]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/page_alloc.c
Merge branch 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72 #define MIN_PERCPU_PAGELIST_FRACTION (8)
73
74 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75 DEFINE_PER_CPU(int, numa_node);
76 EXPORT_PER_CPU_SYMBOL(numa_node);
77 #endif
78
79 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
80 /*
81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84 * defined in <linux/topology.h>.
85 */
86 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
87 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
88 int _node_numa_mem_[MAX_NUMNODES];
89 #endif
90
91 /*
92 * Array of node states.
93 */
94 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
95 [N_POSSIBLE] = NODE_MASK_ALL,
96 [N_ONLINE] = { { [0] = 1UL } },
97 #ifndef CONFIG_NUMA
98 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
99 #ifdef CONFIG_HIGHMEM
100 [N_HIGH_MEMORY] = { { [0] = 1UL } },
101 #endif
102 #ifdef CONFIG_MOVABLE_NODE
103 [N_MEMORY] = { { [0] = 1UL } },
104 #endif
105 [N_CPU] = { { [0] = 1UL } },
106 #endif /* NUMA */
107 };
108 EXPORT_SYMBOL(node_states);
109
110 /* Protect totalram_pages and zone->managed_pages */
111 static DEFINE_SPINLOCK(managed_page_count_lock);
112
113 unsigned long totalram_pages __read_mostly;
114 unsigned long totalreserve_pages __read_mostly;
115 unsigned long totalcma_pages __read_mostly;
116 /*
117 * When calculating the number of globally allowed dirty pages, there
118 * is a certain number of per-zone reserves that should not be
119 * considered dirtyable memory. This is the sum of those reserves
120 * over all existing zones that contribute dirtyable memory.
121 */
122 unsigned long dirty_balance_reserve __read_mostly;
123
124 int percpu_pagelist_fraction;
125 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
126
127 #ifdef CONFIG_PM_SLEEP
128 /*
129 * The following functions are used by the suspend/hibernate code to temporarily
130 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
131 * while devices are suspended. To avoid races with the suspend/hibernate code,
132 * they should always be called with pm_mutex held (gfp_allowed_mask also should
133 * only be modified with pm_mutex held, unless the suspend/hibernate code is
134 * guaranteed not to run in parallel with that modification).
135 */
136
137 static gfp_t saved_gfp_mask;
138
139 void pm_restore_gfp_mask(void)
140 {
141 WARN_ON(!mutex_is_locked(&pm_mutex));
142 if (saved_gfp_mask) {
143 gfp_allowed_mask = saved_gfp_mask;
144 saved_gfp_mask = 0;
145 }
146 }
147
148 void pm_restrict_gfp_mask(void)
149 {
150 WARN_ON(!mutex_is_locked(&pm_mutex));
151 WARN_ON(saved_gfp_mask);
152 saved_gfp_mask = gfp_allowed_mask;
153 gfp_allowed_mask &= ~GFP_IOFS;
154 }
155
156 bool pm_suspended_storage(void)
157 {
158 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
159 return false;
160 return true;
161 }
162 #endif /* CONFIG_PM_SLEEP */
163
164 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
165 int pageblock_order __read_mostly;
166 #endif
167
168 static void __free_pages_ok(struct page *page, unsigned int order);
169
170 /*
171 * results with 256, 32 in the lowmem_reserve sysctl:
172 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
173 * 1G machine -> (16M dma, 784M normal, 224M high)
174 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
175 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
176 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
177 *
178 * TBD: should special case ZONE_DMA32 machines here - in those we normally
179 * don't need any ZONE_NORMAL reservation
180 */
181 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
182 #ifdef CONFIG_ZONE_DMA
183 256,
184 #endif
185 #ifdef CONFIG_ZONE_DMA32
186 256,
187 #endif
188 #ifdef CONFIG_HIGHMEM
189 32,
190 #endif
191 32,
192 };
193
194 EXPORT_SYMBOL(totalram_pages);
195
196 static char * const zone_names[MAX_NR_ZONES] = {
197 #ifdef CONFIG_ZONE_DMA
198 "DMA",
199 #endif
200 #ifdef CONFIG_ZONE_DMA32
201 "DMA32",
202 #endif
203 "Normal",
204 #ifdef CONFIG_HIGHMEM
205 "HighMem",
206 #endif
207 "Movable",
208 };
209
210 int min_free_kbytes = 1024;
211 int user_min_free_kbytes = -1;
212
213 static unsigned long __meminitdata nr_kernel_pages;
214 static unsigned long __meminitdata nr_all_pages;
215 static unsigned long __meminitdata dma_reserve;
216
217 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
218 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
219 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
220 static unsigned long __initdata required_kernelcore;
221 static unsigned long __initdata required_movablecore;
222 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
223
224 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
225 int movable_zone;
226 EXPORT_SYMBOL(movable_zone);
227 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
228
229 #if MAX_NUMNODES > 1
230 int nr_node_ids __read_mostly = MAX_NUMNODES;
231 int nr_online_nodes __read_mostly = 1;
232 EXPORT_SYMBOL(nr_node_ids);
233 EXPORT_SYMBOL(nr_online_nodes);
234 #endif
235
236 int page_group_by_mobility_disabled __read_mostly;
237
238 void set_pageblock_migratetype(struct page *page, int migratetype)
239 {
240 if (unlikely(page_group_by_mobility_disabled &&
241 migratetype < MIGRATE_PCPTYPES))
242 migratetype = MIGRATE_UNMOVABLE;
243
244 set_pageblock_flags_group(page, (unsigned long)migratetype,
245 PB_migrate, PB_migrate_end);
246 }
247
248 #ifdef CONFIG_DEBUG_VM
249 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
250 {
251 int ret = 0;
252 unsigned seq;
253 unsigned long pfn = page_to_pfn(page);
254 unsigned long sp, start_pfn;
255
256 do {
257 seq = zone_span_seqbegin(zone);
258 start_pfn = zone->zone_start_pfn;
259 sp = zone->spanned_pages;
260 if (!zone_spans_pfn(zone, pfn))
261 ret = 1;
262 } while (zone_span_seqretry(zone, seq));
263
264 if (ret)
265 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
266 pfn, zone_to_nid(zone), zone->name,
267 start_pfn, start_pfn + sp);
268
269 return ret;
270 }
271
272 static int page_is_consistent(struct zone *zone, struct page *page)
273 {
274 if (!pfn_valid_within(page_to_pfn(page)))
275 return 0;
276 if (zone != page_zone(page))
277 return 0;
278
279 return 1;
280 }
281 /*
282 * Temporary debugging check for pages not lying within a given zone.
283 */
284 static int bad_range(struct zone *zone, struct page *page)
285 {
286 if (page_outside_zone_boundaries(zone, page))
287 return 1;
288 if (!page_is_consistent(zone, page))
289 return 1;
290
291 return 0;
292 }
293 #else
294 static inline int bad_range(struct zone *zone, struct page *page)
295 {
296 return 0;
297 }
298 #endif
299
300 static void bad_page(struct page *page, const char *reason,
301 unsigned long bad_flags)
302 {
303 static unsigned long resume;
304 static unsigned long nr_shown;
305 static unsigned long nr_unshown;
306
307 /* Don't complain about poisoned pages */
308 if (PageHWPoison(page)) {
309 page_mapcount_reset(page); /* remove PageBuddy */
310 return;
311 }
312
313 /*
314 * Allow a burst of 60 reports, then keep quiet for that minute;
315 * or allow a steady drip of one report per second.
316 */
317 if (nr_shown == 60) {
318 if (time_before(jiffies, resume)) {
319 nr_unshown++;
320 goto out;
321 }
322 if (nr_unshown) {
323 printk(KERN_ALERT
324 "BUG: Bad page state: %lu messages suppressed\n",
325 nr_unshown);
326 nr_unshown = 0;
327 }
328 nr_shown = 0;
329 }
330 if (nr_shown++ == 0)
331 resume = jiffies + 60 * HZ;
332
333 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
334 current->comm, page_to_pfn(page));
335 dump_page_badflags(page, reason, bad_flags);
336
337 print_modules();
338 dump_stack();
339 out:
340 /* Leave bad fields for debug, except PageBuddy could make trouble */
341 page_mapcount_reset(page); /* remove PageBuddy */
342 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
343 }
344
345 /*
346 * Higher-order pages are called "compound pages". They are structured thusly:
347 *
348 * The first PAGE_SIZE page is called the "head page".
349 *
350 * The remaining PAGE_SIZE pages are called "tail pages".
351 *
352 * All pages have PG_compound set. All tail pages have their ->first_page
353 * pointing at the head page.
354 *
355 * The first tail page's ->lru.next holds the address of the compound page's
356 * put_page() function. Its ->lru.prev holds the order of allocation.
357 * This usage means that zero-order pages may not be compound.
358 */
359
360 static void free_compound_page(struct page *page)
361 {
362 __free_pages_ok(page, compound_order(page));
363 }
364
365 void prep_compound_page(struct page *page, unsigned long order)
366 {
367 int i;
368 int nr_pages = 1 << order;
369
370 set_compound_page_dtor(page, free_compound_page);
371 set_compound_order(page, order);
372 __SetPageHead(page);
373 for (i = 1; i < nr_pages; i++) {
374 struct page *p = page + i;
375 set_page_count(p, 0);
376 p->first_page = page;
377 /* Make sure p->first_page is always valid for PageTail() */
378 smp_wmb();
379 __SetPageTail(p);
380 }
381 }
382
383 static inline void prep_zero_page(struct page *page, unsigned int order,
384 gfp_t gfp_flags)
385 {
386 int i;
387
388 /*
389 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
390 * and __GFP_HIGHMEM from hard or soft interrupt context.
391 */
392 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
393 for (i = 0; i < (1 << order); i++)
394 clear_highpage(page + i);
395 }
396
397 #ifdef CONFIG_DEBUG_PAGEALLOC
398 unsigned int _debug_guardpage_minorder;
399 bool _debug_pagealloc_enabled __read_mostly;
400 bool _debug_guardpage_enabled __read_mostly;
401
402 static int __init early_debug_pagealloc(char *buf)
403 {
404 if (!buf)
405 return -EINVAL;
406
407 if (strcmp(buf, "on") == 0)
408 _debug_pagealloc_enabled = true;
409
410 return 0;
411 }
412 early_param("debug_pagealloc", early_debug_pagealloc);
413
414 static bool need_debug_guardpage(void)
415 {
416 /* If we don't use debug_pagealloc, we don't need guard page */
417 if (!debug_pagealloc_enabled())
418 return false;
419
420 return true;
421 }
422
423 static void init_debug_guardpage(void)
424 {
425 if (!debug_pagealloc_enabled())
426 return;
427
428 _debug_guardpage_enabled = true;
429 }
430
431 struct page_ext_operations debug_guardpage_ops = {
432 .need = need_debug_guardpage,
433 .init = init_debug_guardpage,
434 };
435
436 static int __init debug_guardpage_minorder_setup(char *buf)
437 {
438 unsigned long res;
439
440 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
441 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
442 return 0;
443 }
444 _debug_guardpage_minorder = res;
445 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
446 return 0;
447 }
448 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
449
450 static inline void set_page_guard(struct zone *zone, struct page *page,
451 unsigned int order, int migratetype)
452 {
453 struct page_ext *page_ext;
454
455 if (!debug_guardpage_enabled())
456 return;
457
458 page_ext = lookup_page_ext(page);
459 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
460
461 INIT_LIST_HEAD(&page->lru);
462 set_page_private(page, order);
463 /* Guard pages are not available for any usage */
464 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
465 }
466
467 static inline void clear_page_guard(struct zone *zone, struct page *page,
468 unsigned int order, int migratetype)
469 {
470 struct page_ext *page_ext;
471
472 if (!debug_guardpage_enabled())
473 return;
474
475 page_ext = lookup_page_ext(page);
476 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
477
478 set_page_private(page, 0);
479 if (!is_migrate_isolate(migratetype))
480 __mod_zone_freepage_state(zone, (1 << order), migratetype);
481 }
482 #else
483 struct page_ext_operations debug_guardpage_ops = { NULL, };
484 static inline void set_page_guard(struct zone *zone, struct page *page,
485 unsigned int order, int migratetype) {}
486 static inline void clear_page_guard(struct zone *zone, struct page *page,
487 unsigned int order, int migratetype) {}
488 #endif
489
490 static inline void set_page_order(struct page *page, unsigned int order)
491 {
492 set_page_private(page, order);
493 __SetPageBuddy(page);
494 }
495
496 static inline void rmv_page_order(struct page *page)
497 {
498 __ClearPageBuddy(page);
499 set_page_private(page, 0);
500 }
501
502 /*
503 * This function checks whether a page is free && is the buddy
504 * we can do coalesce a page and its buddy if
505 * (a) the buddy is not in a hole &&
506 * (b) the buddy is in the buddy system &&
507 * (c) a page and its buddy have the same order &&
508 * (d) a page and its buddy are in the same zone.
509 *
510 * For recording whether a page is in the buddy system, we set ->_mapcount
511 * PAGE_BUDDY_MAPCOUNT_VALUE.
512 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
513 * serialized by zone->lock.
514 *
515 * For recording page's order, we use page_private(page).
516 */
517 static inline int page_is_buddy(struct page *page, struct page *buddy,
518 unsigned int order)
519 {
520 if (!pfn_valid_within(page_to_pfn(buddy)))
521 return 0;
522
523 if (page_is_guard(buddy) && page_order(buddy) == order) {
524 if (page_zone_id(page) != page_zone_id(buddy))
525 return 0;
526
527 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
528
529 return 1;
530 }
531
532 if (PageBuddy(buddy) && page_order(buddy) == order) {
533 /*
534 * zone check is done late to avoid uselessly
535 * calculating zone/node ids for pages that could
536 * never merge.
537 */
538 if (page_zone_id(page) != page_zone_id(buddy))
539 return 0;
540
541 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
542
543 return 1;
544 }
545 return 0;
546 }
547
548 /*
549 * Freeing function for a buddy system allocator.
550 *
551 * The concept of a buddy system is to maintain direct-mapped table
552 * (containing bit values) for memory blocks of various "orders".
553 * The bottom level table contains the map for the smallest allocatable
554 * units of memory (here, pages), and each level above it describes
555 * pairs of units from the levels below, hence, "buddies".
556 * At a high level, all that happens here is marking the table entry
557 * at the bottom level available, and propagating the changes upward
558 * as necessary, plus some accounting needed to play nicely with other
559 * parts of the VM system.
560 * At each level, we keep a list of pages, which are heads of continuous
561 * free pages of length of (1 << order) and marked with _mapcount
562 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
563 * field.
564 * So when we are allocating or freeing one, we can derive the state of the
565 * other. That is, if we allocate a small block, and both were
566 * free, the remainder of the region must be split into blocks.
567 * If a block is freed, and its buddy is also free, then this
568 * triggers coalescing into a block of larger size.
569 *
570 * -- nyc
571 */
572
573 static inline void __free_one_page(struct page *page,
574 unsigned long pfn,
575 struct zone *zone, unsigned int order,
576 int migratetype)
577 {
578 unsigned long page_idx;
579 unsigned long combined_idx;
580 unsigned long uninitialized_var(buddy_idx);
581 struct page *buddy;
582 int max_order = MAX_ORDER;
583
584 VM_BUG_ON(!zone_is_initialized(zone));
585 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
586
587 VM_BUG_ON(migratetype == -1);
588 if (is_migrate_isolate(migratetype)) {
589 /*
590 * We restrict max order of merging to prevent merge
591 * between freepages on isolate pageblock and normal
592 * pageblock. Without this, pageblock isolation
593 * could cause incorrect freepage accounting.
594 */
595 max_order = min(MAX_ORDER, pageblock_order + 1);
596 } else {
597 __mod_zone_freepage_state(zone, 1 << order, migratetype);
598 }
599
600 page_idx = pfn & ((1 << max_order) - 1);
601
602 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
603 VM_BUG_ON_PAGE(bad_range(zone, page), page);
604
605 while (order < max_order - 1) {
606 buddy_idx = __find_buddy_index(page_idx, order);
607 buddy = page + (buddy_idx - page_idx);
608 if (!page_is_buddy(page, buddy, order))
609 break;
610 /*
611 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
612 * merge with it and move up one order.
613 */
614 if (page_is_guard(buddy)) {
615 clear_page_guard(zone, buddy, order, migratetype);
616 } else {
617 list_del(&buddy->lru);
618 zone->free_area[order].nr_free--;
619 rmv_page_order(buddy);
620 }
621 combined_idx = buddy_idx & page_idx;
622 page = page + (combined_idx - page_idx);
623 page_idx = combined_idx;
624 order++;
625 }
626 set_page_order(page, order);
627
628 /*
629 * If this is not the largest possible page, check if the buddy
630 * of the next-highest order is free. If it is, it's possible
631 * that pages are being freed that will coalesce soon. In case,
632 * that is happening, add the free page to the tail of the list
633 * so it's less likely to be used soon and more likely to be merged
634 * as a higher order page
635 */
636 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
637 struct page *higher_page, *higher_buddy;
638 combined_idx = buddy_idx & page_idx;
639 higher_page = page + (combined_idx - page_idx);
640 buddy_idx = __find_buddy_index(combined_idx, order + 1);
641 higher_buddy = higher_page + (buddy_idx - combined_idx);
642 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
643 list_add_tail(&page->lru,
644 &zone->free_area[order].free_list[migratetype]);
645 goto out;
646 }
647 }
648
649 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
650 out:
651 zone->free_area[order].nr_free++;
652 }
653
654 static inline int free_pages_check(struct page *page)
655 {
656 const char *bad_reason = NULL;
657 unsigned long bad_flags = 0;
658
659 if (unlikely(page_mapcount(page)))
660 bad_reason = "nonzero mapcount";
661 if (unlikely(page->mapping != NULL))
662 bad_reason = "non-NULL mapping";
663 if (unlikely(atomic_read(&page->_count) != 0))
664 bad_reason = "nonzero _count";
665 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
666 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
667 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
668 }
669 #ifdef CONFIG_MEMCG
670 if (unlikely(page->mem_cgroup))
671 bad_reason = "page still charged to cgroup";
672 #endif
673 if (unlikely(bad_reason)) {
674 bad_page(page, bad_reason, bad_flags);
675 return 1;
676 }
677 page_cpupid_reset_last(page);
678 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
679 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
680 return 0;
681 }
682
683 /*
684 * Frees a number of pages from the PCP lists
685 * Assumes all pages on list are in same zone, and of same order.
686 * count is the number of pages to free.
687 *
688 * If the zone was previously in an "all pages pinned" state then look to
689 * see if this freeing clears that state.
690 *
691 * And clear the zone's pages_scanned counter, to hold off the "all pages are
692 * pinned" detection logic.
693 */
694 static void free_pcppages_bulk(struct zone *zone, int count,
695 struct per_cpu_pages *pcp)
696 {
697 int migratetype = 0;
698 int batch_free = 0;
699 int to_free = count;
700 unsigned long nr_scanned;
701
702 spin_lock(&zone->lock);
703 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
704 if (nr_scanned)
705 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
706
707 while (to_free) {
708 struct page *page;
709 struct list_head *list;
710
711 /*
712 * Remove pages from lists in a round-robin fashion. A
713 * batch_free count is maintained that is incremented when an
714 * empty list is encountered. This is so more pages are freed
715 * off fuller lists instead of spinning excessively around empty
716 * lists
717 */
718 do {
719 batch_free++;
720 if (++migratetype == MIGRATE_PCPTYPES)
721 migratetype = 0;
722 list = &pcp->lists[migratetype];
723 } while (list_empty(list));
724
725 /* This is the only non-empty list. Free them all. */
726 if (batch_free == MIGRATE_PCPTYPES)
727 batch_free = to_free;
728
729 do {
730 int mt; /* migratetype of the to-be-freed page */
731
732 page = list_entry(list->prev, struct page, lru);
733 /* must delete as __free_one_page list manipulates */
734 list_del(&page->lru);
735 mt = get_freepage_migratetype(page);
736 if (unlikely(has_isolate_pageblock(zone)))
737 mt = get_pageblock_migratetype(page);
738
739 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
740 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
741 trace_mm_page_pcpu_drain(page, 0, mt);
742 } while (--to_free && --batch_free && !list_empty(list));
743 }
744 spin_unlock(&zone->lock);
745 }
746
747 static void free_one_page(struct zone *zone,
748 struct page *page, unsigned long pfn,
749 unsigned int order,
750 int migratetype)
751 {
752 unsigned long nr_scanned;
753 spin_lock(&zone->lock);
754 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
755 if (nr_scanned)
756 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
757
758 if (unlikely(has_isolate_pageblock(zone) ||
759 is_migrate_isolate(migratetype))) {
760 migratetype = get_pfnblock_migratetype(page, pfn);
761 }
762 __free_one_page(page, pfn, zone, order, migratetype);
763 spin_unlock(&zone->lock);
764 }
765
766 static int free_tail_pages_check(struct page *head_page, struct page *page)
767 {
768 if (!IS_ENABLED(CONFIG_DEBUG_VM))
769 return 0;
770 if (unlikely(!PageTail(page))) {
771 bad_page(page, "PageTail not set", 0);
772 return 1;
773 }
774 if (unlikely(page->first_page != head_page)) {
775 bad_page(page, "first_page not consistent", 0);
776 return 1;
777 }
778 return 0;
779 }
780
781 static bool free_pages_prepare(struct page *page, unsigned int order)
782 {
783 bool compound = PageCompound(page);
784 int i, bad = 0;
785
786 VM_BUG_ON_PAGE(PageTail(page), page);
787 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
788
789 trace_mm_page_free(page, order);
790 kmemcheck_free_shadow(page, order);
791 kasan_free_pages(page, order);
792
793 if (PageAnon(page))
794 page->mapping = NULL;
795 bad += free_pages_check(page);
796 for (i = 1; i < (1 << order); i++) {
797 if (compound)
798 bad += free_tail_pages_check(page, page + i);
799 bad += free_pages_check(page + i);
800 }
801 if (bad)
802 return false;
803
804 reset_page_owner(page, order);
805
806 if (!PageHighMem(page)) {
807 debug_check_no_locks_freed(page_address(page),
808 PAGE_SIZE << order);
809 debug_check_no_obj_freed(page_address(page),
810 PAGE_SIZE << order);
811 }
812 arch_free_page(page, order);
813 kernel_map_pages(page, 1 << order, 0);
814
815 return true;
816 }
817
818 static void __free_pages_ok(struct page *page, unsigned int order)
819 {
820 unsigned long flags;
821 int migratetype;
822 unsigned long pfn = page_to_pfn(page);
823
824 if (!free_pages_prepare(page, order))
825 return;
826
827 migratetype = get_pfnblock_migratetype(page, pfn);
828 local_irq_save(flags);
829 __count_vm_events(PGFREE, 1 << order);
830 set_freepage_migratetype(page, migratetype);
831 free_one_page(page_zone(page), page, pfn, order, migratetype);
832 local_irq_restore(flags);
833 }
834
835 void __init __free_pages_bootmem(struct page *page, unsigned int order)
836 {
837 unsigned int nr_pages = 1 << order;
838 struct page *p = page;
839 unsigned int loop;
840
841 prefetchw(p);
842 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
843 prefetchw(p + 1);
844 __ClearPageReserved(p);
845 set_page_count(p, 0);
846 }
847 __ClearPageReserved(p);
848 set_page_count(p, 0);
849
850 page_zone(page)->managed_pages += nr_pages;
851 set_page_refcounted(page);
852 __free_pages(page, order);
853 }
854
855 #ifdef CONFIG_CMA
856 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
857 void __init init_cma_reserved_pageblock(struct page *page)
858 {
859 unsigned i = pageblock_nr_pages;
860 struct page *p = page;
861
862 do {
863 __ClearPageReserved(p);
864 set_page_count(p, 0);
865 } while (++p, --i);
866
867 set_pageblock_migratetype(page, MIGRATE_CMA);
868
869 if (pageblock_order >= MAX_ORDER) {
870 i = pageblock_nr_pages;
871 p = page;
872 do {
873 set_page_refcounted(p);
874 __free_pages(p, MAX_ORDER - 1);
875 p += MAX_ORDER_NR_PAGES;
876 } while (i -= MAX_ORDER_NR_PAGES);
877 } else {
878 set_page_refcounted(page);
879 __free_pages(page, pageblock_order);
880 }
881
882 adjust_managed_page_count(page, pageblock_nr_pages);
883 }
884 #endif
885
886 /*
887 * The order of subdivision here is critical for the IO subsystem.
888 * Please do not alter this order without good reasons and regression
889 * testing. Specifically, as large blocks of memory are subdivided,
890 * the order in which smaller blocks are delivered depends on the order
891 * they're subdivided in this function. This is the primary factor
892 * influencing the order in which pages are delivered to the IO
893 * subsystem according to empirical testing, and this is also justified
894 * by considering the behavior of a buddy system containing a single
895 * large block of memory acted on by a series of small allocations.
896 * This behavior is a critical factor in sglist merging's success.
897 *
898 * -- nyc
899 */
900 static inline void expand(struct zone *zone, struct page *page,
901 int low, int high, struct free_area *area,
902 int migratetype)
903 {
904 unsigned long size = 1 << high;
905
906 while (high > low) {
907 area--;
908 high--;
909 size >>= 1;
910 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
911
912 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
913 debug_guardpage_enabled() &&
914 high < debug_guardpage_minorder()) {
915 /*
916 * Mark as guard pages (or page), that will allow to
917 * merge back to allocator when buddy will be freed.
918 * Corresponding page table entries will not be touched,
919 * pages will stay not present in virtual address space
920 */
921 set_page_guard(zone, &page[size], high, migratetype);
922 continue;
923 }
924 list_add(&page[size].lru, &area->free_list[migratetype]);
925 area->nr_free++;
926 set_page_order(&page[size], high);
927 }
928 }
929
930 /*
931 * This page is about to be returned from the page allocator
932 */
933 static inline int check_new_page(struct page *page)
934 {
935 const char *bad_reason = NULL;
936 unsigned long bad_flags = 0;
937
938 if (unlikely(page_mapcount(page)))
939 bad_reason = "nonzero mapcount";
940 if (unlikely(page->mapping != NULL))
941 bad_reason = "non-NULL mapping";
942 if (unlikely(atomic_read(&page->_count) != 0))
943 bad_reason = "nonzero _count";
944 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
945 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
946 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
947 }
948 #ifdef CONFIG_MEMCG
949 if (unlikely(page->mem_cgroup))
950 bad_reason = "page still charged to cgroup";
951 #endif
952 if (unlikely(bad_reason)) {
953 bad_page(page, bad_reason, bad_flags);
954 return 1;
955 }
956 return 0;
957 }
958
959 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
960 int alloc_flags)
961 {
962 int i;
963
964 for (i = 0; i < (1 << order); i++) {
965 struct page *p = page + i;
966 if (unlikely(check_new_page(p)))
967 return 1;
968 }
969
970 set_page_private(page, 0);
971 set_page_refcounted(page);
972
973 arch_alloc_page(page, order);
974 kernel_map_pages(page, 1 << order, 1);
975 kasan_alloc_pages(page, order);
976
977 if (gfp_flags & __GFP_ZERO)
978 prep_zero_page(page, order, gfp_flags);
979
980 if (order && (gfp_flags & __GFP_COMP))
981 prep_compound_page(page, order);
982
983 set_page_owner(page, order, gfp_flags);
984
985 /*
986 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
987 * allocate the page. The expectation is that the caller is taking
988 * steps that will free more memory. The caller should avoid the page
989 * being used for !PFMEMALLOC purposes.
990 */
991 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
992
993 return 0;
994 }
995
996 /*
997 * Go through the free lists for the given migratetype and remove
998 * the smallest available page from the freelists
999 */
1000 static inline
1001 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1002 int migratetype)
1003 {
1004 unsigned int current_order;
1005 struct free_area *area;
1006 struct page *page;
1007
1008 /* Find a page of the appropriate size in the preferred list */
1009 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1010 area = &(zone->free_area[current_order]);
1011 if (list_empty(&area->free_list[migratetype]))
1012 continue;
1013
1014 page = list_entry(area->free_list[migratetype].next,
1015 struct page, lru);
1016 list_del(&page->lru);
1017 rmv_page_order(page);
1018 area->nr_free--;
1019 expand(zone, page, order, current_order, area, migratetype);
1020 set_freepage_migratetype(page, migratetype);
1021 return page;
1022 }
1023
1024 return NULL;
1025 }
1026
1027
1028 /*
1029 * This array describes the order lists are fallen back to when
1030 * the free lists for the desirable migrate type are depleted
1031 */
1032 static int fallbacks[MIGRATE_TYPES][4] = {
1033 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1034 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1035 #ifdef CONFIG_CMA
1036 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1037 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
1038 #else
1039 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1040 #endif
1041 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
1042 #ifdef CONFIG_MEMORY_ISOLATION
1043 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
1044 #endif
1045 };
1046
1047 /*
1048 * Move the free pages in a range to the free lists of the requested type.
1049 * Note that start_page and end_pages are not aligned on a pageblock
1050 * boundary. If alignment is required, use move_freepages_block()
1051 */
1052 int move_freepages(struct zone *zone,
1053 struct page *start_page, struct page *end_page,
1054 int migratetype)
1055 {
1056 struct page *page;
1057 unsigned long order;
1058 int pages_moved = 0;
1059
1060 #ifndef CONFIG_HOLES_IN_ZONE
1061 /*
1062 * page_zone is not safe to call in this context when
1063 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1064 * anyway as we check zone boundaries in move_freepages_block().
1065 * Remove at a later date when no bug reports exist related to
1066 * grouping pages by mobility
1067 */
1068 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1069 #endif
1070
1071 for (page = start_page; page <= end_page;) {
1072 /* Make sure we are not inadvertently changing nodes */
1073 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1074
1075 if (!pfn_valid_within(page_to_pfn(page))) {
1076 page++;
1077 continue;
1078 }
1079
1080 if (!PageBuddy(page)) {
1081 page++;
1082 continue;
1083 }
1084
1085 order = page_order(page);
1086 list_move(&page->lru,
1087 &zone->free_area[order].free_list[migratetype]);
1088 set_freepage_migratetype(page, migratetype);
1089 page += 1 << order;
1090 pages_moved += 1 << order;
1091 }
1092
1093 return pages_moved;
1094 }
1095
1096 int move_freepages_block(struct zone *zone, struct page *page,
1097 int migratetype)
1098 {
1099 unsigned long start_pfn, end_pfn;
1100 struct page *start_page, *end_page;
1101
1102 start_pfn = page_to_pfn(page);
1103 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1104 start_page = pfn_to_page(start_pfn);
1105 end_page = start_page + pageblock_nr_pages - 1;
1106 end_pfn = start_pfn + pageblock_nr_pages - 1;
1107
1108 /* Do not cross zone boundaries */
1109 if (!zone_spans_pfn(zone, start_pfn))
1110 start_page = page;
1111 if (!zone_spans_pfn(zone, end_pfn))
1112 return 0;
1113
1114 return move_freepages(zone, start_page, end_page, migratetype);
1115 }
1116
1117 static void change_pageblock_range(struct page *pageblock_page,
1118 int start_order, int migratetype)
1119 {
1120 int nr_pageblocks = 1 << (start_order - pageblock_order);
1121
1122 while (nr_pageblocks--) {
1123 set_pageblock_migratetype(pageblock_page, migratetype);
1124 pageblock_page += pageblock_nr_pages;
1125 }
1126 }
1127
1128 /*
1129 * When we are falling back to another migratetype during allocation, try to
1130 * steal extra free pages from the same pageblocks to satisfy further
1131 * allocations, instead of polluting multiple pageblocks.
1132 *
1133 * If we are stealing a relatively large buddy page, it is likely there will
1134 * be more free pages in the pageblock, so try to steal them all. For
1135 * reclaimable and unmovable allocations, we steal regardless of page size,
1136 * as fragmentation caused by those allocations polluting movable pageblocks
1137 * is worse than movable allocations stealing from unmovable and reclaimable
1138 * pageblocks.
1139 *
1140 * If we claim more than half of the pageblock, change pageblock's migratetype
1141 * as well.
1142 */
1143 static void try_to_steal_freepages(struct zone *zone, struct page *page,
1144 int start_type, int fallback_type)
1145 {
1146 int current_order = page_order(page);
1147
1148 /* Take ownership for orders >= pageblock_order */
1149 if (current_order >= pageblock_order) {
1150 change_pageblock_range(page, current_order, start_type);
1151 return;
1152 }
1153
1154 if (current_order >= pageblock_order / 2 ||
1155 start_type == MIGRATE_RECLAIMABLE ||
1156 start_type == MIGRATE_UNMOVABLE ||
1157 page_group_by_mobility_disabled) {
1158 int pages;
1159
1160 pages = move_freepages_block(zone, page, start_type);
1161
1162 /* Claim the whole block if over half of it is free */
1163 if (pages >= (1 << (pageblock_order-1)) ||
1164 page_group_by_mobility_disabled)
1165 set_pageblock_migratetype(page, start_type);
1166 }
1167 }
1168
1169 /* Remove an element from the buddy allocator from the fallback list */
1170 static inline struct page *
1171 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1172 {
1173 struct free_area *area;
1174 unsigned int current_order;
1175 struct page *page;
1176
1177 /* Find the largest possible block of pages in the other list */
1178 for (current_order = MAX_ORDER-1;
1179 current_order >= order && current_order <= MAX_ORDER-1;
1180 --current_order) {
1181 int i;
1182 for (i = 0;; i++) {
1183 int migratetype = fallbacks[start_migratetype][i];
1184 int buddy_type = start_migratetype;
1185
1186 /* MIGRATE_RESERVE handled later if necessary */
1187 if (migratetype == MIGRATE_RESERVE)
1188 break;
1189
1190 area = &(zone->free_area[current_order]);
1191 if (list_empty(&area->free_list[migratetype]))
1192 continue;
1193
1194 page = list_entry(area->free_list[migratetype].next,
1195 struct page, lru);
1196 area->nr_free--;
1197
1198 if (!is_migrate_cma(migratetype)) {
1199 try_to_steal_freepages(zone, page,
1200 start_migratetype,
1201 migratetype);
1202 } else {
1203 /*
1204 * When borrowing from MIGRATE_CMA, we need to
1205 * release the excess buddy pages to CMA
1206 * itself, and we do not try to steal extra
1207 * free pages.
1208 */
1209 buddy_type = migratetype;
1210 }
1211
1212 /* Remove the page from the freelists */
1213 list_del(&page->lru);
1214 rmv_page_order(page);
1215
1216 expand(zone, page, order, current_order, area,
1217 buddy_type);
1218
1219 /*
1220 * The freepage_migratetype may differ from pageblock's
1221 * migratetype depending on the decisions in
1222 * try_to_steal_freepages(). This is OK as long as it
1223 * does not differ for MIGRATE_CMA pageblocks. For CMA
1224 * we need to make sure unallocated pages flushed from
1225 * pcp lists are returned to the correct freelist.
1226 */
1227 set_freepage_migratetype(page, buddy_type);
1228
1229 trace_mm_page_alloc_extfrag(page, order, current_order,
1230 start_migratetype, migratetype);
1231
1232 return page;
1233 }
1234 }
1235
1236 return NULL;
1237 }
1238
1239 /*
1240 * Do the hard work of removing an element from the buddy allocator.
1241 * Call me with the zone->lock already held.
1242 */
1243 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1244 int migratetype)
1245 {
1246 struct page *page;
1247
1248 retry_reserve:
1249 page = __rmqueue_smallest(zone, order, migratetype);
1250
1251 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1252 page = __rmqueue_fallback(zone, order, migratetype);
1253
1254 /*
1255 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1256 * is used because __rmqueue_smallest is an inline function
1257 * and we want just one call site
1258 */
1259 if (!page) {
1260 migratetype = MIGRATE_RESERVE;
1261 goto retry_reserve;
1262 }
1263 }
1264
1265 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1266 return page;
1267 }
1268
1269 /*
1270 * Obtain a specified number of elements from the buddy allocator, all under
1271 * a single hold of the lock, for efficiency. Add them to the supplied list.
1272 * Returns the number of new pages which were placed at *list.
1273 */
1274 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1275 unsigned long count, struct list_head *list,
1276 int migratetype, bool cold)
1277 {
1278 int i;
1279
1280 spin_lock(&zone->lock);
1281 for (i = 0; i < count; ++i) {
1282 struct page *page = __rmqueue(zone, order, migratetype);
1283 if (unlikely(page == NULL))
1284 break;
1285
1286 /*
1287 * Split buddy pages returned by expand() are received here
1288 * in physical page order. The page is added to the callers and
1289 * list and the list head then moves forward. From the callers
1290 * perspective, the linked list is ordered by page number in
1291 * some conditions. This is useful for IO devices that can
1292 * merge IO requests if the physical pages are ordered
1293 * properly.
1294 */
1295 if (likely(!cold))
1296 list_add(&page->lru, list);
1297 else
1298 list_add_tail(&page->lru, list);
1299 list = &page->lru;
1300 if (is_migrate_cma(get_freepage_migratetype(page)))
1301 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1302 -(1 << order));
1303 }
1304 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1305 spin_unlock(&zone->lock);
1306 return i;
1307 }
1308
1309 #ifdef CONFIG_NUMA
1310 /*
1311 * Called from the vmstat counter updater to drain pagesets of this
1312 * currently executing processor on remote nodes after they have
1313 * expired.
1314 *
1315 * Note that this function must be called with the thread pinned to
1316 * a single processor.
1317 */
1318 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1319 {
1320 unsigned long flags;
1321 int to_drain, batch;
1322
1323 local_irq_save(flags);
1324 batch = ACCESS_ONCE(pcp->batch);
1325 to_drain = min(pcp->count, batch);
1326 if (to_drain > 0) {
1327 free_pcppages_bulk(zone, to_drain, pcp);
1328 pcp->count -= to_drain;
1329 }
1330 local_irq_restore(flags);
1331 }
1332 #endif
1333
1334 /*
1335 * Drain pcplists of the indicated processor and zone.
1336 *
1337 * The processor must either be the current processor and the
1338 * thread pinned to the current processor or a processor that
1339 * is not online.
1340 */
1341 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1342 {
1343 unsigned long flags;
1344 struct per_cpu_pageset *pset;
1345 struct per_cpu_pages *pcp;
1346
1347 local_irq_save(flags);
1348 pset = per_cpu_ptr(zone->pageset, cpu);
1349
1350 pcp = &pset->pcp;
1351 if (pcp->count) {
1352 free_pcppages_bulk(zone, pcp->count, pcp);
1353 pcp->count = 0;
1354 }
1355 local_irq_restore(flags);
1356 }
1357
1358 /*
1359 * Drain pcplists of all zones on the indicated processor.
1360 *
1361 * The processor must either be the current processor and the
1362 * thread pinned to the current processor or a processor that
1363 * is not online.
1364 */
1365 static void drain_pages(unsigned int cpu)
1366 {
1367 struct zone *zone;
1368
1369 for_each_populated_zone(zone) {
1370 drain_pages_zone(cpu, zone);
1371 }
1372 }
1373
1374 /*
1375 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1376 *
1377 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1378 * the single zone's pages.
1379 */
1380 void drain_local_pages(struct zone *zone)
1381 {
1382 int cpu = smp_processor_id();
1383
1384 if (zone)
1385 drain_pages_zone(cpu, zone);
1386 else
1387 drain_pages(cpu);
1388 }
1389
1390 /*
1391 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1392 *
1393 * When zone parameter is non-NULL, spill just the single zone's pages.
1394 *
1395 * Note that this code is protected against sending an IPI to an offline
1396 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1397 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1398 * nothing keeps CPUs from showing up after we populated the cpumask and
1399 * before the call to on_each_cpu_mask().
1400 */
1401 void drain_all_pages(struct zone *zone)
1402 {
1403 int cpu;
1404
1405 /*
1406 * Allocate in the BSS so we wont require allocation in
1407 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1408 */
1409 static cpumask_t cpus_with_pcps;
1410
1411 /*
1412 * We don't care about racing with CPU hotplug event
1413 * as offline notification will cause the notified
1414 * cpu to drain that CPU pcps and on_each_cpu_mask
1415 * disables preemption as part of its processing
1416 */
1417 for_each_online_cpu(cpu) {
1418 struct per_cpu_pageset *pcp;
1419 struct zone *z;
1420 bool has_pcps = false;
1421
1422 if (zone) {
1423 pcp = per_cpu_ptr(zone->pageset, cpu);
1424 if (pcp->pcp.count)
1425 has_pcps = true;
1426 } else {
1427 for_each_populated_zone(z) {
1428 pcp = per_cpu_ptr(z->pageset, cpu);
1429 if (pcp->pcp.count) {
1430 has_pcps = true;
1431 break;
1432 }
1433 }
1434 }
1435
1436 if (has_pcps)
1437 cpumask_set_cpu(cpu, &cpus_with_pcps);
1438 else
1439 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1440 }
1441 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1442 zone, 1);
1443 }
1444
1445 #ifdef CONFIG_HIBERNATION
1446
1447 void mark_free_pages(struct zone *zone)
1448 {
1449 unsigned long pfn, max_zone_pfn;
1450 unsigned long flags;
1451 unsigned int order, t;
1452 struct list_head *curr;
1453
1454 if (zone_is_empty(zone))
1455 return;
1456
1457 spin_lock_irqsave(&zone->lock, flags);
1458
1459 max_zone_pfn = zone_end_pfn(zone);
1460 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1461 if (pfn_valid(pfn)) {
1462 struct page *page = pfn_to_page(pfn);
1463
1464 if (!swsusp_page_is_forbidden(page))
1465 swsusp_unset_page_free(page);
1466 }
1467
1468 for_each_migratetype_order(order, t) {
1469 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1470 unsigned long i;
1471
1472 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1473 for (i = 0; i < (1UL << order); i++)
1474 swsusp_set_page_free(pfn_to_page(pfn + i));
1475 }
1476 }
1477 spin_unlock_irqrestore(&zone->lock, flags);
1478 }
1479 #endif /* CONFIG_PM */
1480
1481 /*
1482 * Free a 0-order page
1483 * cold == true ? free a cold page : free a hot page
1484 */
1485 void free_hot_cold_page(struct page *page, bool cold)
1486 {
1487 struct zone *zone = page_zone(page);
1488 struct per_cpu_pages *pcp;
1489 unsigned long flags;
1490 unsigned long pfn = page_to_pfn(page);
1491 int migratetype;
1492
1493 if (!free_pages_prepare(page, 0))
1494 return;
1495
1496 migratetype = get_pfnblock_migratetype(page, pfn);
1497 set_freepage_migratetype(page, migratetype);
1498 local_irq_save(flags);
1499 __count_vm_event(PGFREE);
1500
1501 /*
1502 * We only track unmovable, reclaimable and movable on pcp lists.
1503 * Free ISOLATE pages back to the allocator because they are being
1504 * offlined but treat RESERVE as movable pages so we can get those
1505 * areas back if necessary. Otherwise, we may have to free
1506 * excessively into the page allocator
1507 */
1508 if (migratetype >= MIGRATE_PCPTYPES) {
1509 if (unlikely(is_migrate_isolate(migratetype))) {
1510 free_one_page(zone, page, pfn, 0, migratetype);
1511 goto out;
1512 }
1513 migratetype = MIGRATE_MOVABLE;
1514 }
1515
1516 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1517 if (!cold)
1518 list_add(&page->lru, &pcp->lists[migratetype]);
1519 else
1520 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1521 pcp->count++;
1522 if (pcp->count >= pcp->high) {
1523 unsigned long batch = ACCESS_ONCE(pcp->batch);
1524 free_pcppages_bulk(zone, batch, pcp);
1525 pcp->count -= batch;
1526 }
1527
1528 out:
1529 local_irq_restore(flags);
1530 }
1531
1532 /*
1533 * Free a list of 0-order pages
1534 */
1535 void free_hot_cold_page_list(struct list_head *list, bool cold)
1536 {
1537 struct page *page, *next;
1538
1539 list_for_each_entry_safe(page, next, list, lru) {
1540 trace_mm_page_free_batched(page, cold);
1541 free_hot_cold_page(page, cold);
1542 }
1543 }
1544
1545 /*
1546 * split_page takes a non-compound higher-order page, and splits it into
1547 * n (1<<order) sub-pages: page[0..n]
1548 * Each sub-page must be freed individually.
1549 *
1550 * Note: this is probably too low level an operation for use in drivers.
1551 * Please consult with lkml before using this in your driver.
1552 */
1553 void split_page(struct page *page, unsigned int order)
1554 {
1555 int i;
1556
1557 VM_BUG_ON_PAGE(PageCompound(page), page);
1558 VM_BUG_ON_PAGE(!page_count(page), page);
1559
1560 #ifdef CONFIG_KMEMCHECK
1561 /*
1562 * Split shadow pages too, because free(page[0]) would
1563 * otherwise free the whole shadow.
1564 */
1565 if (kmemcheck_page_is_tracked(page))
1566 split_page(virt_to_page(page[0].shadow), order);
1567 #endif
1568
1569 set_page_owner(page, 0, 0);
1570 for (i = 1; i < (1 << order); i++) {
1571 set_page_refcounted(page + i);
1572 set_page_owner(page + i, 0, 0);
1573 }
1574 }
1575 EXPORT_SYMBOL_GPL(split_page);
1576
1577 int __isolate_free_page(struct page *page, unsigned int order)
1578 {
1579 unsigned long watermark;
1580 struct zone *zone;
1581 int mt;
1582
1583 BUG_ON(!PageBuddy(page));
1584
1585 zone = page_zone(page);
1586 mt = get_pageblock_migratetype(page);
1587
1588 if (!is_migrate_isolate(mt)) {
1589 /* Obey watermarks as if the page was being allocated */
1590 watermark = low_wmark_pages(zone) + (1 << order);
1591 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1592 return 0;
1593
1594 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1595 }
1596
1597 /* Remove page from free list */
1598 list_del(&page->lru);
1599 zone->free_area[order].nr_free--;
1600 rmv_page_order(page);
1601
1602 /* Set the pageblock if the isolated page is at least a pageblock */
1603 if (order >= pageblock_order - 1) {
1604 struct page *endpage = page + (1 << order) - 1;
1605 for (; page < endpage; page += pageblock_nr_pages) {
1606 int mt = get_pageblock_migratetype(page);
1607 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1608 set_pageblock_migratetype(page,
1609 MIGRATE_MOVABLE);
1610 }
1611 }
1612
1613 set_page_owner(page, order, 0);
1614 return 1UL << order;
1615 }
1616
1617 /*
1618 * Similar to split_page except the page is already free. As this is only
1619 * being used for migration, the migratetype of the block also changes.
1620 * As this is called with interrupts disabled, the caller is responsible
1621 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1622 * are enabled.
1623 *
1624 * Note: this is probably too low level an operation for use in drivers.
1625 * Please consult with lkml before using this in your driver.
1626 */
1627 int split_free_page(struct page *page)
1628 {
1629 unsigned int order;
1630 int nr_pages;
1631
1632 order = page_order(page);
1633
1634 nr_pages = __isolate_free_page(page, order);
1635 if (!nr_pages)
1636 return 0;
1637
1638 /* Split into individual pages */
1639 set_page_refcounted(page);
1640 split_page(page, order);
1641 return nr_pages;
1642 }
1643
1644 /*
1645 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1646 */
1647 static inline
1648 struct page *buffered_rmqueue(struct zone *preferred_zone,
1649 struct zone *zone, unsigned int order,
1650 gfp_t gfp_flags, int migratetype)
1651 {
1652 unsigned long flags;
1653 struct page *page;
1654 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1655
1656 if (likely(order == 0)) {
1657 struct per_cpu_pages *pcp;
1658 struct list_head *list;
1659
1660 local_irq_save(flags);
1661 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1662 list = &pcp->lists[migratetype];
1663 if (list_empty(list)) {
1664 pcp->count += rmqueue_bulk(zone, 0,
1665 pcp->batch, list,
1666 migratetype, cold);
1667 if (unlikely(list_empty(list)))
1668 goto failed;
1669 }
1670
1671 if (cold)
1672 page = list_entry(list->prev, struct page, lru);
1673 else
1674 page = list_entry(list->next, struct page, lru);
1675
1676 list_del(&page->lru);
1677 pcp->count--;
1678 } else {
1679 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1680 /*
1681 * __GFP_NOFAIL is not to be used in new code.
1682 *
1683 * All __GFP_NOFAIL callers should be fixed so that they
1684 * properly detect and handle allocation failures.
1685 *
1686 * We most definitely don't want callers attempting to
1687 * allocate greater than order-1 page units with
1688 * __GFP_NOFAIL.
1689 */
1690 WARN_ON_ONCE(order > 1);
1691 }
1692 spin_lock_irqsave(&zone->lock, flags);
1693 page = __rmqueue(zone, order, migratetype);
1694 spin_unlock(&zone->lock);
1695 if (!page)
1696 goto failed;
1697 __mod_zone_freepage_state(zone, -(1 << order),
1698 get_freepage_migratetype(page));
1699 }
1700
1701 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1702 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1703 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1704 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1705
1706 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1707 zone_statistics(preferred_zone, zone, gfp_flags);
1708 local_irq_restore(flags);
1709
1710 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1711 return page;
1712
1713 failed:
1714 local_irq_restore(flags);
1715 return NULL;
1716 }
1717
1718 #ifdef CONFIG_FAIL_PAGE_ALLOC
1719
1720 static struct {
1721 struct fault_attr attr;
1722
1723 u32 ignore_gfp_highmem;
1724 u32 ignore_gfp_wait;
1725 u32 min_order;
1726 } fail_page_alloc = {
1727 .attr = FAULT_ATTR_INITIALIZER,
1728 .ignore_gfp_wait = 1,
1729 .ignore_gfp_highmem = 1,
1730 .min_order = 1,
1731 };
1732
1733 static int __init setup_fail_page_alloc(char *str)
1734 {
1735 return setup_fault_attr(&fail_page_alloc.attr, str);
1736 }
1737 __setup("fail_page_alloc=", setup_fail_page_alloc);
1738
1739 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1740 {
1741 if (order < fail_page_alloc.min_order)
1742 return false;
1743 if (gfp_mask & __GFP_NOFAIL)
1744 return false;
1745 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1746 return false;
1747 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1748 return false;
1749
1750 return should_fail(&fail_page_alloc.attr, 1 << order);
1751 }
1752
1753 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1754
1755 static int __init fail_page_alloc_debugfs(void)
1756 {
1757 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1758 struct dentry *dir;
1759
1760 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1761 &fail_page_alloc.attr);
1762 if (IS_ERR(dir))
1763 return PTR_ERR(dir);
1764
1765 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1766 &fail_page_alloc.ignore_gfp_wait))
1767 goto fail;
1768 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1769 &fail_page_alloc.ignore_gfp_highmem))
1770 goto fail;
1771 if (!debugfs_create_u32("min-order", mode, dir,
1772 &fail_page_alloc.min_order))
1773 goto fail;
1774
1775 return 0;
1776 fail:
1777 debugfs_remove_recursive(dir);
1778
1779 return -ENOMEM;
1780 }
1781
1782 late_initcall(fail_page_alloc_debugfs);
1783
1784 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1785
1786 #else /* CONFIG_FAIL_PAGE_ALLOC */
1787
1788 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1789 {
1790 return false;
1791 }
1792
1793 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1794
1795 /*
1796 * Return true if free pages are above 'mark'. This takes into account the order
1797 * of the allocation.
1798 */
1799 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1800 unsigned long mark, int classzone_idx, int alloc_flags,
1801 long free_pages)
1802 {
1803 /* free_pages may go negative - that's OK */
1804 long min = mark;
1805 int o;
1806 long free_cma = 0;
1807
1808 free_pages -= (1 << order) - 1;
1809 if (alloc_flags & ALLOC_HIGH)
1810 min -= min / 2;
1811 if (alloc_flags & ALLOC_HARDER)
1812 min -= min / 4;
1813 #ifdef CONFIG_CMA
1814 /* If allocation can't use CMA areas don't use free CMA pages */
1815 if (!(alloc_flags & ALLOC_CMA))
1816 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1817 #endif
1818
1819 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1820 return false;
1821 for (o = 0; o < order; o++) {
1822 /* At the next order, this order's pages become unavailable */
1823 free_pages -= z->free_area[o].nr_free << o;
1824
1825 /* Require fewer higher order pages to be free */
1826 min >>= 1;
1827
1828 if (free_pages <= min)
1829 return false;
1830 }
1831 return true;
1832 }
1833
1834 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1835 int classzone_idx, int alloc_flags)
1836 {
1837 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1838 zone_page_state(z, NR_FREE_PAGES));
1839 }
1840
1841 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1842 unsigned long mark, int classzone_idx, int alloc_flags)
1843 {
1844 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1845
1846 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1847 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1848
1849 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1850 free_pages);
1851 }
1852
1853 #ifdef CONFIG_NUMA
1854 /*
1855 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1856 * skip over zones that are not allowed by the cpuset, or that have
1857 * been recently (in last second) found to be nearly full. See further
1858 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1859 * that have to skip over a lot of full or unallowed zones.
1860 *
1861 * If the zonelist cache is present in the passed zonelist, then
1862 * returns a pointer to the allowed node mask (either the current
1863 * tasks mems_allowed, or node_states[N_MEMORY].)
1864 *
1865 * If the zonelist cache is not available for this zonelist, does
1866 * nothing and returns NULL.
1867 *
1868 * If the fullzones BITMAP in the zonelist cache is stale (more than
1869 * a second since last zap'd) then we zap it out (clear its bits.)
1870 *
1871 * We hold off even calling zlc_setup, until after we've checked the
1872 * first zone in the zonelist, on the theory that most allocations will
1873 * be satisfied from that first zone, so best to examine that zone as
1874 * quickly as we can.
1875 */
1876 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1877 {
1878 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1879 nodemask_t *allowednodes; /* zonelist_cache approximation */
1880
1881 zlc = zonelist->zlcache_ptr;
1882 if (!zlc)
1883 return NULL;
1884
1885 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1886 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1887 zlc->last_full_zap = jiffies;
1888 }
1889
1890 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1891 &cpuset_current_mems_allowed :
1892 &node_states[N_MEMORY];
1893 return allowednodes;
1894 }
1895
1896 /*
1897 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1898 * if it is worth looking at further for free memory:
1899 * 1) Check that the zone isn't thought to be full (doesn't have its
1900 * bit set in the zonelist_cache fullzones BITMAP).
1901 * 2) Check that the zones node (obtained from the zonelist_cache
1902 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1903 * Return true (non-zero) if zone is worth looking at further, or
1904 * else return false (zero) if it is not.
1905 *
1906 * This check -ignores- the distinction between various watermarks,
1907 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1908 * found to be full for any variation of these watermarks, it will
1909 * be considered full for up to one second by all requests, unless
1910 * we are so low on memory on all allowed nodes that we are forced
1911 * into the second scan of the zonelist.
1912 *
1913 * In the second scan we ignore this zonelist cache and exactly
1914 * apply the watermarks to all zones, even it is slower to do so.
1915 * We are low on memory in the second scan, and should leave no stone
1916 * unturned looking for a free page.
1917 */
1918 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1919 nodemask_t *allowednodes)
1920 {
1921 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1922 int i; /* index of *z in zonelist zones */
1923 int n; /* node that zone *z is on */
1924
1925 zlc = zonelist->zlcache_ptr;
1926 if (!zlc)
1927 return 1;
1928
1929 i = z - zonelist->_zonerefs;
1930 n = zlc->z_to_n[i];
1931
1932 /* This zone is worth trying if it is allowed but not full */
1933 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1934 }
1935
1936 /*
1937 * Given 'z' scanning a zonelist, set the corresponding bit in
1938 * zlc->fullzones, so that subsequent attempts to allocate a page
1939 * from that zone don't waste time re-examining it.
1940 */
1941 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1942 {
1943 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1944 int i; /* index of *z in zonelist zones */
1945
1946 zlc = zonelist->zlcache_ptr;
1947 if (!zlc)
1948 return;
1949
1950 i = z - zonelist->_zonerefs;
1951
1952 set_bit(i, zlc->fullzones);
1953 }
1954
1955 /*
1956 * clear all zones full, called after direct reclaim makes progress so that
1957 * a zone that was recently full is not skipped over for up to a second
1958 */
1959 static void zlc_clear_zones_full(struct zonelist *zonelist)
1960 {
1961 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1962
1963 zlc = zonelist->zlcache_ptr;
1964 if (!zlc)
1965 return;
1966
1967 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1968 }
1969
1970 static bool zone_local(struct zone *local_zone, struct zone *zone)
1971 {
1972 return local_zone->node == zone->node;
1973 }
1974
1975 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1976 {
1977 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1978 RECLAIM_DISTANCE;
1979 }
1980
1981 #else /* CONFIG_NUMA */
1982
1983 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1984 {
1985 return NULL;
1986 }
1987
1988 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1989 nodemask_t *allowednodes)
1990 {
1991 return 1;
1992 }
1993
1994 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1995 {
1996 }
1997
1998 static void zlc_clear_zones_full(struct zonelist *zonelist)
1999 {
2000 }
2001
2002 static bool zone_local(struct zone *local_zone, struct zone *zone)
2003 {
2004 return true;
2005 }
2006
2007 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2008 {
2009 return true;
2010 }
2011
2012 #endif /* CONFIG_NUMA */
2013
2014 static void reset_alloc_batches(struct zone *preferred_zone)
2015 {
2016 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2017
2018 do {
2019 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2020 high_wmark_pages(zone) - low_wmark_pages(zone) -
2021 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2022 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2023 } while (zone++ != preferred_zone);
2024 }
2025
2026 /*
2027 * get_page_from_freelist goes through the zonelist trying to allocate
2028 * a page.
2029 */
2030 static struct page *
2031 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2032 const struct alloc_context *ac)
2033 {
2034 struct zonelist *zonelist = ac->zonelist;
2035 struct zoneref *z;
2036 struct page *page = NULL;
2037 struct zone *zone;
2038 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2039 int zlc_active = 0; /* set if using zonelist_cache */
2040 int did_zlc_setup = 0; /* just call zlc_setup() one time */
2041 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2042 (gfp_mask & __GFP_WRITE);
2043 int nr_fair_skipped = 0;
2044 bool zonelist_rescan;
2045
2046 zonelist_scan:
2047 zonelist_rescan = false;
2048
2049 /*
2050 * Scan zonelist, looking for a zone with enough free.
2051 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2052 */
2053 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2054 ac->nodemask) {
2055 unsigned long mark;
2056
2057 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2058 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2059 continue;
2060 if (cpusets_enabled() &&
2061 (alloc_flags & ALLOC_CPUSET) &&
2062 !cpuset_zone_allowed(zone, gfp_mask))
2063 continue;
2064 /*
2065 * Distribute pages in proportion to the individual
2066 * zone size to ensure fair page aging. The zone a
2067 * page was allocated in should have no effect on the
2068 * time the page has in memory before being reclaimed.
2069 */
2070 if (alloc_flags & ALLOC_FAIR) {
2071 if (!zone_local(ac->preferred_zone, zone))
2072 break;
2073 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2074 nr_fair_skipped++;
2075 continue;
2076 }
2077 }
2078 /*
2079 * When allocating a page cache page for writing, we
2080 * want to get it from a zone that is within its dirty
2081 * limit, such that no single zone holds more than its
2082 * proportional share of globally allowed dirty pages.
2083 * The dirty limits take into account the zone's
2084 * lowmem reserves and high watermark so that kswapd
2085 * should be able to balance it without having to
2086 * write pages from its LRU list.
2087 *
2088 * This may look like it could increase pressure on
2089 * lower zones by failing allocations in higher zones
2090 * before they are full. But the pages that do spill
2091 * over are limited as the lower zones are protected
2092 * by this very same mechanism. It should not become
2093 * a practical burden to them.
2094 *
2095 * XXX: For now, allow allocations to potentially
2096 * exceed the per-zone dirty limit in the slowpath
2097 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2098 * which is important when on a NUMA setup the allowed
2099 * zones are together not big enough to reach the
2100 * global limit. The proper fix for these situations
2101 * will require awareness of zones in the
2102 * dirty-throttling and the flusher threads.
2103 */
2104 if (consider_zone_dirty && !zone_dirty_ok(zone))
2105 continue;
2106
2107 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2108 if (!zone_watermark_ok(zone, order, mark,
2109 ac->classzone_idx, alloc_flags)) {
2110 int ret;
2111
2112 /* Checked here to keep the fast path fast */
2113 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2114 if (alloc_flags & ALLOC_NO_WATERMARKS)
2115 goto try_this_zone;
2116
2117 if (IS_ENABLED(CONFIG_NUMA) &&
2118 !did_zlc_setup && nr_online_nodes > 1) {
2119 /*
2120 * we do zlc_setup if there are multiple nodes
2121 * and before considering the first zone allowed
2122 * by the cpuset.
2123 */
2124 allowednodes = zlc_setup(zonelist, alloc_flags);
2125 zlc_active = 1;
2126 did_zlc_setup = 1;
2127 }
2128
2129 if (zone_reclaim_mode == 0 ||
2130 !zone_allows_reclaim(ac->preferred_zone, zone))
2131 goto this_zone_full;
2132
2133 /*
2134 * As we may have just activated ZLC, check if the first
2135 * eligible zone has failed zone_reclaim recently.
2136 */
2137 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2138 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2139 continue;
2140
2141 ret = zone_reclaim(zone, gfp_mask, order);
2142 switch (ret) {
2143 case ZONE_RECLAIM_NOSCAN:
2144 /* did not scan */
2145 continue;
2146 case ZONE_RECLAIM_FULL:
2147 /* scanned but unreclaimable */
2148 continue;
2149 default:
2150 /* did we reclaim enough */
2151 if (zone_watermark_ok(zone, order, mark,
2152 ac->classzone_idx, alloc_flags))
2153 goto try_this_zone;
2154
2155 /*
2156 * Failed to reclaim enough to meet watermark.
2157 * Only mark the zone full if checking the min
2158 * watermark or if we failed to reclaim just
2159 * 1<<order pages or else the page allocator
2160 * fastpath will prematurely mark zones full
2161 * when the watermark is between the low and
2162 * min watermarks.
2163 */
2164 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2165 ret == ZONE_RECLAIM_SOME)
2166 goto this_zone_full;
2167
2168 continue;
2169 }
2170 }
2171
2172 try_this_zone:
2173 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2174 gfp_mask, ac->migratetype);
2175 if (page) {
2176 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2177 goto try_this_zone;
2178 return page;
2179 }
2180 this_zone_full:
2181 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2182 zlc_mark_zone_full(zonelist, z);
2183 }
2184
2185 /*
2186 * The first pass makes sure allocations are spread fairly within the
2187 * local node. However, the local node might have free pages left
2188 * after the fairness batches are exhausted, and remote zones haven't
2189 * even been considered yet. Try once more without fairness, and
2190 * include remote zones now, before entering the slowpath and waking
2191 * kswapd: prefer spilling to a remote zone over swapping locally.
2192 */
2193 if (alloc_flags & ALLOC_FAIR) {
2194 alloc_flags &= ~ALLOC_FAIR;
2195 if (nr_fair_skipped) {
2196 zonelist_rescan = true;
2197 reset_alloc_batches(ac->preferred_zone);
2198 }
2199 if (nr_online_nodes > 1)
2200 zonelist_rescan = true;
2201 }
2202
2203 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2204 /* Disable zlc cache for second zonelist scan */
2205 zlc_active = 0;
2206 zonelist_rescan = true;
2207 }
2208
2209 if (zonelist_rescan)
2210 goto zonelist_scan;
2211
2212 return NULL;
2213 }
2214
2215 /*
2216 * Large machines with many possible nodes should not always dump per-node
2217 * meminfo in irq context.
2218 */
2219 static inline bool should_suppress_show_mem(void)
2220 {
2221 bool ret = false;
2222
2223 #if NODES_SHIFT > 8
2224 ret = in_interrupt();
2225 #endif
2226 return ret;
2227 }
2228
2229 static DEFINE_RATELIMIT_STATE(nopage_rs,
2230 DEFAULT_RATELIMIT_INTERVAL,
2231 DEFAULT_RATELIMIT_BURST);
2232
2233 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2234 {
2235 unsigned int filter = SHOW_MEM_FILTER_NODES;
2236
2237 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2238 debug_guardpage_minorder() > 0)
2239 return;
2240
2241 /*
2242 * This documents exceptions given to allocations in certain
2243 * contexts that are allowed to allocate outside current's set
2244 * of allowed nodes.
2245 */
2246 if (!(gfp_mask & __GFP_NOMEMALLOC))
2247 if (test_thread_flag(TIF_MEMDIE) ||
2248 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2249 filter &= ~SHOW_MEM_FILTER_NODES;
2250 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2251 filter &= ~SHOW_MEM_FILTER_NODES;
2252
2253 if (fmt) {
2254 struct va_format vaf;
2255 va_list args;
2256
2257 va_start(args, fmt);
2258
2259 vaf.fmt = fmt;
2260 vaf.va = &args;
2261
2262 pr_warn("%pV", &vaf);
2263
2264 va_end(args);
2265 }
2266
2267 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2268 current->comm, order, gfp_mask);
2269
2270 dump_stack();
2271 if (!should_suppress_show_mem())
2272 show_mem(filter);
2273 }
2274
2275 static inline int
2276 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2277 unsigned long did_some_progress,
2278 unsigned long pages_reclaimed)
2279 {
2280 /* Do not loop if specifically requested */
2281 if (gfp_mask & __GFP_NORETRY)
2282 return 0;
2283
2284 /* Always retry if specifically requested */
2285 if (gfp_mask & __GFP_NOFAIL)
2286 return 1;
2287
2288 /*
2289 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2290 * making forward progress without invoking OOM. Suspend also disables
2291 * storage devices so kswapd will not help. Bail if we are suspending.
2292 */
2293 if (!did_some_progress && pm_suspended_storage())
2294 return 0;
2295
2296 /*
2297 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2298 * means __GFP_NOFAIL, but that may not be true in other
2299 * implementations.
2300 */
2301 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2302 return 1;
2303
2304 /*
2305 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2306 * specified, then we retry until we no longer reclaim any pages
2307 * (above), or we've reclaimed an order of pages at least as
2308 * large as the allocation's order. In both cases, if the
2309 * allocation still fails, we stop retrying.
2310 */
2311 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2312 return 1;
2313
2314 return 0;
2315 }
2316
2317 static inline struct page *
2318 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2319 const struct alloc_context *ac, unsigned long *did_some_progress)
2320 {
2321 struct page *page;
2322
2323 *did_some_progress = 0;
2324
2325 /*
2326 * Acquire the per-zone oom lock for each zone. If that
2327 * fails, somebody else is making progress for us.
2328 */
2329 if (!oom_zonelist_trylock(ac->zonelist, gfp_mask)) {
2330 *did_some_progress = 1;
2331 schedule_timeout_uninterruptible(1);
2332 return NULL;
2333 }
2334
2335 /*
2336 * Go through the zonelist yet one more time, keep very high watermark
2337 * here, this is only to catch a parallel oom killing, we must fail if
2338 * we're still under heavy pressure.
2339 */
2340 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2341 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2342 if (page)
2343 goto out;
2344
2345 if (!(gfp_mask & __GFP_NOFAIL)) {
2346 /* Coredumps can quickly deplete all memory reserves */
2347 if (current->flags & PF_DUMPCORE)
2348 goto out;
2349 /* The OOM killer will not help higher order allocs */
2350 if (order > PAGE_ALLOC_COSTLY_ORDER)
2351 goto out;
2352 /* The OOM killer does not needlessly kill tasks for lowmem */
2353 if (ac->high_zoneidx < ZONE_NORMAL)
2354 goto out;
2355 /* The OOM killer does not compensate for light reclaim */
2356 if (!(gfp_mask & __GFP_FS))
2357 goto out;
2358 /*
2359 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2360 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2361 * The caller should handle page allocation failure by itself if
2362 * it specifies __GFP_THISNODE.
2363 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2364 */
2365 if (gfp_mask & __GFP_THISNODE)
2366 goto out;
2367 }
2368 /* Exhausted what can be done so it's blamo time */
2369 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false))
2370 *did_some_progress = 1;
2371 out:
2372 oom_zonelist_unlock(ac->zonelist, gfp_mask);
2373 return page;
2374 }
2375
2376 #ifdef CONFIG_COMPACTION
2377 /* Try memory compaction for high-order allocations before reclaim */
2378 static struct page *
2379 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2380 int alloc_flags, const struct alloc_context *ac,
2381 enum migrate_mode mode, int *contended_compaction,
2382 bool *deferred_compaction)
2383 {
2384 unsigned long compact_result;
2385 struct page *page;
2386
2387 if (!order)
2388 return NULL;
2389
2390 current->flags |= PF_MEMALLOC;
2391 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2392 mode, contended_compaction);
2393 current->flags &= ~PF_MEMALLOC;
2394
2395 switch (compact_result) {
2396 case COMPACT_DEFERRED:
2397 *deferred_compaction = true;
2398 /* fall-through */
2399 case COMPACT_SKIPPED:
2400 return NULL;
2401 default:
2402 break;
2403 }
2404
2405 /*
2406 * At least in one zone compaction wasn't deferred or skipped, so let's
2407 * count a compaction stall
2408 */
2409 count_vm_event(COMPACTSTALL);
2410
2411 page = get_page_from_freelist(gfp_mask, order,
2412 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2413
2414 if (page) {
2415 struct zone *zone = page_zone(page);
2416
2417 zone->compact_blockskip_flush = false;
2418 compaction_defer_reset(zone, order, true);
2419 count_vm_event(COMPACTSUCCESS);
2420 return page;
2421 }
2422
2423 /*
2424 * It's bad if compaction run occurs and fails. The most likely reason
2425 * is that pages exist, but not enough to satisfy watermarks.
2426 */
2427 count_vm_event(COMPACTFAIL);
2428
2429 cond_resched();
2430
2431 return NULL;
2432 }
2433 #else
2434 static inline struct page *
2435 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2436 int alloc_flags, const struct alloc_context *ac,
2437 enum migrate_mode mode, int *contended_compaction,
2438 bool *deferred_compaction)
2439 {
2440 return NULL;
2441 }
2442 #endif /* CONFIG_COMPACTION */
2443
2444 /* Perform direct synchronous page reclaim */
2445 static int
2446 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2447 const struct alloc_context *ac)
2448 {
2449 struct reclaim_state reclaim_state;
2450 int progress;
2451
2452 cond_resched();
2453
2454 /* We now go into synchronous reclaim */
2455 cpuset_memory_pressure_bump();
2456 current->flags |= PF_MEMALLOC;
2457 lockdep_set_current_reclaim_state(gfp_mask);
2458 reclaim_state.reclaimed_slab = 0;
2459 current->reclaim_state = &reclaim_state;
2460
2461 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2462 ac->nodemask);
2463
2464 current->reclaim_state = NULL;
2465 lockdep_clear_current_reclaim_state();
2466 current->flags &= ~PF_MEMALLOC;
2467
2468 cond_resched();
2469
2470 return progress;
2471 }
2472
2473 /* The really slow allocator path where we enter direct reclaim */
2474 static inline struct page *
2475 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2476 int alloc_flags, const struct alloc_context *ac,
2477 unsigned long *did_some_progress)
2478 {
2479 struct page *page = NULL;
2480 bool drained = false;
2481
2482 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2483 if (unlikely(!(*did_some_progress)))
2484 return NULL;
2485
2486 /* After successful reclaim, reconsider all zones for allocation */
2487 if (IS_ENABLED(CONFIG_NUMA))
2488 zlc_clear_zones_full(ac->zonelist);
2489
2490 retry:
2491 page = get_page_from_freelist(gfp_mask, order,
2492 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2493
2494 /*
2495 * If an allocation failed after direct reclaim, it could be because
2496 * pages are pinned on the per-cpu lists. Drain them and try again
2497 */
2498 if (!page && !drained) {
2499 drain_all_pages(NULL);
2500 drained = true;
2501 goto retry;
2502 }
2503
2504 return page;
2505 }
2506
2507 /*
2508 * This is called in the allocator slow-path if the allocation request is of
2509 * sufficient urgency to ignore watermarks and take other desperate measures
2510 */
2511 static inline struct page *
2512 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2513 const struct alloc_context *ac)
2514 {
2515 struct page *page;
2516
2517 do {
2518 page = get_page_from_freelist(gfp_mask, order,
2519 ALLOC_NO_WATERMARKS, ac);
2520
2521 if (!page && gfp_mask & __GFP_NOFAIL)
2522 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2523 HZ/50);
2524 } while (!page && (gfp_mask & __GFP_NOFAIL));
2525
2526 return page;
2527 }
2528
2529 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2530 {
2531 struct zoneref *z;
2532 struct zone *zone;
2533
2534 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2535 ac->high_zoneidx, ac->nodemask)
2536 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2537 }
2538
2539 static inline int
2540 gfp_to_alloc_flags(gfp_t gfp_mask)
2541 {
2542 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2543 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2544
2545 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2546 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2547
2548 /*
2549 * The caller may dip into page reserves a bit more if the caller
2550 * cannot run direct reclaim, or if the caller has realtime scheduling
2551 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2552 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2553 */
2554 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2555
2556 if (atomic) {
2557 /*
2558 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2559 * if it can't schedule.
2560 */
2561 if (!(gfp_mask & __GFP_NOMEMALLOC))
2562 alloc_flags |= ALLOC_HARDER;
2563 /*
2564 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2565 * comment for __cpuset_node_allowed().
2566 */
2567 alloc_flags &= ~ALLOC_CPUSET;
2568 } else if (unlikely(rt_task(current)) && !in_interrupt())
2569 alloc_flags |= ALLOC_HARDER;
2570
2571 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2572 if (gfp_mask & __GFP_MEMALLOC)
2573 alloc_flags |= ALLOC_NO_WATERMARKS;
2574 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2575 alloc_flags |= ALLOC_NO_WATERMARKS;
2576 else if (!in_interrupt() &&
2577 ((current->flags & PF_MEMALLOC) ||
2578 unlikely(test_thread_flag(TIF_MEMDIE))))
2579 alloc_flags |= ALLOC_NO_WATERMARKS;
2580 }
2581 #ifdef CONFIG_CMA
2582 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2583 alloc_flags |= ALLOC_CMA;
2584 #endif
2585 return alloc_flags;
2586 }
2587
2588 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2589 {
2590 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2591 }
2592
2593 static inline struct page *
2594 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2595 struct alloc_context *ac)
2596 {
2597 const gfp_t wait = gfp_mask & __GFP_WAIT;
2598 struct page *page = NULL;
2599 int alloc_flags;
2600 unsigned long pages_reclaimed = 0;
2601 unsigned long did_some_progress;
2602 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2603 bool deferred_compaction = false;
2604 int contended_compaction = COMPACT_CONTENDED_NONE;
2605
2606 /*
2607 * In the slowpath, we sanity check order to avoid ever trying to
2608 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2609 * be using allocators in order of preference for an area that is
2610 * too large.
2611 */
2612 if (order >= MAX_ORDER) {
2613 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2614 return NULL;
2615 }
2616
2617 /*
2618 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2619 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2620 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2621 * using a larger set of nodes after it has established that the
2622 * allowed per node queues are empty and that nodes are
2623 * over allocated.
2624 */
2625 if (IS_ENABLED(CONFIG_NUMA) &&
2626 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2627 goto nopage;
2628
2629 retry:
2630 if (!(gfp_mask & __GFP_NO_KSWAPD))
2631 wake_all_kswapds(order, ac);
2632
2633 /*
2634 * OK, we're below the kswapd watermark and have kicked background
2635 * reclaim. Now things get more complex, so set up alloc_flags according
2636 * to how we want to proceed.
2637 */
2638 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2639
2640 /*
2641 * Find the true preferred zone if the allocation is unconstrained by
2642 * cpusets.
2643 */
2644 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
2645 struct zoneref *preferred_zoneref;
2646 preferred_zoneref = first_zones_zonelist(ac->zonelist,
2647 ac->high_zoneidx, NULL, &ac->preferred_zone);
2648 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
2649 }
2650
2651 /* This is the last chance, in general, before the goto nopage. */
2652 page = get_page_from_freelist(gfp_mask, order,
2653 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2654 if (page)
2655 goto got_pg;
2656
2657 /* Allocate without watermarks if the context allows */
2658 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2659 /*
2660 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2661 * the allocation is high priority and these type of
2662 * allocations are system rather than user orientated
2663 */
2664 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
2665
2666 page = __alloc_pages_high_priority(gfp_mask, order, ac);
2667
2668 if (page) {
2669 goto got_pg;
2670 }
2671 }
2672
2673 /* Atomic allocations - we can't balance anything */
2674 if (!wait) {
2675 /*
2676 * All existing users of the deprecated __GFP_NOFAIL are
2677 * blockable, so warn of any new users that actually allow this
2678 * type of allocation to fail.
2679 */
2680 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2681 goto nopage;
2682 }
2683
2684 /* Avoid recursion of direct reclaim */
2685 if (current->flags & PF_MEMALLOC)
2686 goto nopage;
2687
2688 /* Avoid allocations with no watermarks from looping endlessly */
2689 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2690 goto nopage;
2691
2692 /*
2693 * Try direct compaction. The first pass is asynchronous. Subsequent
2694 * attempts after direct reclaim are synchronous
2695 */
2696 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
2697 migration_mode,
2698 &contended_compaction,
2699 &deferred_compaction);
2700 if (page)
2701 goto got_pg;
2702
2703 /* Checks for THP-specific high-order allocations */
2704 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2705 /*
2706 * If compaction is deferred for high-order allocations, it is
2707 * because sync compaction recently failed. If this is the case
2708 * and the caller requested a THP allocation, we do not want
2709 * to heavily disrupt the system, so we fail the allocation
2710 * instead of entering direct reclaim.
2711 */
2712 if (deferred_compaction)
2713 goto nopage;
2714
2715 /*
2716 * In all zones where compaction was attempted (and not
2717 * deferred or skipped), lock contention has been detected.
2718 * For THP allocation we do not want to disrupt the others
2719 * so we fallback to base pages instead.
2720 */
2721 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2722 goto nopage;
2723
2724 /*
2725 * If compaction was aborted due to need_resched(), we do not
2726 * want to further increase allocation latency, unless it is
2727 * khugepaged trying to collapse.
2728 */
2729 if (contended_compaction == COMPACT_CONTENDED_SCHED
2730 && !(current->flags & PF_KTHREAD))
2731 goto nopage;
2732 }
2733
2734 /*
2735 * It can become very expensive to allocate transparent hugepages at
2736 * fault, so use asynchronous memory compaction for THP unless it is
2737 * khugepaged trying to collapse.
2738 */
2739 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2740 (current->flags & PF_KTHREAD))
2741 migration_mode = MIGRATE_SYNC_LIGHT;
2742
2743 /* Try direct reclaim and then allocating */
2744 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
2745 &did_some_progress);
2746 if (page)
2747 goto got_pg;
2748
2749 /* Check if we should retry the allocation */
2750 pages_reclaimed += did_some_progress;
2751 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2752 pages_reclaimed)) {
2753 /*
2754 * If we fail to make progress by freeing individual
2755 * pages, but the allocation wants us to keep going,
2756 * start OOM killing tasks.
2757 */
2758 if (!did_some_progress) {
2759 page = __alloc_pages_may_oom(gfp_mask, order, ac,
2760 &did_some_progress);
2761 if (page)
2762 goto got_pg;
2763 if (!did_some_progress)
2764 goto nopage;
2765 }
2766 /* Wait for some write requests to complete then retry */
2767 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
2768 goto retry;
2769 } else {
2770 /*
2771 * High-order allocations do not necessarily loop after
2772 * direct reclaim and reclaim/compaction depends on compaction
2773 * being called after reclaim so call directly if necessary
2774 */
2775 page = __alloc_pages_direct_compact(gfp_mask, order,
2776 alloc_flags, ac, migration_mode,
2777 &contended_compaction,
2778 &deferred_compaction);
2779 if (page)
2780 goto got_pg;
2781 }
2782
2783 nopage:
2784 warn_alloc_failed(gfp_mask, order, NULL);
2785 got_pg:
2786 return page;
2787 }
2788
2789 /*
2790 * This is the 'heart' of the zoned buddy allocator.
2791 */
2792 struct page *
2793 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2794 struct zonelist *zonelist, nodemask_t *nodemask)
2795 {
2796 struct zoneref *preferred_zoneref;
2797 struct page *page = NULL;
2798 unsigned int cpuset_mems_cookie;
2799 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2800 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
2801 struct alloc_context ac = {
2802 .high_zoneidx = gfp_zone(gfp_mask),
2803 .nodemask = nodemask,
2804 .migratetype = gfpflags_to_migratetype(gfp_mask),
2805 };
2806
2807 gfp_mask &= gfp_allowed_mask;
2808
2809 lockdep_trace_alloc(gfp_mask);
2810
2811 might_sleep_if(gfp_mask & __GFP_WAIT);
2812
2813 if (should_fail_alloc_page(gfp_mask, order))
2814 return NULL;
2815
2816 /*
2817 * Check the zones suitable for the gfp_mask contain at least one
2818 * valid zone. It's possible to have an empty zonelist as a result
2819 * of GFP_THISNODE and a memoryless node
2820 */
2821 if (unlikely(!zonelist->_zonerefs->zone))
2822 return NULL;
2823
2824 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
2825 alloc_flags |= ALLOC_CMA;
2826
2827 retry_cpuset:
2828 cpuset_mems_cookie = read_mems_allowed_begin();
2829
2830 /* We set it here, as __alloc_pages_slowpath might have changed it */
2831 ac.zonelist = zonelist;
2832 /* The preferred zone is used for statistics later */
2833 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
2834 ac.nodemask ? : &cpuset_current_mems_allowed,
2835 &ac.preferred_zone);
2836 if (!ac.preferred_zone)
2837 goto out;
2838 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
2839
2840 /* First allocation attempt */
2841 alloc_mask = gfp_mask|__GFP_HARDWALL;
2842 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
2843 if (unlikely(!page)) {
2844 /*
2845 * Runtime PM, block IO and its error handling path
2846 * can deadlock because I/O on the device might not
2847 * complete.
2848 */
2849 alloc_mask = memalloc_noio_flags(gfp_mask);
2850
2851 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
2852 }
2853
2854 if (kmemcheck_enabled && page)
2855 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2856
2857 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
2858
2859 out:
2860 /*
2861 * When updating a task's mems_allowed, it is possible to race with
2862 * parallel threads in such a way that an allocation can fail while
2863 * the mask is being updated. If a page allocation is about to fail,
2864 * check if the cpuset changed during allocation and if so, retry.
2865 */
2866 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2867 goto retry_cpuset;
2868
2869 return page;
2870 }
2871 EXPORT_SYMBOL(__alloc_pages_nodemask);
2872
2873 /*
2874 * Common helper functions.
2875 */
2876 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2877 {
2878 struct page *page;
2879
2880 /*
2881 * __get_free_pages() returns a 32-bit address, which cannot represent
2882 * a highmem page
2883 */
2884 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2885
2886 page = alloc_pages(gfp_mask, order);
2887 if (!page)
2888 return 0;
2889 return (unsigned long) page_address(page);
2890 }
2891 EXPORT_SYMBOL(__get_free_pages);
2892
2893 unsigned long get_zeroed_page(gfp_t gfp_mask)
2894 {
2895 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2896 }
2897 EXPORT_SYMBOL(get_zeroed_page);
2898
2899 void __free_pages(struct page *page, unsigned int order)
2900 {
2901 if (put_page_testzero(page)) {
2902 if (order == 0)
2903 free_hot_cold_page(page, false);
2904 else
2905 __free_pages_ok(page, order);
2906 }
2907 }
2908
2909 EXPORT_SYMBOL(__free_pages);
2910
2911 void free_pages(unsigned long addr, unsigned int order)
2912 {
2913 if (addr != 0) {
2914 VM_BUG_ON(!virt_addr_valid((void *)addr));
2915 __free_pages(virt_to_page((void *)addr), order);
2916 }
2917 }
2918
2919 EXPORT_SYMBOL(free_pages);
2920
2921 /*
2922 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2923 * of the current memory cgroup.
2924 *
2925 * It should be used when the caller would like to use kmalloc, but since the
2926 * allocation is large, it has to fall back to the page allocator.
2927 */
2928 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2929 {
2930 struct page *page;
2931 struct mem_cgroup *memcg = NULL;
2932
2933 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2934 return NULL;
2935 page = alloc_pages(gfp_mask, order);
2936 memcg_kmem_commit_charge(page, memcg, order);
2937 return page;
2938 }
2939
2940 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2941 {
2942 struct page *page;
2943 struct mem_cgroup *memcg = NULL;
2944
2945 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2946 return NULL;
2947 page = alloc_pages_node(nid, gfp_mask, order);
2948 memcg_kmem_commit_charge(page, memcg, order);
2949 return page;
2950 }
2951
2952 /*
2953 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2954 * alloc_kmem_pages.
2955 */
2956 void __free_kmem_pages(struct page *page, unsigned int order)
2957 {
2958 memcg_kmem_uncharge_pages(page, order);
2959 __free_pages(page, order);
2960 }
2961
2962 void free_kmem_pages(unsigned long addr, unsigned int order)
2963 {
2964 if (addr != 0) {
2965 VM_BUG_ON(!virt_addr_valid((void *)addr));
2966 __free_kmem_pages(virt_to_page((void *)addr), order);
2967 }
2968 }
2969
2970 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2971 {
2972 if (addr) {
2973 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2974 unsigned long used = addr + PAGE_ALIGN(size);
2975
2976 split_page(virt_to_page((void *)addr), order);
2977 while (used < alloc_end) {
2978 free_page(used);
2979 used += PAGE_SIZE;
2980 }
2981 }
2982 return (void *)addr;
2983 }
2984
2985 /**
2986 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2987 * @size: the number of bytes to allocate
2988 * @gfp_mask: GFP flags for the allocation
2989 *
2990 * This function is similar to alloc_pages(), except that it allocates the
2991 * minimum number of pages to satisfy the request. alloc_pages() can only
2992 * allocate memory in power-of-two pages.
2993 *
2994 * This function is also limited by MAX_ORDER.
2995 *
2996 * Memory allocated by this function must be released by free_pages_exact().
2997 */
2998 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2999 {
3000 unsigned int order = get_order(size);
3001 unsigned long addr;
3002
3003 addr = __get_free_pages(gfp_mask, order);
3004 return make_alloc_exact(addr, order, size);
3005 }
3006 EXPORT_SYMBOL(alloc_pages_exact);
3007
3008 /**
3009 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3010 * pages on a node.
3011 * @nid: the preferred node ID where memory should be allocated
3012 * @size: the number of bytes to allocate
3013 * @gfp_mask: GFP flags for the allocation
3014 *
3015 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3016 * back.
3017 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3018 * but is not exact.
3019 */
3020 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3021 {
3022 unsigned order = get_order(size);
3023 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3024 if (!p)
3025 return NULL;
3026 return make_alloc_exact((unsigned long)page_address(p), order, size);
3027 }
3028
3029 /**
3030 * free_pages_exact - release memory allocated via alloc_pages_exact()
3031 * @virt: the value returned by alloc_pages_exact.
3032 * @size: size of allocation, same value as passed to alloc_pages_exact().
3033 *
3034 * Release the memory allocated by a previous call to alloc_pages_exact.
3035 */
3036 void free_pages_exact(void *virt, size_t size)
3037 {
3038 unsigned long addr = (unsigned long)virt;
3039 unsigned long end = addr + PAGE_ALIGN(size);
3040
3041 while (addr < end) {
3042 free_page(addr);
3043 addr += PAGE_SIZE;
3044 }
3045 }
3046 EXPORT_SYMBOL(free_pages_exact);
3047
3048 /**
3049 * nr_free_zone_pages - count number of pages beyond high watermark
3050 * @offset: The zone index of the highest zone
3051 *
3052 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3053 * high watermark within all zones at or below a given zone index. For each
3054 * zone, the number of pages is calculated as:
3055 * managed_pages - high_pages
3056 */
3057 static unsigned long nr_free_zone_pages(int offset)
3058 {
3059 struct zoneref *z;
3060 struct zone *zone;
3061
3062 /* Just pick one node, since fallback list is circular */
3063 unsigned long sum = 0;
3064
3065 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3066
3067 for_each_zone_zonelist(zone, z, zonelist, offset) {
3068 unsigned long size = zone->managed_pages;
3069 unsigned long high = high_wmark_pages(zone);
3070 if (size > high)
3071 sum += size - high;
3072 }
3073
3074 return sum;
3075 }
3076
3077 /**
3078 * nr_free_buffer_pages - count number of pages beyond high watermark
3079 *
3080 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3081 * watermark within ZONE_DMA and ZONE_NORMAL.
3082 */
3083 unsigned long nr_free_buffer_pages(void)
3084 {
3085 return nr_free_zone_pages(gfp_zone(GFP_USER));
3086 }
3087 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3088
3089 /**
3090 * nr_free_pagecache_pages - count number of pages beyond high watermark
3091 *
3092 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3093 * high watermark within all zones.
3094 */
3095 unsigned long nr_free_pagecache_pages(void)
3096 {
3097 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3098 }
3099
3100 static inline void show_node(struct zone *zone)
3101 {
3102 if (IS_ENABLED(CONFIG_NUMA))
3103 printk("Node %d ", zone_to_nid(zone));
3104 }
3105
3106 void si_meminfo(struct sysinfo *val)
3107 {
3108 val->totalram = totalram_pages;
3109 val->sharedram = global_page_state(NR_SHMEM);
3110 val->freeram = global_page_state(NR_FREE_PAGES);
3111 val->bufferram = nr_blockdev_pages();
3112 val->totalhigh = totalhigh_pages;
3113 val->freehigh = nr_free_highpages();
3114 val->mem_unit = PAGE_SIZE;
3115 }
3116
3117 EXPORT_SYMBOL(si_meminfo);
3118
3119 #ifdef CONFIG_NUMA
3120 void si_meminfo_node(struct sysinfo *val, int nid)
3121 {
3122 int zone_type; /* needs to be signed */
3123 unsigned long managed_pages = 0;
3124 pg_data_t *pgdat = NODE_DATA(nid);
3125
3126 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3127 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3128 val->totalram = managed_pages;
3129 val->sharedram = node_page_state(nid, NR_SHMEM);
3130 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3131 #ifdef CONFIG_HIGHMEM
3132 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3133 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3134 NR_FREE_PAGES);
3135 #else
3136 val->totalhigh = 0;
3137 val->freehigh = 0;
3138 #endif
3139 val->mem_unit = PAGE_SIZE;
3140 }
3141 #endif
3142
3143 /*
3144 * Determine whether the node should be displayed or not, depending on whether
3145 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3146 */
3147 bool skip_free_areas_node(unsigned int flags, int nid)
3148 {
3149 bool ret = false;
3150 unsigned int cpuset_mems_cookie;
3151
3152 if (!(flags & SHOW_MEM_FILTER_NODES))
3153 goto out;
3154
3155 do {
3156 cpuset_mems_cookie = read_mems_allowed_begin();
3157 ret = !node_isset(nid, cpuset_current_mems_allowed);
3158 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3159 out:
3160 return ret;
3161 }
3162
3163 #define K(x) ((x) << (PAGE_SHIFT-10))
3164
3165 static void show_migration_types(unsigned char type)
3166 {
3167 static const char types[MIGRATE_TYPES] = {
3168 [MIGRATE_UNMOVABLE] = 'U',
3169 [MIGRATE_RECLAIMABLE] = 'E',
3170 [MIGRATE_MOVABLE] = 'M',
3171 [MIGRATE_RESERVE] = 'R',
3172 #ifdef CONFIG_CMA
3173 [MIGRATE_CMA] = 'C',
3174 #endif
3175 #ifdef CONFIG_MEMORY_ISOLATION
3176 [MIGRATE_ISOLATE] = 'I',
3177 #endif
3178 };
3179 char tmp[MIGRATE_TYPES + 1];
3180 char *p = tmp;
3181 int i;
3182
3183 for (i = 0; i < MIGRATE_TYPES; i++) {
3184 if (type & (1 << i))
3185 *p++ = types[i];
3186 }
3187
3188 *p = '\0';
3189 printk("(%s) ", tmp);
3190 }
3191
3192 /*
3193 * Show free area list (used inside shift_scroll-lock stuff)
3194 * We also calculate the percentage fragmentation. We do this by counting the
3195 * memory on each free list with the exception of the first item on the list.
3196 * Suppresses nodes that are not allowed by current's cpuset if
3197 * SHOW_MEM_FILTER_NODES is passed.
3198 */
3199 void show_free_areas(unsigned int filter)
3200 {
3201 int cpu;
3202 struct zone *zone;
3203
3204 for_each_populated_zone(zone) {
3205 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3206 continue;
3207 show_node(zone);
3208 printk("%s per-cpu:\n", zone->name);
3209
3210 for_each_online_cpu(cpu) {
3211 struct per_cpu_pageset *pageset;
3212
3213 pageset = per_cpu_ptr(zone->pageset, cpu);
3214
3215 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3216 cpu, pageset->pcp.high,
3217 pageset->pcp.batch, pageset->pcp.count);
3218 }
3219 }
3220
3221 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3222 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3223 " unevictable:%lu"
3224 " dirty:%lu writeback:%lu unstable:%lu\n"
3225 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3226 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3227 " free_cma:%lu\n",
3228 global_page_state(NR_ACTIVE_ANON),
3229 global_page_state(NR_INACTIVE_ANON),
3230 global_page_state(NR_ISOLATED_ANON),
3231 global_page_state(NR_ACTIVE_FILE),
3232 global_page_state(NR_INACTIVE_FILE),
3233 global_page_state(NR_ISOLATED_FILE),
3234 global_page_state(NR_UNEVICTABLE),
3235 global_page_state(NR_FILE_DIRTY),
3236 global_page_state(NR_WRITEBACK),
3237 global_page_state(NR_UNSTABLE_NFS),
3238 global_page_state(NR_FREE_PAGES),
3239 global_page_state(NR_SLAB_RECLAIMABLE),
3240 global_page_state(NR_SLAB_UNRECLAIMABLE),
3241 global_page_state(NR_FILE_MAPPED),
3242 global_page_state(NR_SHMEM),
3243 global_page_state(NR_PAGETABLE),
3244 global_page_state(NR_BOUNCE),
3245 global_page_state(NR_FREE_CMA_PAGES));
3246
3247 for_each_populated_zone(zone) {
3248 int i;
3249
3250 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3251 continue;
3252 show_node(zone);
3253 printk("%s"
3254 " free:%lukB"
3255 " min:%lukB"
3256 " low:%lukB"
3257 " high:%lukB"
3258 " active_anon:%lukB"
3259 " inactive_anon:%lukB"
3260 " active_file:%lukB"
3261 " inactive_file:%lukB"
3262 " unevictable:%lukB"
3263 " isolated(anon):%lukB"
3264 " isolated(file):%lukB"
3265 " present:%lukB"
3266 " managed:%lukB"
3267 " mlocked:%lukB"
3268 " dirty:%lukB"
3269 " writeback:%lukB"
3270 " mapped:%lukB"
3271 " shmem:%lukB"
3272 " slab_reclaimable:%lukB"
3273 " slab_unreclaimable:%lukB"
3274 " kernel_stack:%lukB"
3275 " pagetables:%lukB"
3276 " unstable:%lukB"
3277 " bounce:%lukB"
3278 " free_cma:%lukB"
3279 " writeback_tmp:%lukB"
3280 " pages_scanned:%lu"
3281 " all_unreclaimable? %s"
3282 "\n",
3283 zone->name,
3284 K(zone_page_state(zone, NR_FREE_PAGES)),
3285 K(min_wmark_pages(zone)),
3286 K(low_wmark_pages(zone)),
3287 K(high_wmark_pages(zone)),
3288 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3289 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3290 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3291 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3292 K(zone_page_state(zone, NR_UNEVICTABLE)),
3293 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3294 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3295 K(zone->present_pages),
3296 K(zone->managed_pages),
3297 K(zone_page_state(zone, NR_MLOCK)),
3298 K(zone_page_state(zone, NR_FILE_DIRTY)),
3299 K(zone_page_state(zone, NR_WRITEBACK)),
3300 K(zone_page_state(zone, NR_FILE_MAPPED)),
3301 K(zone_page_state(zone, NR_SHMEM)),
3302 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3303 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3304 zone_page_state(zone, NR_KERNEL_STACK) *
3305 THREAD_SIZE / 1024,
3306 K(zone_page_state(zone, NR_PAGETABLE)),
3307 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3308 K(zone_page_state(zone, NR_BOUNCE)),
3309 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3310 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3311 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3312 (!zone_reclaimable(zone) ? "yes" : "no")
3313 );
3314 printk("lowmem_reserve[]:");
3315 for (i = 0; i < MAX_NR_ZONES; i++)
3316 printk(" %ld", zone->lowmem_reserve[i]);
3317 printk("\n");
3318 }
3319
3320 for_each_populated_zone(zone) {
3321 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3322 unsigned char types[MAX_ORDER];
3323
3324 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3325 continue;
3326 show_node(zone);
3327 printk("%s: ", zone->name);
3328
3329 spin_lock_irqsave(&zone->lock, flags);
3330 for (order = 0; order < MAX_ORDER; order++) {
3331 struct free_area *area = &zone->free_area[order];
3332 int type;
3333
3334 nr[order] = area->nr_free;
3335 total += nr[order] << order;
3336
3337 types[order] = 0;
3338 for (type = 0; type < MIGRATE_TYPES; type++) {
3339 if (!list_empty(&area->free_list[type]))
3340 types[order] |= 1 << type;
3341 }
3342 }
3343 spin_unlock_irqrestore(&zone->lock, flags);
3344 for (order = 0; order < MAX_ORDER; order++) {
3345 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3346 if (nr[order])
3347 show_migration_types(types[order]);
3348 }
3349 printk("= %lukB\n", K(total));
3350 }
3351
3352 hugetlb_show_meminfo();
3353
3354 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3355
3356 show_swap_cache_info();
3357 }
3358
3359 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3360 {
3361 zoneref->zone = zone;
3362 zoneref->zone_idx = zone_idx(zone);
3363 }
3364
3365 /*
3366 * Builds allocation fallback zone lists.
3367 *
3368 * Add all populated zones of a node to the zonelist.
3369 */
3370 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3371 int nr_zones)
3372 {
3373 struct zone *zone;
3374 enum zone_type zone_type = MAX_NR_ZONES;
3375
3376 do {
3377 zone_type--;
3378 zone = pgdat->node_zones + zone_type;
3379 if (populated_zone(zone)) {
3380 zoneref_set_zone(zone,
3381 &zonelist->_zonerefs[nr_zones++]);
3382 check_highest_zone(zone_type);
3383 }
3384 } while (zone_type);
3385
3386 return nr_zones;
3387 }
3388
3389
3390 /*
3391 * zonelist_order:
3392 * 0 = automatic detection of better ordering.
3393 * 1 = order by ([node] distance, -zonetype)
3394 * 2 = order by (-zonetype, [node] distance)
3395 *
3396 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3397 * the same zonelist. So only NUMA can configure this param.
3398 */
3399 #define ZONELIST_ORDER_DEFAULT 0
3400 #define ZONELIST_ORDER_NODE 1
3401 #define ZONELIST_ORDER_ZONE 2
3402
3403 /* zonelist order in the kernel.
3404 * set_zonelist_order() will set this to NODE or ZONE.
3405 */
3406 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3407 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3408
3409
3410 #ifdef CONFIG_NUMA
3411 /* The value user specified ....changed by config */
3412 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3413 /* string for sysctl */
3414 #define NUMA_ZONELIST_ORDER_LEN 16
3415 char numa_zonelist_order[16] = "default";
3416
3417 /*
3418 * interface for configure zonelist ordering.
3419 * command line option "numa_zonelist_order"
3420 * = "[dD]efault - default, automatic configuration.
3421 * = "[nN]ode - order by node locality, then by zone within node
3422 * = "[zZ]one - order by zone, then by locality within zone
3423 */
3424
3425 static int __parse_numa_zonelist_order(char *s)
3426 {
3427 if (*s == 'd' || *s == 'D') {
3428 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3429 } else if (*s == 'n' || *s == 'N') {
3430 user_zonelist_order = ZONELIST_ORDER_NODE;
3431 } else if (*s == 'z' || *s == 'Z') {
3432 user_zonelist_order = ZONELIST_ORDER_ZONE;
3433 } else {
3434 printk(KERN_WARNING
3435 "Ignoring invalid numa_zonelist_order value: "
3436 "%s\n", s);
3437 return -EINVAL;
3438 }
3439 return 0;
3440 }
3441
3442 static __init int setup_numa_zonelist_order(char *s)
3443 {
3444 int ret;
3445
3446 if (!s)
3447 return 0;
3448
3449 ret = __parse_numa_zonelist_order(s);
3450 if (ret == 0)
3451 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3452
3453 return ret;
3454 }
3455 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3456
3457 /*
3458 * sysctl handler for numa_zonelist_order
3459 */
3460 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3461 void __user *buffer, size_t *length,
3462 loff_t *ppos)
3463 {
3464 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3465 int ret;
3466 static DEFINE_MUTEX(zl_order_mutex);
3467
3468 mutex_lock(&zl_order_mutex);
3469 if (write) {
3470 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3471 ret = -EINVAL;
3472 goto out;
3473 }
3474 strcpy(saved_string, (char *)table->data);
3475 }
3476 ret = proc_dostring(table, write, buffer, length, ppos);
3477 if (ret)
3478 goto out;
3479 if (write) {
3480 int oldval = user_zonelist_order;
3481
3482 ret = __parse_numa_zonelist_order((char *)table->data);
3483 if (ret) {
3484 /*
3485 * bogus value. restore saved string
3486 */
3487 strncpy((char *)table->data, saved_string,
3488 NUMA_ZONELIST_ORDER_LEN);
3489 user_zonelist_order = oldval;
3490 } else if (oldval != user_zonelist_order) {
3491 mutex_lock(&zonelists_mutex);
3492 build_all_zonelists(NULL, NULL);
3493 mutex_unlock(&zonelists_mutex);
3494 }
3495 }
3496 out:
3497 mutex_unlock(&zl_order_mutex);
3498 return ret;
3499 }
3500
3501
3502 #define MAX_NODE_LOAD (nr_online_nodes)
3503 static int node_load[MAX_NUMNODES];
3504
3505 /**
3506 * find_next_best_node - find the next node that should appear in a given node's fallback list
3507 * @node: node whose fallback list we're appending
3508 * @used_node_mask: nodemask_t of already used nodes
3509 *
3510 * We use a number of factors to determine which is the next node that should
3511 * appear on a given node's fallback list. The node should not have appeared
3512 * already in @node's fallback list, and it should be the next closest node
3513 * according to the distance array (which contains arbitrary distance values
3514 * from each node to each node in the system), and should also prefer nodes
3515 * with no CPUs, since presumably they'll have very little allocation pressure
3516 * on them otherwise.
3517 * It returns -1 if no node is found.
3518 */
3519 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3520 {
3521 int n, val;
3522 int min_val = INT_MAX;
3523 int best_node = NUMA_NO_NODE;
3524 const struct cpumask *tmp = cpumask_of_node(0);
3525
3526 /* Use the local node if we haven't already */
3527 if (!node_isset(node, *used_node_mask)) {
3528 node_set(node, *used_node_mask);
3529 return node;
3530 }
3531
3532 for_each_node_state(n, N_MEMORY) {
3533
3534 /* Don't want a node to appear more than once */
3535 if (node_isset(n, *used_node_mask))
3536 continue;
3537
3538 /* Use the distance array to find the distance */
3539 val = node_distance(node, n);
3540
3541 /* Penalize nodes under us ("prefer the next node") */
3542 val += (n < node);
3543
3544 /* Give preference to headless and unused nodes */
3545 tmp = cpumask_of_node(n);
3546 if (!cpumask_empty(tmp))
3547 val += PENALTY_FOR_NODE_WITH_CPUS;
3548
3549 /* Slight preference for less loaded node */
3550 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3551 val += node_load[n];
3552
3553 if (val < min_val) {
3554 min_val = val;
3555 best_node = n;
3556 }
3557 }
3558
3559 if (best_node >= 0)
3560 node_set(best_node, *used_node_mask);
3561
3562 return best_node;
3563 }
3564
3565
3566 /*
3567 * Build zonelists ordered by node and zones within node.
3568 * This results in maximum locality--normal zone overflows into local
3569 * DMA zone, if any--but risks exhausting DMA zone.
3570 */
3571 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3572 {
3573 int j;
3574 struct zonelist *zonelist;
3575
3576 zonelist = &pgdat->node_zonelists[0];
3577 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3578 ;
3579 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3580 zonelist->_zonerefs[j].zone = NULL;
3581 zonelist->_zonerefs[j].zone_idx = 0;
3582 }
3583
3584 /*
3585 * Build gfp_thisnode zonelists
3586 */
3587 static void build_thisnode_zonelists(pg_data_t *pgdat)
3588 {
3589 int j;
3590 struct zonelist *zonelist;
3591
3592 zonelist = &pgdat->node_zonelists[1];
3593 j = build_zonelists_node(pgdat, zonelist, 0);
3594 zonelist->_zonerefs[j].zone = NULL;
3595 zonelist->_zonerefs[j].zone_idx = 0;
3596 }
3597
3598 /*
3599 * Build zonelists ordered by zone and nodes within zones.
3600 * This results in conserving DMA zone[s] until all Normal memory is
3601 * exhausted, but results in overflowing to remote node while memory
3602 * may still exist in local DMA zone.
3603 */
3604 static int node_order[MAX_NUMNODES];
3605
3606 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3607 {
3608 int pos, j, node;
3609 int zone_type; /* needs to be signed */
3610 struct zone *z;
3611 struct zonelist *zonelist;
3612
3613 zonelist = &pgdat->node_zonelists[0];
3614 pos = 0;
3615 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3616 for (j = 0; j < nr_nodes; j++) {
3617 node = node_order[j];
3618 z = &NODE_DATA(node)->node_zones[zone_type];
3619 if (populated_zone(z)) {
3620 zoneref_set_zone(z,
3621 &zonelist->_zonerefs[pos++]);
3622 check_highest_zone(zone_type);
3623 }
3624 }
3625 }
3626 zonelist->_zonerefs[pos].zone = NULL;
3627 zonelist->_zonerefs[pos].zone_idx = 0;
3628 }
3629
3630 #if defined(CONFIG_64BIT)
3631 /*
3632 * Devices that require DMA32/DMA are relatively rare and do not justify a
3633 * penalty to every machine in case the specialised case applies. Default
3634 * to Node-ordering on 64-bit NUMA machines
3635 */
3636 static int default_zonelist_order(void)
3637 {
3638 return ZONELIST_ORDER_NODE;
3639 }
3640 #else
3641 /*
3642 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3643 * by the kernel. If processes running on node 0 deplete the low memory zone
3644 * then reclaim will occur more frequency increasing stalls and potentially
3645 * be easier to OOM if a large percentage of the zone is under writeback or
3646 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3647 * Hence, default to zone ordering on 32-bit.
3648 */
3649 static int default_zonelist_order(void)
3650 {
3651 return ZONELIST_ORDER_ZONE;
3652 }
3653 #endif /* CONFIG_64BIT */
3654
3655 static void set_zonelist_order(void)
3656 {
3657 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3658 current_zonelist_order = default_zonelist_order();
3659 else
3660 current_zonelist_order = user_zonelist_order;
3661 }
3662
3663 static void build_zonelists(pg_data_t *pgdat)
3664 {
3665 int j, node, load;
3666 enum zone_type i;
3667 nodemask_t used_mask;
3668 int local_node, prev_node;
3669 struct zonelist *zonelist;
3670 int order = current_zonelist_order;
3671
3672 /* initialize zonelists */
3673 for (i = 0; i < MAX_ZONELISTS; i++) {
3674 zonelist = pgdat->node_zonelists + i;
3675 zonelist->_zonerefs[0].zone = NULL;
3676 zonelist->_zonerefs[0].zone_idx = 0;
3677 }
3678
3679 /* NUMA-aware ordering of nodes */
3680 local_node = pgdat->node_id;
3681 load = nr_online_nodes;
3682 prev_node = local_node;
3683 nodes_clear(used_mask);
3684
3685 memset(node_order, 0, sizeof(node_order));
3686 j = 0;
3687
3688 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3689 /*
3690 * We don't want to pressure a particular node.
3691 * So adding penalty to the first node in same
3692 * distance group to make it round-robin.
3693 */
3694 if (node_distance(local_node, node) !=
3695 node_distance(local_node, prev_node))
3696 node_load[node] = load;
3697
3698 prev_node = node;
3699 load--;
3700 if (order == ZONELIST_ORDER_NODE)
3701 build_zonelists_in_node_order(pgdat, node);
3702 else
3703 node_order[j++] = node; /* remember order */
3704 }
3705
3706 if (order == ZONELIST_ORDER_ZONE) {
3707 /* calculate node order -- i.e., DMA last! */
3708 build_zonelists_in_zone_order(pgdat, j);
3709 }
3710
3711 build_thisnode_zonelists(pgdat);
3712 }
3713
3714 /* Construct the zonelist performance cache - see further mmzone.h */
3715 static void build_zonelist_cache(pg_data_t *pgdat)
3716 {
3717 struct zonelist *zonelist;
3718 struct zonelist_cache *zlc;
3719 struct zoneref *z;
3720
3721 zonelist = &pgdat->node_zonelists[0];
3722 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3723 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3724 for (z = zonelist->_zonerefs; z->zone; z++)
3725 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3726 }
3727
3728 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3729 /*
3730 * Return node id of node used for "local" allocations.
3731 * I.e., first node id of first zone in arg node's generic zonelist.
3732 * Used for initializing percpu 'numa_mem', which is used primarily
3733 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3734 */
3735 int local_memory_node(int node)
3736 {
3737 struct zone *zone;
3738
3739 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3740 gfp_zone(GFP_KERNEL),
3741 NULL,
3742 &zone);
3743 return zone->node;
3744 }
3745 #endif
3746
3747 #else /* CONFIG_NUMA */
3748
3749 static void set_zonelist_order(void)
3750 {
3751 current_zonelist_order = ZONELIST_ORDER_ZONE;
3752 }
3753
3754 static void build_zonelists(pg_data_t *pgdat)
3755 {
3756 int node, local_node;
3757 enum zone_type j;
3758 struct zonelist *zonelist;
3759
3760 local_node = pgdat->node_id;
3761
3762 zonelist = &pgdat->node_zonelists[0];
3763 j = build_zonelists_node(pgdat, zonelist, 0);
3764
3765 /*
3766 * Now we build the zonelist so that it contains the zones
3767 * of all the other nodes.
3768 * We don't want to pressure a particular node, so when
3769 * building the zones for node N, we make sure that the
3770 * zones coming right after the local ones are those from
3771 * node N+1 (modulo N)
3772 */
3773 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3774 if (!node_online(node))
3775 continue;
3776 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3777 }
3778 for (node = 0; node < local_node; node++) {
3779 if (!node_online(node))
3780 continue;
3781 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3782 }
3783
3784 zonelist->_zonerefs[j].zone = NULL;
3785 zonelist->_zonerefs[j].zone_idx = 0;
3786 }
3787
3788 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3789 static void build_zonelist_cache(pg_data_t *pgdat)
3790 {
3791 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3792 }
3793
3794 #endif /* CONFIG_NUMA */
3795
3796 /*
3797 * Boot pageset table. One per cpu which is going to be used for all
3798 * zones and all nodes. The parameters will be set in such a way
3799 * that an item put on a list will immediately be handed over to
3800 * the buddy list. This is safe since pageset manipulation is done
3801 * with interrupts disabled.
3802 *
3803 * The boot_pagesets must be kept even after bootup is complete for
3804 * unused processors and/or zones. They do play a role for bootstrapping
3805 * hotplugged processors.
3806 *
3807 * zoneinfo_show() and maybe other functions do
3808 * not check if the processor is online before following the pageset pointer.
3809 * Other parts of the kernel may not check if the zone is available.
3810 */
3811 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3812 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3813 static void setup_zone_pageset(struct zone *zone);
3814
3815 /*
3816 * Global mutex to protect against size modification of zonelists
3817 * as well as to serialize pageset setup for the new populated zone.
3818 */
3819 DEFINE_MUTEX(zonelists_mutex);
3820
3821 /* return values int ....just for stop_machine() */
3822 static int __build_all_zonelists(void *data)
3823 {
3824 int nid;
3825 int cpu;
3826 pg_data_t *self = data;
3827
3828 #ifdef CONFIG_NUMA
3829 memset(node_load, 0, sizeof(node_load));
3830 #endif
3831
3832 if (self && !node_online(self->node_id)) {
3833 build_zonelists(self);
3834 build_zonelist_cache(self);
3835 }
3836
3837 for_each_online_node(nid) {
3838 pg_data_t *pgdat = NODE_DATA(nid);
3839
3840 build_zonelists(pgdat);
3841 build_zonelist_cache(pgdat);
3842 }
3843
3844 /*
3845 * Initialize the boot_pagesets that are going to be used
3846 * for bootstrapping processors. The real pagesets for
3847 * each zone will be allocated later when the per cpu
3848 * allocator is available.
3849 *
3850 * boot_pagesets are used also for bootstrapping offline
3851 * cpus if the system is already booted because the pagesets
3852 * are needed to initialize allocators on a specific cpu too.
3853 * F.e. the percpu allocator needs the page allocator which
3854 * needs the percpu allocator in order to allocate its pagesets
3855 * (a chicken-egg dilemma).
3856 */
3857 for_each_possible_cpu(cpu) {
3858 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3859
3860 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3861 /*
3862 * We now know the "local memory node" for each node--
3863 * i.e., the node of the first zone in the generic zonelist.
3864 * Set up numa_mem percpu variable for on-line cpus. During
3865 * boot, only the boot cpu should be on-line; we'll init the
3866 * secondary cpus' numa_mem as they come on-line. During
3867 * node/memory hotplug, we'll fixup all on-line cpus.
3868 */
3869 if (cpu_online(cpu))
3870 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3871 #endif
3872 }
3873
3874 return 0;
3875 }
3876
3877 static noinline void __init
3878 build_all_zonelists_init(void)
3879 {
3880 __build_all_zonelists(NULL);
3881 mminit_verify_zonelist();
3882 cpuset_init_current_mems_allowed();
3883 }
3884
3885 /*
3886 * Called with zonelists_mutex held always
3887 * unless system_state == SYSTEM_BOOTING.
3888 *
3889 * __ref due to (1) call of __meminit annotated setup_zone_pageset
3890 * [we're only called with non-NULL zone through __meminit paths] and
3891 * (2) call of __init annotated helper build_all_zonelists_init
3892 * [protected by SYSTEM_BOOTING].
3893 */
3894 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3895 {
3896 set_zonelist_order();
3897
3898 if (system_state == SYSTEM_BOOTING) {
3899 build_all_zonelists_init();
3900 } else {
3901 #ifdef CONFIG_MEMORY_HOTPLUG
3902 if (zone)
3903 setup_zone_pageset(zone);
3904 #endif
3905 /* we have to stop all cpus to guarantee there is no user
3906 of zonelist */
3907 stop_machine(__build_all_zonelists, pgdat, NULL);
3908 /* cpuset refresh routine should be here */
3909 }
3910 vm_total_pages = nr_free_pagecache_pages();
3911 /*
3912 * Disable grouping by mobility if the number of pages in the
3913 * system is too low to allow the mechanism to work. It would be
3914 * more accurate, but expensive to check per-zone. This check is
3915 * made on memory-hotadd so a system can start with mobility
3916 * disabled and enable it later
3917 */
3918 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3919 page_group_by_mobility_disabled = 1;
3920 else
3921 page_group_by_mobility_disabled = 0;
3922
3923 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
3924 "Total pages: %ld\n",
3925 nr_online_nodes,
3926 zonelist_order_name[current_zonelist_order],
3927 page_group_by_mobility_disabled ? "off" : "on",
3928 vm_total_pages);
3929 #ifdef CONFIG_NUMA
3930 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
3931 #endif
3932 }
3933
3934 /*
3935 * Helper functions to size the waitqueue hash table.
3936 * Essentially these want to choose hash table sizes sufficiently
3937 * large so that collisions trying to wait on pages are rare.
3938 * But in fact, the number of active page waitqueues on typical
3939 * systems is ridiculously low, less than 200. So this is even
3940 * conservative, even though it seems large.
3941 *
3942 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3943 * waitqueues, i.e. the size of the waitq table given the number of pages.
3944 */
3945 #define PAGES_PER_WAITQUEUE 256
3946
3947 #ifndef CONFIG_MEMORY_HOTPLUG
3948 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3949 {
3950 unsigned long size = 1;
3951
3952 pages /= PAGES_PER_WAITQUEUE;
3953
3954 while (size < pages)
3955 size <<= 1;
3956
3957 /*
3958 * Once we have dozens or even hundreds of threads sleeping
3959 * on IO we've got bigger problems than wait queue collision.
3960 * Limit the size of the wait table to a reasonable size.
3961 */
3962 size = min(size, 4096UL);
3963
3964 return max(size, 4UL);
3965 }
3966 #else
3967 /*
3968 * A zone's size might be changed by hot-add, so it is not possible to determine
3969 * a suitable size for its wait_table. So we use the maximum size now.
3970 *
3971 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3972 *
3973 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3974 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3975 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3976 *
3977 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3978 * or more by the traditional way. (See above). It equals:
3979 *
3980 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3981 * ia64(16K page size) : = ( 8G + 4M)byte.
3982 * powerpc (64K page size) : = (32G +16M)byte.
3983 */
3984 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3985 {
3986 return 4096UL;
3987 }
3988 #endif
3989
3990 /*
3991 * This is an integer logarithm so that shifts can be used later
3992 * to extract the more random high bits from the multiplicative
3993 * hash function before the remainder is taken.
3994 */
3995 static inline unsigned long wait_table_bits(unsigned long size)
3996 {
3997 return ffz(~size);
3998 }
3999
4000 /*
4001 * Check if a pageblock contains reserved pages
4002 */
4003 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4004 {
4005 unsigned long pfn;
4006
4007 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4008 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4009 return 1;
4010 }
4011 return 0;
4012 }
4013
4014 /*
4015 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4016 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4017 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4018 * higher will lead to a bigger reserve which will get freed as contiguous
4019 * blocks as reclaim kicks in
4020 */
4021 static void setup_zone_migrate_reserve(struct zone *zone)
4022 {
4023 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4024 struct page *page;
4025 unsigned long block_migratetype;
4026 int reserve;
4027 int old_reserve;
4028
4029 /*
4030 * Get the start pfn, end pfn and the number of blocks to reserve
4031 * We have to be careful to be aligned to pageblock_nr_pages to
4032 * make sure that we always check pfn_valid for the first page in
4033 * the block.
4034 */
4035 start_pfn = zone->zone_start_pfn;
4036 end_pfn = zone_end_pfn(zone);
4037 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4038 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4039 pageblock_order;
4040
4041 /*
4042 * Reserve blocks are generally in place to help high-order atomic
4043 * allocations that are short-lived. A min_free_kbytes value that
4044 * would result in more than 2 reserve blocks for atomic allocations
4045 * is assumed to be in place to help anti-fragmentation for the
4046 * future allocation of hugepages at runtime.
4047 */
4048 reserve = min(2, reserve);
4049 old_reserve = zone->nr_migrate_reserve_block;
4050
4051 /* When memory hot-add, we almost always need to do nothing */
4052 if (reserve == old_reserve)
4053 return;
4054 zone->nr_migrate_reserve_block = reserve;
4055
4056 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4057 if (!pfn_valid(pfn))
4058 continue;
4059 page = pfn_to_page(pfn);
4060
4061 /* Watch out for overlapping nodes */
4062 if (page_to_nid(page) != zone_to_nid(zone))
4063 continue;
4064
4065 block_migratetype = get_pageblock_migratetype(page);
4066
4067 /* Only test what is necessary when the reserves are not met */
4068 if (reserve > 0) {
4069 /*
4070 * Blocks with reserved pages will never free, skip
4071 * them.
4072 */
4073 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4074 if (pageblock_is_reserved(pfn, block_end_pfn))
4075 continue;
4076
4077 /* If this block is reserved, account for it */
4078 if (block_migratetype == MIGRATE_RESERVE) {
4079 reserve--;
4080 continue;
4081 }
4082
4083 /* Suitable for reserving if this block is movable */
4084 if (block_migratetype == MIGRATE_MOVABLE) {
4085 set_pageblock_migratetype(page,
4086 MIGRATE_RESERVE);
4087 move_freepages_block(zone, page,
4088 MIGRATE_RESERVE);
4089 reserve--;
4090 continue;
4091 }
4092 } else if (!old_reserve) {
4093 /*
4094 * At boot time we don't need to scan the whole zone
4095 * for turning off MIGRATE_RESERVE.
4096 */
4097 break;
4098 }
4099
4100 /*
4101 * If the reserve is met and this is a previous reserved block,
4102 * take it back
4103 */
4104 if (block_migratetype == MIGRATE_RESERVE) {
4105 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4106 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4107 }
4108 }
4109 }
4110
4111 /*
4112 * Initially all pages are reserved - free ones are freed
4113 * up by free_all_bootmem() once the early boot process is
4114 * done. Non-atomic initialization, single-pass.
4115 */
4116 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4117 unsigned long start_pfn, enum memmap_context context)
4118 {
4119 struct page *page;
4120 unsigned long end_pfn = start_pfn + size;
4121 unsigned long pfn;
4122 struct zone *z;
4123
4124 if (highest_memmap_pfn < end_pfn - 1)
4125 highest_memmap_pfn = end_pfn - 1;
4126
4127 z = &NODE_DATA(nid)->node_zones[zone];
4128 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4129 /*
4130 * There can be holes in boot-time mem_map[]s
4131 * handed to this function. They do not
4132 * exist on hotplugged memory.
4133 */
4134 if (context == MEMMAP_EARLY) {
4135 if (!early_pfn_valid(pfn))
4136 continue;
4137 if (!early_pfn_in_nid(pfn, nid))
4138 continue;
4139 }
4140 page = pfn_to_page(pfn);
4141 set_page_links(page, zone, nid, pfn);
4142 mminit_verify_page_links(page, zone, nid, pfn);
4143 init_page_count(page);
4144 page_mapcount_reset(page);
4145 page_cpupid_reset_last(page);
4146 SetPageReserved(page);
4147 /*
4148 * Mark the block movable so that blocks are reserved for
4149 * movable at startup. This will force kernel allocations
4150 * to reserve their blocks rather than leaking throughout
4151 * the address space during boot when many long-lived
4152 * kernel allocations are made. Later some blocks near
4153 * the start are marked MIGRATE_RESERVE by
4154 * setup_zone_migrate_reserve()
4155 *
4156 * bitmap is created for zone's valid pfn range. but memmap
4157 * can be created for invalid pages (for alignment)
4158 * check here not to call set_pageblock_migratetype() against
4159 * pfn out of zone.
4160 */
4161 if ((z->zone_start_pfn <= pfn)
4162 && (pfn < zone_end_pfn(z))
4163 && !(pfn & (pageblock_nr_pages - 1)))
4164 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4165
4166 INIT_LIST_HEAD(&page->lru);
4167 #ifdef WANT_PAGE_VIRTUAL
4168 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4169 if (!is_highmem_idx(zone))
4170 set_page_address(page, __va(pfn << PAGE_SHIFT));
4171 #endif
4172 }
4173 }
4174
4175 static void __meminit zone_init_free_lists(struct zone *zone)
4176 {
4177 unsigned int order, t;
4178 for_each_migratetype_order(order, t) {
4179 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4180 zone->free_area[order].nr_free = 0;
4181 }
4182 }
4183
4184 #ifndef __HAVE_ARCH_MEMMAP_INIT
4185 #define memmap_init(size, nid, zone, start_pfn) \
4186 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4187 #endif
4188
4189 static int zone_batchsize(struct zone *zone)
4190 {
4191 #ifdef CONFIG_MMU
4192 int batch;
4193
4194 /*
4195 * The per-cpu-pages pools are set to around 1000th of the
4196 * size of the zone. But no more than 1/2 of a meg.
4197 *
4198 * OK, so we don't know how big the cache is. So guess.
4199 */
4200 batch = zone->managed_pages / 1024;
4201 if (batch * PAGE_SIZE > 512 * 1024)
4202 batch = (512 * 1024) / PAGE_SIZE;
4203 batch /= 4; /* We effectively *= 4 below */
4204 if (batch < 1)
4205 batch = 1;
4206
4207 /*
4208 * Clamp the batch to a 2^n - 1 value. Having a power
4209 * of 2 value was found to be more likely to have
4210 * suboptimal cache aliasing properties in some cases.
4211 *
4212 * For example if 2 tasks are alternately allocating
4213 * batches of pages, one task can end up with a lot
4214 * of pages of one half of the possible page colors
4215 * and the other with pages of the other colors.
4216 */
4217 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4218
4219 return batch;
4220
4221 #else
4222 /* The deferral and batching of frees should be suppressed under NOMMU
4223 * conditions.
4224 *
4225 * The problem is that NOMMU needs to be able to allocate large chunks
4226 * of contiguous memory as there's no hardware page translation to
4227 * assemble apparent contiguous memory from discontiguous pages.
4228 *
4229 * Queueing large contiguous runs of pages for batching, however,
4230 * causes the pages to actually be freed in smaller chunks. As there
4231 * can be a significant delay between the individual batches being
4232 * recycled, this leads to the once large chunks of space being
4233 * fragmented and becoming unavailable for high-order allocations.
4234 */
4235 return 0;
4236 #endif
4237 }
4238
4239 /*
4240 * pcp->high and pcp->batch values are related and dependent on one another:
4241 * ->batch must never be higher then ->high.
4242 * The following function updates them in a safe manner without read side
4243 * locking.
4244 *
4245 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4246 * those fields changing asynchronously (acording the the above rule).
4247 *
4248 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4249 * outside of boot time (or some other assurance that no concurrent updaters
4250 * exist).
4251 */
4252 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4253 unsigned long batch)
4254 {
4255 /* start with a fail safe value for batch */
4256 pcp->batch = 1;
4257 smp_wmb();
4258
4259 /* Update high, then batch, in order */
4260 pcp->high = high;
4261 smp_wmb();
4262
4263 pcp->batch = batch;
4264 }
4265
4266 /* a companion to pageset_set_high() */
4267 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4268 {
4269 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4270 }
4271
4272 static void pageset_init(struct per_cpu_pageset *p)
4273 {
4274 struct per_cpu_pages *pcp;
4275 int migratetype;
4276
4277 memset(p, 0, sizeof(*p));
4278
4279 pcp = &p->pcp;
4280 pcp->count = 0;
4281 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4282 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4283 }
4284
4285 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4286 {
4287 pageset_init(p);
4288 pageset_set_batch(p, batch);
4289 }
4290
4291 /*
4292 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4293 * to the value high for the pageset p.
4294 */
4295 static void pageset_set_high(struct per_cpu_pageset *p,
4296 unsigned long high)
4297 {
4298 unsigned long batch = max(1UL, high / 4);
4299 if ((high / 4) > (PAGE_SHIFT * 8))
4300 batch = PAGE_SHIFT * 8;
4301
4302 pageset_update(&p->pcp, high, batch);
4303 }
4304
4305 static void pageset_set_high_and_batch(struct zone *zone,
4306 struct per_cpu_pageset *pcp)
4307 {
4308 if (percpu_pagelist_fraction)
4309 pageset_set_high(pcp,
4310 (zone->managed_pages /
4311 percpu_pagelist_fraction));
4312 else
4313 pageset_set_batch(pcp, zone_batchsize(zone));
4314 }
4315
4316 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4317 {
4318 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4319
4320 pageset_init(pcp);
4321 pageset_set_high_and_batch(zone, pcp);
4322 }
4323
4324 static void __meminit setup_zone_pageset(struct zone *zone)
4325 {
4326 int cpu;
4327 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4328 for_each_possible_cpu(cpu)
4329 zone_pageset_init(zone, cpu);
4330 }
4331
4332 /*
4333 * Allocate per cpu pagesets and initialize them.
4334 * Before this call only boot pagesets were available.
4335 */
4336 void __init setup_per_cpu_pageset(void)
4337 {
4338 struct zone *zone;
4339
4340 for_each_populated_zone(zone)
4341 setup_zone_pageset(zone);
4342 }
4343
4344 static noinline __init_refok
4345 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4346 {
4347 int i;
4348 size_t alloc_size;
4349
4350 /*
4351 * The per-page waitqueue mechanism uses hashed waitqueues
4352 * per zone.
4353 */
4354 zone->wait_table_hash_nr_entries =
4355 wait_table_hash_nr_entries(zone_size_pages);
4356 zone->wait_table_bits =
4357 wait_table_bits(zone->wait_table_hash_nr_entries);
4358 alloc_size = zone->wait_table_hash_nr_entries
4359 * sizeof(wait_queue_head_t);
4360
4361 if (!slab_is_available()) {
4362 zone->wait_table = (wait_queue_head_t *)
4363 memblock_virt_alloc_node_nopanic(
4364 alloc_size, zone->zone_pgdat->node_id);
4365 } else {
4366 /*
4367 * This case means that a zone whose size was 0 gets new memory
4368 * via memory hot-add.
4369 * But it may be the case that a new node was hot-added. In
4370 * this case vmalloc() will not be able to use this new node's
4371 * memory - this wait_table must be initialized to use this new
4372 * node itself as well.
4373 * To use this new node's memory, further consideration will be
4374 * necessary.
4375 */
4376 zone->wait_table = vmalloc(alloc_size);
4377 }
4378 if (!zone->wait_table)
4379 return -ENOMEM;
4380
4381 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4382 init_waitqueue_head(zone->wait_table + i);
4383
4384 return 0;
4385 }
4386
4387 static __meminit void zone_pcp_init(struct zone *zone)
4388 {
4389 /*
4390 * per cpu subsystem is not up at this point. The following code
4391 * relies on the ability of the linker to provide the
4392 * offset of a (static) per cpu variable into the per cpu area.
4393 */
4394 zone->pageset = &boot_pageset;
4395
4396 if (populated_zone(zone))
4397 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4398 zone->name, zone->present_pages,
4399 zone_batchsize(zone));
4400 }
4401
4402 int __meminit init_currently_empty_zone(struct zone *zone,
4403 unsigned long zone_start_pfn,
4404 unsigned long size,
4405 enum memmap_context context)
4406 {
4407 struct pglist_data *pgdat = zone->zone_pgdat;
4408 int ret;
4409 ret = zone_wait_table_init(zone, size);
4410 if (ret)
4411 return ret;
4412 pgdat->nr_zones = zone_idx(zone) + 1;
4413
4414 zone->zone_start_pfn = zone_start_pfn;
4415
4416 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4417 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4418 pgdat->node_id,
4419 (unsigned long)zone_idx(zone),
4420 zone_start_pfn, (zone_start_pfn + size));
4421
4422 zone_init_free_lists(zone);
4423
4424 return 0;
4425 }
4426
4427 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4428 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4429 /*
4430 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4431 */
4432 int __meminit __early_pfn_to_nid(unsigned long pfn)
4433 {
4434 unsigned long start_pfn, end_pfn;
4435 int nid;
4436 /*
4437 * NOTE: The following SMP-unsafe globals are only used early in boot
4438 * when the kernel is running single-threaded.
4439 */
4440 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4441 static int __meminitdata last_nid;
4442
4443 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4444 return last_nid;
4445
4446 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4447 if (nid != -1) {
4448 last_start_pfn = start_pfn;
4449 last_end_pfn = end_pfn;
4450 last_nid = nid;
4451 }
4452
4453 return nid;
4454 }
4455 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4456
4457 int __meminit early_pfn_to_nid(unsigned long pfn)
4458 {
4459 int nid;
4460
4461 nid = __early_pfn_to_nid(pfn);
4462 if (nid >= 0)
4463 return nid;
4464 /* just returns 0 */
4465 return 0;
4466 }
4467
4468 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4469 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4470 {
4471 int nid;
4472
4473 nid = __early_pfn_to_nid(pfn);
4474 if (nid >= 0 && nid != node)
4475 return false;
4476 return true;
4477 }
4478 #endif
4479
4480 /**
4481 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4482 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4483 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4484 *
4485 * If an architecture guarantees that all ranges registered contain no holes
4486 * and may be freed, this this function may be used instead of calling
4487 * memblock_free_early_nid() manually.
4488 */
4489 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4490 {
4491 unsigned long start_pfn, end_pfn;
4492 int i, this_nid;
4493
4494 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4495 start_pfn = min(start_pfn, max_low_pfn);
4496 end_pfn = min(end_pfn, max_low_pfn);
4497
4498 if (start_pfn < end_pfn)
4499 memblock_free_early_nid(PFN_PHYS(start_pfn),
4500 (end_pfn - start_pfn) << PAGE_SHIFT,
4501 this_nid);
4502 }
4503 }
4504
4505 /**
4506 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4507 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4508 *
4509 * If an architecture guarantees that all ranges registered contain no holes and may
4510 * be freed, this function may be used instead of calling memory_present() manually.
4511 */
4512 void __init sparse_memory_present_with_active_regions(int nid)
4513 {
4514 unsigned long start_pfn, end_pfn;
4515 int i, this_nid;
4516
4517 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4518 memory_present(this_nid, start_pfn, end_pfn);
4519 }
4520
4521 /**
4522 * get_pfn_range_for_nid - Return the start and end page frames for a node
4523 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4524 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4525 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4526 *
4527 * It returns the start and end page frame of a node based on information
4528 * provided by memblock_set_node(). If called for a node
4529 * with no available memory, a warning is printed and the start and end
4530 * PFNs will be 0.
4531 */
4532 void __meminit get_pfn_range_for_nid(unsigned int nid,
4533 unsigned long *start_pfn, unsigned long *end_pfn)
4534 {
4535 unsigned long this_start_pfn, this_end_pfn;
4536 int i;
4537
4538 *start_pfn = -1UL;
4539 *end_pfn = 0;
4540
4541 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4542 *start_pfn = min(*start_pfn, this_start_pfn);
4543 *end_pfn = max(*end_pfn, this_end_pfn);
4544 }
4545
4546 if (*start_pfn == -1UL)
4547 *start_pfn = 0;
4548 }
4549
4550 /*
4551 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4552 * assumption is made that zones within a node are ordered in monotonic
4553 * increasing memory addresses so that the "highest" populated zone is used
4554 */
4555 static void __init find_usable_zone_for_movable(void)
4556 {
4557 int zone_index;
4558 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4559 if (zone_index == ZONE_MOVABLE)
4560 continue;
4561
4562 if (arch_zone_highest_possible_pfn[zone_index] >
4563 arch_zone_lowest_possible_pfn[zone_index])
4564 break;
4565 }
4566
4567 VM_BUG_ON(zone_index == -1);
4568 movable_zone = zone_index;
4569 }
4570
4571 /*
4572 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4573 * because it is sized independent of architecture. Unlike the other zones,
4574 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4575 * in each node depending on the size of each node and how evenly kernelcore
4576 * is distributed. This helper function adjusts the zone ranges
4577 * provided by the architecture for a given node by using the end of the
4578 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4579 * zones within a node are in order of monotonic increases memory addresses
4580 */
4581 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4582 unsigned long zone_type,
4583 unsigned long node_start_pfn,
4584 unsigned long node_end_pfn,
4585 unsigned long *zone_start_pfn,
4586 unsigned long *zone_end_pfn)
4587 {
4588 /* Only adjust if ZONE_MOVABLE is on this node */
4589 if (zone_movable_pfn[nid]) {
4590 /* Size ZONE_MOVABLE */
4591 if (zone_type == ZONE_MOVABLE) {
4592 *zone_start_pfn = zone_movable_pfn[nid];
4593 *zone_end_pfn = min(node_end_pfn,
4594 arch_zone_highest_possible_pfn[movable_zone]);
4595
4596 /* Adjust for ZONE_MOVABLE starting within this range */
4597 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4598 *zone_end_pfn > zone_movable_pfn[nid]) {
4599 *zone_end_pfn = zone_movable_pfn[nid];
4600
4601 /* Check if this whole range is within ZONE_MOVABLE */
4602 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4603 *zone_start_pfn = *zone_end_pfn;
4604 }
4605 }
4606
4607 /*
4608 * Return the number of pages a zone spans in a node, including holes
4609 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4610 */
4611 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4612 unsigned long zone_type,
4613 unsigned long node_start_pfn,
4614 unsigned long node_end_pfn,
4615 unsigned long *ignored)
4616 {
4617 unsigned long zone_start_pfn, zone_end_pfn;
4618
4619 /* Get the start and end of the zone */
4620 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4621 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4622 adjust_zone_range_for_zone_movable(nid, zone_type,
4623 node_start_pfn, node_end_pfn,
4624 &zone_start_pfn, &zone_end_pfn);
4625
4626 /* Check that this node has pages within the zone's required range */
4627 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4628 return 0;
4629
4630 /* Move the zone boundaries inside the node if necessary */
4631 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4632 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4633
4634 /* Return the spanned pages */
4635 return zone_end_pfn - zone_start_pfn;
4636 }
4637
4638 /*
4639 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4640 * then all holes in the requested range will be accounted for.
4641 */
4642 unsigned long __meminit __absent_pages_in_range(int nid,
4643 unsigned long range_start_pfn,
4644 unsigned long range_end_pfn)
4645 {
4646 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4647 unsigned long start_pfn, end_pfn;
4648 int i;
4649
4650 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4651 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4652 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4653 nr_absent -= end_pfn - start_pfn;
4654 }
4655 return nr_absent;
4656 }
4657
4658 /**
4659 * absent_pages_in_range - Return number of page frames in holes within a range
4660 * @start_pfn: The start PFN to start searching for holes
4661 * @end_pfn: The end PFN to stop searching for holes
4662 *
4663 * It returns the number of pages frames in memory holes within a range.
4664 */
4665 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4666 unsigned long end_pfn)
4667 {
4668 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4669 }
4670
4671 /* Return the number of page frames in holes in a zone on a node */
4672 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4673 unsigned long zone_type,
4674 unsigned long node_start_pfn,
4675 unsigned long node_end_pfn,
4676 unsigned long *ignored)
4677 {
4678 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4679 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4680 unsigned long zone_start_pfn, zone_end_pfn;
4681
4682 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4683 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4684
4685 adjust_zone_range_for_zone_movable(nid, zone_type,
4686 node_start_pfn, node_end_pfn,
4687 &zone_start_pfn, &zone_end_pfn);
4688 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4689 }
4690
4691 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4692 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4693 unsigned long zone_type,
4694 unsigned long node_start_pfn,
4695 unsigned long node_end_pfn,
4696 unsigned long *zones_size)
4697 {
4698 return zones_size[zone_type];
4699 }
4700
4701 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4702 unsigned long zone_type,
4703 unsigned long node_start_pfn,
4704 unsigned long node_end_pfn,
4705 unsigned long *zholes_size)
4706 {
4707 if (!zholes_size)
4708 return 0;
4709
4710 return zholes_size[zone_type];
4711 }
4712
4713 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4714
4715 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4716 unsigned long node_start_pfn,
4717 unsigned long node_end_pfn,
4718 unsigned long *zones_size,
4719 unsigned long *zholes_size)
4720 {
4721 unsigned long realtotalpages, totalpages = 0;
4722 enum zone_type i;
4723
4724 for (i = 0; i < MAX_NR_ZONES; i++)
4725 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4726 node_start_pfn,
4727 node_end_pfn,
4728 zones_size);
4729 pgdat->node_spanned_pages = totalpages;
4730
4731 realtotalpages = totalpages;
4732 for (i = 0; i < MAX_NR_ZONES; i++)
4733 realtotalpages -=
4734 zone_absent_pages_in_node(pgdat->node_id, i,
4735 node_start_pfn, node_end_pfn,
4736 zholes_size);
4737 pgdat->node_present_pages = realtotalpages;
4738 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4739 realtotalpages);
4740 }
4741
4742 #ifndef CONFIG_SPARSEMEM
4743 /*
4744 * Calculate the size of the zone->blockflags rounded to an unsigned long
4745 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4746 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4747 * round what is now in bits to nearest long in bits, then return it in
4748 * bytes.
4749 */
4750 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4751 {
4752 unsigned long usemapsize;
4753
4754 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4755 usemapsize = roundup(zonesize, pageblock_nr_pages);
4756 usemapsize = usemapsize >> pageblock_order;
4757 usemapsize *= NR_PAGEBLOCK_BITS;
4758 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4759
4760 return usemapsize / 8;
4761 }
4762
4763 static void __init setup_usemap(struct pglist_data *pgdat,
4764 struct zone *zone,
4765 unsigned long zone_start_pfn,
4766 unsigned long zonesize)
4767 {
4768 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4769 zone->pageblock_flags = NULL;
4770 if (usemapsize)
4771 zone->pageblock_flags =
4772 memblock_virt_alloc_node_nopanic(usemapsize,
4773 pgdat->node_id);
4774 }
4775 #else
4776 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4777 unsigned long zone_start_pfn, unsigned long zonesize) {}
4778 #endif /* CONFIG_SPARSEMEM */
4779
4780 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4781
4782 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4783 void __paginginit set_pageblock_order(void)
4784 {
4785 unsigned int order;
4786
4787 /* Check that pageblock_nr_pages has not already been setup */
4788 if (pageblock_order)
4789 return;
4790
4791 if (HPAGE_SHIFT > PAGE_SHIFT)
4792 order = HUGETLB_PAGE_ORDER;
4793 else
4794 order = MAX_ORDER - 1;
4795
4796 /*
4797 * Assume the largest contiguous order of interest is a huge page.
4798 * This value may be variable depending on boot parameters on IA64 and
4799 * powerpc.
4800 */
4801 pageblock_order = order;
4802 }
4803 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4804
4805 /*
4806 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4807 * is unused as pageblock_order is set at compile-time. See
4808 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4809 * the kernel config
4810 */
4811 void __paginginit set_pageblock_order(void)
4812 {
4813 }
4814
4815 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4816
4817 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4818 unsigned long present_pages)
4819 {
4820 unsigned long pages = spanned_pages;
4821
4822 /*
4823 * Provide a more accurate estimation if there are holes within
4824 * the zone and SPARSEMEM is in use. If there are holes within the
4825 * zone, each populated memory region may cost us one or two extra
4826 * memmap pages due to alignment because memmap pages for each
4827 * populated regions may not naturally algined on page boundary.
4828 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4829 */
4830 if (spanned_pages > present_pages + (present_pages >> 4) &&
4831 IS_ENABLED(CONFIG_SPARSEMEM))
4832 pages = present_pages;
4833
4834 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4835 }
4836
4837 /*
4838 * Set up the zone data structures:
4839 * - mark all pages reserved
4840 * - mark all memory queues empty
4841 * - clear the memory bitmaps
4842 *
4843 * NOTE: pgdat should get zeroed by caller.
4844 */
4845 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4846 unsigned long node_start_pfn, unsigned long node_end_pfn,
4847 unsigned long *zones_size, unsigned long *zholes_size)
4848 {
4849 enum zone_type j;
4850 int nid = pgdat->node_id;
4851 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4852 int ret;
4853
4854 pgdat_resize_init(pgdat);
4855 #ifdef CONFIG_NUMA_BALANCING
4856 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4857 pgdat->numabalancing_migrate_nr_pages = 0;
4858 pgdat->numabalancing_migrate_next_window = jiffies;
4859 #endif
4860 init_waitqueue_head(&pgdat->kswapd_wait);
4861 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4862 pgdat_page_ext_init(pgdat);
4863
4864 for (j = 0; j < MAX_NR_ZONES; j++) {
4865 struct zone *zone = pgdat->node_zones + j;
4866 unsigned long size, realsize, freesize, memmap_pages;
4867
4868 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4869 node_end_pfn, zones_size);
4870 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4871 node_start_pfn,
4872 node_end_pfn,
4873 zholes_size);
4874
4875 /*
4876 * Adjust freesize so that it accounts for how much memory
4877 * is used by this zone for memmap. This affects the watermark
4878 * and per-cpu initialisations
4879 */
4880 memmap_pages = calc_memmap_size(size, realsize);
4881 if (!is_highmem_idx(j)) {
4882 if (freesize >= memmap_pages) {
4883 freesize -= memmap_pages;
4884 if (memmap_pages)
4885 printk(KERN_DEBUG
4886 " %s zone: %lu pages used for memmap\n",
4887 zone_names[j], memmap_pages);
4888 } else
4889 printk(KERN_WARNING
4890 " %s zone: %lu pages exceeds freesize %lu\n",
4891 zone_names[j], memmap_pages, freesize);
4892 }
4893
4894 /* Account for reserved pages */
4895 if (j == 0 && freesize > dma_reserve) {
4896 freesize -= dma_reserve;
4897 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4898 zone_names[0], dma_reserve);
4899 }
4900
4901 if (!is_highmem_idx(j))
4902 nr_kernel_pages += freesize;
4903 /* Charge for highmem memmap if there are enough kernel pages */
4904 else if (nr_kernel_pages > memmap_pages * 2)
4905 nr_kernel_pages -= memmap_pages;
4906 nr_all_pages += freesize;
4907
4908 zone->spanned_pages = size;
4909 zone->present_pages = realsize;
4910 /*
4911 * Set an approximate value for lowmem here, it will be adjusted
4912 * when the bootmem allocator frees pages into the buddy system.
4913 * And all highmem pages will be managed by the buddy system.
4914 */
4915 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4916 #ifdef CONFIG_NUMA
4917 zone->node = nid;
4918 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4919 / 100;
4920 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4921 #endif
4922 zone->name = zone_names[j];
4923 spin_lock_init(&zone->lock);
4924 spin_lock_init(&zone->lru_lock);
4925 zone_seqlock_init(zone);
4926 zone->zone_pgdat = pgdat;
4927 zone_pcp_init(zone);
4928
4929 /* For bootup, initialized properly in watermark setup */
4930 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4931
4932 lruvec_init(&zone->lruvec);
4933 if (!size)
4934 continue;
4935
4936 set_pageblock_order();
4937 setup_usemap(pgdat, zone, zone_start_pfn, size);
4938 ret = init_currently_empty_zone(zone, zone_start_pfn,
4939 size, MEMMAP_EARLY);
4940 BUG_ON(ret);
4941 memmap_init(size, nid, j, zone_start_pfn);
4942 zone_start_pfn += size;
4943 }
4944 }
4945
4946 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4947 {
4948 /* Skip empty nodes */
4949 if (!pgdat->node_spanned_pages)
4950 return;
4951
4952 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4953 /* ia64 gets its own node_mem_map, before this, without bootmem */
4954 if (!pgdat->node_mem_map) {
4955 unsigned long size, start, end;
4956 struct page *map;
4957
4958 /*
4959 * The zone's endpoints aren't required to be MAX_ORDER
4960 * aligned but the node_mem_map endpoints must be in order
4961 * for the buddy allocator to function correctly.
4962 */
4963 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4964 end = pgdat_end_pfn(pgdat);
4965 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4966 size = (end - start) * sizeof(struct page);
4967 map = alloc_remap(pgdat->node_id, size);
4968 if (!map)
4969 map = memblock_virt_alloc_node_nopanic(size,
4970 pgdat->node_id);
4971 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4972 }
4973 #ifndef CONFIG_NEED_MULTIPLE_NODES
4974 /*
4975 * With no DISCONTIG, the global mem_map is just set as node 0's
4976 */
4977 if (pgdat == NODE_DATA(0)) {
4978 mem_map = NODE_DATA(0)->node_mem_map;
4979 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4980 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4981 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4982 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4983 }
4984 #endif
4985 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4986 }
4987
4988 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4989 unsigned long node_start_pfn, unsigned long *zholes_size)
4990 {
4991 pg_data_t *pgdat = NODE_DATA(nid);
4992 unsigned long start_pfn = 0;
4993 unsigned long end_pfn = 0;
4994
4995 /* pg_data_t should be reset to zero when it's allocated */
4996 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4997
4998 pgdat->node_id = nid;
4999 pgdat->node_start_pfn = node_start_pfn;
5000 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5001 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5002 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5003 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
5004 #endif
5005 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5006 zones_size, zholes_size);
5007
5008 alloc_node_mem_map(pgdat);
5009 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5010 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5011 nid, (unsigned long)pgdat,
5012 (unsigned long)pgdat->node_mem_map);
5013 #endif
5014
5015 free_area_init_core(pgdat, start_pfn, end_pfn,
5016 zones_size, zholes_size);
5017 }
5018
5019 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5020
5021 #if MAX_NUMNODES > 1
5022 /*
5023 * Figure out the number of possible node ids.
5024 */
5025 void __init setup_nr_node_ids(void)
5026 {
5027 unsigned int node;
5028 unsigned int highest = 0;
5029
5030 for_each_node_mask(node, node_possible_map)
5031 highest = node;
5032 nr_node_ids = highest + 1;
5033 }
5034 #endif
5035
5036 /**
5037 * node_map_pfn_alignment - determine the maximum internode alignment
5038 *
5039 * This function should be called after node map is populated and sorted.
5040 * It calculates the maximum power of two alignment which can distinguish
5041 * all the nodes.
5042 *
5043 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5044 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5045 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5046 * shifted, 1GiB is enough and this function will indicate so.
5047 *
5048 * This is used to test whether pfn -> nid mapping of the chosen memory
5049 * model has fine enough granularity to avoid incorrect mapping for the
5050 * populated node map.
5051 *
5052 * Returns the determined alignment in pfn's. 0 if there is no alignment
5053 * requirement (single node).
5054 */
5055 unsigned long __init node_map_pfn_alignment(void)
5056 {
5057 unsigned long accl_mask = 0, last_end = 0;
5058 unsigned long start, end, mask;
5059 int last_nid = -1;
5060 int i, nid;
5061
5062 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5063 if (!start || last_nid < 0 || last_nid == nid) {
5064 last_nid = nid;
5065 last_end = end;
5066 continue;
5067 }
5068
5069 /*
5070 * Start with a mask granular enough to pin-point to the
5071 * start pfn and tick off bits one-by-one until it becomes
5072 * too coarse to separate the current node from the last.
5073 */
5074 mask = ~((1 << __ffs(start)) - 1);
5075 while (mask && last_end <= (start & (mask << 1)))
5076 mask <<= 1;
5077
5078 /* accumulate all internode masks */
5079 accl_mask |= mask;
5080 }
5081
5082 /* convert mask to number of pages */
5083 return ~accl_mask + 1;
5084 }
5085
5086 /* Find the lowest pfn for a node */
5087 static unsigned long __init find_min_pfn_for_node(int nid)
5088 {
5089 unsigned long min_pfn = ULONG_MAX;
5090 unsigned long start_pfn;
5091 int i;
5092
5093 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5094 min_pfn = min(min_pfn, start_pfn);
5095
5096 if (min_pfn == ULONG_MAX) {
5097 printk(KERN_WARNING
5098 "Could not find start_pfn for node %d\n", nid);
5099 return 0;
5100 }
5101
5102 return min_pfn;
5103 }
5104
5105 /**
5106 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5107 *
5108 * It returns the minimum PFN based on information provided via
5109 * memblock_set_node().
5110 */
5111 unsigned long __init find_min_pfn_with_active_regions(void)
5112 {
5113 return find_min_pfn_for_node(MAX_NUMNODES);
5114 }
5115
5116 /*
5117 * early_calculate_totalpages()
5118 * Sum pages in active regions for movable zone.
5119 * Populate N_MEMORY for calculating usable_nodes.
5120 */
5121 static unsigned long __init early_calculate_totalpages(void)
5122 {
5123 unsigned long totalpages = 0;
5124 unsigned long start_pfn, end_pfn;
5125 int i, nid;
5126
5127 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5128 unsigned long pages = end_pfn - start_pfn;
5129
5130 totalpages += pages;
5131 if (pages)
5132 node_set_state(nid, N_MEMORY);
5133 }
5134 return totalpages;
5135 }
5136
5137 /*
5138 * Find the PFN the Movable zone begins in each node. Kernel memory
5139 * is spread evenly between nodes as long as the nodes have enough
5140 * memory. When they don't, some nodes will have more kernelcore than
5141 * others
5142 */
5143 static void __init find_zone_movable_pfns_for_nodes(void)
5144 {
5145 int i, nid;
5146 unsigned long usable_startpfn;
5147 unsigned long kernelcore_node, kernelcore_remaining;
5148 /* save the state before borrow the nodemask */
5149 nodemask_t saved_node_state = node_states[N_MEMORY];
5150 unsigned long totalpages = early_calculate_totalpages();
5151 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5152 struct memblock_region *r;
5153
5154 /* Need to find movable_zone earlier when movable_node is specified. */
5155 find_usable_zone_for_movable();
5156
5157 /*
5158 * If movable_node is specified, ignore kernelcore and movablecore
5159 * options.
5160 */
5161 if (movable_node_is_enabled()) {
5162 for_each_memblock(memory, r) {
5163 if (!memblock_is_hotpluggable(r))
5164 continue;
5165
5166 nid = r->nid;
5167
5168 usable_startpfn = PFN_DOWN(r->base);
5169 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5170 min(usable_startpfn, zone_movable_pfn[nid]) :
5171 usable_startpfn;
5172 }
5173
5174 goto out2;
5175 }
5176
5177 /*
5178 * If movablecore=nn[KMG] was specified, calculate what size of
5179 * kernelcore that corresponds so that memory usable for
5180 * any allocation type is evenly spread. If both kernelcore
5181 * and movablecore are specified, then the value of kernelcore
5182 * will be used for required_kernelcore if it's greater than
5183 * what movablecore would have allowed.
5184 */
5185 if (required_movablecore) {
5186 unsigned long corepages;
5187
5188 /*
5189 * Round-up so that ZONE_MOVABLE is at least as large as what
5190 * was requested by the user
5191 */
5192 required_movablecore =
5193 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5194 corepages = totalpages - required_movablecore;
5195
5196 required_kernelcore = max(required_kernelcore, corepages);
5197 }
5198
5199 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5200 if (!required_kernelcore)
5201 goto out;
5202
5203 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5204 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5205
5206 restart:
5207 /* Spread kernelcore memory as evenly as possible throughout nodes */
5208 kernelcore_node = required_kernelcore / usable_nodes;
5209 for_each_node_state(nid, N_MEMORY) {
5210 unsigned long start_pfn, end_pfn;
5211
5212 /*
5213 * Recalculate kernelcore_node if the division per node
5214 * now exceeds what is necessary to satisfy the requested
5215 * amount of memory for the kernel
5216 */
5217 if (required_kernelcore < kernelcore_node)
5218 kernelcore_node = required_kernelcore / usable_nodes;
5219
5220 /*
5221 * As the map is walked, we track how much memory is usable
5222 * by the kernel using kernelcore_remaining. When it is
5223 * 0, the rest of the node is usable by ZONE_MOVABLE
5224 */
5225 kernelcore_remaining = kernelcore_node;
5226
5227 /* Go through each range of PFNs within this node */
5228 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5229 unsigned long size_pages;
5230
5231 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5232 if (start_pfn >= end_pfn)
5233 continue;
5234
5235 /* Account for what is only usable for kernelcore */
5236 if (start_pfn < usable_startpfn) {
5237 unsigned long kernel_pages;
5238 kernel_pages = min(end_pfn, usable_startpfn)
5239 - start_pfn;
5240
5241 kernelcore_remaining -= min(kernel_pages,
5242 kernelcore_remaining);
5243 required_kernelcore -= min(kernel_pages,
5244 required_kernelcore);
5245
5246 /* Continue if range is now fully accounted */
5247 if (end_pfn <= usable_startpfn) {
5248
5249 /*
5250 * Push zone_movable_pfn to the end so
5251 * that if we have to rebalance
5252 * kernelcore across nodes, we will
5253 * not double account here
5254 */
5255 zone_movable_pfn[nid] = end_pfn;
5256 continue;
5257 }
5258 start_pfn = usable_startpfn;
5259 }
5260
5261 /*
5262 * The usable PFN range for ZONE_MOVABLE is from
5263 * start_pfn->end_pfn. Calculate size_pages as the
5264 * number of pages used as kernelcore
5265 */
5266 size_pages = end_pfn - start_pfn;
5267 if (size_pages > kernelcore_remaining)
5268 size_pages = kernelcore_remaining;
5269 zone_movable_pfn[nid] = start_pfn + size_pages;
5270
5271 /*
5272 * Some kernelcore has been met, update counts and
5273 * break if the kernelcore for this node has been
5274 * satisfied
5275 */
5276 required_kernelcore -= min(required_kernelcore,
5277 size_pages);
5278 kernelcore_remaining -= size_pages;
5279 if (!kernelcore_remaining)
5280 break;
5281 }
5282 }
5283
5284 /*
5285 * If there is still required_kernelcore, we do another pass with one
5286 * less node in the count. This will push zone_movable_pfn[nid] further
5287 * along on the nodes that still have memory until kernelcore is
5288 * satisfied
5289 */
5290 usable_nodes--;
5291 if (usable_nodes && required_kernelcore > usable_nodes)
5292 goto restart;
5293
5294 out2:
5295 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5296 for (nid = 0; nid < MAX_NUMNODES; nid++)
5297 zone_movable_pfn[nid] =
5298 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5299
5300 out:
5301 /* restore the node_state */
5302 node_states[N_MEMORY] = saved_node_state;
5303 }
5304
5305 /* Any regular or high memory on that node ? */
5306 static void check_for_memory(pg_data_t *pgdat, int nid)
5307 {
5308 enum zone_type zone_type;
5309
5310 if (N_MEMORY == N_NORMAL_MEMORY)
5311 return;
5312
5313 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5314 struct zone *zone = &pgdat->node_zones[zone_type];
5315 if (populated_zone(zone)) {
5316 node_set_state(nid, N_HIGH_MEMORY);
5317 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5318 zone_type <= ZONE_NORMAL)
5319 node_set_state(nid, N_NORMAL_MEMORY);
5320 break;
5321 }
5322 }
5323 }
5324
5325 /**
5326 * free_area_init_nodes - Initialise all pg_data_t and zone data
5327 * @max_zone_pfn: an array of max PFNs for each zone
5328 *
5329 * This will call free_area_init_node() for each active node in the system.
5330 * Using the page ranges provided by memblock_set_node(), the size of each
5331 * zone in each node and their holes is calculated. If the maximum PFN
5332 * between two adjacent zones match, it is assumed that the zone is empty.
5333 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5334 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5335 * starts where the previous one ended. For example, ZONE_DMA32 starts
5336 * at arch_max_dma_pfn.
5337 */
5338 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5339 {
5340 unsigned long start_pfn, end_pfn;
5341 int i, nid;
5342
5343 /* Record where the zone boundaries are */
5344 memset(arch_zone_lowest_possible_pfn, 0,
5345 sizeof(arch_zone_lowest_possible_pfn));
5346 memset(arch_zone_highest_possible_pfn, 0,
5347 sizeof(arch_zone_highest_possible_pfn));
5348 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5349 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5350 for (i = 1; i < MAX_NR_ZONES; i++) {
5351 if (i == ZONE_MOVABLE)
5352 continue;
5353 arch_zone_lowest_possible_pfn[i] =
5354 arch_zone_highest_possible_pfn[i-1];
5355 arch_zone_highest_possible_pfn[i] =
5356 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5357 }
5358 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5359 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5360
5361 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5362 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5363 find_zone_movable_pfns_for_nodes();
5364
5365 /* Print out the zone ranges */
5366 pr_info("Zone ranges:\n");
5367 for (i = 0; i < MAX_NR_ZONES; i++) {
5368 if (i == ZONE_MOVABLE)
5369 continue;
5370 pr_info(" %-8s ", zone_names[i]);
5371 if (arch_zone_lowest_possible_pfn[i] ==
5372 arch_zone_highest_possible_pfn[i])
5373 pr_cont("empty\n");
5374 else
5375 pr_cont("[mem %#018Lx-%#018Lx]\n",
5376 (u64)arch_zone_lowest_possible_pfn[i]
5377 << PAGE_SHIFT,
5378 ((u64)arch_zone_highest_possible_pfn[i]
5379 << PAGE_SHIFT) - 1);
5380 }
5381
5382 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5383 pr_info("Movable zone start for each node\n");
5384 for (i = 0; i < MAX_NUMNODES; i++) {
5385 if (zone_movable_pfn[i])
5386 pr_info(" Node %d: %#018Lx\n", i,
5387 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5388 }
5389
5390 /* Print out the early node map */
5391 pr_info("Early memory node ranges\n");
5392 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5393 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5394 (u64)start_pfn << PAGE_SHIFT,
5395 ((u64)end_pfn << PAGE_SHIFT) - 1);
5396
5397 /* Initialise every node */
5398 mminit_verify_pageflags_layout();
5399 setup_nr_node_ids();
5400 for_each_online_node(nid) {
5401 pg_data_t *pgdat = NODE_DATA(nid);
5402 free_area_init_node(nid, NULL,
5403 find_min_pfn_for_node(nid), NULL);
5404
5405 /* Any memory on that node */
5406 if (pgdat->node_present_pages)
5407 node_set_state(nid, N_MEMORY);
5408 check_for_memory(pgdat, nid);
5409 }
5410 }
5411
5412 static int __init cmdline_parse_core(char *p, unsigned long *core)
5413 {
5414 unsigned long long coremem;
5415 if (!p)
5416 return -EINVAL;
5417
5418 coremem = memparse(p, &p);
5419 *core = coremem >> PAGE_SHIFT;
5420
5421 /* Paranoid check that UL is enough for the coremem value */
5422 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5423
5424 return 0;
5425 }
5426
5427 /*
5428 * kernelcore=size sets the amount of memory for use for allocations that
5429 * cannot be reclaimed or migrated.
5430 */
5431 static int __init cmdline_parse_kernelcore(char *p)
5432 {
5433 return cmdline_parse_core(p, &required_kernelcore);
5434 }
5435
5436 /*
5437 * movablecore=size sets the amount of memory for use for allocations that
5438 * can be reclaimed or migrated.
5439 */
5440 static int __init cmdline_parse_movablecore(char *p)
5441 {
5442 return cmdline_parse_core(p, &required_movablecore);
5443 }
5444
5445 early_param("kernelcore", cmdline_parse_kernelcore);
5446 early_param("movablecore", cmdline_parse_movablecore);
5447
5448 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5449
5450 void adjust_managed_page_count(struct page *page, long count)
5451 {
5452 spin_lock(&managed_page_count_lock);
5453 page_zone(page)->managed_pages += count;
5454 totalram_pages += count;
5455 #ifdef CONFIG_HIGHMEM
5456 if (PageHighMem(page))
5457 totalhigh_pages += count;
5458 #endif
5459 spin_unlock(&managed_page_count_lock);
5460 }
5461 EXPORT_SYMBOL(adjust_managed_page_count);
5462
5463 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5464 {
5465 void *pos;
5466 unsigned long pages = 0;
5467
5468 start = (void *)PAGE_ALIGN((unsigned long)start);
5469 end = (void *)((unsigned long)end & PAGE_MASK);
5470 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5471 if ((unsigned int)poison <= 0xFF)
5472 memset(pos, poison, PAGE_SIZE);
5473 free_reserved_page(virt_to_page(pos));
5474 }
5475
5476 if (pages && s)
5477 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5478 s, pages << (PAGE_SHIFT - 10), start, end);
5479
5480 return pages;
5481 }
5482 EXPORT_SYMBOL(free_reserved_area);
5483
5484 #ifdef CONFIG_HIGHMEM
5485 void free_highmem_page(struct page *page)
5486 {
5487 __free_reserved_page(page);
5488 totalram_pages++;
5489 page_zone(page)->managed_pages++;
5490 totalhigh_pages++;
5491 }
5492 #endif
5493
5494
5495 void __init mem_init_print_info(const char *str)
5496 {
5497 unsigned long physpages, codesize, datasize, rosize, bss_size;
5498 unsigned long init_code_size, init_data_size;
5499
5500 physpages = get_num_physpages();
5501 codesize = _etext - _stext;
5502 datasize = _edata - _sdata;
5503 rosize = __end_rodata - __start_rodata;
5504 bss_size = __bss_stop - __bss_start;
5505 init_data_size = __init_end - __init_begin;
5506 init_code_size = _einittext - _sinittext;
5507
5508 /*
5509 * Detect special cases and adjust section sizes accordingly:
5510 * 1) .init.* may be embedded into .data sections
5511 * 2) .init.text.* may be out of [__init_begin, __init_end],
5512 * please refer to arch/tile/kernel/vmlinux.lds.S.
5513 * 3) .rodata.* may be embedded into .text or .data sections.
5514 */
5515 #define adj_init_size(start, end, size, pos, adj) \
5516 do { \
5517 if (start <= pos && pos < end && size > adj) \
5518 size -= adj; \
5519 } while (0)
5520
5521 adj_init_size(__init_begin, __init_end, init_data_size,
5522 _sinittext, init_code_size);
5523 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5524 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5525 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5526 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5527
5528 #undef adj_init_size
5529
5530 pr_info("Memory: %luK/%luK available "
5531 "(%luK kernel code, %luK rwdata, %luK rodata, "
5532 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5533 #ifdef CONFIG_HIGHMEM
5534 ", %luK highmem"
5535 #endif
5536 "%s%s)\n",
5537 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5538 codesize >> 10, datasize >> 10, rosize >> 10,
5539 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5540 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5541 totalcma_pages << (PAGE_SHIFT-10),
5542 #ifdef CONFIG_HIGHMEM
5543 totalhigh_pages << (PAGE_SHIFT-10),
5544 #endif
5545 str ? ", " : "", str ? str : "");
5546 }
5547
5548 /**
5549 * set_dma_reserve - set the specified number of pages reserved in the first zone
5550 * @new_dma_reserve: The number of pages to mark reserved
5551 *
5552 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5553 * In the DMA zone, a significant percentage may be consumed by kernel image
5554 * and other unfreeable allocations which can skew the watermarks badly. This
5555 * function may optionally be used to account for unfreeable pages in the
5556 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5557 * smaller per-cpu batchsize.
5558 */
5559 void __init set_dma_reserve(unsigned long new_dma_reserve)
5560 {
5561 dma_reserve = new_dma_reserve;
5562 }
5563
5564 void __init free_area_init(unsigned long *zones_size)
5565 {
5566 free_area_init_node(0, zones_size,
5567 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5568 }
5569
5570 static int page_alloc_cpu_notify(struct notifier_block *self,
5571 unsigned long action, void *hcpu)
5572 {
5573 int cpu = (unsigned long)hcpu;
5574
5575 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5576 lru_add_drain_cpu(cpu);
5577 drain_pages(cpu);
5578
5579 /*
5580 * Spill the event counters of the dead processor
5581 * into the current processors event counters.
5582 * This artificially elevates the count of the current
5583 * processor.
5584 */
5585 vm_events_fold_cpu(cpu);
5586
5587 /*
5588 * Zero the differential counters of the dead processor
5589 * so that the vm statistics are consistent.
5590 *
5591 * This is only okay since the processor is dead and cannot
5592 * race with what we are doing.
5593 */
5594 cpu_vm_stats_fold(cpu);
5595 }
5596 return NOTIFY_OK;
5597 }
5598
5599 void __init page_alloc_init(void)
5600 {
5601 hotcpu_notifier(page_alloc_cpu_notify, 0);
5602 }
5603
5604 /*
5605 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5606 * or min_free_kbytes changes.
5607 */
5608 static void calculate_totalreserve_pages(void)
5609 {
5610 struct pglist_data *pgdat;
5611 unsigned long reserve_pages = 0;
5612 enum zone_type i, j;
5613
5614 for_each_online_pgdat(pgdat) {
5615 for (i = 0; i < MAX_NR_ZONES; i++) {
5616 struct zone *zone = pgdat->node_zones + i;
5617 long max = 0;
5618
5619 /* Find valid and maximum lowmem_reserve in the zone */
5620 for (j = i; j < MAX_NR_ZONES; j++) {
5621 if (zone->lowmem_reserve[j] > max)
5622 max = zone->lowmem_reserve[j];
5623 }
5624
5625 /* we treat the high watermark as reserved pages. */
5626 max += high_wmark_pages(zone);
5627
5628 if (max > zone->managed_pages)
5629 max = zone->managed_pages;
5630 reserve_pages += max;
5631 /*
5632 * Lowmem reserves are not available to
5633 * GFP_HIGHUSER page cache allocations and
5634 * kswapd tries to balance zones to their high
5635 * watermark. As a result, neither should be
5636 * regarded as dirtyable memory, to prevent a
5637 * situation where reclaim has to clean pages
5638 * in order to balance the zones.
5639 */
5640 zone->dirty_balance_reserve = max;
5641 }
5642 }
5643 dirty_balance_reserve = reserve_pages;
5644 totalreserve_pages = reserve_pages;
5645 }
5646
5647 /*
5648 * setup_per_zone_lowmem_reserve - called whenever
5649 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5650 * has a correct pages reserved value, so an adequate number of
5651 * pages are left in the zone after a successful __alloc_pages().
5652 */
5653 static void setup_per_zone_lowmem_reserve(void)
5654 {
5655 struct pglist_data *pgdat;
5656 enum zone_type j, idx;
5657
5658 for_each_online_pgdat(pgdat) {
5659 for (j = 0; j < MAX_NR_ZONES; j++) {
5660 struct zone *zone = pgdat->node_zones + j;
5661 unsigned long managed_pages = zone->managed_pages;
5662
5663 zone->lowmem_reserve[j] = 0;
5664
5665 idx = j;
5666 while (idx) {
5667 struct zone *lower_zone;
5668
5669 idx--;
5670
5671 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5672 sysctl_lowmem_reserve_ratio[idx] = 1;
5673
5674 lower_zone = pgdat->node_zones + idx;
5675 lower_zone->lowmem_reserve[j] = managed_pages /
5676 sysctl_lowmem_reserve_ratio[idx];
5677 managed_pages += lower_zone->managed_pages;
5678 }
5679 }
5680 }
5681
5682 /* update totalreserve_pages */
5683 calculate_totalreserve_pages();
5684 }
5685
5686 static void __setup_per_zone_wmarks(void)
5687 {
5688 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5689 unsigned long lowmem_pages = 0;
5690 struct zone *zone;
5691 unsigned long flags;
5692
5693 /* Calculate total number of !ZONE_HIGHMEM pages */
5694 for_each_zone(zone) {
5695 if (!is_highmem(zone))
5696 lowmem_pages += zone->managed_pages;
5697 }
5698
5699 for_each_zone(zone) {
5700 u64 tmp;
5701
5702 spin_lock_irqsave(&zone->lock, flags);
5703 tmp = (u64)pages_min * zone->managed_pages;
5704 do_div(tmp, lowmem_pages);
5705 if (is_highmem(zone)) {
5706 /*
5707 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5708 * need highmem pages, so cap pages_min to a small
5709 * value here.
5710 *
5711 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5712 * deltas controls asynch page reclaim, and so should
5713 * not be capped for highmem.
5714 */
5715 unsigned long min_pages;
5716
5717 min_pages = zone->managed_pages / 1024;
5718 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5719 zone->watermark[WMARK_MIN] = min_pages;
5720 } else {
5721 /*
5722 * If it's a lowmem zone, reserve a number of pages
5723 * proportionate to the zone's size.
5724 */
5725 zone->watermark[WMARK_MIN] = tmp;
5726 }
5727
5728 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5729 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5730
5731 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5732 high_wmark_pages(zone) - low_wmark_pages(zone) -
5733 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5734
5735 setup_zone_migrate_reserve(zone);
5736 spin_unlock_irqrestore(&zone->lock, flags);
5737 }
5738
5739 /* update totalreserve_pages */
5740 calculate_totalreserve_pages();
5741 }
5742
5743 /**
5744 * setup_per_zone_wmarks - called when min_free_kbytes changes
5745 * or when memory is hot-{added|removed}
5746 *
5747 * Ensures that the watermark[min,low,high] values for each zone are set
5748 * correctly with respect to min_free_kbytes.
5749 */
5750 void setup_per_zone_wmarks(void)
5751 {
5752 mutex_lock(&zonelists_mutex);
5753 __setup_per_zone_wmarks();
5754 mutex_unlock(&zonelists_mutex);
5755 }
5756
5757 /*
5758 * The inactive anon list should be small enough that the VM never has to
5759 * do too much work, but large enough that each inactive page has a chance
5760 * to be referenced again before it is swapped out.
5761 *
5762 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5763 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5764 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5765 * the anonymous pages are kept on the inactive list.
5766 *
5767 * total target max
5768 * memory ratio inactive anon
5769 * -------------------------------------
5770 * 10MB 1 5MB
5771 * 100MB 1 50MB
5772 * 1GB 3 250MB
5773 * 10GB 10 0.9GB
5774 * 100GB 31 3GB
5775 * 1TB 101 10GB
5776 * 10TB 320 32GB
5777 */
5778 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5779 {
5780 unsigned int gb, ratio;
5781
5782 /* Zone size in gigabytes */
5783 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5784 if (gb)
5785 ratio = int_sqrt(10 * gb);
5786 else
5787 ratio = 1;
5788
5789 zone->inactive_ratio = ratio;
5790 }
5791
5792 static void __meminit setup_per_zone_inactive_ratio(void)
5793 {
5794 struct zone *zone;
5795
5796 for_each_zone(zone)
5797 calculate_zone_inactive_ratio(zone);
5798 }
5799
5800 /*
5801 * Initialise min_free_kbytes.
5802 *
5803 * For small machines we want it small (128k min). For large machines
5804 * we want it large (64MB max). But it is not linear, because network
5805 * bandwidth does not increase linearly with machine size. We use
5806 *
5807 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5808 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5809 *
5810 * which yields
5811 *
5812 * 16MB: 512k
5813 * 32MB: 724k
5814 * 64MB: 1024k
5815 * 128MB: 1448k
5816 * 256MB: 2048k
5817 * 512MB: 2896k
5818 * 1024MB: 4096k
5819 * 2048MB: 5792k
5820 * 4096MB: 8192k
5821 * 8192MB: 11584k
5822 * 16384MB: 16384k
5823 */
5824 int __meminit init_per_zone_wmark_min(void)
5825 {
5826 unsigned long lowmem_kbytes;
5827 int new_min_free_kbytes;
5828
5829 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5830 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5831
5832 if (new_min_free_kbytes > user_min_free_kbytes) {
5833 min_free_kbytes = new_min_free_kbytes;
5834 if (min_free_kbytes < 128)
5835 min_free_kbytes = 128;
5836 if (min_free_kbytes > 65536)
5837 min_free_kbytes = 65536;
5838 } else {
5839 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5840 new_min_free_kbytes, user_min_free_kbytes);
5841 }
5842 setup_per_zone_wmarks();
5843 refresh_zone_stat_thresholds();
5844 setup_per_zone_lowmem_reserve();
5845 setup_per_zone_inactive_ratio();
5846 return 0;
5847 }
5848 module_init(init_per_zone_wmark_min)
5849
5850 /*
5851 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5852 * that we can call two helper functions whenever min_free_kbytes
5853 * changes.
5854 */
5855 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5856 void __user *buffer, size_t *length, loff_t *ppos)
5857 {
5858 int rc;
5859
5860 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5861 if (rc)
5862 return rc;
5863
5864 if (write) {
5865 user_min_free_kbytes = min_free_kbytes;
5866 setup_per_zone_wmarks();
5867 }
5868 return 0;
5869 }
5870
5871 #ifdef CONFIG_NUMA
5872 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5873 void __user *buffer, size_t *length, loff_t *ppos)
5874 {
5875 struct zone *zone;
5876 int rc;
5877
5878 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5879 if (rc)
5880 return rc;
5881
5882 for_each_zone(zone)
5883 zone->min_unmapped_pages = (zone->managed_pages *
5884 sysctl_min_unmapped_ratio) / 100;
5885 return 0;
5886 }
5887
5888 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5889 void __user *buffer, size_t *length, loff_t *ppos)
5890 {
5891 struct zone *zone;
5892 int rc;
5893
5894 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5895 if (rc)
5896 return rc;
5897
5898 for_each_zone(zone)
5899 zone->min_slab_pages = (zone->managed_pages *
5900 sysctl_min_slab_ratio) / 100;
5901 return 0;
5902 }
5903 #endif
5904
5905 /*
5906 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5907 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5908 * whenever sysctl_lowmem_reserve_ratio changes.
5909 *
5910 * The reserve ratio obviously has absolutely no relation with the
5911 * minimum watermarks. The lowmem reserve ratio can only make sense
5912 * if in function of the boot time zone sizes.
5913 */
5914 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5915 void __user *buffer, size_t *length, loff_t *ppos)
5916 {
5917 proc_dointvec_minmax(table, write, buffer, length, ppos);
5918 setup_per_zone_lowmem_reserve();
5919 return 0;
5920 }
5921
5922 /*
5923 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5924 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5925 * pagelist can have before it gets flushed back to buddy allocator.
5926 */
5927 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5928 void __user *buffer, size_t *length, loff_t *ppos)
5929 {
5930 struct zone *zone;
5931 int old_percpu_pagelist_fraction;
5932 int ret;
5933
5934 mutex_lock(&pcp_batch_high_lock);
5935 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5936
5937 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5938 if (!write || ret < 0)
5939 goto out;
5940
5941 /* Sanity checking to avoid pcp imbalance */
5942 if (percpu_pagelist_fraction &&
5943 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5944 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5945 ret = -EINVAL;
5946 goto out;
5947 }
5948
5949 /* No change? */
5950 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5951 goto out;
5952
5953 for_each_populated_zone(zone) {
5954 unsigned int cpu;
5955
5956 for_each_possible_cpu(cpu)
5957 pageset_set_high_and_batch(zone,
5958 per_cpu_ptr(zone->pageset, cpu));
5959 }
5960 out:
5961 mutex_unlock(&pcp_batch_high_lock);
5962 return ret;
5963 }
5964
5965 int hashdist = HASHDIST_DEFAULT;
5966
5967 #ifdef CONFIG_NUMA
5968 static int __init set_hashdist(char *str)
5969 {
5970 if (!str)
5971 return 0;
5972 hashdist = simple_strtoul(str, &str, 0);
5973 return 1;
5974 }
5975 __setup("hashdist=", set_hashdist);
5976 #endif
5977
5978 /*
5979 * allocate a large system hash table from bootmem
5980 * - it is assumed that the hash table must contain an exact power-of-2
5981 * quantity of entries
5982 * - limit is the number of hash buckets, not the total allocation size
5983 */
5984 void *__init alloc_large_system_hash(const char *tablename,
5985 unsigned long bucketsize,
5986 unsigned long numentries,
5987 int scale,
5988 int flags,
5989 unsigned int *_hash_shift,
5990 unsigned int *_hash_mask,
5991 unsigned long low_limit,
5992 unsigned long high_limit)
5993 {
5994 unsigned long long max = high_limit;
5995 unsigned long log2qty, size;
5996 void *table = NULL;
5997
5998 /* allow the kernel cmdline to have a say */
5999 if (!numentries) {
6000 /* round applicable memory size up to nearest megabyte */
6001 numentries = nr_kernel_pages;
6002
6003 /* It isn't necessary when PAGE_SIZE >= 1MB */
6004 if (PAGE_SHIFT < 20)
6005 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6006
6007 /* limit to 1 bucket per 2^scale bytes of low memory */
6008 if (scale > PAGE_SHIFT)
6009 numentries >>= (scale - PAGE_SHIFT);
6010 else
6011 numentries <<= (PAGE_SHIFT - scale);
6012
6013 /* Make sure we've got at least a 0-order allocation.. */
6014 if (unlikely(flags & HASH_SMALL)) {
6015 /* Makes no sense without HASH_EARLY */
6016 WARN_ON(!(flags & HASH_EARLY));
6017 if (!(numentries >> *_hash_shift)) {
6018 numentries = 1UL << *_hash_shift;
6019 BUG_ON(!numentries);
6020 }
6021 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6022 numentries = PAGE_SIZE / bucketsize;
6023 }
6024 numentries = roundup_pow_of_two(numentries);
6025
6026 /* limit allocation size to 1/16 total memory by default */
6027 if (max == 0) {
6028 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6029 do_div(max, bucketsize);
6030 }
6031 max = min(max, 0x80000000ULL);
6032
6033 if (numentries < low_limit)
6034 numentries = low_limit;
6035 if (numentries > max)
6036 numentries = max;
6037
6038 log2qty = ilog2(numentries);
6039
6040 do {
6041 size = bucketsize << log2qty;
6042 if (flags & HASH_EARLY)
6043 table = memblock_virt_alloc_nopanic(size, 0);
6044 else if (hashdist)
6045 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6046 else {
6047 /*
6048 * If bucketsize is not a power-of-two, we may free
6049 * some pages at the end of hash table which
6050 * alloc_pages_exact() automatically does
6051 */
6052 if (get_order(size) < MAX_ORDER) {
6053 table = alloc_pages_exact(size, GFP_ATOMIC);
6054 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6055 }
6056 }
6057 } while (!table && size > PAGE_SIZE && --log2qty);
6058
6059 if (!table)
6060 panic("Failed to allocate %s hash table\n", tablename);
6061
6062 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6063 tablename,
6064 (1UL << log2qty),
6065 ilog2(size) - PAGE_SHIFT,
6066 size);
6067
6068 if (_hash_shift)
6069 *_hash_shift = log2qty;
6070 if (_hash_mask)
6071 *_hash_mask = (1 << log2qty) - 1;
6072
6073 return table;
6074 }
6075
6076 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6077 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6078 unsigned long pfn)
6079 {
6080 #ifdef CONFIG_SPARSEMEM
6081 return __pfn_to_section(pfn)->pageblock_flags;
6082 #else
6083 return zone->pageblock_flags;
6084 #endif /* CONFIG_SPARSEMEM */
6085 }
6086
6087 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6088 {
6089 #ifdef CONFIG_SPARSEMEM
6090 pfn &= (PAGES_PER_SECTION-1);
6091 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6092 #else
6093 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6094 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6095 #endif /* CONFIG_SPARSEMEM */
6096 }
6097
6098 /**
6099 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6100 * @page: The page within the block of interest
6101 * @pfn: The target page frame number
6102 * @end_bitidx: The last bit of interest to retrieve
6103 * @mask: mask of bits that the caller is interested in
6104 *
6105 * Return: pageblock_bits flags
6106 */
6107 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6108 unsigned long end_bitidx,
6109 unsigned long mask)
6110 {
6111 struct zone *zone;
6112 unsigned long *bitmap;
6113 unsigned long bitidx, word_bitidx;
6114 unsigned long word;
6115
6116 zone = page_zone(page);
6117 bitmap = get_pageblock_bitmap(zone, pfn);
6118 bitidx = pfn_to_bitidx(zone, pfn);
6119 word_bitidx = bitidx / BITS_PER_LONG;
6120 bitidx &= (BITS_PER_LONG-1);
6121
6122 word = bitmap[word_bitidx];
6123 bitidx += end_bitidx;
6124 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6125 }
6126
6127 /**
6128 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6129 * @page: The page within the block of interest
6130 * @flags: The flags to set
6131 * @pfn: The target page frame number
6132 * @end_bitidx: The last bit of interest
6133 * @mask: mask of bits that the caller is interested in
6134 */
6135 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6136 unsigned long pfn,
6137 unsigned long end_bitidx,
6138 unsigned long mask)
6139 {
6140 struct zone *zone;
6141 unsigned long *bitmap;
6142 unsigned long bitidx, word_bitidx;
6143 unsigned long old_word, word;
6144
6145 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6146
6147 zone = page_zone(page);
6148 bitmap = get_pageblock_bitmap(zone, pfn);
6149 bitidx = pfn_to_bitidx(zone, pfn);
6150 word_bitidx = bitidx / BITS_PER_LONG;
6151 bitidx &= (BITS_PER_LONG-1);
6152
6153 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6154
6155 bitidx += end_bitidx;
6156 mask <<= (BITS_PER_LONG - bitidx - 1);
6157 flags <<= (BITS_PER_LONG - bitidx - 1);
6158
6159 word = ACCESS_ONCE(bitmap[word_bitidx]);
6160 for (;;) {
6161 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6162 if (word == old_word)
6163 break;
6164 word = old_word;
6165 }
6166 }
6167
6168 /*
6169 * This function checks whether pageblock includes unmovable pages or not.
6170 * If @count is not zero, it is okay to include less @count unmovable pages
6171 *
6172 * PageLRU check without isolation or lru_lock could race so that
6173 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6174 * expect this function should be exact.
6175 */
6176 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6177 bool skip_hwpoisoned_pages)
6178 {
6179 unsigned long pfn, iter, found;
6180 int mt;
6181
6182 /*
6183 * For avoiding noise data, lru_add_drain_all() should be called
6184 * If ZONE_MOVABLE, the zone never contains unmovable pages
6185 */
6186 if (zone_idx(zone) == ZONE_MOVABLE)
6187 return false;
6188 mt = get_pageblock_migratetype(page);
6189 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6190 return false;
6191
6192 pfn = page_to_pfn(page);
6193 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6194 unsigned long check = pfn + iter;
6195
6196 if (!pfn_valid_within(check))
6197 continue;
6198
6199 page = pfn_to_page(check);
6200
6201 /*
6202 * Hugepages are not in LRU lists, but they're movable.
6203 * We need not scan over tail pages bacause we don't
6204 * handle each tail page individually in migration.
6205 */
6206 if (PageHuge(page)) {
6207 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6208 continue;
6209 }
6210
6211 /*
6212 * We can't use page_count without pin a page
6213 * because another CPU can free compound page.
6214 * This check already skips compound tails of THP
6215 * because their page->_count is zero at all time.
6216 */
6217 if (!atomic_read(&page->_count)) {
6218 if (PageBuddy(page))
6219 iter += (1 << page_order(page)) - 1;
6220 continue;
6221 }
6222
6223 /*
6224 * The HWPoisoned page may be not in buddy system, and
6225 * page_count() is not 0.
6226 */
6227 if (skip_hwpoisoned_pages && PageHWPoison(page))
6228 continue;
6229
6230 if (!PageLRU(page))
6231 found++;
6232 /*
6233 * If there are RECLAIMABLE pages, we need to check
6234 * it. But now, memory offline itself doesn't call
6235 * shrink_node_slabs() and it still to be fixed.
6236 */
6237 /*
6238 * If the page is not RAM, page_count()should be 0.
6239 * we don't need more check. This is an _used_ not-movable page.
6240 *
6241 * The problematic thing here is PG_reserved pages. PG_reserved
6242 * is set to both of a memory hole page and a _used_ kernel
6243 * page at boot.
6244 */
6245 if (found > count)
6246 return true;
6247 }
6248 return false;
6249 }
6250
6251 bool is_pageblock_removable_nolock(struct page *page)
6252 {
6253 struct zone *zone;
6254 unsigned long pfn;
6255
6256 /*
6257 * We have to be careful here because we are iterating over memory
6258 * sections which are not zone aware so we might end up outside of
6259 * the zone but still within the section.
6260 * We have to take care about the node as well. If the node is offline
6261 * its NODE_DATA will be NULL - see page_zone.
6262 */
6263 if (!node_online(page_to_nid(page)))
6264 return false;
6265
6266 zone = page_zone(page);
6267 pfn = page_to_pfn(page);
6268 if (!zone_spans_pfn(zone, pfn))
6269 return false;
6270
6271 return !has_unmovable_pages(zone, page, 0, true);
6272 }
6273
6274 #ifdef CONFIG_CMA
6275
6276 static unsigned long pfn_max_align_down(unsigned long pfn)
6277 {
6278 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6279 pageblock_nr_pages) - 1);
6280 }
6281
6282 static unsigned long pfn_max_align_up(unsigned long pfn)
6283 {
6284 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6285 pageblock_nr_pages));
6286 }
6287
6288 /* [start, end) must belong to a single zone. */
6289 static int __alloc_contig_migrate_range(struct compact_control *cc,
6290 unsigned long start, unsigned long end)
6291 {
6292 /* This function is based on compact_zone() from compaction.c. */
6293 unsigned long nr_reclaimed;
6294 unsigned long pfn = start;
6295 unsigned int tries = 0;
6296 int ret = 0;
6297
6298 migrate_prep();
6299
6300 while (pfn < end || !list_empty(&cc->migratepages)) {
6301 if (fatal_signal_pending(current)) {
6302 ret = -EINTR;
6303 break;
6304 }
6305
6306 if (list_empty(&cc->migratepages)) {
6307 cc->nr_migratepages = 0;
6308 pfn = isolate_migratepages_range(cc, pfn, end);
6309 if (!pfn) {
6310 ret = -EINTR;
6311 break;
6312 }
6313 tries = 0;
6314 } else if (++tries == 5) {
6315 ret = ret < 0 ? ret : -EBUSY;
6316 break;
6317 }
6318
6319 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6320 &cc->migratepages);
6321 cc->nr_migratepages -= nr_reclaimed;
6322
6323 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6324 NULL, 0, cc->mode, MR_CMA);
6325 }
6326 if (ret < 0) {
6327 putback_movable_pages(&cc->migratepages);
6328 return ret;
6329 }
6330 return 0;
6331 }
6332
6333 /**
6334 * alloc_contig_range() -- tries to allocate given range of pages
6335 * @start: start PFN to allocate
6336 * @end: one-past-the-last PFN to allocate
6337 * @migratetype: migratetype of the underlaying pageblocks (either
6338 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6339 * in range must have the same migratetype and it must
6340 * be either of the two.
6341 *
6342 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6343 * aligned, however it's the caller's responsibility to guarantee that
6344 * we are the only thread that changes migrate type of pageblocks the
6345 * pages fall in.
6346 *
6347 * The PFN range must belong to a single zone.
6348 *
6349 * Returns zero on success or negative error code. On success all
6350 * pages which PFN is in [start, end) are allocated for the caller and
6351 * need to be freed with free_contig_range().
6352 */
6353 int alloc_contig_range(unsigned long start, unsigned long end,
6354 unsigned migratetype)
6355 {
6356 unsigned long outer_start, outer_end;
6357 int ret = 0, order;
6358
6359 struct compact_control cc = {
6360 .nr_migratepages = 0,
6361 .order = -1,
6362 .zone = page_zone(pfn_to_page(start)),
6363 .mode = MIGRATE_SYNC,
6364 .ignore_skip_hint = true,
6365 };
6366 INIT_LIST_HEAD(&cc.migratepages);
6367
6368 /*
6369 * What we do here is we mark all pageblocks in range as
6370 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6371 * have different sizes, and due to the way page allocator
6372 * work, we align the range to biggest of the two pages so
6373 * that page allocator won't try to merge buddies from
6374 * different pageblocks and change MIGRATE_ISOLATE to some
6375 * other migration type.
6376 *
6377 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6378 * migrate the pages from an unaligned range (ie. pages that
6379 * we are interested in). This will put all the pages in
6380 * range back to page allocator as MIGRATE_ISOLATE.
6381 *
6382 * When this is done, we take the pages in range from page
6383 * allocator removing them from the buddy system. This way
6384 * page allocator will never consider using them.
6385 *
6386 * This lets us mark the pageblocks back as
6387 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6388 * aligned range but not in the unaligned, original range are
6389 * put back to page allocator so that buddy can use them.
6390 */
6391
6392 ret = start_isolate_page_range(pfn_max_align_down(start),
6393 pfn_max_align_up(end), migratetype,
6394 false);
6395 if (ret)
6396 return ret;
6397
6398 ret = __alloc_contig_migrate_range(&cc, start, end);
6399 if (ret)
6400 goto done;
6401
6402 /*
6403 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6404 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6405 * more, all pages in [start, end) are free in page allocator.
6406 * What we are going to do is to allocate all pages from
6407 * [start, end) (that is remove them from page allocator).
6408 *
6409 * The only problem is that pages at the beginning and at the
6410 * end of interesting range may be not aligned with pages that
6411 * page allocator holds, ie. they can be part of higher order
6412 * pages. Because of this, we reserve the bigger range and
6413 * once this is done free the pages we are not interested in.
6414 *
6415 * We don't have to hold zone->lock here because the pages are
6416 * isolated thus they won't get removed from buddy.
6417 */
6418
6419 lru_add_drain_all();
6420 drain_all_pages(cc.zone);
6421
6422 order = 0;
6423 outer_start = start;
6424 while (!PageBuddy(pfn_to_page(outer_start))) {
6425 if (++order >= MAX_ORDER) {
6426 ret = -EBUSY;
6427 goto done;
6428 }
6429 outer_start &= ~0UL << order;
6430 }
6431
6432 /* Make sure the range is really isolated. */
6433 if (test_pages_isolated(outer_start, end, false)) {
6434 pr_info("%s: [%lx, %lx) PFNs busy\n",
6435 __func__, outer_start, end);
6436 ret = -EBUSY;
6437 goto done;
6438 }
6439
6440 /* Grab isolated pages from freelists. */
6441 outer_end = isolate_freepages_range(&cc, outer_start, end);
6442 if (!outer_end) {
6443 ret = -EBUSY;
6444 goto done;
6445 }
6446
6447 /* Free head and tail (if any) */
6448 if (start != outer_start)
6449 free_contig_range(outer_start, start - outer_start);
6450 if (end != outer_end)
6451 free_contig_range(end, outer_end - end);
6452
6453 done:
6454 undo_isolate_page_range(pfn_max_align_down(start),
6455 pfn_max_align_up(end), migratetype);
6456 return ret;
6457 }
6458
6459 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6460 {
6461 unsigned int count = 0;
6462
6463 for (; nr_pages--; pfn++) {
6464 struct page *page = pfn_to_page(pfn);
6465
6466 count += page_count(page) != 1;
6467 __free_page(page);
6468 }
6469 WARN(count != 0, "%d pages are still in use!\n", count);
6470 }
6471 #endif
6472
6473 #ifdef CONFIG_MEMORY_HOTPLUG
6474 /*
6475 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6476 * page high values need to be recalulated.
6477 */
6478 void __meminit zone_pcp_update(struct zone *zone)
6479 {
6480 unsigned cpu;
6481 mutex_lock(&pcp_batch_high_lock);
6482 for_each_possible_cpu(cpu)
6483 pageset_set_high_and_batch(zone,
6484 per_cpu_ptr(zone->pageset, cpu));
6485 mutex_unlock(&pcp_batch_high_lock);
6486 }
6487 #endif
6488
6489 void zone_pcp_reset(struct zone *zone)
6490 {
6491 unsigned long flags;
6492 int cpu;
6493 struct per_cpu_pageset *pset;
6494
6495 /* avoid races with drain_pages() */
6496 local_irq_save(flags);
6497 if (zone->pageset != &boot_pageset) {
6498 for_each_online_cpu(cpu) {
6499 pset = per_cpu_ptr(zone->pageset, cpu);
6500 drain_zonestat(zone, pset);
6501 }
6502 free_percpu(zone->pageset);
6503 zone->pageset = &boot_pageset;
6504 }
6505 local_irq_restore(flags);
6506 }
6507
6508 #ifdef CONFIG_MEMORY_HOTREMOVE
6509 /*
6510 * All pages in the range must be isolated before calling this.
6511 */
6512 void
6513 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6514 {
6515 struct page *page;
6516 struct zone *zone;
6517 unsigned int order, i;
6518 unsigned long pfn;
6519 unsigned long flags;
6520 /* find the first valid pfn */
6521 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6522 if (pfn_valid(pfn))
6523 break;
6524 if (pfn == end_pfn)
6525 return;
6526 zone = page_zone(pfn_to_page(pfn));
6527 spin_lock_irqsave(&zone->lock, flags);
6528 pfn = start_pfn;
6529 while (pfn < end_pfn) {
6530 if (!pfn_valid(pfn)) {
6531 pfn++;
6532 continue;
6533 }
6534 page = pfn_to_page(pfn);
6535 /*
6536 * The HWPoisoned page may be not in buddy system, and
6537 * page_count() is not 0.
6538 */
6539 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6540 pfn++;
6541 SetPageReserved(page);
6542 continue;
6543 }
6544
6545 BUG_ON(page_count(page));
6546 BUG_ON(!PageBuddy(page));
6547 order = page_order(page);
6548 #ifdef CONFIG_DEBUG_VM
6549 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6550 pfn, 1 << order, end_pfn);
6551 #endif
6552 list_del(&page->lru);
6553 rmv_page_order(page);
6554 zone->free_area[order].nr_free--;
6555 for (i = 0; i < (1 << order); i++)
6556 SetPageReserved((page+i));
6557 pfn += (1 << order);
6558 }
6559 spin_unlock_irqrestore(&zone->lock, flags);
6560 }
6561 #endif
6562
6563 #ifdef CONFIG_MEMORY_FAILURE
6564 bool is_free_buddy_page(struct page *page)
6565 {
6566 struct zone *zone = page_zone(page);
6567 unsigned long pfn = page_to_pfn(page);
6568 unsigned long flags;
6569 unsigned int order;
6570
6571 spin_lock_irqsave(&zone->lock, flags);
6572 for (order = 0; order < MAX_ORDER; order++) {
6573 struct page *page_head = page - (pfn & ((1 << order) - 1));
6574
6575 if (PageBuddy(page_head) && page_order(page_head) >= order)
6576 break;
6577 }
6578 spin_unlock_irqrestore(&zone->lock, flags);
6579
6580 return order < MAX_ORDER;
6581 }
6582 #endif