index |= order;
1495
1496 list_add_tail(&page->lru, &head);
1497
1498 /*
1499 * We are going to put the page back to the global
1500 * pool, prefetch its buddy to speed up later access
1501 * under zone->lock. It is believed the overhead of
1502 * an additional test and calculating buddy_pfn here
1503 * can be offset by reduced memory latency later. To
1504 * avoid excessive prefetching due to large count, only
1505 * prefetch buddy for the first pcp->batch nr of pages.
1506 */
1507 if (prefetch_nr) {
1508 prefetch_buddy(page);
1509 prefetch_nr--;
1510 }
1511 } while (count > 0 && --batch_free && !list_empty(list));
1512 }
1513 pcp->count -= nr_freed;
1514
1515 /*
1516 * local_lock_irq held so equivalent to spin_lock_irqsave for
1517 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1518 */
1519 spin_lock(&zone->lock);
1520 isolated_pageblocks = has_isolate_pageblock(zone);
1521
1522 /*
1523 * Use safe version since after __free_one_page(),
1524 * page->lru.next will not point to original list.
1525 */
1526 list_for_each_entry_safe(page, tmp, &head, lru) {
1527 int mt = get_pcppage_migratetype(page);
1528
1529 /* mt has been encoded with the order (see above) */
1530 order = mt & NR_PCP_ORDER_MASK;
1531 mt >>= NR_PCP_ORDER_WIDTH;
1532
1533 /* MIGRATE_ISOLATE page should not go to pcplists */
1534 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1535 /* Pageblock could have been isolated meanwhile */
1536 if (unlikely(isolated_pageblocks))
1537 mt = get_pageblock_migratetype(page);
1538
1539 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1540 trace_mm_page_pcpu_drain(page, order, mt);
1541 }
1542 spin_unlock(&zone->lock);
1543 }
1544
1545 static void free_one_page(struct zone *zone,
1546 struct page *page, unsigned long pfn,
1547 unsigned int order,
1548 int migratetype, fpi_t fpi_flags)
1549 {
1550 unsigned long flags;
1551
1552 spin_lock_irqsave(&zone->lock, flags);
1553 if (unlikely(has_isolate_pageblock(zone) ||
1554 is_migrate_isolate(migratetype))) {
1555 migratetype = get_pfnblock_migratetype(page, pfn);
1556 }
1557 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1558 spin_unlock_irqrestore(&zone->lock, flags);
1559 }
1560
1561 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1562 unsigned long zone, int nid)
1563 {
1564 mm_zero_struct_page(page);
1565 set_page_links(page, zone, nid, pfn);
1566 init_page_count(page);
1567 page_mapcount_reset(page);
1568 page_cpupid_reset_last(page);
1569 page_kasan_tag_reset(page);
1570
1571 INIT_LIST_HEAD(&page->lru);
1572 #ifdef WANT_PAGE_VIRTUAL
1573 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1574 if (!is_highmem_idx(zone))
1575 set_page_address(page, __va(pfn << PAGE_SHIFT));
1576 #endif
1577 }
1578
1579 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1580 static void __meminit init_reserved_page(unsigned long pfn)
1581 {
1582 pg_data_t *pgdat;
1583 int nid, zid;
1584
1585 if (!early_page_uninitialised(pfn))
1586 return;
1587
1588 nid = early_pfn_to_nid(pfn);
1589 pgdat = NODE_DATA(nid);
1590
1591 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1592 struct zone *zone = &pgdat->node_zones[zid];
1593
1594 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1595 break;
1596 }
1597 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1598 }
1599 #else
1600 static inline void init_reserved_page(unsigned long pfn)
1601 {
1602 }
1603 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1604
1605 /*
1606 * Initialised pages do not have PageReserved set. This function is
1607 * called for each range allocated by the bootmem allocator and
1608 * marks the pages PageReserved. The remaining valid pages are later
1609 * sent to the buddy page allocator.
1610 */
1611 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1612 {
1613 unsigned long start_pfn = PFN_DOWN(start);
1614 unsigned long end_pfn = PFN_UP(end);
1615
1616 for (; start_pfn < end_pfn; start_pfn++) {
1617 if (pfn_valid(start_pfn)) {
1618 struct page *page = pfn_to_page(start_pfn);
1619
1620 init_reserved_page(start_pfn);
1621
1622 /* Avoid false-positive PageTail() */
1623 INIT_LIST_HEAD(&page->lru);
1624
1625 /*
1626 * no need for atomic set_bit because the struct
1627 * page is not visible yet so nobody should
1628 * access it yet.
1629 */
1630 __SetPageReserved(page);
1631 }
1632 }
1633 }
1634
1635 static void __free_pages_ok(struct page *page, unsigned int order,
1636 fpi_t fpi_flags)
1637 {
1638 unsigned long flags;
1639 int migratetype;
1640 unsigned long pfn = page_to_pfn(page);
1641 struct zone *zone = page_zone(page);
1642
1643 if (!free_pages_prepare(page, order, true, fpi_flags))
1644 return;
1645
1646 migratetype = get_pfnblock_migratetype(page, pfn);
1647
1648 spin_lock_irqsave(&zone->lock, flags);
1649 if (unlikely(has_isolate_pageblock(zone) ||
1650 is_migrate_isolate(migratetype))) {
1651 migratetype = get_pfnblock_migratetype(page, pfn);
1652 }
1653 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1654 spin_unlock_irqrestore(&zone->lock, flags);
1655
1656 __count_vm_events(PGFREE, 1 << order);
1657 }
1658
1659 void __free_pages_core(struct page *page, unsigned int order)
1660 {
1661 unsigned int nr_pages = 1 << order;
1662 struct page *p = page;
1663 unsigned int loop;
1664
1665 /*
1666 * When initializing the memmap, __init_single_page() sets the refcount
1667 * of all pages to 1 ("allocated"/"not free"). We have to set the
1668 * refcount of all involved pages to 0.
1669 */
1670 prefetchw(p);
1671 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1672 prefetchw(p + 1);
1673 __ClearPageReserved(p);
1674 set_page_count(p, 0);
1675 }
1676 __ClearPageReserved(p);
1677 set_page_count(p, 0);
1678
1679 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1680
1681 /*
1682 * Bypass PCP and place fresh pages right to the tail, primarily
1683 * relevant for memory onlining.
1684 */
1685 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1686 }
1687
1688 #ifdef CONFIG_NUMA
1689
1690 /*
1691 * During memory init memblocks map pfns to nids. The search is expensive and
1692 * this caches recent lookups. The implementation of __early_pfn_to_nid
1693 * treats start/end as pfns.
1694 */
1695 struct mminit_pfnnid_cache {
1696 unsigned long last_start;
1697 unsigned long last_end;
1698 int last_nid;
1699 };
1700
1701 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1702
1703 /*
1704 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1705 */
1706 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1707 struct mminit_pfnnid_cache *state)
1708 {
1709 unsigned long start_pfn, end_pfn;
1710 int nid;
1711
1712 if (state->last_start <= pfn && pfn < state->last_end)
1713 return state->last_nid;
1714
1715 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1716 if (nid != NUMA_NO_NODE) {
1717 state->last_start = start_pfn;
1718 state->last_end = end_pfn;
1719 state->last_nid = nid;
1720 }
1721
1722 return nid;
1723 }
1724
1725 int __meminit early_pfn_to_nid(unsigned long pfn)
1726 {
1727 static DEFINE_SPINLOCK(early_pfn_lock);
1728 int nid;
1729
1730 spin_lock(&early_pfn_lock);
1731 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1732 if (nid < 0)
1733 nid = first_online_node;
1734 spin_unlock(&early_pfn_lock);
1735
1736 return nid;
1737 }
1738 #endif /* CONFIG_NUMA */
1739
1740 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1741 unsigned int order)
1742 {
1743 if (early_page_uninitialised(pfn))
1744 return;
1745 __free_pages_core(page, order);
1746 }
1747
1748 /*
1749 * Check that the whole (or subset of) a pageblock given by the interval of
1750 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1751 * with the migration of free compaction scanner.
1752 *
1753 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1754 *
1755 * It's possible on some configurations to have a setup like node0 node1 node0
1756 * i.e. it's possible that all pages within a zones range of pages do not
1757 * belong to a single zone. We assume that a border between node0 and node1
1758 * can occur within a single pageblock, but not a node0 node1 node0
1759 * interleaving within a single pageblock. It is therefore sufficient to check
1760 * the first and last page of a pageblock and avoid checking each individual
1761 * page in a pageblock.
1762 */
1763 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1764 unsigned long end_pfn, struct zone *zone)
1765 {
1766 struct page *start_page;
1767 struct page *end_page;
1768
1769 /* end_pfn is one past the range we are checking */
1770 end_pfn--;
1771
1772 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1773 return NULL;
1774
1775 start_page = pfn_to_online_page(start_pfn);
1776 if (!start_page)
1777 return NULL;
1778
1779 if (page_zone(start_page) != zone)
1780 return NULL;
1781
1782 end_page = pfn_to_page(end_pfn);
1783
1784 /* This gives a shorter code than deriving page_zone(end_page) */
1785 if (page_zone_id(start_page) != page_zone_id(end_page))
1786 return NULL;
1787
1788 return start_page;
1789 }
1790
1791 void set_zone_contiguous(struct zone *zone)
1792 {
1793 unsigned long block_start_pfn = zone->zone_start_pfn;
1794 unsigned long block_end_pfn;
1795
1796 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1797 for (; block_start_pfn < zone_end_pfn(zone);
1798 block_start_pfn = block_end_pfn,
1799 block_end_pfn += pageblock_nr_pages) {
1800
1801 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1802
1803 if (!__pageblock_pfn_to_page(block_start_pfn,
1804 block_end_pfn, zone))
1805 return;
1806 cond_resched();
1807 }
1808
1809 /* We confirm that there is no hole */
1810 zone->contiguous = true;
1811 }
1812
1813 void clear_zone_contiguous(struct zone *zone)
1814 {
1815 zone->contiguous = false;
1816 }
1817
1818 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1819 static void __init deferred_free_range(unsigned long pfn,
1820 unsigned long nr_pages)
1821 {
1822 struct page *page;
1823 unsigned long i;
1824
1825 if (!nr_pages)
1826 return;
1827
1828 page = pfn_to_page(pfn);
1829
1830 /* Free a large naturally-aligned chunk if possible */
1831 if (nr_pages == pageblock_nr_pages &&
1832 (pfn & (pageblock_nr_pages - 1)) == 0) {
1833 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1834 __free_pages_core(page, pageblock_order);
1835 return;
1836 }
1837
1838 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1839 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1840 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1841 __free_pages_core(page, 0);
1842 }
1843 }
1844
1845 /* Completion tracking for deferred_init_memmap() threads */
1846 static atomic_t pgdat_init_n_undone __initdata;
1847 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1848
1849 static inline void __init pgdat_init_report_one_done(void)
1850 {
1851 if (atomic_dec_and_test(&pgdat_init_n_undone))
1852 complete(&pgdat_init_all_done_comp);
1853 }
1854
1855 /*
1856 * Returns true if page needs to be initialized or freed to buddy allocator.
1857 *
1858 * First we check if pfn is valid on architectures where it is possible to have
1859 * holes within pageblock_nr_pages. On systems where it is not possible, this
1860 * function is optimized out.
1861 *
1862 * Then, we check if a current large page is valid by only checking the validity
1863 * of the head pfn.
1864 */
1865 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1866 {
1867 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1868 return false;
1869 return true;
1870 }
1871
1872 /*
1873 * Free pages to buddy allocator. Try to free aligned pages in
1874 * pageblock_nr_pages sizes.
1875 */
1876 static void __init deferred_free_pages(unsigned long pfn,
1877 unsigned long end_pfn)
1878 {
1879 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1880 unsigned long nr_free = 0;
1881
1882 for (; pfn < end_pfn; pfn++) {
1883 if (!deferred_pfn_valid(pfn)) {
1884 deferred_free_range(pfn - nr_free, nr_free);
1885 nr_free = 0;
1886 } else if (!(pfn & nr_pgmask)) {
1887 deferred_free_range(pfn - nr_free, nr_free);
1888 nr_free = 1;
1889 } else {
1890 nr_free++;
1891 }
1892 }
1893 /* Free the last block of pages to allocator */
1894 deferred_free_range(pfn - nr_free, nr_free);
1895 }
1896
1897 /*
1898 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1899 * by performing it only once every pageblock_nr_pages.
1900 * Return number of pages initialized.
1901 */
1902 static unsigned long __init deferred_init_pages(struct zone *zone,
1903 unsigned long pfn,
1904 unsigned long end_pfn)
1905 {
1906 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1907 int nid = zone_to_nid(zone);
1908 unsigned long nr_pages = 0;
1909 int zid = zone_idx(zone);
1910 struct page *page = NULL;
1911
1912 for (; pfn < end_pfn; pfn++) {
1913 if (!deferred_pfn_valid(pfn)) {
1914 page = NULL;
1915 continue;
1916 } else if (!page || !(pfn & nr_pgmask)) {
1917 page = pfn_to_page(pfn);
1918 } else {
1919 page++;
1920 }
1921 __init_single_page(page, pfn, zid, nid);
1922 nr_pages++;
1923 }
1924 return (nr_pages);
1925 }
1926
1927 /*
1928 * This function is meant to pre-load the iterator for the zone init.
1929 * Specifically it walks through the ranges until we are caught up to the
1930 * first_init_pfn value and exits there. If we never encounter the value we
1931 * return false indicating there are no valid ranges left.
1932 */
1933 static bool __init
1934 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1935 unsigned long *spfn, unsigned long *epfn,
1936 unsigned long first_init_pfn)
1937 {
1938 u64 j;
1939
1940 /*
1941 * Start out by walking through the ranges in this zone that have
1942 * already been initialized. We don't need to do anything with them
1943 * so we just need to flush them out of the system.
1944 */
1945 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1946 if (*epfn <= first_init_pfn)
1947 continue;
1948 if (*spfn < first_init_pfn)
1949 *spfn = first_init_pfn;
1950 *i = j;
1951 return true;
1952 }
1953
1954 return false;
1955 }
1956
1957 /*
1958 * Initialize and free pages. We do it in two loops: first we initialize
1959 * struct page, then free to buddy allocator, because while we are
1960 * freeing pages we can access pages that are ahead (computing buddy
1961 * page in __free_one_page()).
1962 *
1963 * In order to try and keep some memory in the cache we have the loop
1964 * broken along max page order boundaries. This way we will not cause
1965 * any issues with the buddy page computation.
1966 */
1967 static unsigned long __init
1968 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1969 unsigned long *end_pfn)
1970 {
1971 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1972 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1973 unsigned long nr_pages = 0;
1974 u64 j = *i;
1975
1976 /* First we loop through and initialize the page values */
1977 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1978 unsigned long t;
1979
1980 if (mo_pfn <= *start_pfn)
1981 break;
1982
1983 t = min(mo_pfn, *end_pfn);
1984 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1985
1986 if (mo_pfn < *end_pfn) {
1987 *start_pfn = mo_pfn;
1988 break;
1989 }
1990 }
1991
1992 /* Reset values and now loop through freeing pages as needed */
1993 swap(j, *i);
1994
1995 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1996 unsigned long t;
1997
1998 if (mo_pfn <= spfn)
1999 break;
2000
2001 t = min(mo_pfn, epfn);
2002 deferred_free_pages(spfn, t);
2003
2004 if (mo_pfn <= epfn)
2005 break;
2006 }
2007
2008 return nr_pages;
2009 }
2010
2011 static void __init
2012 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2013 void *arg)
2014 {
2015 unsigned long spfn, epfn;
2016 struct zone *zone = arg;
2017 u64 i;
2018
2019 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2020
2021 /*
2022 * Initialize and free pages in MAX_ORDER sized increments so that we
2023 * can avoid introducing any issues with the buddy allocator.
2024 */
2025 while (spfn < end_pfn) {
2026 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2027 cond_resched();
2028 }
2029 }
2030
2031 /* An arch may override for more concurrency. */
2032 __weak int __init
2033 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2034 {
2035 return 1;
2036 }
2037
2038 /* Initialise remaining memory on a node */
2039 static int __init deferred_init_memmap(void *data)
2040 {
2041 pg_data_t *pgdat = data;
2042 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2043 unsigned long spfn = 0, epfn = 0;
2044 unsigned long first_init_pfn, flags;
2045 unsigned long start = jiffies;
2046 struct zone *zone;
2047 int zid, max_threads;
2048 u64 i;
2049
2050 /* Bind memory initialisation thread to a local node if possible */
2051 if (!cpumask_empty(cpumask))
2052 set_cpus_allowed_ptr(current, cpumask);
2053
2054 pgdat_resize_lock(pgdat, &flags);
2055 first_init_pfn = pgdat->first_deferred_pfn;
2056 if (first_init_pfn == ULONG_MAX) {
2057 pgdat_resize_unlock(pgdat, &flags);
2058 pgdat_init_report_one_done();
2059 return 0;
2060 }
2061
2062 /* Sanity check boundaries */
2063 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2064 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2065 pgdat->first_deferred_pfn = ULONG_MAX;
2066
2067 /*
2068 * Once we unlock here, the zone cannot be grown anymore, thus if an
2069 * interrupt thread must allocate this early in boot, zone must be
2070 * pre-grown prior to start of deferred page initialization.
2071 */
2072 pgdat_resize_unlock(pgdat, &flags);
2073
2074 /* Only the highest zone is deferred so find it */
2075 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2076 zone = pgdat->node_zones + zid;
2077 if (first_init_pfn < zone_end_pfn(zone))
2078 break;
2079 }
2080
2081 /* If the zone is empty somebody else may have cleared out the zone */
2082 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2083 first_init_pfn))
2084 goto zone_empty;
2085
2086 max_threads = deferred_page_init_max_threads(cpumask);
2087
2088 while (spfn < epfn) {
2089 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2090 struct padata_mt_job job = {
2091 .thread_fn = deferred_init_memmap_chunk,
2092 .fn_arg = zone,
2093 .start = spfn,
2094 .size = epfn_align - spfn,
2095 .align = PAGES_PER_SECTION,
2096 .min_chunk = PAGES_PER_SECTION,
2097 .max_threads = max_threads,
2098 };
2099
2100 padata_do_multithreaded(&job);
2101 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2102 epfn_align);
2103 }
2104 zone_empty:
2105 /* Sanity check that the next zone really is unpopulated */
2106 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2107
2108 pr_info("node %d deferred pages initialised in %ums\n",
2109 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2110
2111 pgdat_init_report_one_done();
2112 return 0;
2113 }
2114
2115 /*
2116 * If this zone has deferred pages, try to grow it by initializing enough
2117 * deferred pages to satisfy the allocation specified by order, rounded up to
2118 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2119 * of SECTION_SIZE bytes by initializing struct pages in increments of
2120 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2121 *
2122 * Return true when zone was grown, otherwise return false. We return true even
2123 * when we grow less than requested, to let the caller decide if there are
2124 * enough pages to satisfy the allocation.
2125 *
2126 * Note: We use noinline because this function is needed only during boot, and
2127 * it is called from a __ref function _deferred_grow_zone. This way we are
2128 * making sure that it is not inlined into permanent text section.
2129 */
2130 static noinline bool __init
2131 deferred_grow_zone(struct zone *zone, unsigned int order)
2132 {
2133 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2134 pg_data_t *pgdat = zone->zone_pgdat;
2135 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2136 unsigned long spfn, epfn, flags;
2137 unsigned long nr_pages = 0;
2138 u64 i;
2139
2140 /* Only the last zone may have deferred pages */
2141 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2142 return false;
2143
2144 pgdat_resize_lock(pgdat, &flags);
2145
2146 /*
2147 * If someone grew this zone while we were waiting for spinlock, return
2148 * true, as there might be enough pages already.
2149 */
2150 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2151 pgdat_resize_unlock(pgdat, &flags);
2152 return true;
2153 }
2154
2155 /* If the zone is empty somebody else may have cleared out the zone */
2156 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2157 first_deferred_pfn)) {
2158 pgdat->first_deferred_pfn = ULONG_MAX;
2159 pgdat_resize_unlock(pgdat, &flags);
2160 /* Retry only once. */
2161 return first_deferred_pfn != ULONG_MAX;
2162 }
2163
2164 /*
2165 * Initialize and free pages in MAX_ORDER sized increments so
2166 * that we can avoid introducing any issues with the buddy
2167 * allocator.
2168 */
2169 while (spfn < epfn) {
2170 /* update our first deferred PFN for this section */
2171 first_deferred_pfn = spfn;
2172
2173 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2174 touch_nmi_watchdog();
2175
2176 /* We should only stop along section boundaries */
2177 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2178 continue;
2179
2180 /* If our quota has been met we can stop here */
2181 if (nr_pages >= nr_pages_needed)
2182 break;
2183 }
2184
2185 pgdat->first_deferred_pfn = spfn;
2186 pgdat_resize_unlock(pgdat, &flags);
2187
2188 return nr_pages > 0;
2189 }
2190
2191 /*
2192 * deferred_grow_zone() is __init, but it is called from
2193 * get_page_from_freelist() during early boot until deferred_pages permanently
2194 * disables this call. This is why we have refdata wrapper to avoid warning,
2195 * and to ensure that the function body gets unloaded.
2196 */
2197 static bool __ref
2198 _deferred_grow_zone(struct zone *zone, unsigned int order)
2199 {
2200 return deferred_grow_zone(zone, order);
2201 }
2202
2203 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2204
2205 void __init page_alloc_init_late(void)
2206 {
2207 struct zone *zone;
2208 int nid;
2209
2210 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2211
2212 /* There will be num_node_state(N_MEMORY) threads */
2213 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2214 for_each_node_state(nid, N_MEMORY) {
2215 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2216 }
2217
2218 /* Block until all are initialised */
2219 wait_for_completion(&pgdat_init_all_done_comp);
2220
2221 /*
2222 * We initialized the rest of the deferred pages. Permanently disable
2223 * on-demand struct page initialization.
2224 */
2225 static_branch_disable(&deferred_pages);
2226
2227 /* Reinit limits that are based on free pages after the kernel is up */
2228 files_maxfiles_init();
2229 #endif
2230
2231 buffer_init();
2232
2233 /* Discard memblock private memory */
2234 memblock_discard();
2235
2236 for_each_node_state(nid, N_MEMORY)
2237 shuffle_free_memory(NODE_DATA(nid));
2238
2239 for_each_populated_zone(zone)
2240 set_zone_contiguous(zone);
2241 }
2242
2243 #ifdef CONFIG_CMA
2244 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2245 void __init init_cma_reserved_pageblock(struct page *page)
2246 {
2247 unsigned i = pageblock_nr_pages;
2248 struct page *p = page;
2249
2250 do {
2251 __ClearPageReserved(p);
2252 set_page_count(p, 0);
2253 } while (++p, --i);
2254
2255 set_pageblock_migratetype(page, MIGRATE_CMA);
2256
2257 if (pageblock_order >= MAX_ORDER) {
2258 i = pageblock_nr_pages;
2259 p = page;
2260 do {
2261 set_page_refcounted(p);
2262 __free_pages(p, MAX_ORDER - 1);
2263 p += MAX_ORDER_NR_PAGES;
2264 } while (i -= MAX_ORDER_NR_PAGES);
2265 } else {
2266 set_page_refcounted(page);
2267 __free_pages(page, pageblock_order);
2268 }
2269
2270 adjust_managed_page_count(page, pageblock_nr_pages);
2271 page_zone(page)->cma_pages += pageblock_nr_pages;
2272 }
2273 #endif
2274
2275 /*
2276 * The order of subdivision here is critical for the IO subsystem.
2277 * Please do not alter this order without good reasons and regression
2278 * testing. Specifically, as large blocks of memory are subdivided,
2279 * the order in which smaller blocks are delivered depends on the order
2280 * they're subdivided in this function. This is the primary factor
2281 * influencing the order in which pages are delivered to the IO
2282 * subsystem according to empirical testing, and this is also justified
2283 * by considering the behavior of a buddy system containing a single
2284 * large block of memory acted on by a series of small allocations.
2285 * This behavior is a critical factor in sglist merging's success.
2286 *
2287 * -- nyc
2288 */
2289 static inline void expand(struct zone *zone, struct page *page,
2290 int low, int high, int migratetype)
2291 {
2292 unsigned long size = 1 << high;
2293
2294 while (high > low) {
2295 high--;
2296 size >>= 1;
2297 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2298
2299 /*
2300 * Mark as guard pages (or page), that will allow to
2301 * merge back to allocator when buddy will be freed.
2302 * Corresponding page table entries will not be touched,
2303 * pages will stay not present in virtual address space
2304 */
2305 if (set_page_guard(zone, &page[size], high, migratetype))
2306 continue;
2307
2308 add_to_free_list(&page[size], zone, high, migratetype);
2309 set_buddy_order(&page[size], high);
2310 }
2311 }
2312
2313 static void check_new_page_bad(struct page *page)
2314 {
2315 if (unlikely(page->flags & __PG_HWPOISON)) {
2316 /* Don't complain about hwpoisoned pages */
2317 page_mapcount_reset(page); /* remove PageBuddy */
2318 return;
2319 }
2320
2321 bad_page(page,
2322 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2323 }
2324
2325 /*
2326 * This page is about to be returned from the page allocator
2327 */
2328 static inline int check_new_page(struct page *page)
2329 {
2330 if (likely(page_expected_state(page,
2331 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2332 return 0;
2333
2334 check_new_page_bad(page);
2335 return 1;
2336 }
2337
2338 #ifdef CONFIG_DEBUG_VM
2339 /*
2340 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2341 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2342 * also checked when pcp lists are refilled from the free lists.
2343 */
2344 static inline bool check_pcp_refill(struct page *page)
2345 {
2346 if (debug_pagealloc_enabled_static())
2347 return check_new_page(page);
2348 else
2349 return false;
2350 }
2351
2352 static inline bool check_new_pcp(struct page *page)
2353 {
2354 return check_new_page(page);
2355 }
2356 #else
2357 /*
2358 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2359 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2360 * enabled, they are also checked when being allocated from the pcp lists.
2361 */
2362 static inline bool check_pcp_refill(struct page *page)
2363 {
2364 return check_new_page(page);
2365 }
2366 static inline bool check_new_pcp(struct page *page)
2367 {
2368 if (debug_pagealloc_enabled_static())
2369 return check_new_page(page);
2370 else
2371 return false;
2372 }
2373 #endif /* CONFIG_DEBUG_VM */
2374
2375 static bool check_new_pages(struct page *page, unsigned int order)
2376 {
2377 int i;
2378 for (i = 0; i < (1 << order); i++) {
2379 struct page *p = page + i;
2380
2381 if (unlikely(check_new_page(p)))
2382 return true;
2383 }
2384
2385 return false;
2386 }
2387
2388 inline void post_alloc_hook(struct page *page, unsigned int order,
2389 gfp_t gfp_flags)
2390 {
2391 set_page_private(page, 0);
2392 set_page_refcounted(page);
2393
2394 arch_alloc_page(page, order);
2395 debug_pagealloc_map_pages(page, 1 << order);
2396
2397 /*
2398 * Page unpoisoning must happen before memory initialization.
2399 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2400 * allocations and the page unpoisoning code will complain.
2401 */
2402 kernel_unpoison_pages(page, 1 << order);
2403
2404 /*
2405 * As memory initialization might be integrated into KASAN,
2406 * kasan_alloc_pages and kernel_init_free_pages must be
2407 * kept together to avoid discrepancies in behavior.
2408 */
2409 if (kasan_has_integrated_init()) {
2410 kasan_alloc_pages(page, order, gfp_flags);
2411 } else {
2412 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2413
2414 kasan_unpoison_pages(page, order, init);
2415 if (init)
2416 kernel_init_free_pages(page, 1 << order,
2417 gfp_flags & __GFP_ZEROTAGS);
2418 }
2419
2420 set_page_owner(page, order, gfp_flags);
2421 }
2422
2423 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2424 unsigned int alloc_flags)
2425 {
2426 post_alloc_hook(page, order, gfp_flags);
2427
2428 if (order && (gfp_flags & __GFP_COMP))
2429 prep_compound_page(page, order);
2430
2431 /*
2432 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2433 * allocate the page. The expectation is that the caller is taking
2434 * steps that will free more memory. The caller should avoid the page
2435 * being used for !PFMEMALLOC purposes.
2436 */
2437 if (alloc_flags & ALLOC_NO_WATERMARKS)
2438 set_page_pfmemalloc(page);
2439 else
2440 clear_page_pfmemalloc(page);
2441 }
2442
2443 /*
2444 * Go through the free lists for the given migratetype and remove
2445 * the smallest available page from the freelists
2446 */
2447 static __always_inline
2448 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2449 int migratetype)
2450 {
2451 unsigned int current_order;
2452 struct free_area *area;
2453 struct page *page;
2454
2455 /* Find a page of the appropriate size in the preferred list */
2456 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2457 area = &(zone->free_area[current_order]);
2458 page = get_page_from_free_area(area, migratetype);
2459 if (!page)
2460 continue;
2461 del_page_from_free_list(page, zone, current_order);
2462 expand(zone, page, order, current_order, migratetype);
2463 set_pcppage_migratetype(page, migratetype);
2464 return page;
2465 }
2466
2467 return NULL;
2468 }
2469
2470
2471 /*
2472 * This array describes the order lists are fallen back to when
2473 * the free lists for the desirable migrate type are depleted
2474 */
2475 static int fallbacks[MIGRATE_TYPES][3] = {
2476 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2477 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2478 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2479 #ifdef CONFIG_CMA
2480 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2481 #endif
2482 #ifdef CONFIG_MEMORY_ISOLATION
2483 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2484 #endif
2485 };
2486
2487 #ifdef CONFIG_CMA
2488 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2489 unsigned int order)
2490 {
2491 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2492 }
2493 #else
2494 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2495 unsigned int order) { return NULL; }
2496 #endif
2497
2498 /*
2499 * Move the free pages in a range to the freelist tail of the requested type.
2500 * Note that start_page and end_pages are not aligned on a pageblock
2501 * boundary. If alignment is required, use move_freepages_block()
2502 */
2503 static int move_freepages(struct zone *zone,
2504 unsigned long start_pfn, unsigned long end_pfn,
2505 int migratetype, int *num_movable)
2506 {
2507 struct page *page;
2508 unsigned long pfn;
2509 unsigned int order;
2510 int pages_moved = 0;
2511
2512 for (pfn = start_pfn; pfn <= end_pfn;) {
2513 page = pfn_to_page(pfn);
2514 if (!PageBuddy(page)) {
2515 /*
2516 * We assume that pages that could be isolated for
2517 * migration are movable. But we don't actually try
2518 * isolating, as that would be expensive.
2519 */
2520 if (num_movable &&
2521 (PageLRU(page) || __PageMovable(page)))
2522 (*num_movable)++;
2523 pfn++;
2524 continue;
2525 }
2526
2527 /* Make sure we are not inadvertently changing nodes */
2528 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2529 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2530
2531 order = buddy_order(page);
2532 move_to_free_list(page, zone, order, migratetype);
2533 pfn += 1 << order;
2534 pages_moved += 1 << order;
2535 }
2536
2537 return pages_moved;
2538 }
2539
2540 int move_freepages_block(struct zone *zone, struct page *page,
2541 int migratetype, int *num_movable)
2542 {
2543 unsigned long start_pfn, end_pfn, pfn;
2544
2545 if (num_movable)
2546 *num_movable = 0;
2547
2548 pfn = page_to_pfn(page);
2549 start_pfn = pfn & ~(pageblock_nr_pages - 1);
2550 end_pfn = start_pfn + pageblock_nr_pages - 1;
2551
2552 /* Do not cross zone boundaries */
2553 if (!zone_spans_pfn(zone, start_pfn))
2554 start_pfn = pfn;
2555 if (!zone_spans_pfn(zone, end_pfn))
2556 return 0;
2557
2558 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2559 num_movable);
2560 }
2561
2562 static void change_pageblock_range(struct page *pageblock_page,
2563 int start_order, int migratetype)
2564 {
2565 int nr_pageblocks = 1 << (start_order - pageblock_order);
2566
2567 while (nr_pageblocks--) {
2568 set_pageblock_migratetype(pageblock_page, migratetype);
2569 pageblock_page += pageblock_nr_pages;
2570 }
2571 }
2572
2573 /*
2574 * When we are falling back to another migratetype during allocation, try to
2575 * steal extra free pages from the same pageblocks to satisfy further
2576 * allocations, instead of polluting multiple pageblocks.
2577 *
2578 * If we are stealing a relatively large buddy page, it is likely there will
2579 * be more free pages in the pageblock, so try to steal them all. For
2580 * reclaimable and unmovable allocations, we steal regardless of page size,
2581 * as fragmentation caused by those allocations polluting movable pageblocks
2582 * is worse than movable allocations stealing from unmovable and reclaimable
2583 * pageblocks.
2584 */
2585 static bool can_steal_fallback(unsigned int order, int start_mt)
2586 {
2587 /*
2588 * Leaving this order check is intended, although there is
2589 * relaxed order check in next check. The reason is that
2590 * we can actually steal whole pageblock if this condition met,
2591 * but, below check doesn't guarantee it and that is just heuristic
2592 * so could be changed anytime.
2593 */
2594 if (order >= pageblock_order)
2595 return true;
2596
2597 if (order >= pageblock_order / 2 ||
2598 start_mt == MIGRATE_RECLAIMABLE ||
2599 start_mt == MIGRATE_UNMOVABLE ||
2600 page_group_by_mobility_disabled)
2601 return true;
2602
2603 return false;
2604 }
2605
2606 static inline bool boost_watermark(struct zone *zone)
2607 {
2608 unsigned long max_boost;
2609
2610 if (!watermark_boost_factor)
2611 return false;
2612 /*
2613 * Don't bother in zones that are unlikely to produce results.
2614 * On small machines, including kdump capture kernels running
2615 * in a small area, boosting the watermark can cause an out of
2616 * memory situation immediately.
2617 */
2618 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2619 return false;
2620
2621 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2622 watermark_boost_factor, 10000);
2623
2624 /*
2625 * high watermark may be uninitialised if fragmentation occurs
2626 * very early in boot so do not boost. We do not fall
2627 * through and boost by pageblock_nr_pages as failing
2628 * allocations that early means that reclaim is not going
2629 * to help and it may even be impossible to reclaim the
2630 * boosted watermark resulting in a hang.
2631 */
2632 if (!max_boost)
2633 return false;
2634
2635 max_boost = max(pageblock_nr_pages, max_boost);
2636
2637 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2638 max_boost);
2639
2640 return true;
2641 }
2642
2643 /*
2644 * This function implements actual steal behaviour. If order is large enough,
2645 * we can steal whole pageblock. If not, we first move freepages in this
2646 * pageblock to our migratetype and determine how many already-allocated pages
2647 * are there in the pageblock with a compatible migratetype. If at least half
2648 * of pages are free or compatible, we can change migratetype of the pageblock
2649 * itself, so pages freed in the future will be put on the correct free list.
2650 */
2651 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2652 unsigned int alloc_flags, int start_type, bool whole_block)
2653 {
2654 unsigned int current_order = buddy_order(page);
2655 int free_pages, movable_pages, alike_pages;
2656 int old_block_type;
2657
2658 old_block_type = get_pageblock_migratetype(page);
2659
2660 /*
2661 * This can happen due to races and we want to prevent broken
2662 * highatomic accounting.
2663 */
2664 if (is_migrate_highatomic(old_block_type))
2665 goto single_page;
2666
2667 /* Take ownership for orders >= pageblock_order */
2668 if (current_order >= pageblock_order) {
2669 change_pageblock_range(page, current_order, start_type);
2670 goto single_page;
2671 }
2672
2673 /*
2674 * Boost watermarks to increase reclaim pressure to reduce the
2675 * likelihood of future fallbacks. Wake kswapd now as the node
2676 * may be balanced overall and kswapd will not wake naturally.
2677 */
2678 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2679 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2680
2681 /* We are not allowed to try stealing from the whole block */
2682 if (!whole_block)
2683 goto single_page;
2684
2685 free_pages = move_freepages_block(zone, page, start_type,
2686 &movable_pages);
2687 /*
2688 * Determine how many pages are compatible with our allocation.
2689 * For movable allocation, it's the number of movable pages which
2690 * we just obtained. For other types it's a bit more tricky.
2691 */
2692 if (start_type == MIGRATE_MOVABLE) {
2693 alike_pages = movable_pages;
2694 } else {
2695 /*
2696 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2697 * to MOVABLE pageblock, consider all non-movable pages as
2698 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2699 * vice versa, be conservative since we can't distinguish the
2700 * exact migratetype of non-movable pages.
2701 */
2702 if (old_block_type == MIGRATE_MOVABLE)
2703 alike_pages = pageblock_nr_pages
2704 - (free_pages + movable_pages);
2705 else
2706 alike_pages = 0;
2707 }
2708
2709 /* moving whole block can fail due to zone boundary conditions */
2710 if (!free_pages)
2711 goto single_page;
2712
2713 /*
2714 * If a sufficient number of pages in the block are either free or of
2715 * comparable migratability as our allocation, claim the whole block.
2716 */
2717 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2718 page_group_by_mobility_disabled)
2719 set_pageblock_migratetype(page, start_type);
2720
2721 return;
2722
2723 single_page:
2724 move_to_free_list(page, zone, current_order, start_type);
2725 }
2726
2727 /*
2728 * Check whether there is a suitable fallback freepage with requested order.
2729 * If only_stealable is true, this function returns fallback_mt only if
2730 * we can steal other freepages all together. This would help to reduce
2731 * fragmentation due to mixed migratetype pages in one pageblock.
2732 */
2733 int find_suitable_fallback(struct free_area *area, unsigned int order,
2734 int migratetype, bool only_stealable, bool *can_steal)
2735 {
2736 int i;
2737 int fallback_mt;
2738
2739 if (area->nr_free == 0)
2740 return -1;
2741
2742 *can_steal = false;
2743 for (i = 0;; i++) {
2744 fallback_mt = fallbacks[migratetype][i];
2745 if (fallback_mt == MIGRATE_TYPES)
2746 break;
2747
2748 if (free_area_empty(area, fallback_mt))
2749 continue;
2750
2751 if (can_steal_fallback(order, migratetype))
2752 *can_steal = true;
2753
2754 if (!only_stealable)
2755 return fallback_mt;
2756
2757 if (*can_steal)
2758 return fallback_mt;
2759 }
2760
2761 return -1;
2762 }
2763
2764 /*
2765 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2766 * there are no empty page blocks that contain a page with a suitable order
2767 */
2768 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2769 unsigned int alloc_order)
2770 {
2771 int mt;
2772 unsigned long max_managed, flags;
2773
2774 /*
2775 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2776 * Check is race-prone but harmless.
2777 */
2778 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2779 if (zone->nr_reserved_highatomic >= max_managed)
2780 return;
2781
2782 spin_lock_irqsave(&zone->lock, flags);
2783
2784 /* Recheck the nr_reserved_highatomic limit under the lock */
2785 if (zone->nr_reserved_highatomic >= max_managed)
2786 goto out_unlock;
2787
2788 /* Yoink! */
2789 mt = get_pageblock_migratetype(page);
2790 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2791 && !is_migrate_cma(mt)) {
2792 zone->nr_reserved_highatomic += pageblock_nr_pages;
2793 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2794 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2795 }
2796
2797 out_unlock:
2798 spin_unlock_irqrestore(&zone->lock, flags);
2799 }
2800
2801 /*
2802 * Used when an allocation is about to fail under memory pressure. This
2803 * potentially hurts the reliability of high-order allocations when under
2804 * intense memory pressure but failed atomic allocations should be easier
2805 * to recover from than an OOM.
2806 *
2807 * If @force is true, try to unreserve a pageblock even though highatomic
2808 * pageblock is exhausted.
2809 */
2810 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2811 bool force)
2812 {
2813 struct zonelist *zonelist = ac->zonelist;
2814 unsigned long flags;
2815 struct zoneref *z;
2816 struct zone *zone;
2817 struct page *page;
2818 int order;
2819 bool ret;
2820
2821 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2822 ac->nodemask) {
2823 /*
2824 * Preserve at least one pageblock unless memory pressure
2825 * is really high.
2826 */
2827 if (!force && zone->nr_reserved_highatomic <=
2828 pageblock_nr_pages)
2829 continue;
2830
2831 spin_lock_irqsave(&zone->lock, flags);
2832 for (order = 0; order < MAX_ORDER; order++) {
2833 struct free_area *area = &(zone->free_area[order]);
2834
2835 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2836 if (!page)
2837 continue;
2838
2839 /*
2840 * In page freeing path, migratetype change is racy so
2841 * we can counter several free pages in a pageblock
2842 * in this loop although we changed the pageblock type
2843 * from highatomic to ac->migratetype. So we should
2844 * adjust the count once.
2845 */
2846 if (is_migrate_highatomic_page(page)) {
2847 /*
2848 * It should never happen but changes to
2849 * locking could inadvertently allow a per-cpu
2850 * drain to add pages to MIGRATE_HIGHATOMIC
2851 * while unreserving so be safe and watch for
2852 * underflows.
2853 */
2854 zone->nr_reserved_highatomic -= min(
2855 pageblock_nr_pages,
2856 zone->nr_reserved_highatomic);
2857 }
2858
2859 /*
2860 * Convert to ac->migratetype and avoid the normal
2861 * pageblock stealing heuristics. Minimally, the caller
2862 * is doing the work and needs the pages. More
2863 * importantly, if the block was always converted to
2864 * MIGRATE_UNMOVABLE or another type then the number
2865 * of pageblocks that cannot be completely freed
2866 * may increase.
2867 */
2868 set_pageblock_migratetype(page, ac->migratetype);
2869 ret = move_freepages_block(zone, page, ac->migratetype,
2870 NULL);
2871 if (ret) {
2872 spin_unlock_irqrestore(&zone->lock, flags);
2873 return ret;
2874 }
2875 }
2876 spin_unlock_irqrestore(&zone->lock, flags);
2877 }
2878
2879 return false;
2880 }
2881
2882 /*
2883 * Try finding a free buddy page on the fallback list and put it on the free
2884 * list of requested migratetype, possibly along with other pages from the same
2885 * block, depending on fragmentation avoidance heuristics. Returns true if
2886 * fallback was found so that __rmqueue_smallest() can grab it.
2887 *
2888 * The use of signed ints for order and current_order is a deliberate
2889 * deviation from the rest of this file, to make the for loop
2890 * condition simpler.
2891 */
2892 static __always_inline bool
2893 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2894 unsigned int alloc_flags)
2895 {
2896 struct free_area *area;
2897 int current_order;
2898 int min_order = order;
2899 struct page *page;
2900 int fallback_mt;
2901 bool can_steal;
2902
2903 /*
2904 * Do not steal pages from freelists belonging to other pageblocks
2905 * i.e. orders < pageblock_order. If there are no local zones free,
2906 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2907 */
2908 if (alloc_flags & ALLOC_NOFRAGMENT)
2909 min_order = pageblock_order;
2910
2911 /*
2912 * Find the largest available free page in the other list. This roughly
2913 * approximates finding the pageblock with the most free pages, which
2914 * would be too costly to do exactly.
2915 */
2916 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2917 --current_order) {
2918 area = &(zone->free_area[current_order]);
2919 fallback_mt = find_suitable_fallback(area, current_order,
2920 start_migratetype, false, &can_steal);
2921 if (fallback_mt == -1)
2922 continue;
2923
2924 /*
2925 * We cannot steal all free pages from the pageblock and the
2926 * requested migratetype is movable. In that case it's better to
2927 * steal and split the smallest available page instead of the
2928 * largest available page, because even if the next movable
2929 * allocation falls back into a different pageblock than this
2930 * one, it won't cause permanent fragmentation.
2931 */
2932 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2933 && current_order > order)
2934 goto find_smallest;
2935
2936 goto do_steal;
2937 }
2938
2939 return false;
2940
2941 find_smallest:
2942 for (current_order = order; current_order < MAX_ORDER;
2943 current_order++) {
2944 area = &(zone->free_area[current_order]);
2945 fallback_mt = find_suitable_fallback(area, current_order,
2946 start_migratetype, false, &can_steal);
2947 if (fallback_mt != -1)
2948 break;
2949 }
2950
2951 /*
2952 * This should not happen - we already found a suitable fallback
2953 * when looking for the largest page.
2954 */
2955 VM_BUG_ON(current_order == MAX_ORDER);
2956
2957 do_steal:
2958 page = get_page_from_free_area(area, fallback_mt);
2959
2960 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2961 can_steal);
2962
2963 trace_mm_page_alloc_extfrag(page, order, current_order,
2964 start_migratetype, fallback_mt);
2965
2966 return true;
2967
2968 }
2969
2970 /*
2971 * Do the hard work of removing an element from the buddy allocator.
2972 * Call me with the zone->lock already held.
2973 */
2974 static __always_inline struct page *
2975 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2976 unsigned int alloc_flags)
2977 {
2978 struct page *page;
2979
2980 if (IS_ENABLED(CONFIG_CMA)) {
2981 /*
2982 * Balance movable allocations between regular and CMA areas by
2983 * allocating from CMA when over half of the zone's free memory
2984 * is in the CMA area.
2985 */
2986 if (alloc_flags & ALLOC_CMA &&
2987 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2988 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2989 page = __rmqueue_cma_fallback(zone, order);
2990 if (page)
2991 goto out;
2992 }
2993 }
2994 retry:
2995 page = __rmqueue_smallest(zone, order, migratetype);
2996 if (unlikely(!page)) {
2997 if (alloc_flags & ALLOC_CMA)
2998 page = __rmqueue_cma_fallback(zone, order);
2999
3000 if (!page && __rmqueue_fallback(zone, order, migratetype,
3001 alloc_flags))
3002 goto retry;
3003 }
3004 out:
3005 if (page)
3006 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3007 return page;
3008 }
3009
3010 /*
3011 * Obtain a specified number of elements from the buddy allocator, all under
3012 * a single hold of the lock, for efficiency. Add them to the supplied list.
3013 * Returns the number of new pages which were placed at *list.
3014 */
3015 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3016 unsigned long count, struct list_head *list,
3017 int migratetype, unsigned int alloc_flags)
3018 {
3019 int i, allocated = 0;
3020
3021 /*
3022 * local_lock_irq held so equivalent to spin_lock_irqsave for
3023 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3024 */
3025 spin_lock(&zone->lock);
3026 for (i = 0; i < count; ++i) {
3027 struct page *page = __rmqueue(zone, order, migratetype,
3028 alloc_flags);
3029 if (unlikely(page == NULL))
3030 break;
3031
3032 if (unlikely(check_pcp_refill(page)))
3033 continue;
3034
3035 /*
3036 * Split buddy pages returned by expand() are received here in
3037 * physical page order. The page is added to the tail of
3038 * caller's list. From the callers perspective, the linked list
3039 * is ordered by page number under some conditions. This is
3040 * useful for IO devices that can forward direction from the
3041 * head, thus also in the physical page order. This is useful
3042 * for IO devices that can merge IO requests if the physical
3043 * pages are ordered properly.
3044 */
3045 list_add_tail(&page->lru, list);
3046 allocated++;
3047 if (is_migrate_cma(get_pcppage_migratetype(page)))
3048 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3049 -(1 << order));
3050 }
3051
3052 /*
3053 * i pages were removed from the buddy list even if some leak due
3054 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3055 * on i. Do not confuse with 'allocated' which is the number of
3056 * pages added to the pcp list.
3057 */
3058 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3059 spin_unlock(&zone->lock);
3060 return allocated;
3061 }
3062
3063 #ifdef CONFIG_NUMA
3064 /*
3065 * Called from the vmstat counter updater to drain pagesets of this
3066 * currently executing processor on remote nodes after they have
3067 * expired.
3068 *
3069 * Note that this function must be called with the thread pinned to
3070 * a single processor.
3071 */
3072 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3073 {
3074 unsigned long flags;
3075 int to_drain, batch;
3076
3077 local_lock_irqsave(&pagesets.lock, flags);
3078 batch = READ_ONCE(pcp->batch);
3079 to_drain = min(pcp->count, batch);
3080 if (to_drain > 0)
3081 free_pcppages_bulk(zone, to_drain, pcp);
3082 local_unlock_irqrestore(&pagesets.lock, flags);
3083 }
3084 #endif
3085
3086 /*
3087 * Drain pcplists of the indicated processor and zone.
3088 *
3089 * The processor must either be the current processor and the
3090 * thread pinned to the current processor or a processor that
3091 * is not online.
3092 */
3093 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3094 {
3095 unsigned long flags;
3096 struct per_cpu_pages *pcp;
3097
3098 local_lock_irqsave(&pagesets.lock, flags);
3099
3100 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3101 if (pcp->count)
3102 free_pcppages_bulk(zone, pcp->count, pcp);
3103
3104 local_unlock_irqrestore(&pagesets.lock, flags);
3105 }
3106
3107 /*
3108 * Drain pcplists of all zones on the indicated processor.
3109 *
3110 * The processor must either be the current processor and the
3111 * thread pinned to the current processor or a processor that
3112 * is not online.
3113 */
3114 static void drain_pages(unsigned int cpu)
3115 {
3116 struct zone *zone;
3117
3118 for_each_populated_zone(zone) {
3119 drain_pages_zone(cpu, zone);
3120 }
3121 }
3122
3123 /*
3124 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3125 *
3126 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3127 * the single zone's pages.
3128 */
3129 void drain_local_pages(struct zone *zone)
3130 {
3131 int cpu = smp_processor_id();
3132
3133 if (zone)
3134 drain_pages_zone(cpu, zone);
3135 else
3136 drain_pages(cpu);
3137 }
3138
3139 static void drain_local_pages_wq(struct work_struct *work)
3140 {
3141 struct pcpu_drain *drain;
3142
3143 drain = container_of(work, struct pcpu_drain, work);
3144
3145 /*
3146 * drain_all_pages doesn't use proper cpu hotplug protection so
3147 * we can race with cpu offline when the WQ can move this from
3148 * a cpu pinned worker to an unbound one. We can operate on a different
3149 * cpu which is alright but we also have to make sure to not move to
3150 * a different one.
3151 */
3152 preempt_disable();
3153 drain_local_pages(drain->zone);
3154 preempt_enable();
3155 }
3156
3157 /*
3158 * The implementation of drain_all_pages(), exposing an extra parameter to
3159 * drain on all cpus.
3160 *
3161 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3162 * not empty. The check for non-emptiness can however race with a free to
3163 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3164 * that need the guarantee that every CPU has drained can disable the
3165 * optimizing racy check.
3166 */
3167 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3168 {
3169 int cpu;
3170
3171 /*
3172 * Allocate in the BSS so we won't require allocation in
3173 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3174 */
3175 static cpumask_t cpus_with_pcps;
3176
3177 /*
3178 * Make sure nobody triggers this path before mm_percpu_wq is fully
3179 * initialized.
3180 */
3181 if (WARN_ON_ONCE(!mm_percpu_wq))
3182 return;
3183
3184 /*
3185 * Do not drain if one is already in progress unless it's specific to
3186 * a zone. Such callers are primarily CMA and memory hotplug and need
3187 * the drain to be complete when the call returns.
3188 */
3189 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3190 if (!zone)
3191 return;
3192 mutex_lock(&pcpu_drain_mutex);
3193 }
3194
3195 /*
3196 * We don't care about racing with CPU hotplug event
3197 * as offline notification will cause the notified
3198 * cpu to drain that CPU pcps and on_each_cpu_mask
3199 * disables preemption as part of its processing
3200 */
3201 for_each_online_cpu(cpu) {
3202 struct per_cpu_pages *pcp;
3203 struct zone *z;
3204 bool has_pcps = false;
3205
3206 if (force_all_cpus) {
3207 /*
3208 * The pcp.count check is racy, some callers need a
3209 * guarantee that no cpu is missed.
3210 */
3211 has_pcps = true;
3212 } else if (zone) {
3213 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3214 if (pcp->count)
3215 has_pcps = true;
3216 } else {
3217 for_each_populated_zone(z) {
3218 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3219 if (pcp->count) {
3220 has_pcps = true;
3221 break;
3222 }
3223 }
3224 }
3225
3226 if (has_pcps)
3227 cpumask_set_cpu(cpu, &cpus_with_pcps);
3228 else
3229 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3230 }
3231
3232 for_each_cpu(cpu, &cpus_with_pcps) {
3233 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3234
3235 drain->zone = zone;
3236 INIT_WORK(&drain->work, drain_local_pages_wq);
3237 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3238 }
3239 for_each_cpu(cpu, &cpus_with_pcps)
3240 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3241
3242 mutex_unlock(&pcpu_drain_mutex);
3243 }
3244
3245 /*
3246 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3247 *
3248 * When zone parameter is non-NULL, spill just the single zone's pages.
3249 *
3250 * Note that this can be extremely slow as the draining happens in a workqueue.
3251 */
3252 void drain_all_pages(struct zone *zone)
3253 {
3254 __drain_all_pages(zone, false);
3255 }
3256
3257 #ifdef CONFIG_HIBERNATION
3258
3259 /*
3260 * Touch the watchdog for every WD_PAGE_COUNT pages.
3261 */
3262 #define WD_PAGE_COUNT (128*1024)
3263
3264 void mark_free_pages(struct zone *zone)
3265 {
3266 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3267 unsigned long flags;
3268 unsigned int order, t;
3269 struct page *page;
3270
3271 if (zone_is_empty(zone))
3272 return;
3273
3274 spin_lock_irqsave(&zone->lock, flags);
3275
3276 max_zone_pfn = zone_end_pfn(zone);
3277 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3278 if (pfn_valid(pfn)) {
3279 page = pfn_to_page(pfn);
3280
3281 if (!--page_count) {
3282 touch_nmi_watchdog();
3283 page_count = WD_PAGE_COUNT;
3284 }
3285
3286 if (page_zone(page) != zone)
3287 continue;
3288
3289 if (!swsusp_page_is_forbidden(page))
3290 swsusp_unset_page_free(page);
3291 }
3292
3293 for_each_migratetype_order(order, t) {
3294 list_for_each_entry(page,
3295 &zone->free_area[order].free_list[t], lru) {
3296 unsigned long i;
3297
3298 pfn = page_to_pfn(page);
3299 for (i = 0; i < (1UL << order); i++) {
3300 if (!--page_count) {
3301 touch_nmi_watchdog();
3302 page_count = WD_PAGE_COUNT;
3303 }
3304 swsusp_set_page_free(pfn_to_page(pfn + i));
3305 }
3306 }
3307 }
3308 spin_unlock_irqrestore(&zone->lock, flags);
3309 }
3310 #endif /* CONFIG_PM */
3311
3312 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3313 unsigned int order)
3314 {
3315 int migratetype;
3316
3317 if (!free_pcp_prepare(page, order))
3318 return false;
3319
3320 migratetype = get_pfnblock_migratetype(page, pfn);
3321 set_pcppage_migratetype(page, migratetype);
3322 return true;
3323 }
3324
3325 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3326 {
3327 int min_nr_free, max_nr_free;
3328
3329 /* Check for PCP disabled or boot pageset */
3330 if (unlikely(high < batch))
3331 return 1;
3332
3333 /* Leave at least pcp->batch pages on the list */
3334 min_nr_free = batch;
3335 max_nr_free = high - batch;
3336
3337 /*
3338 * Double the number of pages freed each time there is subsequent
3339 * freeing of pages without any allocation.
3340 */
3341 batch <<= pcp->free_factor;
3342 if (batch < max_nr_free)
3343 pcp->free_factor++;
3344 batch = clamp(batch, min_nr_free, max_nr_free);
3345
3346 return batch;
3347 }
3348
3349 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3350 {
3351 int high = READ_ONCE(pcp->high);
3352
3353 if (unlikely(!high))
3354 return 0;
3355
3356 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3357 return high;
3358
3359 /*
3360 * If reclaim is active, limit the number of pages that can be
3361 * stored on pcp lists
3362 */
3363 return min(READ_ONCE(pcp->batch) << 2, high);
3364 }
3365
3366 static void free_unref_page_commit(struct page *page, unsigned long pfn,
3367 int migratetype, unsigned int order)
3368 {
3369 struct zone *zone = page_zone(page);
3370 struct per_cpu_pages *pcp;
3371 int high;
3372 int pindex;
3373
3374 __count_vm_event(PGFREE);
3375 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3376 pindex = order_to_pindex(migratetype, order);
3377 list_add(&page->lru, &pcp->lists[pindex]);
3378 pcp->count += 1 << order;
3379 high = nr_pcp_high(pcp, zone);
3380 if (pcp->count >= high) {
3381 int batch = READ_ONCE(pcp->batch);
3382
3383 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3384 }
3385 }
3386
3387 /*
3388 * Free a pcp page
3389 */
3390 void free_unref_page(struct page *page, unsigned int order)
3391 {
3392 unsigned long flags;
3393 unsigned long pfn = page_to_pfn(page);
3394 int migratetype;
3395
3396 if (!free_unref_page_prepare(page, pfn, order))
3397 return;
3398
3399 /*
3400 * We only track unmovable, reclaimable and movable on pcp lists.
3401 * Place ISOLATE pages on the isolated list because they are being
3402 * offlined but treat HIGHATOMIC as movable pages so we can get those
3403 * areas back if necessary. Otherwise, we may have to free
3404 * excessively into the page allocator
3405 */
3406 migratetype = get_pcppage_migratetype(page);
3407 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3408 if (unlikely(is_migrate_isolate(migratetype))) {
3409 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3410 return;
3411 }
3412 migratetype = MIGRATE_MOVABLE;
3413 }
3414
3415 local_lock_irqsave(&pagesets.lock, flags);
3416 free_unref_page_commit(page, pfn, migratetype, order);
3417 local_unlock_irqrestore(&pagesets.lock, flags);
3418 }
3419
3420 /*
3421 * Free a list of 0-order pages
3422 */
3423 void free_unref_page_list(struct list_head *list)
3424 {
3425 struct page *page, *next;
3426 unsigned long flags, pfn;
3427 int batch_count = 0;
3428 int migratetype;
3429
3430 /* Prepare pages for freeing */
3431 list_for_each_entry_safe(page, next, list, lru) {
3432 pfn = page_to_pfn(page);
3433 if (!free_unref_page_prepare(page, pfn, 0)) {
3434 list_del(&page->lru);
3435 continue;
3436 }
3437
3438 /*
3439 * Free isolated pages directly to the allocator, see
3440 * comment in free_unref_page.
3441 */
3442 migratetype = get_pcppage_migratetype(page);
3443 if (unlikely(is_migrate_isolate(migratetype))) {
3444 list_del(&page->lru);
3445 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3446 continue;
3447 }
3448
3449 set_page_private(page, pfn);
3450 }
3451
3452 local_lock_irqsave(&pagesets.lock, flags);
3453 list_for_each_entry_safe(page, next, list, lru) {
3454 pfn = page_private(page);
3455 set_page_private(page, 0);
3456
3457 /*
3458 * Non-isolated types over MIGRATE_PCPTYPES get added
3459 * to the MIGRATE_MOVABLE pcp list.
3460 */
3461 migratetype = get_pcppage_migratetype(page);
3462 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3463 migratetype = MIGRATE_MOVABLE;
3464
3465 trace_mm_page_free_batched(page);
3466 free_unref_page_commit(page, pfn, migratetype, 0);
3467
3468 /*
3469 * Guard against excessive IRQ disabled times when we get
3470 * a large list of pages to free.
3471 */
3472 if (++batch_count == SWAP_CLUSTER_MAX) {
3473 local_unlock_irqrestore(&pagesets.lock, flags);
3474 batch_count = 0;
3475 local_lock_irqsave(&pagesets.lock, flags);
3476 }
3477 }
3478 local_unlock_irqrestore(&pagesets.lock, flags);
3479 }
3480
3481 /*
3482 * split_page takes a non-compound higher-order page, and splits it into
3483 * n (1<<order) sub-pages: page[0..n]
3484 * Each sub-page must be freed individually.
3485 *
3486 * Note: this is probably too low level an operation for use in drivers.
3487 * Please consult with lkml before using this in your driver.
3488 */
3489 void split_page(struct page *page, unsigned int order)
3490 {
3491 int i;
3492
3493 VM_BUG_ON_PAGE(PageCompound(page), page);
3494 VM_BUG_ON_PAGE(!page_count(page), page);
3495
3496 for (i = 1; i < (1 << order); i++)
3497 set_page_refcounted(page + i);
3498 split_page_owner(page, 1 << order);
3499 split_page_memcg(page, 1 << order);
3500 }
3501 EXPORT_SYMBOL_GPL(split_page);
3502
3503 int __isolate_free_page(struct page *page, unsigned int order)
3504 {
3505 unsigned long watermark;
3506 struct zone *zone;
3507 int mt;
3508
3509 BUG_ON(!PageBuddy(page));
3510
3511 zone = page_zone(page);
3512 mt = get_pageblock_migratetype(page);
3513
3514 if (!is_migrate_isolate(mt)) {
3515 /*
3516 * Obey watermarks as if the page was being allocated. We can
3517 * emulate a high-order watermark check with a raised order-0
3518 * watermark, because we already know our high-order page
3519 * exists.
3520 */
3521 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3522 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3523 return 0;
3524
3525 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3526 }
3527
3528 /* Remove page from free list */
3529
3530 del_page_from_free_list(page, zone, order);
3531
3532 /*
3533 * Set the pageblock if the isolated page is at least half of a
3534 * pageblock
3535 */
3536 if (order >= pageblock_order - 1) {
3537 struct page *endpage = page + (1 << order) - 1;
3538 for (; page < endpage; page += pageblock_nr_pages) {
3539 int mt = get_pageblock_migratetype(page);
3540 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3541 && !is_migrate_highatomic(mt))
3542 set_pageblock_migratetype(page,
3543 MIGRATE_MOVABLE);
3544 }
3545 }
3546
3547
3548 return 1UL << order;
3549 }
3550
3551 /**
3552 * __putback_isolated_page - Return a now-isolated page back where we got it
3553 * @page: Page that was isolated
3554 * @order: Order of the isolated page
3555 * @mt: The page's pageblock's migratetype
3556 *
3557 * This function is meant to return a page pulled from the free lists via
3558 * __isolate_free_page back to the free lists they were pulled from.
3559 */
3560 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3561 {
3562 struct zone *zone = page_zone(page);
3563
3564 /* zone lock should be held when this function is called */
3565 lockdep_assert_held(&zone->lock);
3566
3567 /* Return isolated page to tail of freelist. */
3568 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3569 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3570 }
3571
3572 /*
3573 * Update NUMA hit/miss statistics
3574 *
3575 * Must be called with interrupts disabled.
3576 */
3577 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3578 long nr_account)
3579 {
3580 #ifdef CONFIG_NUMA
3581 enum numa_stat_item local_stat = NUMA_LOCAL;
3582
3583 /* skip numa counters update if numa stats is disabled */
3584 if (!static_branch_likely(&vm_numa_stat_key))
3585 return;
3586
3587 if (zone_to_nid(z) != numa_node_id())
3588 local_stat = NUMA_OTHER;
3589
3590 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3591 __count_numa_events(z, NUMA_HIT, nr_account);
3592 else {
3593 __count_numa_events(z, NUMA_MISS, nr_account);
3594 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3595 }
3596 __count_numa_events(z, local_stat, nr_account);
3597 #endif
3598 }
3599
3600 /* Remove page from the per-cpu list, caller must protect the list */
3601 static inline
3602 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3603 int migratetype,
3604 unsigned int alloc_flags,
3605 struct per_cpu_pages *pcp,
3606 struct list_head *list)
3607 {
3608 struct page *page;
3609
3610 do {
3611 if (list_empty(list)) {
3612 int batch = READ_ONCE(pcp->batch);
3613 int alloced;
3614
3615 /*
3616 * Scale batch relative to order if batch implies
3617 * free pages can be stored on the PCP. Batch can
3618 * be 1 for small zones or for boot pagesets which
3619 * should never store free pages as the pages may
3620 * belong to arbitrary zones.
3621 */
3622 if (batch > 1)
3623 batch = max(batch >> order, 2);
3624 alloced = rmqueue_bulk(zone, order,
3625 batch, list,
3626 migratetype, alloc_flags);
3627
3628 pcp->count += alloced << order;
3629 if (unlikely(list_empty(list)))
3630 return NULL;
3631 }
3632
3633 page = list_first_entry(list, struct page, lru);
3634 list_del(&page->lru);
3635 pcp->count -= 1 << order;
3636 } while (check_new_pcp(page));
3637
3638 return page;
3639 }
3640
3641 /* Lock and remove page from the per-cpu list */
3642 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3643 struct zone *zone, unsigned int order,
3644 gfp_t gfp_flags, int migratetype,
3645 unsigned int alloc_flags)
3646 {
3647 struct per_cpu_pages *pcp;
3648 struct list_head *list;
3649 struct page *page;
3650 unsigned long flags;
3651
3652 local_lock_irqsave(&pagesets.lock, flags);
3653
3654 /*
3655 * On allocation, reduce the number of pages that are batch freed.
3656 * See nr_pcp_free() where free_factor is increased for subsequent
3657 * frees.
3658 */
3659 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3660 pcp->free_factor >>= 1;
3661 list = &pcp->lists[order_to_pindex(migratetype, order)];
3662 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3663 local_unlock_irqrestore(&pagesets.lock, flags);
3664 if (page) {
3665 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3666 zone_statistics(preferred_zone, zone, 1);
3667 }
3668 return page;
3669 }
3670
3671 /*
3672 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3673 */
3674 static inline
3675 struct page *rmqueue(struct zone *preferred_zone,
3676 struct zone *zone, unsigned int order,
3677 gfp_t gfp_flags, unsigned int alloc_flags,
3678 int migratetype)
3679 {
3680 unsigned long flags;
3681 struct page *page;
3682
3683 if (likely(pcp_allowed_order(order))) {
3684 /*
3685 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3686 * we need to skip it when CMA area isn't allowed.
3687 */
3688 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3689 migratetype != MIGRATE_MOVABLE) {
3690 page = rmqueue_pcplist(preferred_zone, zone, order,
3691 gfp_flags, migratetype, alloc_flags);
3692 goto out;
3693 }
3694 }
3695
3696 /*
3697 * We most definitely don't want callers attempting to
3698 * allocate greater than order-1 page units with __GFP_NOFAIL.
3699 */
3700 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3701 spin_lock_irqsave(&zone->lock, flags);
3702
3703 do {
3704 page = NULL;
3705 /*
3706 * order-0 request can reach here when the pcplist is skipped
3707 * due to non-CMA allocation context. HIGHATOMIC area is
3708 * reserved for high-order atomic allocation, so order-0
3709 * request should skip it.
3710 */
3711 if (order > 0 && alloc_flags & ALLOC_HARDER) {
3712 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3713 if (page)
3714 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3715 }
3716 if (!page)
3717 page = __rmqueue(zone, order, migratetype, alloc_flags);
3718 } while (page && check_new_pages(page, order));
3719 if (!page)
3720 goto failed;
3721
3722 __mod_zone_freepage_state(zone, -(1 << order),
3723 get_pcppage_migratetype(page));
3724 spin_unlock_irqrestore(&zone->lock, flags);
3725
3726 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3727 zone_statistics(preferred_zone, zone, 1);
3728
3729 out:
3730 /* Separate test+clear to avoid unnecessary atomics */
3731 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3732 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3733 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3734 }
3735
3736 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3737 return page;
3738
3739 failed:
3740 spin_unlock_irqrestore(&zone->lock, flags);
3741 return NULL;
3742 }
3743
3744 #ifdef CONFIG_FAIL_PAGE_ALLOC
3745
3746 static struct {
3747 struct fault_attr attr;
3748
3749 bool ignore_gfp_highmem;
3750 bool ignore_gfp_reclaim;
3751 u32 min_order;
3752 } fail_page_alloc = {
3753 .attr = FAULT_ATTR_INITIALIZER,
3754 .ignore_gfp_reclaim = true,
3755 .ignore_gfp_highmem = true,
3756 .min_order = 1,
3757 };
3758
3759 static int __init setup_fail_page_alloc(char *str)
3760 {
3761 return setup_fault_attr(&fail_page_alloc.attr, str);
3762 }
3763 __setup("fail_page_alloc=", setup_fail_page_alloc);
3764
3765 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3766 {
3767 if (order < fail_page_alloc.min_order)
3768 return false;
3769 if (gfp_mask & __GFP_NOFAIL)
3770 return false;
3771 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3772 return false;
3773 if (fail_page_alloc.ignore_gfp_reclaim &&
3774 (gfp_mask & __GFP_DIRECT_RECLAIM))
3775 return false;
3776
3777 return should_fail(&fail_page_alloc.attr, 1 << order);
3778 }
3779
3780 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3781
3782 static int __init fail_page_alloc_debugfs(void)
3783 {
3784 umode_t mode = S_IFREG | 0600;
3785 struct dentry *dir;
3786
3787 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3788 &fail_page_alloc.attr);
3789
3790 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3791 &fail_page_alloc.ignore_gfp_reclaim);
3792 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3793 &fail_page_alloc.ignore_gfp_highmem);
3794 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3795
3796 return 0;
3797 }
3798
3799 late_initcall(fail_page_alloc_debugfs);
3800
3801 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3802
3803 #else /* CONFIG_FAIL_PAGE_ALLOC */
3804
3805 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3806 {
3807 return false;
3808 }
3809
3810 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3811
3812 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3813 {
3814 return __should_fail_alloc_page(gfp_mask, order);
3815 }
3816 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3817
3818 static inline long __zone_watermark_unusable_free(struct zone *z,
3819 unsigned int order, unsigned int alloc_flags)
3820 {
3821 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3822 long unusable_free = (1 << order) - 1;
3823
3824 /*
3825 * If the caller does not have rights to ALLOC_HARDER then subtract
3826 * the high-atomic reserves. This will over-estimate the size of the
3827 * atomic reserve but it avoids a search.
3828 */
3829 if (likely(!alloc_harder))
3830 unusable_free += z->nr_reserved_highatomic;
3831
3832 #ifdef CONFIG_CMA
3833 /* If allocation can't use CMA areas don't use free CMA pages */
3834 if (!(alloc_flags & ALLOC_CMA))
3835 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3836 #endif
3837
3838 return unusable_free;
3839 }
3840
3841 /*
3842 * Return true if free base pages are above 'mark'. For high-order checks it
3843 * will return true of the order-0 watermark is reached and there is at least
3844 * one free page of a suitable size. Checking now avoids taking the zone lock
3845 * to check in the allocation paths if no pages are free.
3846 */
3847 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3848 int highest_zoneidx, unsigned int alloc_flags,
3849 long free_pages)
3850 {
3851 long min = mark;
3852 int o;
3853 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3854
3855 /* free_pages may go negative - that's OK */
3856 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3857
3858 if (alloc_flags & ALLOC_HIGH)
3859 min -= min / 2;
3860
3861 if (unlikely(alloc_harder)) {
3862 /*
3863 * OOM victims can try even harder than normal ALLOC_HARDER
3864 * users on the grounds that it's definitely going to be in
3865 * the exit path shortly and free memory. Any allocation it
3866 * makes during the free path will be small and short-lived.
3867 */
3868 if (alloc_flags & ALLOC_OOM)
3869 min -= min / 2;
3870 else
3871 min -= min / 4;
3872 }
3873
3874 /*
3875 * Check watermarks for an order-0 allocation request. If these
3876 * are not met, then a high-order request also cannot go ahead
3877 * even if a suitable page happened to be free.
3878 */
3879 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3880 return false;
3881
3882 /* If this is an order-0 request then the watermark is fine */
3883 if (!order)
3884 return true;
3885
3886 /* For a high-order request, check at least one suitable page is free */
3887 for (o = order; o < MAX_ORDER; o++) {
3888 struct free_area *area = &z->free_area[o];
3889 int mt;
3890
3891 if (!area->nr_free)
3892 continue;
3893
3894 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3895 if (!free_area_empty(area, mt))
3896 return true;
3897 }
3898
3899 #ifdef CONFIG_CMA
3900 if ((alloc_flags & ALLOC_CMA) &&
3901 !free_area_empty(area, MIGRATE_CMA)) {
3902 return true;
3903 }
3904 #endif
3905 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3906 return true;
3907 }
3908 return false;
3909 }
3910
3911 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3912 int highest_zoneidx, unsigned int alloc_flags)
3913 {
3914 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3915 zone_page_state(z, NR_FREE_PAGES));
3916 }
3917
3918 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3919 unsigned long mark, int highest_zoneidx,
3920 unsigned int alloc_flags, gfp_t gfp_mask)
3921 {
3922 long free_pages;
3923
3924 free_pages = zone_page_state(z, NR_FREE_PAGES);
3925
3926 /*
3927 * Fast check for order-0 only. If this fails then the reserves
3928 * need to be calculated.
3929 */
3930 if (!order) {
3931 long fast_free;
3932
3933 fast_free = free_pages;
3934 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3935 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3936 return true;
3937 }
3938
3939 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3940 free_pages))
3941 return true;
3942 /*
3943 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3944 * when checking the min watermark. The min watermark is the
3945 * point where boosting is ignored so that kswapd is woken up
3946 * when below the low watermark.
3947 */
3948 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3949 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3950 mark = z->_watermark[WMARK_MIN];
3951 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3952 alloc_flags, free_pages);
3953 }
3954
3955 return false;
3956 }
3957
3958 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3959 unsigned long mark, int highest_zoneidx)
3960 {
3961 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3962
3963 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3964 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3965
3966 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3967 free_pages);
3968 }
3969
3970 #ifdef CONFIG_NUMA
3971 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3972 {
3973 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3974 node_reclaim_distance;
3975 }
3976 #else /* CONFIG_NUMA */
3977 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3978 {
3979 return true;
3980 }
3981 #endif /* CONFIG_NUMA */
3982
3983 /*
3984 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3985 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3986 * premature use of a lower zone may cause lowmem pressure problems that
3987 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3988 * probably too small. It only makes sense to spread allocations to avoid
3989 * fragmentation between the Normal and DMA32 zones.
3990 */
3991 static inline unsigned int
3992 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3993 {
3994 unsigned int alloc_flags;
3995
3996 /*
3997 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3998 * to save a branch.
3999 */
4000 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4001
4002 #ifdef CONFIG_ZONE_DMA32
4003 if (!zone)
4004 return alloc_flags;
4005
4006 if (zone_idx(zone) != ZONE_NORMAL)
4007 return alloc_flags;
4008
4009 /*
4010 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4011 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4012 * on UMA that if Normal is populated then so is DMA32.
4013 */
4014 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4015 if (nr_online_nodes > 1 && !populated_zone(--zone))
4016 return alloc_flags;
4017
4018 alloc_flags |= ALLOC_NOFRAGMENT;
4019 #endif /* CONFIG_ZONE_DMA32 */
4020 return alloc_flags;
4021 }
4022
4023 /* Must be called after current_gfp_context() which can change gfp_mask */
4024 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4025 unsigned int alloc_flags)
4026 {
4027 #ifdef CONFIG_CMA
4028 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4029 alloc_flags |= ALLOC_CMA;
4030 #endif
4031 return alloc_flags;
4032 }
4033
4034 /*
4035 * get_page_from_freelist goes through the zonelist trying to allocate
4036 * a page.
4037 */
4038 static struct page *
4039 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4040 const struct alloc_context *ac)
4041 {
4042 struct zoneref *z;
4043 struct zone *zone;
4044 struct pglist_data *last_pgdat_dirty_limit = NULL;
4045 bool no_fallback;
4046
4047 retry:
4048 /*
4049 * Scan zonelist, looking for a zone with enough free.
4050 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4051 */
4052 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4053 z = ac->preferred_zoneref;
4054 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4055 ac->nodemask) {
4056 struct page *page;
4057 unsigned long mark;
4058
4059 if (cpusets_enabled() &&
4060 (alloc_flags & ALLOC_CPUSET) &&
4061 !__cpuset_zone_allowed(zone, gfp_mask))
4062 continue;
4063 /*
4064 * When allocating a page cache page for writing, we
4065 * want to get it from a node that is within its dirty
4066 * limit, such that no single node holds more than its
4067 * proportional share of globally allowed dirty pages.
4068 * The dirty limits take into account the node's
4069 * lowmem reserves and high watermark so that kswapd
4070 * should be able to balance it without having to
4071 * write pages from its LRU list.
4072 *
4073 * XXX: For now, allow allocations to potentially
4074 * exceed the per-node dirty limit in the slowpath
4075 * (spread_dirty_pages unset) before going into reclaim,
4076 * which is important when on a NUMA setup the allowed
4077 * nodes are together not big enough to reach the
4078 * global limit. The proper fix for these situations
4079 * will require awareness of nodes in the
4080 * dirty-throttling and the flusher threads.
4081 */
4082 if (ac->spread_dirty_pages) {
4083 if (last_pgdat_dirty_limit == zone->zone_pgdat)
4084 continue;
4085
4086 if (!node_dirty_ok(zone->zone_pgdat)) {
4087 last_pgdat_dirty_limit = zone->zone_pgdat;
4088 continue;
4089 }
4090 }
4091
4092 if (no_fallback && nr_online_nodes > 1 &&
4093 zone != ac->preferred_zoneref->zone) {
4094 int local_nid;
4095
4096 /*
4097 * If moving to a remote node, retry but allow
4098 * fragmenting fallbacks. Locality is more important
4099 * than fragmentation avoidance.
4100 */
4101 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4102 if (zone_to_nid(zone) != local_nid) {
4103 alloc_flags &= ~ALLOC_NOFRAGMENT;
4104 goto retry;
4105 }
4106 }
4107
4108 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4109 if (!zone_watermark_fast(zone, order, mark,
4110 ac->highest_zoneidx, alloc_flags,
4111 gfp_mask)) {
4112 int ret;
4113
4114 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4115 /*
4116 * Watermark failed for this zone, but see if we can
4117 * grow this zone if it contains deferred pages.
4118 */
4119 if (static_branch_unlikely(&deferred_pages)) {
4120 if (_deferred_grow_zone(zone, order))
4121 goto try_this_zone;
4122 }
4123 #endif
4124 /* Checked here to keep the fast path fast */
4125 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4126 if (alloc_flags & ALLOC_NO_WATERMARKS)
4127 goto try_this_zone;
4128
4129 if (!node_reclaim_enabled() ||
4130 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4131 continue;
4132
4133 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4134 switch (ret) {
4135 case NODE_RECLAIM_NOSCAN:
4136 /* did not scan */
4137 continue;
4138 case NODE_RECLAIM_FULL:
4139 /* scanned but unreclaimable */
4140 continue;
4141 default:
4142 /* did we reclaim enough */
4143 if (zone_watermark_ok(zone, order, mark,
4144 ac->highest_zoneidx, alloc_flags))
4145 goto try_this_zone;
4146
4147 continue;
4148 }
4149 }
4150
4151 try_this_zone:
4152 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4153 gfp_mask, alloc_flags, ac->migratetype);
4154 if (page) {
4155 prep_new_page(page, order, gfp_mask, alloc_flags);
4156
4157 /*
4158 * If this is a high-order atomic allocation then check
4159 * if the pageblock should be reserved for the future
4160 */
4161 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4162 reserve_highatomic_pageblock(page, zone, order);
4163
4164 return page;
4165 } else {
4166 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4167 /* Try again if zone has deferred pages */
4168 if (static_branch_unlikely(&deferred_pages)) {
4169 if (_deferred_grow_zone(zone, order))
4170 goto try_this_zone;
4171 }
4172 #endif
4173 }
4174 }
4175
4176 /*
4177 * It's possible on a UMA machine to get through all zones that are
4178 * fragmented. If avoiding fragmentation, reset and try again.
4179 */
4180 if (no_fallback) {
4181 alloc_flags &= ~ALLOC_NOFRAGMENT;
4182 goto retry;
4183 }
4184
4185 return NULL;
4186 }
4187
4188 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4189 {
4190 unsigned int filter = SHOW_MEM_FILTER_NODES;
4191
4192 /*
4193 * This documents exceptions given to allocations in certain
4194 * contexts that are allowed to allocate outside current's set
4195 * of allowed nodes.
4196 */
4197 if (!(gfp_mask & __GFP_NOMEMALLOC))
4198 if (tsk_is_oom_victim(current) ||
4199 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4200 filter &= ~SHOW_MEM_FILTER_NODES;
4201 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4202 filter &= ~SHOW_MEM_FILTER_NODES;
4203
4204 show_mem(filter, nodemask);
4205 }
4206
4207 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4208 {
4209 struct va_format vaf;
4210 va_list args;
4211 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4212
4213 if ((gfp_mask & __GFP_NOWARN) ||
4214 !__ratelimit(&nopage_rs) ||
4215 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4216 return;
4217
4218 va_start(args, fmt);
4219 vaf.fmt = fmt;
4220 vaf.va = &args;
4221 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4222 current->comm, &vaf, gfp_mask, &gfp_mask,
4223 nodemask_pr_args(nodemask));
4224 va_end(args);
4225
4226 cpuset_print_current_mems_allowed();
4227 pr_cont("\n");
4228 dump_stack();
4229 warn_alloc_show_mem(gfp_mask, nodemask);
4230 }
4231
4232 static inline struct page *
4233 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4234 unsigned int alloc_flags,
4235 const struct alloc_context *ac)
4236 {
4237 struct page *page;
4238
4239 page = get_page_from_freelist(gfp_mask, order,
4240 alloc_flags|ALLOC_CPUSET, ac);
4241 /*
4242 * fallback to ignore cpuset restriction if our nodes
4243 * are depleted
4244 */
4245 if (!page)
4246 page = get_page_from_freelist(gfp_mask, order,
4247 alloc_flags, ac);
4248
4249 return page;
4250 }
4251
4252 static inline struct page *
4253 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4254 const struct alloc_context *ac, unsigned long *did_some_progress)
4255 {
4256 struct oom_control oc = {
4257 .zonelist = ac->zonelist,
4258 .nodemask = ac->nodemask,
4259 .memcg = NULL,
4260 .gfp_mask = gfp_mask,
4261 .order = order,
4262 };
4263 struct page *page;
4264
4265 *did_some_progress = 0;
4266
4267 /*
4268 * Acquire the oom lock. If that fails, somebody else is
4269 * making progress for us.
4270 */
4271 if (!mutex_trylock(&oom_lock)) {
4272 *did_some_progress = 1;
4273 schedule_timeout_uninterruptible(1);
4274 return NULL;
4275 }
4276
4277 /*
4278 * Go through the zonelist yet one more time, keep very high watermark
4279 * here, this is only to catch a parallel oom killing, we must fail if
4280 * we're still under heavy pressure. But make sure that this reclaim
4281 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4282 * allocation which will never fail due to oom_lock already held.
4283 */
4284 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4285 ~__GFP_DIRECT_RECLAIM, order,
4286 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4287 if (page)
4288 goto out;
4289
4290 /* Coredumps can quickly deplete all memory reserves */
4291 if (current->flags & PF_DUMPCORE)
4292 goto out;
4293 /* The OOM killer will not help higher order allocs */
4294 if (order > PAGE_ALLOC_COSTLY_ORDER)
4295 goto out;
4296 /*
4297 * We have already exhausted all our reclaim opportunities without any
4298 * success so it is time to admit defeat. We will skip the OOM killer
4299 * because it is very likely that the caller has a more reasonable
4300 * fallback than shooting a random task.
4301 *
4302 * The OOM killer may not free memory on a specific node.
4303 */
4304 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4305 goto out;
4306 /* The OOM killer does not needlessly kill tasks for lowmem */
4307 if (ac->highest_zoneidx < ZONE_NORMAL)
4308 goto out;
4309 if (pm_suspended_storage())
4310 goto out;
4311 /*
4312 * XXX: GFP_NOFS allocations should rather fail than rely on
4313 * other request to make a forward progress.
4314 * We are in an unfortunate situation where out_of_memory cannot
4315 * do much for this context but let's try it to at least get
4316 * access to memory reserved if the current task is killed (see
4317 * out_of_memory). Once filesystems are ready to handle allocation
4318 * failures more gracefully we should just bail out here.
4319 */
4320
4321 /* Exhausted what can be done so it's blame time */
4322 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4323 *did_some_progress = 1;
4324
4325 /*
4326 * Help non-failing allocations by giving them access to memory
4327 * reserves
4328 */
4329 if (gfp_mask & __GFP_NOFAIL)
4330 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4331 ALLOC_NO_WATERMARKS, ac);
4332 }
4333 out:
4334 mutex_unlock(&oom_lock);
4335 return page;
4336 }
4337
4338 /*
4339 * Maximum number of compaction retries with a progress before OOM
4340 * killer is consider as the only way to move forward.
4341 */
4342 #define MAX_COMPACT_RETRIES 16
4343
4344 #ifdef CONFIG_COMPACTION
4345 /* Try memory compaction for high-order allocations before reclaim */
4346 static struct page *
4347 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4348 unsigned int alloc_flags, const struct alloc_context *ac,
4349 enum compact_priority prio, enum compact_result *compact_result)
4350 {
4351 struct page *page = NULL;
4352 unsigned long pflags;
4353 unsigned int noreclaim_flag;
4354
4355 if (!order)
4356 return NULL;
4357
4358 psi_memstall_enter(&pflags);
4359 noreclaim_flag = memalloc_noreclaim_save();
4360
4361 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4362 prio, &page);
4363
4364 memalloc_noreclaim_restore(noreclaim_flag);
4365 psi_memstall_leave(&pflags);
4366
4367 if (*compact_result == COMPACT_SKIPPED)
4368 return NULL;
4369 /*
4370 * At least in one zone compaction wasn't deferred or skipped, so let's
4371 * count a compaction stall
4372 */
4373 count_vm_event(COMPACTSTALL);
4374
4375 /* Prep a captured page if available */
4376 if (page)
4377 prep_new_page(page, order, gfp_mask, alloc_flags);
4378
4379 /* Try get a page from the freelist if available */
4380 if (!page)
4381 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4382
4383 if (page) {
4384 struct zone *zone = page_zone(page);
4385
4386 zone->compact_blockskip_flush = false;
4387 compaction_defer_reset(zone, order, true);
4388 count_vm_event(COMPACTSUCCESS);
4389 return page;
4390 }
4391
4392 /*
4393 * It's bad if compaction run occurs and fails. The most likely reason
4394 * is that pages exist, but not enough to satisfy watermarks.
4395 */
4396 count_vm_event(COMPACTFAIL);
4397
4398 cond_resched();
4399
4400 return NULL;
4401 }
4402
4403 static inline bool
4404 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4405 enum compact_result compact_result,
4406 enum compact_priority *compact_priority,
4407 int *compaction_retries)
4408 {
4409 int max_retries = MAX_COMPACT_RETRIES;
4410 int min_priority;
4411 bool ret = false;
4412 int retries = *compaction_retries;
4413 enum compact_priority priority = *compact_priority;
4414
4415 if (!order)
4416 return false;
4417
4418 if (fatal_signal_pending(current))
4419 return false;
4420
4421 if (compaction_made_progress(compact_result))
4422 (*compaction_retries)++;
4423
4424 /*
4425 * compaction considers all the zone as desperately out of memory
4426 * so it doesn't really make much sense to retry except when the
4427 * failure could be caused by insufficient priority
4428 */
4429 if (compaction_failed(compact_result))
4430 goto check_priority;
4431
4432 /*
4433 * compaction was skipped because there are not enough order-0 pages
4434 * to work with, so we retry only if it looks like reclaim can help.
4435 */
4436 if (compaction_needs_reclaim(compact_result)) {
4437 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4438 goto out;
4439 }
4440
4441 /*
4442 * make sure the compaction wasn't deferred or didn't bail out early
4443 * due to locks contention before we declare that we should give up.
4444 * But the next retry should use a higher priority if allowed, so
4445 * we don't just keep bailing out endlessly.
4446 */
4447 if (compaction_withdrawn(compact_result)) {
4448 goto check_priority;
4449 }
4450
4451 /*
4452 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4453 * costly ones because they are de facto nofail and invoke OOM
4454 * killer to move on while costly can fail and users are ready
4455 * to cope with that. 1/4 retries is rather arbitrary but we
4456 * would need much more detailed feedback from compaction to
4457 * make a better decision.
4458 */
4459 if (order > PAGE_ALLOC_COSTLY_ORDER)
4460 max_retries /= 4;
4461 if (*compaction_retries <= max_retries) {
4462 ret = true;
4463 goto out;
4464 }
4465
4466 /*
4467 * Make sure there are attempts at the highest priority if we exhausted
4468 * all retries or failed at the lower priorities.
4469 */
4470 check_priority:
4471 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4472 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4473
4474 if (*compact_priority > min_priority) {
4475 (*compact_priority)--;
4476 *compaction_retries = 0;
4477 ret = true;
4478 }
4479 out:
4480 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4481 return ret;
4482 }
4483 #else
4484 static inline struct page *
4485 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4486 unsigned int alloc_flags, const struct alloc_context *ac,
4487 enum compact_priority prio, enum compact_result *compact_result)
4488 {
4489 *compact_result = COMPACT_SKIPPED;
4490 return NULL;
4491 }
4492
4493 static inline bool
4494 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4495 enum compact_result compact_result,
4496 enum compact_priority *compact_priority,
4497 int *compaction_retries)
4498 {
4499 struct zone *zone;
4500 struct zoneref *z;
4501
4502 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4503 return false;
4504
4505 /*
4506 * There are setups with compaction disabled which would prefer to loop
4507 * inside the allocator rather than hit the oom killer prematurely.
4508 * Let's give them a good hope and keep retrying while the order-0
4509 * watermarks are OK.
4510 */
4511 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4512 ac->highest_zoneidx, ac->nodemask) {
4513 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4514 ac->highest_zoneidx, alloc_flags))
4515 return true;
4516 }
4517 return false;
4518 }
4519 #endif /* CONFIG_COMPACTION */
4520
4521 #ifdef CONFIG_LOCKDEP
4522 static struct lockdep_map __fs_reclaim_map =
4523 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4524
4525 static bool __need_reclaim(gfp_t gfp_mask)
4526 {
4527 /* no reclaim without waiting on it */
4528 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4529 return false;
4530
4531 /* this guy won't enter reclaim */
4532 if (current->flags & PF_MEMALLOC)
4533 return false;
4534
4535 if (gfp_mask & __GFP_NOLOCKDEP)
4536 return false;
4537
4538 return true;
4539 }
4540
4541 void __fs_reclaim_acquire(unsigned long ip)
4542 {
4543 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4544 }
4545
4546 void __fs_reclaim_release(unsigned long ip)
4547 {
4548 lock_release(&__fs_reclaim_map, ip);
4549 }
4550
4551 void fs_reclaim_acquire(gfp_t gfp_mask)
4552 {
4553 gfp_mask = current_gfp_context(gfp_mask);
4554
4555 if (__need_reclaim(gfp_mask)) {
4556 if (gfp_mask & __GFP_FS)
4557 __fs_reclaim_acquire(_RET_IP_);
4558
4559 #ifdef CONFIG_MMU_NOTIFIER
4560 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4561 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4562 #endif
4563
4564 }
4565 }
4566 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4567
4568 void fs_reclaim_release(gfp_t gfp_mask)
4569 {
4570 gfp_mask = current_gfp_context(gfp_mask);
4571
4572 if (__need_reclaim(gfp_mask)) {
4573 if (gfp_mask & __GFP_FS)
4574 __fs_reclaim_release(_RET_IP_);
4575 }
4576 }
4577 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4578 #endif
4579
4580 /* Perform direct synchronous page reclaim */
4581 static unsigned long
4582 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4583 const struct alloc_context *ac)
4584 {
4585 unsigned int noreclaim_flag;
4586 unsigned long pflags, progress;
4587
4588 cond_resched();
4589
4590 /* We now go into synchronous reclaim */
4591 cpuset_memory_pressure_bump();
4592 psi_memstall_enter(&pflags);
4593 fs_reclaim_acquire(gfp_mask);
4594 noreclaim_flag = memalloc_noreclaim_save();
4595
4596 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4597 ac->nodemask);
4598
4599 memalloc_noreclaim_restore(noreclaim_flag);
4600 fs_reclaim_release(gfp_mask);
4601 psi_memstall_leave(&pflags);
4602
4603 cond_resched();
4604
4605 return progress;
4606 }
4607
4608 /* The really slow allocator path where we enter direct reclaim */
4609 static inline struct page *
4610 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4611 unsigned int alloc_flags, const struct alloc_context *ac,
4612 unsigned long *did_some_progress)
4613 {
4614 struct page *page = NULL;
4615 bool drained = false;
4616
4617 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4618 if (unlikely(!(*did_some_progress)))
4619 return NULL;
4620
4621 retry:
4622 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4623
4624 /*
4625 * If an allocation failed after direct reclaim, it could be because
4626 * pages are pinned on the per-cpu lists or in high alloc reserves.
4627 * Shrink them and try again
4628 */
4629 if (!page && !drained) {
4630 unreserve_highatomic_pageblock(ac, false);
4631 drain_all_pages(NULL);
4632 drained = true;
4633 goto retry;
4634 }
4635
4636 return page;
4637 }
4638
4639 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4640 const struct alloc_context *ac)
4641 {
4642 struct zoneref *z;
4643 struct zone *zone;
4644 pg_data_t *last_pgdat = NULL;
4645 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4646
4647 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4648 ac->nodemask) {
4649 if (last_pgdat != zone->zone_pgdat)
4650 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4651 last_pgdat = zone->zone_pgdat;
4652 }
4653 }
4654
4655 static inline unsigned int
4656 gfp_to_alloc_flags(gfp_t gfp_mask)
4657 {
4658 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4659
4660 /*
4661 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4662 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4663 * to save two branches.
4664 */
4665 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4666 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4667
4668 /*
4669 * The caller may dip into page reserves a bit more if the caller
4670 * cannot run direct reclaim, or if the caller has realtime scheduling
4671 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4672 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4673 */
4674 alloc_flags |= (__force int)
4675 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4676
4677 if (gfp_mask & __GFP_ATOMIC) {
4678 /*
4679 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4680 * if it can't schedule.
4681 */
4682 if (!(gfp_mask & __GFP_NOMEMALLOC))
4683 alloc_flags |= ALLOC_HARDER;
4684 /*
4685 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4686 * comment for __cpuset_node_allowed().
4687 */
4688 alloc_flags &= ~ALLOC_CPUSET;
4689 } else if (unlikely(rt_task(current)) && in_task())
4690 alloc_flags |= ALLOC_HARDER;
4691
4692 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4693
4694 return alloc_flags;
4695 }
4696
4697 static bool oom_reserves_allowed(struct task_struct *tsk)
4698 {
4699 if (!tsk_is_oom_victim(tsk))
4700 return false;
4701
4702 /*
4703 * !MMU doesn't have oom reaper so give access to memory reserves
4704 * only to the thread with TIF_MEMDIE set
4705 */
4706 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4707 return false;
4708
4709 return true;
4710 }
4711
4712 /*
4713 * Distinguish requests which really need access to full memory
4714 * reserves from oom victims which can live with a portion of it
4715 */
4716 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4717 {
4718 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4719 return 0;
4720 if (gfp_mask & __GFP_MEMALLOC)
4721 return ALLOC_NO_WATERMARKS;
4722 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4723 return ALLOC_NO_WATERMARKS;
4724 if (!in_interrupt()) {
4725 if (current->flags & PF_MEMALLOC)
4726 return ALLOC_NO_WATERMARKS;
4727 else if (oom_reserves_allowed(current))
4728 return ALLOC_OOM;
4729 }
4730
4731 return 0;
4732 }
4733
4734 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4735 {
4736 return !!__gfp_pfmemalloc_flags(gfp_mask);
4737 }
4738
4739 /*
4740 * Checks whether it makes sense to retry the reclaim to make a forward progress
4741 * for the given allocation request.
4742 *
4743 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4744 * without success, or when we couldn't even meet the watermark if we
4745 * reclaimed all remaining pages on the LRU lists.
4746 *
4747 * Returns true if a retry is viable or false to enter the oom path.
4748 */
4749 static inline bool
4750 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4751 struct alloc_context *ac, int alloc_flags,
4752 bool did_some_progress, int *no_progress_loops)
4753 {
4754 struct zone *zone;
4755 struct zoneref *z;
4756 bool ret = false;
4757
4758 /*
4759 * Costly allocations might have made a progress but this doesn't mean
4760 * their order will become available due to high fragmentation so
4761 * always increment the no progress counter for them
4762 */
4763 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4764 *no_progress_loops = 0;
4765 else
4766 (*no_progress_loops)++;
4767
4768 /*
4769 * Make sure we converge to OOM if we cannot make any progress
4770 * several times in the row.
4771 */
4772 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4773 /* Before OOM, exhaust highatomic_reserve */
4774 return unreserve_highatomic_pageblock(ac, true);
4775 }
4776
4777 /*
4778 * Keep reclaiming pages while there is a chance this will lead
4779 * somewhere. If none of the target zones can satisfy our allocation
4780 * request even if all reclaimable pages are considered then we are
4781 * screwed and have to go OOM.
4782 */
4783 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4784 ac->highest_zoneidx, ac->nodemask) {
4785 unsigned long available;
4786 unsigned long reclaimable;
4787 unsigned long min_wmark = min_wmark_pages(zone);
4788 bool wmark;
4789
4790 available = reclaimable = zone_reclaimable_pages(zone);
4791 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4792
4793 /*
4794 * Would the allocation succeed if we reclaimed all
4795 * reclaimable pages?
4796 */
4797 wmark = __zone_watermark_ok(zone, order, min_wmark,
4798 ac->highest_zoneidx, alloc_flags, available);
4799 trace_reclaim_retry_zone(z, order, reclaimable,
4800 available, min_wmark, *no_progress_loops, wmark);
4801 if (wmark) {
4802 /*
4803 * If we didn't make any progress and have a lot of
4804 * dirty + writeback pages then we should wait for
4805 * an IO to complete to slow down the reclaim and
4806 * prevent from pre mature OOM
4807 */
4808 if (!did_some_progress) {
4809 unsigned long write_pending;
4810
4811 write_pending = zone_page_state_snapshot(zone,
4812 NR_ZONE_WRITE_PENDING);
4813
4814 if (2 * write_pending > reclaimable) {
4815 congestion_wait(BLK_RW_ASYNC, HZ/10);
4816 return true;
4817 }
4818 }
4819
4820 ret = true;
4821 goto out;
4822 }
4823 }
4824
4825 out:
4826 /*
4827 * Memory allocation/reclaim might be called from a WQ context and the
4828 * current implementation of the WQ concurrency control doesn't
4829 * recognize that a particular WQ is congested if the worker thread is
4830 * looping without ever sleeping. Therefore we have to do a short sleep
4831 * here rather than calling cond_resched().
4832 */
4833 if (current->flags & PF_WQ_WORKER)
4834 schedule_timeout_uninterruptible(1);
4835 else
4836 cond_resched();
4837 return ret;
4838 }
4839
4840 static inline bool
4841 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4842 {
4843 /*
4844 * It's possible that cpuset's mems_allowed and the nodemask from
4845 * mempolicy don't intersect. This should be normally dealt with by
4846 * policy_nodemask(), but it's possible to race with cpuset update in
4847 * such a way the check therein was true, and then it became false
4848 * before we got our cpuset_mems_cookie here.
4849 * This assumes that for all allocations, ac->nodemask can come only
4850 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4851 * when it does not intersect with the cpuset restrictions) or the
4852 * caller can deal with a violated nodemask.
4853 */
4854 if (cpusets_enabled() && ac->nodemask &&
4855 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4856 ac->nodemask = NULL;
4857 return true;
4858 }
4859
4860 /*
4861 * When updating a task's mems_allowed or mempolicy nodemask, it is
4862 * possible to race with parallel threads in such a way that our
4863 * allocation can fail while the mask is being updated. If we are about
4864 * to fail, check if the cpuset changed during allocation and if so,
4865 * retry.
4866 */
4867 if (read_mems_allowed_retry(cpuset_mems_cookie))
4868 return true;
4869
4870 return false;
4871 }
4872
4873 static inline struct page *
4874 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4875 struct alloc_context *ac)
4876 {
4877 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4878 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4879 struct page *page = NULL;
4880 unsigned int alloc_flags;
4881 unsigned long did_some_progress;
4882 enum compact_priority compact_priority;
4883 enum compact_result compact_result;
4884 int compaction_retries;
4885 int no_progress_loops;
4886 unsigned int cpuset_mems_cookie;
4887 int reserve_flags;
4888
4889 /*
4890 * We also sanity check to catch abuse of atomic reserves being used by
4891 * callers that are not in atomic context.
4892 */
4893 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4894 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4895 gfp_mask &= ~__GFP_ATOMIC;
4896
4897 retry_cpuset:
4898 compaction_retries = 0;
4899 no_progress_loops = 0;
4900 compact_priority = DEF_COMPACT_PRIORITY;
4901 cpuset_mems_cookie = read_mems_allowed_begin();
4902
4903 /*
4904 * The fast path uses conservative alloc_flags to succeed only until
4905 * kswapd needs to be woken up, and to avoid the cost of setting up
4906 * alloc_flags precisely. So we do that now.
4907 */
4908 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4909
4910 /*
4911 * We need to recalculate the starting point for the zonelist iterator
4912 * because we might have used different nodemask in the fast path, or
4913 * there was a cpuset modification and we are retrying - otherwise we
4914 * could end up iterating over non-eligible zones endlessly.
4915 */
4916 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4917 ac->highest_zoneidx, ac->nodemask);
4918 if (!ac->preferred_zoneref->zone)
4919 goto nopage;
4920
4921 if (alloc_flags & ALLOC_KSWAPD)
4922 wake_all_kswapds(order, gfp_mask, ac);
4923
4924 /*
4925 * The adjusted alloc_flags might result in immediate success, so try
4926 * that first
4927 */
4928 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4929 if (page)
4930 goto got_pg;
4931
4932 /*
4933 * For costly allocations, try direct compaction first, as it's likely
4934 * that we have enough base pages and don't need to reclaim. For non-
4935 * movable high-order allocations, do that as well, as compaction will
4936 * try prevent permanent fragmentation by migrating from blocks of the
4937 * same migratetype.
4938 * Don't try this for allocations that are allowed to ignore
4939 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4940 */
4941 if (can_direct_reclaim &&
4942 (costly_order ||
4943 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4944 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4945 page = __alloc_pages_direct_compact(gfp_mask, order,
4946 alloc_flags, ac,
4947 INIT_COMPACT_PRIORITY,
4948 &compact_result);
4949 if (page)
4950 goto got_pg;
4951
4952 /*
4953 * Checks for costly allocations with __GFP_NORETRY, which
4954 * includes some THP page fault allocations
4955 */
4956 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4957 /*
4958 * If allocating entire pageblock(s) and compaction
4959 * failed because all zones are below low watermarks
4960 * or is prohibited because it recently failed at this
4961 * order, fail immediately unless the allocator has
4962 * requested compaction and reclaim retry.
4963 *
4964 * Reclaim is
4965 * - potentially very expensive because zones are far
4966 * below their low watermarks or this is part of very
4967 * bursty high order allocations,
4968 * - not guaranteed to help because isolate_freepages()
4969 * may not iterate over freed pages as part of its
4970 * linear scan, and
4971 * - unlikely to make entire pageblocks free on its
4972 * own.
4973 */
4974 if (compact_result == COMPACT_SKIPPED ||
4975 compact_result == COMPACT_DEFERRED)
4976 goto nopage;
4977
4978 /*
4979 * Looks like reclaim/compaction is worth trying, but
4980 * sync compaction could be very expensive, so keep
4981 * using async compaction.
4982 */
4983 compact_priority = INIT_COMPACT_PRIORITY;
4984 }
4985 }
4986
4987 retry:
4988 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4989 if (alloc_flags & ALLOC_KSWAPD)
4990 wake_all_kswapds(order, gfp_mask, ac);
4991
4992 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4993 if (reserve_flags)
4994 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
4995
4996 /*
4997 * Reset the nodemask and zonelist iterators if memory policies can be
4998 * ignored. These allocations are high priority and system rather than
4999 * user oriented.
5000 */
5001 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5002 ac->nodemask = NULL;
5003 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5004 ac->highest_zoneidx, ac->nodemask);
5005 }
5006
5007 /* Attempt with potentially adjusted zonelist and alloc_flags */
5008 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5009 if (page)
5010 goto got_pg;
5011
5012 /* Caller is not willing to reclaim, we can't balance anything */
5013 if (!can_direct_reclaim)
5014 goto nopage;
5015
5016 /* Avoid recursion of direct reclaim */
5017 if (current->flags & PF_MEMALLOC)
5018 goto nopage;
5019
5020 /* Try direct reclaim and then allocating */
5021 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5022 &did_some_progress);
5023 if (page)
5024 goto got_pg;
5025
5026 /* Try direct compaction and then allocating */
5027 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5028 compact_priority, &compact_result);
5029 if (page)
5030 goto got_pg;
5031
5032 /* Do not loop if specifically requested */
5033 if (gfp_mask & __GFP_NORETRY)
5034 goto nopage;
5035
5036 /*
5037 * Do not retry costly high order allocations unless they are
5038 * __GFP_RETRY_MAYFAIL
5039 */
5040 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5041 goto nopage;
5042
5043 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5044 did_some_progress > 0, &no_progress_loops))
5045 goto retry;
5046
5047 /*
5048 * It doesn't make any sense to retry for the compaction if the order-0
5049 * reclaim is not able to make any progress because the current
5050 * implementation of the compaction depends on the sufficient amount
5051 * of free memory (see __compaction_suitable)
5052 */
5053 if (did_some_progress > 0 &&
5054 should_compact_retry(ac, order, alloc_flags,
5055 compact_result, &compact_priority,
5056 &compaction_retries))
5057 goto retry;
5058
5059
5060 /* Deal with possible cpuset update races before we start OOM killing */
5061 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5062 goto retry_cpuset;
5063
5064 /* Reclaim has failed us, start killing things */
5065 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5066 if (page)
5067 goto got_pg;
5068
5069 /* Avoid allocations with no watermarks from looping endlessly */
5070 if (tsk_is_oom_victim(current) &&
5071 (alloc_flags & ALLOC_OOM ||
5072 (gfp_mask & __GFP_NOMEMALLOC)))
5073 goto nopage;
5074
5075 /* Retry as long as the OOM killer is making progress */
5076 if (did_some_progress) {
5077 no_progress_loops = 0;
5078 goto retry;
5079 }
5080
5081 nopage:
5082 /* Deal with possible cpuset update races before we fail */
5083 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5084 goto retry_cpuset;
5085
5086 /*
5087 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5088 * we always retry
5089 */
5090 if (gfp_mask & __GFP_NOFAIL) {
5091 /*
5092 * All existing users of the __GFP_NOFAIL are blockable, so warn
5093 * of any new users that actually require GFP_NOWAIT
5094 */
5095 if (WARN_ON_ONCE(!can_direct_reclaim))
5096 goto fail;
5097
5098 /*
5099 * PF_MEMALLOC request from this context is rather bizarre
5100 * because we cannot reclaim anything and only can loop waiting
5101 * for somebody to do a work for us
5102 */
5103 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5104
5105 /*
5106 * non failing costly orders are a hard requirement which we
5107 * are not prepared for much so let's warn about these users
5108 * so that we can identify them and convert them to something
5109 * else.
5110 */
5111 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5112
5113 /*
5114 * Help non-failing allocations by giving them access to memory
5115 * reserves but do not use ALLOC_NO_WATERMARKS because this
5116 * could deplete whole memory reserves which would just make
5117 * the situation worse
5118 */
5119 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5120 if (page)
5121 goto got_pg;
5122
5123 cond_resched();
5124 goto retry;
5125 }
5126 fail:
5127 warn_alloc(gfp_mask, ac->nodemask,
5128 "page allocation failure: order:%u", order);
5129 got_pg:
5130 return page;
5131 }
5132
5133 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5134 int preferred_nid, nodemask_t *nodemask,
5135 struct alloc_context *ac, gfp_t *alloc_gfp,
5136 unsigned int *alloc_flags)
5137 {
5138 ac->highest_zoneidx = gfp_zone(gfp_mask);
5139 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5140 ac->nodemask = nodemask;
5141 ac->migratetype = gfp_migratetype(gfp_mask);
5142
5143 if (cpusets_enabled()) {
5144 *alloc_gfp |= __GFP_HARDWALL;
5145 /*
5146 * When we are in the interrupt context, it is irrelevant
5147 * to the current task context. It means that any node ok.
5148 */
5149 if (in_task() && !ac->nodemask)
5150 ac->nodemask = &cpuset_current_mems_allowed;
5151 else
5152 *alloc_flags |= ALLOC_CPUSET;
5153 }
5154
5155 fs_reclaim_acquire(gfp_mask);
5156 fs_reclaim_release(gfp_mask);
5157
5158 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5159
5160 if (should_fail_alloc_page(gfp_mask, order))
5161 return false;
5162
5163 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5164
5165 /* Dirty zone balancing only done in the fast path */
5166 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5167
5168 /*
5169 * The preferred zone is used for statistics but crucially it is
5170 * also used as the starting point for the zonelist iterator. It
5171 * may get reset for allocations that ignore memory policies.
5172 */
5173 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5174 ac->highest_zoneidx, ac->nodemask);
5175
5176 return true;
5177 }
5178
5179 /*
5180 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5181 * @gfp: GFP flags for the allocation
5182 * @preferred_nid: The preferred NUMA node ID to allocate from
5183 * @nodemask: Set of nodes to allocate from, may be NULL
5184 * @nr_pages: The number of pages desired on the list or array
5185 * @page_list: Optional list to store the allocated pages
5186 * @page_array: Optional array to store the pages
5187 *
5188 * This is a batched version of the page allocator that attempts to
5189 * allocate nr_pages quickly. Pages are added to page_list if page_list
5190 * is not NULL, otherwise it is assumed that the page_array is valid.
5191 *
5192 * For lists, nr_pages is the number of pages that should be allocated.
5193 *
5194 * For arrays, only NULL elements are populated with pages and nr_pages
5195 * is the maximum number of pages that will be stored in the array.
5196 *
5197 * Returns the number of pages on the list or array.
5198 */
5199 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5200 nodemask_t *nodemask, int nr_pages,
5201 struct list_head *page_list,
5202 struct page **page_array)
5203 {
5204 struct page *page;
5205 unsigned long flags;
5206 struct zone *zone;
5207 struct zoneref *z;
5208 struct per_cpu_pages *pcp;
5209 struct list_head *pcp_list;
5210 struct alloc_context ac;
5211 gfp_t alloc_gfp;
5212 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5213 int nr_populated = 0, nr_account = 0;
5214
5215 /*
5216 * Skip populated array elements to determine if any pages need
5217 * to be allocated before disabling IRQs.
5218 */
5219 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5220 nr_populated++;
5221
5222 /* No pages requested? */
5223 if (unlikely(nr_pages <= 0))
5224 goto out;
5225
5226 /* Already populated array? */
5227 if (unlikely(page_array && nr_pages - nr_populated == 0))
5228 goto out;
5229
5230 /* Bulk allocator does not support memcg accounting. */
5231 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5232 goto failed;
5233
5234 /* Use the single page allocator for one page. */
5235 if (nr_pages - nr_populated == 1)
5236 goto failed;
5237
5238 #ifdef CONFIG_PAGE_OWNER
5239 /*
5240 * PAGE_OWNER may recurse into the allocator to allocate space to
5241 * save the stack with pagesets.lock held. Releasing/reacquiring
5242 * removes much of the performance benefit of bulk allocation so
5243 * force the caller to allocate one page at a time as it'll have
5244 * similar performance to added complexity to the bulk allocator.
5245 */
5246 if (static_branch_unlikely(&page_owner_inited))
5247 goto failed;
5248 #endif
5249
5250 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5251 gfp &= gfp_allowed_mask;
5252 alloc_gfp = gfp;
5253 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5254 goto out;
5255 gfp = alloc_gfp;
5256
5257 /* Find an allowed local zone that meets the low watermark. */
5258 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5259 unsigned long mark;
5260
5261 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5262 !__cpuset_zone_allowed(zone, gfp)) {
5263 continue;
5264 }
5265
5266 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5267 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5268 goto failed;
5269 }
5270
5271 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5272 if (zone_watermark_fast(zone, 0, mark,
5273 zonelist_zone_idx(ac.preferred_zoneref),
5274 alloc_flags, gfp)) {
5275 break;
5276 }
5277 }
5278
5279 /*
5280 * If there are no allowed local zones that meets the watermarks then
5281 * try to allocate a single page and reclaim if necessary.
5282 */
5283 if (unlikely(!zone))
5284 goto failed;
5285
5286 /* Attempt the batch allocation */
5287 local_lock_irqsave(&pagesets.lock, flags);
5288 pcp = this_cpu_ptr(zone->per_cpu_pageset);
5289 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5290
5291 while (nr_populated < nr_pages) {
5292
5293 /* Skip existing pages */
5294 if (page_array && page_array[nr_populated]) {
5295 nr_populated++;
5296 continue;
5297 }
5298
5299 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5300 pcp, pcp_list);
5301 if (unlikely(!page)) {
5302 /* Try and get at least one page */
5303 if (!nr_populated)
5304 goto failed_irq;
5305 break;
5306 }
5307 nr_account++;
5308
5309 prep_new_page(page, 0, gfp, 0);
5310 if (page_list)
5311 list_add(&page->lru, page_list);
5312 else
5313 page_array[nr_populated] = page;
5314 nr_populated++;
5315 }
5316
5317 local_unlock_irqrestore(&pagesets.lock, flags);
5318
5319 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5320 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5321
5322 out:
5323 return nr_populated;
5324
5325 failed_irq:
5326 local_unlock_irqrestore(&pagesets.lock, flags);
5327
5328 failed:
5329 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5330 if (page) {
5331 if (page_list)
5332 list_add(&page->lru, page_list);
5333 else
5334 page_array[nr_populated] = page;
5335 nr_populated++;
5336 }
5337
5338 goto out;
5339 }
5340 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5341
5342 /*
5343 * This is the 'heart' of the zoned buddy allocator.
5344 */
5345 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5346 nodemask_t *nodemask)
5347 {
5348 struct page *page;
5349 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5350 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5351 struct alloc_context ac = { };
5352
5353 /*
5354 * There are several places where we assume that the order value is sane
5355 * so bail out early if the request is out of bound.
5356 */
5357 if (unlikely(order >= MAX_ORDER)) {
5358 WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5359 return NULL;
5360 }
5361
5362 gfp &= gfp_allowed_mask;
5363 /*
5364 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5365 * resp. GFP_NOIO which has to be inherited for all allocation requests
5366 * from a particular context which has been marked by
5367 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5368 * movable zones are not used during allocation.
5369 */
5370 gfp = current_gfp_context(gfp);
5371 alloc_gfp = gfp;
5372 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5373 &alloc_gfp, &alloc_flags))
5374 return NULL;
5375
5376 /*
5377 * Forbid the first pass from falling back to types that fragment
5378 * memory until all local zones are considered.
5379 */
5380 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5381
5382 /* First allocation attempt */
5383 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5384 if (likely(page))
5385 goto out;
5386
5387 alloc_gfp = gfp;
5388 ac.spread_dirty_pages = false;
5389
5390 /*
5391 * Restore the original nodemask if it was potentially replaced with
5392 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5393 */
5394 ac.nodemask = nodemask;
5395
5396 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5397
5398 out:
5399 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5400 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5401 __free_pages(page, order);
5402 page = NULL;
5403 }
5404
5405 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5406
5407 return page;
5408 }
5409 EXPORT_SYMBOL(__alloc_pages);
5410
5411 /*
5412 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5413 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5414 * you need to access high mem.
5415 */
5416 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5417 {
5418 struct page *page;
5419
5420 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5421 if (!page)
5422 return 0;
5423 return (unsigned long) page_address(page);
5424 }
5425 EXPORT_SYMBOL(__get_free_pages);
5426
5427 unsigned long get_zeroed_page(gfp_t gfp_mask)
5428 {
5429 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5430 }
5431 EXPORT_SYMBOL(get_zeroed_page);
5432
5433 /**
5434 * __free_pages - Free pages allocated with alloc_pages().
5435 * @page: The page pointer returned from alloc_pages().
5436 * @order: The order of the allocation.
5437 *
5438 * This function can free multi-page allocations that are not compound
5439 * pages. It does not check that the @order passed in matches that of
5440 * the allocation, so it is easy to leak memory. Freeing more memory
5441 * than was allocated will probably emit a warning.
5442 *
5443 * If the last reference to this page is speculative, it will be released
5444 * by put_page() which only frees the first page of a non-compound
5445 * allocation. To prevent the remaining pages from being leaked, we free
5446 * the subsequent pages here. If you want to use the page's reference
5447 * count to decide when to free the allocation, you should allocate a
5448 * compound page, and use put_page() instead of __free_pages().
5449 *
5450 * Context: May be called in interrupt context or while holding a normal
5451 * spinlock, but not in NMI context or while holding a raw spinlock.
5452 */
5453 void __free_pages(struct page *page, unsigned int order)
5454 {
5455 if (put_page_testzero(page))
5456 free_the_page(page, order);
5457 else if (!PageHead(page))
5458 while (order-- > 0)
5459 free_the_page(page + (1 << order), order);
5460 }
5461 EXPORT_SYMBOL(__free_pages);
5462
5463 void free_pages(unsigned long addr, unsigned int order)
5464 {
5465 if (addr != 0) {
5466 VM_BUG_ON(!virt_addr_valid((void *)addr));
5467 __free_pages(virt_to_page((void *)addr), order);
5468 }
5469 }
5470
5471 EXPORT_SYMBOL(free_pages);
5472
5473 /*
5474 * Page Fragment:
5475 * An arbitrary-length arbitrary-offset area of memory which resides
5476 * within a 0 or higher order page. Multiple fragments within that page
5477 * are individually refcounted, in the page's reference counter.
5478 *
5479 * The page_frag functions below provide a simple allocation framework for
5480 * page fragments. This is used by the network stack and network device
5481 * drivers to provide a backing region of memory for use as either an
5482 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5483 */
5484 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5485 gfp_t gfp_mask)
5486 {
5487 struct page *page = NULL;
5488 gfp_t gfp = gfp_mask;
5489
5490 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5491 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5492 __GFP_NOMEMALLOC;
5493 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5494 PAGE_FRAG_CACHE_MAX_ORDER);
5495 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5496 #endif
5497 if (unlikely(!page))
5498 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5499
5500 nc->va = page ? page_address(page) : NULL;
5501
5502 return page;
5503 }
5504
5505 void __page_frag_cache_drain(struct page *page, unsigned int count)
5506 {
5507 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5508
5509 if (page_ref_sub_and_test(page, count))
5510 free_the_page(page, compound_order(page));
5511 }
5512 EXPORT_SYMBOL(__page_frag_cache_drain);
5513
5514 void *page_frag_alloc_align(struct page_frag_cache *nc,
5515 unsigned int fragsz, gfp_t gfp_mask,
5516 unsigned int align_mask)
5517 {
5518 unsigned int size = PAGE_SIZE;
5519 struct page *page;
5520 int offset;
5521
5522 if (unlikely(!nc->va)) {
5523 refill:
5524 page = __page_frag_cache_refill(nc, gfp_mask);
5525 if (!page)
5526 return NULL;
5527
5528 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5529 /* if size can vary use size else just use PAGE_SIZE */
5530 size = nc->size;
5531 #endif
5532 /* Even if we own the page, we do not use atomic_set().
5533 * This would break get_page_unless_zero() users.
5534 */
5535 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5536
5537 /* reset page count bias and offset to start of new frag */
5538 nc->pfmemalloc = page_is_pfmemalloc(page);
5539 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5540 nc->offset = size;
5541 }
5542
5543 offset = nc->offset - fragsz;
5544 if (unlikely(offset < 0)) {
5545 page = virt_to_page(nc->va);
5546
5547 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5548 goto refill;
5549
5550 if (unlikely(nc->pfmemalloc)) {
5551 free_the_page(page, compound_order(page));
5552 goto refill;
5553 }
5554
5555 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5556 /* if size can vary use size else just use PAGE_SIZE */
5557 size = nc->size;
5558 #endif
5559 /* OK, page count is 0, we can safely set it */
5560 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5561
5562 /* reset page count bias and offset to start of new frag */
5563 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5564 offset = size - fragsz;
5565 }
5566
5567 nc->pagecnt_bias--;
5568 offset &= align_mask;
5569 nc->offset = offset;
5570
5571 return nc->va + offset;
5572 }
5573 EXPORT_SYMBOL(page_frag_alloc_align);
5574
5575 /*
5576 * Frees a page fragment allocated out of either a compound or order 0 page.
5577 */
5578 void page_frag_free(void *addr)
5579 {
5580 struct page *page = virt_to_head_page(addr);
5581
5582 if (unlikely(put_page_testzero(page)))
5583 free_the_page(page, compound_order(page));
5584 }
5585 EXPORT_SYMBOL(page_frag_free);
5586
5587 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5588 size_t size)
5589 {
5590 if (addr) {
5591 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5592 unsigned long used = addr + PAGE_ALIGN(size);
5593
5594 split_page(virt_to_page((void *)addr), order);
5595 while (used < alloc_end) {
5596 free_page(used);
5597 used += PAGE_SIZE;
5598 }
5599 }
5600 return (void *)addr;
5601 }
5602
5603 /**
5604 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5605 * @size: the number of bytes to allocate
5606 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5607 *
5608 * This function is similar to alloc_pages(), except that it allocates the
5609 * minimum number of pages to satisfy the request. alloc_pages() can only
5610 * allocate memory in power-of-two pages.
5611 *
5612 * This function is also limited by MAX_ORDER.
5613 *
5614 * Memory allocated by this function must be released by free_pages_exact().
5615 *
5616 * Return: pointer to the allocated area or %NULL in case of error.
5617 */
5618 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5619 {
5620 unsigned int order = get_order(size);
5621 unsigned long addr;
5622
5623 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5624 gfp_mask &= ~__GFP_COMP;
5625
5626 addr = __get_free_pages(gfp_mask, order);
5627 return make_alloc_exact(addr, order, size);
5628 }
5629 EXPORT_SYMBOL(alloc_pages_exact);
5630
5631 /**
5632 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5633 * pages on a node.
5634 * @nid: the preferred node ID where memory should be allocated
5635 * @size: the number of bytes to allocate
5636 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5637 *
5638 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5639 * back.
5640 *
5641 * Return: pointer to the allocated area or %NULL in case of error.
5642 */
5643 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5644 {
5645 unsigned int order = get_order(size);
5646 struct page *p;
5647
5648 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5649 gfp_mask &= ~__GFP_COMP;
5650
5651 p = alloc_pages_node(nid, gfp_mask, order);
5652 if (!p)
5653 return NULL;
5654 return make_alloc_exact((unsigned long)page_address(p), order, size);
5655 }
5656
5657 /**
5658 * free_pages_exact - release memory allocated via alloc_pages_exact()
5659 * @virt: the value returned by alloc_pages_exact.
5660 * @size: size of allocation, same value as passed to alloc_pages_exact().
5661 *
5662 * Release the memory allocated by a previous call to alloc_pages_exact.
5663 */
5664 void free_pages_exact(void *virt, size_t size)
5665 {
5666 unsigned long addr = (unsigned long)virt;
5667 unsigned long end = addr + PAGE_ALIGN(size);
5668
5669 while (addr < end) {
5670 free_page(addr);
5671 addr += PAGE_SIZE;
5672 }
5673 }
5674 EXPORT_SYMBOL(free_pages_exact);
5675
5676 /**
5677 * nr_free_zone_pages - count number of pages beyond high watermark
5678 * @offset: The zone index of the highest zone
5679 *
5680 * nr_free_zone_pages() counts the number of pages which are beyond the
5681 * high watermark within all zones at or below a given zone index. For each
5682 * zone, the number of pages is calculated as:
5683 *
5684 * nr_free_zone_pages = managed_pages - high_pages
5685 *
5686 * Return: number of pages beyond high watermark.
5687 */
5688 static unsigned long nr_free_zone_pages(int offset)
5689 {
5690 struct zoneref *z;
5691 struct zone *zone;
5692
5693 /* Just pick one node, since fallback list is circular */
5694 unsigned long sum = 0;
5695
5696 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5697
5698 for_each_zone_zonelist(zone, z, zonelist, offset) {
5699 unsigned long size = zone_managed_pages(zone);
5700 unsigned long high = high_wmark_pages(zone);
5701 if (size > high)
5702 sum += size - high;
5703 }
5704
5705 return sum;
5706 }
5707
5708 /**
5709 * nr_free_buffer_pages - count number of pages beyond high watermark
5710 *
5711 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5712 * watermark within ZONE_DMA and ZONE_NORMAL.
5713 *
5714 * Return: number of pages beyond high watermark within ZONE_DMA and
5715 * ZONE_NORMAL.
5716 */
5717 unsigned long nr_free_buffer_pages(void)
5718 {
5719 return nr_free_zone_pages(gfp_zone(GFP_USER));
5720 }
5721 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5722
5723 static inline void show_node(struct zone *zone)
5724 {
5725 if (IS_ENABLED(CONFIG_NUMA))
5726 printk("Node %d ", zone_to_nid(zone));
5727 }
5728
5729 long si_mem_available(void)
5730 {
5731 long available;
5732 unsigned long pagecache;
5733 unsigned long wmark_low = 0;
5734 unsigned long pages[NR_LRU_LISTS];
5735 unsigned long reclaimable;
5736 struct zone *zone;
5737 int lru;
5738
5739 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5740 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5741
5742 for_each_zone(zone)
5743 wmark_low += low_wmark_pages(zone);
5744
5745 /*
5746 * Estimate the amount of memory available for userspace allocations,
5747 * without causing swapping.
5748 */
5749 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5750
5751 /*
5752 * Not all the page cache can be freed, otherwise the system will
5753 * start swapping. Assume at least half of the page cache, or the
5754 * low watermark worth of cache, needs to stay.
5755 */
5756 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5757 pagecache -= min(pagecache / 2, wmark_low);
5758 available += pagecache;
5759
5760 /*
5761 * Part of the reclaimable slab and other kernel memory consists of
5762 * items that are in use, and cannot be freed. Cap this estimate at the
5763 * low watermark.
5764 */
5765 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5766 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5767 available += reclaimable - min(reclaimable / 2, wmark_low);
5768
5769 if (available < 0)
5770 available = 0;
5771 return available;
5772 }
5773 EXPORT_SYMBOL_GPL(si_mem_available);
5774
5775 void si_meminfo(struct sysinfo *val)
5776 {
5777 val->totalram = totalram_pages();
5778 val->sharedram = global_node_page_state(NR_SHMEM);
5779 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5780 val->bufferram = nr_blockdev_pages();
5781 val->totalhigh = totalhigh_pages();
5782 val->freehigh = nr_free_highpages();
5783 val->mem_unit = PAGE_SIZE;
5784 }
5785
5786 EXPORT_SYMBOL(si_meminfo);
5787
5788 #ifdef CONFIG_NUMA
5789 void si_meminfo_node(struct sysinfo *val, int nid)
5790 {
5791 int zone_type; /* needs to be signed */
5792 unsigned long managed_pages = 0;
5793 unsigned long managed_highpages = 0;
5794 unsigned long free_highpages = 0;
5795 pg_data_t *pgdat = NODE_DATA(nid);
5796
5797 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5798 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5799 val->totalram = managed_pages;
5800 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5801 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5802 #ifdef CONFIG_HIGHMEM
5803 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5804 struct zone *zone = &pgdat->node_zones[zone_type];
5805
5806 if (is_highmem(zone)) {
5807 managed_highpages += zone_managed_pages(zone);
5808 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5809 }
5810 }
5811 val->totalhigh = managed_highpages;
5812 val->freehigh = free_highpages;
5813 #else
5814 val->totalhigh = managed_highpages;
5815 val->freehigh = free_highpages;
5816 #endif
5817 val->mem_unit = PAGE_SIZE;
5818 }
5819 #endif
5820
5821 /*
5822 * Determine whether the node should be displayed or not, depending on whether
5823 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5824 */
5825 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5826 {
5827 if (!(flags & SHOW_MEM_FILTER_NODES))
5828 return false;
5829
5830 /*
5831 * no node mask - aka implicit memory numa policy. Do not bother with
5832 * the synchronization - read_mems_allowed_begin - because we do not
5833 * have to be precise here.
5834 */
5835 if (!nodemask)
5836 nodemask = &cpuset_current_mems_allowed;
5837
5838 return !node_isset(nid, *nodemask);
5839 }
5840
5841 #define K(x) ((x) << (PAGE_SHIFT-10))
5842
5843 static void show_migration_types(unsigned char type)
5844 {
5845 static const char types[MIGRATE_TYPES] = {
5846 [MIGRATE_UNMOVABLE] = 'U',
5847 [MIGRATE_MOVABLE] = 'M',
5848 [MIGRATE_RECLAIMABLE] = 'E',
5849 [MIGRATE_HIGHATOMIC] = 'H',
5850 #ifdef CONFIG_CMA
5851 [MIGRATE_CMA] = 'C',
5852 #endif
5853 #ifdef CONFIG_MEMORY_ISOLATION
5854 [MIGRATE_ISOLATE] = 'I',
5855 #endif
5856 };
5857 char tmp[MIGRATE_TYPES + 1];
5858 char *p = tmp;
5859 int i;
5860
5861 for (i = 0; i < MIGRATE_TYPES; i++) {
5862 if (type & (1 << i))
5863 *p++ = types[i];
5864 }
5865
5866 *p = '\0';
5867 printk(KERN_CONT "(%s) ", tmp);
5868 }
5869
5870 /*
5871 * Show free area list (used inside shift_scroll-lock stuff)
5872 * We also calculate the percentage fragmentation. We do this by counting the
5873 * memory on each free list with the exception of the first item on the list.
5874 *
5875 * Bits in @filter:
5876 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5877 * cpuset.
5878 */
5879 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5880 {
5881 unsigned long free_pcp = 0;
5882 int cpu;
5883 struct zone *zone;
5884 pg_data_t *pgdat;
5885
5886 for_each_populated_zone(zone) {
5887 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5888 continue;
5889
5890 for_each_online_cpu(cpu)
5891 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5892 }
5893
5894 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5895 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5896 " unevictable:%lu dirty:%lu writeback:%lu\n"
5897 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5898 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5899 " kernel_misc_reclaimable:%lu\n"
5900 " free:%lu free_pcp:%lu free_cma:%lu\n",
5901 global_node_page_state(NR_ACTIVE_ANON),
5902 global_node_page_state(NR_INACTIVE_ANON),
5903 global_node_page_state(NR_ISOLATED_ANON),
5904 global_node_page_state(NR_ACTIVE_FILE),
5905 global_node_page_state(NR_INACTIVE_FILE),
5906 global_node_page_state(NR_ISOLATED_FILE),
5907 global_node_page_state(NR_UNEVICTABLE),
5908 global_node_page_state(NR_FILE_DIRTY),
5909 global_node_page_state(NR_WRITEBACK),
5910 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5911 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5912 global_node_page_state(NR_FILE_MAPPED),
5913 global_node_page_state(NR_SHMEM),
5914 global_node_page_state(NR_PAGETABLE),
5915 global_zone_page_state(NR_BOUNCE),
5916 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
5917 global_zone_page_state(NR_FREE_PAGES),
5918 free_pcp,
5919 global_zone_page_state(NR_FREE_CMA_PAGES));
5920
5921 for_each_online_pgdat(pgdat) {
5922 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5923 continue;
5924
5925 printk("Node %d"
5926 " active_anon:%lukB"
5927 " inactive_anon:%lukB"
5928 " active_file:%lukB"
5929 " inactive_file:%lukB"
5930 " unevictable:%lukB"
5931 " isolated(anon):%lukB"
5932 " isolated(file):%lukB"
5933 " mapped:%lukB"
5934 " dirty:%lukB"
5935 " writeback:%lukB"
5936 " shmem:%lukB"
5937 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5938 " shmem_thp: %lukB"
5939 " shmem_pmdmapped: %lukB"
5940 " anon_thp: %lukB"
5941 #endif
5942 " writeback_tmp:%lukB"
5943 " kernel_stack:%lukB"
5944 #ifdef CONFIG_SHADOW_CALL_STACK
5945 " shadow_call_stack:%lukB"
5946 #endif
5947 " pagetables:%lukB"
5948 " all_unreclaimable? %s"
5949 "\n",
5950 pgdat->node_id,
5951 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5952 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5953 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5954 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5955 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5956 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5957 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5958 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5959 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5960 K(node_page_state(pgdat, NR_WRITEBACK)),
5961 K(node_page_state(pgdat, NR_SHMEM)),
5962 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5963 K(node_page_state(pgdat, NR_SHMEM_THPS)),
5964 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5965 K(node_page_state(pgdat, NR_ANON_THPS)),
5966 #endif
5967 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5968 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5969 #ifdef CONFIG_SHADOW_CALL_STACK
5970 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5971 #endif
5972 K(node_page_state(pgdat, NR_PAGETABLE)),
5973 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5974 "yes" : "no");
5975 }
5976
5977 for_each_populated_zone(zone) {
5978 int i;
5979
5980 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5981 continue;
5982
5983 free_pcp = 0;
5984 for_each_online_cpu(cpu)
5985 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5986
5987 show_node(zone);
5988 printk(KERN_CONT
5989 "%s"
5990 " free:%lukB"
5991 " min:%lukB"
5992 " low:%lukB"
5993 " high:%lukB"
5994 " reserved_highatomic:%luKB"
5995 " active_anon:%lukB"
5996 " inactive_anon:%lukB"
5997 " active_file:%lukB"
5998 " inactive_file:%lukB"
5999 " unevictable:%lukB"
6000 " writepending:%lukB"
6001 " present:%lukB"
6002 " managed:%lukB"
6003 " mlocked:%lukB"
6004 " bounce:%lukB"
6005 " free_pcp:%lukB"
6006 " local_pcp:%ukB"
6007 " free_cma:%lukB"
6008 "\n",
6009 zone->name,
6010 K(zone_page_state(zone, NR_FREE_PAGES)),
6011 K(min_wmark_pages(zone)),
6012 K(low_wmark_pages(zone)),
6013 K(high_wmark_pages(zone)),
6014 K(zone->nr_reserved_highatomic),
6015 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6016 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6017 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6018 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6019 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6020 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6021 K(zone->present_pages),
6022 K(zone_managed_pages(zone)),
6023 K(zone_page_state(zone, NR_MLOCK)),
6024 K(zone_page_state(zone, NR_BOUNCE)),
6025 K(free_pcp),
6026 K(this_cpu_read(zone->per_cpu_pageset->count)),
6027 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6028 printk("lowmem_reserve[]:");
6029 for (i = 0; i < MAX_NR_ZONES; i++)
6030 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6031 printk(KERN_CONT "\n");
6032 }
6033
6034 for_each_populated_zone(zone) {
6035 unsigned int order;
6036 unsigned long nr[MAX_ORDER], flags, total = 0;
6037 unsigned char types[MAX_ORDER];
6038
6039 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6040 continue;
6041 show_node(zone);
6042 printk(KERN_CONT "%s: ", zone->name);
6043
6044 spin_lock_irqsave(&zone->lock, flags);
6045 for (order = 0; order < MAX_ORDER; order++) {
6046 struct free_area *area = &zone->free_area[order];
6047 int type;
6048
6049 nr[order] = area->nr_free;
6050 total += nr[order] << order;
6051
6052 types[order] = 0;
6053 for (type = 0; type < MIGRATE_TYPES; type++) {
6054 if (!free_area_empty(area, type))
6055 types[order] |= 1 << type;
6056 }
6057 }
6058 spin_unlock_irqrestore(&zone->lock, flags);
6059 for (order = 0; order < MAX_ORDER; order++) {
6060 printk(KERN_CONT "%lu*%lukB ",
6061 nr[order], K(1UL) << order);
6062 if (nr[order])
6063 show_migration_types(types[order]);
6064 }
6065 printk(KERN_CONT "= %lukB\n", K(total));
6066 }
6067
6068 hugetlb_show_meminfo();
6069
6070 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6071
6072 show_swap_cache_info();
6073 }
6074
6075 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6076 {
6077 zoneref->zone = zone;
6078 zoneref->zone_idx = zone_idx(zone);
6079 }
6080
6081 /*
6082 * Builds allocation fallback zone lists.
6083 *
6084 * Add all populated zones of a node to the zonelist.
6085 */
6086 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6087 {
6088 struct zone *zone;
6089 enum zone_type zone_type = MAX_NR_ZONES;
6090 int nr_zones = 0;
6091
6092 do {
6093 zone_type--;
6094 zone = pgdat->node_zones + zone_type;
6095 if (populated_zone(zone)) {
6096 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6097 check_highest_zone(zone_type);
6098 }
6099 } while (zone_type);
6100
6101 return nr_zones;
6102 }
6103
6104 #ifdef CONFIG_NUMA
6105
6106 static int __parse_numa_zonelist_order(char *s)
6107 {
6108 /*
6109 * We used to support different zonelists modes but they turned
6110 * out to be just not useful. Let's keep the warning in place
6111 * if somebody still use the cmd line parameter so that we do
6112 * not fail it silently
6113 */
6114 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6115 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6116 return -EINVAL;
6117 }
6118 return 0;
6119 }
6120
6121 char numa_zonelist_order[] = "Node";
6122
6123 /*
6124 * sysctl handler for numa_zonelist_order
6125 */
6126 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6127 void *buffer, size_t *length, loff_t *ppos)
6128 {
6129 if (write)
6130 return __parse_numa_zonelist_order(buffer);
6131 return proc_dostring(table, write, buffer, length, ppos);
6132 }
6133
6134
6135 #define MAX_NODE_LOAD (nr_online_nodes)
6136 static int node_load[MAX_NUMNODES];
6137
6138 /**
6139 * find_next_best_node - find the next node that should appear in a given node's fallback list
6140 * @node: node whose fallback list we're appending
6141 * @used_node_mask: nodemask_t of already used nodes
6142 *
6143 * We use a number of factors to determine which is the next node that should
6144 * appear on a given node's fallback list. The node should not have appeared
6145 * already in @node's fallback list, and it should be the next closest node
6146 * according to the distance array (which contains arbitrary distance values
6147 * from each node to each node in the system), and should also prefer nodes
6148 * with no CPUs, since presumably they'll have very little allocation pressure
6149 * on them otherwise.
6150 *
6151 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6152 */
6153 int find_next_best_node(int node, nodemask_t *used_node_mask)
6154 {
6155 int n, val;
6156 int min_val = INT_MAX;
6157 int best_node = NUMA_NO_NODE;
6158
6159 /* Use the local node if we haven't already */
6160 if (!node_isset(node, *used_node_mask)) {
6161 node_set(node, *used_node_mask);
6162 return node;
6163 }
6164
6165 for_each_node_state(n, N_MEMORY) {
6166
6167 /* Don't want a node to appear more than once */
6168 if (node_isset(n, *used_node_mask))
6169 continue;
6170
6171 /* Use the distance array to find the distance */
6172 val = node_distance(node, n);
6173
6174 /* Penalize nodes under us ("prefer the next node") */
6175 val += (n < node);
6176
6177 /* Give preference to headless and unused nodes */
6178 if (!cpumask_empty(cpumask_of_node(n)))
6179 val += PENALTY_FOR_NODE_WITH_CPUS;
6180
6181 /* Slight preference for less loaded node */
6182 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6183 val += node_load[n];
6184
6185 if (val < min_val) {
6186 min_val = val;
6187 best_node = n;
6188 }
6189 }
6190
6191 if (best_node >= 0)
6192 node_set(best_node, *used_node_mask);
6193
6194 return best_node;
6195 }
6196
6197
6198 /*
6199 * Build zonelists ordered by node and zones within node.
6200 * This results in maximum locality--normal zone overflows into local
6201 * DMA zone, if any--but risks exhausting DMA zone.
6202 */
6203 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6204 unsigned nr_nodes)
6205 {
6206 struct zoneref *zonerefs;
6207 int i;
6208
6209 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6210
6211 for (i = 0; i < nr_nodes; i++) {
6212 int nr_zones;
6213
6214 pg_data_t *node = NODE_DATA(node_order[i]);
6215
6216 nr_zones = build_zonerefs_node(node, zonerefs);
6217 zonerefs += nr_zones;
6218 }
6219 zonerefs->zone = NULL;
6220 zonerefs->zone_idx = 0;
6221 }
6222
6223 /*
6224 * Build gfp_thisnode zonelists
6225 */
6226 static void build_thisnode_zonelists(pg_data_t *pgdat)
6227 {
6228 struct zoneref *zonerefs;
6229 int nr_zones;
6230
6231 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6232 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6233 zonerefs += nr_zones;
6234 zonerefs->zone = NULL;
6235 zonerefs->zone_idx = 0;
6236 }
6237
6238 /*
6239 * Build zonelists ordered by zone and nodes within zones.
6240 * This results in conserving DMA zone[s] until all Normal memory is
6241 * exhausted, but results in overflowing to remote node while memory
6242 * may still exist in local DMA zone.
6243 */
6244
6245 static void build_zonelists(pg_data_t *pgdat)
6246 {
6247 static int node_order[MAX_NUMNODES];
6248 int node, load, nr_nodes = 0;
6249 nodemask_t used_mask = NODE_MASK_NONE;
6250 int local_node, prev_node;
6251
6252 /* NUMA-aware ordering of nodes */
6253 local_node = pgdat->node_id;
6254 load = nr_online_nodes;
6255 prev_node = local_node;
6256
6257 memset(node_order, 0, sizeof(node_order));
6258 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6259 /*
6260 * We don't want to pressure a particular node.
6261 * So adding penalty to the first node in same
6262 * distance group to make it round-robin.
6263 */
6264 if (node_distance(local_node, node) !=
6265 node_distance(local_node, prev_node))
6266 node_load[node] = load;
6267
6268 node_order[nr_nodes++] = node;
6269 prev_node = node;
6270 load--;
6271 }
6272
6273 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6274 build_thisnode_zonelists(pgdat);
6275 }
6276
6277 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6278 /*
6279 * Return node id of node used for "local" allocations.
6280 * I.e., first node id of first zone in arg node's generic zonelist.
6281 * Used for initializing percpu 'numa_mem', which is used primarily
6282 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6283 */
6284 int local_memory_node(int node)
6285 {
6286 struct zoneref *z;
6287
6288 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6289 gfp_zone(GFP_KERNEL),
6290 NULL);
6291 return zone_to_nid(z->zone);
6292 }
6293 #endif
6294
6295 static void setup_min_unmapped_ratio(void);
6296 static void setup_min_slab_ratio(void);
6297 #else /* CONFIG_NUMA */
6298
6299 static void build_zonelists(pg_data_t *pgdat)
6300 {
6301 int node, local_node;
6302 struct zoneref *zonerefs;
6303 int nr_zones;
6304
6305 local_node = pgdat->node_id;
6306
6307 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6308 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6309 zonerefs += nr_zones;
6310
6311 /*
6312 * Now we build the zonelist so that it contains the zones
6313 * of all the other nodes.
6314 * We don't want to pressure a particular node, so when
6315 * building the zones for node N, we make sure that the
6316 * zones coming right after the local ones are those from
6317 * node N+1 (modulo N)
6318 */
6319 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6320 if (!node_online(node))
6321 continue;
6322 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6323 zonerefs += nr_zones;
6324 }
6325 for (node = 0; node < local_node; node++) {
6326 if (!node_online(node))
6327 continue;
6328 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6329 zonerefs += nr_zones;
6330 }
6331
6332 zonerefs->zone = NULL;
6333 zonerefs->zone_idx = 0;
6334 }
6335
6336 #endif /* CONFIG_NUMA */
6337
6338 /*
6339 * Boot pageset table. One per cpu which is going to be used for all
6340 * zones and all nodes. The parameters will be set in such a way
6341 * that an item put on a list will immediately be handed over to
6342 * the buddy list. This is safe since pageset manipulation is done
6343 * with interrupts disabled.
6344 *
6345 * The boot_pagesets must be kept even after bootup is complete for
6346 * unused processors and/or zones. They do play a role for bootstrapping
6347 * hotplugged processors.
6348 *
6349 * zoneinfo_show() and maybe other functions do
6350 * not check if the processor is online before following the pageset pointer.
6351 * Other parts of the kernel may not check if the zone is available.
6352 */
6353 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6354 /* These effectively disable the pcplists in the boot pageset completely */
6355 #define BOOT_PAGESET_HIGH 0
6356 #define BOOT_PAGESET_BATCH 1
6357 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6358 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6359 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6360
6361 static void __build_all_zonelists(void *data)
6362 {
6363 int nid;
6364 int __maybe_unused cpu;
6365 pg_data_t *self = data;
6366 static DEFINE_SPINLOCK(lock);
6367
6368 spin_lock(&lock);
6369
6370 #ifdef CONFIG_NUMA
6371 memset(node_load, 0, sizeof(node_load));
6372 #endif
6373
6374 /*
6375 * This node is hotadded and no memory is yet present. So just
6376 * building zonelists is fine - no need to touch other nodes.
6377 */
6378 if (self && !node_online(self->node_id)) {
6379 build_zonelists(self);
6380 } else {
6381 for_each_online_node(nid) {
6382 pg_data_t *pgdat = NODE_DATA(nid);
6383
6384 build_zonelists(pgdat);
6385 }
6386
6387 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6388 /*
6389 * We now know the "local memory node" for each node--
6390 * i.e., the node of the first zone in the generic zonelist.
6391 * Set up numa_mem percpu variable for on-line cpus. During
6392 * boot, only the boot cpu should be on-line; we'll init the
6393 * secondary cpus' numa_mem as they come on-line. During
6394 * node/memory hotplug, we'll fixup all on-line cpus.
6395 */
6396 for_each_online_cpu(cpu)
6397 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6398 #endif
6399 }
6400
6401 spin_unlock(&lock);
6402 }
6403
6404 static noinline void __init
6405 build_all_zonelists_init(void)
6406 {
6407 int cpu;
6408
6409 __build_all_zonelists(NULL);
6410
6411 /*
6412 * Initialize the boot_pagesets that are going to be used
6413 * for bootstrapping processors. The real pagesets for
6414 * each zone will be allocated later when the per cpu
6415 * allocator is available.
6416 *
6417 * boot_pagesets are used also for bootstrapping offline
6418 * cpus if the system is already booted because the pagesets
6419 * are needed to initialize allocators on a specific cpu too.
6420 * F.e. the percpu allocator needs the page allocator which
6421 * needs the percpu allocator in order to allocate its pagesets
6422 * (a chicken-egg dilemma).
6423 */
6424 for_each_possible_cpu(cpu)
6425 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6426
6427 mminit_verify_zonelist();
6428 cpuset_init_current_mems_allowed();
6429 }
6430
6431 /*
6432 * unless system_state == SYSTEM_BOOTING.
6433 *
6434 * __ref due to call of __init annotated helper build_all_zonelists_init
6435 * [protected by SYSTEM_BOOTING].
6436 */
6437 void __ref build_all_zonelists(pg_data_t *pgdat)
6438 {
6439 unsigned long vm_total_pages;
6440
6441 if (system_state == SYSTEM_BOOTING) {
6442 build_all_zonelists_init();
6443 } else {
6444 __build_all_zonelists(pgdat);
6445 /* cpuset refresh routine should be here */
6446 }
6447 /* Get the number of free pages beyond high watermark in all zones. */
6448 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6449 /*
6450 * Disable grouping by mobility if the number of pages in the
6451 * system is too low to allow the mechanism to work. It would be
6452 * more accurate, but expensive to check per-zone. This check is
6453 * made on memory-hotadd so a system can start with mobility
6454 * disabled and enable it later
6455 */
6456 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6457 page_group_by_mobility_disabled = 1;
6458 else
6459 page_group_by_mobility_disabled = 0;
6460
6461 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6462 nr_online_nodes,
6463 page_group_by_mobility_disabled ? "off" : "on",
6464 vm_total_pages);
6465 #ifdef CONFIG_NUMA
6466 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6467 #endif
6468 }
6469
6470 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6471 static bool __meminit
6472 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6473 {
6474 static struct memblock_region *r;
6475
6476 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6477 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6478 for_each_mem_region(r) {
6479 if (*pfn < memblock_region_memory_end_pfn(r))
6480 break;
6481 }
6482 }
6483 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6484 memblock_is_mirror(r)) {
6485 *pfn = memblock_region_memory_end_pfn(r);
6486 return true;
6487 }
6488 }
6489 return false;
6490 }
6491
6492 /*
6493 * Initially all pages are reserved - free ones are freed
6494 * up by memblock_free_all() once the early boot process is
6495 * done. Non-atomic initialization, single-pass.
6496 *
6497 * All aligned pageblocks are initialized to the specified migratetype
6498 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6499 * zone stats (e.g., nr_isolate_pageblock) are touched.
6500 */
6501 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6502 unsigned long start_pfn, unsigned long zone_end_pfn,
6503 enum meminit_context context,
6504 struct vmem_altmap *altmap, int migratetype)
6505 {
6506 unsigned long pfn, end_pfn = start_pfn + size;
6507 struct page *page;
6508
6509 if (highest_memmap_pfn < end_pfn - 1)
6510 highest_memmap_pfn = end_pfn - 1;
6511
6512 #ifdef CONFIG_ZONE_DEVICE
6513 /*
6514 * Honor reservation requested by the driver for this ZONE_DEVICE
6515 * memory. We limit the total number of pages to initialize to just
6516 * those that might contain the memory mapping. We will defer the
6517 * ZONE_DEVICE page initialization until after we have released
6518 * the hotplug lock.
6519 */
6520 if (zone == ZONE_DEVICE) {
6521 if (!altmap)
6522 return;
6523
6524 if (start_pfn == altmap->base_pfn)
6525 start_pfn += altmap->reserve;
6526 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6527 }
6528 #endif
6529
6530 for (pfn = start_pfn; pfn < end_pfn; ) {
6531 /*
6532 * There can be holes in boot-time mem_map[]s handed to this
6533 * function. They do not exist on hotplugged memory.
6534 */
6535 if (context == MEMINIT_EARLY) {
6536 if (overlap_memmap_init(zone, &pfn))
6537 continue;
6538 if (defer_init(nid, pfn, zone_end_pfn))
6539 break;
6540 }
6541
6542 page = pfn_to_page(pfn);
6543 __init_single_page(page, pfn, zone, nid);
6544 if (context == MEMINIT_HOTPLUG)
6545 __SetPageReserved(page);
6546
6547 /*
6548 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6549 * such that unmovable allocations won't be scattered all
6550 * over the place during system boot.
6551 */
6552 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6553 set_pageblock_migratetype(page, migratetype);
6554 cond_resched();
6555 }
6556 pfn++;
6557 }
6558 }
6559
6560 #ifdef CONFIG_ZONE_DEVICE
6561 void __ref memmap_init_zone_device(struct zone *zone,
6562 unsigned long start_pfn,
6563 unsigned long nr_pages,
6564 struct dev_pagemap *pgmap)
6565 {
6566 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6567 struct pglist_data *pgdat = zone->zone_pgdat;
6568 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6569 unsigned long zone_idx = zone_idx(zone);
6570 unsigned long start = jiffies;
6571 int nid = pgdat->node_id;
6572
6573 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6574 return;
6575
6576 /*
6577 * The call to memmap_init should have already taken care
6578 * of the pages reserved for the memmap, so we can just jump to
6579 * the end of that region and start processing the device pages.
6580 */
6581 if (altmap) {
6582 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6583 nr_pages = end_pfn - start_pfn;
6584 }
6585
6586 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6587 struct page *page = pfn_to_page(pfn);
6588
6589 __init_single_page(page, pfn, zone_idx, nid);
6590
6591 /*
6592 * Mark page reserved as it will need to wait for onlining
6593 * phase for it to be fully associated with a zone.
6594 *
6595 * We can use the non-atomic __set_bit operation for setting
6596 * the flag as we are still initializing the pages.
6597 */
6598 __SetPageReserved(page);
6599
6600 /*
6601 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6602 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6603 * ever freed or placed on a driver-private list.
6604 */
6605 page->pgmap = pgmap;
6606 page->zone_device_data = NULL;
6607
6608 /*
6609 * Mark the block movable so that blocks are reserved for
6610 * movable at startup. This will force kernel allocations
6611 * to reserve their blocks rather than leaking throughout
6612 * the address space during boot when many long-lived
6613 * kernel allocations are made.
6614 *
6615 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6616 * because this is done early in section_activate()
6617 */
6618 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6619 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6620 cond_resched();
6621 }
6622 }
6623
6624 pr_info("%s initialised %lu pages in %ums\n", __func__,
6625 nr_pages, jiffies_to_msecs(jiffies - start));
6626 }
6627
6628 #endif
6629 static void __meminit zone_init_free_lists(struct zone *zone)
6630 {
6631 unsigned int order, t;
6632 for_each_migratetype_order(order, t) {
6633 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6634 zone->free_area[order].nr_free = 0;
6635 }
6636 }
6637
6638 /*
6639 * Only struct pages that correspond to ranges defined by memblock.memory
6640 * are zeroed and initialized by going through __init_single_page() during
6641 * memmap_init_zone_range().
6642 *
6643 * But, there could be struct pages that correspond to holes in
6644 * memblock.memory. This can happen because of the following reasons:
6645 * - physical memory bank size is not necessarily the exact multiple of the
6646 * arbitrary section size
6647 * - early reserved memory may not be listed in memblock.memory
6648 * - memory layouts defined with memmap= kernel parameter may not align
6649 * nicely with memmap sections
6650 *
6651 * Explicitly initialize those struct pages so that:
6652 * - PG_Reserved is set
6653 * - zone and node links point to zone and node that span the page if the
6654 * hole is in the middle of a zone
6655 * - zone and node links point to adjacent zone/node if the hole falls on
6656 * the zone boundary; the pages in such holes will be prepended to the
6657 * zone/node above the hole except for the trailing pages in the last
6658 * section that will be appended to the zone/node below.
6659 */
6660 static void __init init_unavailable_range(unsigned long spfn,
6661 unsigned long epfn,
6662 int zone, int node)
6663 {
6664 unsigned long pfn;
6665 u64 pgcnt = 0;
6666
6667 for (pfn = spfn; pfn < epfn; pfn++) {
6668 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6669 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6670 + pageblock_nr_pages - 1;
6671 continue;
6672 }
6673 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6674 __SetPageReserved(pfn_to_page(pfn));
6675 pgcnt++;
6676 }
6677
6678 if (pgcnt)
6679 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6680 node, zone_names[zone], pgcnt);
6681 }
6682
6683 static void __init memmap_init_zone_range(struct zone *zone,
6684 unsigned long start_pfn,
6685 unsigned long end_pfn,
6686 unsigned long *hole_pfn)
6687 {
6688 unsigned long zone_start_pfn = zone->zone_start_pfn;
6689 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6690 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6691
6692 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6693 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6694
6695 if (start_pfn >= end_pfn)
6696 return;
6697
6698 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6699 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6700
6701 if (*hole_pfn < start_pfn)
6702 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6703
6704 *hole_pfn = end_pfn;
6705 }
6706
6707 static void __init memmap_init(void)
6708 {
6709 unsigned long start_pfn, end_pfn;
6710 unsigned long hole_pfn = 0;
6711 int i, j, zone_id = 0, nid;
6712
6713 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6714 struct pglist_data *node = NODE_DATA(nid);
6715
6716 for (j = 0; j < MAX_NR_ZONES; j++) {
6717 struct zone *zone = node->node_zones + j;
6718
6719 if (!populated_zone(zone))
6720 continue;
6721
6722 memmap_init_zone_range(zone, start_pfn, end_pfn,
6723 &hole_pfn);
6724 zone_id = j;
6725 }
6726 }
6727
6728 #ifdef CONFIG_SPARSEMEM
6729 /*
6730 * Initialize the memory map for hole in the range [memory_end,
6731 * section_end].
6732 * Append the pages in this hole to the highest zone in the last
6733 * node.
6734 * The call to init_unavailable_range() is outside the ifdef to
6735 * silence the compiler warining about zone_id set but not used;
6736 * for FLATMEM it is a nop anyway
6737 */
6738 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6739 if (hole_pfn < end_pfn)
6740 #endif
6741 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6742 }
6743
6744 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6745 phys_addr_t min_addr, int nid, bool exact_nid)
6746 {
6747 void *ptr;
6748
6749 if (exact_nid)
6750 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6751 MEMBLOCK_ALLOC_ACCESSIBLE,
6752 nid);
6753 else
6754 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6755 MEMBLOCK_ALLOC_ACCESSIBLE,
6756 nid);
6757
6758 if (ptr && size > 0)
6759 page_init_poison(ptr, size);
6760
6761 return ptr;
6762 }
6763
6764 static int zone_batchsize(struct zone *zone)
6765 {
6766 #ifdef CONFIG_MMU
6767 int batch;
6768
6769 /*
6770 * The number of pages to batch allocate is either ~0.1%
6771 * of the zone or 1MB, whichever is smaller. The batch
6772 * size is striking a balance between allocation latency
6773 * and zone lock contention.
6774 */
6775 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6776 batch /= 4; /* We effectively *= 4 below */
6777 if (batch < 1)
6778 batch = 1;
6779
6780 /*
6781 * Clamp the batch to a 2^n - 1 value. Having a power
6782 * of 2 value was found to be more likely to have
6783 * suboptimal cache aliasing properties in some cases.
6784 *
6785 * For example if 2 tasks are alternately allocating
6786 * batches of pages, one task can end up with a lot
6787 * of pages of one half of the possible page colors
6788 * and the other with pages of the other colors.
6789 */
6790 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6791
6792 return batch;
6793
6794 #else
6795 /* The deferral and batching of frees should be suppressed under NOMMU
6796 * conditions.
6797 *
6798 * The problem is that NOMMU needs to be able to allocate large chunks
6799 * of contiguous memory as there's no hardware page translation to
6800 * assemble apparent contiguous memory from discontiguous pages.
6801 *
6802 * Queueing large contiguous runs of pages for batching, however,
6803 * causes the pages to actually be freed in smaller chunks. As there
6804 * can be a significant delay between the individual batches being
6805 * recycled, this leads to the once large chunks of space being
6806 * fragmented and becoming unavailable for high-order allocations.
6807 */
6808 return 0;
6809 #endif
6810 }
6811
6812 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6813 {
6814 #ifdef CONFIG_MMU
6815 int high;
6816 int nr_split_cpus;
6817 unsigned long total_pages;
6818
6819 if (!percpu_pagelist_high_fraction) {
6820 /*
6821 * By default, the high value of the pcp is based on the zone
6822 * low watermark so that if they are full then background
6823 * reclaim will not be started prematurely.
6824 */
6825 total_pages = low_wmark_pages(zone);
6826 } else {
6827 /*
6828 * If percpu_pagelist_high_fraction is configured, the high
6829 * value is based on a fraction of the managed pages in the
6830 * zone.
6831 */
6832 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6833 }
6834
6835 /*
6836 * Split the high value across all online CPUs local to the zone. Note
6837 * that early in boot that CPUs may not be online yet and that during
6838 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6839 * onlined. For memory nodes that have no CPUs, split pcp->high across
6840 * all online CPUs to mitigate the risk that reclaim is triggered
6841 * prematurely due to pages stored on pcp lists.
6842 */
6843 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6844 if (!nr_split_cpus)
6845 nr_split_cpus = num_online_cpus();
6846 high = total_pages / nr_split_cpus;
6847
6848 /*
6849 * Ensure high is at least batch*4. The multiple is based on the
6850 * historical relationship between high and batch.
6851 */
6852 high = max(high, batch << 2);
6853
6854 return high;
6855 #else
6856 return 0;
6857 #endif
6858 }
6859
6860 /*
6861 * pcp->high and pcp->batch values are related and generally batch is lower
6862 * than high. They are also related to pcp->count such that count is lower
6863 * than high, and as soon as it reaches high, the pcplist is flushed.
6864 *
6865 * However, guaranteeing these relations at all times would require e.g. write
6866 * barriers here but also careful usage of read barriers at the read side, and
6867 * thus be prone to error and bad for performance. Thus the update only prevents
6868 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6869 * can cope with those fields changing asynchronously, and fully trust only the
6870 * pcp->count field on the local CPU with interrupts disabled.
6871 *
6872 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6873 * outside of boot time (or some other assurance that no concurrent updaters
6874 * exist).
6875 */
6876 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6877 unsigned long batch)
6878 {
6879 WRITE_ONCE(pcp->batch, batch);
6880 WRITE_ONCE(pcp->high, high);
6881 }
6882
6883 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6884 {
6885 int pindex;
6886
6887 memset(pcp, 0, sizeof(*pcp));
6888 memset(pzstats, 0, sizeof(*pzstats));
6889
6890 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6891 INIT_LIST_HEAD(&pcp->lists[pindex]);
6892
6893 /*
6894 * Set batch and high values safe for a boot pageset. A true percpu
6895 * pageset's initialization will update them subsequently. Here we don't
6896 * need to be as careful as pageset_update() as nobody can access the
6897 * pageset yet.
6898 */
6899 pcp->high = BOOT_PAGESET_HIGH;
6900 pcp->batch = BOOT_PAGESET_BATCH;
6901 pcp->free_factor = 0;
6902 }
6903
6904 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6905 unsigned long batch)
6906 {
6907 struct per_cpu_pages *pcp;
6908 int cpu;
6909
6910 for_each_possible_cpu(cpu) {
6911 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6912 pageset_update(pcp, high, batch);
6913 }
6914 }
6915
6916 /*
6917 * Calculate and set new high and batch values for all per-cpu pagesets of a
6918 * zone based on the zone's size.
6919 */
6920 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6921 {
6922 int new_high, new_batch;
6923
6924 new_batch = max(1, zone_batchsize(zone));
6925 new_high = zone_highsize(zone, new_batch, cpu_online);
6926
6927 if (zone->pageset_high == new_high &&
6928 zone->pageset_batch == new_batch)
6929 return;
6930
6931 zone->pageset_high = new_high;
6932 zone->pageset_batch = new_batch;
6933
6934 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6935 }
6936
6937 void __meminit setup_zone_pageset(struct zone *zone)
6938 {
6939 int cpu;
6940
6941 /* Size may be 0 on !SMP && !NUMA */
6942 if (sizeof(struct per_cpu_zonestat) > 0)
6943 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6944
6945 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6946 for_each_possible_cpu(cpu) {
6947 struct per_cpu_pages *pcp;
6948 struct per_cpu_zonestat *pzstats;
6949
6950 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6951 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6952 per_cpu_pages_init(pcp, pzstats);
6953 }
6954
6955 zone_set_pageset_high_and_batch(zone, 0);
6956 }
6957
6958 /*
6959 * Allocate per cpu pagesets and initialize them.
6960 * Before this call only boot pagesets were available.
6961 */
6962 void __init setup_per_cpu_pageset(void)
6963 {
6964 struct pglist_data *pgdat;
6965 struct zone *zone;
6966 int __maybe_unused cpu;
6967
6968 for_each_populated_zone(zone)
6969 setup_zone_pageset(zone);
6970
6971 #ifdef CONFIG_NUMA
6972 /*
6973 * Unpopulated zones continue using the boot pagesets.
6974 * The numa stats for these pagesets need to be reset.
6975 * Otherwise, they will end up skewing the stats of
6976 * the nodes these zones are associated with.
6977 */
6978 for_each_possible_cpu(cpu) {
6979 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6980 memset(pzstats->vm_numa_event, 0,
6981 sizeof(pzstats->vm_numa_event));
6982 }
6983 #endif
6984
6985 for_each_online_pgdat(pgdat)
6986 pgdat->per_cpu_nodestats =
6987 alloc_percpu(struct per_cpu_nodestat);
6988 }
6989
6990 static __meminit void zone_pcp_init(struct zone *zone)
6991 {
6992 /*
6993 * per cpu subsystem is not up at this point. The following code
6994 * relies on the ability of the linker to provide the
6995 * offset of a (static) per cpu variable into the per cpu area.
6996 */
6997 zone->per_cpu_pageset = &boot_pageset;
6998 zone->per_cpu_zonestats = &boot_zonestats;
6999 zone->pageset_high = BOOT_PAGESET_HIGH;
7000 zone->pageset_batch = BOOT_PAGESET_BATCH;
7001
7002 if (populated_zone(zone))
7003 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7004 zone->present_pages, zone_batchsize(zone));
7005 }
7006
7007 void __meminit init_currently_empty_zone(struct zone *zone,
7008 unsigned long zone_start_pfn,
7009 unsigned long size)
7010 {
7011 struct pglist_data *pgdat = zone->zone_pgdat;
7012 int zone_idx = zone_idx(zone) + 1;
7013
7014 if (zone_idx > pgdat->nr_zones)
7015 pgdat->nr_zones = zone_idx;
7016
7017 zone->zone_start_pfn = zone_start_pfn;
7018
7019 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7020 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7021 pgdat->node_id,
7022 (unsigned long)zone_idx(zone),
7023 zone_start_pfn, (zone_start_pfn + size));
7024
7025 zone_init_free_lists(zone);
7026 zone->initialized = 1;
7027 }
7028
7029 /**
7030 * get_pfn_range_for_nid - Return the start and end page frames for a node
7031 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7032 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7033 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7034 *
7035 * It returns the start and end page frame of a node based on information
7036 * provided by memblock_set_node(). If called for a node
7037 * with no available memory, a warning is printed and the start and end
7038 * PFNs will be 0.
7039 */
7040 void __init get_pfn_range_for_nid(unsigned int nid,
7041 unsigned long *start_pfn, unsigned long *end_pfn)
7042 {
7043 unsigned long this_start_pfn, this_end_pfn;
7044 int i;
7045
7046 *start_pfn = -1UL;
7047 *end_pfn = 0;
7048
7049 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7050 *start_pfn = min(*start_pfn, this_start_pfn);
7051 *end_pfn = max(*end_pfn, this_end_pfn);
7052 }
7053
7054 if (*start_pfn == -1UL)
7055 *start_pfn = 0;
7056 }
7057
7058 /*
7059 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7060 * assumption is made that zones within a node are ordered in monotonic
7061 * increasing memory addresses so that the "highest" populated zone is used
7062 */
7063 static void __init find_usable_zone_for_movable(void)
7064 {
7065 int zone_index;
7066 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7067 if (zone_index == ZONE_MOVABLE)
7068 continue;
7069
7070 if (arch_zone_highest_possible_pfn[zone_index] >
7071 arch_zone_lowest_possible_pfn[zone_index])
7072 break;
7073 }
7074
7075 VM_BUG_ON(zone_index == -1);
7076 movable_zone = zone_index;
7077 }
7078
7079 /*
7080 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7081 * because it is sized independent of architecture. Unlike the other zones,
7082 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7083 * in each node depending on the size of each node and how evenly kernelcore
7084 * is distributed. This helper function adjusts the zone ranges
7085 * provided by the architecture for a given node by using the end of the
7086 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7087 * zones within a node are in order of monotonic increases memory addresses
7088 */
7089 static void __init adjust_zone_range_for_zone_movable(int nid,
7090 unsigned long zone_type,
7091 unsigned long node_start_pfn,
7092 unsigned long node_end_pfn,
7093 unsigned long *zone_start_pfn,
7094 unsigned long *zone_end_pfn)
7095 {
7096 /* Only adjust if ZONE_MOVABLE is on this node */
7097 if (zone_movable_pfn[nid]) {
7098 /* Size ZONE_MOVABLE */
7099 if (zone_type == ZONE_MOVABLE) {
7100 *zone_start_pfn = zone_movable_pfn[nid];
7101 *zone_end_pfn = min(node_end_pfn,
7102 arch_zone_highest_possible_pfn[movable_zone]);
7103
7104 /* Adjust for ZONE_MOVABLE starting within this range */
7105 } else if (!mirrored_kernelcore &&
7106 *zone_start_pfn < zone_movable_pfn[nid] &&
7107 *zone_end_pfn > zone_movable_pfn[nid]) {
7108 *zone_end_pfn = zone_movable_pfn[nid];
7109
7110 /* Check if this whole range is within ZONE_MOVABLE */
7111 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7112 *zone_start_pfn = *zone_end_pfn;
7113 }
7114 }
7115
7116 /*
7117 * Return the number of pages a zone spans in a node, including holes
7118 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7119 */
7120 static unsigned long __init zone_spanned_pages_in_node(int nid,
7121 unsigned long zone_type,
7122 unsigned long node_start_pfn,
7123 unsigned long node_end_pfn,
7124 unsigned long *zone_start_pfn,
7125 unsigned long *zone_end_pfn)
7126 {
7127 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7128 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7129 /* When hotadd a new node from cpu_up(), the node should be empty */
7130 if (!node_start_pfn && !node_end_pfn)
7131 return 0;
7132
7133 /* Get the start and end of the zone */
7134 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7135 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7136 adjust_zone_range_for_zone_movable(nid, zone_type,
7137 node_start_pfn, node_end_pfn,
7138 zone_start_pfn, zone_end_pfn);
7139
7140 /* Check that this node has pages within the zone's required range */
7141 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7142 return 0;
7143
7144 /* Move the zone boundaries inside the node if necessary */
7145 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7146 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7147
7148 /* Return the spanned pages */
7149 return *zone_end_pfn - *zone_start_pfn;
7150 }
7151
7152 /*
7153 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7154 * then all holes in the requested range will be accounted for.
7155 */
7156 unsigned long __init __absent_pages_in_range(int nid,
7157 unsigned long range_start_pfn,
7158 unsigned long range_end_pfn)
7159 {
7160 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7161 unsigned long start_pfn, end_pfn;
7162 int i;
7163
7164 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7165 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7166 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7167 nr_absent -= end_pfn - start_pfn;
7168 }
7169 return nr_absent;
7170 }
7171
7172 /**
7173 * absent_pages_in_range - Return number of page frames in holes within a range
7174 * @start_pfn: The start PFN to start searching for holes
7175 * @end_pfn: The end PFN to stop searching for holes
7176 *
7177 * Return: the number of pages frames in memory holes within a range.
7178 */
7179 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7180 unsigned long end_pfn)
7181 {
7182 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7183 }
7184
7185 /* Return the number of page frames in holes in a zone on a node */
7186 static unsigned long __init zone_absent_pages_in_node(int nid,
7187 unsigned long zone_type,
7188 unsigned long node_start_pfn,
7189 unsigned long node_end_pfn)
7190 {
7191 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7192 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7193 unsigned long zone_start_pfn, zone_end_pfn;
7194 unsigned long nr_absent;
7195
7196 /* When hotadd a new node from cpu_up(), the node should be empty */
7197 if (!node_start_pfn && !node_end_pfn)
7198 return 0;
7199
7200 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7201 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7202
7203 adjust_zone_range_for_zone_movable(nid, zone_type,
7204 node_start_pfn, node_end_pfn,
7205 &zone_start_pfn, &zone_end_pfn);
7206 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7207
7208 /*
7209 * ZONE_MOVABLE handling.
7210 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7211 * and vice versa.
7212 */
7213 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7214 unsigned long start_pfn, end_pfn;
7215 struct memblock_region *r;
7216
7217 for_each_mem_region(r) {
7218 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7219 zone_start_pfn, zone_end_pfn);
7220 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7221 zone_start_pfn, zone_end_pfn);
7222
7223 if (zone_type == ZONE_MOVABLE &&
7224 memblock_is_mirror(r))
7225 nr_absent += end_pfn - start_pfn;
7226
7227 if (zone_type == ZONE_NORMAL &&
7228 !memblock_is_mirror(r))
7229 nr_absent += end_pfn - start_pfn;
7230 }
7231 }
7232
7233 return nr_absent;
7234 }
7235
7236 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7237 unsigned long node_start_pfn,
7238 unsigned long node_end_pfn)
7239 {
7240 unsigned long realtotalpages = 0, totalpages = 0;
7241 enum zone_type i;
7242
7243 for (i = 0; i < MAX_NR_ZONES; i++) {
7244 struct zone *zone = pgdat->node_zones + i;
7245 unsigned long zone_start_pfn, zone_end_pfn;
7246 unsigned long spanned, absent;
7247 unsigned long size, real_size;
7248
7249 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7250 node_start_pfn,
7251 node_end_pfn,
7252 &zone_start_pfn,
7253 &zone_end_pfn);
7254 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7255 node_start_pfn,
7256 node_end_pfn);
7257
7258 size = spanned;
7259 real_size = size - absent;
7260
7261 if (size)
7262 zone->zone_start_pfn = zone_start_pfn;
7263 else
7264 zone->zone_start_pfn = 0;
7265 zone->spanned_pages = size;
7266 zone->present_pages = real_size;
7267 #if defined(CONFIG_MEMORY_HOTPLUG)
7268 zone->present_early_pages = real_size;
7269 #endif
7270
7271 totalpages += size;
7272 realtotalpages += real_size;
7273 }
7274
7275 pgdat->node_spanned_pages = totalpages;
7276 pgdat->node_present_pages = realtotalpages;
7277 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7278 }
7279
7280 #ifndef CONFIG_SPARSEMEM
7281 /*
7282 * Calculate the size of the zone->blockflags rounded to an unsigned long
7283 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7284 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7285 * round what is now in bits to nearest long in bits, then return it in
7286 * bytes.
7287 */
7288 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7289 {
7290 unsigned long usemapsize;
7291
7292 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7293 usemapsize = roundup(zonesize, pageblock_nr_pages);
7294 usemapsize = usemapsize >> pageblock_order;
7295 usemapsize *= NR_PAGEBLOCK_BITS;
7296 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7297
7298 return usemapsize / 8;
7299 }
7300
7301 static void __ref setup_usemap(struct zone *zone)
7302 {
7303 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7304 zone->spanned_pages);
7305 zone->pageblock_flags = NULL;
7306 if (usemapsize) {
7307 zone->pageblock_flags =
7308 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7309 zone_to_nid(zone));
7310 if (!zone->pageblock_flags)
7311 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7312 usemapsize, zone->name, zone_to_nid(zone));
7313 }
7314 }
7315 #else
7316 static inline void setup_usemap(struct zone *zone) {}
7317 #endif /* CONFIG_SPARSEMEM */
7318
7319 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7320
7321 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7322 void __init set_pageblock_order(void)
7323 {
7324 unsigned int order;
7325
7326 /* Check that pageblock_nr_pages has not already been setup */
7327 if (pageblock_order)
7328 return;
7329
7330 if (HPAGE_SHIFT > PAGE_SHIFT)
7331 order = HUGETLB_PAGE_ORDER;
7332 else
7333 order = MAX_ORDER - 1;
7334
7335 /*
7336 * Assume the largest contiguous order of interest is a huge page.
7337 * This value may be variable depending on boot parameters on IA64 and
7338 * powerpc.
7339 */
7340 pageblock_order = order;
7341 }
7342 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7343
7344 /*
7345 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7346 * is unused as pageblock_order is set at compile-time. See
7347 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7348 * the kernel config
7349 */
7350 void __init set_pageblock_order(void)
7351 {
7352 }
7353
7354 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7355
7356 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7357 unsigned long present_pages)
7358 {
7359 unsigned long pages = spanned_pages;
7360
7361 /*
7362 * Provide a more accurate estimation if there are holes within
7363 * the zone and SPARSEMEM is in use. If there are holes within the
7364 * zone, each populated memory region may cost us one or two extra
7365 * memmap pages due to alignment because memmap pages for each
7366 * populated regions may not be naturally aligned on page boundary.
7367 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7368 */
7369 if (spanned_pages > present_pages + (present_pages >> 4) &&
7370 IS_ENABLED(CONFIG_SPARSEMEM))
7371 pages = present_pages;
7372
7373 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7374 }
7375
7376 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7377 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7378 {
7379 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7380
7381 spin_lock_init(&ds_queue->split_queue_lock);
7382 INIT_LIST_HEAD(&ds_queue->split_queue);
7383 ds_queue->split_queue_len = 0;
7384 }
7385 #else
7386 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7387 #endif
7388
7389 #ifdef CONFIG_COMPACTION
7390 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7391 {
7392 init_waitqueue_head(&pgdat->kcompactd_wait);
7393 }
7394 #else
7395 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7396 #endif
7397
7398 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7399 {
7400 pgdat_resize_init(pgdat);
7401
7402 pgdat_init_split_queue(pgdat);
7403 pgdat_init_kcompactd(pgdat);
7404
7405 init_waitqueue_head(&pgdat->kswapd_wait);
7406 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7407
7408 pgdat_page_ext_init(pgdat);
7409 lruvec_init(&pgdat->__lruvec);
7410 }
7411
7412 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7413 unsigned long remaining_pages)
7414 {
7415 atomic_long_set(&zone->managed_pages, remaining_pages);
7416 zone_set_nid(zone, nid);
7417 zone->name = zone_names[idx];
7418 zone->zone_pgdat = NODE_DATA(nid);
7419 spin_lock_init(&zone->lock);
7420 zone_seqlock_init(zone);
7421 zone_pcp_init(zone);
7422 }
7423
7424 /*
7425 * Set up the zone data structures
7426 * - init pgdat internals
7427 * - init all zones belonging to this node
7428 *
7429 * NOTE: this function is only called during memory hotplug
7430 */
7431 #ifdef CONFIG_MEMORY_HOTPLUG
7432 void __ref free_area_init_core_hotplug(int nid)
7433 {
7434 enum zone_type z;
7435 pg_data_t *pgdat = NODE_DATA(nid);
7436
7437 pgdat_init_internals(pgdat);
7438 for (z = 0; z < MAX_NR_ZONES; z++)
7439 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7440 }
7441 #endif
7442
7443 /*
7444 * Set up the zone data structures:
7445 * - mark all pages reserved
7446 * - mark all memory queues empty
7447 * - clear the memory bitmaps
7448 *
7449 * NOTE: pgdat should get zeroed by caller.
7450 * NOTE: this function is only called during early init.
7451 */
7452 static void __init free_area_init_core(struct pglist_data *pgdat)
7453 {
7454 enum zone_type j;
7455 int nid = pgdat->node_id;
7456
7457 pgdat_init_internals(pgdat);
7458 pgdat->per_cpu_nodestats = &boot_nodestats;
7459
7460 for (j = 0; j < MAX_NR_ZONES; j++) {
7461 struct zone *zone = pgdat->node_zones + j;
7462 unsigned long size, freesize, memmap_pages;
7463
7464 size = zone->spanned_pages;
7465 freesize = zone->present_pages;
7466
7467 /*
7468 * Adjust freesize so that it accounts for how much memory
7469 * is used by this zone for memmap. This affects the watermark
7470 * and per-cpu initialisations
7471 */
7472 memmap_pages = calc_memmap_size(size, freesize);
7473 if (!is_highmem_idx(j)) {
7474 if (freesize >= memmap_pages) {
7475 freesize -= memmap_pages;
7476 if (memmap_pages)
7477 pr_debug(" %s zone: %lu pages used for memmap\n",
7478 zone_names[j], memmap_pages);
7479 } else
7480 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7481 zone_names[j], memmap_pages, freesize);
7482 }
7483
7484 /* Account for reserved pages */
7485 if (j == 0 && freesize > dma_reserve) {
7486 freesize -= dma_reserve;
7487 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7488 }
7489
7490 if (!is_highmem_idx(j))
7491 nr_kernel_pages += freesize;
7492 /* Charge for highmem memmap if there are enough kernel pages */
7493 else if (nr_kernel_pages > memmap_pages * 2)
7494 nr_kernel_pages -= memmap_pages;
7495 nr_all_pages += freesize;
7496
7497 /*
7498 * Set an approximate value for lowmem here, it will be adjusted
7499 * when the bootmem allocator frees pages into the buddy system.
7500 * And all highmem pages will be managed by the buddy system.
7501 */
7502 zone_init_internals(zone, j, nid, freesize);
7503
7504 if (!size)
7505 continue;
7506
7507 set_pageblock_order();
7508 setup_usemap(zone);
7509 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7510 }
7511 }
7512
7513 #ifdef CONFIG_FLATMEM
7514 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7515 {
7516 unsigned long __maybe_unused start = 0;
7517 unsigned long __maybe_unused offset = 0;
7518
7519 /* Skip empty nodes */
7520 if (!pgdat->node_spanned_pages)
7521 return;
7522
7523 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7524 offset = pgdat->node_start_pfn - start;
7525 /* ia64 gets its own node_mem_map, before this, without bootmem */
7526 if (!pgdat->node_mem_map) {
7527 unsigned long size, end;
7528 struct page *map;
7529
7530 /*
7531 * The zone's endpoints aren't required to be MAX_ORDER
7532 * aligned but the node_mem_map endpoints must be in order
7533 * for the buddy allocator to function correctly.
7534 */
7535 end = pgdat_end_pfn(pgdat);
7536 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7537 size = (end - start) * sizeof(struct page);
7538 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7539 pgdat->node_id, false);
7540 if (!map)
7541 panic("Failed to allocate %ld bytes for node %d memory map\n",
7542 size, pgdat->node_id);
7543 pgdat->node_mem_map = map + offset;
7544 }
7545 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7546 __func__, pgdat->node_id, (unsigned long)pgdat,
7547 (unsigned long)pgdat->node_mem_map);
7548 #ifndef CONFIG_NUMA
7549 /*
7550 * With no DISCONTIG, the global mem_map is just set as node 0's
7551 */
7552 if (pgdat == NODE_DATA(0)) {
7553 mem_map = NODE_DATA(0)->node_mem_map;
7554 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7555 mem_map -= offset;
7556 }
7557 #endif
7558 }
7559 #else
7560 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7561 #endif /* CONFIG_FLATMEM */
7562
7563 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7564 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7565 {
7566 pgdat->first_deferred_pfn = ULONG_MAX;
7567 }
7568 #else
7569 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7570 #endif
7571
7572 static void __init free_area_init_node(int nid)
7573 {
7574 pg_data_t *pgdat = NODE_DATA(nid);
7575 unsigned long start_pfn = 0;
7576 unsigned long end_pfn = 0;
7577
7578 /* pg_data_t should be reset to zero when it's allocated */
7579 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7580
7581 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7582
7583 pgdat->node_id = nid;
7584 pgdat->node_start_pfn = start_pfn;
7585 pgdat->per_cpu_nodestats = NULL;
7586
7587 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7588 (u64)start_pfn << PAGE_SHIFT,
7589 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7590 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7591
7592 alloc_node_mem_map(pgdat);
7593 pgdat_set_deferred_range(pgdat);
7594
7595 free_area_init_core(pgdat);
7596 }
7597
7598 void __init free_area_init_memoryless_node(int nid)
7599 {
7600 free_area_init_node(nid);
7601 }
7602
7603 #if MAX_NUMNODES > 1
7604 /*
7605 * Figure out the number of possible node ids.
7606 */
7607 void __init setup_nr_node_ids(void)
7608 {
7609 unsigned int highest;
7610
7611 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7612 nr_node_ids = highest + 1;
7613 }
7614 #endif
7615
7616 /**
7617 * node_map_pfn_alignment - determine the maximum internode alignment
7618 *
7619 * This function should be called after node map is populated and sorted.
7620 * It calculates the maximum power of two alignment which can distinguish
7621 * all the nodes.
7622 *
7623 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7624 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7625 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7626 * shifted, 1GiB is enough and this function will indicate so.
7627 *
7628 * This is used to test whether pfn -> nid mapping of the chosen memory
7629 * model has fine enough granularity to avoid incorrect mapping for the
7630 * populated node map.
7631 *
7632 * Return: the determined alignment in pfn's. 0 if there is no alignment
7633 * requirement (single node).
7634 */
7635 unsigned long __init node_map_pfn_alignment(void)
7636 {
7637 unsigned long accl_mask = 0, last_end = 0;
7638 unsigned long start, end, mask;
7639 int last_nid = NUMA_NO_NODE;
7640 int i, nid;
7641
7642 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7643 if (!start || last_nid < 0 || last_nid == nid) {
7644 last_nid = nid;
7645 last_end = end;
7646 continue;
7647 }
7648
7649 /*
7650 * Start with a mask granular enough to pin-point to the
7651 * start pfn and tick off bits one-by-one until it becomes
7652 * too coarse to separate the current node from the last.
7653 */
7654 mask = ~((1 << __ffs(start)) - 1);
7655 while (mask && last_end <= (start & (mask << 1)))
7656 mask <<= 1;
7657
7658 /* accumulate all internode masks */
7659 accl_mask |= mask;
7660 }
7661
7662 /* convert mask to number of pages */
7663 return ~accl_mask + 1;
7664 }
7665
7666 /**
7667 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7668 *
7669 * Return: the minimum PFN based on information provided via
7670 * memblock_set_node().
7671 */
7672 unsigned long __init find_min_pfn_with_active_regions(void)
7673 {
7674 return PHYS_PFN(memblock_start_of_DRAM());
7675 }
7676
7677 /*
7678 * early_calculate_totalpages()
7679 * Sum pages in active regions for movable zone.
7680 * Populate N_MEMORY for calculating usable_nodes.
7681 */
7682 static unsigned long __init early_calculate_totalpages(void)
7683 {
7684 unsigned long totalpages = 0;
7685 unsigned long start_pfn, end_pfn;
7686 int i, nid;
7687
7688 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7689 unsigned long pages = end_pfn - start_pfn;
7690
7691 totalpages += pages;
7692 if (pages)
7693 node_set_state(nid, N_MEMORY);
7694 }
7695 return totalpages;
7696 }
7697
7698 /*
7699 * Find the PFN the Movable zone begins in each node. Kernel memory
7700 * is spread evenly between nodes as long as the nodes have enough
7701 * memory. When they don't, some nodes will have more kernelcore than
7702 * others
7703 */
7704 static void __init find_zone_movable_pfns_for_nodes(void)
7705 {
7706 int i, nid;
7707 unsigned long usable_startpfn;
7708 unsigned long kernelcore_node, kernelcore_remaining;
7709 /* save the state before borrow the nodemask */
7710 nodemask_t saved_node_state = node_states[N_MEMORY];
7711 unsigned long totalpages = early_calculate_totalpages();
7712 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7713 struct memblock_region *r;
7714
7715 /* Need to find movable_zone earlier when movable_node is specified. */
7716 find_usable_zone_for_movable();
7717
7718 /*
7719 * If movable_node is specified, ignore kernelcore and movablecore
7720 * options.
7721 */
7722 if (movable_node_is_enabled()) {
7723 for_each_mem_region(r) {
7724 if (!memblock_is_hotpluggable(r))
7725 continue;
7726
7727 nid = memblock_get_region_node(r);
7728
7729 usable_startpfn = PFN_DOWN(r->base);
7730 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7731 min(usable_startpfn, zone_movable_pfn[nid]) :
7732 usable_startpfn;
7733 }
7734
7735 goto out2;
7736 }
7737
7738 /*
7739 * If kernelcore=mirror is specified, ignore movablecore option
7740 */
7741 if (mirrored_kernelcore) {
7742 bool mem_below_4gb_not_mirrored = false;
7743
7744 for_each_mem_region(r) {
7745 if (memblock_is_mirror(r))
7746 continue;
7747
7748 nid = memblock_get_region_node(r);
7749
7750 usable_startpfn = memblock_region_memory_base_pfn(r);
7751
7752 if (usable_startpfn < 0x100000) {
7753 mem_below_4gb_not_mirrored = true;
7754 continue;
7755 }
7756
7757 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7758 min(usable_startpfn, zone_movable_pfn[nid]) :
7759 usable_startpfn;
7760 }
7761
7762 if (mem_below_4gb_not_mirrored)
7763 pr_warn("This configuration results in unmirrored kernel memory.\n");
7764
7765 goto out2;
7766 }
7767
7768 /*
7769 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7770 * amount of necessary memory.
7771 */
7772 if (required_kernelcore_percent)
7773 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7774 10000UL;
7775 if (required_movablecore_percent)
7776 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7777 10000UL;
7778
7779 /*
7780 * If movablecore= was specified, calculate what size of
7781 * kernelcore that corresponds so that memory usable for
7782 * any allocation type is evenly spread. If both kernelcore
7783 * and movablecore are specified, then the value of kernelcore
7784 * will be used for required_kernelcore if it's greater than
7785 * what movablecore would have allowed.
7786 */
7787 if (required_movablecore) {
7788 unsigned long corepages;
7789
7790 /*
7791 * Round-up so that ZONE_MOVABLE is at least as large as what
7792 * was requested by the user
7793 */
7794 required_movablecore =
7795 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7796 required_movablecore = min(totalpages, required_movablecore);
7797 corepages = totalpages - required_movablecore;
7798
7799 required_kernelcore = max(required_kernelcore, corepages);
7800 }
7801
7802 /*
7803 * If kernelcore was not specified or kernelcore size is larger
7804 * than totalpages, there is no ZONE_MOVABLE.
7805 */
7806 if (!required_kernelcore || required_kernelcore >= totalpages)
7807 goto out;
7808
7809 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7810 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7811
7812 restart:
7813 /* Spread kernelcore memory as evenly as possible throughout nodes */
7814 kernelcore_node = required_kernelcore / usable_nodes;
7815 for_each_node_state(nid, N_MEMORY) {
7816 unsigned long start_pfn, end_pfn;
7817
7818 /*
7819 * Recalculate kernelcore_node if the division per node
7820 * now exceeds what is necessary to satisfy the requested
7821 * amount of memory for the kernel
7822 */
7823 if (required_kernelcore < kernelcore_node)
7824 kernelcore_node = required_kernelcore / usable_nodes;
7825
7826 /*
7827 * As the map is walked, we track how much memory is usable
7828 * by the kernel using kernelcore_remaining. When it is
7829 * 0, the rest of the node is usable by ZONE_MOVABLE
7830 */
7831 kernelcore_remaining = kernelcore_node;
7832
7833 /* Go through each range of PFNs within this node */
7834 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7835 unsigned long size_pages;
7836
7837 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7838 if (start_pfn >= end_pfn)
7839 continue;
7840
7841 /* Account for what is only usable for kernelcore */
7842 if (start_pfn < usable_startpfn) {
7843 unsigned long kernel_pages;
7844 kernel_pages = min(end_pfn, usable_startpfn)
7845 - start_pfn;
7846
7847 kernelcore_remaining -= min(kernel_pages,
7848 kernelcore_remaining);
7849 required_kernelcore -= min(kernel_pages,
7850 required_kernelcore);
7851
7852 /* Continue if range is now fully accounted */
7853 if (end_pfn <= usable_startpfn) {
7854
7855 /*
7856 * Push zone_movable_pfn to the end so
7857 * that if we have to rebalance
7858 * kernelcore across nodes, we will
7859 * not double account here
7860 */
7861 zone_movable_pfn[nid] = end_pfn;
7862 continue;
7863 }
7864 start_pfn = usable_startpfn;
7865 }
7866
7867 /*
7868 * The usable PFN range for ZONE_MOVABLE is from
7869 * start_pfn->end_pfn. Calculate size_pages as the
7870 * number of pages used as kernelcore
7871 */
7872 size_pages = end_pfn - start_pfn;
7873 if (size_pages > kernelcore_remaining)
7874 size_pages = kernelcore_remaining;
7875 zone_movable_pfn[nid] = start_pfn + size_pages;
7876
7877 /*
7878 * Some kernelcore has been met, update counts and
7879 * break if the kernelcore for this node has been
7880 * satisfied
7881 */
7882 required_kernelcore -= min(required_kernelcore,
7883 size_pages);
7884 kernelcore_remaining -= size_pages;
7885 if (!kernelcore_remaining)
7886 break;
7887 }
7888 }
7889
7890 /*
7891 * If there is still required_kernelcore, we do another pass with one
7892 * less node in the count. This will push zone_movable_pfn[nid] further
7893 * along on the nodes that still have memory until kernelcore is
7894 * satisfied
7895 */
7896 usable_nodes--;
7897 if (usable_nodes && required_kernelcore > usable_nodes)
7898 goto restart;
7899
7900 out2:
7901 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7902 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7903 unsigned long start_pfn, end_pfn;
7904
7905 zone_movable_pfn[nid] =
7906 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7907
7908 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7909 if (zone_movable_pfn[nid] >= end_pfn)
7910 zone_movable_pfn[nid] = 0;
7911 }
7912
7913 out:
7914 /* restore the node_state */
7915 node_states[N_MEMORY] = saved_node_state;
7916 }
7917
7918 /* Any regular or high memory on that node ? */
7919 static void check_for_memory(pg_data_t *pgdat, int nid)
7920 {
7921 enum zone_type zone_type;
7922
7923 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7924 struct zone *zone = &pgdat->node_zones[zone_type];
7925 if (populated_zone(zone)) {
7926 if (IS_ENABLED(CONFIG_HIGHMEM))
7927 node_set_state(nid, N_HIGH_MEMORY);
7928 if (zone_type <= ZONE_NORMAL)
7929 node_set_state(nid, N_NORMAL_MEMORY);
7930 break;
7931 }
7932 }
7933 }
7934
7935 /*
7936 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7937 * such cases we allow max_zone_pfn sorted in the descending order
7938 */
7939 bool __weak arch_has_descending_max_zone_pfns(void)
7940 {
7941 return false;
7942 }
7943
7944 /**
7945 * free_area_init - Initialise all pg_data_t and zone data
7946 * @max_zone_pfn: an array of max PFNs for each zone
7947 *
7948 * This will call free_area_init_node() for each active node in the system.
7949 * Using the page ranges provided by memblock_set_node(), the size of each
7950 * zone in each node and their holes is calculated. If the maximum PFN
7951 * between two adjacent zones match, it is assumed that the zone is empty.
7952 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7953 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7954 * starts where the previous one ended. For example, ZONE_DMA32 starts
7955 * at arch_max_dma_pfn.
7956 */
7957 void __init free_area_init(unsigned long *max_zone_pfn)
7958 {
7959 unsigned long start_pfn, end_pfn;
7960 int i, nid, zone;
7961 bool descending;
7962
7963 /* Record where the zone boundaries are */
7964 memset(arch_zone_lowest_possible_pfn, 0,
7965 sizeof(arch_zone_lowest_possible_pfn));
7966 memset(arch_zone_highest_possible_pfn, 0,
7967 sizeof(arch_zone_highest_possible_pfn));
7968
7969 start_pfn = find_min_pfn_with_active_regions();
7970 descending = arch_has_descending_max_zone_pfns();
7971
7972 for (i = 0; i < MAX_NR_ZONES; i++) {
7973 if (descending)
7974 zone = MAX_NR_ZONES - i - 1;
7975 else
7976 zone = i;
7977
7978 if (zone == ZONE_MOVABLE)
7979 continue;
7980
7981 end_pfn = max(max_zone_pfn[zone], start_pfn);
7982 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7983 arch_zone_highest_possible_pfn[zone] = end_pfn;
7984
7985 start_pfn = end_pfn;
7986 }
7987
7988 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7989 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7990 find_zone_movable_pfns_for_nodes();
7991
7992 /* Print out the zone ranges */
7993 pr_info("Zone ranges:\n");
7994 for (i = 0; i < MAX_NR_ZONES; i++) {
7995 if (i == ZONE_MOVABLE)
7996 continue;
7997 pr_info(" %-8s ", zone_names[i]);
7998 if (arch_zone_lowest_possible_pfn[i] ==
7999 arch_zone_highest_possible_pfn[i])
8000 pr_cont("empty\n");
8001 else
8002 pr_cont("[mem %#018Lx-%#018Lx]\n",
8003 (u64)arch_zone_lowest_possible_pfn[i]
8004 << PAGE_SHIFT,
8005 ((u64)arch_zone_highest_possible_pfn[i]
8006 << PAGE_SHIFT) - 1);
8007 }
8008
8009 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
8010 pr_info("Movable zone start for each node\n");
8011 for (i = 0; i < MAX_NUMNODES; i++) {
8012 if (zone_movable_pfn[i])
8013 pr_info(" Node %d: %#018Lx\n", i,
8014 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8015 }
8016
8017 /*
8018 * Print out the early node map, and initialize the
8019 * subsection-map relative to active online memory ranges to
8020 * enable future "sub-section" extensions of the memory map.
8021 */
8022 pr_info("Early memory node ranges\n");
8023 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8024 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8025 (u64)start_pfn << PAGE_SHIFT,
8026 ((u64)end_pfn << PAGE_SHIFT) - 1);
8027 subsection_map_init(start_pfn, end_pfn - start_pfn);
8028 }
8029
8030 /* Initialise every node */
8031 mminit_verify_pageflags_layout();
8032 setup_nr_node_ids();
8033 for_each_online_node(nid) {
8034 pg_data_t *pgdat = NODE_DATA(nid);
8035 free_area_init_node(nid);
8036
8037 /* Any memory on that node */
8038 if (pgdat->node_present_pages)
8039 node_set_state(nid, N_MEMORY);
8040 check_for_memory(pgdat, nid);
8041 }
8042
8043 memmap_init();
8044 }
8045
8046 static int __init cmdline_parse_core(char *p, unsigned long *core,
8047 unsigned long *percent)
8048 {
8049 unsigned long long coremem;
8050 char *endptr;
8051
8052 if (!p)
8053 return -EINVAL;
8054
8055 /* Value may be a percentage of total memory, otherwise bytes */
8056 coremem = simple_strtoull(p, &endptr, 0);
8057 if (*endptr == '%') {
8058 /* Paranoid check for percent values greater than 100 */
8059 WARN_ON(coremem > 100);
8060
8061 *percent = coremem;
8062 } else {
8063 coremem = memparse(p, &p);
8064 /* Paranoid check that UL is enough for the coremem value */
8065 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8066
8067 *core = coremem >> PAGE_SHIFT;
8068 *percent = 0UL;
8069 }
8070 return 0;
8071 }
8072
8073 /*
8074 * kernelcore=size sets the amount of memory for use for allocations that
8075 * cannot be reclaimed or migrated.
8076 */
8077 static int __init cmdline_parse_kernelcore(char *p)
8078 {
8079 /* parse kernelcore=mirror */
8080 if (parse_option_str(p, "mirror")) {
8081 mirrored_kernelcore = true;
8082 return 0;
8083 }
8084
8085 return cmdline_parse_core(p, &required_kernelcore,
8086 &required_kernelcore_percent);
8087 }
8088
8089 /*
8090 * movablecore=size sets the amount of memory for use for allocations that
8091 * can be reclaimed or migrated.
8092 */
8093 static int __init cmdline_parse_movablecore(char *p)
8094 {
8095 return cmdline_parse_core(p, &required_movablecore,
8096 &required_movablecore_percent);
8097 }
8098
8099 early_param("kernelcore", cmdline_parse_kernelcore);
8100 early_param("movablecore", cmdline_parse_movablecore);
8101
8102 void adjust_managed_page_count(struct page *page, long count)
8103 {
8104 atomic_long_add(count, &page_zone(page)->managed_pages);
8105 totalram_pages_add(count);
8106 #ifdef CONFIG_HIGHMEM
8107 if (PageHighMem(page))
8108 totalhigh_pages_add(count);
8109 #endif
8110 }
8111 EXPORT_SYMBOL(adjust_managed_page_count);
8112
8113 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8114 {
8115 void *pos;
8116 unsigned long pages = 0;
8117
8118 start = (void *)PAGE_ALIGN((unsigned long)start);
8119 end = (void *)((unsigned long)end & PAGE_MASK);
8120 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8121 struct page *page = virt_to_page(pos);
8122 void *direct_map_addr;
8123
8124 /*
8125 * 'direct_map_addr' might be different from 'pos'
8126 * because some architectures' virt_to_page()
8127 * work with aliases. Getting the direct map
8128 * address ensures that we get a _writeable_
8129 * alias for the memset().
8130 */
8131 direct_map_addr = page_address(page);
8132 /*
8133 * Perform a kasan-unchecked memset() since this memory
8134 * has not been initialized.
8135 */
8136 direct_map_addr = kasan_reset_tag(direct_map_addr);
8137 if ((unsigned int)poison <= 0xFF)
8138 memset(direct_map_addr, poison, PAGE_SIZE);
8139
8140 free_reserved_page(page);
8141 }
8142
8143 if (pages && s)
8144 pr_info("Freeing %s memory: %ldK\n",
8145 s, pages << (PAGE_SHIFT - 10));
8146
8147 return pages;
8148 }
8149
8150 void __init mem_init_print_info(void)
8151 {
8152 unsigned long physpages, codesize, datasize, rosize, bss_size;
8153 unsigned long init_code_size, init_data_size;
8154
8155 physpages = get_num_physpages();
8156 codesize = _etext - _stext;
8157 datasize = _edata - _sdata;
8158 rosize = __end_rodata - __start_rodata;
8159 bss_size = __bss_stop - __bss_start;
8160 init_data_size = __init_end - __init_begin;
8161 init_code_size = _einittext - _sinittext;
8162
8163 /*
8164 * Detect special cases and adjust section sizes accordingly:
8165 * 1) .init.* may be embedded into .data sections
8166 * 2) .init.text.* may be out of [__init_begin, __init_end],
8167 * please refer to arch/tile/kernel/vmlinux.lds.S.
8168 * 3) .rodata.* may be embedded into .text or .data sections.
8169 */
8170 #define adj_init_size(start, end, size, pos, adj) \
8171 do { \
8172 if (start <= pos && pos < end && size > adj) \
8173 size -= adj; \
8174 } while (0)
8175
8176 adj_init_size(__init_begin, __init_end, init_data_size,
8177 _sinittext, init_code_size);
8178 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8179 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8180 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8181 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8182
8183 #undef adj_init_size
8184
8185 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8186 #ifdef CONFIG_HIGHMEM
8187 ", %luK highmem"
8188 #endif
8189 ")\n",
8190 nr_free_pages() << (PAGE_SHIFT - 10),
8191 physpages << (PAGE_SHIFT - 10),
8192 codesize >> 10, datasize >> 10, rosize >> 10,
8193 (init_data_size + init_code_size) >> 10, bss_size >> 10,
8194 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
8195 totalcma_pages << (PAGE_SHIFT - 10)
8196 #ifdef CONFIG_HIGHMEM
8197 , totalhigh_pages() << (PAGE_SHIFT - 10)
8198 #endif
8199 );
8200 }
8201
8202 /**
8203 * set_dma_reserve - set the specified number of pages reserved in the first zone
8204 * @new_dma_reserve: The number of pages to mark reserved
8205 *
8206 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8207 * In the DMA zone, a significant percentage may be consumed by kernel image
8208 * and other unfreeable allocations which can skew the watermarks badly. This
8209 * function may optionally be used to account for unfreeable pages in the
8210 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8211 * smaller per-cpu batchsize.
8212 */
8213 void __init set_dma_reserve(unsigned long new_dma_reserve)
8214 {
8215 dma_reserve = new_dma_reserve;
8216 }
8217
8218 static int page_alloc_cpu_dead(unsigned int cpu)
8219 {
8220 struct zone *zone;
8221
8222 lru_add_drain_cpu(cpu);
8223 drain_pages(cpu);
8224
8225 /*
8226 * Spill the event counters of the dead processor
8227 * into the current processors event counters.
8228 * This artificially elevates the count of the current
8229 * processor.
8230 */
8231 vm_events_fold_cpu(cpu);
8232
8233 /*
8234 * Zero the differential counters of the dead processor
8235 * so that the vm statistics are consistent.
8236 *
8237 * This is only okay since the processor is dead and cannot
8238 * race with what we are doing.
8239 */
8240 cpu_vm_stats_fold(cpu);
8241
8242 for_each_populated_zone(zone)
8243 zone_pcp_update(zone, 0);
8244
8245 return 0;
8246 }
8247
8248 static int page_alloc_cpu_online(unsigned int cpu)
8249 {
8250 struct zone *zone;
8251
8252 for_each_populated_zone(zone)
8253 zone_pcp_update(zone, 1);
8254 return 0;
8255 }
8256
8257 #ifdef CONFIG_NUMA
8258 int hashdist = HASHDIST_DEFAULT;
8259
8260 static int __init set_hashdist(char *str)
8261 {
8262 if (!str)
8263 return 0;
8264 hashdist = simple_strtoul(str, &str, 0);
8265 return 1;
8266 }
8267 __setup("hashdist=", set_hashdist);
8268 #endif
8269
8270 void __init page_alloc_init(void)
8271 {
8272 int ret;
8273
8274 #ifdef CONFIG_NUMA
8275 if (num_node_state(N_MEMORY) == 1)
8276 hashdist = 0;
8277 #endif
8278
8279 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8280 "mm/page_alloc:pcp",
8281 page_alloc_cpu_online,
8282 page_alloc_cpu_dead);
8283 WARN_ON(ret < 0);
8284 }
8285
8286 /*
8287 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8288 * or min_free_kbytes changes.
8289 */
8290 static void calculate_totalreserve_pages(void)
8291 {
8292 struct pglist_data *pgdat;
8293 unsigned long reserve_pages = 0;
8294 enum zone_type i, j;
8295
8296 for_each_online_pgdat(pgdat) {
8297
8298 pgdat->totalreserve_pages = 0;
8299
8300 for (i = 0; i < MAX_NR_ZONES; i++) {
8301 struct zone *zone = pgdat->node_zones + i;
8302 long max = 0;
8303 unsigned long managed_pages = zone_managed_pages(zone);
8304
8305 /* Find valid and maximum lowmem_reserve in the zone */
8306 for (j = i; j < MAX_NR_ZONES; j++) {
8307 if (zone->lowmem_reserve[j] > max)
8308 max = zone->lowmem_reserve[j];
8309 }
8310
8311 /* we treat the high watermark as reserved pages. */
8312 max += high_wmark_pages(zone);
8313
8314 if (max > managed_pages)
8315 max = managed_pages;
8316
8317 pgdat->totalreserve_pages += max;
8318
8319 reserve_pages += max;
8320 }
8321 }
8322 totalreserve_pages = reserve_pages;
8323 }
8324
8325 /*
8326 * setup_per_zone_lowmem_reserve - called whenever
8327 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8328 * has a correct pages reserved value, so an adequate number of
8329 * pages are left in the zone after a successful __alloc_pages().
8330 */
8331 static void setup_per_zone_lowmem_reserve(void)
8332 {
8333 struct pglist_data *pgdat;
8334 enum zone_type i, j;
8335
8336 for_each_online_pgdat(pgdat) {
8337 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8338 struct zone *zone = &pgdat->node_zones[i];
8339 int ratio = sysctl_lowmem_reserve_ratio[i];
8340 bool clear = !ratio || !zone_managed_pages(zone);
8341 unsigned long managed_pages = 0;
8342
8343 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8344 struct zone *upper_zone = &pgdat->node_zones[j];
8345
8346 managed_pages += zone_managed_pages(upper_zone);
8347
8348 if (clear)
8349 zone->lowmem_reserve[j] = 0;
8350 else
8351 zone->lowmem_reserve[j] = managed_pages / ratio;
8352 }
8353 }
8354 }
8355
8356 /* update totalreserve_pages */
8357 calculate_totalreserve_pages();
8358 }
8359
8360 static void __setup_per_zone_wmarks(void)
8361 {
8362 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8363 unsigned long lowmem_pages = 0;
8364 struct zone *zone;
8365 unsigned long flags;
8366
8367 /* Calculate total number of !ZONE_HIGHMEM pages */
8368 for_each_zone(zone) {
8369 if (!is_highmem(zone))
8370 lowmem_pages += zone_managed_pages(zone);
8371 }
8372
8373 for_each_zone(zone) {
8374 u64 tmp;
8375
8376 spin_lock_irqsave(&zone->lock, flags);
8377 tmp = (u64)pages_min * zone_managed_pages(zone);
8378 do_div(tmp, lowmem_pages);
8379 if (is_highmem(zone)) {
8380 /*
8381 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8382 * need highmem pages, so cap pages_min to a small
8383 * value here.
8384 *
8385 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8386 * deltas control async page reclaim, and so should
8387 * not be capped for highmem.
8388 */
8389 unsigned long min_pages;
8390
8391 min_pages = zone_managed_pages(zone) / 1024;
8392 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8393 zone->_watermark[WMARK_MIN] = min_pages;
8394 } else {
8395 /*
8396 * If it's a lowmem zone, reserve a number of pages
8397 * proportionate to the zone's size.
8398 */
8399 zone->_watermark[WMARK_MIN] = tmp;
8400 }
8401
8402 /*
8403 * Set the kswapd watermarks distance according to the
8404 * scale factor in proportion to available memory, but
8405 * ensure a minimum size on small systems.
8406 */
8407 tmp = max_t(u64, tmp >> 2,
8408 mult_frac(zone_managed_pages(zone),
8409 watermark_scale_factor, 10000));
8410
8411 zone->watermark_boost = 0;
8412 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8413 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8414
8415 spin_unlock_irqrestore(&zone->lock, flags);
8416 }
8417
8418 /* update totalreserve_pages */
8419 calculate_totalreserve_pages();
8420 }
8421
8422 /**
8423 * setup_per_zone_wmarks - called when min_free_kbytes changes
8424 * or when memory is hot-{added|removed}
8425 *
8426 * Ensures that the watermark[min,low,high] values for each zone are set
8427 * correctly with respect to min_free_kbytes.
8428 */
8429 void setup_per_zone_wmarks(void)
8430 {
8431 struct zone *zone;
8432 static DEFINE_SPINLOCK(lock);
8433
8434 spin_lock(&lock);
8435 __setup_per_zone_wmarks();
8436 spin_unlock(&lock);
8437
8438 /*
8439 * The watermark size have changed so update the pcpu batch
8440 * and high limits or the limits may be inappropriate.
8441 */
8442 for_each_zone(zone)
8443 zone_pcp_update(zone, 0);
8444 }
8445
8446 /*
8447 * Initialise min_free_kbytes.
8448 *
8449 * For small machines we want it small (128k min). For large machines
8450 * we want it large (256MB max). But it is not linear, because network
8451 * bandwidth does not increase linearly with machine size. We use
8452 *
8453 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8454 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8455 *
8456 * which yields
8457 *
8458 * 16MB: 512k
8459 * 32MB: 724k
8460 * 64MB: 1024k
8461 * 128MB: 1448k
8462 * 256MB: 2048k
8463 * 512MB: 2896k
8464 * 1024MB: 4096k
8465 * 2048MB: 5792k
8466 * 4096MB: 8192k
8467 * 8192MB: 11584k
8468 * 16384MB: 16384k
8469 */
8470 int __meminit init_per_zone_wmark_min(void)
8471 {
8472 unsigned long lowmem_kbytes;
8473 int new_min_free_kbytes;
8474
8475 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8476 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8477
8478 if (new_min_free_kbytes > user_min_free_kbytes) {
8479 min_free_kbytes = new_min_free_kbytes;
8480 if (min_free_kbytes < 128)
8481 min_free_kbytes = 128;
8482 if (min_free_kbytes > 262144)
8483 min_free_kbytes = 262144;
8484 } else {
8485 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8486 new_min_free_kbytes, user_min_free_kbytes);
8487 }
8488 setup_per_zone_wmarks();
8489 refresh_zone_stat_thresholds();
8490 setup_per_zone_lowmem_reserve();
8491
8492 #ifdef CONFIG_NUMA
8493 setup_min_unmapped_ratio();
8494 setup_min_slab_ratio();
8495 #endif
8496
8497 khugepaged_min_free_kbytes_update();
8498
8499 return 0;
8500 }
8501 postcore_initcall(init_per_zone_wmark_min)
8502
8503 /*
8504 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8505 * that we can call two helper functions whenever min_free_kbytes
8506 * changes.
8507 */
8508 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8509 void *buffer, size_t *length, loff_t *ppos)
8510 {
8511 int rc;
8512
8513 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8514 if (rc)
8515 return rc;
8516
8517 if (write) {
8518 user_min_free_kbytes = min_free_kbytes;
8519 setup_per_zone_wmarks();
8520 }
8521 return 0;
8522 }
8523
8524 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8525 void *buffer, size_t *length, loff_t *ppos)
8526 {
8527 int rc;
8528
8529 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8530 if (rc)
8531 return rc;
8532
8533 if (write)
8534 setup_per_zone_wmarks();
8535
8536 return 0;
8537 }
8538
8539 #ifdef CONFIG_NUMA
8540 static void setup_min_unmapped_ratio(void)
8541 {
8542 pg_data_t *pgdat;
8543 struct zone *zone;
8544
8545 for_each_online_pgdat(pgdat)
8546 pgdat->min_unmapped_pages = 0;
8547
8548 for_each_zone(zone)
8549 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8550 sysctl_min_unmapped_ratio) / 100;
8551 }
8552
8553
8554 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8555 void *buffer, size_t *length, loff_t *ppos)
8556 {
8557 int rc;
8558
8559 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8560 if (rc)
8561 return rc;
8562
8563 setup_min_unmapped_ratio();
8564
8565 return 0;
8566 }
8567
8568 static void setup_min_slab_ratio(void)
8569 {
8570 pg_data_t *pgdat;
8571 struct zone *zone;
8572
8573 for_each_online_pgdat(pgdat)
8574 pgdat->min_slab_pages = 0;
8575
8576 for_each_zone(zone)
8577 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8578 sysctl_min_slab_ratio) / 100;
8579 }
8580
8581 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8582 void *buffer, size_t *length, loff_t *ppos)
8583 {
8584 int rc;
8585
8586 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8587 if (rc)
8588 return rc;
8589
8590 setup_min_slab_ratio();
8591
8592 return 0;
8593 }
8594 #endif
8595
8596 /*
8597 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8598 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8599 * whenever sysctl_lowmem_reserve_ratio changes.
8600 *
8601 * The reserve ratio obviously has absolutely no relation with the
8602 * minimum watermarks. The lowmem reserve ratio can only make sense
8603 * if in function of the boot time zone sizes.
8604 */
8605 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8606 void *buffer, size_t *length, loff_t *ppos)
8607 {
8608 int i;
8609
8610 proc_dointvec_minmax(table, write, buffer, length, ppos);
8611
8612 for (i = 0; i < MAX_NR_ZONES; i++) {
8613 if (sysctl_lowmem_reserve_ratio[i] < 1)
8614 sysctl_lowmem_reserve_ratio[i] = 0;
8615 }
8616
8617 setup_per_zone_lowmem_reserve();
8618 return 0;
8619 }
8620
8621 /*
8622 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8623 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8624 * pagelist can have before it gets flushed back to buddy allocator.
8625 */
8626 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8627 int write, void *buffer, size_t *length, loff_t *ppos)
8628 {
8629 struct zone *zone;
8630 int old_percpu_pagelist_high_fraction;
8631 int ret;
8632
8633 mutex_lock(&pcp_batch_high_lock);
8634 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8635
8636 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8637 if (!write || ret < 0)
8638 goto out;
8639
8640 /* Sanity checking to avoid pcp imbalance */
8641 if (percpu_pagelist_high_fraction &&
8642 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8643 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8644 ret = -EINVAL;
8645 goto out;
8646 }
8647
8648 /* No change? */
8649 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8650 goto out;
8651
8652 for_each_populated_zone(zone)
8653 zone_set_pageset_high_and_batch(zone, 0);
8654 out:
8655 mutex_unlock(&pcp_batch_high_lock);
8656 return ret;
8657 }
8658
8659 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8660 /*
8661 * Returns the number of pages that arch has reserved but
8662 * is not known to alloc_large_system_hash().
8663 */
8664 static unsigned long __init arch_reserved_kernel_pages(void)
8665 {
8666 return 0;
8667 }
8668 #endif
8669
8670 /*
8671 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8672 * machines. As memory size is increased the scale is also increased but at
8673 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8674 * quadruples the scale is increased by one, which means the size of hash table
8675 * only doubles, instead of quadrupling as well.
8676 * Because 32-bit systems cannot have large physical memory, where this scaling
8677 * makes sense, it is disabled on such platforms.
8678 */
8679 #if __BITS_PER_LONG > 32
8680 #define ADAPT_SCALE_BASE (64ul << 30)
8681 #define ADAPT_SCALE_SHIFT 2
8682 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8683 #endif
8684
8685 /*
8686 * allocate a large system hash table from bootmem
8687 * - it is assumed that the hash table must contain an exact power-of-2
8688 * quantity of entries
8689 * - limit is the number of hash buckets, not the total allocation size
8690 */
8691 void *__init alloc_large_system_hash(const char *tablename,
8692 unsigned long bucketsize,
8693 unsigned long numentries,
8694 int scale,
8695 int flags,
8696 unsigned int *_hash_shift,
8697 unsigned int *_hash_mask,
8698 unsigned long low_limit,
8699 unsigned long high_limit)
8700 {
8701 unsigned long long max = high_limit;
8702 unsigned long log2qty, size;
8703 void *table = NULL;
8704 gfp_t gfp_flags;
8705 bool virt;
8706 bool huge;
8707
8708 /* allow the kernel cmdline to have a say */
8709 if (!numentries) {
8710 /* round applicable memory size up to nearest megabyte */
8711 numentries = nr_kernel_pages;
8712 numentries -= arch_reserved_kernel_pages();
8713
8714 /* It isn't necessary when PAGE_SIZE >= 1MB */
8715 if (PAGE_SHIFT < 20)
8716 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8717
8718 #if __BITS_PER_LONG > 32
8719 if (!high_limit) {
8720 unsigned long adapt;
8721
8722 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8723 adapt <<= ADAPT_SCALE_SHIFT)
8724 scale++;
8725 }
8726 #endif
8727
8728 /* limit to 1 bucket per 2^scale bytes of low memory */
8729 if (scale > PAGE_SHIFT)
8730 numentries >>= (scale - PAGE_SHIFT);
8731 else
8732 numentries <<= (PAGE_SHIFT - scale);
8733
8734 /* Make sure we've got at least a 0-order allocation.. */
8735 if (unlikely(flags & HASH_SMALL)) {
8736 /* Makes no sense without HASH_EARLY */
8737 WARN_ON(!(flags & HASH_EARLY));
8738 if (!(numentries >> *_hash_shift)) {
8739 numentries = 1UL << *_hash_shift;
8740 BUG_ON(!numentries);
8741 }
8742 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8743 numentries = PAGE_SIZE / bucketsize;
8744 }
8745 numentries = roundup_pow_of_two(numentries);
8746
8747 /* limit allocation size to 1/16 total memory by default */
8748 if (max == 0) {
8749 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8750 do_div(max, bucketsize);
8751 }
8752 max = min(max, 0x80000000ULL);
8753
8754 if (numentries < low_limit)
8755 numentries = low_limit;
8756 if (numentries > max)
8757 numentries = max;
8758
8759 log2qty = ilog2(numentries);
8760
8761 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8762 do {
8763 virt = false;
8764 size = bucketsize << log2qty;
8765 if (flags & HASH_EARLY) {
8766 if (flags & HASH_ZERO)
8767 table = memblock_alloc(size, SMP_CACHE_BYTES);
8768 else
8769 table = memblock_alloc_raw(size,
8770 SMP_CACHE_BYTES);
8771 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8772 table = __vmalloc(size, gfp_flags);
8773 virt = true;
8774 huge = is_vm_area_hugepages(table);
8775 } else {
8776 /*
8777 * If bucketsize is not a power-of-two, we may free
8778 * some pages at the end of hash table which
8779 * alloc_pages_exact() automatically does
8780 */
8781 table = alloc_pages_exact(size, gfp_flags);
8782 kmemleak_alloc(table, size, 1, gfp_flags);
8783 }
8784 } while (!table && size > PAGE_SIZE && --log2qty);
8785
8786 if (!table)
8787 panic("Failed to allocate %s hash table\n", tablename);
8788
8789 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8790 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8791 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8792
8793 if (_hash_shift)
8794 *_hash_shift = log2qty;
8795 if (_hash_mask)
8796 *_hash_mask = (1 << log2qty) - 1;
8797
8798 return table;
8799 }
8800
8801 /*
8802 * This function checks whether pageblock includes unmovable pages or not.
8803 *
8804 * PageLRU check without isolation or lru_lock could race so that
8805 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8806 * check without lock_page also may miss some movable non-lru pages at
8807 * race condition. So you can't expect this function should be exact.
8808 *
8809 * Returns a page without holding a reference. If the caller wants to
8810 * dereference that page (e.g., dumping), it has to make sure that it
8811 * cannot get removed (e.g., via memory unplug) concurrently.
8812 *
8813 */
8814 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8815 int migratetype, int flags)
8816 {
8817 unsigned long iter = 0;
8818 unsigned long pfn = page_to_pfn(page);
8819 unsigned long offset = pfn % pageblock_nr_pages;
8820
8821 if (is_migrate_cma_page(page)) {
8822 /*
8823 * CMA allocations (alloc_contig_range) really need to mark
8824 * isolate CMA pageblocks even when they are not movable in fact
8825 * so consider them movable here.
8826 */
8827 if (is_migrate_cma(migratetype))
8828 return NULL;
8829
8830 return page;
8831 }
8832
8833 for (; iter < pageblock_nr_pages - offset; iter++) {
8834 page = pfn_to_page(pfn + iter);
8835
8836 /*
8837 * Both, bootmem allocations and memory holes are marked
8838 * PG_reserved and are unmovable. We can even have unmovable
8839 * allocations inside ZONE_MOVABLE, for example when
8840 * specifying "movablecore".
8841 */
8842 if (PageReserved(page))
8843 return page;
8844
8845 /*
8846 * If the zone is movable and we have ruled out all reserved
8847 * pages then it should be reasonably safe to assume the rest
8848 * is movable.
8849 */
8850 if (zone_idx(zone) == ZONE_MOVABLE)
8851 continue;
8852
8853 /*
8854 * Hugepages are not in LRU lists, but they're movable.
8855 * THPs are on the LRU, but need to be counted as #small pages.
8856 * We need not scan over tail pages because we don't
8857 * handle each tail page individually in migration.
8858 */
8859 if (PageHuge(page) || PageTransCompound(page)) {
8860 struct page *head = compound_head(page);
8861 unsigned int skip_pages;
8862
8863 if (PageHuge(page)) {
8864 if (!hugepage_migration_supported(page_hstate(head)))
8865 return page;
8866 } else if (!PageLRU(head) && !__PageMovable(head)) {
8867 return page;
8868 }
8869
8870 skip_pages = compound_nr(head) - (page - head);
8871 iter += skip_pages - 1;
8872 continue;
8873 }
8874
8875 /*
8876 * We can't use page_count without pin a page
8877 * because another CPU can free compound page.
8878 * This check already skips compound tails of THP
8879 * because their page->_refcount is zero at all time.
8880 */
8881 if (!page_ref_count(page)) {
8882 if (PageBuddy(page))
8883 iter += (1 << buddy_order(page)) - 1;
8884 continue;
8885 }
8886
8887 /*
8888 * The HWPoisoned page may be not in buddy system, and
8889 * page_count() is not 0.
8890 */
8891 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8892 continue;
8893
8894 /*
8895 * We treat all PageOffline() pages as movable when offlining
8896 * to give drivers a chance to decrement their reference count
8897 * in MEM_GOING_OFFLINE in order to indicate that these pages
8898 * can be offlined as there are no direct references anymore.
8899 * For actually unmovable PageOffline() where the driver does
8900 * not support this, we will fail later when trying to actually
8901 * move these pages that still have a reference count > 0.
8902 * (false negatives in this function only)
8903 */
8904 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8905 continue;
8906
8907 if (__PageMovable(page) || PageLRU(page))
8908 continue;
8909
8910 /*
8911 * If there are RECLAIMABLE pages, we need to check
8912 * it. But now, memory offline itself doesn't call
8913 * shrink_node_slabs() and it still to be fixed.
8914 */
8915 return page;
8916 }
8917 return NULL;
8918 }
8919
8920 #ifdef CONFIG_CONTIG_ALLOC
8921 static unsigned long pfn_max_align_down(unsigned long pfn)
8922 {
8923 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8924 pageblock_nr_pages) - 1);
8925 }
8926
8927 static unsigned long pfn_max_align_up(unsigned long pfn)
8928 {
8929 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8930 pageblock_nr_pages));
8931 }
8932
8933 #if defined(CONFIG_DYNAMIC_DEBUG) || \
8934 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8935 /* Usage: See admin-guide/dynamic-debug-howto.rst */
8936 static void alloc_contig_dump_pages(struct list_head *page_list)
8937 {
8938 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8939
8940 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8941 struct page *page;
8942
8943 dump_stack();
8944 list_for_each_entry(page, page_list, lru)
8945 dump_page(page, "migration failure");
8946 }
8947 }
8948 #else
8949 static inline void alloc_contig_dump_pages(struct list_head *page_list)
8950 {
8951 }
8952 #endif
8953
8954 /* [start, end) must belong to a single zone. */
8955 static int __alloc_contig_migrate_range(struct compact_control *cc,
8956 unsigned long start, unsigned long end)
8957 {
8958 /* This function is based on compact_zone() from compaction.c. */
8959 unsigned int nr_reclaimed;
8960 unsigned long pfn = start;
8961 unsigned int tries = 0;
8962 int ret = 0;
8963 struct migration_target_control mtc = {
8964 .nid = zone_to_nid(cc->zone),
8965 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8966 };
8967
8968 lru_cache_disable();
8969
8970 while (pfn < end || !list_empty(&cc->migratepages)) {
8971 if (fatal_signal_pending(current)) {
8972 ret = -EINTR;
8973 break;
8974 }
8975
8976 if (list_empty(&cc->migratepages)) {
8977 cc->nr_migratepages = 0;
8978 ret = isolate_migratepages_range(cc, pfn, end);
8979 if (ret && ret != -EAGAIN)
8980 break;
8981 pfn = cc->migrate_pfn;
8982 tries = 0;
8983 } else if (++tries == 5) {
8984 ret = -EBUSY;
8985 break;
8986 }
8987
8988 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8989 &cc->migratepages);
8990 cc->nr_migratepages -= nr_reclaimed;
8991
8992 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8993 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
8994
8995 /*
8996 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
8997 * to retry again over this error, so do the same here.
8998 */
8999 if (ret == -ENOMEM)
9000 break;
9001 }
9002
9003 lru_cache_enable();
9004 if (ret < 0) {
9005 if (ret == -EBUSY)
9006 alloc_contig_dump_pages(&cc->migratepages);
9007 putback_movable_pages(&cc->migratepages);
9008 return ret;
9009 }
9010 return 0;
9011 }
9012
9013 /**
9014 * alloc_contig_range() -- tries to allocate given range of pages
9015 * @start: start PFN to allocate
9016 * @end: one-past-the-last PFN to allocate
9017 * @migratetype: migratetype of the underlying pageblocks (either
9018 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9019 * in range must have the same migratetype and it must
9020 * be either of the two.
9021 * @gfp_mask: GFP mask to use during compaction
9022 *
9023 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9024 * aligned. The PFN range must belong to a single zone.
9025 *
9026 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9027 * pageblocks in the range. Once isolated, the pageblocks should not
9028 * be modified by others.
9029 *
9030 * Return: zero on success or negative error code. On success all
9031 * pages which PFN is in [start, end) are allocated for the caller and
9032 * need to be freed with free_contig_range().
9033 */
9034 int alloc_contig_range(unsigned long start, unsigned long end,
9035 unsigned migratetype, gfp_t gfp_mask)
9036 {
9037 unsigned long outer_start, outer_end;
9038 unsigned int order;
9039 int ret = 0;
9040
9041 struct compact_control cc = {
9042 .nr_migratepages = 0,
9043 .order = -1,
9044 .zone = page_zone(pfn_to_page(start)),
9045 .mode = MIGRATE_SYNC,
9046 .ignore_skip_hint = true,
9047 .no_set_skip_hint = true,
9048 .gfp_mask = current_gfp_context(gfp_mask),
9049 .alloc_contig = true,
9050 };
9051 INIT_LIST_HEAD(&cc.migratepages);
9052
9053 /*
9054 * What we do here is we mark all pageblocks in range as
9055 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9056 * have different sizes, and due to the way page allocator
9057 * work, we align the range to biggest of the two pages so
9058 * that page allocator won't try to merge buddies from
9059 * different pageblocks and change MIGRATE_ISOLATE to some
9060 * other migration type.
9061 *
9062 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9063 * migrate the pages from an unaligned range (ie. pages that
9064 * we are interested in). This will put all the pages in
9065 * range back to page allocator as MIGRATE_ISOLATE.
9066 *
9067 * When this is done, we take the pages in range from page
9068 * allocator removing them from the buddy system. This way
9069 * page allocator will never consider using them.
9070 *
9071 * This lets us mark the pageblocks back as
9072 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9073 * aligned range but not in the unaligned, original range are
9074 * put back to page allocator so that buddy can use them.
9075 */
9076
9077 ret = start_isolate_page_range(pfn_max_align_down(start),
9078 pfn_max_align_up(end), migratetype, 0);
9079 if (ret)
9080 return ret;
9081
9082 drain_all_pages(cc.zone);
9083
9084 /*
9085 * In case of -EBUSY, we'd like to know which page causes problem.
9086 * So, just fall through. test_pages_isolated() has a tracepoint
9087 * which will report the busy page.
9088 *
9089 * It is possible that busy pages could become available before
9090 * the call to test_pages_isolated, and the range will actually be
9091 * allocated. So, if we fall through be sure to clear ret so that
9092 * -EBUSY is not accidentally used or returned to caller.
9093 */
9094 ret = __alloc_contig_migrate_range(&cc, start, end);
9095 if (ret && ret != -EBUSY)
9096 goto done;
9097 ret = 0;
9098
9099 /*
9100 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9101 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9102 * more, all pages in [start, end) are free in page allocator.
9103 * What we are going to do is to allocate all pages from
9104 * [start, end) (that is remove them from page allocator).
9105 *
9106 * The only problem is that pages at the beginning and at the
9107 * end of interesting range may be not aligned with pages that
9108 * page allocator holds, ie. they can be part of higher order
9109 * pages. Because of this, we reserve the bigger range and
9110 * once this is done free the pages we are not interested in.
9111 *
9112 * We don't have to hold zone->lock here because the pages are
9113 * isolated thus they won't get removed from buddy.
9114 */
9115
9116 order = 0;
9117 outer_start = start;
9118 while (!PageBuddy(pfn_to_page(outer_start))) {
9119 if (++order >= MAX_ORDER) {
9120 outer_start = start;
9121 break;
9122 }
9123 outer_start &= ~0UL << order;
9124 }
9125
9126 if (outer_start != start) {
9127 order = buddy_order(pfn_to_page(outer_start));
9128
9129 /*
9130 * outer_start page could be small order buddy page and
9131 * it doesn't include start page. Adjust outer_start
9132 * in this case to report failed page properly
9133 * on tracepoint in test_pages_isolated()
9134 */
9135 if (outer_start + (1UL << order) <= start)
9136 outer_start = start;
9137 }
9138
9139 /* Make sure the range is really isolated. */
9140 if (test_pages_isolated(outer_start, end, 0)) {
9141 ret = -EBUSY;
9142 goto done;
9143 }
9144
9145 /* Grab isolated pages from freelists. */
9146 outer_end = isolate_freepages_range(&cc, outer_start, end);
9147 if (!outer_end) {
9148 ret = -EBUSY;
9149 goto done;
9150 }
9151
9152 /* Free head and tail (if any) */
9153 if (start != outer_start)
9154 free_contig_range(outer_start, start - outer_start);
9155 if (end != outer_end)
9156 free_contig_range(end, outer_end - end);
9157
9158 done:
9159 undo_isolate_page_range(pfn_max_align_down(start),
9160 pfn_max_align_up(end), migratetype);
9161 return ret;
9162 }
9163 EXPORT_SYMBOL(alloc_contig_range);
9164
9165 static int __alloc_contig_pages(unsigned long start_pfn,
9166 unsigned long nr_pages, gfp_t gfp_mask)
9167 {
9168 unsigned long end_pfn = start_pfn + nr_pages;
9169
9170 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9171 gfp_mask);
9172 }
9173
9174 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9175 unsigned long nr_pages)
9176 {
9177 unsigned long i, end_pfn = start_pfn + nr_pages;
9178 struct page *page;
9179
9180 for (i = start_pfn; i < end_pfn; i++) {
9181 page = pfn_to_online_page(i);
9182 if (!page)
9183 return false;
9184
9185 if (page_zone(page) != z)
9186 return false;
9187
9188 if (PageReserved(page))
9189 return false;
9190 }
9191 return true;
9192 }
9193
9194 static bool zone_spans_last_pfn(const struct zone *zone,
9195 unsigned long start_pfn, unsigned long nr_pages)
9196 {
9197 unsigned long last_pfn = start_pfn + nr_pages - 1;
9198
9199 return zone_spans_pfn(zone, last_pfn);
9200 }
9201
9202 /**
9203 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9204 * @nr_pages: Number of contiguous pages to allocate
9205 * @gfp_mask: GFP mask to limit search and used during compaction
9206 * @nid: Target node
9207 * @nodemask: Mask for other possible nodes
9208 *
9209 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9210 * on an applicable zonelist to find a contiguous pfn range which can then be
9211 * tried for allocation with alloc_contig_range(). This routine is intended
9212 * for allocation requests which can not be fulfilled with the buddy allocator.
9213 *
9214 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9215 * power of two then the alignment is guaranteed to be to the given nr_pages
9216 * (e.g. 1GB request would be aligned to 1GB).
9217 *
9218 * Allocated pages can be freed with free_contig_range() or by manually calling
9219 * __free_page() on each allocated page.
9220 *
9221 * Return: pointer to contiguous pages on success, or NULL if not successful.
9222 */
9223 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9224 int nid, nodemask_t *nodemask)
9225 {
9226 unsigned long ret, pfn, flags;
9227 struct zonelist *zonelist;
9228 struct zone *zone;
9229 struct zoneref *z;
9230
9231 zonelist = node_zonelist(nid, gfp_mask);
9232 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9233 gfp_zone(gfp_mask), nodemask) {
9234 spin_lock_irqsave(&zone->lock, flags);
9235
9236 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9237 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9238 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9239 /*
9240 * We release the zone lock here because
9241 * alloc_contig_range() will also lock the zone
9242 * at some point. If there's an allocation
9243 * spinning on this lock, it may win the race
9244 * and cause alloc_contig_range() to fail...
9245 */
9246 spin_unlock_irqrestore(&zone->lock, flags);
9247 ret = __alloc_contig_pages(pfn, nr_pages,
9248 gfp_mask);
9249 if (!ret)
9250 return pfn_to_page(pfn);
9251 spin_lock_irqsave(&zone->lock, flags);
9252 }
9253 pfn += nr_pages;
9254 }
9255 spin_unlock_irqrestore(&zone->lock, flags);
9256 }
9257 return NULL;
9258 }
9259 #endif /* CONFIG_CONTIG_ALLOC */
9260
9261 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9262 {
9263 unsigned long count = 0;
9264
9265 for (; nr_pages--; pfn++) {
9266 struct page *page = pfn_to_page(pfn);
9267
9268 count += page_count(page) != 1;
9269 __free_page(page);
9270 }
9271 WARN(count != 0, "%lu pages are still in use!\n", count);
9272 }
9273 EXPORT_SYMBOL(free_contig_range);
9274
9275 /*
9276 * The zone indicated has a new number of managed_pages; batch sizes and percpu
9277 * page high values need to be recalculated.
9278 */
9279 void zone_pcp_update(struct zone *zone, int cpu_online)
9280 {
9281 mutex_lock(&pcp_batch_high_lock);
9282 zone_set_pageset_high_and_batch(zone, cpu_online);
9283 mutex_unlock(&pcp_batch_high_lock);
9284 }
9285
9286 /*
9287 * Effectively disable pcplists for the zone by setting the high limit to 0
9288 * and draining all cpus. A concurrent page freeing on another CPU that's about
9289 * to put the page on pcplist will either finish before the drain and the page
9290 * will be drained, or observe the new high limit and skip the pcplist.
9291 *
9292 * Must be paired with a call to zone_pcp_enable().
9293 */
9294 void zone_pcp_disable(struct zone *zone)
9295 {
9296 mutex_lock(&pcp_batch_high_lock);
9297 __zone_set_pageset_high_and_batch(zone, 0, 1);
9298 __drain_all_pages(zone, true);
9299 }
9300
9301 void zone_pcp_enable(struct zone *zone)
9302 {
9303 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9304 mutex_unlock(&pcp_batch_high_lock);
9305 }
9306
9307 void zone_pcp_reset(struct zone *zone)
9308 {
9309 int cpu;
9310 struct per_cpu_zonestat *pzstats;
9311
9312 if (zone->per_cpu_pageset != &boot_pageset) {
9313 for_each_online_cpu(cpu) {
9314 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9315 drain_zonestat(zone, pzstats);
9316 }
9317 free_percpu(zone->per_cpu_pageset);
9318 free_percpu(zone->per_cpu_zonestats);
9319 zone->per_cpu_pageset = &boot_pageset;
9320 zone->per_cpu_zonestats = &boot_zonestats;
9321 }
9322 }
9323
9324 #ifdef CONFIG_MEMORY_HOTREMOVE
9325 /*
9326 * All pages in the range must be in a single zone, must not contain holes,
9327 * must span full sections, and must be isolated before calling this function.
9328 */
9329 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9330 {
9331 unsigned long pfn = start_pfn;
9332 struct page *page;
9333 struct zone *zone;
9334 unsigned int order;
9335 unsigned long flags;
9336
9337 offline_mem_sections(pfn, end_pfn);
9338 zone = page_zone(pfn_to_page(pfn));
9339 spin_lock_irqsave(&zone->lock, flags);
9340 while (pfn < end_pfn) {
9341 page = pfn_to_page(pfn);
9342 /*
9343 * The HWPoisoned page may be not in buddy system, and
9344 * page_count() is not 0.
9345 */
9346 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9347 pfn++;
9348 continue;
9349 }
9350 /*
9351 * At this point all remaining PageOffline() pages have a
9352 * reference count of 0 and can simply be skipped.
9353 */
9354 if (PageOffline(page)) {
9355 BUG_ON(page_count(page));
9356 BUG_ON(PageBuddy(page));
9357 pfn++;
9358 continue;
9359 }
9360
9361 BUG_ON(page_count(page));
9362 BUG_ON(!PageBuddy(page));
9363 order = buddy_order(page);
9364 del_page_from_free_list(page, zone, order);
9365 pfn += (1 << order);
9366 }
9367 spin_unlock_irqrestore(&zone->lock, flags);
9368 }
9369 #endif
9370
9371 bool is_free_buddy_page(struct page *page)
9372 {
9373 struct zone *zone = page_zone(page);
9374 unsigned long pfn = page_to_pfn(page);
9375 unsigned long flags;
9376 unsigned int order;
9377
9378 spin_lock_irqsave(&zone->lock, flags);
9379 for (order = 0; order < MAX_ORDER; order++) {
9380 struct page *page_head = page - (pfn & ((1 << order) - 1));
9381
9382 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9383 break;
9384 }
9385 spin_unlock_irqrestore(&zone->lock, flags);
9386
9387 return order < MAX_ORDER;
9388 }
9389
9390 #ifdef CONFIG_MEMORY_FAILURE
9391 /*
9392 * Break down a higher-order page in sub-pages, and keep our target out of
9393 * buddy allocator.
9394 */
9395 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9396 struct page *target, int low, int high,
9397 int migratetype)
9398 {
9399 unsigned long size = 1 << high;
9400 struct page *current_buddy, *next_page;
9401
9402 while (high > low) {
9403 high--;
9404 size >>= 1;
9405
9406 if (target >= &page[size]) {
9407 next_page = page + size;
9408 current_buddy = page;
9409 } else {
9410 next_page = page;
9411 current_buddy = page + size;
9412 }
9413
9414 if (set_page_guard(zone, current_buddy, high, migratetype))
9415 continue;
9416
9417 if (current_buddy != target) {
9418 add_to_free_list(current_buddy, zone, high, migratetype);
9419 set_buddy_order(current_buddy, high);
9420 page = next_page;
9421 }
9422 }
9423 }
9424
9425 /*
9426 * Take a page that will be marked as poisoned off the buddy allocator.
9427 */
9428 bool take_page_off_buddy(struct page *page)
9429 {
9430 struct zone *zone = page_zone(page);
9431 unsigned long pfn = page_to_pfn(page);
9432 unsigned long flags;
9433 unsigned int order;
9434 bool ret = false;
9435
9436 spin_lock_irqsave(&zone->lock, flags);
9437 for (order = 0; order < MAX_ORDER; order++) {
9438 struct page *page_head = page - (pfn & ((1 << order) - 1));
9439 int page_order = buddy_order(page_head);
9440
9441 if (PageBuddy(page_head) && page_order >= order) {
9442 unsigned long pfn_head = page_to_pfn(page_head);
9443 int migratetype = get_pfnblock_migratetype(page_head,
9444 pfn_head);
9445
9446 del_page_from_free_list(page_head, zone, page_order);
9447 break_down_buddy_pages(zone, page_head, page, 0,
9448 page_order, migratetype);
9449 if (!is_migrate_isolate(migratetype))
9450 __mod_zone_freepage_state(zone, -1, migratetype);
9451 ret = true;
9452 break;
9453 }
9454 if (page_count(page_head) > 0)
9455 break;
9456 }
9457 spin_unlock_irqrestore(&zone->lock, flags);
9458 return ret;
9459 }
9460 #endif
9461
9462 #ifdef CONFIG_ZONE_DMA
9463 bool has_managed_dma(void)
9464 {
9465 struct pglist_data *pgdat;
9466
9467 for_each_online_pgdat(pgdat) {
9468 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9469
9470 if (managed_zone(zone))
9471 return true;
9472 }
9473 return false;
9474 }
9475 #endif /* CONFIG_ZONE_DMA */